Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * MPEG-4 Parametric Stereo decoding functions
  3.  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  *
  21.  * Note: Rounding-to-nearest used unless otherwise stated
  22.  *
  23.  */
  24.  
  25. #include <stdint.h>
  26. #include "libavutil/common.h"
  27. #include "libavutil/mathematics.h"
  28. #include "avcodec.h"
  29. #include "get_bits.h"
  30. #include "aacps.h"
  31. #if USE_FIXED
  32. #include "aacps_fixed_tablegen.h"
  33. #else
  34. #include "libavutil/internal.h"
  35. #include "aacps_tablegen.h"
  36. #endif /* USE_FIXED */
  37. #include "aacpsdata.c"
  38.  
  39. #define PS_BASELINE 0  ///< Operate in Baseline PS mode
  40.                        ///< Baseline implies 10 or 20 stereo bands,
  41.                        ///< mixing mode A, and no ipd/opd
  42.  
  43. #define numQMFSlots 32 //numTimeSlots * RATE
  44.  
  45. static const int8_t num_env_tab[2][4] = {
  46.     { 0, 1, 2, 4, },
  47.     { 1, 2, 3, 4, },
  48. };
  49.  
  50. static const int8_t nr_iidicc_par_tab[] = {
  51.     10, 20, 34, 10, 20, 34,
  52. };
  53.  
  54. static const int8_t nr_iidopd_par_tab[] = {
  55.      5, 11, 17,  5, 11, 17,
  56. };
  57.  
  58. enum {
  59.     huff_iid_df1,
  60.     huff_iid_dt1,
  61.     huff_iid_df0,
  62.     huff_iid_dt0,
  63.     huff_icc_df,
  64.     huff_icc_dt,
  65.     huff_ipd_df,
  66.     huff_ipd_dt,
  67.     huff_opd_df,
  68.     huff_opd_dt,
  69. };
  70.  
  71. static const int huff_iid[] = {
  72.     huff_iid_df0,
  73.     huff_iid_df1,
  74.     huff_iid_dt0,
  75.     huff_iid_dt1,
  76. };
  77.  
  78. static VLC vlc_ps[10];
  79.  
  80. #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
  81. /** \
  82.  * Read Inter-channel Intensity Difference/Inter-Channel Coherence/ \
  83.  * Inter-channel Phase Difference/Overall Phase Difference parameters from the \
  84.  * bitstream. \
  85.  * \
  86.  * @param avctx contains the current codec context \
  87.  * @param gb    pointer to the input bitstream \
  88.  * @param ps    pointer to the Parametric Stereo context \
  89.  * @param PAR   pointer to the parameter to be read \
  90.  * @param e     envelope to decode \
  91.  * @param dt    1: time delta-coded, 0: frequency delta-coded \
  92.  */ \
  93. static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
  94.                         int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
  95. { \
  96.     int b, num = ps->nr_ ## PAR ## _par; \
  97.     VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
  98.     if (dt) { \
  99.         int e_prev = e ? e - 1 : ps->num_env_old - 1; \
  100.         e_prev = FFMAX(e_prev, 0); \
  101.         for (b = 0; b < num; b++) { \
  102.             int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  103.             if (MASK) val &= MASK; \
  104.             PAR[e][b] = val; \
  105.             if (ERR_CONDITION) \
  106.                 goto err; \
  107.         } \
  108.     } else { \
  109.         int val = 0; \
  110.         for (b = 0; b < num; b++) { \
  111.             val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
  112.             if (MASK) val &= MASK; \
  113.             PAR[e][b] = val; \
  114.             if (ERR_CONDITION) \
  115.                 goto err; \
  116.         } \
  117.     } \
  118.     return 0; \
  119. err: \
  120.     av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
  121.     return -1; \
  122. }
  123.  
  124. READ_PAR_DATA(iid,    huff_offset[table_idx],    0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
  125. READ_PAR_DATA(icc,    huff_offset[table_idx],    0, ps->icc_par[e][b] > 7U)
  126. READ_PAR_DATA(ipdopd,                      0, 0x07, 0)
  127.  
  128. static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
  129. {
  130.     int e;
  131.     int count = get_bits_count(gb);
  132.  
  133.     if (ps_extension_id)
  134.         return 0;
  135.  
  136.     ps->enable_ipdopd = get_bits1(gb);
  137.     if (ps->enable_ipdopd) {
  138.         for (e = 0; e < ps->num_env; e++) {
  139.             int dt = get_bits1(gb);
  140.             read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
  141.             dt = get_bits1(gb);
  142.             read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
  143.         }
  144.     }
  145.     skip_bits1(gb);      //reserved_ps
  146.     return get_bits_count(gb) - count;
  147. }
  148.  
  149. static void ipdopd_reset(int8_t *ipd_hist, int8_t *opd_hist)
  150. {
  151.     int i;
  152.     for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
  153.         opd_hist[i] = 0;
  154.         ipd_hist[i] = 0;
  155.     }
  156. }
  157.  
  158. int AAC_RENAME(ff_ps_read_data)(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
  159. {
  160.     int e;
  161.     int bit_count_start = get_bits_count(gb_host);
  162.     int header;
  163.     int bits_consumed;
  164.     GetBitContext gbc = *gb_host, *gb = &gbc;
  165.  
  166.     header = get_bits1(gb);
  167.     if (header) {     //enable_ps_header
  168.         ps->enable_iid = get_bits1(gb);
  169.         if (ps->enable_iid) {
  170.             int iid_mode = get_bits(gb, 3);
  171.             if (iid_mode > 5) {
  172.                 av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
  173.                        iid_mode);
  174.                 goto err;
  175.             }
  176.             ps->nr_iid_par    = nr_iidicc_par_tab[iid_mode];
  177.             ps->iid_quant     = iid_mode > 2;
  178.             ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
  179.         }
  180.         ps->enable_icc = get_bits1(gb);
  181.         if (ps->enable_icc) {
  182.             ps->icc_mode = get_bits(gb, 3);
  183.             if (ps->icc_mode > 5) {
  184.                 av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
  185.                        ps->icc_mode);
  186.                 goto err;
  187.             }
  188.             ps->nr_icc_par = nr_iidicc_par_tab[ps->icc_mode];
  189.         }
  190.         ps->enable_ext = get_bits1(gb);
  191.     }
  192.  
  193.     ps->frame_class = get_bits1(gb);
  194.     ps->num_env_old = ps->num_env;
  195.     ps->num_env     = num_env_tab[ps->frame_class][get_bits(gb, 2)];
  196.  
  197.     ps->border_position[0] = -1;
  198.     if (ps->frame_class) {
  199.         for (e = 1; e <= ps->num_env; e++)
  200.             ps->border_position[e] = get_bits(gb, 5);
  201.     } else
  202.         for (e = 1; e <= ps->num_env; e++)
  203.             ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
  204.  
  205.     if (ps->enable_iid) {
  206.         for (e = 0; e < ps->num_env; e++) {
  207.             int dt = get_bits1(gb);
  208.             if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
  209.                 goto err;
  210.         }
  211.     } else
  212.         memset(ps->iid_par, 0, sizeof(ps->iid_par));
  213.  
  214.     if (ps->enable_icc)
  215.         for (e = 0; e < ps->num_env; e++) {
  216.             int dt = get_bits1(gb);
  217.             if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
  218.                 goto err;
  219.         }
  220.     else
  221.         memset(ps->icc_par, 0, sizeof(ps->icc_par));
  222.  
  223.     if (ps->enable_ext) {
  224.         int cnt = get_bits(gb, 4);
  225.         if (cnt == 15) {
  226.             cnt += get_bits(gb, 8);
  227.         }
  228.         cnt *= 8;
  229.         while (cnt > 7) {
  230.             int ps_extension_id = get_bits(gb, 2);
  231.             cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
  232.         }
  233.         if (cnt < 0) {
  234.             av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
  235.             goto err;
  236.         }
  237.         skip_bits(gb, cnt);
  238.     }
  239.  
  240.     ps->enable_ipdopd &= !PS_BASELINE;
  241.  
  242.     //Fix up envelopes
  243.     if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
  244.         //Create a fake envelope
  245.         int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
  246.         int b;
  247.         if (source >= 0 && source != ps->num_env) {
  248.             if (ps->enable_iid) {
  249.                 memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
  250.             }
  251.             if (ps->enable_icc) {
  252.                 memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
  253.             }
  254.             if (ps->enable_ipdopd) {
  255.                 memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
  256.                 memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
  257.             }
  258.         }
  259.         if (ps->enable_iid){
  260.             for (b = 0; b < ps->nr_iid_par; b++) {
  261.                 if (FFABS(ps->iid_par[ps->num_env][b]) > 7 + 8 * ps->iid_quant) {
  262.                     av_log(avctx, AV_LOG_ERROR, "iid_par invalid\n");
  263.                     goto err;
  264.                 }
  265.             }
  266.         }
  267.         if (ps->enable_icc){
  268.             for (b = 0; b < ps->nr_iid_par; b++) {
  269.                 if (ps->icc_par[ps->num_env][b] > 7U) {
  270.                     av_log(avctx, AV_LOG_ERROR, "icc_par invalid\n");
  271.                     goto err;
  272.                 }
  273.             }
  274.         }
  275.         ps->num_env++;
  276.         ps->border_position[ps->num_env] = numQMFSlots - 1;
  277.     }
  278.  
  279.  
  280.     ps->is34bands_old = ps->is34bands;
  281.     if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
  282.         ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
  283.                         (ps->enable_icc && ps->nr_icc_par == 34);
  284.  
  285.     //Baseline
  286.     if (!ps->enable_ipdopd) {
  287.         memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  288.         memset(ps->opd_par, 0, sizeof(ps->opd_par));
  289.     }
  290.  
  291.     if (header)
  292.         ps->start = 1;
  293.  
  294.     bits_consumed = get_bits_count(gb) - bit_count_start;
  295.     if (bits_consumed <= bits_left) {
  296.         skip_bits_long(gb_host, bits_consumed);
  297.         return bits_consumed;
  298.     }
  299.     av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
  300. err:
  301.     ps->start = 0;
  302.     skip_bits_long(gb_host, bits_left);
  303.     memset(ps->iid_par, 0, sizeof(ps->iid_par));
  304.     memset(ps->icc_par, 0, sizeof(ps->icc_par));
  305.     memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
  306.     memset(ps->opd_par, 0, sizeof(ps->opd_par));
  307.     return bits_left;
  308. }
  309.  
  310. /** Split one subband into 2 subsubbands with a symmetric real filter.
  311.  * The filter must have its non-center even coefficients equal to zero. */
  312. static void hybrid2_re(INTFLOAT (*in)[2], INTFLOAT (*out)[32][2], const INTFLOAT filter[8], int len, int reverse)
  313. {
  314.     int i, j;
  315.     for (i = 0; i < len; i++, in++) {
  316.         INT64FLOAT re_in = AAC_MUL31(filter[6], in[6][0]); //real inphase
  317.         INT64FLOAT re_op = 0.0f;                          //real out of phase
  318.         INT64FLOAT im_in = AAC_MUL31(filter[6], in[6][1]); //imag inphase
  319.         INT64FLOAT im_op = 0.0f;                          //imag out of phase
  320.         for (j = 0; j < 6; j += 2) {
  321.             re_op += (INT64FLOAT)filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
  322.             im_op += (INT64FLOAT)filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
  323.         }
  324.  
  325. #if USE_FIXED
  326.         re_op = (re_op + 0x40000000) >> 31;
  327.         im_op = (im_op + 0x40000000) >> 31;
  328. #endif /* USE_FIXED */
  329.  
  330.         out[ reverse][i][0] = (INTFLOAT)(re_in + re_op);
  331.         out[ reverse][i][1] = (INTFLOAT)(im_in + im_op);
  332.         out[!reverse][i][0] = (INTFLOAT)(re_in - re_op);
  333.         out[!reverse][i][1] = (INTFLOAT)(im_in - im_op);
  334.     }
  335. }
  336.  
  337. /** Split one subband into 6 subsubbands with a complex filter */
  338. static void hybrid6_cx(PSDSPContext *dsp, INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
  339.                        TABLE_CONST INTFLOAT (*filter)[8][2], int len)
  340. {
  341.     int i;
  342.     int N = 8;
  343.     LOCAL_ALIGNED_16(INTFLOAT, temp, [8], [2]);
  344.  
  345.     for (i = 0; i < len; i++, in++) {
  346.         dsp->hybrid_analysis(temp, in, (const INTFLOAT (*)[8][2]) filter, 1, N);
  347.         out[0][i][0] = temp[6][0];
  348.         out[0][i][1] = temp[6][1];
  349.         out[1][i][0] = temp[7][0];
  350.         out[1][i][1] = temp[7][1];
  351.         out[2][i][0] = temp[0][0];
  352.         out[2][i][1] = temp[0][1];
  353.         out[3][i][0] = temp[1][0];
  354.         out[3][i][1] = temp[1][1];
  355.         out[4][i][0] = temp[2][0] + temp[5][0];
  356.         out[4][i][1] = temp[2][1] + temp[5][1];
  357.         out[5][i][0] = temp[3][0] + temp[4][0];
  358.         out[5][i][1] = temp[3][1] + temp[4][1];
  359.     }
  360. }
  361.  
  362. static void hybrid4_8_12_cx(PSDSPContext *dsp,
  363.                             INTFLOAT (*in)[2], INTFLOAT (*out)[32][2],
  364.                             TABLE_CONST INTFLOAT (*filter)[8][2], int N, int len)
  365. {
  366.     int i;
  367.  
  368.     for (i = 0; i < len; i++, in++) {
  369.         dsp->hybrid_analysis(out[0] + i, in, (const INTFLOAT (*)[8][2]) filter, 32, N);
  370.     }
  371. }
  372.  
  373. static void hybrid_analysis(PSDSPContext *dsp, INTFLOAT out[91][32][2],
  374.                             INTFLOAT in[5][44][2], INTFLOAT L[2][38][64],
  375.                             int is34, int len)
  376. {
  377.     int i, j;
  378.     for (i = 0; i < 5; i++) {
  379.         for (j = 0; j < 38; j++) {
  380.             in[i][j+6][0] = L[0][j][i];
  381.             in[i][j+6][1] = L[1][j][i];
  382.         }
  383.     }
  384.     if (is34) {
  385.         hybrid4_8_12_cx(dsp, in[0], out,    f34_0_12, 12, len);
  386.         hybrid4_8_12_cx(dsp, in[1], out+12, f34_1_8,   8, len);
  387.         hybrid4_8_12_cx(dsp, in[2], out+20, f34_2_4,   4, len);
  388.         hybrid4_8_12_cx(dsp, in[3], out+24, f34_2_4,   4, len);
  389.         hybrid4_8_12_cx(dsp, in[4], out+28, f34_2_4,   4, len);
  390.         dsp->hybrid_analysis_ileave(out + 27, L, 5, len);
  391.     } else {
  392.         hybrid6_cx(dsp, in[0], out, f20_0_8, len);
  393.         hybrid2_re(in[1], out+6, g1_Q2, len, 1);
  394.         hybrid2_re(in[2], out+8, g1_Q2, len, 0);
  395.         dsp->hybrid_analysis_ileave(out + 7, L, 3, len);
  396.     }
  397.     //update in_buf
  398.     for (i = 0; i < 5; i++) {
  399.         memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
  400.     }
  401. }
  402.  
  403. static void hybrid_synthesis(PSDSPContext *dsp, INTFLOAT out[2][38][64],
  404.                              INTFLOAT in[91][32][2], int is34, int len)
  405. {
  406.     int i, n;
  407.     if (is34) {
  408.         for (n = 0; n < len; n++) {
  409.             memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
  410.             memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
  411.             for (i = 0; i < 12; i++) {
  412.                 out[0][n][0] += in[   i][n][0];
  413.                 out[1][n][0] += in[   i][n][1];
  414.             }
  415.             for (i = 0; i < 8; i++) {
  416.                 out[0][n][1] += in[12+i][n][0];
  417.                 out[1][n][1] += in[12+i][n][1];
  418.             }
  419.             for (i = 0; i < 4; i++) {
  420.                 out[0][n][2] += in[20+i][n][0];
  421.                 out[1][n][2] += in[20+i][n][1];
  422.                 out[0][n][3] += in[24+i][n][0];
  423.                 out[1][n][3] += in[24+i][n][1];
  424.                 out[0][n][4] += in[28+i][n][0];
  425.                 out[1][n][4] += in[28+i][n][1];
  426.             }
  427.         }
  428.         dsp->hybrid_synthesis_deint(out, in + 27, 5, len);
  429.     } else {
  430.         for (n = 0; n < len; n++) {
  431.             out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
  432.                            in[3][n][0] + in[4][n][0] + in[5][n][0];
  433.             out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
  434.                            in[3][n][1] + in[4][n][1] + in[5][n][1];
  435.             out[0][n][1] = in[6][n][0] + in[7][n][0];
  436.             out[1][n][1] = in[6][n][1] + in[7][n][1];
  437.             out[0][n][2] = in[8][n][0] + in[9][n][0];
  438.             out[1][n][2] = in[8][n][1] + in[9][n][1];
  439.         }
  440.         dsp->hybrid_synthesis_deint(out, in + 7, 3, len);
  441.     }
  442. }
  443.  
  444. /// All-pass filter decay slope
  445. #define DECAY_SLOPE      Q30(0.05f)
  446. /// Number of frequency bands that can be addressed by the parameter index, b(k)
  447. static const int   NR_PAR_BANDS[]      = { 20, 34 };
  448. static const int   NR_IPDOPD_BANDS[]   = { 11, 17 };
  449. /// Number of frequency bands that can be addressed by the sub subband index, k
  450. static const int   NR_BANDS[]          = { 71, 91 };
  451. /// Start frequency band for the all-pass filter decay slope
  452. static const int   DECAY_CUTOFF[]      = { 10, 32 };
  453. /// Number of all-pass filer bands
  454. static const int   NR_ALLPASS_BANDS[]  = { 30, 50 };
  455. /// First stereo band using the short one sample delay
  456. static const int   SHORT_DELAY_BAND[]  = { 42, 62 };
  457.  
  458. /** Table 8.46 */
  459. static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
  460. {
  461.     int b;
  462.     if (full)
  463.         b = 9;
  464.     else {
  465.         b = 4;
  466.         par_mapped[10] = 0;
  467.     }
  468.     for (; b >= 0; b--) {
  469.         par_mapped[2*b+1] = par_mapped[2*b] = par[b];
  470.     }
  471. }
  472.  
  473. static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
  474. {
  475.     par_mapped[ 0] = (2*par[ 0] +   par[ 1]) / 3;
  476.     par_mapped[ 1] = (  par[ 1] + 2*par[ 2]) / 3;
  477.     par_mapped[ 2] = (2*par[ 3] +   par[ 4]) / 3;
  478.     par_mapped[ 3] = (  par[ 4] + 2*par[ 5]) / 3;
  479.     par_mapped[ 4] = (  par[ 6] +   par[ 7]) / 2;
  480.     par_mapped[ 5] = (  par[ 8] +   par[ 9]) / 2;
  481.     par_mapped[ 6] =    par[10];
  482.     par_mapped[ 7] =    par[11];
  483.     par_mapped[ 8] = (  par[12] +   par[13]) / 2;
  484.     par_mapped[ 9] = (  par[14] +   par[15]) / 2;
  485.     par_mapped[10] =    par[16];
  486.     if (full) {
  487.         par_mapped[11] =    par[17];
  488.         par_mapped[12] =    par[18];
  489.         par_mapped[13] =    par[19];
  490.         par_mapped[14] = (  par[20] +   par[21]) / 2;
  491.         par_mapped[15] = (  par[22] +   par[23]) / 2;
  492.         par_mapped[16] = (  par[24] +   par[25]) / 2;
  493.         par_mapped[17] = (  par[26] +   par[27]) / 2;
  494.         par_mapped[18] = (  par[28] +   par[29] +   par[30] +   par[31]) / 4;
  495.         par_mapped[19] = (  par[32] +   par[33]) / 2;
  496.     }
  497. }
  498.  
  499. static void map_val_34_to_20(INTFLOAT par[PS_MAX_NR_IIDICC])
  500. {
  501. #if USE_FIXED
  502.     par[ 0] = (int)(((int64_t)(par[ 0] + (par[ 1]>>1)) * 1431655765 + \
  503.                       0x40000000) >> 31);
  504.     par[ 1] = (int)(((int64_t)((par[ 1]>>1) + par[ 2]) * 1431655765 + \
  505.                       0x40000000) >> 31);
  506.     par[ 2] = (int)(((int64_t)(par[ 3] + (par[ 4]>>1)) * 1431655765 + \
  507.                       0x40000000) >> 31);
  508.     par[ 3] = (int)(((int64_t)((par[ 4]>>1) + par[ 5]) * 1431655765 + \
  509.                       0x40000000) >> 31);
  510. #else
  511.     par[ 0] = (2*par[ 0] +   par[ 1]) * 0.33333333f;
  512.     par[ 1] = (  par[ 1] + 2*par[ 2]) * 0.33333333f;
  513.     par[ 2] = (2*par[ 3] +   par[ 4]) * 0.33333333f;
  514.     par[ 3] = (  par[ 4] + 2*par[ 5]) * 0.33333333f;
  515. #endif /* USE_FIXED */
  516.     par[ 4] = AAC_HALF_SUM(par[ 6], par[ 7]);
  517.     par[ 5] = AAC_HALF_SUM(par[ 8], par[ 9]);
  518.     par[ 6] =    par[10];
  519.     par[ 7] =    par[11];
  520.     par[ 8] = AAC_HALF_SUM(par[12], par[13]);
  521.     par[ 9] = AAC_HALF_SUM(par[14], par[15]);
  522.     par[10] =    par[16];
  523.     par[11] =    par[17];
  524.     par[12] =    par[18];
  525.     par[13] =    par[19];
  526.     par[14] = AAC_HALF_SUM(par[20], par[21]);
  527.     par[15] = AAC_HALF_SUM(par[22], par[23]);
  528.     par[16] = AAC_HALF_SUM(par[24], par[25]);
  529.     par[17] = AAC_HALF_SUM(par[26], par[27]);
  530. #if USE_FIXED
  531.     par[18] = (((par[28]+2)>>2) + ((par[29]+2)>>2) + ((par[30]+2)>>2) + ((par[31]+2)>>2));
  532. #else
  533.     par[18] = (  par[28] +   par[29] +   par[30] +   par[31]) * 0.25f;
  534. #endif /* USE_FIXED */
  535.     par[19] = AAC_HALF_SUM(par[32], par[33]);
  536. }
  537.  
  538. static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
  539. {
  540.     if (full) {
  541.         par_mapped[33] = par[9];
  542.         par_mapped[32] = par[9];
  543.         par_mapped[31] = par[9];
  544.         par_mapped[30] = par[9];
  545.         par_mapped[29] = par[9];
  546.         par_mapped[28] = par[9];
  547.         par_mapped[27] = par[8];
  548.         par_mapped[26] = par[8];
  549.         par_mapped[25] = par[8];
  550.         par_mapped[24] = par[8];
  551.         par_mapped[23] = par[7];
  552.         par_mapped[22] = par[7];
  553.         par_mapped[21] = par[7];
  554.         par_mapped[20] = par[7];
  555.         par_mapped[19] = par[6];
  556.         par_mapped[18] = par[6];
  557.         par_mapped[17] = par[5];
  558.         par_mapped[16] = par[5];
  559.     } else {
  560.         par_mapped[16] =      0;
  561.     }
  562.     par_mapped[15] = par[4];
  563.     par_mapped[14] = par[4];
  564.     par_mapped[13] = par[4];
  565.     par_mapped[12] = par[4];
  566.     par_mapped[11] = par[3];
  567.     par_mapped[10] = par[3];
  568.     par_mapped[ 9] = par[2];
  569.     par_mapped[ 8] = par[2];
  570.     par_mapped[ 7] = par[2];
  571.     par_mapped[ 6] = par[2];
  572.     par_mapped[ 5] = par[1];
  573.     par_mapped[ 4] = par[1];
  574.     par_mapped[ 3] = par[1];
  575.     par_mapped[ 2] = par[0];
  576.     par_mapped[ 1] = par[0];
  577.     par_mapped[ 0] = par[0];
  578. }
  579.  
  580. static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
  581. {
  582.     if (full) {
  583.         par_mapped[33] =  par[19];
  584.         par_mapped[32] =  par[19];
  585.         par_mapped[31] =  par[18];
  586.         par_mapped[30] =  par[18];
  587.         par_mapped[29] =  par[18];
  588.         par_mapped[28] =  par[18];
  589.         par_mapped[27] =  par[17];
  590.         par_mapped[26] =  par[17];
  591.         par_mapped[25] =  par[16];
  592.         par_mapped[24] =  par[16];
  593.         par_mapped[23] =  par[15];
  594.         par_mapped[22] =  par[15];
  595.         par_mapped[21] =  par[14];
  596.         par_mapped[20] =  par[14];
  597.         par_mapped[19] =  par[13];
  598.         par_mapped[18] =  par[12];
  599.         par_mapped[17] =  par[11];
  600.     }
  601.     par_mapped[16] =  par[10];
  602.     par_mapped[15] =  par[ 9];
  603.     par_mapped[14] =  par[ 9];
  604.     par_mapped[13] =  par[ 8];
  605.     par_mapped[12] =  par[ 8];
  606.     par_mapped[11] =  par[ 7];
  607.     par_mapped[10] =  par[ 6];
  608.     par_mapped[ 9] =  par[ 5];
  609.     par_mapped[ 8] =  par[ 5];
  610.     par_mapped[ 7] =  par[ 4];
  611.     par_mapped[ 6] =  par[ 4];
  612.     par_mapped[ 5] =  par[ 3];
  613.     par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
  614.     par_mapped[ 3] =  par[ 2];
  615.     par_mapped[ 2] =  par[ 1];
  616.     par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
  617.     par_mapped[ 0] =  par[ 0];
  618. }
  619.  
  620. static void map_val_20_to_34(INTFLOAT par[PS_MAX_NR_IIDICC])
  621. {
  622.     par[33] =  par[19];
  623.     par[32] =  par[19];
  624.     par[31] =  par[18];
  625.     par[30] =  par[18];
  626.     par[29] =  par[18];
  627.     par[28] =  par[18];
  628.     par[27] =  par[17];
  629.     par[26] =  par[17];
  630.     par[25] =  par[16];
  631.     par[24] =  par[16];
  632.     par[23] =  par[15];
  633.     par[22] =  par[15];
  634.     par[21] =  par[14];
  635.     par[20] =  par[14];
  636.     par[19] =  par[13];
  637.     par[18] =  par[12];
  638.     par[17] =  par[11];
  639.     par[16] =  par[10];
  640.     par[15] =  par[ 9];
  641.     par[14] =  par[ 9];
  642.     par[13] =  par[ 8];
  643.     par[12] =  par[ 8];
  644.     par[11] =  par[ 7];
  645.     par[10] =  par[ 6];
  646.     par[ 9] =  par[ 5];
  647.     par[ 8] =  par[ 5];
  648.     par[ 7] =  par[ 4];
  649.     par[ 6] =  par[ 4];
  650.     par[ 5] =  par[ 3];
  651.     par[ 4] = AAC_HALF_SUM(par[ 2], par[ 3]);
  652.     par[ 3] =  par[ 2];
  653.     par[ 2] =  par[ 1];
  654.     par[ 1] = AAC_HALF_SUM(par[ 0], par[ 1]);
  655. }
  656.  
  657. static void decorrelation(PSContext *ps, INTFLOAT (*out)[32][2], const INTFLOAT (*s)[32][2], int is34)
  658. {
  659.     LOCAL_ALIGNED_16(INTFLOAT, power, [34], [PS_QMF_TIME_SLOTS]);
  660.     LOCAL_ALIGNED_16(INTFLOAT, transient_gain, [34], [PS_QMF_TIME_SLOTS]);
  661.     INTFLOAT *peak_decay_nrg = ps->peak_decay_nrg;
  662.     INTFLOAT *power_smooth = ps->power_smooth;
  663.     INTFLOAT *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
  664.     INTFLOAT (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
  665.     INTFLOAT (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
  666. #if !USE_FIXED
  667.     const float transient_impact  = 1.5f;
  668.     const float a_smooth          = 0.25f; ///< Smoothing coefficient
  669. #endif /* USE_FIXED */
  670.     const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  671.     int i, k, m, n;
  672.     int n0 = 0, nL = 32;
  673.     const INTFLOAT peak_decay_factor = Q31(0.76592833836465f);
  674.  
  675.     memset(power, 0, 34 * sizeof(*power));
  676.  
  677.     if (is34 != ps->is34bands_old) {
  678.         memset(ps->peak_decay_nrg,         0, sizeof(ps->peak_decay_nrg));
  679.         memset(ps->power_smooth,           0, sizeof(ps->power_smooth));
  680.         memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
  681.         memset(ps->delay,                  0, sizeof(ps->delay));
  682.         memset(ps->ap_delay,               0, sizeof(ps->ap_delay));
  683.     }
  684.  
  685.     for (k = 0; k < NR_BANDS[is34]; k++) {
  686.         int i = k_to_i[k];
  687.         ps->dsp.add_squares(power[i], s[k], nL - n0);
  688.     }
  689.  
  690.     //Transient detection
  691. #if USE_FIXED
  692.     for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
  693.         for (n = n0; n < nL; n++) {
  694.             int decayed_peak;
  695.             int denom;
  696.  
  697.             decayed_peak = (int)(((int64_t)peak_decay_factor * \
  698.                                            peak_decay_nrg[i] + 0x40000000) >> 31);
  699.             peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
  700.             power_smooth[i] += (power[i][n] - power_smooth[i] + 2) >> 2;
  701.             peak_decay_diff_smooth[i] += (peak_decay_nrg[i] - power[i][n] - \
  702.                                           peak_decay_diff_smooth[i] + 2) >> 2;
  703.             denom = peak_decay_diff_smooth[i] + (peak_decay_diff_smooth[i] >> 1);
  704.             if (denom > power_smooth[i]) {
  705.               int p = power_smooth[i];
  706.               while (denom < 0x40000000) {
  707.                 denom <<= 1;
  708.                 p <<= 1;
  709.               }
  710.               transient_gain[i][n] = p / (denom >> 16);
  711.             }
  712.             else {
  713.               transient_gain[i][n] = 1 << 16;
  714.             }
  715.         }
  716.     }
  717. #else
  718.     for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
  719.         for (n = n0; n < nL; n++) {
  720.             float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
  721.             float denom;
  722.             peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
  723.             power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
  724.             peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
  725.             denom = transient_impact * peak_decay_diff_smooth[i];
  726.             transient_gain[i][n]   = (denom > power_smooth[i]) ?
  727.                                          power_smooth[i] / denom : 1.0f;
  728.         }
  729.     }
  730.  
  731. #endif /* USE_FIXED */
  732.     //Decorrelation and transient reduction
  733.     //                         PS_AP_LINKS - 1
  734.     //                               -----
  735.     //                                | |  Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
  736.     //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
  737.     //                                | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
  738.     //                               m = 0
  739.     //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
  740.     for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
  741.         int b = k_to_i[k];
  742. #if USE_FIXED
  743.         int g_decay_slope;
  744.  
  745.         if (k - DECAY_CUTOFF[is34] <= 0) {
  746.           g_decay_slope = 1 << 30;
  747.         }
  748.         else if (k - DECAY_CUTOFF[is34] >= 20) {
  749.           g_decay_slope = 0;
  750.         }
  751.         else {
  752.           g_decay_slope = (1 << 30) - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
  753.         }
  754. #else
  755.         float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
  756.         g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
  757. #endif /* USE_FIXED */
  758.         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  759.         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  760.         for (m = 0; m < PS_AP_LINKS; m++) {
  761.             memcpy(ap_delay[k][m],   ap_delay[k][m]+numQMFSlots,           5*sizeof(ap_delay[k][m][0]));
  762.         }
  763.         ps->dsp.decorrelate(out[k], delay[k] + PS_MAX_DELAY - 2, ap_delay[k],
  764.                             phi_fract[is34][k],
  765.                             (const INTFLOAT (*)[2]) Q_fract_allpass[is34][k],
  766.                             transient_gain[b], g_decay_slope, nL - n0);
  767.     }
  768.     for (; k < SHORT_DELAY_BAND[is34]; k++) {
  769.         int i = k_to_i[k];
  770.         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  771.         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  772.         //H = delay 14
  773.         ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 14,
  774.                                 transient_gain[i], nL - n0);
  775.     }
  776.     for (; k < NR_BANDS[is34]; k++) {
  777.         int i = k_to_i[k];
  778.         memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
  779.         memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
  780.         //H = delay 1
  781.         ps->dsp.mul_pair_single(out[k], delay[k] + PS_MAX_DELAY - 1,
  782.                                 transient_gain[i], nL - n0);
  783.     }
  784. }
  785.  
  786. static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  787.                     int8_t           (*par)[PS_MAX_NR_IIDICC],
  788.                     int num_par, int num_env, int full)
  789. {
  790.     int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  791.     int e;
  792.     if (num_par == 20 || num_par == 11) {
  793.         for (e = 0; e < num_env; e++) {
  794.             map_idx_20_to_34(par_mapped[e], par[e], full);
  795.         }
  796.     } else if (num_par == 10 || num_par == 5) {
  797.         for (e = 0; e < num_env; e++) {
  798.             map_idx_10_to_34(par_mapped[e], par[e], full);
  799.         }
  800.     } else {
  801.         *p_par_mapped = par;
  802.     }
  803. }
  804.  
  805. static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
  806.                     int8_t           (*par)[PS_MAX_NR_IIDICC],
  807.                     int num_par, int num_env, int full)
  808. {
  809.     int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
  810.     int e;
  811.     if (num_par == 34 || num_par == 17) {
  812.         for (e = 0; e < num_env; e++) {
  813.             map_idx_34_to_20(par_mapped[e], par[e], full);
  814.         }
  815.     } else if (num_par == 10 || num_par == 5) {
  816.         for (e = 0; e < num_env; e++) {
  817.             map_idx_10_to_20(par_mapped[e], par[e], full);
  818.         }
  819.     } else {
  820.         *p_par_mapped = par;
  821.     }
  822. }
  823.  
  824. static void stereo_processing(PSContext *ps, INTFLOAT (*l)[32][2], INTFLOAT (*r)[32][2], int is34)
  825. {
  826.     int e, b, k;
  827.  
  828.     INTFLOAT (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
  829.     INTFLOAT (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
  830.     INTFLOAT (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
  831.     INTFLOAT (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
  832.     int8_t *opd_hist = ps->opd_hist;
  833.     int8_t *ipd_hist = ps->ipd_hist;
  834.     int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  835.     int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  836.     int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  837.     int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
  838.     int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
  839.     int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
  840.     int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
  841.     int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
  842.     const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
  843.     TABLE_CONST INTFLOAT (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
  844.  
  845.     //Remapping
  846.     if (ps->num_env_old) {
  847.         memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
  848.         memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
  849.         memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
  850.         memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
  851.         memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
  852.         memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
  853.         memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
  854.         memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
  855.     }
  856.  
  857.     if (is34) {
  858.         remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  859.         remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  860.         if (ps->enable_ipdopd) {
  861.             remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  862.             remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  863.         }
  864.         if (!ps->is34bands_old) {
  865.             map_val_20_to_34(H11[0][0]);
  866.             map_val_20_to_34(H11[1][0]);
  867.             map_val_20_to_34(H12[0][0]);
  868.             map_val_20_to_34(H12[1][0]);
  869.             map_val_20_to_34(H21[0][0]);
  870.             map_val_20_to_34(H21[1][0]);
  871.             map_val_20_to_34(H22[0][0]);
  872.             map_val_20_to_34(H22[1][0]);
  873.             ipdopd_reset(ipd_hist, opd_hist);
  874.         }
  875.     } else {
  876.         remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
  877.         remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
  878.         if (ps->enable_ipdopd) {
  879.             remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  880.             remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
  881.         }
  882.         if (ps->is34bands_old) {
  883.             map_val_34_to_20(H11[0][0]);
  884.             map_val_34_to_20(H11[1][0]);
  885.             map_val_34_to_20(H12[0][0]);
  886.             map_val_34_to_20(H12[1][0]);
  887.             map_val_34_to_20(H21[0][0]);
  888.             map_val_34_to_20(H21[1][0]);
  889.             map_val_34_to_20(H22[0][0]);
  890.             map_val_34_to_20(H22[1][0]);
  891.             ipdopd_reset(ipd_hist, opd_hist);
  892.         }
  893.     }
  894.  
  895.     //Mixing
  896.     for (e = 0; e < ps->num_env; e++) {
  897.         for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
  898.             INTFLOAT h11, h12, h21, h22;
  899.             h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
  900.             h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
  901.             h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
  902.             h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
  903.  
  904.             if (!PS_BASELINE && ps->enable_ipdopd && b < NR_IPDOPD_BANDS[is34]) {
  905.                 //The spec say says to only run this smoother when enable_ipdopd
  906.                 //is set but the reference decoder appears to run it constantly
  907.                 INTFLOAT h11i, h12i, h21i, h22i;
  908.                 INTFLOAT ipd_adj_re, ipd_adj_im;
  909.                 int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
  910.                 int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
  911.                 INTFLOAT opd_re = pd_re_smooth[opd_idx];
  912.                 INTFLOAT opd_im = pd_im_smooth[opd_idx];
  913.                 INTFLOAT ipd_re = pd_re_smooth[ipd_idx];
  914.                 INTFLOAT ipd_im = pd_im_smooth[ipd_idx];
  915.                 opd_hist[b] = opd_idx & 0x3F;
  916.                 ipd_hist[b] = ipd_idx & 0x3F;
  917.  
  918.                 ipd_adj_re = AAC_MADD30(opd_re, ipd_re, opd_im, ipd_im);
  919.                 ipd_adj_im = AAC_MSUB30(opd_im, ipd_re, opd_re, ipd_im);
  920.                 h11i = AAC_MUL30(h11,  opd_im);
  921.                 h11  = AAC_MUL30(h11,  opd_re);
  922.                 h12i = AAC_MUL30(h12,  ipd_adj_im);
  923.                 h12  = AAC_MUL30(h12,  ipd_adj_re);
  924.                 h21i = AAC_MUL30(h21,  opd_im);
  925.                 h21  = AAC_MUL30(h21,  opd_re);
  926.                 h22i = AAC_MUL30(h22,  ipd_adj_im);
  927.                 h22  = AAC_MUL30(h22,  ipd_adj_re);
  928.                 H11[1][e+1][b] = h11i;
  929.                 H12[1][e+1][b] = h12i;
  930.                 H21[1][e+1][b] = h21i;
  931.                 H22[1][e+1][b] = h22i;
  932.             }
  933.             H11[0][e+1][b] = h11;
  934.             H12[0][e+1][b] = h12;
  935.             H21[0][e+1][b] = h21;
  936.             H22[0][e+1][b] = h22;
  937.         }
  938.         for (k = 0; k < NR_BANDS[is34]; k++) {
  939.             LOCAL_ALIGNED_16(INTFLOAT, h, [2], [4]);
  940.             LOCAL_ALIGNED_16(INTFLOAT, h_step, [2], [4]);
  941.             int start = ps->border_position[e];
  942.             int stop  = ps->border_position[e+1];
  943.             INTFLOAT width = Q30(1.f) / ((stop - start) ? (stop - start) : 1);
  944. #if USE_FIXED
  945.             width <<= 1;
  946. #endif
  947.             b = k_to_i[k];
  948.             h[0][0] = H11[0][e][b];
  949.             h[0][1] = H12[0][e][b];
  950.             h[0][2] = H21[0][e][b];
  951.             h[0][3] = H22[0][e][b];
  952.             if (!PS_BASELINE && ps->enable_ipdopd) {
  953.             //Is this necessary? ps_04_new seems unchanged
  954.             if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
  955.                 h[1][0] = -H11[1][e][b];
  956.                 h[1][1] = -H12[1][e][b];
  957.                 h[1][2] = -H21[1][e][b];
  958.                 h[1][3] = -H22[1][e][b];
  959.             } else {
  960.                 h[1][0] = H11[1][e][b];
  961.                 h[1][1] = H12[1][e][b];
  962.                 h[1][2] = H21[1][e][b];
  963.                 h[1][3] = H22[1][e][b];
  964.             }
  965.             }
  966.             //Interpolation
  967.             h_step[0][0] = AAC_MSUB31_V3(H11[0][e+1][b], h[0][0], width);
  968.             h_step[0][1] = AAC_MSUB31_V3(H12[0][e+1][b], h[0][1], width);
  969.             h_step[0][2] = AAC_MSUB31_V3(H21[0][e+1][b], h[0][2], width);
  970.             h_step[0][3] = AAC_MSUB31_V3(H22[0][e+1][b], h[0][3], width);
  971.             if (!PS_BASELINE && ps->enable_ipdopd) {
  972.                 h_step[1][0] = AAC_MSUB31_V3(H11[1][e+1][b], h[1][0], width);
  973.                 h_step[1][1] = AAC_MSUB31_V3(H12[1][e+1][b], h[1][1], width);
  974.                 h_step[1][2] = AAC_MSUB31_V3(H21[1][e+1][b], h[1][2], width);
  975.                 h_step[1][3] = AAC_MSUB31_V3(H22[1][e+1][b], h[1][3], width);
  976.             }
  977.             ps->dsp.stereo_interpolate[!PS_BASELINE && ps->enable_ipdopd](
  978.                 l[k] + start + 1, r[k] + start + 1,
  979.                 h, h_step, stop - start);
  980.         }
  981.     }
  982. }
  983.  
  984. int AAC_RENAME(ff_ps_apply)(AVCodecContext *avctx, PSContext *ps, INTFLOAT L[2][38][64], INTFLOAT R[2][38][64], int top)
  985. {
  986.     INTFLOAT (*Lbuf)[32][2] = ps->Lbuf;
  987.     INTFLOAT (*Rbuf)[32][2] = ps->Rbuf;
  988.     const int len = 32;
  989.     int is34 = ps->is34bands;
  990.  
  991.     top += NR_BANDS[is34] - 64;
  992.     memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
  993.     if (top < NR_ALLPASS_BANDS[is34])
  994.         memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
  995.  
  996.     hybrid_analysis(&ps->dsp, Lbuf, ps->in_buf, L, is34, len);
  997.     decorrelation(ps, Rbuf, (const INTFLOAT (*)[32][2]) Lbuf, is34);
  998.     stereo_processing(ps, Lbuf, Rbuf, is34);
  999.     hybrid_synthesis(&ps->dsp, L, Lbuf, is34, len);
  1000.     hybrid_synthesis(&ps->dsp, R, Rbuf, is34, len);
  1001.  
  1002.     return 0;
  1003. }
  1004.  
  1005. #define PS_INIT_VLC_STATIC(num, size) \
  1006.     INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size,    \
  1007.                     ps_tmp[num].ps_bits, 1, 1,                                          \
  1008.                     ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
  1009.                     size);
  1010.  
  1011. #define PS_VLC_ROW(name) \
  1012.     { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  1013.  
  1014. av_cold void AAC_RENAME(ff_ps_init)(void) {
  1015.     // Syntax initialization
  1016.     static const struct {
  1017.         const void *ps_codes, *ps_bits;
  1018.         const unsigned int table_size, elem_size;
  1019.     } ps_tmp[] = {
  1020.         PS_VLC_ROW(huff_iid_df1),
  1021.         PS_VLC_ROW(huff_iid_dt1),
  1022.         PS_VLC_ROW(huff_iid_df0),
  1023.         PS_VLC_ROW(huff_iid_dt0),
  1024.         PS_VLC_ROW(huff_icc_df),
  1025.         PS_VLC_ROW(huff_icc_dt),
  1026.         PS_VLC_ROW(huff_ipd_df),
  1027.         PS_VLC_ROW(huff_ipd_dt),
  1028.         PS_VLC_ROW(huff_opd_df),
  1029.         PS_VLC_ROW(huff_opd_dt),
  1030.     };
  1031.  
  1032.     PS_INIT_VLC_STATIC(0, 1544);
  1033.     PS_INIT_VLC_STATIC(1,  832);
  1034.     PS_INIT_VLC_STATIC(2, 1024);
  1035.     PS_INIT_VLC_STATIC(3, 1036);
  1036.     PS_INIT_VLC_STATIC(4,  544);
  1037.     PS_INIT_VLC_STATIC(5,  544);
  1038.     PS_INIT_VLC_STATIC(6,  512);
  1039.     PS_INIT_VLC_STATIC(7,  512);
  1040.     PS_INIT_VLC_STATIC(8,  512);
  1041.     PS_INIT_VLC_STATIC(9,  512);
  1042.  
  1043.     ps_tableinit();
  1044. }
  1045.  
  1046. av_cold void AAC_RENAME(ff_ps_ctx_init)(PSContext *ps)
  1047. {
  1048.     AAC_RENAME(ff_psdsp_init)(&ps->dsp);
  1049. }
  1050.