Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Real Audio 1.0 (14.4K) encoder
  3.  * Copyright (c) 2010 Francesco Lavra <francescolavra@interfree.it>
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. /**
  23.  * @file
  24.  * Real Audio 1.0 (14.4K) encoder
  25.  * @author Francesco Lavra <francescolavra@interfree.it>
  26.  */
  27.  
  28. #include <float.h>
  29.  
  30. #include "avcodec.h"
  31. #include "audio_frame_queue.h"
  32. #include "internal.h"
  33. #include "put_bits.h"
  34. #include "celp_filters.h"
  35. #include "ra144.h"
  36.  
  37.  
  38. static av_cold int ra144_encode_close(AVCodecContext *avctx)
  39. {
  40.     RA144Context *ractx = avctx->priv_data;
  41.     ff_lpc_end(&ractx->lpc_ctx);
  42.     ff_af_queue_close(&ractx->afq);
  43.     return 0;
  44. }
  45.  
  46.  
  47. static av_cold int ra144_encode_init(AVCodecContext * avctx)
  48. {
  49.     RA144Context *ractx;
  50.     int ret;
  51.  
  52.     if (avctx->channels != 1) {
  53.         av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n",
  54.                avctx->channels);
  55.         return -1;
  56.     }
  57.     avctx->frame_size = NBLOCKS * BLOCKSIZE;
  58.     avctx->delay      = avctx->frame_size;
  59.     avctx->bit_rate = 8000;
  60.     ractx = avctx->priv_data;
  61.     ractx->lpc_coef[0] = ractx->lpc_tables[0];
  62.     ractx->lpc_coef[1] = ractx->lpc_tables[1];
  63.     ractx->avctx = avctx;
  64.     ret = ff_lpc_init(&ractx->lpc_ctx, avctx->frame_size, LPC_ORDER,
  65.                       FF_LPC_TYPE_LEVINSON);
  66.     if (ret < 0)
  67.         goto error;
  68.  
  69.     ff_af_queue_init(avctx, &ractx->afq);
  70.  
  71.     return 0;
  72. error:
  73.     ra144_encode_close(avctx);
  74.     return ret;
  75. }
  76.  
  77.  
  78. /**
  79.  * Quantize a value by searching a sorted table for the element with the
  80.  * nearest value
  81.  *
  82.  * @param value value to quantize
  83.  * @param table array containing the quantization table
  84.  * @param size size of the quantization table
  85.  * @return index of the quantization table corresponding to the element with the
  86.  *         nearest value
  87.  */
  88. static int quantize(int value, const int16_t *table, unsigned int size)
  89. {
  90.     unsigned int low = 0, high = size - 1;
  91.  
  92.     while (1) {
  93.         int index = (low + high) >> 1;
  94.         int error = table[index] - value;
  95.  
  96.         if (index == low)
  97.             return table[high] + error > value ? low : high;
  98.         if (error > 0) {
  99.             high = index;
  100.         } else {
  101.             low = index;
  102.         }
  103.     }
  104. }
  105.  
  106.  
  107. /**
  108.  * Orthogonalize a vector to another vector
  109.  *
  110.  * @param v vector to orthogonalize
  111.  * @param u vector against which orthogonalization is performed
  112.  */
  113. static void orthogonalize(float *v, const float *u)
  114. {
  115.     int i;
  116.     float num = 0, den = 0;
  117.  
  118.     for (i = 0; i < BLOCKSIZE; i++) {
  119.         num += v[i] * u[i];
  120.         den += u[i] * u[i];
  121.     }
  122.     num /= den;
  123.     for (i = 0; i < BLOCKSIZE; i++)
  124.         v[i] -= num * u[i];
  125. }
  126.  
  127.  
  128. /**
  129.  * Calculate match score and gain of an LPC-filtered vector with respect to
  130.  * input data, possibly othogonalizing it to up to 2 other vectors
  131.  *
  132.  * @param work array used to calculate the filtered vector
  133.  * @param coefs coefficients of the LPC filter
  134.  * @param vect original vector
  135.  * @param ortho1 first vector against which orthogonalization is performed
  136.  * @param ortho2 second vector against which orthogonalization is performed
  137.  * @param data input data
  138.  * @param score pointer to variable where match score is returned
  139.  * @param gain pointer to variable where gain is returned
  140.  */
  141. static void get_match_score(float *work, const float *coefs, float *vect,
  142.                             const float *ortho1, const float *ortho2,
  143.                             const float *data, float *score, float *gain)
  144. {
  145.     float c, g;
  146.     int i;
  147.  
  148.     ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
  149.     if (ortho1)
  150.         orthogonalize(work, ortho1);
  151.     if (ortho2)
  152.         orthogonalize(work, ortho2);
  153.     c = g = 0;
  154.     for (i = 0; i < BLOCKSIZE; i++) {
  155.         g += work[i] * work[i];
  156.         c += data[i] * work[i];
  157.     }
  158.     if (c <= 0) {
  159.         *score = 0;
  160.         return;
  161.     }
  162.     *gain = c / g;
  163.     *score = *gain * c;
  164. }
  165.  
  166.  
  167. /**
  168.  * Create a vector from the adaptive codebook at a given lag value
  169.  *
  170.  * @param vect array where vector is stored
  171.  * @param cb adaptive codebook
  172.  * @param lag lag value
  173.  */
  174. static void create_adapt_vect(float *vect, const int16_t *cb, int lag)
  175. {
  176.     int i;
  177.  
  178.     cb += BUFFERSIZE - lag;
  179.     for (i = 0; i < FFMIN(BLOCKSIZE, lag); i++)
  180.         vect[i] = cb[i];
  181.     if (lag < BLOCKSIZE)
  182.         for (i = 0; i < BLOCKSIZE - lag; i++)
  183.             vect[lag + i] = cb[i];
  184. }
  185.  
  186.  
  187. /**
  188.  * Search the adaptive codebook for the best entry and gain and remove its
  189.  * contribution from input data
  190.  *
  191.  * @param adapt_cb array from which the adaptive codebook is extracted
  192.  * @param work array used to calculate LPC-filtered vectors
  193.  * @param coefs coefficients of the LPC filter
  194.  * @param data input data
  195.  * @return index of the best entry of the adaptive codebook
  196.  */
  197. static int adaptive_cb_search(const int16_t *adapt_cb, float *work,
  198.                               const float *coefs, float *data)
  199. {
  200.     int i, av_uninit(best_vect);
  201.     float score, gain, best_score, av_uninit(best_gain);
  202.     float exc[BLOCKSIZE];
  203.  
  204.     gain = best_score = 0;
  205.     for (i = BLOCKSIZE / 2; i <= BUFFERSIZE; i++) {
  206.         create_adapt_vect(exc, adapt_cb, i);
  207.         get_match_score(work, coefs, exc, NULL, NULL, data, &score, &gain);
  208.         if (score > best_score) {
  209.             best_score = score;
  210.             best_vect = i;
  211.             best_gain = gain;
  212.         }
  213.     }
  214.     if (!best_score)
  215.         return 0;
  216.  
  217.     /**
  218.      * Re-calculate the filtered vector from the vector with maximum match score
  219.      * and remove its contribution from input data.
  220.      */
  221.     create_adapt_vect(exc, adapt_cb, best_vect);
  222.     ff_celp_lp_synthesis_filterf(work, coefs, exc, BLOCKSIZE, LPC_ORDER);
  223.     for (i = 0; i < BLOCKSIZE; i++)
  224.         data[i] -= best_gain * work[i];
  225.     return best_vect - BLOCKSIZE / 2 + 1;
  226. }
  227.  
  228.  
  229. /**
  230.  * Find the best vector of a fixed codebook by applying an LPC filter to
  231.  * codebook entries, possibly othogonalizing them to up to 2 other vectors and
  232.  * matching the results with input data
  233.  *
  234.  * @param work array used to calculate the filtered vectors
  235.  * @param coefs coefficients of the LPC filter
  236.  * @param cb fixed codebook
  237.  * @param ortho1 first vector against which orthogonalization is performed
  238.  * @param ortho2 second vector against which orthogonalization is performed
  239.  * @param data input data
  240.  * @param idx pointer to variable where the index of the best codebook entry is
  241.  *        returned
  242.  * @param gain pointer to variable where the gain of the best codebook entry is
  243.  *        returned
  244.  */
  245. static void find_best_vect(float *work, const float *coefs,
  246.                            const int8_t cb[][BLOCKSIZE], const float *ortho1,
  247.                            const float *ortho2, float *data, int *idx,
  248.                            float *gain)
  249. {
  250.     int i, j;
  251.     float g, score, best_score;
  252.     float vect[BLOCKSIZE];
  253.  
  254.     *idx = *gain = best_score = 0;
  255.     for (i = 0; i < FIXED_CB_SIZE; i++) {
  256.         for (j = 0; j < BLOCKSIZE; j++)
  257.             vect[j] = cb[i][j];
  258.         get_match_score(work, coefs, vect, ortho1, ortho2, data, &score, &g);
  259.         if (score > best_score) {
  260.             best_score = score;
  261.             *idx = i;
  262.             *gain = g;
  263.         }
  264.     }
  265. }
  266.  
  267.  
  268. /**
  269.  * Search the two fixed codebooks for the best entry and gain
  270.  *
  271.  * @param work array used to calculate LPC-filtered vectors
  272.  * @param coefs coefficients of the LPC filter
  273.  * @param data input data
  274.  * @param cba_idx index of the best entry of the adaptive codebook
  275.  * @param cb1_idx pointer to variable where the index of the best entry of the
  276.  *        first fixed codebook is returned
  277.  * @param cb2_idx pointer to variable where the index of the best entry of the
  278.  *        second fixed codebook is returned
  279.  */
  280. static void fixed_cb_search(float *work, const float *coefs, float *data,
  281.                             int cba_idx, int *cb1_idx, int *cb2_idx)
  282. {
  283.     int i, ortho_cb1;
  284.     float gain;
  285.     float cba_vect[BLOCKSIZE], cb1_vect[BLOCKSIZE];
  286.     float vect[BLOCKSIZE];
  287.  
  288.     /**
  289.      * The filtered vector from the adaptive codebook can be retrieved from
  290.      * work, because this function is called just after adaptive_cb_search().
  291.      */
  292.     if (cba_idx)
  293.         memcpy(cba_vect, work, sizeof(cba_vect));
  294.  
  295.     find_best_vect(work, coefs, ff_cb1_vects, cba_idx ? cba_vect : NULL, NULL,
  296.                    data, cb1_idx, &gain);
  297.  
  298.     /**
  299.      * Re-calculate the filtered vector from the vector with maximum match score
  300.      * and remove its contribution from input data.
  301.      */
  302.     if (gain) {
  303.         for (i = 0; i < BLOCKSIZE; i++)
  304.             vect[i] = ff_cb1_vects[*cb1_idx][i];
  305.         ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
  306.         if (cba_idx)
  307.             orthogonalize(work, cba_vect);
  308.         for (i = 0; i < BLOCKSIZE; i++)
  309.             data[i] -= gain * work[i];
  310.         memcpy(cb1_vect, work, sizeof(cb1_vect));
  311.         ortho_cb1 = 1;
  312.     } else
  313.         ortho_cb1 = 0;
  314.  
  315.     find_best_vect(work, coefs, ff_cb2_vects, cba_idx ? cba_vect : NULL,
  316.                    ortho_cb1 ? cb1_vect : NULL, data, cb2_idx, &gain);
  317. }
  318.  
  319.  
  320. /**
  321.  * Encode a subblock of the current frame
  322.  *
  323.  * @param ractx encoder context
  324.  * @param sblock_data input data of the subblock
  325.  * @param lpc_coefs coefficients of the LPC filter
  326.  * @param rms RMS of the reflection coefficients
  327.  * @param pb pointer to PutBitContext of the current frame
  328.  */
  329. static void ra144_encode_subblock(RA144Context *ractx,
  330.                                   const int16_t *sblock_data,
  331.                                   const int16_t *lpc_coefs, unsigned int rms,
  332.                                   PutBitContext *pb)
  333. {
  334.     float data[BLOCKSIZE] = { 0 }, work[LPC_ORDER + BLOCKSIZE];
  335.     float coefs[LPC_ORDER];
  336.     float zero[BLOCKSIZE], cba[BLOCKSIZE], cb1[BLOCKSIZE], cb2[BLOCKSIZE];
  337.     int16_t cba_vect[BLOCKSIZE];
  338.     int cba_idx, cb1_idx, cb2_idx, gain;
  339.     int i, n;
  340.     unsigned m[3];
  341.     float g[3];
  342.     float error, best_error;
  343.  
  344.     for (i = 0; i < LPC_ORDER; i++) {
  345.         work[i] = ractx->curr_sblock[BLOCKSIZE + i];
  346.         coefs[i] = lpc_coefs[i] * (1/4096.0);
  347.     }
  348.  
  349.     /**
  350.      * Calculate the zero-input response of the LPC filter and subtract it from
  351.      * input data.
  352.      */
  353.     ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, data, BLOCKSIZE,
  354.                                  LPC_ORDER);
  355.     for (i = 0; i < BLOCKSIZE; i++) {
  356.         zero[i] = work[LPC_ORDER + i];
  357.         data[i] = sblock_data[i] - zero[i];
  358.     }
  359.  
  360.     /**
  361.      * Codebook search is performed without taking into account the contribution
  362.      * of the previous subblock, since it has been just subtracted from input
  363.      * data.
  364.      */
  365.     memset(work, 0, LPC_ORDER * sizeof(*work));
  366.  
  367.     cba_idx = adaptive_cb_search(ractx->adapt_cb, work + LPC_ORDER, coefs,
  368.                                  data);
  369.     if (cba_idx) {
  370.         /**
  371.          * The filtered vector from the adaptive codebook can be retrieved from
  372.          * work, see implementation of adaptive_cb_search().
  373.          */
  374.         memcpy(cba, work + LPC_ORDER, sizeof(cba));
  375.  
  376.         ff_copy_and_dup(cba_vect, ractx->adapt_cb, cba_idx + BLOCKSIZE / 2 - 1);
  377.         m[0] = (ff_irms(cba_vect) * rms) >> 12;
  378.     }
  379.     fixed_cb_search(work + LPC_ORDER, coefs, data, cba_idx, &cb1_idx, &cb2_idx);
  380.     for (i = 0; i < BLOCKSIZE; i++) {
  381.         cb1[i] = ff_cb1_vects[cb1_idx][i];
  382.         cb2[i] = ff_cb2_vects[cb2_idx][i];
  383.     }
  384.     ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb1, BLOCKSIZE,
  385.                                  LPC_ORDER);
  386.     memcpy(cb1, work + LPC_ORDER, sizeof(cb1));
  387.     m[1] = (ff_cb1_base[cb1_idx] * rms) >> 8;
  388.     ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb2, BLOCKSIZE,
  389.                                  LPC_ORDER);
  390.     memcpy(cb2, work + LPC_ORDER, sizeof(cb2));
  391.     m[2] = (ff_cb2_base[cb2_idx] * rms) >> 8;
  392.     best_error = FLT_MAX;
  393.     gain = 0;
  394.     for (n = 0; n < 256; n++) {
  395.         g[1] = ((ff_gain_val_tab[n][1] * m[1]) >> ff_gain_exp_tab[n]) *
  396.                (1/4096.0);
  397.         g[2] = ((ff_gain_val_tab[n][2] * m[2]) >> ff_gain_exp_tab[n]) *
  398.                (1/4096.0);
  399.         error = 0;
  400.         if (cba_idx) {
  401.             g[0] = ((ff_gain_val_tab[n][0] * m[0]) >> ff_gain_exp_tab[n]) *
  402.                    (1/4096.0);
  403.             for (i = 0; i < BLOCKSIZE; i++) {
  404.                 data[i] = zero[i] + g[0] * cba[i] + g[1] * cb1[i] +
  405.                           g[2] * cb2[i];
  406.                 error += (data[i] - sblock_data[i]) *
  407.                          (data[i] - sblock_data[i]);
  408.             }
  409.         } else {
  410.             for (i = 0; i < BLOCKSIZE; i++) {
  411.                 data[i] = zero[i] + g[1] * cb1[i] + g[2] * cb2[i];
  412.                 error += (data[i] - sblock_data[i]) *
  413.                          (data[i] - sblock_data[i]);
  414.             }
  415.         }
  416.         if (error < best_error) {
  417.             best_error = error;
  418.             gain = n;
  419.         }
  420.     }
  421.     put_bits(pb, 7, cba_idx);
  422.     put_bits(pb, 8, gain);
  423.     put_bits(pb, 7, cb1_idx);
  424.     put_bits(pb, 7, cb2_idx);
  425.     ff_subblock_synthesis(ractx, lpc_coefs, cba_idx, cb1_idx, cb2_idx, rms,
  426.                           gain);
  427. }
  428.  
  429.  
  430. static int ra144_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  431.                               const AVFrame *frame, int *got_packet_ptr)
  432. {
  433.     static const uint8_t sizes[LPC_ORDER] = {64, 32, 32, 16, 16, 8, 8, 8, 8, 4};
  434.     static const uint8_t bit_sizes[LPC_ORDER] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
  435.     RA144Context *ractx = avctx->priv_data;
  436.     PutBitContext pb;
  437.     int32_t lpc_data[NBLOCKS * BLOCKSIZE];
  438.     int32_t lpc_coefs[LPC_ORDER][MAX_LPC_ORDER];
  439.     int shift[LPC_ORDER];
  440.     int16_t block_coefs[NBLOCKS][LPC_ORDER];
  441.     int lpc_refl[LPC_ORDER];    /**< reflection coefficients of the frame */
  442.     unsigned int refl_rms[NBLOCKS]; /**< RMS of the reflection coefficients */
  443.     const int16_t *samples = frame ? (const int16_t *)frame->data[0] : NULL;
  444.     int energy = 0;
  445.     int i, idx, ret;
  446.  
  447.     if (ractx->last_frame)
  448.         return 0;
  449.  
  450.     if ((ret = ff_alloc_packet2(avctx, avpkt, FRAME_SIZE)) < 0)
  451.         return ret;
  452.  
  453.     /**
  454.      * Since the LPC coefficients are calculated on a frame centered over the
  455.      * fourth subframe, to encode a given frame, data from the next frame is
  456.      * needed. In each call to this function, the previous frame (whose data are
  457.      * saved in the encoder context) is encoded, and data from the current frame
  458.      * are saved in the encoder context to be used in the next function call.
  459.      */
  460.     for (i = 0; i < (2 * BLOCKSIZE + BLOCKSIZE / 2); i++) {
  461.         lpc_data[i] = ractx->curr_block[BLOCKSIZE + BLOCKSIZE / 2 + i];
  462.         energy += (lpc_data[i] * lpc_data[i]) >> 4;
  463.     }
  464.     if (frame) {
  465.         int j;
  466.         for (j = 0; j < frame->nb_samples && i < NBLOCKS * BLOCKSIZE; i++, j++) {
  467.             lpc_data[i] = samples[j] >> 2;
  468.             energy += (lpc_data[i] * lpc_data[i]) >> 4;
  469.         }
  470.     }
  471.     if (i < NBLOCKS * BLOCKSIZE)
  472.         memset(&lpc_data[i], 0, (NBLOCKS * BLOCKSIZE - i) * sizeof(*lpc_data));
  473.     energy = ff_energy_tab[quantize(ff_t_sqrt(energy >> 5) >> 10, ff_energy_tab,
  474.                                     32)];
  475.  
  476.     ff_lpc_calc_coefs(&ractx->lpc_ctx, lpc_data, NBLOCKS * BLOCKSIZE, LPC_ORDER,
  477.                       LPC_ORDER, 16, lpc_coefs, shift, FF_LPC_TYPE_LEVINSON,
  478.                       0, ORDER_METHOD_EST, 12, 0);
  479.     for (i = 0; i < LPC_ORDER; i++)
  480.         block_coefs[NBLOCKS - 1][i] = -(lpc_coefs[LPC_ORDER - 1][i] <<
  481.                                         (12 - shift[LPC_ORDER - 1]));
  482.  
  483.     /**
  484.      * TODO: apply perceptual weighting of the input speech through bandwidth
  485.      * expansion of the LPC filter.
  486.      */
  487.  
  488.     if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
  489.         /**
  490.          * The filter is unstable: use the coefficients of the previous frame.
  491.          */
  492.         ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[1]);
  493.         if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
  494.             /* the filter is still unstable. set reflection coeffs to zero. */
  495.             memset(lpc_refl, 0, sizeof(lpc_refl));
  496.         }
  497.     }
  498.     init_put_bits(&pb, avpkt->data, avpkt->size);
  499.     for (i = 0; i < LPC_ORDER; i++) {
  500.         idx = quantize(lpc_refl[i], ff_lpc_refl_cb[i], sizes[i]);
  501.         put_bits(&pb, bit_sizes[i], idx);
  502.         lpc_refl[i] = ff_lpc_refl_cb[i][idx];
  503.     }
  504.     ractx->lpc_refl_rms[0] = ff_rms(lpc_refl);
  505.     ff_eval_coefs(ractx->lpc_coef[0], lpc_refl);
  506.     refl_rms[0] = ff_interp(ractx, block_coefs[0], 1, 1, ractx->old_energy);
  507.     refl_rms[1] = ff_interp(ractx, block_coefs[1], 2,
  508.                             energy <= ractx->old_energy,
  509.                             ff_t_sqrt(energy * ractx->old_energy) >> 12);
  510.     refl_rms[2] = ff_interp(ractx, block_coefs[2], 3, 0, energy);
  511.     refl_rms[3] = ff_rescale_rms(ractx->lpc_refl_rms[0], energy);
  512.     ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[0]);
  513.     put_bits(&pb, 5, quantize(energy, ff_energy_tab, 32));
  514.     for (i = 0; i < NBLOCKS; i++)
  515.         ra144_encode_subblock(ractx, ractx->curr_block + i * BLOCKSIZE,
  516.                               block_coefs[i], refl_rms[i], &pb);
  517.     flush_put_bits(&pb);
  518.     ractx->old_energy = energy;
  519.     ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
  520.     FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
  521.  
  522.     /* copy input samples to current block for processing in next call */
  523.     i = 0;
  524.     if (frame) {
  525.         for (; i < frame->nb_samples; i++)
  526.             ractx->curr_block[i] = samples[i] >> 2;
  527.  
  528.         if ((ret = ff_af_queue_add(&ractx->afq, frame)) < 0)
  529.             return ret;
  530.     } else
  531.         ractx->last_frame = 1;
  532.     memset(&ractx->curr_block[i], 0,
  533.            (NBLOCKS * BLOCKSIZE - i) * sizeof(*ractx->curr_block));
  534.  
  535.     /* Get the next frame pts/duration */
  536.     ff_af_queue_remove(&ractx->afq, avctx->frame_size, &avpkt->pts,
  537.                        &avpkt->duration);
  538.  
  539.     avpkt->size = FRAME_SIZE;
  540.     *got_packet_ptr = 1;
  541.     return 0;
  542. }
  543.  
  544.  
  545. AVCodec ff_ra_144_encoder = {
  546.     .name           = "real_144",
  547.     .long_name      = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
  548.     .type           = AVMEDIA_TYPE_AUDIO,
  549.     .id             = AV_CODEC_ID_RA_144,
  550.     .priv_data_size = sizeof(RA144Context),
  551.     .init           = ra144_encode_init,
  552.     .encode2        = ra144_encode_frame,
  553.     .close          = ra144_encode_close,
  554.     .capabilities   = CODEC_CAP_DELAY | CODEC_CAP_SMALL_LAST_FRAME,
  555.     .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
  556.                                                      AV_SAMPLE_FMT_NONE },
  557.     .supported_samplerates = (const int[]){ 8000, 0 },
  558.     .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_MONO, 0 },
  559. };
  560.