Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * AAC encoder TNS
  3.  * Copyright (C) 2015 Rostislav Pehlivanov
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. /**
  23.  * @file
  24.  * AAC encoder temporal noise shaping
  25.  * @author Rostislav Pehlivanov ( atomnuker gmail com )
  26.  */
  27.  
  28. #include "aacenc.h"
  29. #include "aacenc_tns.h"
  30. #include "aactab.h"
  31. #include "aacenc_utils.h"
  32. #include "aacenc_quantization.h"
  33.  
  34. /**
  35.  * Encode TNS data.
  36.  * Coefficient compression saves a single bit per coefficient.
  37.  */
  38. void ff_aac_encode_tns_info(AACEncContext *s, SingleChannelElement *sce)
  39. {
  40.     uint8_t u_coef;
  41.     const uint8_t coef_res = TNS_Q_BITS == 4;
  42.     int i, w, filt, coef_len, coef_compress = 0;
  43.     const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE;
  44.     TemporalNoiseShaping *tns = &sce->tns;
  45.  
  46.     if (!sce->tns.present)
  47.         return;
  48.  
  49.     for (i = 0; i < sce->ics.num_windows; i++) {
  50.         put_bits(&s->pb, 2 - is8, sce->tns.n_filt[i]);
  51.         if (tns->n_filt[i]) {
  52.             put_bits(&s->pb, 1, coef_res);
  53.             for (filt = 0; filt < tns->n_filt[i]; filt++) {
  54.                 put_bits(&s->pb, 6 - 2 * is8, tns->length[i][filt]);
  55.                 put_bits(&s->pb, 5 - 2 * is8, tns->order[i][filt]);
  56.                 if (tns->order[i][filt]) {
  57.                     put_bits(&s->pb, 1, !!tns->direction[i][filt]);
  58.                     put_bits(&s->pb, 1, !!coef_compress);
  59.                     coef_len = coef_res + 3 - coef_compress;
  60.                     for (w = 0; w < tns->order[i][filt]; w++) {
  61.                         u_coef = (tns->coef_idx[i][filt][w])&(~(~0<<coef_len));
  62.                         put_bits(&s->pb, coef_len, u_coef);
  63.                     }
  64.                 }
  65.             }
  66.         }
  67.     }
  68. }
  69.  
  70. static inline void quantize_coefs(double *coef, int *idx, float *lpc, int order)
  71. {
  72.     int i;
  73.     uint8_t u_coef;
  74.     const float *quant_arr = tns_tmp2_map[TNS_Q_BITS == 4];
  75.     const double iqfac_p = ((1 << (TNS_Q_BITS-1)) - 0.5)/(M_PI/2.0);
  76.     const double iqfac_m = ((1 << (TNS_Q_BITS-1)) + 0.5)/(M_PI/2.0);
  77.     for (i = 0; i < order; i++) {
  78.         idx[i] = ceilf(asin(coef[i])*((coef[i] >= 0) ? iqfac_p : iqfac_m));
  79.         u_coef = (idx[i])&(~(~0<<TNS_Q_BITS));
  80.         lpc[i] = quant_arr[u_coef];
  81.     }
  82. }
  83.  
  84. /* Apply TNS filter */
  85. void ff_aac_apply_tns(AACEncContext *s, SingleChannelElement *sce)
  86. {
  87.     TemporalNoiseShaping *tns = &sce->tns;
  88.     IndividualChannelStream *ics = &sce->ics;
  89.     int w, filt, m, i, top, order, bottom, start, end, size, inc;
  90.     const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
  91.     float lpc[TNS_MAX_ORDER];
  92.  
  93.     for (w = 0; w < ics->num_windows; w++) {
  94.         bottom = ics->num_swb;
  95.         for (filt = 0; filt < tns->n_filt[w]; filt++) {
  96.             top    = bottom;
  97.             bottom = FFMAX(0, top - tns->length[w][filt]);
  98.             order  = tns->order[w][filt];
  99.             if (order == 0)
  100.                 continue;
  101.  
  102.             // tns_decode_coef
  103.             compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
  104.  
  105.             start = ics->swb_offset[FFMIN(bottom, mmm)];
  106.             end   = ics->swb_offset[FFMIN(   top, mmm)];
  107.             if ((size = end - start) <= 0)
  108.                 continue;
  109.             if (tns->direction[w][filt]) {
  110.                 inc = -1;
  111.                 start = end - 1;
  112.             } else {
  113.                 inc = 1;
  114.             }
  115.             start += w * 128;
  116.  
  117.             // ar filter
  118.             for (m = 0; m < size; m++, start += inc)
  119.                 for (i = 1; i <= FFMIN(m, order); i++)
  120.                     sce->coeffs[start] += lpc[i-1]*sce->pcoeffs[start - i*inc];
  121.         }
  122.     }
  123. }
  124.  
  125. void ff_aac_search_for_tns(AACEncContext *s, SingleChannelElement *sce)
  126. {
  127.     TemporalNoiseShaping *tns = &sce->tns;
  128.     int w, w2, g, count = 0;
  129.     const int mmm = FFMIN(sce->ics.tns_max_bands, sce->ics.max_sfb);
  130.     const int is8 = sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE;
  131.     const int order = is8 ? 7 : s->profile == FF_PROFILE_AAC_LOW ? 12 : TNS_MAX_ORDER;
  132.  
  133.     int sfb_start = av_clip(tns_min_sfb[is8][s->samplerate_index], 0, mmm);
  134.     int sfb_end   = av_clip(sce->ics.num_swb, 0, mmm);
  135.  
  136.     for (w = 0; w < sce->ics.num_windows; w++) {
  137.         float e_ratio = 0.0f, threshold = 0.0f, spread = 0.0f, en[2] = {0.0, 0.0f};
  138.         double gain = 0.0f, coefs[MAX_LPC_ORDER] = {0};
  139.         int coef_start = w*sce->ics.num_swb + sce->ics.swb_offset[sfb_start];
  140.         int coef_len = sce->ics.swb_offset[sfb_end] - sce->ics.swb_offset[sfb_start];
  141.  
  142.         for (g = 0;  g < sce->ics.num_swb; g++) {
  143.             if (w*16+g < sfb_start || w*16+g > sfb_end)
  144.                 continue;
  145.             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  146.                 FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
  147.                 if ((w+w2)*16+g > sfb_start + ((sfb_end - sfb_start)/2))
  148.                     en[1] += band->energy;
  149.                 else
  150.                     en[0] += band->energy;
  151.                 threshold += band->threshold;
  152.                 spread += band->spread;
  153.             }
  154.         }
  155.  
  156.         if (coef_len <= 0 || (sfb_end - sfb_start) <= 0)
  157.             continue;
  158.         else
  159.             e_ratio = en[0]/en[1];
  160.  
  161.         /* LPC */
  162.         gain = ff_lpc_calc_ref_coefs_f(&s->lpc, &sce->coeffs[coef_start],
  163.                                        coef_len, order, coefs);
  164.  
  165.         if (gain > TNS_GAIN_THRESHOLD_LOW && gain < TNS_GAIN_THRESHOLD_HIGH &&
  166.             (en[0]+en[1]) > TNS_GAIN_THRESHOLD_LOW*threshold &&
  167.             spread < TNS_SPREAD_THRESHOLD && order) {
  168.             if (is8 || order < 2 || (e_ratio > TNS_E_RATIO_LOW && e_ratio < TNS_E_RATIO_HIGH)) {
  169.                 tns->n_filt[w] = 1;
  170.                 for (g = 0; g < tns->n_filt[w]; g++) {
  171.                     tns->length[w][g] = sfb_end - sfb_start;
  172.                     tns->direction[w][g] = en[0] < en[1];
  173.                     tns->order[w][g] = order;
  174.                     quantize_coefs(coefs, tns->coef_idx[w][g], tns->coef[w][g],
  175.                                    order);
  176.                 }
  177.             } else {  /* 2 filters due to energy disbalance */
  178.                 tns->n_filt[w] = 2;
  179.                 for (g = 0; g < tns->n_filt[w]; g++) {
  180.                     tns->direction[w][g] = en[g] < en[!g];
  181.                     tns->order[w][g] = !g ? order/2 : order - tns->order[w][g-1];
  182.                     tns->length[w][g] = !g ? (sfb_end - sfb_start)/2 : \
  183.                                     (sfb_end - sfb_start) - tns->length[w][g-1];
  184.                     quantize_coefs(&coefs[!g ? 0 : order - tns->order[w][g-1]],
  185.                                    tns->coef_idx[w][g], tns->coef[w][g],
  186.                                    tns->order[w][g]);
  187.                 }
  188.             }
  189.             count++;
  190.         }
  191.     }
  192.  
  193.     sce->tns.present = !!count;
  194. }
  195.