Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Wing Commander/Xan Video Decoder
  3.  * Copyright (C) 2003 the ffmpeg project
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. /**
  23.  * @file
  24.  * Xan video decoder for Wing Commander III computer game
  25.  * by Mario Brito (mbrito@student.dei.uc.pt)
  26.  * and Mike Melanson (melanson@pcisys.net)
  27.  *
  28.  * The xan_wc3 decoder outputs PAL8 data.
  29.  */
  30.  
  31. #include <stdio.h>
  32. #include <stdlib.h>
  33. #include <string.h>
  34.  
  35. #include "libavutil/intreadwrite.h"
  36. #include "libavutil/mem.h"
  37. #include "avcodec.h"
  38. #include "bytestream.h"
  39. #define BITSTREAM_READER_LE
  40. #include "get_bits.h"
  41. #include "internal.h"
  42.  
  43. #define RUNTIME_GAMMA 0
  44.  
  45. #define VGA__TAG MKTAG('V', 'G', 'A', ' ')
  46. #define PALT_TAG MKTAG('P', 'A', 'L', 'T')
  47. #define SHOT_TAG MKTAG('S', 'H', 'O', 'T')
  48. #define PALETTE_COUNT 256
  49. #define PALETTE_SIZE (PALETTE_COUNT * 3)
  50. #define PALETTES_MAX 256
  51.  
  52. typedef struct XanContext {
  53.  
  54.     AVCodecContext *avctx;
  55.     AVFrame *last_frame;
  56.  
  57.     const uint8_t *buf;
  58.     int size;
  59.  
  60.     /* scratch space */
  61.     uint8_t *buffer1;
  62.     int buffer1_size;
  63.     uint8_t *buffer2;
  64.     int buffer2_size;
  65.  
  66.     unsigned *palettes;
  67.     int palettes_count;
  68.     int cur_palette;
  69.  
  70.     int frame_size;
  71.  
  72. } XanContext;
  73.  
  74. static av_cold int xan_decode_end(AVCodecContext *avctx);
  75.  
  76. static av_cold int xan_decode_init(AVCodecContext *avctx)
  77. {
  78.     XanContext *s = avctx->priv_data;
  79.  
  80.     s->avctx = avctx;
  81.     s->frame_size = 0;
  82.  
  83.     avctx->pix_fmt = AV_PIX_FMT_PAL8;
  84.  
  85.     s->buffer1_size = avctx->width * avctx->height;
  86.     s->buffer1 = av_malloc(s->buffer1_size);
  87.     if (!s->buffer1)
  88.         return AVERROR(ENOMEM);
  89.     s->buffer2_size = avctx->width * avctx->height;
  90.     s->buffer2 = av_malloc(s->buffer2_size + 130);
  91.     if (!s->buffer2) {
  92.         av_freep(&s->buffer1);
  93.         return AVERROR(ENOMEM);
  94.     }
  95.     s->last_frame = av_frame_alloc();
  96.     if (!s->last_frame) {
  97.         xan_decode_end(avctx);
  98.         return AVERROR(ENOMEM);
  99.     }
  100.  
  101.     return 0;
  102. }
  103.  
  104. static int xan_huffman_decode(uint8_t *dest, int dest_len,
  105.                               const uint8_t *src, int src_len)
  106. {
  107.     uint8_t byte = *src++;
  108.     uint8_t ival = byte + 0x16;
  109.     const uint8_t * ptr = src + byte*2;
  110.     int ptr_len = src_len - 1 - byte*2;
  111.     uint8_t val = ival;
  112.     uint8_t *dest_end = dest + dest_len;
  113.     uint8_t *dest_start = dest;
  114.     GetBitContext gb;
  115.  
  116.     if (ptr_len < 0)
  117.         return AVERROR_INVALIDDATA;
  118.  
  119.     init_get_bits(&gb, ptr, ptr_len * 8);
  120.  
  121.     while (val != 0x16) {
  122.         unsigned idx = val - 0x17 + get_bits1(&gb) * byte;
  123.         if (idx >= 2 * byte)
  124.             return AVERROR_INVALIDDATA;
  125.         val = src[idx];
  126.  
  127.         if (val < 0x16) {
  128.             if (dest >= dest_end)
  129.                 return dest_len;
  130.             *dest++ = val;
  131.             val = ival;
  132.         }
  133.     }
  134.  
  135.     return dest - dest_start;
  136. }
  137.  
  138. /**
  139.  * unpack simple compression
  140.  *
  141.  * @param dest destination buffer of dest_len, must be padded with at least 130 bytes
  142.  */
  143. static void xan_unpack(uint8_t *dest, int dest_len,
  144.                        const uint8_t *src, int src_len)
  145. {
  146.     uint8_t opcode;
  147.     int size;
  148.     uint8_t *dest_org = dest;
  149.     uint8_t *dest_end = dest + dest_len;
  150.     GetByteContext ctx;
  151.  
  152.     bytestream2_init(&ctx, src, src_len);
  153.     while (dest < dest_end && bytestream2_get_bytes_left(&ctx)) {
  154.         opcode = bytestream2_get_byte(&ctx);
  155.  
  156.         if (opcode < 0xe0) {
  157.             int size2, back;
  158.             if ((opcode & 0x80) == 0) {
  159.                 size = opcode & 3;
  160.  
  161.                 back  = ((opcode & 0x60) << 3) + bytestream2_get_byte(&ctx) + 1;
  162.                 size2 = ((opcode & 0x1c) >> 2) + 3;
  163.             } else if ((opcode & 0x40) == 0) {
  164.                 size = bytestream2_peek_byte(&ctx) >> 6;
  165.  
  166.                 back  = (bytestream2_get_be16(&ctx) & 0x3fff) + 1;
  167.                 size2 = (opcode & 0x3f) + 4;
  168.             } else {
  169.                 size = opcode & 3;
  170.  
  171.                 back  = ((opcode & 0x10) << 12) + bytestream2_get_be16(&ctx) + 1;
  172.                 size2 = ((opcode & 0x0c) <<  6) + bytestream2_get_byte(&ctx) + 5;
  173.             }
  174.  
  175.             if (dest_end - dest < size + size2 ||
  176.                 dest + size - dest_org < back ||
  177.                 bytestream2_get_bytes_left(&ctx) < size)
  178.                 return;
  179.             bytestream2_get_buffer(&ctx, dest, size);
  180.             dest += size;
  181.             av_memcpy_backptr(dest, back, size2);
  182.             dest += size2;
  183.         } else {
  184.             int finish = opcode >= 0xfc;
  185.             size = finish ? opcode & 3 : ((opcode & 0x1f) << 2) + 4;
  186.  
  187.             if (dest_end - dest < size || bytestream2_get_bytes_left(&ctx) < size)
  188.                 return;
  189.             bytestream2_get_buffer(&ctx, dest, size);
  190.             dest += size;
  191.             if (finish)
  192.                 return;
  193.         }
  194.     }
  195. }
  196.  
  197. static inline void xan_wc3_output_pixel_run(XanContext *s, AVFrame *frame,
  198.     const uint8_t *pixel_buffer, int x, int y, int pixel_count)
  199. {
  200.     int stride;
  201.     int line_inc;
  202.     int index;
  203.     int current_x;
  204.     int width = s->avctx->width;
  205.     uint8_t *palette_plane;
  206.  
  207.     palette_plane = frame->data[0];
  208.     stride = frame->linesize[0];
  209.     line_inc = stride - width;
  210.     index = y * stride + x;
  211.     current_x = x;
  212.     while (pixel_count && index < s->frame_size) {
  213.         int count = FFMIN(pixel_count, width - current_x);
  214.         memcpy(palette_plane + index, pixel_buffer, count);
  215.         pixel_count  -= count;
  216.         index        += count;
  217.         pixel_buffer += count;
  218.         current_x    += count;
  219.  
  220.         if (current_x >= width) {
  221.             index += line_inc;
  222.             current_x = 0;
  223.         }
  224.     }
  225. }
  226.  
  227. static inline void xan_wc3_copy_pixel_run(XanContext *s, AVFrame *frame,
  228.                                           int x, int y,
  229.                                           int pixel_count, int motion_x,
  230.                                           int motion_y)
  231. {
  232.     int stride;
  233.     int line_inc;
  234.     int curframe_index, prevframe_index;
  235.     int curframe_x, prevframe_x;
  236.     int width = s->avctx->width;
  237.     uint8_t *palette_plane, *prev_palette_plane;
  238.  
  239.     if (y + motion_y < 0 || y + motion_y >= s->avctx->height ||
  240.         x + motion_x < 0 || x + motion_x >= s->avctx->width)
  241.         return;
  242.  
  243.     palette_plane = frame->data[0];
  244.     prev_palette_plane = s->last_frame->data[0];
  245.     if (!prev_palette_plane)
  246.         prev_palette_plane = palette_plane;
  247.     stride = frame->linesize[0];
  248.     line_inc = stride - width;
  249.     curframe_index = y * stride + x;
  250.     curframe_x = x;
  251.     prevframe_index = (y + motion_y) * stride + x + motion_x;
  252.     prevframe_x = x + motion_x;
  253.  
  254.     if (prev_palette_plane == palette_plane && FFABS(curframe_index - prevframe_index) < pixel_count) {
  255.          avpriv_request_sample(s->avctx, "Overlapping copy\n");
  256.          return ;
  257.     }
  258.  
  259.     while (pixel_count &&
  260.            curframe_index  < s->frame_size &&
  261.            prevframe_index < s->frame_size) {
  262.         int count = FFMIN3(pixel_count, width - curframe_x,
  263.                            width - prevframe_x);
  264.  
  265.         memcpy(palette_plane + curframe_index,
  266.                prev_palette_plane + prevframe_index, count);
  267.         pixel_count     -= count;
  268.         curframe_index  += count;
  269.         prevframe_index += count;
  270.         curframe_x      += count;
  271.         prevframe_x     += count;
  272.  
  273.         if (curframe_x >= width) {
  274.             curframe_index += line_inc;
  275.             curframe_x = 0;
  276.         }
  277.  
  278.         if (prevframe_x >= width) {
  279.             prevframe_index += line_inc;
  280.             prevframe_x = 0;
  281.         }
  282.     }
  283. }
  284.  
  285. static int xan_wc3_decode_frame(XanContext *s, AVFrame *frame)
  286. {
  287.  
  288.     int width  = s->avctx->width;
  289.     int height = s->avctx->height;
  290.     int total_pixels = width * height;
  291.     uint8_t opcode;
  292.     uint8_t flag = 0;
  293.     int size = 0;
  294.     int motion_x, motion_y;
  295.     int x, y, ret;
  296.  
  297.     uint8_t *opcode_buffer = s->buffer1;
  298.     uint8_t *opcode_buffer_end = s->buffer1 + s->buffer1_size;
  299.     int opcode_buffer_size = s->buffer1_size;
  300.     const uint8_t *imagedata_buffer = s->buffer2;
  301.  
  302.     /* pointers to segments inside the compressed chunk */
  303.     const uint8_t *huffman_segment;
  304.     GetByteContext       size_segment;
  305.     GetByteContext       vector_segment;
  306.     const uint8_t *imagedata_segment;
  307.     int huffman_offset, size_offset, vector_offset, imagedata_offset,
  308.         imagedata_size;
  309.  
  310.     if (s->size < 8)
  311.         return AVERROR_INVALIDDATA;
  312.  
  313.     huffman_offset    = AV_RL16(&s->buf[0]);
  314.     size_offset       = AV_RL16(&s->buf[2]);
  315.     vector_offset     = AV_RL16(&s->buf[4]);
  316.     imagedata_offset  = AV_RL16(&s->buf[6]);
  317.  
  318.     if (huffman_offset   >= s->size ||
  319.         size_offset      >= s->size ||
  320.         vector_offset    >= s->size ||
  321.         imagedata_offset >= s->size)
  322.         return AVERROR_INVALIDDATA;
  323.  
  324.     huffman_segment   = s->buf + huffman_offset;
  325.     bytestream2_init(&size_segment,   s->buf + size_offset,   s->size - size_offset);
  326.     bytestream2_init(&vector_segment, s->buf + vector_offset, s->size - vector_offset);
  327.     imagedata_segment = s->buf + imagedata_offset;
  328.  
  329.     if ((ret = xan_huffman_decode(opcode_buffer, opcode_buffer_size,
  330.                                   huffman_segment, s->size - huffman_offset)) < 0)
  331.         return AVERROR_INVALIDDATA;
  332.     opcode_buffer_end = opcode_buffer + ret;
  333.  
  334.     if (imagedata_segment[0] == 2) {
  335.         xan_unpack(s->buffer2, s->buffer2_size,
  336.                    &imagedata_segment[1], s->size - imagedata_offset - 1);
  337.         imagedata_size = s->buffer2_size;
  338.     } else {
  339.         imagedata_size = s->size - imagedata_offset - 1;
  340.         imagedata_buffer = &imagedata_segment[1];
  341.     }
  342.  
  343.     /* use the decoded data segments to build the frame */
  344.     x = y = 0;
  345.     while (total_pixels && opcode_buffer < opcode_buffer_end) {
  346.  
  347.         opcode = *opcode_buffer++;
  348.         size = 0;
  349.  
  350.         switch (opcode) {
  351.  
  352.         case 0:
  353.             flag ^= 1;
  354.             continue;
  355.  
  356.         case 1:
  357.         case 2:
  358.         case 3:
  359.         case 4:
  360.         case 5:
  361.         case 6:
  362.         case 7:
  363.         case 8:
  364.             size = opcode;
  365.             break;
  366.  
  367.         case 12:
  368.         case 13:
  369.         case 14:
  370.         case 15:
  371.         case 16:
  372.         case 17:
  373.         case 18:
  374.             size += (opcode - 10);
  375.             break;
  376.  
  377.         case 9:
  378.         case 19:
  379.             if (bytestream2_get_bytes_left(&size_segment) < 1) {
  380.                 av_log(s->avctx, AV_LOG_ERROR, "size_segment overread\n");
  381.                 return AVERROR_INVALIDDATA;
  382.             }
  383.             size = bytestream2_get_byte(&size_segment);
  384.             break;
  385.  
  386.         case 10:
  387.         case 20:
  388.             if (bytestream2_get_bytes_left(&size_segment) < 2) {
  389.                 av_log(s->avctx, AV_LOG_ERROR, "size_segment overread\n");
  390.                 return AVERROR_INVALIDDATA;
  391.             }
  392.             size = bytestream2_get_be16(&size_segment);
  393.             break;
  394.  
  395.         case 11:
  396.         case 21:
  397.             if (bytestream2_get_bytes_left(&size_segment) < 3) {
  398.                 av_log(s->avctx, AV_LOG_ERROR, "size_segment overread\n");
  399.                 return AVERROR_INVALIDDATA;
  400.             }
  401.             size = bytestream2_get_be24(&size_segment);
  402.             break;
  403.         }
  404.  
  405.         if (size > total_pixels)
  406.             break;
  407.  
  408.         if (opcode < 12) {
  409.             flag ^= 1;
  410.             if (flag) {
  411.                 /* run of (size) pixels is unchanged from last frame */
  412.                 xan_wc3_copy_pixel_run(s, frame, x, y, size, 0, 0);
  413.             } else {
  414.                 /* output a run of pixels from imagedata_buffer */
  415.                 if (imagedata_size < size)
  416.                     break;
  417.                 xan_wc3_output_pixel_run(s, frame, imagedata_buffer, x, y, size);
  418.                 imagedata_buffer += size;
  419.                 imagedata_size -= size;
  420.             }
  421.         } else {
  422.             uint8_t vector;
  423.             if (bytestream2_get_bytes_left(&vector_segment) <= 0) {
  424.                 av_log(s->avctx, AV_LOG_ERROR, "vector_segment overread\n");
  425.                 return AVERROR_INVALIDDATA;
  426.             }
  427.             /* run-based motion compensation from last frame */
  428.             vector = bytestream2_get_byte(&vector_segment);
  429.             motion_x = sign_extend(vector >> 4,  4);
  430.             motion_y = sign_extend(vector & 0xF, 4);
  431.  
  432.             /* copy a run of pixels from the previous frame */
  433.             xan_wc3_copy_pixel_run(s, frame, x, y, size, motion_x, motion_y);
  434.  
  435.             flag = 0;
  436.         }
  437.  
  438.         /* coordinate accounting */
  439.         total_pixels -= size;
  440.         y += (x + size) / width;
  441.         x  = (x + size) % width;
  442.     }
  443.     return 0;
  444. }
  445.  
  446. #if RUNTIME_GAMMA
  447. static inline unsigned mul(unsigned a, unsigned b)
  448. {
  449.     return (a * b) >> 16;
  450. }
  451.  
  452. static inline unsigned pow4(unsigned a)
  453. {
  454.     unsigned square = mul(a, a);
  455.     return mul(square, square);
  456. }
  457.  
  458. static inline unsigned pow5(unsigned a)
  459. {
  460.     return mul(pow4(a), a);
  461. }
  462.  
  463. static uint8_t gamma_corr(uint8_t in) {
  464.     unsigned lo, hi = 0xff40, target;
  465.     int i = 15;
  466.     in = (in << 2) | (in >> 6);
  467.     /*  equivalent float code:
  468.     if (in >= 252)
  469.         return 253;
  470.     return round(pow(in / 256.0, 0.8) * 256);
  471.     */
  472.     lo = target = in << 8;
  473.     do {
  474.         unsigned mid = (lo + hi) >> 1;
  475.         unsigned pow = pow5(mid);
  476.         if (pow > target) hi = mid;
  477.         else lo = mid;
  478.     } while (--i);
  479.     return (pow4((lo + hi) >> 1) + 0x80) >> 8;
  480. }
  481. #else
  482. /**
  483.  * This is a gamma correction that xan3 applies to all palette entries.
  484.  *
  485.  * There is a peculiarity, namely that the values are clamped to 253 -
  486.  * it seems likely that this table was calculated by a buggy fixed-point
  487.  * implementation, the one above under RUNTIME_GAMMA behaves like this for
  488.  * example.
  489.  * The exponent value of 0.8 can be explained by this as well, since 0.8 = 4/5
  490.  * and thus pow(x, 0.8) is still easy to calculate.
  491.  * Also, the input values are first rotated to the left by 2.
  492.  */
  493. static const uint8_t gamma_lookup[256] = {
  494.     0x00, 0x09, 0x10, 0x16, 0x1C, 0x21, 0x27, 0x2C,
  495.     0x31, 0x35, 0x3A, 0x3F, 0x43, 0x48, 0x4C, 0x50,
  496.     0x54, 0x59, 0x5D, 0x61, 0x65, 0x69, 0x6D, 0x71,
  497.     0x75, 0x79, 0x7D, 0x80, 0x84, 0x88, 0x8C, 0x8F,
  498.     0x93, 0x97, 0x9A, 0x9E, 0xA2, 0xA5, 0xA9, 0xAC,
  499.     0xB0, 0xB3, 0xB7, 0xBA, 0xBE, 0xC1, 0xC5, 0xC8,
  500.     0xCB, 0xCF, 0xD2, 0xD5, 0xD9, 0xDC, 0xDF, 0xE3,
  501.     0xE6, 0xE9, 0xED, 0xF0, 0xF3, 0xF6, 0xFA, 0xFD,
  502.     0x03, 0x0B, 0x12, 0x18, 0x1D, 0x23, 0x28, 0x2D,
  503.     0x32, 0x36, 0x3B, 0x40, 0x44, 0x49, 0x4D, 0x51,
  504.     0x56, 0x5A, 0x5E, 0x62, 0x66, 0x6A, 0x6E, 0x72,
  505.     0x76, 0x7A, 0x7D, 0x81, 0x85, 0x89, 0x8D, 0x90,
  506.     0x94, 0x98, 0x9B, 0x9F, 0xA2, 0xA6, 0xAA, 0xAD,
  507.     0xB1, 0xB4, 0xB8, 0xBB, 0xBF, 0xC2, 0xC5, 0xC9,
  508.     0xCC, 0xD0, 0xD3, 0xD6, 0xDA, 0xDD, 0xE0, 0xE4,
  509.     0xE7, 0xEA, 0xED, 0xF1, 0xF4, 0xF7, 0xFA, 0xFD,
  510.     0x05, 0x0D, 0x13, 0x19, 0x1F, 0x24, 0x29, 0x2E,
  511.     0x33, 0x38, 0x3C, 0x41, 0x45, 0x4A, 0x4E, 0x52,
  512.     0x57, 0x5B, 0x5F, 0x63, 0x67, 0x6B, 0x6F, 0x73,
  513.     0x77, 0x7B, 0x7E, 0x82, 0x86, 0x8A, 0x8D, 0x91,
  514.     0x95, 0x99, 0x9C, 0xA0, 0xA3, 0xA7, 0xAA, 0xAE,
  515.     0xB2, 0xB5, 0xB9, 0xBC, 0xBF, 0xC3, 0xC6, 0xCA,
  516.     0xCD, 0xD0, 0xD4, 0xD7, 0xDA, 0xDE, 0xE1, 0xE4,
  517.     0xE8, 0xEB, 0xEE, 0xF1, 0xF5, 0xF8, 0xFB, 0xFD,
  518.     0x07, 0x0E, 0x15, 0x1A, 0x20, 0x25, 0x2A, 0x2F,
  519.     0x34, 0x39, 0x3D, 0x42, 0x46, 0x4B, 0x4F, 0x53,
  520.     0x58, 0x5C, 0x60, 0x64, 0x68, 0x6C, 0x70, 0x74,
  521.     0x78, 0x7C, 0x7F, 0x83, 0x87, 0x8B, 0x8E, 0x92,
  522.     0x96, 0x99, 0x9D, 0xA1, 0xA4, 0xA8, 0xAB, 0xAF,
  523.     0xB2, 0xB6, 0xB9, 0xBD, 0xC0, 0xC4, 0xC7, 0xCB,
  524.     0xCE, 0xD1, 0xD5, 0xD8, 0xDB, 0xDF, 0xE2, 0xE5,
  525.     0xE9, 0xEC, 0xEF, 0xF2, 0xF6, 0xF9, 0xFC, 0xFD
  526. };
  527. #endif
  528.  
  529. static int xan_decode_frame(AVCodecContext *avctx,
  530.                             void *data, int *got_frame,
  531.                             AVPacket *avpkt)
  532. {
  533.     AVFrame *frame = data;
  534.     const uint8_t *buf = avpkt->data;
  535.     int ret, buf_size = avpkt->size;
  536.     XanContext *s = avctx->priv_data;
  537.     GetByteContext ctx;
  538.     int tag = 0;
  539.  
  540.     bytestream2_init(&ctx, buf, buf_size);
  541.     while (bytestream2_get_bytes_left(&ctx) > 8 && tag != VGA__TAG) {
  542.         unsigned *tmpptr;
  543.         uint32_t new_pal;
  544.         int size;
  545.         int i;
  546.         tag  = bytestream2_get_le32(&ctx);
  547.         size = bytestream2_get_be32(&ctx);
  548.         if(size < 0) {
  549.             av_log(avctx, AV_LOG_ERROR, "Invalid tag size %d\n", size);
  550.             return AVERROR_INVALIDDATA;
  551.         }
  552.         size = FFMIN(size, bytestream2_get_bytes_left(&ctx));
  553.         switch (tag) {
  554.         case PALT_TAG:
  555.             if (size < PALETTE_SIZE)
  556.                 return AVERROR_INVALIDDATA;
  557.             if (s->palettes_count >= PALETTES_MAX)
  558.                 return AVERROR_INVALIDDATA;
  559.             tmpptr = av_realloc(s->palettes,
  560.                                 (s->palettes_count + 1) * AVPALETTE_SIZE);
  561.             if (!tmpptr)
  562.                 return AVERROR(ENOMEM);
  563.             s->palettes = tmpptr;
  564.             tmpptr += s->palettes_count * AVPALETTE_COUNT;
  565.             for (i = 0; i < PALETTE_COUNT; i++) {
  566. #if RUNTIME_GAMMA
  567.                 int r = gamma_corr(bytestream2_get_byteu(&ctx));
  568.                 int g = gamma_corr(bytestream2_get_byteu(&ctx));
  569.                 int b = gamma_corr(bytestream2_get_byteu(&ctx));
  570. #else
  571.                 int r = gamma_lookup[bytestream2_get_byteu(&ctx)];
  572.                 int g = gamma_lookup[bytestream2_get_byteu(&ctx)];
  573.                 int b = gamma_lookup[bytestream2_get_byteu(&ctx)];
  574. #endif
  575.                 *tmpptr++ = (0xFFU << 24) | (r << 16) | (g << 8) | b;
  576.             }
  577.             s->palettes_count++;
  578.             break;
  579.         case SHOT_TAG:
  580.             if (size < 4)
  581.                 return AVERROR_INVALIDDATA;
  582.             new_pal = bytestream2_get_le32(&ctx);
  583.             if (new_pal < s->palettes_count) {
  584.                 s->cur_palette = new_pal;
  585.             } else
  586.                 av_log(avctx, AV_LOG_ERROR, "Invalid palette selected\n");
  587.             break;
  588.         case VGA__TAG:
  589.             break;
  590.         default:
  591.             bytestream2_skip(&ctx, size);
  592.             break;
  593.         }
  594.     }
  595.     buf_size = bytestream2_get_bytes_left(&ctx);
  596.  
  597.     if (s->palettes_count <= 0) {
  598.         av_log(s->avctx, AV_LOG_ERROR, "No palette found\n");
  599.         return AVERROR_INVALIDDATA;
  600.     }
  601.  
  602.     if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0)
  603.         return ret;
  604.  
  605.     if (!s->frame_size)
  606.         s->frame_size = frame->linesize[0] * s->avctx->height;
  607.  
  608.     memcpy(frame->data[1],
  609.            s->palettes + s->cur_palette * AVPALETTE_COUNT, AVPALETTE_SIZE);
  610.  
  611.     s->buf = ctx.buffer;
  612.     s->size = buf_size;
  613.  
  614.     if (xan_wc3_decode_frame(s, frame) < 0)
  615.         return AVERROR_INVALIDDATA;
  616.  
  617.     av_frame_unref(s->last_frame);
  618.     if ((ret = av_frame_ref(s->last_frame, frame)) < 0)
  619.         return ret;
  620.  
  621.     *got_frame = 1;
  622.  
  623.     /* always report that the buffer was completely consumed */
  624.     return buf_size;
  625. }
  626.  
  627. static av_cold int xan_decode_end(AVCodecContext *avctx)
  628. {
  629.     XanContext *s = avctx->priv_data;
  630.  
  631.     av_frame_free(&s->last_frame);
  632.  
  633.     av_freep(&s->buffer1);
  634.     av_freep(&s->buffer2);
  635.     av_freep(&s->palettes);
  636.  
  637.     return 0;
  638. }
  639.  
  640. AVCodec ff_xan_wc3_decoder = {
  641.     .name           = "xan_wc3",
  642.     .long_name      = NULL_IF_CONFIG_SMALL("Wing Commander III / Xan"),
  643.     .type           = AVMEDIA_TYPE_VIDEO,
  644.     .id             = AV_CODEC_ID_XAN_WC3,
  645.     .priv_data_size = sizeof(XanContext),
  646.     .init           = xan_decode_init,
  647.     .close          = xan_decode_end,
  648.     .decode         = xan_decode_frame,
  649.     .capabilities   = CODEC_CAP_DR1,
  650. };
  651.