Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (c) CMU 1993 Computer Science, Speech Group
  3.  *                        Chengxiang Lu and Alex Hauptmann
  4.  * Copyright (c) 2005 Steve Underwood <steveu at coppice.org>
  5.  * Copyright (c) 2009 Kenan Gillet
  6.  * Copyright (c) 2010 Martin Storsjo
  7.  *
  8.  * This file is part of FFmpeg.
  9.  *
  10.  * FFmpeg is free software; you can redistribute it and/or
  11.  * modify it under the terms of the GNU Lesser General Public
  12.  * License as published by the Free Software Foundation; either
  13.  * version 2.1 of the License, or (at your option) any later version.
  14.  *
  15.  * FFmpeg is distributed in the hope that it will be useful,
  16.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18.  * Lesser General Public License for more details.
  19.  *
  20.  * You should have received a copy of the GNU Lesser General Public
  21.  * License along with FFmpeg; if not, write to the Free Software
  22.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23.  */
  24.  
  25. /**
  26.  * @file
  27.  * G.722 ADPCM audio encoder
  28.  */
  29.  
  30. #include "libavutil/avassert.h"
  31. #include "avcodec.h"
  32. #include "internal.h"
  33. #include "g722.h"
  34. #include "libavutil/common.h"
  35.  
  36. #define FREEZE_INTERVAL 128
  37.  
  38. /* This is an arbitrary value. Allowing insanely large values leads to strange
  39.    problems, so we limit it to a reasonable value */
  40. #define MAX_FRAME_SIZE 32768
  41.  
  42. /* We clip the value of avctx->trellis to prevent data type overflows and
  43.    undefined behavior. Using larger values is insanely slow anyway. */
  44. #define MIN_TRELLIS 0
  45. #define MAX_TRELLIS 16
  46.  
  47. static av_cold int g722_encode_close(AVCodecContext *avctx)
  48. {
  49.     G722Context *c = avctx->priv_data;
  50.     int i;
  51.     for (i = 0; i < 2; i++) {
  52.         av_freep(&c->paths[i]);
  53.         av_freep(&c->node_buf[i]);
  54.         av_freep(&c->nodep_buf[i]);
  55.     }
  56.     return 0;
  57. }
  58.  
  59. static av_cold int g722_encode_init(AVCodecContext * avctx)
  60. {
  61.     G722Context *c = avctx->priv_data;
  62.     int ret;
  63.  
  64.     if (avctx->channels != 1) {
  65.         av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n");
  66.         return AVERROR_INVALIDDATA;
  67.     }
  68.  
  69.     c->band[0].scale_factor = 8;
  70.     c->band[1].scale_factor = 2;
  71.     c->prev_samples_pos = 22;
  72.  
  73.     if (avctx->trellis) {
  74.         int frontier = 1 << avctx->trellis;
  75.         int max_paths = frontier * FREEZE_INTERVAL;
  76.         int i;
  77.         for (i = 0; i < 2; i++) {
  78.             c->paths[i] = av_mallocz(max_paths * sizeof(**c->paths));
  79.             c->node_buf[i] = av_mallocz(2 * frontier * sizeof(**c->node_buf));
  80.             c->nodep_buf[i] = av_mallocz(2 * frontier * sizeof(**c->nodep_buf));
  81.             if (!c->paths[i] || !c->node_buf[i] || !c->nodep_buf[i]) {
  82.                 ret = AVERROR(ENOMEM);
  83.                 goto error;
  84.             }
  85.         }
  86.     }
  87.  
  88.     if (avctx->frame_size) {
  89.         /* validate frame size */
  90.         if (avctx->frame_size & 1 || avctx->frame_size > MAX_FRAME_SIZE) {
  91.             int new_frame_size;
  92.  
  93.             if (avctx->frame_size == 1)
  94.                 new_frame_size = 2;
  95.             else if (avctx->frame_size > MAX_FRAME_SIZE)
  96.                 new_frame_size = MAX_FRAME_SIZE;
  97.             else
  98.                 new_frame_size = avctx->frame_size - 1;
  99.  
  100.             av_log(avctx, AV_LOG_WARNING, "Requested frame size is not "
  101.                    "allowed. Using %d instead of %d\n", new_frame_size,
  102.                    avctx->frame_size);
  103.             avctx->frame_size = new_frame_size;
  104.         }
  105.     } else {
  106.         /* This is arbitrary. We use 320 because it's 20ms @ 16kHz, which is
  107.            a common packet size for VoIP applications */
  108.         avctx->frame_size = 320;
  109.     }
  110.     avctx->delay = 22;
  111.  
  112.     if (avctx->trellis) {
  113.         /* validate trellis */
  114.         if (avctx->trellis < MIN_TRELLIS || avctx->trellis > MAX_TRELLIS) {
  115.             int new_trellis = av_clip(avctx->trellis, MIN_TRELLIS, MAX_TRELLIS);
  116.             av_log(avctx, AV_LOG_WARNING, "Requested trellis value is not "
  117.                    "allowed. Using %d instead of %d\n", new_trellis,
  118.                    avctx->trellis);
  119.             avctx->trellis = new_trellis;
  120.         }
  121.     }
  122.  
  123.     return 0;
  124. error:
  125.     g722_encode_close(avctx);
  126.     return ret;
  127. }
  128.  
  129. static const int16_t low_quant[33] = {
  130.       35,   72,  110,  150,  190,  233,  276,  323,
  131.      370,  422,  473,  530,  587,  650,  714,  786,
  132.      858,  940, 1023, 1121, 1219, 1339, 1458, 1612,
  133.     1765, 1980, 2195, 2557, 2919
  134. };
  135.  
  136. static inline void filter_samples(G722Context *c, const int16_t *samples,
  137.                                   int *xlow, int *xhigh)
  138. {
  139.     int xout1, xout2;
  140.     c->prev_samples[c->prev_samples_pos++] = samples[0];
  141.     c->prev_samples[c->prev_samples_pos++] = samples[1];
  142.     ff_g722_apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2);
  143.     *xlow  = xout1 + xout2 >> 14;
  144.     *xhigh = xout1 - xout2 >> 14;
  145.     if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) {
  146.         memmove(c->prev_samples,
  147.                 c->prev_samples + c->prev_samples_pos - 22,
  148.                 22 * sizeof(c->prev_samples[0]));
  149.         c->prev_samples_pos = 22;
  150.     }
  151. }
  152.  
  153. static inline int encode_high(const struct G722Band *state, int xhigh)
  154. {
  155.     int diff = av_clip_int16(xhigh - state->s_predictor);
  156.     int pred = 141 * state->scale_factor >> 8;
  157.            /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */
  158.     return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0);
  159. }
  160.  
  161. static inline int encode_low(const struct G722Band* state, int xlow)
  162. {
  163.     int diff  = av_clip_int16(xlow - state->s_predictor);
  164.            /* = diff >= 0 ? diff : -(diff + 1) */
  165.     int limit = diff ^ (diff >> (sizeof(diff)*8-1));
  166.     int i = 0;
  167.     limit = limit + 1 << 10;
  168.     if (limit > low_quant[8] * state->scale_factor)
  169.         i = 9;
  170.     while (i < 29 && limit > low_quant[i] * state->scale_factor)
  171.         i++;
  172.     return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i;
  173. }
  174.  
  175. static void g722_encode_trellis(G722Context *c, int trellis,
  176.                                 uint8_t *dst, int nb_samples,
  177.                                 const int16_t *samples)
  178. {
  179.     int i, j, k;
  180.     int frontier = 1 << trellis;
  181.     struct TrellisNode **nodes[2];
  182.     struct TrellisNode **nodes_next[2];
  183.     int pathn[2] = {0, 0}, froze = -1;
  184.     struct TrellisPath *p[2];
  185.  
  186.     for (i = 0; i < 2; i++) {
  187.         nodes[i] = c->nodep_buf[i];
  188.         nodes_next[i] = c->nodep_buf[i] + frontier;
  189.         memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf[i]));
  190.         nodes[i][0] = c->node_buf[i] + frontier;
  191.         nodes[i][0]->ssd = 0;
  192.         nodes[i][0]->path = 0;
  193.         nodes[i][0]->state = c->band[i];
  194.     }
  195.  
  196.     for (i = 0; i < nb_samples >> 1; i++) {
  197.         int xlow, xhigh;
  198.         struct TrellisNode *next[2];
  199.         int heap_pos[2] = {0, 0};
  200.  
  201.         for (j = 0; j < 2; j++) {
  202.             next[j] = c->node_buf[j] + frontier*(i & 1);
  203.             memset(nodes_next[j], 0, frontier * sizeof(**nodes_next));
  204.         }
  205.  
  206.         filter_samples(c, &samples[2*i], &xlow, &xhigh);
  207.  
  208.         for (j = 0; j < frontier && nodes[0][j]; j++) {
  209.             /* Only k >> 2 affects the future adaptive state, therefore testing
  210.              * small steps that don't change k >> 2 is useless, the original
  211.              * value from encode_low is better than them. Since we step k
  212.              * in steps of 4, make sure range is a multiple of 4, so that
  213.              * we don't miss the original value from encode_low. */
  214.             int range = j < frontier/2 ? 4 : 0;
  215.             struct TrellisNode *cur_node = nodes[0][j];
  216.  
  217.             int ilow = encode_low(&cur_node->state, xlow);
  218.  
  219.             for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) {
  220.                 int decoded, dec_diff, pos;
  221.                 uint32_t ssd;
  222.                 struct TrellisNode* node;
  223.  
  224.                 if (k < 0)
  225.                     continue;
  226.  
  227.                 decoded = av_clip((cur_node->state.scale_factor *
  228.                                   ff_g722_low_inv_quant6[k] >> 10)
  229.                                 + cur_node->state.s_predictor, -16384, 16383);
  230.                 dec_diff = xlow - decoded;
  231.  
  232. #define STORE_NODE(index, UPDATE, VALUE)\
  233.                 ssd = cur_node->ssd + dec_diff*dec_diff;\
  234.                 /* Check for wraparound. Using 64 bit ssd counters would \
  235.                  * be simpler, but is slower on x86 32 bit. */\
  236.                 if (ssd < cur_node->ssd)\
  237.                     continue;\
  238.                 if (heap_pos[index] < frontier) {\
  239.                     pos = heap_pos[index]++;\
  240.                     av_assert2(pathn[index] < FREEZE_INTERVAL * frontier);\
  241.                     node = nodes_next[index][pos] = next[index]++;\
  242.                     node->path = pathn[index]++;\
  243.                 } else {\
  244.                     /* Try to replace one of the leaf nodes with the new \
  245.                      * one, but not always testing the same leaf position */\
  246.                     pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\
  247.                     if (ssd >= nodes_next[index][pos]->ssd)\
  248.                         continue;\
  249.                     heap_pos[index]++;\
  250.                     node = nodes_next[index][pos];\
  251.                 }\
  252.                 node->ssd = ssd;\
  253.                 node->state = cur_node->state;\
  254.                 UPDATE;\
  255.                 c->paths[index][node->path].value = VALUE;\
  256.                 c->paths[index][node->path].prev = cur_node->path;\
  257.                 /* Sift the newly inserted node up in the heap to restore \
  258.                  * the heap property */\
  259.                 while (pos > 0) {\
  260.                     int parent = (pos - 1) >> 1;\
  261.                     if (nodes_next[index][parent]->ssd <= ssd)\
  262.                         break;\
  263.                     FFSWAP(struct TrellisNode*, nodes_next[index][parent],\
  264.                                                 nodes_next[index][pos]);\
  265.                     pos = parent;\
  266.                 }
  267.                 STORE_NODE(0, ff_g722_update_low_predictor(&node->state, k >> 2), k);
  268.             }
  269.         }
  270.  
  271.         for (j = 0; j < frontier && nodes[1][j]; j++) {
  272.             int ihigh;
  273.             struct TrellisNode *cur_node = nodes[1][j];
  274.  
  275.             /* We don't try to get any initial guess for ihigh via
  276.              * encode_high - since there's only 4 possible values, test
  277.              * them all. Testing all of these gives a much, much larger
  278.              * gain than testing a larger range around ilow. */
  279.             for (ihigh = 0; ihigh < 4; ihigh++) {
  280.                 int dhigh, decoded, dec_diff, pos;
  281.                 uint32_t ssd;
  282.                 struct TrellisNode* node;
  283.  
  284.                 dhigh = cur_node->state.scale_factor *
  285.                         ff_g722_high_inv_quant[ihigh] >> 10;
  286.                 decoded = av_clip(dhigh + cur_node->state.s_predictor,
  287.                                   -16384, 16383);
  288.                 dec_diff = xhigh - decoded;
  289.  
  290.                 STORE_NODE(1, ff_g722_update_high_predictor(&node->state, dhigh, ihigh), ihigh);
  291.             }
  292.         }
  293.  
  294.         for (j = 0; j < 2; j++) {
  295.             FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]);
  296.  
  297.             if (nodes[j][0]->ssd > (1 << 16)) {
  298.                 for (k = 1; k < frontier && nodes[j][k]; k++)
  299.                     nodes[j][k]->ssd -= nodes[j][0]->ssd;
  300.                 nodes[j][0]->ssd = 0;
  301.             }
  302.         }
  303.  
  304.         if (i == froze + FREEZE_INTERVAL) {
  305.             p[0] = &c->paths[0][nodes[0][0]->path];
  306.             p[1] = &c->paths[1][nodes[1][0]->path];
  307.             for (j = i; j > froze; j--) {
  308.                 dst[j] = p[1]->value << 6 | p[0]->value;
  309.                 p[0] = &c->paths[0][p[0]->prev];
  310.                 p[1] = &c->paths[1][p[1]->prev];
  311.             }
  312.             froze = i;
  313.             pathn[0] = pathn[1] = 0;
  314.             memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes));
  315.             memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes));
  316.         }
  317.     }
  318.  
  319.     p[0] = &c->paths[0][nodes[0][0]->path];
  320.     p[1] = &c->paths[1][nodes[1][0]->path];
  321.     for (j = i; j > froze; j--) {
  322.         dst[j] = p[1]->value << 6 | p[0]->value;
  323.         p[0] = &c->paths[0][p[0]->prev];
  324.         p[1] = &c->paths[1][p[1]->prev];
  325.     }
  326.     c->band[0] = nodes[0][0]->state;
  327.     c->band[1] = nodes[1][0]->state;
  328. }
  329.  
  330. static av_always_inline void encode_byte(G722Context *c, uint8_t *dst,
  331.                                          const int16_t *samples)
  332. {
  333.     int xlow, xhigh, ilow, ihigh;
  334.     filter_samples(c, samples, &xlow, &xhigh);
  335.     ihigh = encode_high(&c->band[1], xhigh);
  336.     ilow  = encode_low (&c->band[0], xlow);
  337.     ff_g722_update_high_predictor(&c->band[1], c->band[1].scale_factor *
  338.                                 ff_g722_high_inv_quant[ihigh] >> 10, ihigh);
  339.     ff_g722_update_low_predictor(&c->band[0], ilow >> 2);
  340.     *dst = ihigh << 6 | ilow;
  341. }
  342.  
  343. static void g722_encode_no_trellis(G722Context *c,
  344.                                    uint8_t *dst, int nb_samples,
  345.                                    const int16_t *samples)
  346. {
  347.     int i;
  348.     for (i = 0; i < nb_samples; i += 2)
  349.         encode_byte(c, dst++, &samples[i]);
  350. }
  351.  
  352. static int g722_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  353.                              const AVFrame *frame, int *got_packet_ptr)
  354. {
  355.     G722Context *c = avctx->priv_data;
  356.     const int16_t *samples = (const int16_t *)frame->data[0];
  357.     int nb_samples, out_size, ret;
  358.  
  359.     out_size = (frame->nb_samples + 1) / 2;
  360.     if ((ret = ff_alloc_packet2(avctx, avpkt, out_size)) < 0)
  361.         return ret;
  362.  
  363.     nb_samples = frame->nb_samples - (frame->nb_samples & 1);
  364.  
  365.     if (avctx->trellis)
  366.         g722_encode_trellis(c, avctx->trellis, avpkt->data, nb_samples, samples);
  367.     else
  368.         g722_encode_no_trellis(c, avpkt->data, nb_samples, samples);
  369.  
  370.     /* handle last frame with odd frame_size */
  371.     if (nb_samples < frame->nb_samples) {
  372.         int16_t last_samples[2] = { samples[nb_samples], samples[nb_samples] };
  373.         encode_byte(c, &avpkt->data[nb_samples >> 1], last_samples);
  374.     }
  375.  
  376.     if (frame->pts != AV_NOPTS_VALUE)
  377.         avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
  378.     *got_packet_ptr = 1;
  379.     return 0;
  380. }
  381.  
  382. AVCodec ff_adpcm_g722_encoder = {
  383.     .name           = "g722",
  384.     .long_name      = NULL_IF_CONFIG_SMALL("G.722 ADPCM"),
  385.     .type           = AVMEDIA_TYPE_AUDIO,
  386.     .id             = AV_CODEC_ID_ADPCM_G722,
  387.     .priv_data_size = sizeof(G722Context),
  388.     .init           = g722_encode_init,
  389.     .close          = g722_encode_close,
  390.     .encode2        = g722_encode_frame,
  391.     .capabilities   = CODEC_CAP_SMALL_LAST_FRAME,
  392.     .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
  393.                                                      AV_SAMPLE_FMT_NONE },
  394. };
  395.