Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * COOK compatible decoder
  3.  * Copyright (c) 2003 Sascha Sommer
  4.  * Copyright (c) 2005 Benjamin Larsson
  5.  *
  6.  * This file is part of FFmpeg.
  7.  *
  8.  * FFmpeg is free software; you can redistribute it and/or
  9.  * modify it under the terms of the GNU Lesser General Public
  10.  * License as published by the Free Software Foundation; either
  11.  * version 2.1 of the License, or (at your option) any later version.
  12.  *
  13.  * FFmpeg is distributed in the hope that it will be useful,
  14.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16.  * Lesser General Public License for more details.
  17.  *
  18.  * You should have received a copy of the GNU Lesser General Public
  19.  * License along with FFmpeg; if not, write to the Free Software
  20.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21.  */
  22.  
  23. /**
  24.  * @file
  25.  * Cook compatible decoder. Bastardization of the G.722.1 standard.
  26.  * This decoder handles RealNetworks, RealAudio G2 data.
  27.  * Cook is identified by the codec name cook in RM files.
  28.  *
  29.  * To use this decoder, a calling application must supply the extradata
  30.  * bytes provided from the RM container; 8+ bytes for mono streams and
  31.  * 16+ for stereo streams (maybe more).
  32.  *
  33.  * Codec technicalities (all this assume a buffer length of 1024):
  34.  * Cook works with several different techniques to achieve its compression.
  35.  * In the timedomain the buffer is divided into 8 pieces and quantized. If
  36.  * two neighboring pieces have different quantization index a smooth
  37.  * quantization curve is used to get a smooth overlap between the different
  38.  * pieces.
  39.  * To get to the transformdomain Cook uses a modulated lapped transform.
  40.  * The transform domain has 50 subbands with 20 elements each. This
  41.  * means only a maximum of 50*20=1000 coefficients are used out of the 1024
  42.  * available.
  43.  */
  44.  
  45. #include "libavutil/channel_layout.h"
  46. #include "libavutil/lfg.h"
  47. #include "avcodec.h"
  48. #include "get_bits.h"
  49. #include "dsputil.h"
  50. #include "bytestream.h"
  51. #include "fft.h"
  52. #include "internal.h"
  53. #include "sinewin.h"
  54.  
  55. #include "cookdata.h"
  56.  
  57. /* the different Cook versions */
  58. #define MONO            0x1000001
  59. #define STEREO          0x1000002
  60. #define JOINT_STEREO    0x1000003
  61. #define MC_COOK         0x2000000   // multichannel Cook, not supported
  62.  
  63. #define SUBBAND_SIZE    20
  64. #define MAX_SUBPACKETS   5
  65.  
  66. typedef struct {
  67.     int *now;
  68.     int *previous;
  69. } cook_gains;
  70.  
  71. typedef struct {
  72.     int                 ch_idx;
  73.     int                 size;
  74.     int                 num_channels;
  75.     int                 cookversion;
  76.     int                 subbands;
  77.     int                 js_subband_start;
  78.     int                 js_vlc_bits;
  79.     int                 samples_per_channel;
  80.     int                 log2_numvector_size;
  81.     unsigned int        channel_mask;
  82.     VLC                 channel_coupling;
  83.     int                 joint_stereo;
  84.     int                 bits_per_subpacket;
  85.     int                 bits_per_subpdiv;
  86.     int                 total_subbands;
  87.     int                 numvector_size;       // 1 << log2_numvector_size;
  88.  
  89.     float               mono_previous_buffer1[1024];
  90.     float               mono_previous_buffer2[1024];
  91.  
  92.     cook_gains          gains1;
  93.     cook_gains          gains2;
  94.     int                 gain_1[9];
  95.     int                 gain_2[9];
  96.     int                 gain_3[9];
  97.     int                 gain_4[9];
  98. } COOKSubpacket;
  99.  
  100. typedef struct cook {
  101.     /*
  102.      * The following 5 functions provide the lowlevel arithmetic on
  103.      * the internal audio buffers.
  104.      */
  105.     void (*scalar_dequant)(struct cook *q, int index, int quant_index,
  106.                            int *subband_coef_index, int *subband_coef_sign,
  107.                            float *mlt_p);
  108.  
  109.     void (*decouple)(struct cook *q,
  110.                      COOKSubpacket *p,
  111.                      int subband,
  112.                      float f1, float f2,
  113.                      float *decode_buffer,
  114.                      float *mlt_buffer1, float *mlt_buffer2);
  115.  
  116.     void (*imlt_window)(struct cook *q, float *buffer1,
  117.                         cook_gains *gains_ptr, float *previous_buffer);
  118.  
  119.     void (*interpolate)(struct cook *q, float *buffer,
  120.                         int gain_index, int gain_index_next);
  121.  
  122.     void (*saturate_output)(struct cook *q, float *out);
  123.  
  124.     AVCodecContext*     avctx;
  125.     DSPContext          dsp;
  126.     GetBitContext       gb;
  127.     /* stream data */
  128.     int                 num_vectors;
  129.     int                 samples_per_channel;
  130.     /* states */
  131.     AVLFG               random_state;
  132.     int                 discarded_packets;
  133.  
  134.     /* transform data */
  135.     FFTContext          mdct_ctx;
  136.     float*              mlt_window;
  137.  
  138.     /* VLC data */
  139.     VLC                 envelope_quant_index[13];
  140.     VLC                 sqvh[7];          // scalar quantization
  141.  
  142.     /* generatable tables and related variables */
  143.     int                 gain_size_factor;
  144.     float               gain_table[23];
  145.  
  146.     /* data buffers */
  147.  
  148.     uint8_t*            decoded_bytes_buffer;
  149.     DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
  150.     float               decode_buffer_1[1024];
  151.     float               decode_buffer_2[1024];
  152.     float               decode_buffer_0[1060]; /* static allocation for joint decode */
  153.  
  154.     const float         *cplscales[5];
  155.     int                 num_subpackets;
  156.     COOKSubpacket       subpacket[MAX_SUBPACKETS];
  157. } COOKContext;
  158.  
  159. static float     pow2tab[127];
  160. static float rootpow2tab[127];
  161.  
  162. /*************** init functions ***************/
  163.  
  164. /* table generator */
  165. static av_cold void init_pow2table(void)
  166. {
  167.     int i;
  168.     for (i = -63; i < 64; i++) {
  169.         pow2tab[63 + i] = pow(2, i);
  170.         rootpow2tab[63 + i] = sqrt(pow(2, i));
  171.     }
  172. }
  173.  
  174. /* table generator */
  175. static av_cold void init_gain_table(COOKContext *q)
  176. {
  177.     int i;
  178.     q->gain_size_factor = q->samples_per_channel / 8;
  179.     for (i = 0; i < 23; i++)
  180.         q->gain_table[i] = pow(pow2tab[i + 52],
  181.                                (1.0 / (double) q->gain_size_factor));
  182. }
  183.  
  184.  
  185. static av_cold int init_cook_vlc_tables(COOKContext *q)
  186. {
  187.     int i, result;
  188.  
  189.     result = 0;
  190.     for (i = 0; i < 13; i++) {
  191.         result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
  192.                            envelope_quant_index_huffbits[i], 1, 1,
  193.                            envelope_quant_index_huffcodes[i], 2, 2, 0);
  194.     }
  195.     av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
  196.     for (i = 0; i < 7; i++) {
  197.         result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
  198.                            cvh_huffbits[i], 1, 1,
  199.                            cvh_huffcodes[i], 2, 2, 0);
  200.     }
  201.  
  202.     for (i = 0; i < q->num_subpackets; i++) {
  203.         if (q->subpacket[i].joint_stereo == 1) {
  204.             result |= init_vlc(&q->subpacket[i].channel_coupling, 6,
  205.                                (1 << q->subpacket[i].js_vlc_bits) - 1,
  206.                                ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
  207.                                ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
  208.             av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
  209.         }
  210.     }
  211.  
  212.     av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
  213.     return result;
  214. }
  215.  
  216. static av_cold int init_cook_mlt(COOKContext *q)
  217. {
  218.     int j, ret;
  219.     int mlt_size = q->samples_per_channel;
  220.  
  221.     if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
  222.         return AVERROR(ENOMEM);
  223.  
  224.     /* Initialize the MLT window: simple sine window. */
  225.     ff_sine_window_init(q->mlt_window, mlt_size);
  226.     for (j = 0; j < mlt_size; j++)
  227.         q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
  228.  
  229.     /* Initialize the MDCT. */
  230.     if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
  231.         av_free(q->mlt_window);
  232.         return ret;
  233.     }
  234.     av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
  235.            av_log2(mlt_size) + 1);
  236.  
  237.     return 0;
  238. }
  239.  
  240. static av_cold void init_cplscales_table(COOKContext *q)
  241. {
  242.     int i;
  243.     for (i = 0; i < 5; i++)
  244.         q->cplscales[i] = cplscales[i];
  245. }
  246.  
  247. /*************** init functions end ***********/
  248.  
  249. #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
  250. #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
  251.  
  252. /**
  253.  * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
  254.  * Why? No idea, some checksum/error detection method maybe.
  255.  *
  256.  * Out buffer size: extra bytes are needed to cope with
  257.  * padding/misalignment.
  258.  * Subpackets passed to the decoder can contain two, consecutive
  259.  * half-subpackets, of identical but arbitrary size.
  260.  *          1234 1234 1234 1234  extraA extraB
  261.  * Case 1:  AAAA BBBB              0      0
  262.  * Case 2:  AAAA ABBB BB--         3      3
  263.  * Case 3:  AAAA AABB BBBB         2      2
  264.  * Case 4:  AAAA AAAB BBBB BB--    1      5
  265.  *
  266.  * Nice way to waste CPU cycles.
  267.  *
  268.  * @param inbuffer  pointer to byte array of indata
  269.  * @param out       pointer to byte array of outdata
  270.  * @param bytes     number of bytes
  271.  */
  272. static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
  273. {
  274.     static const uint32_t tab[4] = {
  275.         AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
  276.         AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
  277.     };
  278.     int i, off;
  279.     uint32_t c;
  280.     const uint32_t *buf;
  281.     uint32_t *obuf = (uint32_t *) out;
  282.     /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
  283.      * I'm too lazy though, should be something like
  284.      * for (i = 0; i < bitamount / 64; i++)
  285.      *     (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
  286.      * Buffer alignment needs to be checked. */
  287.  
  288.     off = (intptr_t) inbuffer & 3;
  289.     buf = (const uint32_t *) (inbuffer - off);
  290.     c = tab[off];
  291.     bytes += 3 + off;
  292.     for (i = 0; i < bytes / 4; i++)
  293.         obuf[i] = c ^ buf[i];
  294.  
  295.     return off;
  296. }
  297.  
  298. static av_cold int cook_decode_close(AVCodecContext *avctx)
  299. {
  300.     int i;
  301.     COOKContext *q = avctx->priv_data;
  302.     av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
  303.  
  304.     /* Free allocated memory buffers. */
  305.     av_free(q->mlt_window);
  306.     av_free(q->decoded_bytes_buffer);
  307.  
  308.     /* Free the transform. */
  309.     ff_mdct_end(&q->mdct_ctx);
  310.  
  311.     /* Free the VLC tables. */
  312.     for (i = 0; i < 13; i++)
  313.         ff_free_vlc(&q->envelope_quant_index[i]);
  314.     for (i = 0; i < 7; i++)
  315.         ff_free_vlc(&q->sqvh[i]);
  316.     for (i = 0; i < q->num_subpackets; i++)
  317.         ff_free_vlc(&q->subpacket[i].channel_coupling);
  318.  
  319.     av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
  320.  
  321.     return 0;
  322. }
  323.  
  324. /**
  325.  * Fill the gain array for the timedomain quantization.
  326.  *
  327.  * @param gb          pointer to the GetBitContext
  328.  * @param gaininfo    array[9] of gain indexes
  329.  */
  330. static void decode_gain_info(GetBitContext *gb, int *gaininfo)
  331. {
  332.     int i, n;
  333.  
  334.     while (get_bits1(gb)) {
  335.         /* NOTHING */
  336.     }
  337.  
  338.     n = get_bits_count(gb) - 1;     // amount of elements*2 to update
  339.  
  340.     i = 0;
  341.     while (n--) {
  342.         int index = get_bits(gb, 3);
  343.         int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
  344.  
  345.         while (i <= index)
  346.             gaininfo[i++] = gain;
  347.     }
  348.     while (i <= 8)
  349.         gaininfo[i++] = 0;
  350. }
  351.  
  352. /**
  353.  * Create the quant index table needed for the envelope.
  354.  *
  355.  * @param q                 pointer to the COOKContext
  356.  * @param quant_index_table pointer to the array
  357.  */
  358. static int decode_envelope(COOKContext *q, COOKSubpacket *p,
  359.                            int *quant_index_table)
  360. {
  361.     int i, j, vlc_index;
  362.  
  363.     quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
  364.  
  365.     for (i = 1; i < p->total_subbands; i++) {
  366.         vlc_index = i;
  367.         if (i >= p->js_subband_start * 2) {
  368.             vlc_index -= p->js_subband_start;
  369.         } else {
  370.             vlc_index /= 2;
  371.             if (vlc_index < 1)
  372.                 vlc_index = 1;
  373.         }
  374.         if (vlc_index > 13)
  375.             vlc_index = 13; // the VLC tables >13 are identical to No. 13
  376.  
  377.         j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
  378.                      q->envelope_quant_index[vlc_index - 1].bits, 2);
  379.         quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
  380.         if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
  381.             av_log(q->avctx, AV_LOG_ERROR,
  382.                    "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
  383.                    quant_index_table[i], i);
  384.             return AVERROR_INVALIDDATA;
  385.         }
  386.     }
  387.  
  388.     return 0;
  389. }
  390.  
  391. /**
  392.  * Calculate the category and category_index vector.
  393.  *
  394.  * @param q                     pointer to the COOKContext
  395.  * @param quant_index_table     pointer to the array
  396.  * @param category              pointer to the category array
  397.  * @param category_index        pointer to the category_index array
  398.  */
  399. static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table,
  400.                        int *category, int *category_index)
  401. {
  402.     int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
  403.     int exp_index2[102] = { 0 };
  404.     int exp_index1[102] = { 0 };
  405.  
  406.     int tmp_categorize_array[128 * 2] = { 0 };
  407.     int tmp_categorize_array1_idx = p->numvector_size;
  408.     int tmp_categorize_array2_idx = p->numvector_size;
  409.  
  410.     bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
  411.  
  412.     if (bits_left > q->samples_per_channel)
  413.         bits_left = q->samples_per_channel +
  414.                     ((bits_left - q->samples_per_channel) * 5) / 8;
  415.  
  416.     bias = -32;
  417.  
  418.     /* Estimate bias. */
  419.     for (i = 32; i > 0; i = i / 2) {
  420.         num_bits = 0;
  421.         index    = 0;
  422.         for (j = p->total_subbands; j > 0; j--) {
  423.             exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
  424.             index++;
  425.             num_bits += expbits_tab[exp_idx];
  426.         }
  427.         if (num_bits >= bits_left - 32)
  428.             bias += i;
  429.     }
  430.  
  431.     /* Calculate total number of bits. */
  432.     num_bits = 0;
  433.     for (i = 0; i < p->total_subbands; i++) {
  434.         exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
  435.         num_bits += expbits_tab[exp_idx];
  436.         exp_index1[i] = exp_idx;
  437.         exp_index2[i] = exp_idx;
  438.     }
  439.     tmpbias1 = tmpbias2 = num_bits;
  440.  
  441.     for (j = 1; j < p->numvector_size; j++) {
  442.         if (tmpbias1 + tmpbias2 > 2 * bits_left) {  /* ---> */
  443.             int max = -999999;
  444.             index = -1;
  445.             for (i = 0; i < p->total_subbands; i++) {
  446.                 if (exp_index1[i] < 7) {
  447.                     v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
  448.                     if (v >= max) {
  449.                         max   = v;
  450.                         index = i;
  451.                     }
  452.                 }
  453.             }
  454.             if (index == -1)
  455.                 break;
  456.             tmp_categorize_array[tmp_categorize_array1_idx++] = index;
  457.             tmpbias1 -= expbits_tab[exp_index1[index]] -
  458.                         expbits_tab[exp_index1[index] + 1];
  459.             ++exp_index1[index];
  460.         } else {  /* <--- */
  461.             int min = 999999;
  462.             index = -1;
  463.             for (i = 0; i < p->total_subbands; i++) {
  464.                 if (exp_index2[i] > 0) {
  465.                     v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
  466.                     if (v < min) {
  467.                         min   = v;
  468.                         index = i;
  469.                     }
  470.                 }
  471.             }
  472.             if (index == -1)
  473.                 break;
  474.             tmp_categorize_array[--tmp_categorize_array2_idx] = index;
  475.             tmpbias2 -= expbits_tab[exp_index2[index]] -
  476.                         expbits_tab[exp_index2[index] - 1];
  477.             --exp_index2[index];
  478.         }
  479.     }
  480.  
  481.     for (i = 0; i < p->total_subbands; i++)
  482.         category[i] = exp_index2[i];
  483.  
  484.     for (i = 0; i < p->numvector_size - 1; i++)
  485.         category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
  486. }
  487.  
  488.  
  489. /**
  490.  * Expand the category vector.
  491.  *
  492.  * @param q                     pointer to the COOKContext
  493.  * @param category              pointer to the category array
  494.  * @param category_index        pointer to the category_index array
  495.  */
  496. static inline void expand_category(COOKContext *q, int *category,
  497.                                    int *category_index)
  498. {
  499.     int i;
  500.     for (i = 0; i < q->num_vectors; i++)
  501.     {
  502.         int idx = category_index[i];
  503.         if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
  504.             --category[idx];
  505.     }
  506. }
  507.  
  508. /**
  509.  * The real requantization of the mltcoefs
  510.  *
  511.  * @param q                     pointer to the COOKContext
  512.  * @param index                 index
  513.  * @param quant_index           quantisation index
  514.  * @param subband_coef_index    array of indexes to quant_centroid_tab
  515.  * @param subband_coef_sign     signs of coefficients
  516.  * @param mlt_p                 pointer into the mlt buffer
  517.  */
  518. static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
  519.                                  int *subband_coef_index, int *subband_coef_sign,
  520.                                  float *mlt_p)
  521. {
  522.     int i;
  523.     float f1;
  524.  
  525.     for (i = 0; i < SUBBAND_SIZE; i++) {
  526.         if (subband_coef_index[i]) {
  527.             f1 = quant_centroid_tab[index][subband_coef_index[i]];
  528.             if (subband_coef_sign[i])
  529.                 f1 = -f1;
  530.         } else {
  531.             /* noise coding if subband_coef_index[i] == 0 */
  532.             f1 = dither_tab[index];
  533.             if (av_lfg_get(&q->random_state) < 0x80000000)
  534.                 f1 = -f1;
  535.         }
  536.         mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
  537.     }
  538. }
  539. /**
  540.  * Unpack the subband_coef_index and subband_coef_sign vectors.
  541.  *
  542.  * @param q                     pointer to the COOKContext
  543.  * @param category              pointer to the category array
  544.  * @param subband_coef_index    array of indexes to quant_centroid_tab
  545.  * @param subband_coef_sign     signs of coefficients
  546.  */
  547. static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
  548.                        int *subband_coef_index, int *subband_coef_sign)
  549. {
  550.     int i, j;
  551.     int vlc, vd, tmp, result;
  552.  
  553.     vd = vd_tab[category];
  554.     result = 0;
  555.     for (i = 0; i < vpr_tab[category]; i++) {
  556.         vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
  557.         if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
  558.             vlc = 0;
  559.             result = 1;
  560.         }
  561.         for (j = vd - 1; j >= 0; j--) {
  562.             tmp = (vlc * invradix_tab[category]) / 0x100000;
  563.             subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
  564.             vlc = tmp;
  565.         }
  566.         for (j = 0; j < vd; j++) {
  567.             if (subband_coef_index[i * vd + j]) {
  568.                 if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
  569.                     subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
  570.                 } else {
  571.                     result = 1;
  572.                     subband_coef_sign[i * vd + j] = 0;
  573.                 }
  574.             } else {
  575.                 subband_coef_sign[i * vd + j] = 0;
  576.             }
  577.         }
  578.     }
  579.     return result;
  580. }
  581.  
  582.  
  583. /**
  584.  * Fill the mlt_buffer with mlt coefficients.
  585.  *
  586.  * @param q                 pointer to the COOKContext
  587.  * @param category          pointer to the category array
  588.  * @param quant_index_table pointer to the array
  589.  * @param mlt_buffer        pointer to mlt coefficients
  590.  */
  591. static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
  592.                            int *quant_index_table, float *mlt_buffer)
  593. {
  594.     /* A zero in this table means that the subband coefficient is
  595.        random noise coded. */
  596.     int subband_coef_index[SUBBAND_SIZE];
  597.     /* A zero in this table means that the subband coefficient is a
  598.        positive multiplicator. */
  599.     int subband_coef_sign[SUBBAND_SIZE];
  600.     int band, j;
  601.     int index = 0;
  602.  
  603.     for (band = 0; band < p->total_subbands; band++) {
  604.         index = category[band];
  605.         if (category[band] < 7) {
  606.             if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
  607.                 index = 7;
  608.                 for (j = 0; j < p->total_subbands; j++)
  609.                     category[band + j] = 7;
  610.             }
  611.         }
  612.         if (index >= 7) {
  613.             memset(subband_coef_index, 0, sizeof(subband_coef_index));
  614.             memset(subband_coef_sign,  0, sizeof(subband_coef_sign));
  615.         }
  616.         q->scalar_dequant(q, index, quant_index_table[band],
  617.                           subband_coef_index, subband_coef_sign,
  618.                           &mlt_buffer[band * SUBBAND_SIZE]);
  619.     }
  620.  
  621.     /* FIXME: should this be removed, or moved into loop above? */
  622.     if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
  623.         return;
  624. }
  625.  
  626.  
  627. static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
  628. {
  629.     int category_index[128] = { 0 };
  630.     int category[128]       = { 0 };
  631.     int quant_index_table[102];
  632.     int res, i;
  633.  
  634.     if ((res = decode_envelope(q, p, quant_index_table)) < 0)
  635.         return res;
  636.     q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
  637.     categorize(q, p, quant_index_table, category, category_index);
  638.     expand_category(q, category, category_index);
  639.     for (i=0; i<p->total_subbands; i++) {
  640.         if (category[i] > 7)
  641.             return AVERROR_INVALIDDATA;
  642.     }
  643.     decode_vectors(q, p, category, quant_index_table, mlt_buffer);
  644.  
  645.     return 0;
  646. }
  647.  
  648.  
  649. /**
  650.  * the actual requantization of the timedomain samples
  651.  *
  652.  * @param q                 pointer to the COOKContext
  653.  * @param buffer            pointer to the timedomain buffer
  654.  * @param gain_index        index for the block multiplier
  655.  * @param gain_index_next   index for the next block multiplier
  656.  */
  657. static void interpolate_float(COOKContext *q, float *buffer,
  658.                               int gain_index, int gain_index_next)
  659. {
  660.     int i;
  661.     float fc1, fc2;
  662.     fc1 = pow2tab[gain_index + 63];
  663.  
  664.     if (gain_index == gain_index_next) {             // static gain
  665.         for (i = 0; i < q->gain_size_factor; i++)
  666.             buffer[i] *= fc1;
  667.     } else {                                        // smooth gain
  668.         fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
  669.         for (i = 0; i < q->gain_size_factor; i++) {
  670.             buffer[i] *= fc1;
  671.             fc1       *= fc2;
  672.         }
  673.     }
  674. }
  675.  
  676. /**
  677.  * Apply transform window, overlap buffers.
  678.  *
  679.  * @param q                 pointer to the COOKContext
  680.  * @param inbuffer          pointer to the mltcoefficients
  681.  * @param gains_ptr         current and previous gains
  682.  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
  683.  */
  684. static void imlt_window_float(COOKContext *q, float *inbuffer,
  685.                               cook_gains *gains_ptr, float *previous_buffer)
  686. {
  687.     const float fc = pow2tab[gains_ptr->previous[0] + 63];
  688.     int i;
  689.     /* The weird thing here, is that the two halves of the time domain
  690.      * buffer are swapped. Also, the newest data, that we save away for
  691.      * next frame, has the wrong sign. Hence the subtraction below.
  692.      * Almost sounds like a complex conjugate/reverse data/FFT effect.
  693.      */
  694.  
  695.     /* Apply window and overlap */
  696.     for (i = 0; i < q->samples_per_channel; i++)
  697.         inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
  698.                       previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
  699. }
  700.  
  701. /**
  702.  * The modulated lapped transform, this takes transform coefficients
  703.  * and transforms them into timedomain samples.
  704.  * Apply transform window, overlap buffers, apply gain profile
  705.  * and buffer management.
  706.  *
  707.  * @param q                 pointer to the COOKContext
  708.  * @param inbuffer          pointer to the mltcoefficients
  709.  * @param gains_ptr         current and previous gains
  710.  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
  711.  */
  712. static void imlt_gain(COOKContext *q, float *inbuffer,
  713.                       cook_gains *gains_ptr, float *previous_buffer)
  714. {
  715.     float *buffer0 = q->mono_mdct_output;
  716.     float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
  717.     int i;
  718.  
  719.     /* Inverse modified discrete cosine transform */
  720.     q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
  721.  
  722.     q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
  723.  
  724.     /* Apply gain profile */
  725.     for (i = 0; i < 8; i++)
  726.         if (gains_ptr->now[i] || gains_ptr->now[i + 1])
  727.             q->interpolate(q, &buffer1[q->gain_size_factor * i],
  728.                            gains_ptr->now[i], gains_ptr->now[i + 1]);
  729.  
  730.     /* Save away the current to be previous block. */
  731.     memcpy(previous_buffer, buffer0,
  732.            q->samples_per_channel * sizeof(*previous_buffer));
  733. }
  734.  
  735.  
  736. /**
  737.  * function for getting the jointstereo coupling information
  738.  *
  739.  * @param q                 pointer to the COOKContext
  740.  * @param decouple_tab      decoupling array
  741.  */
  742. static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
  743. {
  744.     int i;
  745.     int vlc    = get_bits1(&q->gb);
  746.     int start  = cplband[p->js_subband_start];
  747.     int end    = cplband[p->subbands - 1];
  748.     int length = end - start + 1;
  749.  
  750.     if (start > end)
  751.         return 0;
  752.  
  753.     if (vlc)
  754.         for (i = 0; i < length; i++)
  755.             decouple_tab[start + i] = get_vlc2(&q->gb,
  756.                                                p->channel_coupling.table,
  757.                                                p->channel_coupling.bits, 2);
  758.     else
  759.         for (i = 0; i < length; i++) {
  760.             int v = get_bits(&q->gb, p->js_vlc_bits);
  761.             if (v == (1<<p->js_vlc_bits)-1) {
  762.                 av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n");
  763.                 return AVERROR_INVALIDDATA;
  764.             }
  765.             decouple_tab[start + i] = v;
  766.         }
  767.     return 0;
  768. }
  769.  
  770. /**
  771.  * function decouples a pair of signals from a single signal via multiplication.
  772.  *
  773.  * @param q                 pointer to the COOKContext
  774.  * @param subband           index of the current subband
  775.  * @param f1                multiplier for channel 1 extraction
  776.  * @param f2                multiplier for channel 2 extraction
  777.  * @param decode_buffer     input buffer
  778.  * @param mlt_buffer1       pointer to left channel mlt coefficients
  779.  * @param mlt_buffer2       pointer to right channel mlt coefficients
  780.  */
  781. static void decouple_float(COOKContext *q,
  782.                            COOKSubpacket *p,
  783.                            int subband,
  784.                            float f1, float f2,
  785.                            float *decode_buffer,
  786.                            float *mlt_buffer1, float *mlt_buffer2)
  787. {
  788.     int j, tmp_idx;
  789.     for (j = 0; j < SUBBAND_SIZE; j++) {
  790.         tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
  791.         mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
  792.         mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
  793.     }
  794. }
  795.  
  796. /**
  797.  * function for decoding joint stereo data
  798.  *
  799.  * @param q                 pointer to the COOKContext
  800.  * @param mlt_buffer1       pointer to left channel mlt coefficients
  801.  * @param mlt_buffer2       pointer to right channel mlt coefficients
  802.  */
  803. static int joint_decode(COOKContext *q, COOKSubpacket *p,
  804.                         float *mlt_buffer_left, float *mlt_buffer_right)
  805. {
  806.     int i, j, res;
  807.     int decouple_tab[SUBBAND_SIZE] = { 0 };
  808.     float *decode_buffer = q->decode_buffer_0;
  809.     int idx, cpl_tmp;
  810.     float f1, f2;
  811.     const float *cplscale;
  812.  
  813.     memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
  814.  
  815.     /* Make sure the buffers are zeroed out. */
  816.     memset(mlt_buffer_left,  0, 1024 * sizeof(*mlt_buffer_left));
  817.     memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right));
  818.     if ((res = decouple_info(q, p, decouple_tab)) < 0)
  819.         return res;
  820.     if ((res = mono_decode(q, p, decode_buffer)) < 0)
  821.         return res;
  822.     /* The two channels are stored interleaved in decode_buffer. */
  823.     for (i = 0; i < p->js_subband_start; i++) {
  824.         for (j = 0; j < SUBBAND_SIZE; j++) {
  825.             mlt_buffer_left[i  * 20 + j] = decode_buffer[i * 40 + j];
  826.             mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
  827.         }
  828.     }
  829.  
  830.     /* When we reach js_subband_start (the higher frequencies)
  831.        the coefficients are stored in a coupling scheme. */
  832.     idx = (1 << p->js_vlc_bits) - 1;
  833.     for (i = p->js_subband_start; i < p->subbands; i++) {
  834.         cpl_tmp = cplband[i];
  835.         idx -= decouple_tab[cpl_tmp];
  836.         cplscale = q->cplscales[p->js_vlc_bits - 2];  // choose decoupler table
  837.         f1 = cplscale[decouple_tab[cpl_tmp] + 1];
  838.         f2 = cplscale[idx];
  839.         q->decouple(q, p, i, f1, f2, decode_buffer,
  840.                     mlt_buffer_left, mlt_buffer_right);
  841.         idx = (1 << p->js_vlc_bits) - 1;
  842.     }
  843.  
  844.     return 0;
  845. }
  846.  
  847. /**
  848.  * First part of subpacket decoding:
  849.  *  decode raw stream bytes and read gain info.
  850.  *
  851.  * @param q                 pointer to the COOKContext
  852.  * @param inbuffer          pointer to raw stream data
  853.  * @param gains_ptr         array of current/prev gain pointers
  854.  */
  855. static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
  856.                                          const uint8_t *inbuffer,
  857.                                          cook_gains *gains_ptr)
  858. {
  859.     int offset;
  860.  
  861.     offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
  862.                           p->bits_per_subpacket / 8);
  863.     init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
  864.                   p->bits_per_subpacket);
  865.     decode_gain_info(&q->gb, gains_ptr->now);
  866.  
  867.     /* Swap current and previous gains */
  868.     FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
  869. }
  870.  
  871. /**
  872.  * Saturate the output signal and interleave.
  873.  *
  874.  * @param q                 pointer to the COOKContext
  875.  * @param out               pointer to the output vector
  876.  */
  877. static void saturate_output_float(COOKContext *q, float *out)
  878. {
  879.     q->dsp.vector_clipf(out, q->mono_mdct_output + q->samples_per_channel,
  880.                         -1.0f, 1.0f, FFALIGN(q->samples_per_channel, 8));
  881. }
  882.  
  883.  
  884. /**
  885.  * Final part of subpacket decoding:
  886.  *  Apply modulated lapped transform, gain compensation,
  887.  *  clip and convert to integer.
  888.  *
  889.  * @param q                 pointer to the COOKContext
  890.  * @param decode_buffer     pointer to the mlt coefficients
  891.  * @param gains_ptr         array of current/prev gain pointers
  892.  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
  893.  * @param out               pointer to the output buffer
  894.  */
  895. static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
  896.                                          cook_gains *gains_ptr, float *previous_buffer,
  897.                                          float *out)
  898. {
  899.     imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
  900.     if (out)
  901.         q->saturate_output(q, out);
  902. }
  903.  
  904.  
  905. /**
  906.  * Cook subpacket decoding. This function returns one decoded subpacket,
  907.  * usually 1024 samples per channel.
  908.  *
  909.  * @param q                 pointer to the COOKContext
  910.  * @param inbuffer          pointer to the inbuffer
  911.  * @param outbuffer         pointer to the outbuffer
  912.  */
  913. static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
  914.                             const uint8_t *inbuffer, float **outbuffer)
  915. {
  916.     int sub_packet_size = p->size;
  917.     int res;
  918.  
  919.     memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
  920.     decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
  921.  
  922.     if (p->joint_stereo) {
  923.         if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
  924.             return res;
  925.     } else {
  926.         if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
  927.             return res;
  928.  
  929.         if (p->num_channels == 2) {
  930.             decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
  931.             if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
  932.                 return res;
  933.         }
  934.     }
  935.  
  936.     mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
  937.                           p->mono_previous_buffer1,
  938.                           outbuffer ? outbuffer[p->ch_idx] : NULL);
  939.  
  940.     if (p->num_channels == 2) {
  941.         if (p->joint_stereo)
  942.             mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
  943.                                   p->mono_previous_buffer2,
  944.                                   outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
  945.         else
  946.             mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
  947.                                   p->mono_previous_buffer2,
  948.                                   outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
  949.     }
  950.  
  951.     return 0;
  952. }
  953.  
  954.  
  955. static int cook_decode_frame(AVCodecContext *avctx, void *data,
  956.                              int *got_frame_ptr, AVPacket *avpkt)
  957. {
  958.     AVFrame *frame     = data;
  959.     const uint8_t *buf = avpkt->data;
  960.     int buf_size = avpkt->size;
  961.     COOKContext *q = avctx->priv_data;
  962.     float **samples = NULL;
  963.     int i, ret;
  964.     int offset = 0;
  965.     int chidx = 0;
  966.  
  967.     if (buf_size < avctx->block_align)
  968.         return buf_size;
  969.  
  970.     /* get output buffer */
  971.     if (q->discarded_packets >= 2) {
  972.         frame->nb_samples = q->samples_per_channel;
  973.         if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  974.             return ret;
  975.         samples = (float **)frame->extended_data;
  976.     }
  977.  
  978.     /* estimate subpacket sizes */
  979.     q->subpacket[0].size = avctx->block_align;
  980.  
  981.     for (i = 1; i < q->num_subpackets; i++) {
  982.         q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
  983.         q->subpacket[0].size -= q->subpacket[i].size + 1;
  984.         if (q->subpacket[0].size < 0) {
  985.             av_log(avctx, AV_LOG_DEBUG,
  986.                    "frame subpacket size total > avctx->block_align!\n");
  987.             return AVERROR_INVALIDDATA;
  988.         }
  989.     }
  990.  
  991.     /* decode supbackets */
  992.     for (i = 0; i < q->num_subpackets; i++) {
  993.         q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
  994.                                               q->subpacket[i].bits_per_subpdiv;
  995.         q->subpacket[i].ch_idx = chidx;
  996.         av_log(avctx, AV_LOG_DEBUG,
  997.                "subpacket[%i] size %i js %i %i block_align %i\n",
  998.                i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
  999.                avctx->block_align);
  1000.  
  1001.         if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
  1002.             return ret;
  1003.         offset += q->subpacket[i].size;
  1004.         chidx += q->subpacket[i].num_channels;
  1005.         av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
  1006.                i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
  1007.     }
  1008.  
  1009.     /* Discard the first two frames: no valid audio. */
  1010.     if (q->discarded_packets < 2) {
  1011.         q->discarded_packets++;
  1012.         *got_frame_ptr = 0;
  1013.         return avctx->block_align;
  1014.     }
  1015.  
  1016.     *got_frame_ptr = 1;
  1017.  
  1018.     return avctx->block_align;
  1019. }
  1020.  
  1021. #ifdef DEBUG
  1022. static void dump_cook_context(COOKContext *q)
  1023. {
  1024.     //int i=0;
  1025. #define PRINT(a, b) av_dlog(q->avctx, " %s = %d\n", a, b);
  1026.     av_dlog(q->avctx, "COOKextradata\n");
  1027.     av_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion);
  1028.     if (q->subpacket[0].cookversion > STEREO) {
  1029.         PRINT("js_subband_start", q->subpacket[0].js_subband_start);
  1030.         PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
  1031.     }
  1032.     av_dlog(q->avctx, "COOKContext\n");
  1033.     PRINT("nb_channels", q->avctx->channels);
  1034.     PRINT("bit_rate", q->avctx->bit_rate);
  1035.     PRINT("sample_rate", q->avctx->sample_rate);
  1036.     PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
  1037.     PRINT("subbands", q->subpacket[0].subbands);
  1038.     PRINT("js_subband_start", q->subpacket[0].js_subband_start);
  1039.     PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
  1040.     PRINT("numvector_size", q->subpacket[0].numvector_size);
  1041.     PRINT("total_subbands", q->subpacket[0].total_subbands);
  1042. }
  1043. #endif
  1044.  
  1045. /**
  1046.  * Cook initialization
  1047.  *
  1048.  * @param avctx     pointer to the AVCodecContext
  1049.  */
  1050. static av_cold int cook_decode_init(AVCodecContext *avctx)
  1051. {
  1052.     COOKContext *q = avctx->priv_data;
  1053.     const uint8_t *edata_ptr = avctx->extradata;
  1054.     const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
  1055.     int extradata_size = avctx->extradata_size;
  1056.     int s = 0;
  1057.     unsigned int channel_mask = 0;
  1058.     int samples_per_frame = 0;
  1059.     int ret;
  1060.     q->avctx = avctx;
  1061.  
  1062.     /* Take care of the codec specific extradata. */
  1063.     if (extradata_size <= 0) {
  1064.         av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
  1065.         return AVERROR_INVALIDDATA;
  1066.     }
  1067.     av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
  1068.  
  1069.     /* Take data from the AVCodecContext (RM container). */
  1070.     if (!avctx->channels) {
  1071.         av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
  1072.         return AVERROR_INVALIDDATA;
  1073.     }
  1074.  
  1075.     /* Initialize RNG. */
  1076.     av_lfg_init(&q->random_state, 0);
  1077.  
  1078.     ff_dsputil_init(&q->dsp, avctx);
  1079.  
  1080.     while (edata_ptr < edata_ptr_end) {
  1081.         /* 8 for mono, 16 for stereo, ? for multichannel
  1082.            Swap to right endianness so we don't need to care later on. */
  1083.         if (extradata_size >= 8) {
  1084.             q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
  1085.             samples_per_frame           = bytestream_get_be16(&edata_ptr);
  1086.             q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
  1087.             extradata_size -= 8;
  1088.         }
  1089.         if (extradata_size >= 8) {
  1090.             bytestream_get_be32(&edata_ptr);    // Unknown unused
  1091.             q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
  1092.             if (q->subpacket[s].js_subband_start >= 51) {
  1093.                 av_log(avctx, AV_LOG_ERROR, "js_subband_start %d is too large\n", q->subpacket[s].js_subband_start);
  1094.                 return AVERROR_INVALIDDATA;
  1095.             }
  1096.  
  1097.             q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
  1098.             extradata_size -= 8;
  1099.         }
  1100.  
  1101.         /* Initialize extradata related variables. */
  1102.         q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels;
  1103.         q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
  1104.  
  1105.         /* Initialize default data states. */
  1106.         q->subpacket[s].log2_numvector_size = 5;
  1107.         q->subpacket[s].total_subbands = q->subpacket[s].subbands;
  1108.         q->subpacket[s].num_channels = 1;
  1109.  
  1110.         /* Initialize version-dependent variables */
  1111.  
  1112.         av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
  1113.                q->subpacket[s].cookversion);
  1114.         q->subpacket[s].joint_stereo = 0;
  1115.         switch (q->subpacket[s].cookversion) {
  1116.         case MONO:
  1117.             if (avctx->channels != 1) {
  1118.                 avpriv_request_sample(avctx, "Container channels != 1");
  1119.                 return AVERROR_PATCHWELCOME;
  1120.             }
  1121.             av_log(avctx, AV_LOG_DEBUG, "MONO\n");
  1122.             break;
  1123.         case STEREO:
  1124.             if (avctx->channels != 1) {
  1125.                 q->subpacket[s].bits_per_subpdiv = 1;
  1126.                 q->subpacket[s].num_channels = 2;
  1127.             }
  1128.             av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
  1129.             break;
  1130.         case JOINT_STEREO:
  1131.             if (avctx->channels != 2) {
  1132.                 avpriv_request_sample(avctx, "Container channels != 2");
  1133.                 return AVERROR_PATCHWELCOME;
  1134.             }
  1135.             av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
  1136.             if (avctx->extradata_size >= 16) {
  1137.                 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
  1138.                                                  q->subpacket[s].js_subband_start;
  1139.                 q->subpacket[s].joint_stereo = 1;
  1140.                 q->subpacket[s].num_channels = 2;
  1141.             }
  1142.             if (q->subpacket[s].samples_per_channel > 256) {
  1143.                 q->subpacket[s].log2_numvector_size = 6;
  1144.             }
  1145.             if (q->subpacket[s].samples_per_channel > 512) {
  1146.                 q->subpacket[s].log2_numvector_size = 7;
  1147.             }
  1148.             break;
  1149.         case MC_COOK:
  1150.             av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
  1151.             if (extradata_size >= 4)
  1152.                 channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
  1153.  
  1154.             if (av_get_channel_layout_nb_channels(q->subpacket[s].channel_mask) > 1) {
  1155.                 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
  1156.                                                  q->subpacket[s].js_subband_start;
  1157.                 q->subpacket[s].joint_stereo = 1;
  1158.                 q->subpacket[s].num_channels = 2;
  1159.                 q->subpacket[s].samples_per_channel = samples_per_frame >> 1;
  1160.  
  1161.                 if (q->subpacket[s].samples_per_channel > 256) {
  1162.                     q->subpacket[s].log2_numvector_size = 6;
  1163.                 }
  1164.                 if (q->subpacket[s].samples_per_channel > 512) {
  1165.                     q->subpacket[s].log2_numvector_size = 7;
  1166.                 }
  1167.             } else
  1168.                 q->subpacket[s].samples_per_channel = samples_per_frame;
  1169.  
  1170.             break;
  1171.         default:
  1172.             avpriv_request_sample(avctx, "Cook version %d",
  1173.                                   q->subpacket[s].cookversion);
  1174.             return AVERROR_PATCHWELCOME;
  1175.         }
  1176.  
  1177.         if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
  1178.             av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
  1179.             return AVERROR_INVALIDDATA;
  1180.         } else
  1181.             q->samples_per_channel = q->subpacket[0].samples_per_channel;
  1182.  
  1183.  
  1184.         /* Initialize variable relations */
  1185.         q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
  1186.  
  1187.         /* Try to catch some obviously faulty streams, othervise it might be exploitable */
  1188.         if (q->subpacket[s].total_subbands > 53) {
  1189.             avpriv_request_sample(avctx, "total_subbands > 53");
  1190.             return AVERROR_PATCHWELCOME;
  1191.         }
  1192.  
  1193.         if ((q->subpacket[s].js_vlc_bits > 6) ||
  1194.             (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
  1195.             av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
  1196.                    q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
  1197.             return AVERROR_INVALIDDATA;
  1198.         }
  1199.  
  1200.         if (q->subpacket[s].subbands > 50) {
  1201.             avpriv_request_sample(avctx, "subbands > 50");
  1202.             return AVERROR_PATCHWELCOME;
  1203.         }
  1204.         if (q->subpacket[s].subbands == 0) {
  1205.             avpriv_request_sample(avctx, "subbands = 0");
  1206.             return AVERROR_PATCHWELCOME;
  1207.         }
  1208.         q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
  1209.         q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
  1210.         q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
  1211.         q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
  1212.  
  1213.         if (q->num_subpackets + q->subpacket[s].num_channels > q->avctx->channels) {
  1214.             av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, q->avctx->channels);
  1215.             return AVERROR_INVALIDDATA;
  1216.         }
  1217.  
  1218.         q->num_subpackets++;
  1219.         s++;
  1220.         if (s > MAX_SUBPACKETS) {
  1221.             avpriv_request_sample(avctx, "subpackets > %d", MAX_SUBPACKETS);
  1222.             return AVERROR_PATCHWELCOME;
  1223.         }
  1224.     }
  1225.     /* Generate tables */
  1226.     init_pow2table();
  1227.     init_gain_table(q);
  1228.     init_cplscales_table(q);
  1229.  
  1230.     if ((ret = init_cook_vlc_tables(q)))
  1231.         return ret;
  1232.  
  1233.  
  1234.     if (avctx->block_align >= UINT_MAX / 2)
  1235.         return AVERROR(EINVAL);
  1236.  
  1237.     /* Pad the databuffer with:
  1238.        DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
  1239.        FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
  1240.     q->decoded_bytes_buffer =
  1241.         av_mallocz(avctx->block_align
  1242.                    + DECODE_BYTES_PAD1(avctx->block_align)
  1243.                    + FF_INPUT_BUFFER_PADDING_SIZE);
  1244.     if (q->decoded_bytes_buffer == NULL)
  1245.         return AVERROR(ENOMEM);
  1246.  
  1247.     /* Initialize transform. */
  1248.     if ((ret = init_cook_mlt(q)))
  1249.         return ret;
  1250.  
  1251.     /* Initialize COOK signal arithmetic handling */
  1252.     if (1) {
  1253.         q->scalar_dequant  = scalar_dequant_float;
  1254.         q->decouple        = decouple_float;
  1255.         q->imlt_window     = imlt_window_float;
  1256.         q->interpolate     = interpolate_float;
  1257.         q->saturate_output = saturate_output_float;
  1258.     }
  1259.  
  1260.     /* Try to catch some obviously faulty streams, othervise it might be exploitable */
  1261.     if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
  1262.         q->samples_per_channel != 1024) {
  1263.         avpriv_request_sample(avctx, "samples_per_channel = %d",
  1264.                               q->samples_per_channel);
  1265.         return AVERROR_PATCHWELCOME;
  1266.     }
  1267.  
  1268.     avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  1269.     if (channel_mask)
  1270.         avctx->channel_layout = channel_mask;
  1271.     else
  1272.         avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
  1273.  
  1274. #ifdef DEBUG
  1275.     dump_cook_context(q);
  1276. #endif
  1277.     return 0;
  1278. }
  1279.  
  1280. AVCodec ff_cook_decoder = {
  1281.     .name           = "cook",
  1282.     .long_name      = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
  1283.     .type           = AVMEDIA_TYPE_AUDIO,
  1284.     .id             = AV_CODEC_ID_COOK,
  1285.     .priv_data_size = sizeof(COOKContext),
  1286.     .init           = cook_decode_init,
  1287.     .close          = cook_decode_close,
  1288.     .decode         = cook_decode_frame,
  1289.     .capabilities   = CODEC_CAP_DR1,
  1290.     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  1291.                                                       AV_SAMPLE_FMT_NONE },
  1292. };
  1293.