Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /* -*- Mode: c; tab-width: 8; c-basic-offset: 4; indent-tabs-mode: t; -*- */
  2. /* cairo - a vector graphics library with display and print output
  3.  *
  4.  * Copyright © 2002 University of Southern California
  5.  * Copyright © 2005 Red Hat, Inc.
  6.  * Copyright © 2006 Red Hat, Inc.
  7.  *
  8.  * This library is free software; you can redistribute it and/or
  9.  * modify it either under the terms of the GNU Lesser General Public
  10.  * License version 2.1 as published by the Free Software Foundation
  11.  * (the "LGPL") or, at your option, under the terms of the Mozilla
  12.  * Public License Version 1.1 (the "MPL"). If you do not alter this
  13.  * notice, a recipient may use your version of this file under either
  14.  * the MPL or the LGPL.
  15.  *
  16.  * You should have received a copy of the LGPL along with this library
  17.  * in the file COPYING-LGPL-2.1; if not, write to the Free Software
  18.  * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
  19.  * You should have received a copy of the MPL along with this library
  20.  * in the file COPYING-MPL-1.1
  21.  *
  22.  * The contents of this file are subject to the Mozilla Public License
  23.  * Version 1.1 (the "License"); you may not use this file except in
  24.  * compliance with the License. You may obtain a copy of the License at
  25.  * http://www.mozilla.org/MPL/
  26.  *
  27.  * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
  28.  * OF ANY KIND, either express or implied. See the LGPL or the MPL for
  29.  * the specific language governing rights and limitations.
  30.  *
  31.  * The Original Code is the cairo graphics library.
  32.  *
  33.  * The Initial Developer of the Original Code is University of Southern
  34.  * California.
  35.  *
  36.  * Contributor(s):
  37.  *      Carl D. Worth <cworth@cworth.org>
  38.  */
  39.  
  40. #include "cairoint.h"
  41.  
  42. #include "cairo-box-inline.h"
  43.  
  44. const cairo_rectangle_int_t _cairo_empty_rectangle = { 0, 0, 0, 0 };
  45. const cairo_rectangle_int_t _cairo_unbounded_rectangle = {
  46.      CAIRO_RECT_INT_MIN, CAIRO_RECT_INT_MIN,
  47.      CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN,
  48.      CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN,
  49. };
  50.  
  51. cairo_private void
  52. _cairo_box_from_doubles (cairo_box_t *box,
  53.                          double *x1, double *y1,
  54.                          double *x2, double *y2)
  55. {
  56.     box->p1.x = _cairo_fixed_from_double (*x1);
  57.     box->p1.y = _cairo_fixed_from_double (*y1);
  58.     box->p2.x = _cairo_fixed_from_double (*x2);
  59.     box->p2.y = _cairo_fixed_from_double (*y2);
  60. }
  61.  
  62. cairo_private void
  63. _cairo_box_to_doubles (const cairo_box_t *box,
  64.                        double *x1, double *y1,
  65.                        double *x2, double *y2)
  66. {
  67.     *x1 = _cairo_fixed_to_double (box->p1.x);
  68.     *y1 = _cairo_fixed_to_double (box->p1.y);
  69.     *x2 = _cairo_fixed_to_double (box->p2.x);
  70.     *y2 = _cairo_fixed_to_double (box->p2.y);
  71. }
  72.  
  73. void
  74. _cairo_box_from_rectangle (cairo_box_t                 *box,
  75.                            const cairo_rectangle_int_t *rect)
  76. {
  77.     box->p1.x = _cairo_fixed_from_int (rect->x);
  78.     box->p1.y = _cairo_fixed_from_int (rect->y);
  79.     box->p2.x = _cairo_fixed_from_int (rect->x + rect->width);
  80.     box->p2.y = _cairo_fixed_from_int (rect->y + rect->height);
  81. }
  82.  
  83. void
  84. _cairo_boxes_get_extents (const cairo_box_t *boxes,
  85.                           int num_boxes,
  86.                           cairo_box_t *extents)
  87. {
  88.     assert (num_boxes > 0);
  89.     *extents = *boxes;
  90.     while (--num_boxes)
  91.         _cairo_box_add_box (extents, ++boxes);
  92. }
  93.  
  94. /* XXX We currently have a confusing mix of boxes and rectangles as
  95.  * exemplified by this function.  A #cairo_box_t is a rectangular area
  96.  * represented by the coordinates of the upper left and lower right
  97.  * corners, expressed in fixed point numbers.  A #cairo_rectangle_int_t is
  98.  * also a rectangular area, but represented by the upper left corner
  99.  * and the width and the height, as integer numbers.
  100.  *
  101.  * This function converts a #cairo_box_t to a #cairo_rectangle_int_t by
  102.  * increasing the area to the nearest integer coordinates.  We should
  103.  * standardize on #cairo_rectangle_fixed_t and #cairo_rectangle_int_t, and
  104.  * this function could be renamed to the more reasonable
  105.  * _cairo_rectangle_fixed_round.
  106.  */
  107.  
  108. void
  109. _cairo_box_round_to_rectangle (const cairo_box_t     *box,
  110.                                cairo_rectangle_int_t *rectangle)
  111. {
  112.     rectangle->x = _cairo_fixed_integer_floor (box->p1.x);
  113.     rectangle->y = _cairo_fixed_integer_floor (box->p1.y);
  114.     rectangle->width = _cairo_fixed_integer_ceil (box->p2.x) - rectangle->x;
  115.     rectangle->height = _cairo_fixed_integer_ceil (box->p2.y) - rectangle->y;
  116. }
  117.  
  118. cairo_bool_t
  119. _cairo_rectangle_intersect (cairo_rectangle_int_t *dst,
  120.                             const cairo_rectangle_int_t *src)
  121. {
  122.     int x1, y1, x2, y2;
  123.  
  124.     x1 = MAX (dst->x, src->x);
  125.     y1 = MAX (dst->y, src->y);
  126.     /* Beware the unsigned promotion, fortunately we have bits to spare
  127.      * as (CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN) < UINT_MAX
  128.      */
  129.     x2 = MIN (dst->x + (int) dst->width,  src->x + (int) src->width);
  130.     y2 = MIN (dst->y + (int) dst->height, src->y + (int) src->height);
  131.  
  132.     if (x1 >= x2 || y1 >= y2) {
  133.         dst->x = 0;
  134.         dst->y = 0;
  135.         dst->width  = 0;
  136.         dst->height = 0;
  137.  
  138.         return FALSE;
  139.     } else {
  140.         dst->x = x1;
  141.         dst->y = y1;
  142.         dst->width  = x2 - x1;
  143.         dst->height = y2 - y1;
  144.  
  145.         return TRUE;
  146.     }
  147. }
  148.  
  149. /* Extends the dst rectangle to also contain src.
  150.  * If one of the rectangles is empty, the result is undefined
  151.  */
  152. void
  153. _cairo_rectangle_union (cairo_rectangle_int_t *dst,
  154.                         const cairo_rectangle_int_t *src)
  155. {
  156.     int x1, y1, x2, y2;
  157.  
  158.     x1 = MIN (dst->x, src->x);
  159.     y1 = MIN (dst->y, src->y);
  160.     /* Beware the unsigned promotion, fortunately we have bits to spare
  161.      * as (CAIRO_RECT_INT_MAX - CAIRO_RECT_INT_MIN) < UINT_MAX
  162.      */
  163.     x2 = MAX (dst->x + (int) dst->width,  src->x + (int) src->width);
  164.     y2 = MAX (dst->y + (int) dst->height, src->y + (int) src->height);
  165.  
  166.     dst->x = x1;
  167.     dst->y = y1;
  168.     dst->width  = x2 - x1;
  169.     dst->height = y2 - y1;
  170. }
  171.  
  172. #define P1x (line->p1.x)
  173. #define P1y (line->p1.y)
  174. #define P2x (line->p2.x)
  175. #define P2y (line->p2.y)
  176. #define B1x (box->p1.x)
  177. #define B1y (box->p1.y)
  178. #define B2x (box->p2.x)
  179. #define B2y (box->p2.y)
  180.  
  181. /*
  182.  * Check whether any part of line intersects box.  This function essentially
  183.  * computes whether the ray starting at line->p1 in the direction of line->p2
  184.  * intersects the box before it reaches p2.  Normally, this is done
  185.  * by dividing by the lengths of the line projected onto each axis.  Because
  186.  * we're in fixed point, this function does a bit more work to avoid having to
  187.  * do the division -- we don't care about the actual intersection point, so
  188.  * it's of no interest to us.
  189.  */
  190.  
  191. cairo_bool_t
  192. _cairo_box_intersects_line_segment (const cairo_box_t *box, cairo_line_t *line)
  193. {
  194.     cairo_fixed_t t1=0, t2=0, t3=0, t4=0;
  195.     cairo_int64_t t1y, t2y, t3x, t4x;
  196.  
  197.     cairo_fixed_t xlen, ylen;
  198.  
  199.     if (_cairo_box_contains_point (box, &line->p1) ||
  200.         _cairo_box_contains_point (box, &line->p2))
  201.         return TRUE;
  202.  
  203.     xlen = P2x - P1x;
  204.     ylen = P2y - P1y;
  205.  
  206.     if (xlen) {
  207.         if (xlen > 0) {
  208.             t1 = B1x - P1x;
  209.             t2 = B2x - P1x;
  210.         } else {
  211.             t1 = P1x - B2x;
  212.             t2 = P1x - B1x;
  213.             xlen = - xlen;
  214.         }
  215.  
  216.         if ((t1 < 0 || t1 > xlen) &&
  217.             (t2 < 0 || t2 > xlen))
  218.             return FALSE;
  219.     } else {
  220.         /* Fully vertical line -- check that X is in bounds */
  221.         if (P1x < B1x || P1x > B2x)
  222.             return FALSE;
  223.     }
  224.  
  225.     if (ylen) {
  226.         if (ylen > 0) {
  227.             t3 = B1y - P1y;
  228.             t4 = B2y - P1y;
  229.         } else {
  230.             t3 = P1y - B2y;
  231.             t4 = P1y - B1y;
  232.             ylen = - ylen;
  233.         }
  234.  
  235.         if ((t3 < 0 || t3 > ylen) &&
  236.             (t4 < 0 || t4 > ylen))
  237.             return FALSE;
  238.     } else {
  239.         /* Fully horizontal line -- check Y */
  240.         if (P1y < B1y || P1y > B2y)
  241.             return FALSE;
  242.     }
  243.  
  244.     /* If we had a horizontal or vertical line, then it's already been checked */
  245.     if (P1x == P2x || P1y == P2y)
  246.         return TRUE;
  247.  
  248.     /* Check overlap.  Note that t1 < t2 and t3 < t4 here. */
  249.     t1y = _cairo_int32x32_64_mul (t1, ylen);
  250.     t2y = _cairo_int32x32_64_mul (t2, ylen);
  251.     t3x = _cairo_int32x32_64_mul (t3, xlen);
  252.     t4x = _cairo_int32x32_64_mul (t4, xlen);
  253.  
  254.     if (_cairo_int64_lt(t1y, t4x) &&
  255.         _cairo_int64_lt(t3x, t2y))
  256.         return TRUE;
  257.  
  258.     return FALSE;
  259. }
  260.  
  261. static cairo_status_t
  262. _cairo_box_add_spline_point (void *closure,
  263.                              const cairo_point_t *point,
  264.                              const cairo_slope_t *tangent)
  265. {
  266.     _cairo_box_add_point (closure, point);
  267.  
  268.     return CAIRO_STATUS_SUCCESS;
  269. }
  270.  
  271. /* assumes a has been previously added */
  272. void
  273. _cairo_box_add_curve_to (cairo_box_t *extents,
  274.                          const cairo_point_t *a,
  275.                          const cairo_point_t *b,
  276.                          const cairo_point_t *c,
  277.                          const cairo_point_t *d)
  278. {
  279.     _cairo_box_add_point (extents, d);
  280.     if (!_cairo_box_contains_point (extents, b) ||
  281.         !_cairo_box_contains_point (extents, c))
  282.     {
  283.         cairo_status_t status;
  284.  
  285.         status = _cairo_spline_bound (_cairo_box_add_spline_point,
  286.                                       extents, a, b, c, d);
  287.         assert (status == CAIRO_STATUS_SUCCESS);
  288.     }
  289. }
  290.  
  291. void
  292. _cairo_rectangle_int_from_double (cairo_rectangle_int_t *recti,
  293.                                   const cairo_rectangle_t *rectf)
  294. {
  295.         recti->x = floor (rectf->x);
  296.         recti->y = floor (rectf->y);
  297.         recti->width  = ceil (rectf->x + rectf->width) - floor (rectf->x);
  298.         recti->height = ceil (rectf->y + rectf->height) - floor (rectf->y);
  299. }
  300.