Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
  3.  *
  4.  * This file is part of FFmpeg.
  5.  *
  6.  * FFmpeg is free software; you can redistribute it and/or
  7.  * modify it under the terms of the GNU Lesser General Public
  8.  * License as published by the Free Software Foundation; either
  9.  * version 2.1 of the License, or (at your option) any later version.
  10.  *
  11.  * FFmpeg is distributed in the hope that it will be useful,
  12.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14.  * Lesser General Public License for more details.
  15.  *
  16.  * You should have received a copy of the GNU Lesser General Public
  17.  * License along with FFmpeg; if not, write to the Free Software
  18.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19.  */
  20.  
  21. #include "config.h"
  22. #include "libavutil/attributes.h"
  23. #include "aacpsdsp.h"
  24.  
  25. static void ps_add_squares_c(float *dst, const float (*src)[2], int n)
  26. {
  27.     int i;
  28.     for (i = 0; i < n; i++)
  29.         dst[i] += src[i][0] * src[i][0] + src[i][1] * src[i][1];
  30. }
  31.  
  32. static void ps_mul_pair_single_c(float (*dst)[2], float (*src0)[2], float *src1,
  33.                                  int n)
  34. {
  35.     int i;
  36.     for (i = 0; i < n; i++) {
  37.         dst[i][0] = src0[i][0] * src1[i];
  38.         dst[i][1] = src0[i][1] * src1[i];
  39.     }
  40. }
  41.  
  42. static void ps_hybrid_analysis_c(float (*out)[2], float (*in)[2],
  43.                                  const float (*filter)[8][2],
  44.                                  int stride, int n)
  45. {
  46.     int i, j;
  47.  
  48.     for (i = 0; i < n; i++) {
  49.         float sum_re = filter[i][6][0] * in[6][0];
  50.         float sum_im = filter[i][6][0] * in[6][1];
  51.  
  52.         for (j = 0; j < 6; j++) {
  53.             float in0_re = in[j][0];
  54.             float in0_im = in[j][1];
  55.             float in1_re = in[12-j][0];
  56.             float in1_im = in[12-j][1];
  57.             sum_re += filter[i][j][0] * (in0_re + in1_re) -
  58.                       filter[i][j][1] * (in0_im - in1_im);
  59.             sum_im += filter[i][j][0] * (in0_im + in1_im) +
  60.                       filter[i][j][1] * (in0_re - in1_re);
  61.         }
  62.         out[i * stride][0] = sum_re;
  63.         out[i * stride][1] = sum_im;
  64.     }
  65. }
  66.  
  67. static void ps_hybrid_analysis_ileave_c(float (*out)[32][2], float L[2][38][64],
  68.                                         int i, int len)
  69. {
  70.     int j;
  71.  
  72.     for (; i < 64; i++) {
  73.         for (j = 0; j < len; j++) {
  74.             out[i][j][0] = L[0][j][i];
  75.             out[i][j][1] = L[1][j][i];
  76.         }
  77.     }
  78. }
  79.  
  80. static void ps_hybrid_synthesis_deint_c(float out[2][38][64],
  81.                                         float (*in)[32][2],
  82.                                         int i, int len)
  83. {
  84.     int n;
  85.  
  86.     for (; i < 64; i++) {
  87.         for (n = 0; n < len; n++) {
  88.             out[0][n][i] = in[i][n][0];
  89.             out[1][n][i] = in[i][n][1];
  90.         }
  91.     }
  92. }
  93.  
  94. static void ps_decorrelate_c(float (*out)[2], float (*delay)[2],
  95.                              float (*ap_delay)[PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2],
  96.                              const float phi_fract[2], float (*Q_fract)[2],
  97.                              const float *transient_gain,
  98.                              float g_decay_slope,
  99.                              int len)
  100. {
  101.     static const float a[] = { 0.65143905753106f,
  102.                                0.56471812200776f,
  103.                                0.48954165955695f };
  104.     float ag[PS_AP_LINKS];
  105.     int m, n;
  106.  
  107.     for (m = 0; m < PS_AP_LINKS; m++)
  108.         ag[m] = a[m] * g_decay_slope;
  109.  
  110.     for (n = 0; n < len; n++) {
  111.         float in_re = delay[n][0] * phi_fract[0] - delay[n][1] * phi_fract[1];
  112.         float in_im = delay[n][0] * phi_fract[1] + delay[n][1] * phi_fract[0];
  113.         for (m = 0; m < PS_AP_LINKS; m++) {
  114.             float a_re                = ag[m] * in_re;
  115.             float a_im                = ag[m] * in_im;
  116.             float link_delay_re       = ap_delay[m][n+2-m][0];
  117.             float link_delay_im       = ap_delay[m][n+2-m][1];
  118.             float fractional_delay_re = Q_fract[m][0];
  119.             float fractional_delay_im = Q_fract[m][1];
  120.             float apd_re = in_re;
  121.             float apd_im = in_im;
  122.             in_re = link_delay_re * fractional_delay_re -
  123.                     link_delay_im * fractional_delay_im - a_re;
  124.             in_im = link_delay_re * fractional_delay_im +
  125.                     link_delay_im * fractional_delay_re - a_im;
  126.             ap_delay[m][n+5][0] = apd_re + ag[m] * in_re;
  127.             ap_delay[m][n+5][1] = apd_im + ag[m] * in_im;
  128.         }
  129.         out[n][0] = transient_gain[n] * in_re;
  130.         out[n][1] = transient_gain[n] * in_im;
  131.     }
  132. }
  133.  
  134. static void ps_stereo_interpolate_c(float (*l)[2], float (*r)[2],
  135.                                     float h[2][4], float h_step[2][4],
  136.                                     int len)
  137. {
  138.     float h0 = h[0][0];
  139.     float h1 = h[0][1];
  140.     float h2 = h[0][2];
  141.     float h3 = h[0][3];
  142.     float hs0 = h_step[0][0];
  143.     float hs1 = h_step[0][1];
  144.     float hs2 = h_step[0][2];
  145.     float hs3 = h_step[0][3];
  146.     int n;
  147.  
  148.     for (n = 0; n < len; n++) {
  149.         //l is s, r is d
  150.         float l_re = l[n][0];
  151.         float l_im = l[n][1];
  152.         float r_re = r[n][0];
  153.         float r_im = r[n][1];
  154.         h0 += hs0;
  155.         h1 += hs1;
  156.         h2 += hs2;
  157.         h3 += hs3;
  158.         l[n][0] = h0 * l_re + h2 * r_re;
  159.         l[n][1] = h0 * l_im + h2 * r_im;
  160.         r[n][0] = h1 * l_re + h3 * r_re;
  161.         r[n][1] = h1 * l_im + h3 * r_im;
  162.     }
  163. }
  164.  
  165. static void ps_stereo_interpolate_ipdopd_c(float (*l)[2], float (*r)[2],
  166.                                            float h[2][4], float h_step[2][4],
  167.                                            int len)
  168. {
  169.     float h00  = h[0][0],      h10  = h[1][0];
  170.     float h01  = h[0][1],      h11  = h[1][1];
  171.     float h02  = h[0][2],      h12  = h[1][2];
  172.     float h03  = h[0][3],      h13  = h[1][3];
  173.     float hs00 = h_step[0][0], hs10 = h_step[1][0];
  174.     float hs01 = h_step[0][1], hs11 = h_step[1][1];
  175.     float hs02 = h_step[0][2], hs12 = h_step[1][2];
  176.     float hs03 = h_step[0][3], hs13 = h_step[1][3];
  177.     int n;
  178.  
  179.     for (n = 0; n < len; n++) {
  180.         //l is s, r is d
  181.         float l_re = l[n][0];
  182.         float l_im = l[n][1];
  183.         float r_re = r[n][0];
  184.         float r_im = r[n][1];
  185.         h00 += hs00;
  186.         h01 += hs01;
  187.         h02 += hs02;
  188.         h03 += hs03;
  189.         h10 += hs10;
  190.         h11 += hs11;
  191.         h12 += hs12;
  192.         h13 += hs13;
  193.  
  194.         l[n][0] = h00 * l_re + h02 * r_re - h10 * l_im - h12 * r_im;
  195.         l[n][1] = h00 * l_im + h02 * r_im + h10 * l_re + h12 * r_re;
  196.         r[n][0] = h01 * l_re + h03 * r_re - h11 * l_im - h13 * r_im;
  197.         r[n][1] = h01 * l_im + h03 * r_im + h11 * l_re + h13 * r_re;
  198.     }
  199. }
  200.  
  201. av_cold void ff_psdsp_init(PSDSPContext *s)
  202. {
  203.     s->add_squares            = ps_add_squares_c;
  204.     s->mul_pair_single        = ps_mul_pair_single_c;
  205.     s->hybrid_analysis        = ps_hybrid_analysis_c;
  206.     s->hybrid_analysis_ileave = ps_hybrid_analysis_ileave_c;
  207.     s->hybrid_synthesis_deint = ps_hybrid_synthesis_deint_c;
  208.     s->decorrelate            = ps_decorrelate_c;
  209.     s->stereo_interpolate[0]  = ps_stereo_interpolate_c;
  210.     s->stereo_interpolate[1]  = ps_stereo_interpolate_ipdopd_c;
  211.  
  212.     if (ARCH_ARM)
  213.         ff_psdsp_init_arm(s);
  214.     if (ARCH_MIPS)
  215.         ff_psdsp_init_mips(s);
  216. }
  217.