Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Header file for hardcoded Parametric Stereo tables
  3.  *
  4.  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  5.  *
  6.  * This file is part of FFmpeg.
  7.  *
  8.  * FFmpeg is free software; you can redistribute it and/or
  9.  * modify it under the terms of the GNU Lesser General Public
  10.  * License as published by the Free Software Foundation; either
  11.  * version 2.1 of the License, or (at your option) any later version.
  12.  *
  13.  * FFmpeg is distributed in the hope that it will be useful,
  14.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16.  * Lesser General Public License for more details.
  17.  *
  18.  * You should have received a copy of the GNU Lesser General Public
  19.  * License along with FFmpeg; if not, write to the Free Software
  20.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21.  *
  22.  * Note: Rounding-to-nearest used unless otherwise stated
  23.  *
  24.  */
  25.  
  26. #ifndef AACPS_FIXED_TABLEGEN_H
  27. #define AACPS_FIXED_TABLEGEN_H
  28.  
  29. #include <math.h>
  30. #include <stdint.h>
  31.  
  32. #if CONFIG_HARDCODED_TABLES
  33. #define ps_tableinit()
  34. #define TABLE_CONST const
  35. #include "libavcodec/aacps_fixed_tables.h"
  36. #else
  37. #include "libavutil/common.h"
  38. #include "libavutil/mathematics.h"
  39. #include "libavutil/mem.h"
  40.  
  41. #include "aac_defines.h"
  42. #include "libavutil/softfloat.h"
  43. #define NR_ALLPASS_BANDS20 30
  44. #define NR_ALLPASS_BANDS34 50
  45. #define PS_AP_LINKS 3
  46. #define TABLE_CONST
  47. static int pd_re_smooth[8*8*8];
  48. static int pd_im_smooth[8*8*8];
  49. static int HA[46][8][4];
  50. static int HB[46][8][4];
  51. static DECLARE_ALIGNED(16, int, f20_0_8) [ 8][8][2];
  52. static DECLARE_ALIGNED(16, int, f34_0_12)[12][8][2];
  53. static DECLARE_ALIGNED(16, int, f34_1_8) [ 8][8][2];
  54. static DECLARE_ALIGNED(16, int, f34_2_4) [ 4][8][2];
  55. static TABLE_CONST DECLARE_ALIGNED(16, int, Q_fract_allpass)[2][50][3][2];
  56. static DECLARE_ALIGNED(16, int, phi_fract)[2][50][2];
  57.  
  58. static const int g0_Q8[] = {
  59.     Q31(0.00746082949812f), Q31(0.02270420949825f), Q31(0.04546865930473f), Q31(0.07266113929591f),
  60.     Q31(0.09885108575264f), Q31(0.11793710567217f), Q31(0.125f)
  61. };
  62.  
  63. static const int g0_Q12[] = {
  64.     Q31(0.04081179924692f), Q31(0.03812810994926f), Q31(0.05144908135699f), Q31(0.06399831151592f),
  65.     Q31(0.07428313801106f), Q31(0.08100347892914f), Q31(0.08333333333333f)
  66. };
  67.  
  68. static const int g1_Q8[] = {
  69.     Q31(0.01565675600122f), Q31(0.03752716391991f), Q31(0.05417891378782f), Q31(0.08417044116767f),
  70.     Q31(0.10307344158036f), Q31(0.12222452249753f), Q31(0.125f)
  71. };
  72.  
  73. static const int g2_Q4[] = {
  74.     Q31(-0.05908211155639f), Q31(-0.04871498374946f), Q31(0.0f),   Q31(0.07778723915851f),
  75.     Q31( 0.16486303567403f), Q31( 0.23279856662996f), Q31(0.25f)
  76. };
  77.  
  78. static const int sintbl_4[4]   = {           0,  1073741824,           0, -1073741824 };
  79. static const int costbl_4[4]   = {  1073741824,           0, -1073741824,           0 };
  80. static const int sintbl_8[8]   = {           0,   759250125,  1073741824,   759250125,
  81.                                              0,  -759250125, -1073741824,  -759250125 };
  82. static const int costbl_8[8]   = {  1073741824,   759250125,           0,  -759250125,
  83.                                    -1073741824,  -759250125,           0,   759250125 };
  84. static const int sintbl_12[12] = {           0,   536870912,   929887697,  1073741824,
  85.                                      929887697,   536870912,           0,  -536870912,
  86.                                     -929887697, -1073741824,  -929887697,  -536870912 };
  87. static const int costbl_12[12] = {  1073741824,   929887697,   536870912,           0,
  88.                                     -536870912,  -929887697, -1073741824,  -929887697,
  89.                                     -536870912,           0,   536870912,   929887697 };
  90.  
  91. static void make_filters_from_proto(int (*filter)[8][2], const int *proto, int bands)
  92. {
  93.  
  94.     const int *sinptr, *cosptr;
  95.     int s, c, sinhalf, coshalf;
  96.     int q, n;
  97.  
  98.     if (bands == 4) {
  99.         sinptr = sintbl_4;
  100.         cosptr = costbl_4;
  101.         sinhalf = 759250125;
  102.         coshalf = 759250125;
  103.     } else if (bands == 8) {
  104.         sinptr = sintbl_8;
  105.         cosptr = costbl_8;
  106.         sinhalf = 410903207;
  107.         coshalf = 992008094;
  108.     } else {
  109.         sinptr = sintbl_12;
  110.         cosptr = costbl_12;
  111.         sinhalf = 277904834;
  112.         coshalf = 1037154959;
  113.     }
  114.  
  115.     for (q = 0; q < bands; q++) {
  116.         for (n = 0; n < 7; n++) {
  117.             int theta = (q*(n-6) + (n>>1) - 3) % bands;
  118.  
  119.             if (theta < 0)
  120.                 theta += bands;
  121.             s = sinptr[theta];
  122.             c = cosptr[theta];
  123.  
  124.             if (n & 1) {
  125.                 theta = (int)(((int64_t)c * coshalf - (int64_t)s * sinhalf + 0x20000000) >> 30);
  126.                 s = (int)(((int64_t)s * coshalf + (int64_t)c * sinhalf + 0x20000000) >> 30);
  127.                 c = theta;
  128.             }
  129.             filter[q][n][0] = (int)(((int64_t)proto[n] * c + 0x20000000) >> 30);
  130.             filter[q][n][1] = -(int)(((int64_t)proto[n] * s + 0x20000000) >> 30);
  131.         }
  132.     }
  133. }
  134.  
  135. static void ps_tableinit(void)
  136. {
  137.     static const int ipdopd_sin[] = { Q30(0), Q30(M_SQRT1_2), Q30(1), Q30( M_SQRT1_2), Q30( 0), Q30(-M_SQRT1_2), Q30(-1), Q30(-M_SQRT1_2) };
  138.     static const int ipdopd_cos[] = { Q30(1), Q30(M_SQRT1_2), Q30(0), Q30(-M_SQRT1_2), Q30(-1), Q30(-M_SQRT1_2), Q30( 0), Q30( M_SQRT1_2) };
  139.     int pd0, pd1, pd2;
  140.     int idx;
  141.  
  142.     static const int alpha_tab[] =
  143.     {
  144.       Q30(1.5146213770f/M_PI), Q30(1.5181334019f/M_PI), Q30(1.5234849453f/M_PI), Q30(1.5369486809f/M_PI), Q30(1.5500687361f/M_PI), Q30(1.5679757595f/M_PI),
  145.       Q30(1.4455626011f/M_PI), Q30(1.4531552792f/M_PI), Q30(1.4648091793f/M_PI), Q30(1.4945238829f/M_PI), Q30(1.5239057541f/M_PI), Q30(1.5644006729f/M_PI),
  146.       Q30(1.3738563061f/M_PI), Q30(1.3851221800f/M_PI), Q30(1.4026404619f/M_PI), Q30(1.4484288692f/M_PI), Q30(1.4949874878f/M_PI), Q30(1.5604078770f/M_PI),
  147.       Q30(1.2645189762f/M_PI), Q30(1.2796478271f/M_PI), Q30(1.3038636446f/M_PI), Q30(1.3710125685f/M_PI), Q30(1.4443849325f/M_PI), Q30(1.5532352924f/M_PI),
  148.       Q30(1.1507037878f/M_PI), Q30(1.1669205427f/M_PI), Q30(1.1938756704f/M_PI), Q30(1.2754167318f/M_PI), Q30(1.3761177063f/M_PI), Q30(1.5429240465f/M_PI),
  149.       Q30(1.0079245567f/M_PI), Q30(1.0208238363f/M_PI), Q30(1.0433073044f/M_PI), Q30(1.1208510399f/M_PI), Q30(1.2424604893f/M_PI), Q30(1.5185726881f/M_PI),
  150.       Q30(0.8995233774f/M_PI), Q30(0.9069069624f/M_PI), Q30(0.9201194048f/M_PI), Q30(0.9698365927f/M_PI), Q30(1.0671583414f/M_PI), Q30(1.4647934437f/M_PI),
  151.       Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI),
  152.       Q30(0.6712729335f/M_PI), Q30(0.6638893485f/M_PI), Q30(0.6506769061f/M_PI), Q30(0.6009597182f/M_PI), Q30(0.5036380291f/M_PI), Q30(0.1060028747f/M_PI),
  153.       Q30(0.5628717542f/M_PI), Q30(0.5499725342f/M_PI), Q30(0.5274890065f/M_PI), Q30(0.4499453008f/M_PI), Q30(0.3283358216f/M_PI), Q30(0.0522236861f/M_PI),
  154.       Q30(0.4200925827f/M_PI), Q30(0.4038758278f/M_PI), Q30(0.3769206405f/M_PI), Q30(0.2953795493f/M_PI), Q30(0.1946786791f/M_PI), Q30(0.0278722942f/M_PI),
  155.       Q30(0.3062773645f/M_PI), Q30(0.2911485136f/M_PI), Q30(0.2669326365f/M_PI), Q30(0.1997837722f/M_PI), Q30(0.1264114529f/M_PI), Q30(0.0175609849f/M_PI),
  156.       Q30(0.1969399750f/M_PI), Q30(0.1856741160f/M_PI), Q30(0.1681558639f/M_PI), Q30(0.1223674342f/M_PI), Q30(0.0758088827f/M_PI), Q30(0.0103884479f/M_PI),
  157.       Q30(0.1252337098f/M_PI), Q30(0.1176410317f/M_PI), Q30(0.1059871912f/M_PI), Q30(0.0762724727f/M_PI), Q30(0.0468905345f/M_PI), Q30(0.0063956482f/M_PI),
  158.       Q30(0.0561749674f/M_PI), Q30(0.0526629239f/M_PI), Q30(0.0473113805f/M_PI), Q30(0.0338476151f/M_PI), Q30(0.0207276177f/M_PI), Q30(0.0028205961f/M_PI),
  159.       Q30(1.5676341057f/M_PI), Q30(1.5678333044f/M_PI), Q30(1.5681363344f/M_PI), Q30(1.5688960552f/M_PI), Q30(1.5696337223f/M_PI), Q30(1.5706381798f/M_PI),
  160.       Q30(1.5651730299f/M_PI), Q30(1.5655272007f/M_PI), Q30(1.5660660267f/M_PI), Q30(1.5674170256f/M_PI), Q30(1.5687289238f/M_PI), Q30(1.5705151558f/M_PI),
  161.       Q30(1.5607966185f/M_PI), Q30(1.5614265203f/M_PI), Q30(1.5623844862f/M_PI), Q30(1.5647867918f/M_PI), Q30(1.5671195984f/M_PI), Q30(1.5702962875f/M_PI),
  162.       Q30(1.5530153513f/M_PI), Q30(1.5541347265f/M_PI), Q30(1.5558375120f/M_PI), Q30(1.5601085424f/M_PI), Q30(1.5642569065f/M_PI), Q30(1.5699069500f/M_PI),
  163.       Q30(1.5391840935f/M_PI), Q30(1.5411708355f/M_PI), Q30(1.5441943407f/M_PI), Q30(1.5517836809f/M_PI), Q30(1.5591609478f/M_PI), Q30(1.5692136288f/M_PI),
  164.       Q30(1.5146213770f/M_PI), Q30(1.5181334019f/M_PI), Q30(1.5234849453f/M_PI), Q30(1.5369486809f/M_PI), Q30(1.5500687361f/M_PI), Q30(1.5679757595f/M_PI),
  165.       Q30(1.4915299416f/M_PI), Q30(1.4964480400f/M_PI), Q30(1.5039558411f/M_PI), Q30(1.5229074955f/M_PI), Q30(1.5414420366f/M_PI), Q30(1.5667995214f/M_PI),
  166.       Q30(1.4590617418f/M_PI), Q30(1.4658898115f/M_PI), Q30(1.4763505459f/M_PI), Q30(1.5029321909f/M_PI), Q30(1.5291173458f/M_PI), Q30(1.5651149750f/M_PI),
  167.       Q30(1.4136143923f/M_PI), Q30(1.4229322672f/M_PI), Q30(1.4373078346f/M_PI), Q30(1.4743183851f/M_PI), Q30(1.5113102198f/M_PI), Q30(1.5626684427f/M_PI),
  168.       Q30(1.3505556583f/M_PI), Q30(1.3628427982f/M_PI), Q30(1.3820509911f/M_PI), Q30(1.4327841997f/M_PI), Q30(1.4850014448f/M_PI), Q30(1.5590143204f/M_PI),
  169.       Q30(1.2645189762f/M_PI), Q30(1.2796478271f/M_PI), Q30(1.3038636446f/M_PI), Q30(1.3710125685f/M_PI), Q30(1.4443849325f/M_PI), Q30(1.5532352924f/M_PI),
  170.       Q30(1.1919227839f/M_PI), Q30(1.2081253529f/M_PI), Q30(1.2346779108f/M_PI), Q30(1.3123005629f/M_PI), Q30(1.4034168720f/M_PI), Q30(1.5471596718f/M_PI),
  171.       Q30(1.1061993837f/M_PI), Q30(1.1219338179f/M_PI), Q30(1.1484941244f/M_PI), Q30(1.2320860624f/M_PI), Q30(1.3421301842f/M_PI), Q30(1.5373806953f/M_PI),
  172.       Q30(1.0079245567f/M_PI), Q30(1.0208238363f/M_PI), Q30(1.0433073044f/M_PI), Q30(1.1208510399f/M_PI), Q30(1.2424604893f/M_PI), Q30(1.5185726881f/M_PI),
  173.       Q30(0.8995233774f/M_PI), Q30(0.9069069624f/M_PI), Q30(0.9201194048f/M_PI), Q30(0.9698365927f/M_PI), Q30(1.0671583414f/M_PI), Q30(1.4647934437f/M_PI),
  174.       Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI),
  175.       Q30(0.6712729335f/M_PI), Q30(0.6638893485f/M_PI), Q30(0.6506769061f/M_PI), Q30(0.6009597182f/M_PI), Q30(0.5036380291f/M_PI), Q30(0.1060028747f/M_PI),
  176.       Q30(0.5628717542f/M_PI), Q30(0.5499725342f/M_PI), Q30(0.5274890065f/M_PI), Q30(0.4499453008f/M_PI), Q30(0.3283358216f/M_PI), Q30(0.0522236861f/M_PI),
  177.       Q30(0.4645969570f/M_PI), Q30(0.4488625824f/M_PI), Q30(0.4223022461f/M_PI), Q30(0.3387103081f/M_PI), Q30(0.2286661267f/M_PI), Q30(0.0334156826f/M_PI),
  178.       Q30(0.3788735867f/M_PI), Q30(0.3626709878f/M_PI), Q30(0.3361184299f/M_PI), Q30(0.2584958076f/M_PI), Q30(0.1673794836f/M_PI), Q30(0.0236366931f/M_PI),
  179.       Q30(0.3062773645f/M_PI), Q30(0.2911485136f/M_PI), Q30(0.2669326365f/M_PI), Q30(0.1997837722f/M_PI), Q30(0.1264114529f/M_PI), Q30(0.0175609849f/M_PI),
  180.       Q30(0.2202406377f/M_PI), Q30(0.2079535723f/M_PI), Q30(0.1887452900f/M_PI), Q30(0.1380121708f/M_PI), Q30(0.0857949182f/M_PI), Q30(0.0117820343f/M_PI),
  181.       Q30(0.1571819335f/M_PI), Q30(0.1478640437f/M_PI), Q30(0.1334884763f/M_PI), Q30(0.0964778885f/M_PI), Q30(0.0594860613f/M_PI), Q30(0.0081279324f/M_PI),
  182.       Q30(0.1117345318f/M_PI), Q30(0.1049065739f/M_PI), Q30(0.0944457650f/M_PI), Q30(0.0678641573f/M_PI), Q30(0.0416790098f/M_PI), Q30(0.0056813755f/M_PI),
  183.       Q30(0.0792663917f/M_PI), Q30(0.0743482932f/M_PI), Q30(0.0668405443f/M_PI), Q30(0.0478888862f/M_PI), Q30(0.0293543357f/M_PI), Q30(0.0039967746f/M_PI),
  184.       Q30(0.0561749674f/M_PI), Q30(0.0526629239f/M_PI), Q30(0.0473113805f/M_PI), Q30(0.0338476151f/M_PI), Q30(0.0207276177f/M_PI), Q30(0.0028205961f/M_PI),
  185.       Q30(0.0316122435f/M_PI), Q30(0.0296254847f/M_PI), Q30(0.0266019460f/M_PI), Q30(0.0190126132f/M_PI), Q30(0.0116353342f/M_PI), Q30(0.0015827164f/M_PI),
  186.       Q30(0.0177809205f/M_PI), Q30(0.0166615788f/M_PI), Q30(0.0149587989f/M_PI), Q30(0.0106877899f/M_PI), Q30(0.0065393616f/M_PI), Q30(0.0008894200f/M_PI),
  187.       Q30(0.0099996664f/M_PI), Q30(0.0093698399f/M_PI), Q30(0.0084118480f/M_PI), Q30(0.0060095116f/M_PI), Q30(0.0036767013f/M_PI), Q30(0.0005000498f/M_PI),
  188.       Q30(0.0056233541f/M_PI), Q30(0.0052691097f/M_PI), Q30(0.0047303112f/M_PI), Q30(0.0033792770f/M_PI), Q30(0.0020674451f/M_PI), Q30(0.0002811795f/M_PI),
  189.       Q30(0.0031622672f/M_PI), Q30(0.0029630491f/M_PI), Q30(0.0026600463f/M_PI), Q30(0.0019002859f/M_PI), Q30(0.0011625893f/M_PI), Q30(0.0001581155f/M_PI)
  190.     };
  191.  
  192.     static const int gamma_tab[] =
  193.     {
  194.       Q30(0.0000000000f/M_PI), Q30(0.0195873566f/M_PI), Q30(0.0303316917f/M_PI), Q30(0.0448668823f/M_PI), Q30(0.0522258915f/M_PI), Q30(0.0561044961f/M_PI),
  195.       Q30(0.0000000000f/M_PI), Q30(0.0433459543f/M_PI), Q30(0.0672172382f/M_PI), Q30(0.0997167900f/M_PI), Q30(0.1162951663f/M_PI), Q30(0.1250736862f/M_PI),
  196.       Q30(0.0000000000f/M_PI), Q30(0.0672341362f/M_PI), Q30(0.1045235619f/M_PI), Q30(0.1558904350f/M_PI), Q30(0.1824723780f/M_PI), Q30(0.1966800541f/M_PI),
  197.       Q30(0.0000000000f/M_PI), Q30(0.1011129096f/M_PI), Q30(0.1580764502f/M_PI), Q30(0.2387557179f/M_PI), Q30(0.2820728719f/M_PI), Q30(0.3058380187f/M_PI),
  198.       Q30(0.0000000000f/M_PI), Q30(0.1315985769f/M_PI), Q30(0.2072522491f/M_PI), Q30(0.3188187480f/M_PI), Q30(0.3825501204f/M_PI), Q30(0.4193951190f/M_PI),
  199.       Q30(0.0000000000f/M_PI), Q30(0.1603866369f/M_PI), Q30(0.2549437582f/M_PI), Q30(0.4029446840f/M_PI), Q30(0.4980689585f/M_PI), Q30(0.5615641475f/M_PI),
  200.       Q30(0.0000000000f/M_PI), Q30(0.1736015975f/M_PI), Q30(0.2773745656f/M_PI), Q30(0.4461984038f/M_PI), Q30(0.5666890144f/M_PI), Q30(0.6686112881f/M_PI),
  201.       Q30(0.0000000000f/M_PI), Q30(0.1784276664f/M_PI), Q30(0.2856673002f/M_PI), Q30(0.4630723596f/M_PI), Q30(0.5971632004f/M_PI), Q30(0.7603877187f/M_PI),
  202.       Q30(0.0000000000f/M_PI), Q30(0.1736015975f/M_PI), Q30(0.2773745656f/M_PI), Q30(0.4461984038f/M_PI), Q30(0.5666890144f/M_PI), Q30(0.6686112881f/M_PI),
  203.       Q30(0.0000000000f/M_PI), Q30(0.1603866369f/M_PI), Q30(0.2549437582f/M_PI), Q30(0.4029446840f/M_PI), Q30(0.4980689585f/M_PI), Q30(0.5615641475f/M_PI),
  204.       Q30(0.0000000000f/M_PI), Q30(0.1315985769f/M_PI), Q30(0.2072522491f/M_PI), Q30(0.3188187480f/M_PI), Q30(0.3825501204f/M_PI), Q30(0.4193951190f/M_PI),
  205.       Q30(0.0000000000f/M_PI), Q30(0.1011129096f/M_PI), Q30(0.1580764502f/M_PI), Q30(0.2387557179f/M_PI), Q30(0.2820728719f/M_PI), Q30(0.3058380187f/M_PI),
  206.       Q30(0.0000000000f/M_PI), Q30(0.0672341362f/M_PI), Q30(0.1045235619f/M_PI), Q30(0.1558904350f/M_PI), Q30(0.1824723780f/M_PI), Q30(0.1966800541f/M_PI),
  207.       Q30(0.0000000000f/M_PI), Q30(0.0433459543f/M_PI), Q30(0.0672172382f/M_PI), Q30(0.0997167900f/M_PI), Q30(0.1162951663f/M_PI), Q30(0.1250736862f/M_PI),
  208.       Q30(0.0000000000f/M_PI), Q30(0.0195873566f/M_PI), Q30(0.0303316917f/M_PI), Q30(0.0448668823f/M_PI), Q30(0.0522258915f/M_PI), Q30(0.0561044961f/M_PI),
  209.       Q30(0.0000000000f/M_PI), Q30(0.0011053939f/M_PI), Q30(0.0017089852f/M_PI), Q30(0.0025254129f/M_PI), Q30(0.0029398468f/M_PI), Q30(0.0031597170f/M_PI),
  210.       Q30(0.0000000000f/M_PI), Q30(0.0019607407f/M_PI), Q30(0.0030395309f/M_PI), Q30(0.0044951206f/M_PI), Q30(0.0052305623f/M_PI), Q30(0.0056152637f/M_PI),
  211.       Q30(0.0000000000f/M_PI), Q30(0.0034913034f/M_PI), Q30(0.0054070661f/M_PI), Q30(0.0079917293f/M_PI), Q30(0.0092999367f/M_PI), Q30(0.0099875759f/M_PI),
  212.       Q30(0.0000000000f/M_PI), Q30(0.0062100487f/M_PI), Q30(0.0096135242f/M_PI), Q30(0.0142110568f/M_PI), Q30(0.0165348612f/M_PI), Q30(0.0177587029f/M_PI),
  213.       Q30(0.0000000000f/M_PI), Q30(0.0110366223f/M_PI), Q30(0.0170863140f/M_PI), Q30(0.0252620988f/M_PI), Q30(0.0293955617f/M_PI), Q30(0.0315726399f/M_PI),
  214.       Q30(0.0000000000f/M_PI), Q30(0.0195873566f/M_PI), Q30(0.0303316917f/M_PI), Q30(0.0448668823f/M_PI), Q30(0.0522258915f/M_PI), Q30(0.0561044961f/M_PI),
  215.       Q30(0.0000000000f/M_PI), Q30(0.0275881495f/M_PI), Q30(0.0427365713f/M_PI), Q30(0.0632618815f/M_PI), Q30(0.0736731067f/M_PI), Q30(0.0791663304f/M_PI),
  216.       Q30(0.0000000000f/M_PI), Q30(0.0387469754f/M_PI), Q30(0.0600636788f/M_PI), Q30(0.0890387669f/M_PI), Q30(0.1037906483f/M_PI), Q30(0.1115923747f/M_PI),
  217.       Q30(0.0000000000f/M_PI), Q30(0.0541138873f/M_PI), Q30(0.0839984417f/M_PI), Q30(0.1248718798f/M_PI), Q30(0.1458375156f/M_PI), Q30(0.1569785923f/M_PI),
  218.       Q30(0.0000000000f/M_PI), Q30(0.0747506917f/M_PI), Q30(0.1163287833f/M_PI), Q30(0.1738867164f/M_PI), Q30(0.2038587779f/M_PI), Q30(0.2199459076f/M_PI),
  219.       Q30(0.0000000000f/M_PI), Q30(0.1011129096f/M_PI), Q30(0.1580764502f/M_PI), Q30(0.2387557179f/M_PI), Q30(0.2820728719f/M_PI), Q30(0.3058380187f/M_PI),
  220.       Q30(0.0000000000f/M_PI), Q30(0.1212290376f/M_PI), Q30(0.1903949380f/M_PI), Q30(0.2907958031f/M_PI), Q30(0.3466993868f/M_PI), Q30(0.3782821596f/M_PI),
  221.       Q30(0.0000000000f/M_PI), Q30(0.1418247074f/M_PI), Q30(0.2240308374f/M_PI), Q30(0.3474813402f/M_PI), Q30(0.4202919006f/M_PI), Q30(0.4637607038f/M_PI),
  222.       Q30(0.0000000000f/M_PI), Q30(0.1603866369f/M_PI), Q30(0.2549437582f/M_PI), Q30(0.4029446840f/M_PI), Q30(0.4980689585f/M_PI), Q30(0.5615641475f/M_PI),
  223.       Q30(0.0000000000f/M_PI), Q30(0.1736015975f/M_PI), Q30(0.2773745656f/M_PI), Q30(0.4461984038f/M_PI), Q30(0.5666890144f/M_PI), Q30(0.6686112881f/M_PI),
  224.       Q30(0.0000000000f/M_PI), Q30(0.1784276664f/M_PI), Q30(0.2856673002f/M_PI), Q30(0.4630723596f/M_PI), Q30(0.5971632004f/M_PI), Q30(0.7603877187f/M_PI),
  225.       Q30(0.0000000000f/M_PI), Q30(0.1736015975f/M_PI), Q30(0.2773745656f/M_PI), Q30(0.4461984038f/M_PI), Q30(0.5666890144f/M_PI), Q30(0.6686112881f/M_PI),
  226.       Q30(0.0000000000f/M_PI), Q30(0.1603866369f/M_PI), Q30(0.2549437582f/M_PI), Q30(0.4029446840f/M_PI), Q30(0.4980689585f/M_PI), Q30(0.5615641475f/M_PI),
  227.       Q30(0.0000000000f/M_PI), Q30(0.1418247074f/M_PI), Q30(0.2240308374f/M_PI), Q30(0.3474813402f/M_PI), Q30(0.4202919006f/M_PI), Q30(0.4637607038f/M_PI),
  228.       Q30(0.0000000000f/M_PI), Q30(0.1212290376f/M_PI), Q30(0.1903949380f/M_PI), Q30(0.2907958031f/M_PI), Q30(0.3466993868f/M_PI), Q30(0.3782821596f/M_PI),
  229.       Q30(0.0000000000f/M_PI), Q30(0.1011129096f/M_PI), Q30(0.1580764502f/M_PI), Q30(0.2387557179f/M_PI), Q30(0.2820728719f/M_PI), Q30(0.3058380187f/M_PI),
  230.       Q30(0.0000000000f/M_PI), Q30(0.0747506917f/M_PI), Q30(0.1163287833f/M_PI), Q30(0.1738867164f/M_PI), Q30(0.2038587779f/M_PI), Q30(0.2199459076f/M_PI),
  231.       Q30(0.0000000000f/M_PI), Q30(0.0541138873f/M_PI), Q30(0.0839984417f/M_PI), Q30(0.1248718798f/M_PI), Q30(0.1458375156f/M_PI), Q30(0.1569785923f/M_PI),
  232.       Q30(0.0000000000f/M_PI), Q30(0.0387469754f/M_PI), Q30(0.0600636788f/M_PI), Q30(0.0890387669f/M_PI), Q30(0.1037906483f/M_PI), Q30(0.1115923747f/M_PI),
  233.       Q30(0.0000000000f/M_PI), Q30(0.0275881495f/M_PI), Q30(0.0427365713f/M_PI), Q30(0.0632618815f/M_PI), Q30(0.0736731067f/M_PI), Q30(0.0791663304f/M_PI),
  234.       Q30(0.0000000000f/M_PI), Q30(0.0195873566f/M_PI), Q30(0.0303316917f/M_PI), Q30(0.0448668823f/M_PI), Q30(0.0522258915f/M_PI), Q30(0.0561044961f/M_PI),
  235.       Q30(0.0000000000f/M_PI), Q30(0.0110366223f/M_PI), Q30(0.0170863140f/M_PI), Q30(0.0252620988f/M_PI), Q30(0.0293955617f/M_PI), Q30(0.0315726399f/M_PI),
  236.       Q30(0.0000000000f/M_PI), Q30(0.0062100487f/M_PI), Q30(0.0096135242f/M_PI), Q30(0.0142110568f/M_PI), Q30(0.0165348612f/M_PI), Q30(0.0177587029f/M_PI),
  237.       Q30(0.0000000000f/M_PI), Q30(0.0034913034f/M_PI), Q30(0.0054070661f/M_PI), Q30(0.0079917293f/M_PI), Q30(0.0092999367f/M_PI), Q30(0.0099875759f/M_PI),
  238.       Q30(0.0000000000f/M_PI), Q30(0.0019607407f/M_PI), Q30(0.0030395309f/M_PI), Q30(0.0044951206f/M_PI), Q30(0.0052305623f/M_PI), Q30(0.0056152637f/M_PI),
  239.       Q30(0.0000000000f/M_PI), Q30(0.0011053939f/M_PI), Q30(0.0017089852f/M_PI), Q30(0.0025254129f/M_PI), Q30(0.0029398468f/M_PI), Q30(0.0031597170f/M_PI)
  240.     };
  241.  
  242.     static const int iid_par_dequant_c1[] = {
  243.         //iid_par_dequant_default
  244.         Q30(1.41198278375959f), Q30(1.40313815268360f), Q30(1.38687670404960f), Q30(1.34839972492648f),
  245.         Q30(1.29124937110028f), Q30(1.19603741667993f), Q30(1.10737240362323f), Q30(1),
  246.         Q30(0.87961716655242f), Q30(0.75464859232732f), Q30(0.57677990744575f), Q30(0.42640143271122f),
  247.         Q30(0.27671828230984f), Q30(0.17664462766713f), Q30(0.07940162697653f),
  248.         //iid_par_dequant_fine
  249.         Q30(1.41420649135832f), Q30(1.41419120222364f), Q30(1.41414285699784f), Q30(1.41399000859438f),
  250.         Q30(1.41350698548044f), Q30(1.41198278375959f), Q30(1.40977302262355f), Q30(1.40539479488545f),
  251.         Q30(1.39677960498402f), Q30(1.38005309967827f), Q30(1.34839972492648f), Q30(1.31392017367631f),
  252.         Q30(1.26431008149654f), Q30(1.19603741667993f), Q30(1.10737240362323f), Q30(1),
  253.         Q30(0.87961716655242f), Q30(0.75464859232732f), Q30(0.63365607219232f), Q30(0.52308104267543f),
  254.         Q30(0.42640143271122f), Q30(0.30895540465965f), Q30(0.22137464873077f), Q30(0.15768788954414f),
  255.         Q30(0.11198225164225f), Q30(0.07940162697653f), Q30(0.04469901562677f), Q30(0.02514469318284f),
  256.         Q30(0.01414142856998f), Q30(0.00795258154731f), Q30(0.00447211359449f),
  257.     };
  258.  
  259.     static const int acos_icc_invq[] = {
  260.         Q31(0), Q31(0.178427635f/M_PI), Q31(0.28566733f/M_PI), Q31(0.46307236f/M_PI), Q31(0.59716315f/M_PI), Q31(0.78539816f/M_PI), Q31(1.10030855f/M_PI), Q31(1.57079633f/M_PI)
  261.     };
  262.     int iid, icc;
  263.  
  264.     int k, m;
  265.     static const int8_t f_center_20[] = {
  266.         -3, -1, 1, 3, 5, 7, 10, 14, 18, 22,
  267.     };
  268.     static const int32_t f_center_34[] = {
  269.       Q31(  2/768.0),Q31(  6/768.0),Q31(10/768.0),Q31(14/768.0),Q31( 18/768.0),Q31( 22/768.0),Q31( 26/768.0),Q31(30/768.0),
  270.       Q31( 34/768.0),Q31(-10/768.0),Q31(-6/768.0),Q31(-2/768.0),Q31( 51/768.0),Q31( 57/768.0),Q31( 15/768.0),Q31(21/768.0),
  271.       Q31( 27/768.0),Q31( 33/768.0),Q31(39/768.0),Q31(45/768.0),Q31( 54/768.0),Q31( 66/768.0),Q31( 78/768.0),Q31(42/768.0),
  272.       Q31(102/768.0),Q31( 66/768.0),Q31(78/768.0),Q31(90/768.0),Q31(102/768.0),Q31(114/768.0),Q31(126/768.0),Q31(90/768.0)
  273.     };
  274.     static const int fractional_delay_links[] = { Q31(0.43f), Q31(0.75f), Q31(0.347f) };
  275.     const int fractional_delay_gain = Q31(0.39f);
  276.  
  277.     for (pd0 = 0; pd0 < 8; pd0++) {
  278.         int pd0_re = (ipdopd_cos[pd0]+2)>>2;
  279.         int pd0_im = (ipdopd_sin[pd0]+2)>>2;
  280.         for (pd1 = 0; pd1 < 8; pd1++) {
  281.             int pd1_re = ipdopd_cos[pd1] >> 1;
  282.             int pd1_im = ipdopd_sin[pd1] >> 1;
  283.             for (pd2 = 0; pd2 < 8; pd2++) {
  284.                 int shift, round;
  285.                 int pd2_re = ipdopd_cos[pd2];
  286.                 int pd2_im = ipdopd_sin[pd2];
  287.                 int re_smooth = pd0_re + pd1_re + pd2_re;
  288.                 int im_smooth = pd0_im + pd1_im + pd2_im;
  289.  
  290.                 SoftFloat pd_mag = av_int2sf(((ipdopd_cos[(pd0-pd1)&7]+8)>>4) + ((ipdopd_cos[(pd0-pd2)&7]+4)>>3) +
  291.                                                ((ipdopd_cos[(pd1-pd2)&7]+2)>>2) + 0x15000000, 28);
  292.                 pd_mag = av_div_sf(FLOAT_1, av_sqrt_sf(pd_mag));
  293.                 shift = 30 - pd_mag.exp;
  294.                 round = 1 << (shift-1);
  295.                 pd_re_smooth[pd0*64+pd1*8+pd2] = (int)(((int64_t)re_smooth * pd_mag.mant + round) >> shift);
  296.                 pd_im_smooth[pd0*64+pd1*8+pd2] = (int)(((int64_t)im_smooth * pd_mag.mant + round) >> shift);
  297.             }
  298.         }
  299.     }
  300.  
  301.     idx = 0;
  302.     for (iid = 0; iid < 46; iid++) {
  303.         int c1, c2;
  304.  
  305.         c1 = iid_par_dequant_c1[iid];
  306.         if (iid < 15)
  307.           c2 = iid_par_dequant_c1[14-iid];
  308.         else
  309.           c2 = iid_par_dequant_c1[60-iid];
  310.  
  311.         for (icc = 0; icc < 8; icc++) {
  312.             /*if (PS_BASELINE || ps->icc_mode < 3)*/{
  313.                 int alpha, beta;
  314.                 int ca, sa, cb, sb;
  315.  
  316.                 alpha = acos_icc_invq[icc];
  317.                 beta = (int)(((int64_t)alpha * 1518500250 + 0x40000000) >> 31);
  318.                 alpha >>= 1;
  319.                 beta = (int)(((int64_t)beta * (c1 - c2) + 0x40000000) >> 31);
  320.                 av_sincos_sf(beta + alpha, &sa, &ca);
  321.                 av_sincos_sf(beta - alpha, &sb, &cb);
  322.  
  323.                 HA[iid][icc][0] = (int)(((int64_t)c2 * ca + 0x20000000) >> 30);
  324.                 HA[iid][icc][1] = (int)(((int64_t)c1 * cb + 0x20000000) >> 30);
  325.                 HA[iid][icc][2] = (int)(((int64_t)c2 * sa + 0x20000000) >> 30);
  326.                 HA[iid][icc][3] = (int)(((int64_t)c1 * sb + 0x20000000) >> 30);
  327.             } /* else */ {
  328.                 int alpha_int, gamma_int;
  329.                 int alpha_c_int, alpha_s_int, gamma_c_int, gamma_s_int;
  330.  
  331.                 alpha_int = alpha_tab[idx];
  332.                 gamma_int = gamma_tab[idx];
  333.  
  334.                 av_sincos_sf(alpha_int, &alpha_s_int, &alpha_c_int);
  335.                 av_sincos_sf(gamma_int, &gamma_s_int, &gamma_c_int);
  336.  
  337.                 alpha_c_int = (int)(((int64_t)alpha_c_int * 1518500250 + 0x20000000) >> 30);
  338.                 alpha_s_int = (int)(((int64_t)alpha_s_int * 1518500250 + 0x20000000) >> 30);
  339.  
  340.                 HB[iid][icc][0] = (int)(((int64_t)alpha_c_int * gamma_c_int + 0x20000000) >> 30);
  341.                 HB[iid][icc][1] = (int)(((int64_t)alpha_s_int * gamma_c_int + 0x20000000) >> 30);
  342.                 HB[iid][icc][2] = -(int)(((int64_t)alpha_s_int * gamma_s_int + 0x20000000) >> 30);
  343.                 HB[iid][icc][3] = (int)(((int64_t)alpha_c_int * gamma_s_int + 0x20000000) >> 30);
  344.             }
  345.  
  346.             if (icc < 5 || icc > 6)
  347.               idx++;
  348.         }
  349.     }
  350.  
  351.     for (k = 0; k < NR_ALLPASS_BANDS20; k++) {
  352.         int theta;
  353.         int64_t f_center;
  354.         int c, s;
  355.  
  356.         if (k < FF_ARRAY_ELEMS(f_center_20))
  357.           f_center = f_center_20[k];
  358.         else
  359.           f_center = (k << 3) - 52;
  360.  
  361.         for (m = 0; m < PS_AP_LINKS; m++) {
  362.             theta = (int)(((int64_t)fractional_delay_links[m] * f_center + 8) >> 4);
  363.             av_sincos_sf(-theta, &s, &c);
  364.             Q_fract_allpass[0][k][m][0] = c;
  365.             Q_fract_allpass[0][k][m][1] = s;
  366.         }
  367.  
  368.         theta = (int)(((int64_t)fractional_delay_gain * f_center + 8) >> 4);
  369.         av_sincos_sf(-theta, &s, &c);
  370.         phi_fract[0][k][0] = c;
  371.         phi_fract[0][k][1] = s;
  372.     }
  373.  
  374.     for (k = 0; k < NR_ALLPASS_BANDS34; k++) {
  375.         int theta, f_center;
  376.         int c, s;
  377.  
  378.         if (k < FF_ARRAY_ELEMS(f_center_34))
  379.             f_center = f_center_34[k];
  380.         else
  381.             f_center = ((int64_t)k << 26) - (53 << 25);
  382.  
  383.         for (m = 0; m < PS_AP_LINKS; m++) {
  384.             theta = (int)(((int64_t)fractional_delay_links[m] * f_center + 0x10000000) >> 27);
  385.             av_sincos_sf(-theta, &s, &c);
  386.             Q_fract_allpass[1][k][m][0] = c;
  387.             Q_fract_allpass[1][k][m][1] = s;
  388.         }
  389.  
  390.         theta = (int)(((int64_t)fractional_delay_gain * f_center + 0x10000000) >> 27);
  391.         av_sincos_sf(-theta, &s, &c);
  392.         phi_fract[1][k][0] = c;
  393.         phi_fract[1][k][1] = s;
  394.     }
  395.  
  396.     make_filters_from_proto(f20_0_8,  g0_Q8,   8);
  397.     make_filters_from_proto(f34_0_12, g0_Q12, 12);
  398.     make_filters_from_proto(f34_1_8,  g1_Q8,   8);
  399.     make_filters_from_proto(f34_2_4,  g2_Q4,   4);
  400. }
  401. #endif /* CONFIG_HARDCODED_TABLES */
  402.  
  403. #endif /* AACPS_FIXED_TABLEGEN_H */
  404.