Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (c) 2001, 2002 Fabrice Bellard
  3.  *
  4.  * This file is part of FFmpeg.
  5.  *
  6.  * FFmpeg is free software; you can redistribute it and/or
  7.  * modify it under the terms of the GNU Lesser General Public
  8.  * License as published by the Free Software Foundation; either
  9.  * version 2.1 of the License, or (at your option) any later version.
  10.  *
  11.  * FFmpeg is distributed in the hope that it will be useful,
  12.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14.  * Lesser General Public License for more details.
  15.  *
  16.  * You should have received a copy of the GNU Lesser General Public
  17.  * License along with FFmpeg; if not, write to the Free Software
  18.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19.  */
  20.  
  21. #include <stdint.h>
  22.  
  23. #include "libavutil/attributes.h"
  24. #include "libavutil/mem.h"
  25. #include "dct32.h"
  26. #include "mathops.h"
  27. #include "mpegaudiodsp.h"
  28. #include "mpegaudio.h"
  29.  
  30. #if CONFIG_FLOAT
  31. #define RENAME(n) n##_float
  32.  
  33. static inline float round_sample(float *sum)
  34. {
  35.     float sum1=*sum;
  36.     *sum = 0;
  37.     return sum1;
  38. }
  39.  
  40. #define MACS(rt, ra, rb) rt+=(ra)*(rb)
  41. #define MULS(ra, rb) ((ra)*(rb))
  42. #define MULH3(x, y, s) ((s)*(y)*(x))
  43. #define MLSS(rt, ra, rb) rt-=(ra)*(rb)
  44. #define MULLx(x, y, s) ((y)*(x))
  45. #define FIXHR(x)        ((float)(x))
  46. #define FIXR(x)        ((float)(x))
  47. #define SHR(a,b)       ((a)*(1.0f/(1<<(b))))
  48.  
  49. #else
  50.  
  51. #define RENAME(n) n##_fixed
  52. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
  53.  
  54. static inline int round_sample(int64_t *sum)
  55. {
  56.     int sum1;
  57.     sum1 = (int)((*sum) >> OUT_SHIFT);
  58.     *sum &= (1<<OUT_SHIFT)-1;
  59.     return av_clip_int16(sum1);
  60. }
  61.  
  62. #   define MULS(ra, rb) MUL64(ra, rb)
  63. #   define MACS(rt, ra, rb) MAC64(rt, ra, rb)
  64. #   define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
  65. #   define MULH3(x, y, s) MULH((s)*(x), y)
  66. #   define MULLx(x, y, s) MULL(x,y,s)
  67. #   define SHR(a,b)       ((a)>>(b))
  68. #   define FIXR(a)        ((int)((a) * FRAC_ONE + 0.5))
  69. #   define FIXHR(a)       ((int)((a) * (1LL<<32) + 0.5))
  70. #endif
  71.  
  72. /** Window for MDCT. Actually only the elements in [0,17] and
  73.     [MDCT_BUF_SIZE/2, MDCT_BUF_SIZE/2 + 17] are actually used. The rest
  74.     is just to preserve alignment for SIMD implementations.
  75. */
  76. DECLARE_ALIGNED(16, INTFLOAT, RENAME(ff_mdct_win))[8][MDCT_BUF_SIZE];
  77.  
  78. DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256];
  79.  
  80. #define SUM8(op, sum, w, p)               \
  81. {                                         \
  82.     op(sum, (w)[0 * 64], (p)[0 * 64]);    \
  83.     op(sum, (w)[1 * 64], (p)[1 * 64]);    \
  84.     op(sum, (w)[2 * 64], (p)[2 * 64]);    \
  85.     op(sum, (w)[3 * 64], (p)[3 * 64]);    \
  86.     op(sum, (w)[4 * 64], (p)[4 * 64]);    \
  87.     op(sum, (w)[5 * 64], (p)[5 * 64]);    \
  88.     op(sum, (w)[6 * 64], (p)[6 * 64]);    \
  89.     op(sum, (w)[7 * 64], (p)[7 * 64]);    \
  90. }
  91.  
  92. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  93. {                                               \
  94.     INTFLOAT tmp;\
  95.     tmp = p[0 * 64];\
  96.     op1(sum1, (w1)[0 * 64], tmp);\
  97.     op2(sum2, (w2)[0 * 64], tmp);\
  98.     tmp = p[1 * 64];\
  99.     op1(sum1, (w1)[1 * 64], tmp);\
  100.     op2(sum2, (w2)[1 * 64], tmp);\
  101.     tmp = p[2 * 64];\
  102.     op1(sum1, (w1)[2 * 64], tmp);\
  103.     op2(sum2, (w2)[2 * 64], tmp);\
  104.     tmp = p[3 * 64];\
  105.     op1(sum1, (w1)[3 * 64], tmp);\
  106.     op2(sum2, (w2)[3 * 64], tmp);\
  107.     tmp = p[4 * 64];\
  108.     op1(sum1, (w1)[4 * 64], tmp);\
  109.     op2(sum2, (w2)[4 * 64], tmp);\
  110.     tmp = p[5 * 64];\
  111.     op1(sum1, (w1)[5 * 64], tmp);\
  112.     op2(sum2, (w2)[5 * 64], tmp);\
  113.     tmp = p[6 * 64];\
  114.     op1(sum1, (w1)[6 * 64], tmp);\
  115.     op2(sum2, (w2)[6 * 64], tmp);\
  116.     tmp = p[7 * 64];\
  117.     op1(sum1, (w1)[7 * 64], tmp);\
  118.     op2(sum2, (w2)[7 * 64], tmp);\
  119. }
  120.  
  121. void RENAME(ff_mpadsp_apply_window)(MPA_INT *synth_buf, MPA_INT *window,
  122.                                   int *dither_state, OUT_INT *samples,
  123.                                   int incr)
  124. {
  125.     register const MPA_INT *w, *w2, *p;
  126.     int j;
  127.     OUT_INT *samples2;
  128. #if CONFIG_FLOAT
  129.     float sum, sum2;
  130. #else
  131.     int64_t sum, sum2;
  132. #endif
  133.  
  134.     /* copy to avoid wrap */
  135.     memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
  136.  
  137.     samples2 = samples + 31 * incr;
  138.     w = window;
  139.     w2 = window + 31;
  140.  
  141.     sum = *dither_state;
  142.     p = synth_buf + 16;
  143.     SUM8(MACS, sum, w, p);
  144.     p = synth_buf + 48;
  145.     SUM8(MLSS, sum, w + 32, p);
  146.     *samples = round_sample(&sum);
  147.     samples += incr;
  148.     w++;
  149.  
  150.     /* we calculate two samples at the same time to avoid one memory
  151.        access per two sample */
  152.     for(j=1;j<16;j++) {
  153.         sum2 = 0;
  154.         p = synth_buf + 16 + j;
  155.         SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
  156.         p = synth_buf + 48 - j;
  157.         SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
  158.  
  159.         *samples = round_sample(&sum);
  160.         samples += incr;
  161.         sum += sum2;
  162.         *samples2 = round_sample(&sum);
  163.         samples2 -= incr;
  164.         w++;
  165.         w2--;
  166.     }
  167.  
  168.     p = synth_buf + 32;
  169.     SUM8(MLSS, sum, w + 32, p);
  170.     *samples = round_sample(&sum);
  171.     *dither_state= sum;
  172. }
  173.  
  174. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  175.    32 samples. */
  176. void RENAME(ff_mpa_synth_filter)(MPADSPContext *s, MPA_INT *synth_buf_ptr,
  177.                                  int *synth_buf_offset,
  178.                                  MPA_INT *window, int *dither_state,
  179.                                  OUT_INT *samples, int incr,
  180.                                  MPA_INT *sb_samples)
  181. {
  182.     MPA_INT *synth_buf;
  183.     int offset;
  184.  
  185.     offset = *synth_buf_offset;
  186.     synth_buf = synth_buf_ptr + offset;
  187.  
  188.     s->RENAME(dct32)(synth_buf, sb_samples);
  189.     s->RENAME(apply_window)(synth_buf, window, dither_state, samples, incr);
  190.  
  191.     offset = (offset - 32) & 511;
  192.     *synth_buf_offset = offset;
  193. }
  194.  
  195. av_cold void RENAME(ff_mpa_synth_init)(MPA_INT *window)
  196. {
  197.     int i, j;
  198.  
  199.     /* max = 18760, max sum over all 16 coefs : 44736 */
  200.     for(i=0;i<257;i++) {
  201.         INTFLOAT v;
  202.         v = ff_mpa_enwindow[i];
  203. #if CONFIG_FLOAT
  204.         v *= 1.0 / (1LL<<(16 + FRAC_BITS));
  205. #endif
  206.         window[i] = v;
  207.         if ((i & 63) != 0)
  208.             v = -v;
  209.         if (i != 0)
  210.             window[512 - i] = v;
  211.     }
  212.  
  213.  
  214.     // Needed for avoiding shuffles in ASM implementations
  215.     for(i=0; i < 8; i++)
  216.         for(j=0; j < 16; j++)
  217.             window[512+16*i+j] = window[64*i+32-j];
  218.  
  219.     for(i=0; i < 8; i++)
  220.         for(j=0; j < 16; j++)
  221.             window[512+128+16*i+j] = window[64*i+48-j];
  222. }
  223.  
  224. av_cold void RENAME(ff_init_mpadsp_tabs)(void)
  225. {
  226.     int i, j;
  227.     /* compute mdct windows */
  228.     for (i = 0; i < 36; i++) {
  229.         for (j = 0; j < 4; j++) {
  230.             double d;
  231.  
  232.             if (j == 2 && i % 3 != 1)
  233.                 continue;
  234.  
  235.             d = sin(M_PI * (i + 0.5) / 36.0);
  236.             if (j == 1) {
  237.                 if      (i >= 30) d = 0;
  238.                 else if (i >= 24) d = sin(M_PI * (i - 18 + 0.5) / 12.0);
  239.                 else if (i >= 18) d = 1;
  240.             } else if (j == 3) {
  241.                 if      (i <   6) d = 0;
  242.                 else if (i <  12) d = sin(M_PI * (i -  6 + 0.5) / 12.0);
  243.                 else if (i <  18) d = 1;
  244.             }
  245.             //merge last stage of imdct into the window coefficients
  246.             d *= 0.5 * IMDCT_SCALAR / cos(M_PI * (2 * i + 19) / 72);
  247.  
  248.             if (j == 2)
  249.                 RENAME(ff_mdct_win)[j][i/3] = FIXHR((d / (1<<5)));
  250.             else {
  251.                 int idx = i < 18 ? i : i + (MDCT_BUF_SIZE/2 - 18);
  252.                 RENAME(ff_mdct_win)[j][idx] = FIXHR((d / (1<<5)));
  253.             }
  254.         }
  255.     }
  256.  
  257.     /* NOTE: we do frequency inversion adter the MDCT by changing
  258.         the sign of the right window coefs */
  259.     for (j = 0; j < 4; j++) {
  260.         for (i = 0; i < MDCT_BUF_SIZE; i += 2) {
  261.             RENAME(ff_mdct_win)[j + 4][i    ] =  RENAME(ff_mdct_win)[j][i    ];
  262.             RENAME(ff_mdct_win)[j + 4][i + 1] = -RENAME(ff_mdct_win)[j][i + 1];
  263.         }
  264.     }
  265. }
  266. /* cos(pi*i/18) */
  267. #define C1 FIXHR(0.98480775301220805936/2)
  268. #define C2 FIXHR(0.93969262078590838405/2)
  269. #define C3 FIXHR(0.86602540378443864676/2)
  270. #define C4 FIXHR(0.76604444311897803520/2)
  271. #define C5 FIXHR(0.64278760968653932632/2)
  272. #define C6 FIXHR(0.5/2)
  273. #define C7 FIXHR(0.34202014332566873304/2)
  274. #define C8 FIXHR(0.17364817766693034885/2)
  275.  
  276. /* 0.5 / cos(pi*(2*i+1)/36) */
  277. static const INTFLOAT icos36[9] = {
  278.     FIXR(0.50190991877167369479),
  279.     FIXR(0.51763809020504152469), //0
  280.     FIXR(0.55168895948124587824),
  281.     FIXR(0.61038729438072803416),
  282.     FIXR(0.70710678118654752439), //1
  283.     FIXR(0.87172339781054900991),
  284.     FIXR(1.18310079157624925896),
  285.     FIXR(1.93185165257813657349), //2
  286.     FIXR(5.73685662283492756461),
  287. };
  288.  
  289. /* 0.5 / cos(pi*(2*i+1)/36) */
  290. static const INTFLOAT icos36h[9] = {
  291.     FIXHR(0.50190991877167369479/2),
  292.     FIXHR(0.51763809020504152469/2), //0
  293.     FIXHR(0.55168895948124587824/2),
  294.     FIXHR(0.61038729438072803416/2),
  295.     FIXHR(0.70710678118654752439/2), //1
  296.     FIXHR(0.87172339781054900991/2),
  297.     FIXHR(1.18310079157624925896/4),
  298.     FIXHR(1.93185165257813657349/4), //2
  299. //    FIXHR(5.73685662283492756461),
  300. };
  301.  
  302. /* using Lee like decomposition followed by hand coded 9 points DCT */
  303. static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
  304. {
  305.     int i, j;
  306.     INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
  307.     INTFLOAT tmp[18], *tmp1, *in1;
  308.  
  309.     for (i = 17; i >= 1; i--)
  310.         in[i] += in[i-1];
  311.     for (i = 17; i >= 3; i -= 2)
  312.         in[i] += in[i-2];
  313.  
  314.     for (j = 0; j < 2; j++) {
  315.         tmp1 = tmp + j;
  316.         in1 = in + j;
  317.  
  318.         t2 = in1[2*4] + in1[2*8] - in1[2*2];
  319.  
  320.         t3 = in1[2*0] + SHR(in1[2*6],1);
  321.         t1 = in1[2*0] - in1[2*6];
  322.         tmp1[ 6] = t1 - SHR(t2,1);
  323.         tmp1[16] = t1 + t2;
  324.  
  325.         t0 = MULH3(in1[2*2] + in1[2*4] ,    C2, 2);
  326.         t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
  327.         t2 = MULH3(in1[2*2] + in1[2*8] ,   -C4, 2);
  328.  
  329.         tmp1[10] = t3 - t0 - t2;
  330.         tmp1[ 2] = t3 + t0 + t1;
  331.         tmp1[14] = t3 + t2 - t1;
  332.  
  333.         tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
  334.         t2 = MULH3(in1[2*1] + in1[2*5],    C1, 2);
  335.         t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
  336.         t0 = MULH3(in1[2*3], C3, 2);
  337.  
  338.         t1 = MULH3(in1[2*1] + in1[2*7],   -C5, 2);
  339.  
  340.         tmp1[ 0] = t2 + t3 + t0;
  341.         tmp1[12] = t2 + t1 - t0;
  342.         tmp1[ 8] = t3 - t1 - t0;
  343.     }
  344.  
  345.     i = 0;
  346.     for (j = 0; j < 4; j++) {
  347.         t0 = tmp[i];
  348.         t1 = tmp[i + 2];
  349.         s0 = t1 + t0;
  350.         s2 = t1 - t0;
  351.  
  352.         t2 = tmp[i + 1];
  353.         t3 = tmp[i + 3];
  354.         s1 = MULH3(t3 + t2, icos36h[    j], 2);
  355.         s3 = MULLx(t3 - t2, icos36 [8 - j], FRAC_BITS);
  356.  
  357.         t0 = s0 + s1;
  358.         t1 = s0 - s1;
  359.         out[(9 + j) * SBLIMIT] = MULH3(t1, win[     9 + j], 1) + buf[4*(9 + j)];
  360.         out[(8 - j) * SBLIMIT] = MULH3(t1, win[     8 - j], 1) + buf[4*(8 - j)];
  361.         buf[4 * ( 9 + j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + j], 1);
  362.         buf[4 * ( 8 - j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - j], 1);
  363.  
  364.         t0 = s2 + s3;
  365.         t1 = s2 - s3;
  366.         out[(9 + 8 - j) * SBLIMIT] = MULH3(t1, win[     9 + 8 - j], 1) + buf[4*(9 + 8 - j)];
  367.         out[         j  * SBLIMIT] = MULH3(t1, win[             j], 1) + buf[4*(        j)];
  368.         buf[4 * ( 9 + 8 - j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 8 - j], 1);
  369.         buf[4 * (         j     )] = MULH3(t0, win[MDCT_BUF_SIZE/2         + j], 1);
  370.         i += 4;
  371.     }
  372.  
  373.     s0 = tmp[16];
  374.     s1 = MULH3(tmp[17], icos36h[4], 2);
  375.     t0 = s0 + s1;
  376.     t1 = s0 - s1;
  377.     out[(9 + 4) * SBLIMIT] = MULH3(t1, win[     9 + 4], 1) + buf[4*(9 + 4)];
  378.     out[(8 - 4) * SBLIMIT] = MULH3(t1, win[     8 - 4], 1) + buf[4*(8 - 4)];
  379.     buf[4 * ( 9 + 4     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 9 + 4], 1);
  380.     buf[4 * ( 8 - 4     )] = MULH3(t0, win[MDCT_BUF_SIZE/2 + 8 - 4], 1);
  381. }
  382.  
  383. void RENAME(ff_imdct36_blocks)(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in,
  384.                                int count, int switch_point, int block_type)
  385. {
  386.     int j;
  387.     for (j=0 ; j < count; j++) {
  388.         /* apply window & overlap with previous buffer */
  389.  
  390.         /* select window */
  391.         int win_idx = (switch_point && j < 2) ? 0 : block_type;
  392.         INTFLOAT *win = RENAME(ff_mdct_win)[win_idx + (4 & -(j & 1))];
  393.  
  394.         imdct36(out, buf, in, win);
  395.  
  396.         in  += 18;
  397.         buf += ((j&3) != 3 ? 1 : (72-3));
  398.         out++;
  399.     }
  400. }
  401.  
  402.