Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * AAC encoder intensity stereo
  3.  * Copyright (C) 2015 Rostislav Pehlivanov
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. /**
  23.  * @file
  24.  * AAC encoder Intensity Stereo
  25.  * @author Rostislav Pehlivanov ( atomnuker gmail com )
  26.  */
  27.  
  28. #include "aacenc.h"
  29. #include "aacenc_utils.h"
  30. #include "aacenc_is.h"
  31. #include "aacenc_quantization.h"
  32.  
  33. struct AACISError ff_aac_is_encoding_err(AACEncContext *s, ChannelElement *cpe,
  34.                                          int start, int w, int g, float ener0,
  35.                                          float ener1, float ener01,
  36.                                          int use_pcoeffs, int phase)
  37. {
  38.     int i, w2;
  39.     SingleChannelElement *sce0 = &cpe->ch[0];
  40.     SingleChannelElement *sce1 = &cpe->ch[1];
  41.     float *L = use_pcoeffs ? sce0->pcoeffs : sce0->coeffs;
  42.     float *R = use_pcoeffs ? sce1->pcoeffs : sce1->coeffs;
  43.     float *L34 = &s->scoefs[256*0], *R34 = &s->scoefs[256*1];
  44.     float *IS  = &s->scoefs[256*2], *I34 = &s->scoefs[256*3];
  45.     float dist1 = 0.0f, dist2 = 0.0f;
  46.     struct AACISError is_error = {0};
  47.  
  48.     for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
  49.         FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
  50.         FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
  51.         int is_band_type, is_sf_idx = FFMAX(1, sce0->sf_idx[(w+w2)*16+g]-4);
  52.         float e01_34 = phase*pow(ener1/ener0, 3.0/4.0);
  53.         float maxval, dist_spec_err = 0.0f;
  54.         float minthr = FFMIN(band0->threshold, band1->threshold);
  55.         for (i = 0; i < sce0->ics.swb_sizes[g]; i++)
  56.             IS[i] = (L[start+(w+w2)*128+i] + phase*R[start+(w+w2)*128+i])*sqrt(ener0/ener01);
  57.         abs_pow34_v(L34, &L[start+(w+w2)*128], sce0->ics.swb_sizes[g]);
  58.         abs_pow34_v(R34, &R[start+(w+w2)*128], sce0->ics.swb_sizes[g]);
  59.         abs_pow34_v(I34, IS,                   sce0->ics.swb_sizes[g]);
  60.         maxval = find_max_val(1, sce0->ics.swb_sizes[g], I34);
  61.         is_band_type = find_min_book(maxval, is_sf_idx);
  62.         dist1 += quantize_band_cost(s, &L[start + (w+w2)*128], L34,
  63.                                     sce0->ics.swb_sizes[g],
  64.                                     sce0->sf_idx[(w+w2)*16+g],
  65.                                     sce0->band_type[(w+w2)*16+g],
  66.                                     s->lambda / band0->threshold, INFINITY, NULL, 0);
  67.         dist1 += quantize_band_cost(s, &R[start + (w+w2)*128], R34,
  68.                                     sce1->ics.swb_sizes[g],
  69.                                     sce1->sf_idx[(w+w2)*16+g],
  70.                                     sce1->band_type[(w+w2)*16+g],
  71.                                     s->lambda / band1->threshold, INFINITY, NULL, 0);
  72.         dist2 += quantize_band_cost(s, IS, I34, sce0->ics.swb_sizes[g],
  73.                                     is_sf_idx, is_band_type,
  74.                                     s->lambda / minthr, INFINITY, NULL, 0);
  75.         for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
  76.             dist_spec_err += (L34[i] - I34[i])*(L34[i] - I34[i]);
  77.             dist_spec_err += (R34[i] - I34[i]*e01_34)*(R34[i] - I34[i]*e01_34);
  78.         }
  79.         dist_spec_err *= s->lambda / minthr;
  80.         dist2 += dist_spec_err;
  81.     }
  82.  
  83.     is_error.pass = dist2 <= dist1;
  84.     is_error.phase = phase;
  85.     is_error.error = fabsf(dist1 - dist2);
  86.     is_error.dist1 = dist1;
  87.     is_error.dist2 = dist2;
  88.  
  89.     return is_error;
  90. }
  91.  
  92. void ff_aac_search_for_is(AACEncContext *s, AVCodecContext *avctx, ChannelElement *cpe)
  93. {
  94.     SingleChannelElement *sce0 = &cpe->ch[0];
  95.     SingleChannelElement *sce1 = &cpe->ch[1];
  96.     int start = 0, count = 0, w, w2, g, i;
  97.     const float freq_mult = avctx->sample_rate/(1024.0f/sce0->ics.num_windows)/2.0f;
  98.  
  99.     if (!cpe->common_window)
  100.         return;
  101.  
  102.     for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
  103.         start = 0;
  104.         for (g = 0;  g < sce0->ics.num_swb; g++) {
  105.             if (start*freq_mult > INT_STEREO_LOW_LIMIT*(s->lambda/170.0f) &&
  106.                 cpe->ch[0].band_type[w*16+g] != NOISE_BT && !cpe->ch[0].zeroes[w*16+g] &&
  107.                 cpe->ch[1].band_type[w*16+g] != NOISE_BT && !cpe->ch[1].zeroes[w*16+g]) {
  108.                 float ener0 = 0.0f, ener1 = 0.0f, ener01 = 0.0f;
  109.                 struct AACISError ph_err1, ph_err2, *erf;
  110.                 for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
  111.                     for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
  112.                         float coef0 = sce0->pcoeffs[start+(w+w2)*128+i];
  113.                         float coef1 = sce1->pcoeffs[start+(w+w2)*128+i];
  114.                         ener0  += coef0*coef0;
  115.                         ener1  += coef1*coef1;
  116.                         ener01 += (coef0 + coef1)*(coef0 + coef1);
  117.                     }
  118.                 }
  119.                 ph_err1 = ff_aac_is_encoding_err(s, cpe, start, w, g,
  120.                                                  ener0, ener1, ener01, 0, -1);
  121.                 ph_err2 = ff_aac_is_encoding_err(s, cpe, start, w, g,
  122.                                                  ener0, ener1, ener01, 0, +1);
  123.                 erf = ph_err1.error < ph_err2.error ? &ph_err1 : &ph_err2;
  124.                 if (erf->pass) {
  125.                     cpe->is_mask[w*16+g] = 1;
  126.                     cpe->ch[0].is_ener[w*16+g] = sqrt(ener0/ener01);
  127.                     cpe->ch[1].is_ener[w*16+g] = ener0/ener1;
  128.                     cpe->ch[1].band_type[w*16+g] = erf->phase ? INTENSITY_BT : INTENSITY_BT2;
  129.                     count++;
  130.                 }
  131.             }
  132.             start += sce0->ics.swb_sizes[g];
  133.         }
  134.     }
  135.     cpe->is_mode = !!count;
  136. }
  137.