Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
  3.  * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
  4.  * Copyright © 2010 Intel Corporation
  5.  *
  6.  * Permission is hereby granted, free of charge, to any person obtaining a
  7.  * copy of this software and associated documentation files (the "Software"),
  8.  * to deal in the Software without restriction, including without limitation
  9.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10.  * and/or sell copies of the Software, and to permit persons to whom the
  11.  * Software is furnished to do so, subject to the following conditions:
  12.  *
  13.  * The above copyright notice and this permission notice (including the next
  14.  * paragraph) shall be included in all copies or substantial portions of the
  15.  * Software.
  16.  *
  17.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  20.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  22.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  23.  * DEALINGS IN THE SOFTWARE.
  24.  */
  25.  
  26. /**
  27.  * \file ir_to_mesa.cpp
  28.  *
  29.  * Translate GLSL IR to Mesa's gl_program representation.
  30.  */
  31.  
  32. #include <stdio.h>
  33. #include "main/compiler.h"
  34. #include "ir.h"
  35. #include "ir_visitor.h"
  36. #include "ir_expression_flattening.h"
  37. #include "ir_uniform.h"
  38. #include "glsl_types.h"
  39. #include "glsl_parser_extras.h"
  40. #include "../glsl/program.h"
  41. #include "ir_optimization.h"
  42. #include "ast.h"
  43. #include "linker.h"
  44.  
  45. #include "main/mtypes.h"
  46. #include "main/shaderobj.h"
  47. #include "program/hash_table.h"
  48.  
  49. extern "C" {
  50. #include "main/shaderapi.h"
  51. #include "main/uniforms.h"
  52. #include "program/prog_instruction.h"
  53. #include "program/prog_optimize.h"
  54. #include "program/prog_print.h"
  55. #include "program/program.h"
  56. #include "program/prog_parameter.h"
  57. #include "program/sampler.h"
  58. }
  59.  
  60. class src_reg;
  61. class dst_reg;
  62.  
  63. static int swizzle_for_size(int size);
  64.  
  65. /**
  66.  * This struct is a corresponding struct to Mesa prog_src_register, with
  67.  * wider fields.
  68.  */
  69. class src_reg {
  70. public:
  71.    src_reg(gl_register_file file, int index, const glsl_type *type)
  72.    {
  73.       this->file = file;
  74.       this->index = index;
  75.       if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
  76.          this->swizzle = swizzle_for_size(type->vector_elements);
  77.       else
  78.          this->swizzle = SWIZZLE_XYZW;
  79.       this->negate = 0;
  80.       this->reladdr = NULL;
  81.    }
  82.  
  83.    src_reg()
  84.    {
  85.       this->file = PROGRAM_UNDEFINED;
  86.       this->index = 0;
  87.       this->swizzle = 0;
  88.       this->negate = 0;
  89.       this->reladdr = NULL;
  90.    }
  91.  
  92.    explicit src_reg(dst_reg reg);
  93.  
  94.    gl_register_file file; /**< PROGRAM_* from Mesa */
  95.    int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
  96.    GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
  97.    int negate; /**< NEGATE_XYZW mask from mesa */
  98.    /** Register index should be offset by the integer in this reg. */
  99.    src_reg *reladdr;
  100. };
  101.  
  102. class dst_reg {
  103. public:
  104.    dst_reg(gl_register_file file, int writemask)
  105.    {
  106.       this->file = file;
  107.       this->index = 0;
  108.       this->writemask = writemask;
  109.       this->cond_mask = COND_TR;
  110.       this->reladdr = NULL;
  111.    }
  112.  
  113.    dst_reg()
  114.    {
  115.       this->file = PROGRAM_UNDEFINED;
  116.       this->index = 0;
  117.       this->writemask = 0;
  118.       this->cond_mask = COND_TR;
  119.       this->reladdr = NULL;
  120.    }
  121.  
  122.    explicit dst_reg(src_reg reg);
  123.  
  124.    gl_register_file file; /**< PROGRAM_* from Mesa */
  125.    int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
  126.    int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
  127.    GLuint cond_mask:4;
  128.    /** Register index should be offset by the integer in this reg. */
  129.    src_reg *reladdr;
  130. };
  131.  
  132. src_reg::src_reg(dst_reg reg)
  133. {
  134.    this->file = reg.file;
  135.    this->index = reg.index;
  136.    this->swizzle = SWIZZLE_XYZW;
  137.    this->negate = 0;
  138.    this->reladdr = reg.reladdr;
  139. }
  140.  
  141. dst_reg::dst_reg(src_reg reg)
  142. {
  143.    this->file = reg.file;
  144.    this->index = reg.index;
  145.    this->writemask = WRITEMASK_XYZW;
  146.    this->cond_mask = COND_TR;
  147.    this->reladdr = reg.reladdr;
  148. }
  149.  
  150. class ir_to_mesa_instruction : public exec_node {
  151. public:
  152.    /* Callers of this ralloc-based new need not call delete. It's
  153.     * easier to just ralloc_free 'ctx' (or any of its ancestors). */
  154.    static void* operator new(size_t size, void *ctx)
  155.    {
  156.       void *node;
  157.  
  158.       node = rzalloc_size(ctx, size);
  159.       assert(node != NULL);
  160.  
  161.       return node;
  162.    }
  163.  
  164.    enum prog_opcode op;
  165.    dst_reg dst;
  166.    src_reg src[3];
  167.    /** Pointer to the ir source this tree came from for debugging */
  168.    ir_instruction *ir;
  169.    GLboolean cond_update;
  170.    bool saturate;
  171.    int sampler; /**< sampler index */
  172.    int tex_target; /**< One of TEXTURE_*_INDEX */
  173.    GLboolean tex_shadow;
  174. };
  175.  
  176. class variable_storage : public exec_node {
  177. public:
  178.    variable_storage(ir_variable *var, gl_register_file file, int index)
  179.       : file(file), index(index), var(var)
  180.    {
  181.       /* empty */
  182.    }
  183.  
  184.    gl_register_file file;
  185.    int index;
  186.    ir_variable *var; /* variable that maps to this, if any */
  187. };
  188.  
  189. class function_entry : public exec_node {
  190. public:
  191.    ir_function_signature *sig;
  192.  
  193.    /**
  194.     * identifier of this function signature used by the program.
  195.     *
  196.     * At the point that Mesa instructions for function calls are
  197.     * generated, we don't know the address of the first instruction of
  198.     * the function body.  So we make the BranchTarget that is called a
  199.     * small integer and rewrite them during set_branchtargets().
  200.     */
  201.    int sig_id;
  202.  
  203.    /**
  204.     * Pointer to first instruction of the function body.
  205.     *
  206.     * Set during function body emits after main() is processed.
  207.     */
  208.    ir_to_mesa_instruction *bgn_inst;
  209.  
  210.    /**
  211.     * Index of the first instruction of the function body in actual
  212.     * Mesa IR.
  213.     *
  214.     * Set after convertion from ir_to_mesa_instruction to prog_instruction.
  215.     */
  216.    int inst;
  217.  
  218.    /** Storage for the return value. */
  219.    src_reg return_reg;
  220. };
  221.  
  222. class ir_to_mesa_visitor : public ir_visitor {
  223. public:
  224.    ir_to_mesa_visitor();
  225.    ~ir_to_mesa_visitor();
  226.  
  227.    function_entry *current_function;
  228.  
  229.    struct gl_context *ctx;
  230.    struct gl_program *prog;
  231.    struct gl_shader_program *shader_program;
  232.    struct gl_shader_compiler_options *options;
  233.  
  234.    int next_temp;
  235.  
  236.    variable_storage *find_variable_storage(ir_variable *var);
  237.  
  238.    src_reg get_temp(const glsl_type *type);
  239.    void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
  240.  
  241.    src_reg src_reg_for_float(float val);
  242.  
  243.    /**
  244.     * \name Visit methods
  245.     *
  246.     * As typical for the visitor pattern, there must be one \c visit method for
  247.     * each concrete subclass of \c ir_instruction.  Virtual base classes within
  248.     * the hierarchy should not have \c visit methods.
  249.     */
  250.    /*@{*/
  251.    virtual void visit(ir_variable *);
  252.    virtual void visit(ir_loop *);
  253.    virtual void visit(ir_loop_jump *);
  254.    virtual void visit(ir_function_signature *);
  255.    virtual void visit(ir_function *);
  256.    virtual void visit(ir_expression *);
  257.    virtual void visit(ir_swizzle *);
  258.    virtual void visit(ir_dereference_variable  *);
  259.    virtual void visit(ir_dereference_array *);
  260.    virtual void visit(ir_dereference_record *);
  261.    virtual void visit(ir_assignment *);
  262.    virtual void visit(ir_constant *);
  263.    virtual void visit(ir_call *);
  264.    virtual void visit(ir_return *);
  265.    virtual void visit(ir_discard *);
  266.    virtual void visit(ir_texture *);
  267.    virtual void visit(ir_if *);
  268.    /*@}*/
  269.  
  270.    src_reg result;
  271.  
  272.    /** List of variable_storage */
  273.    exec_list variables;
  274.  
  275.    /** List of function_entry */
  276.    exec_list function_signatures;
  277.    int next_signature_id;
  278.  
  279.    /** List of ir_to_mesa_instruction */
  280.    exec_list instructions;
  281.  
  282.    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
  283.  
  284.    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
  285.                                 dst_reg dst, src_reg src0);
  286.  
  287.    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
  288.                                 dst_reg dst, src_reg src0, src_reg src1);
  289.  
  290.    ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
  291.                                 dst_reg dst,
  292.                                 src_reg src0, src_reg src1, src_reg src2);
  293.  
  294.    /**
  295.     * Emit the correct dot-product instruction for the type of arguments
  296.     */
  297.    ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
  298.                                     dst_reg dst,
  299.                                     src_reg src0,
  300.                                     src_reg src1,
  301.                                     unsigned elements);
  302.  
  303.    void emit_scalar(ir_instruction *ir, enum prog_opcode op,
  304.                     dst_reg dst, src_reg src0);
  305.  
  306.    void emit_scalar(ir_instruction *ir, enum prog_opcode op,
  307.                     dst_reg dst, src_reg src0, src_reg src1);
  308.  
  309.    void emit_scs(ir_instruction *ir, enum prog_opcode op,
  310.                  dst_reg dst, const src_reg &src);
  311.  
  312.    bool try_emit_mad(ir_expression *ir,
  313.                           int mul_operand);
  314.    bool try_emit_mad_for_and_not(ir_expression *ir,
  315.                                  int mul_operand);
  316.    bool try_emit_sat(ir_expression *ir);
  317.  
  318.    void emit_swz(ir_expression *ir);
  319.  
  320.    bool process_move_condition(ir_rvalue *ir);
  321.  
  322.    void copy_propagate(void);
  323.  
  324.    void *mem_ctx;
  325. };
  326.  
  327. static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
  328.  
  329. static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
  330.  
  331. static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
  332.  
  333. static int
  334. swizzle_for_size(int size)
  335. {
  336.    static const int size_swizzles[4] = {
  337.       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
  338.       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
  339.       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
  340.       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
  341.    };
  342.  
  343.    assert((size >= 1) && (size <= 4));
  344.    return size_swizzles[size - 1];
  345. }
  346.  
  347. ir_to_mesa_instruction *
  348. ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
  349.                          dst_reg dst,
  350.                          src_reg src0, src_reg src1, src_reg src2)
  351. {
  352.    ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
  353.    int num_reladdr = 0;
  354.  
  355.    /* If we have to do relative addressing, we want to load the ARL
  356.     * reg directly for one of the regs, and preload the other reladdr
  357.     * sources into temps.
  358.     */
  359.    num_reladdr += dst.reladdr != NULL;
  360.    num_reladdr += src0.reladdr != NULL;
  361.    num_reladdr += src1.reladdr != NULL;
  362.    num_reladdr += src2.reladdr != NULL;
  363.  
  364.    reladdr_to_temp(ir, &src2, &num_reladdr);
  365.    reladdr_to_temp(ir, &src1, &num_reladdr);
  366.    reladdr_to_temp(ir, &src0, &num_reladdr);
  367.  
  368.    if (dst.reladdr) {
  369.       emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
  370.       num_reladdr--;
  371.    }
  372.    assert(num_reladdr == 0);
  373.  
  374.    inst->op = op;
  375.    inst->dst = dst;
  376.    inst->src[0] = src0;
  377.    inst->src[1] = src1;
  378.    inst->src[2] = src2;
  379.    inst->ir = ir;
  380.  
  381.    this->instructions.push_tail(inst);
  382.  
  383.    return inst;
  384. }
  385.  
  386.  
  387. ir_to_mesa_instruction *
  388. ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
  389.                          dst_reg dst, src_reg src0, src_reg src1)
  390. {
  391.    return emit(ir, op, dst, src0, src1, undef_src);
  392. }
  393.  
  394. ir_to_mesa_instruction *
  395. ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
  396.                          dst_reg dst, src_reg src0)
  397. {
  398.    assert(dst.writemask != 0);
  399.    return emit(ir, op, dst, src0, undef_src, undef_src);
  400. }
  401.  
  402. ir_to_mesa_instruction *
  403. ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
  404. {
  405.    return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
  406. }
  407.  
  408. ir_to_mesa_instruction *
  409. ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
  410.                             dst_reg dst, src_reg src0, src_reg src1,
  411.                             unsigned elements)
  412. {
  413.    static const gl_inst_opcode dot_opcodes[] = {
  414.       OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
  415.    };
  416.  
  417.    return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
  418. }
  419.  
  420. /**
  421.  * Emits Mesa scalar opcodes to produce unique answers across channels.
  422.  *
  423.  * Some Mesa opcodes are scalar-only, like ARB_fp/vp.  The src X
  424.  * channel determines the result across all channels.  So to do a vec4
  425.  * of this operation, we want to emit a scalar per source channel used
  426.  * to produce dest channels.
  427.  */
  428. void
  429. ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
  430.                                 dst_reg dst,
  431.                                 src_reg orig_src0, src_reg orig_src1)
  432. {
  433.    int i, j;
  434.    int done_mask = ~dst.writemask;
  435.  
  436.    /* Mesa RCP is a scalar operation splatting results to all channels,
  437.     * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
  438.     * dst channels.
  439.     */
  440.    for (i = 0; i < 4; i++) {
  441.       GLuint this_mask = (1 << i);
  442.       ir_to_mesa_instruction *inst;
  443.       src_reg src0 = orig_src0;
  444.       src_reg src1 = orig_src1;
  445.  
  446.       if (done_mask & this_mask)
  447.          continue;
  448.  
  449.       GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
  450.       GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
  451.       for (j = i + 1; j < 4; j++) {
  452.          /* If there is another enabled component in the destination that is
  453.           * derived from the same inputs, generate its value on this pass as
  454.           * well.
  455.           */
  456.          if (!(done_mask & (1 << j)) &&
  457.              GET_SWZ(src0.swizzle, j) == src0_swiz &&
  458.              GET_SWZ(src1.swizzle, j) == src1_swiz) {
  459.             this_mask |= (1 << j);
  460.          }
  461.       }
  462.       src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
  463.                                    src0_swiz, src0_swiz);
  464.       src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
  465.                                   src1_swiz, src1_swiz);
  466.  
  467.       inst = emit(ir, op, dst, src0, src1);
  468.       inst->dst.writemask = this_mask;
  469.       done_mask |= this_mask;
  470.    }
  471. }
  472.  
  473. void
  474. ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
  475.                                 dst_reg dst, src_reg src0)
  476. {
  477.    src_reg undef = undef_src;
  478.  
  479.    undef.swizzle = SWIZZLE_XXXX;
  480.  
  481.    emit_scalar(ir, op, dst, src0, undef);
  482. }
  483.  
  484. /**
  485.  * Emit an OPCODE_SCS instruction
  486.  *
  487.  * The \c SCS opcode functions a bit differently than the other Mesa (or
  488.  * ARB_fragment_program) opcodes.  Instead of splatting its result across all
  489.  * four components of the destination, it writes one value to the \c x
  490.  * component and another value to the \c y component.
  491.  *
  492.  * \param ir        IR instruction being processed
  493.  * \param op        Either \c OPCODE_SIN or \c OPCODE_COS depending on which
  494.  *                  value is desired.
  495.  * \param dst       Destination register
  496.  * \param src       Source register
  497.  */
  498. void
  499. ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
  500.                              dst_reg dst,
  501.                              const src_reg &src)
  502. {
  503.    /* Vertex programs cannot use the SCS opcode.
  504.     */
  505.    if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
  506.       emit_scalar(ir, op, dst, src);
  507.       return;
  508.    }
  509.  
  510.    const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
  511.    const unsigned scs_mask = (1U << component);
  512.    int done_mask = ~dst.writemask;
  513.    src_reg tmp;
  514.  
  515.    assert(op == OPCODE_SIN || op == OPCODE_COS);
  516.  
  517.    /* If there are compnents in the destination that differ from the component
  518.     * that will be written by the SCS instrution, we'll need a temporary.
  519.     */
  520.    if (scs_mask != unsigned(dst.writemask)) {
  521.       tmp = get_temp(glsl_type::vec4_type);
  522.    }
  523.  
  524.    for (unsigned i = 0; i < 4; i++) {
  525.       unsigned this_mask = (1U << i);
  526.       src_reg src0 = src;
  527.  
  528.       if ((done_mask & this_mask) != 0)
  529.          continue;
  530.  
  531.       /* The source swizzle specified which component of the source generates
  532.        * sine / cosine for the current component in the destination.  The SCS
  533.        * instruction requires that this value be swizzle to the X component.
  534.        * Replace the current swizzle with a swizzle that puts the source in
  535.        * the X component.
  536.        */
  537.       unsigned src0_swiz = GET_SWZ(src.swizzle, i);
  538.  
  539.       src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
  540.                                    src0_swiz, src0_swiz);
  541.       for (unsigned j = i + 1; j < 4; j++) {
  542.          /* If there is another enabled component in the destination that is
  543.           * derived from the same inputs, generate its value on this pass as
  544.           * well.
  545.           */
  546.          if (!(done_mask & (1 << j)) &&
  547.              GET_SWZ(src0.swizzle, j) == src0_swiz) {
  548.             this_mask |= (1 << j);
  549.          }
  550.       }
  551.  
  552.       if (this_mask != scs_mask) {
  553.          ir_to_mesa_instruction *inst;
  554.          dst_reg tmp_dst = dst_reg(tmp);
  555.  
  556.          /* Emit the SCS instruction.
  557.           */
  558.          inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
  559.          inst->dst.writemask = scs_mask;
  560.  
  561.          /* Move the result of the SCS instruction to the desired location in
  562.           * the destination.
  563.           */
  564.          tmp.swizzle = MAKE_SWIZZLE4(component, component,
  565.                                      component, component);
  566.          inst = emit(ir, OPCODE_SCS, dst, tmp);
  567.          inst->dst.writemask = this_mask;
  568.       } else {
  569.          /* Emit the SCS instruction to write directly to the destination.
  570.           */
  571.          ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
  572.          inst->dst.writemask = scs_mask;
  573.       }
  574.  
  575.       done_mask |= this_mask;
  576.    }
  577. }
  578.  
  579. src_reg
  580. ir_to_mesa_visitor::src_reg_for_float(float val)
  581. {
  582.    src_reg src(PROGRAM_CONSTANT, -1, NULL);
  583.  
  584.    src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
  585.                                           (const gl_constant_value *)&val, 1, &src.swizzle);
  586.  
  587.    return src;
  588. }
  589.  
  590. static int
  591. type_size(const struct glsl_type *type)
  592. {
  593.    unsigned int i;
  594.    int size;
  595.  
  596.    switch (type->base_type) {
  597.    case GLSL_TYPE_UINT:
  598.    case GLSL_TYPE_INT:
  599.    case GLSL_TYPE_FLOAT:
  600.    case GLSL_TYPE_BOOL:
  601.       if (type->is_matrix()) {
  602.          return type->matrix_columns;
  603.       } else {
  604.          /* Regardless of size of vector, it gets a vec4. This is bad
  605.           * packing for things like floats, but otherwise arrays become a
  606.           * mess.  Hopefully a later pass over the code can pack scalars
  607.           * down if appropriate.
  608.           */
  609.          return 1;
  610.       }
  611.    case GLSL_TYPE_ARRAY:
  612.       assert(type->length > 0);
  613.       return type_size(type->fields.array) * type->length;
  614.    case GLSL_TYPE_STRUCT:
  615.       size = 0;
  616.       for (i = 0; i < type->length; i++) {
  617.          size += type_size(type->fields.structure[i].type);
  618.       }
  619.       return size;
  620.    case GLSL_TYPE_SAMPLER:
  621.       /* Samplers take up one slot in UNIFORMS[], but they're baked in
  622.        * at link time.
  623.        */
  624.       return 1;
  625.    case GLSL_TYPE_VOID:
  626.    case GLSL_TYPE_ERROR:
  627.    case GLSL_TYPE_INTERFACE:
  628.       assert(!"Invalid type in type_size");
  629.       break;
  630.    }
  631.  
  632.    return 0;
  633. }
  634.  
  635. /**
  636.  * In the initial pass of codegen, we assign temporary numbers to
  637.  * intermediate results.  (not SSA -- variable assignments will reuse
  638.  * storage).  Actual register allocation for the Mesa VM occurs in a
  639.  * pass over the Mesa IR later.
  640.  */
  641. src_reg
  642. ir_to_mesa_visitor::get_temp(const glsl_type *type)
  643. {
  644.    src_reg src;
  645.  
  646.    src.file = PROGRAM_TEMPORARY;
  647.    src.index = next_temp;
  648.    src.reladdr = NULL;
  649.    next_temp += type_size(type);
  650.  
  651.    if (type->is_array() || type->is_record()) {
  652.       src.swizzle = SWIZZLE_NOOP;
  653.    } else {
  654.       src.swizzle = swizzle_for_size(type->vector_elements);
  655.    }
  656.    src.negate = 0;
  657.  
  658.    return src;
  659. }
  660.  
  661. variable_storage *
  662. ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
  663. {
  664.    
  665.    variable_storage *entry;
  666.  
  667.    foreach_iter(exec_list_iterator, iter, this->variables) {
  668.       entry = (variable_storage *)iter.get();
  669.  
  670.       if (entry->var == var)
  671.          return entry;
  672.    }
  673.  
  674.    return NULL;
  675. }
  676.  
  677. void
  678. ir_to_mesa_visitor::visit(ir_variable *ir)
  679. {
  680.    if (strcmp(ir->name, "gl_FragCoord") == 0) {
  681.       struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
  682.  
  683.       fp->OriginUpperLeft = ir->origin_upper_left;
  684.       fp->PixelCenterInteger = ir->pixel_center_integer;
  685.    }
  686.  
  687.    if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
  688.       unsigned int i;
  689.       const ir_state_slot *const slots = ir->state_slots;
  690.       assert(ir->state_slots != NULL);
  691.  
  692.       /* Check if this statevar's setup in the STATE file exactly
  693.        * matches how we'll want to reference it as a
  694.        * struct/array/whatever.  If not, then we need to move it into
  695.        * temporary storage and hope that it'll get copy-propagated
  696.        * out.
  697.        */
  698.       for (i = 0; i < ir->num_state_slots; i++) {
  699.          if (slots[i].swizzle != SWIZZLE_XYZW) {
  700.             break;
  701.          }
  702.       }
  703.  
  704.       variable_storage *storage;
  705.       dst_reg dst;
  706.       if (i == ir->num_state_slots) {
  707.          /* We'll set the index later. */
  708.          storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
  709.          this->variables.push_tail(storage);
  710.  
  711.          dst = undef_dst;
  712.       } else {
  713.          /* The variable_storage constructor allocates slots based on the size
  714.           * of the type.  However, this had better match the number of state
  715.           * elements that we're going to copy into the new temporary.
  716.           */
  717.          assert((int) ir->num_state_slots == type_size(ir->type));
  718.  
  719.          storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
  720.                                                  this->next_temp);
  721.          this->variables.push_tail(storage);
  722.          this->next_temp += type_size(ir->type);
  723.  
  724.          dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
  725.       }
  726.  
  727.  
  728.       for (unsigned int i = 0; i < ir->num_state_slots; i++) {
  729.          int index = _mesa_add_state_reference(this->prog->Parameters,
  730.                                                (gl_state_index *)slots[i].tokens);
  731.  
  732.          if (storage->file == PROGRAM_STATE_VAR) {
  733.             if (storage->index == -1) {
  734.                storage->index = index;
  735.             } else {
  736.                assert(index == storage->index + (int)i);
  737.             }
  738.          } else {
  739.             src_reg src(PROGRAM_STATE_VAR, index, NULL);
  740.             src.swizzle = slots[i].swizzle;
  741.             emit(ir, OPCODE_MOV, dst, src);
  742.             /* even a float takes up a whole vec4 reg in a struct/array. */
  743.             dst.index++;
  744.          }
  745.       }
  746.  
  747.       if (storage->file == PROGRAM_TEMPORARY &&
  748.           dst.index != storage->index + (int) ir->num_state_slots) {
  749.          linker_error(this->shader_program,
  750.                       "failed to load builtin uniform `%s' "
  751.                       "(%d/%d regs loaded)\n",
  752.                       ir->name, dst.index - storage->index,
  753.                       type_size(ir->type));
  754.       }
  755.    }
  756. }
  757.  
  758. void
  759. ir_to_mesa_visitor::visit(ir_loop *ir)
  760. {
  761.    ir_dereference_variable *counter = NULL;
  762.  
  763.    if (ir->counter != NULL)
  764.       counter = new(mem_ctx) ir_dereference_variable(ir->counter);
  765.  
  766.    if (ir->from != NULL) {
  767.       assert(ir->counter != NULL);
  768.  
  769.       ir_assignment *a =
  770.         new(mem_ctx) ir_assignment(counter, ir->from, NULL);
  771.  
  772.       a->accept(this);
  773.    }
  774.  
  775.    emit(NULL, OPCODE_BGNLOOP);
  776.  
  777.    if (ir->to) {
  778.       ir_expression *e =
  779.          new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
  780.                                           counter, ir->to);
  781.       ir_if *if_stmt =  new(mem_ctx) ir_if(e);
  782.  
  783.       ir_loop_jump *brk =
  784.         new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
  785.  
  786.       if_stmt->then_instructions.push_tail(brk);
  787.  
  788.       if_stmt->accept(this);
  789.    }
  790.  
  791.    visit_exec_list(&ir->body_instructions, this);
  792.  
  793.    if (ir->increment) {
  794.       ir_expression *e =
  795.          new(mem_ctx) ir_expression(ir_binop_add, counter->type,
  796.                                           counter, ir->increment);
  797.  
  798.       ir_assignment *a =
  799.         new(mem_ctx) ir_assignment(counter, e, NULL);
  800.  
  801.       a->accept(this);
  802.    }
  803.  
  804.    emit(NULL, OPCODE_ENDLOOP);
  805. }
  806.  
  807. void
  808. ir_to_mesa_visitor::visit(ir_loop_jump *ir)
  809. {
  810.    switch (ir->mode) {
  811.    case ir_loop_jump::jump_break:
  812.       emit(NULL, OPCODE_BRK);
  813.       break;
  814.    case ir_loop_jump::jump_continue:
  815.       emit(NULL, OPCODE_CONT);
  816.       break;
  817.    }
  818. }
  819.  
  820.  
  821. void
  822. ir_to_mesa_visitor::visit(ir_function_signature *ir)
  823. {
  824.    assert(0);
  825.    (void)ir;
  826. }
  827.  
  828. void
  829. ir_to_mesa_visitor::visit(ir_function *ir)
  830. {
  831.    /* Ignore function bodies other than main() -- we shouldn't see calls to
  832.     * them since they should all be inlined before we get to ir_to_mesa.
  833.     */
  834.    if (strcmp(ir->name, "main") == 0) {
  835.       const ir_function_signature *sig;
  836.       exec_list empty;
  837.  
  838.       sig = ir->matching_signature(&empty);
  839.  
  840.       assert(sig);
  841.  
  842.       foreach_iter(exec_list_iterator, iter, sig->body) {
  843.          ir_instruction *ir = (ir_instruction *)iter.get();
  844.  
  845.          ir->accept(this);
  846.       }
  847.    }
  848. }
  849.  
  850. bool
  851. ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
  852. {
  853.    int nonmul_operand = 1 - mul_operand;
  854.    src_reg a, b, c;
  855.  
  856.    ir_expression *expr = ir->operands[mul_operand]->as_expression();
  857.    if (!expr || expr->operation != ir_binop_mul)
  858.       return false;
  859.  
  860.    expr->operands[0]->accept(this);
  861.    a = this->result;
  862.    expr->operands[1]->accept(this);
  863.    b = this->result;
  864.    ir->operands[nonmul_operand]->accept(this);
  865.    c = this->result;
  866.  
  867.    this->result = get_temp(ir->type);
  868.    emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
  869.  
  870.    return true;
  871. }
  872.  
  873. /**
  874.  * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
  875.  *
  876.  * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
  877.  * implemented using multiplication, and logical-or is implemented using
  878.  * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
  879.  * As result, the logical expression (a & !b) can be rewritten as:
  880.  *
  881.  *     - a * !b
  882.  *     - a * (1 - b)
  883.  *     - (a * 1) - (a * b)
  884.  *     - a + -(a * b)
  885.  *     - a + (a * -b)
  886.  *
  887.  * This final expression can be implemented as a single MAD(a, -b, a)
  888.  * instruction.
  889.  */
  890. bool
  891. ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
  892. {
  893.    const int other_operand = 1 - try_operand;
  894.    src_reg a, b;
  895.  
  896.    ir_expression *expr = ir->operands[try_operand]->as_expression();
  897.    if (!expr || expr->operation != ir_unop_logic_not)
  898.       return false;
  899.  
  900.    ir->operands[other_operand]->accept(this);
  901.    a = this->result;
  902.    expr->operands[0]->accept(this);
  903.    b = this->result;
  904.  
  905.    b.negate = ~b.negate;
  906.  
  907.    this->result = get_temp(ir->type);
  908.    emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
  909.  
  910.    return true;
  911. }
  912.  
  913. bool
  914. ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
  915. {
  916.    /* Saturates were only introduced to vertex programs in
  917.     * NV_vertex_program3, so don't give them to drivers in the VP.
  918.     */
  919.    if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
  920.       return false;
  921.  
  922.    ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
  923.    if (!sat_src)
  924.       return false;
  925.  
  926.    sat_src->accept(this);
  927.    src_reg src = this->result;
  928.  
  929.    /* If we generated an expression instruction into a temporary in
  930.     * processing the saturate's operand, apply the saturate to that
  931.     * instruction.  Otherwise, generate a MOV to do the saturate.
  932.     *
  933.     * Note that we have to be careful to only do this optimization if
  934.     * the instruction in question was what generated src->result.  For
  935.     * example, ir_dereference_array might generate a MUL instruction
  936.     * to create the reladdr, and return us a src reg using that
  937.     * reladdr.  That MUL result is not the value we're trying to
  938.     * saturate.
  939.     */
  940.    ir_expression *sat_src_expr = sat_src->as_expression();
  941.    ir_to_mesa_instruction *new_inst;
  942.    new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
  943.    if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
  944.                         sat_src_expr->operation == ir_binop_add ||
  945.                         sat_src_expr->operation == ir_binop_dot)) {
  946.       new_inst->saturate = true;
  947.    } else {
  948.       this->result = get_temp(ir->type);
  949.       ir_to_mesa_instruction *inst;
  950.       inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
  951.       inst->saturate = true;
  952.    }
  953.  
  954.    return true;
  955. }
  956.  
  957. void
  958. ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
  959.                                     src_reg *reg, int *num_reladdr)
  960. {
  961.    if (!reg->reladdr)
  962.       return;
  963.  
  964.    emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
  965.  
  966.    if (*num_reladdr != 1) {
  967.       src_reg temp = get_temp(glsl_type::vec4_type);
  968.  
  969.       emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
  970.       *reg = temp;
  971.    }
  972.  
  973.    (*num_reladdr)--;
  974. }
  975.  
  976. void
  977. ir_to_mesa_visitor::emit_swz(ir_expression *ir)
  978. {
  979.    /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
  980.     * This means that each of the operands is either an immediate value of -1,
  981.     * 0, or 1, or is a component from one source register (possibly with
  982.     * negation).
  983.     */
  984.    uint8_t components[4] = { 0 };
  985.    bool negate[4] = { false };
  986.    ir_variable *var = NULL;
  987.  
  988.    for (unsigned i = 0; i < ir->type->vector_elements; i++) {
  989.       ir_rvalue *op = ir->operands[i];
  990.  
  991.       assert(op->type->is_scalar());
  992.  
  993.       while (op != NULL) {
  994.          switch (op->ir_type) {
  995.          case ir_type_constant: {
  996.  
  997.             assert(op->type->is_scalar());
  998.  
  999.             const ir_constant *const c = op->as_constant();
  1000.             if (c->is_one()) {
  1001.                components[i] = SWIZZLE_ONE;
  1002.             } else if (c->is_zero()) {
  1003.                components[i] = SWIZZLE_ZERO;
  1004.             } else if (c->is_negative_one()) {
  1005.                components[i] = SWIZZLE_ONE;
  1006.                negate[i] = true;
  1007.             } else {
  1008.                assert(!"SWZ constant must be 0.0 or 1.0.");
  1009.             }
  1010.  
  1011.             op = NULL;
  1012.             break;
  1013.          }
  1014.  
  1015.          case ir_type_dereference_variable: {
  1016.             ir_dereference_variable *const deref =
  1017.                (ir_dereference_variable *) op;
  1018.  
  1019.             assert((var == NULL) || (deref->var == var));
  1020.             components[i] = SWIZZLE_X;
  1021.             var = deref->var;
  1022.             op = NULL;
  1023.             break;
  1024.          }
  1025.  
  1026.          case ir_type_expression: {
  1027.             ir_expression *const expr = (ir_expression *) op;
  1028.  
  1029.             assert(expr->operation == ir_unop_neg);
  1030.             negate[i] = true;
  1031.  
  1032.             op = expr->operands[0];
  1033.             break;
  1034.          }
  1035.  
  1036.          case ir_type_swizzle: {
  1037.             ir_swizzle *const swiz = (ir_swizzle *) op;
  1038.  
  1039.             components[i] = swiz->mask.x;
  1040.             op = swiz->val;
  1041.             break;
  1042.          }
  1043.  
  1044.          default:
  1045.             assert(!"Should not get here.");
  1046.             return;
  1047.          }
  1048.       }
  1049.    }
  1050.  
  1051.    assert(var != NULL);
  1052.  
  1053.    ir_dereference_variable *const deref =
  1054.       new(mem_ctx) ir_dereference_variable(var);
  1055.  
  1056.    this->result.file = PROGRAM_UNDEFINED;
  1057.    deref->accept(this);
  1058.    if (this->result.file == PROGRAM_UNDEFINED) {
  1059.       printf("Failed to get tree for expression operand:\n");
  1060.       deref->print();
  1061.       printf("\n");
  1062.       exit(1);
  1063.    }
  1064.  
  1065.    src_reg src;
  1066.  
  1067.    src = this->result;
  1068.    src.swizzle = MAKE_SWIZZLE4(components[0],
  1069.                                components[1],
  1070.                                components[2],
  1071.                                components[3]);
  1072.    src.negate = ((unsigned(negate[0]) << 0)
  1073.                  | (unsigned(negate[1]) << 1)
  1074.                  | (unsigned(negate[2]) << 2)
  1075.                  | (unsigned(negate[3]) << 3));
  1076.  
  1077.    /* Storage for our result.  Ideally for an assignment we'd be using the
  1078.     * actual storage for the result here, instead.
  1079.     */
  1080.    const src_reg result_src = get_temp(ir->type);
  1081.    dst_reg result_dst = dst_reg(result_src);
  1082.  
  1083.    /* Limit writes to the channels that will be used by result_src later.
  1084.     * This does limit this temp's use as a temporary for multi-instruction
  1085.     * sequences.
  1086.     */
  1087.    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
  1088.  
  1089.    emit(ir, OPCODE_SWZ, result_dst, src);
  1090.    this->result = result_src;
  1091. }
  1092.  
  1093. void
  1094. ir_to_mesa_visitor::visit(ir_expression *ir)
  1095. {
  1096.    unsigned int operand;
  1097.    src_reg op[Elements(ir->operands)];
  1098.    src_reg result_src;
  1099.    dst_reg result_dst;
  1100.  
  1101.    /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
  1102.     */
  1103.    if (ir->operation == ir_binop_add) {
  1104.       if (try_emit_mad(ir, 1))
  1105.          return;
  1106.       if (try_emit_mad(ir, 0))
  1107.          return;
  1108.    }
  1109.  
  1110.    /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
  1111.     */
  1112.    if (ir->operation == ir_binop_logic_and) {
  1113.       if (try_emit_mad_for_and_not(ir, 1))
  1114.          return;
  1115.       if (try_emit_mad_for_and_not(ir, 0))
  1116.          return;
  1117.    }
  1118.  
  1119.    if (try_emit_sat(ir))
  1120.       return;
  1121.  
  1122.    if (ir->operation == ir_quadop_vector) {
  1123.       this->emit_swz(ir);
  1124.       return;
  1125.    }
  1126.  
  1127.    for (operand = 0; operand < ir->get_num_operands(); operand++) {
  1128.       this->result.file = PROGRAM_UNDEFINED;
  1129.       ir->operands[operand]->accept(this);
  1130.       if (this->result.file == PROGRAM_UNDEFINED) {
  1131.          printf("Failed to get tree for expression operand:\n");
  1132.          ir->operands[operand]->print();
  1133.          printf("\n");
  1134.          exit(1);
  1135.       }
  1136.       op[operand] = this->result;
  1137.  
  1138.       /* Matrix expression operands should have been broken down to vector
  1139.        * operations already.
  1140.        */
  1141.       assert(!ir->operands[operand]->type->is_matrix());
  1142.    }
  1143.  
  1144.    int vector_elements = ir->operands[0]->type->vector_elements;
  1145.    if (ir->operands[1]) {
  1146.       vector_elements = MAX2(vector_elements,
  1147.                              ir->operands[1]->type->vector_elements);
  1148.    }
  1149.  
  1150.    this->result.file = PROGRAM_UNDEFINED;
  1151.  
  1152.    /* Storage for our result.  Ideally for an assignment we'd be using
  1153.     * the actual storage for the result here, instead.
  1154.     */
  1155.    result_src = get_temp(ir->type);
  1156.    /* convenience for the emit functions below. */
  1157.    result_dst = dst_reg(result_src);
  1158.    /* Limit writes to the channels that will be used by result_src later.
  1159.     * This does limit this temp's use as a temporary for multi-instruction
  1160.     * sequences.
  1161.     */
  1162.    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
  1163.  
  1164.    switch (ir->operation) {
  1165.    case ir_unop_logic_not:
  1166.       /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
  1167.        * older GPUs implement SEQ using multiple instructions (i915 uses two
  1168.        * SGE instructions and a MUL instruction).  Since our logic values are
  1169.        * 0.0 and 1.0, 1-x also implements !x.
  1170.        */
  1171.       op[0].negate = ~op[0].negate;
  1172.       emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
  1173.       break;
  1174.    case ir_unop_neg:
  1175.       op[0].negate = ~op[0].negate;
  1176.       result_src = op[0];
  1177.       break;
  1178.    case ir_unop_abs:
  1179.       emit(ir, OPCODE_ABS, result_dst, op[0]);
  1180.       break;
  1181.    case ir_unop_sign:
  1182.       emit(ir, OPCODE_SSG, result_dst, op[0]);
  1183.       break;
  1184.    case ir_unop_rcp:
  1185.       emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
  1186.       break;
  1187.  
  1188.    case ir_unop_exp2:
  1189.       emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
  1190.       break;
  1191.    case ir_unop_exp:
  1192.    case ir_unop_log:
  1193.       assert(!"not reached: should be handled by ir_explog_to_explog2");
  1194.       break;
  1195.    case ir_unop_log2:
  1196.       emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
  1197.       break;
  1198.    case ir_unop_sin:
  1199.       emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
  1200.       break;
  1201.    case ir_unop_cos:
  1202.       emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
  1203.       break;
  1204.    case ir_unop_sin_reduced:
  1205.       emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
  1206.       break;
  1207.    case ir_unop_cos_reduced:
  1208.       emit_scs(ir, OPCODE_COS, result_dst, op[0]);
  1209.       break;
  1210.  
  1211.    case ir_unop_dFdx:
  1212.       emit(ir, OPCODE_DDX, result_dst, op[0]);
  1213.       break;
  1214.    case ir_unop_dFdy:
  1215.       emit(ir, OPCODE_DDY, result_dst, op[0]);
  1216.       break;
  1217.  
  1218.    case ir_unop_noise: {
  1219.       const enum prog_opcode opcode =
  1220.          prog_opcode(OPCODE_NOISE1
  1221.                      + (ir->operands[0]->type->vector_elements) - 1);
  1222.       assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
  1223.  
  1224.       emit(ir, opcode, result_dst, op[0]);
  1225.       break;
  1226.    }
  1227.  
  1228.    case ir_binop_add:
  1229.       emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
  1230.       break;
  1231.    case ir_binop_sub:
  1232.       emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
  1233.       break;
  1234.  
  1235.    case ir_binop_mul:
  1236.       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
  1237.       break;
  1238.    case ir_binop_div:
  1239.       assert(!"not reached: should be handled by ir_div_to_mul_rcp");
  1240.       break;
  1241.    case ir_binop_mod:
  1242.       /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
  1243.       assert(ir->type->is_integer());
  1244.       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
  1245.       break;
  1246.  
  1247.    case ir_binop_less:
  1248.       emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
  1249.       break;
  1250.    case ir_binop_greater:
  1251.       emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
  1252.       break;
  1253.    case ir_binop_lequal:
  1254.       emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
  1255.       break;
  1256.    case ir_binop_gequal:
  1257.       emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
  1258.       break;
  1259.    case ir_binop_equal:
  1260.       emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
  1261.       break;
  1262.    case ir_binop_nequal:
  1263.       emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
  1264.       break;
  1265.    case ir_binop_all_equal:
  1266.       /* "==" operator producing a scalar boolean. */
  1267.       if (ir->operands[0]->type->is_vector() ||
  1268.           ir->operands[1]->type->is_vector()) {
  1269.          src_reg temp = get_temp(glsl_type::vec4_type);
  1270.          emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
  1271.  
  1272.          /* After the dot-product, the value will be an integer on the
  1273.           * range [0,4].  Zero becomes 1.0, and positive values become zero.
  1274.           */
  1275.          emit_dp(ir, result_dst, temp, temp, vector_elements);
  1276.  
  1277.          /* Negating the result of the dot-product gives values on the range
  1278.           * [-4, 0].  Zero becomes 1.0, and negative values become zero.  This
  1279.           * achieved using SGE.
  1280.           */
  1281.          src_reg sge_src = result_src;
  1282.          sge_src.negate = ~sge_src.negate;
  1283.          emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
  1284.       } else {
  1285.          emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
  1286.       }
  1287.       break;
  1288.    case ir_binop_any_nequal:
  1289.       /* "!=" operator producing a scalar boolean. */
  1290.       if (ir->operands[0]->type->is_vector() ||
  1291.           ir->operands[1]->type->is_vector()) {
  1292.          src_reg temp = get_temp(glsl_type::vec4_type);
  1293.          emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
  1294.  
  1295.          /* After the dot-product, the value will be an integer on the
  1296.           * range [0,4].  Zero stays zero, and positive values become 1.0.
  1297.           */
  1298.          ir_to_mesa_instruction *const dp =
  1299.             emit_dp(ir, result_dst, temp, temp, vector_elements);
  1300.          if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
  1301.             /* The clamping to [0,1] can be done for free in the fragment
  1302.              * shader with a saturate.
  1303.              */
  1304.             dp->saturate = true;
  1305.          } else {
  1306.             /* Negating the result of the dot-product gives values on the range
  1307.              * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
  1308.              * achieved using SLT.
  1309.              */
  1310.             src_reg slt_src = result_src;
  1311.             slt_src.negate = ~slt_src.negate;
  1312.             emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
  1313.          }
  1314.       } else {
  1315.          emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
  1316.       }
  1317.       break;
  1318.  
  1319.    case ir_unop_any: {
  1320.       assert(ir->operands[0]->type->is_vector());
  1321.  
  1322.       /* After the dot-product, the value will be an integer on the
  1323.        * range [0,4].  Zero stays zero, and positive values become 1.0.
  1324.        */
  1325.       ir_to_mesa_instruction *const dp =
  1326.          emit_dp(ir, result_dst, op[0], op[0],
  1327.                  ir->operands[0]->type->vector_elements);
  1328.       if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
  1329.          /* The clamping to [0,1] can be done for free in the fragment
  1330.           * shader with a saturate.
  1331.           */
  1332.          dp->saturate = true;
  1333.       } else {
  1334.          /* Negating the result of the dot-product gives values on the range
  1335.           * [-4, 0].  Zero stays zero, and negative values become 1.0.  This
  1336.           * is achieved using SLT.
  1337.           */
  1338.          src_reg slt_src = result_src;
  1339.          slt_src.negate = ~slt_src.negate;
  1340.          emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
  1341.       }
  1342.       break;
  1343.    }
  1344.  
  1345.    case ir_binop_logic_xor:
  1346.       emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
  1347.       break;
  1348.  
  1349.    case ir_binop_logic_or: {
  1350.       /* After the addition, the value will be an integer on the
  1351.        * range [0,2].  Zero stays zero, and positive values become 1.0.
  1352.        */
  1353.       ir_to_mesa_instruction *add =
  1354.          emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
  1355.       if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
  1356.          /* The clamping to [0,1] can be done for free in the fragment
  1357.           * shader with a saturate.
  1358.           */
  1359.          add->saturate = true;
  1360.       } else {
  1361.          /* Negating the result of the addition gives values on the range
  1362.           * [-2, 0].  Zero stays zero, and negative values become 1.0.  This
  1363.           * is achieved using SLT.
  1364.           */
  1365.          src_reg slt_src = result_src;
  1366.          slt_src.negate = ~slt_src.negate;
  1367.          emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
  1368.       }
  1369.       break;
  1370.    }
  1371.  
  1372.    case ir_binop_logic_and:
  1373.       /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
  1374.       emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
  1375.       break;
  1376.  
  1377.    case ir_binop_dot:
  1378.       assert(ir->operands[0]->type->is_vector());
  1379.       assert(ir->operands[0]->type == ir->operands[1]->type);
  1380.       emit_dp(ir, result_dst, op[0], op[1],
  1381.               ir->operands[0]->type->vector_elements);
  1382.       break;
  1383.  
  1384.    case ir_unop_sqrt:
  1385.       /* sqrt(x) = x * rsq(x). */
  1386.       emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
  1387.       emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
  1388.       /* For incoming channels <= 0, set the result to 0. */
  1389.       op[0].negate = ~op[0].negate;
  1390.       emit(ir, OPCODE_CMP, result_dst,
  1391.                           op[0], result_src, src_reg_for_float(0.0));
  1392.       break;
  1393.    case ir_unop_rsq:
  1394.       emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
  1395.       break;
  1396.    case ir_unop_i2f:
  1397.    case ir_unop_u2f:
  1398.    case ir_unop_b2f:
  1399.    case ir_unop_b2i:
  1400.    case ir_unop_i2u:
  1401.    case ir_unop_u2i:
  1402.       /* Mesa IR lacks types, ints are stored as truncated floats. */
  1403.       result_src = op[0];
  1404.       break;
  1405.    case ir_unop_f2i:
  1406.    case ir_unop_f2u:
  1407.       emit(ir, OPCODE_TRUNC, result_dst, op[0]);
  1408.       break;
  1409.    case ir_unop_f2b:
  1410.    case ir_unop_i2b:
  1411.       emit(ir, OPCODE_SNE, result_dst,
  1412.                           op[0], src_reg_for_float(0.0));
  1413.       break;
  1414.    case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
  1415.    case ir_unop_bitcast_f2u:
  1416.    case ir_unop_bitcast_i2f:
  1417.    case ir_unop_bitcast_u2f:
  1418.       break;
  1419.    case ir_unop_trunc:
  1420.       emit(ir, OPCODE_TRUNC, result_dst, op[0]);
  1421.       break;
  1422.    case ir_unop_ceil:
  1423.       op[0].negate = ~op[0].negate;
  1424.       emit(ir, OPCODE_FLR, result_dst, op[0]);
  1425.       result_src.negate = ~result_src.negate;
  1426.       break;
  1427.    case ir_unop_floor:
  1428.       emit(ir, OPCODE_FLR, result_dst, op[0]);
  1429.       break;
  1430.    case ir_unop_fract:
  1431.       emit(ir, OPCODE_FRC, result_dst, op[0]);
  1432.       break;
  1433.    case ir_unop_pack_snorm_2x16:
  1434.    case ir_unop_pack_snorm_4x8:
  1435.    case ir_unop_pack_unorm_2x16:
  1436.    case ir_unop_pack_unorm_4x8:
  1437.    case ir_unop_pack_half_2x16:
  1438.    case ir_unop_unpack_snorm_2x16:
  1439.    case ir_unop_unpack_snorm_4x8:
  1440.    case ir_unop_unpack_unorm_2x16:
  1441.    case ir_unop_unpack_unorm_4x8:
  1442.    case ir_unop_unpack_half_2x16:
  1443.    case ir_unop_unpack_half_2x16_split_x:
  1444.    case ir_unop_unpack_half_2x16_split_y:
  1445.    case ir_binop_pack_half_2x16_split:
  1446.    case ir_unop_bitfield_reverse:
  1447.    case ir_unop_bit_count:
  1448.    case ir_unop_find_msb:
  1449.    case ir_unop_find_lsb:
  1450.       assert(!"not supported");
  1451.       break;
  1452.    case ir_binop_min:
  1453.       emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
  1454.       break;
  1455.    case ir_binop_max:
  1456.       emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
  1457.       break;
  1458.    case ir_binop_pow:
  1459.       emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
  1460.       break;
  1461.  
  1462.       /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
  1463.        * hardware backends have no way to avoid Mesa IR generation
  1464.        * even if they don't use it, we need to emit "something" and
  1465.        * continue.
  1466.        */
  1467.    case ir_binop_lshift:
  1468.    case ir_binop_rshift:
  1469.    case ir_binop_bit_and:
  1470.    case ir_binop_bit_xor:
  1471.    case ir_binop_bit_or:
  1472.       emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
  1473.       break;
  1474.  
  1475.    case ir_unop_bit_not:
  1476.    case ir_unop_round_even:
  1477.       emit(ir, OPCODE_MOV, result_dst, op[0]);
  1478.       break;
  1479.  
  1480.    case ir_binop_ubo_load:
  1481.       assert(!"not supported");
  1482.       break;
  1483.  
  1484.    case ir_triop_lrp:
  1485.       /* ir_triop_lrp operands are (x, y, a) while
  1486.        * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
  1487.        */
  1488.       emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
  1489.       break;
  1490.  
  1491.    case ir_binop_vector_extract:
  1492.    case ir_binop_bfm:
  1493.    case ir_triop_bfi:
  1494.    case ir_triop_bitfield_extract:
  1495.    case ir_triop_vector_insert:
  1496.    case ir_quadop_bitfield_insert:
  1497.       assert(!"not supported");
  1498.       break;
  1499.  
  1500.    case ir_quadop_vector:
  1501.       /* This operation should have already been handled.
  1502.        */
  1503.       assert(!"Should not get here.");
  1504.       break;
  1505.    }
  1506.  
  1507.    this->result = result_src;
  1508. }
  1509.  
  1510.  
  1511. void
  1512. ir_to_mesa_visitor::visit(ir_swizzle *ir)
  1513. {
  1514.    src_reg src;
  1515.    int i;
  1516.    int swizzle[4];
  1517.  
  1518.    /* Note that this is only swizzles in expressions, not those on the left
  1519.     * hand side of an assignment, which do write masking.  See ir_assignment
  1520.     * for that.
  1521.     */
  1522.  
  1523.    ir->val->accept(this);
  1524.    src = this->result;
  1525.    assert(src.file != PROGRAM_UNDEFINED);
  1526.  
  1527.    for (i = 0; i < 4; i++) {
  1528.       if (i < ir->type->vector_elements) {
  1529.          switch (i) {
  1530.          case 0:
  1531.             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
  1532.             break;
  1533.          case 1:
  1534.             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
  1535.             break;
  1536.          case 2:
  1537.             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
  1538.             break;
  1539.          case 3:
  1540.             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
  1541.             break;
  1542.          }
  1543.       } else {
  1544.          /* If the type is smaller than a vec4, replicate the last
  1545.           * channel out.
  1546.           */
  1547.          swizzle[i] = swizzle[ir->type->vector_elements - 1];
  1548.       }
  1549.    }
  1550.  
  1551.    src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
  1552.  
  1553.    this->result = src;
  1554. }
  1555.  
  1556. void
  1557. ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
  1558. {
  1559.    variable_storage *entry = find_variable_storage(ir->var);
  1560.    ir_variable *var = ir->var;
  1561.  
  1562.    if (!entry) {
  1563.       switch (var->mode) {
  1564.       case ir_var_uniform:
  1565.          entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
  1566.                                                var->location);
  1567.          this->variables.push_tail(entry);
  1568.          break;
  1569.       case ir_var_shader_in:
  1570.          /* The linker assigns locations for varyings and attributes,
  1571.           * including deprecated builtins (like gl_Color),
  1572.           * user-assigned generic attributes (glBindVertexLocation),
  1573.           * and user-defined varyings.
  1574.           */
  1575.          assert(var->location != -1);
  1576.          entry = new(mem_ctx) variable_storage(var,
  1577.                                                PROGRAM_INPUT,
  1578.                                                var->location);
  1579.          break;
  1580.       case ir_var_shader_out:
  1581.          assert(var->location != -1);
  1582.          entry = new(mem_ctx) variable_storage(var,
  1583.                                                PROGRAM_OUTPUT,
  1584.                                                var->location);
  1585.          break;
  1586.       case ir_var_system_value:
  1587.          entry = new(mem_ctx) variable_storage(var,
  1588.                                                PROGRAM_SYSTEM_VALUE,
  1589.                                                var->location);
  1590.          break;
  1591.       case ir_var_auto:
  1592.       case ir_var_temporary:
  1593.          entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
  1594.                                                this->next_temp);
  1595.          this->variables.push_tail(entry);
  1596.  
  1597.          next_temp += type_size(var->type);
  1598.          break;
  1599.       }
  1600.  
  1601.       if (!entry) {
  1602.          printf("Failed to make storage for %s\n", var->name);
  1603.          exit(1);
  1604.       }
  1605.    }
  1606.  
  1607.    this->result = src_reg(entry->file, entry->index, var->type);
  1608. }
  1609.  
  1610. void
  1611. ir_to_mesa_visitor::visit(ir_dereference_array *ir)
  1612. {
  1613.    ir_constant *index;
  1614.    src_reg src;
  1615.    int element_size = type_size(ir->type);
  1616.  
  1617.    index = ir->array_index->constant_expression_value();
  1618.  
  1619.    ir->array->accept(this);
  1620.    src = this->result;
  1621.  
  1622.    if (index) {
  1623.       src.index += index->value.i[0] * element_size;
  1624.    } else {
  1625.       /* Variable index array dereference.  It eats the "vec4" of the
  1626.        * base of the array and an index that offsets the Mesa register
  1627.        * index.
  1628.        */
  1629.       ir->array_index->accept(this);
  1630.  
  1631.       src_reg index_reg;
  1632.  
  1633.       if (element_size == 1) {
  1634.          index_reg = this->result;
  1635.       } else {
  1636.          index_reg = get_temp(glsl_type::float_type);
  1637.  
  1638.          emit(ir, OPCODE_MUL, dst_reg(index_reg),
  1639.               this->result, src_reg_for_float(element_size));
  1640.       }
  1641.  
  1642.       /* If there was already a relative address register involved, add the
  1643.        * new and the old together to get the new offset.
  1644.        */
  1645.       if (src.reladdr != NULL)  {
  1646.          src_reg accum_reg = get_temp(glsl_type::float_type);
  1647.  
  1648.          emit(ir, OPCODE_ADD, dst_reg(accum_reg),
  1649.               index_reg, *src.reladdr);
  1650.  
  1651.          index_reg = accum_reg;
  1652.       }
  1653.  
  1654.       src.reladdr = ralloc(mem_ctx, src_reg);
  1655.       memcpy(src.reladdr, &index_reg, sizeof(index_reg));
  1656.    }
  1657.  
  1658.    /* If the type is smaller than a vec4, replicate the last channel out. */
  1659.    if (ir->type->is_scalar() || ir->type->is_vector())
  1660.       src.swizzle = swizzle_for_size(ir->type->vector_elements);
  1661.    else
  1662.       src.swizzle = SWIZZLE_NOOP;
  1663.  
  1664.    this->result = src;
  1665. }
  1666.  
  1667. void
  1668. ir_to_mesa_visitor::visit(ir_dereference_record *ir)
  1669. {
  1670.    unsigned int i;
  1671.    const glsl_type *struct_type = ir->record->type;
  1672.    int offset = 0;
  1673.  
  1674.    ir->record->accept(this);
  1675.  
  1676.    for (i = 0; i < struct_type->length; i++) {
  1677.       if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
  1678.          break;
  1679.       offset += type_size(struct_type->fields.structure[i].type);
  1680.    }
  1681.  
  1682.    /* If the type is smaller than a vec4, replicate the last channel out. */
  1683.    if (ir->type->is_scalar() || ir->type->is_vector())
  1684.       this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
  1685.    else
  1686.       this->result.swizzle = SWIZZLE_NOOP;
  1687.  
  1688.    this->result.index += offset;
  1689. }
  1690.  
  1691. /**
  1692.  * We want to be careful in assignment setup to hit the actual storage
  1693.  * instead of potentially using a temporary like we might with the
  1694.  * ir_dereference handler.
  1695.  */
  1696. static dst_reg
  1697. get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
  1698. {
  1699.    /* The LHS must be a dereference.  If the LHS is a variable indexed array
  1700.     * access of a vector, it must be separated into a series conditional moves
  1701.     * before reaching this point (see ir_vec_index_to_cond_assign).
  1702.     */
  1703.    assert(ir->as_dereference());
  1704.    ir_dereference_array *deref_array = ir->as_dereference_array();
  1705.    if (deref_array) {
  1706.       assert(!deref_array->array->type->is_vector());
  1707.    }
  1708.  
  1709.    /* Use the rvalue deref handler for the most part.  We'll ignore
  1710.     * swizzles in it and write swizzles using writemask, though.
  1711.     */
  1712.    ir->accept(v);
  1713.    return dst_reg(v->result);
  1714. }
  1715.  
  1716. /**
  1717.  * Process the condition of a conditional assignment
  1718.  *
  1719.  * Examines the condition of a conditional assignment to generate the optimal
  1720.  * first operand of a \c CMP instruction.  If the condition is a relational
  1721.  * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
  1722.  * used as the source for the \c CMP instruction.  Otherwise the comparison
  1723.  * is processed to a boolean result, and the boolean result is used as the
  1724.  * operand to the CMP instruction.
  1725.  */
  1726. bool
  1727. ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
  1728. {
  1729.    ir_rvalue *src_ir = ir;
  1730.    bool negate = true;
  1731.    bool switch_order = false;
  1732.  
  1733.    ir_expression *const expr = ir->as_expression();
  1734.    if ((expr != NULL) && (expr->get_num_operands() == 2)) {
  1735.       bool zero_on_left = false;
  1736.  
  1737.       if (expr->operands[0]->is_zero()) {
  1738.          src_ir = expr->operands[1];
  1739.          zero_on_left = true;
  1740.       } else if (expr->operands[1]->is_zero()) {
  1741.          src_ir = expr->operands[0];
  1742.          zero_on_left = false;
  1743.       }
  1744.  
  1745.       /*      a is -  0  +            -  0  +
  1746.        * (a <  0)  T  F  F  ( a < 0)  T  F  F
  1747.        * (0 <  a)  F  F  T  (-a < 0)  F  F  T
  1748.        * (a <= 0)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
  1749.        * (0 <= a)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
  1750.        * (a >  0)  F  F  T  (-a < 0)  F  F  T
  1751.        * (0 >  a)  T  F  F  ( a < 0)  T  F  F
  1752.        * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
  1753.        * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
  1754.        *
  1755.        * Note that exchanging the order of 0 and 'a' in the comparison simply
  1756.        * means that the value of 'a' should be negated.
  1757.        */
  1758.       if (src_ir != ir) {
  1759.          switch (expr->operation) {
  1760.          case ir_binop_less:
  1761.             switch_order = false;
  1762.             negate = zero_on_left;
  1763.             break;
  1764.  
  1765.          case ir_binop_greater:
  1766.             switch_order = false;
  1767.             negate = !zero_on_left;
  1768.             break;
  1769.  
  1770.          case ir_binop_lequal:
  1771.             switch_order = true;
  1772.             negate = !zero_on_left;
  1773.             break;
  1774.  
  1775.          case ir_binop_gequal:
  1776.             switch_order = true;
  1777.             negate = zero_on_left;
  1778.             break;
  1779.  
  1780.          default:
  1781.             /* This isn't the right kind of comparison afterall, so make sure
  1782.              * the whole condition is visited.
  1783.              */
  1784.             src_ir = ir;
  1785.             break;
  1786.          }
  1787.       }
  1788.    }
  1789.  
  1790.    src_ir->accept(this);
  1791.  
  1792.    /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
  1793.     * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
  1794.     * choose which value OPCODE_CMP produces without an extra instruction
  1795.     * computing the condition.
  1796.     */
  1797.    if (negate)
  1798.       this->result.negate = ~this->result.negate;
  1799.  
  1800.    return switch_order;
  1801. }
  1802.  
  1803. void
  1804. ir_to_mesa_visitor::visit(ir_assignment *ir)
  1805. {
  1806.    dst_reg l;
  1807.    src_reg r;
  1808.    int i;
  1809.  
  1810.    ir->rhs->accept(this);
  1811.    r = this->result;
  1812.  
  1813.    l = get_assignment_lhs(ir->lhs, this);
  1814.  
  1815.    /* FINISHME: This should really set to the correct maximal writemask for each
  1816.     * FINISHME: component written (in the loops below).  This case can only
  1817.     * FINISHME: occur for matrices, arrays, and structures.
  1818.     */
  1819.    if (ir->write_mask == 0) {
  1820.       assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
  1821.       l.writemask = WRITEMASK_XYZW;
  1822.    } else if (ir->lhs->type->is_scalar()) {
  1823.       /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
  1824.        * FINISHME: W component of fragment shader output zero, work correctly.
  1825.        */
  1826.       l.writemask = WRITEMASK_XYZW;
  1827.    } else {
  1828.       int swizzles[4];
  1829.       int first_enabled_chan = 0;
  1830.       int rhs_chan = 0;
  1831.  
  1832.       assert(ir->lhs->type->is_vector());
  1833.       l.writemask = ir->write_mask;
  1834.  
  1835.       for (int i = 0; i < 4; i++) {
  1836.          if (l.writemask & (1 << i)) {
  1837.             first_enabled_chan = GET_SWZ(r.swizzle, i);
  1838.             break;
  1839.          }
  1840.       }
  1841.  
  1842.       /* Swizzle a small RHS vector into the channels being written.
  1843.        *
  1844.        * glsl ir treats write_mask as dictating how many channels are
  1845.        * present on the RHS while Mesa IR treats write_mask as just
  1846.        * showing which channels of the vec4 RHS get written.
  1847.        */
  1848.       for (int i = 0; i < 4; i++) {
  1849.          if (l.writemask & (1 << i))
  1850.             swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
  1851.          else
  1852.             swizzles[i] = first_enabled_chan;
  1853.       }
  1854.       r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
  1855.                                 swizzles[2], swizzles[3]);
  1856.    }
  1857.  
  1858.    assert(l.file != PROGRAM_UNDEFINED);
  1859.    assert(r.file != PROGRAM_UNDEFINED);
  1860.  
  1861.    if (ir->condition) {
  1862.       const bool switch_order = this->process_move_condition(ir->condition);
  1863.       src_reg condition = this->result;
  1864.  
  1865.       for (i = 0; i < type_size(ir->lhs->type); i++) {
  1866.          if (switch_order) {
  1867.             emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
  1868.          } else {
  1869.             emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
  1870.          }
  1871.  
  1872.          l.index++;
  1873.          r.index++;
  1874.       }
  1875.    } else {
  1876.       for (i = 0; i < type_size(ir->lhs->type); i++) {
  1877.          emit(ir, OPCODE_MOV, l, r);
  1878.          l.index++;
  1879.          r.index++;
  1880.       }
  1881.    }
  1882. }
  1883.  
  1884.  
  1885. void
  1886. ir_to_mesa_visitor::visit(ir_constant *ir)
  1887. {
  1888.    src_reg src;
  1889.    GLfloat stack_vals[4] = { 0 };
  1890.    GLfloat *values = stack_vals;
  1891.    unsigned int i;
  1892.  
  1893.    /* Unfortunately, 4 floats is all we can get into
  1894.     * _mesa_add_unnamed_constant.  So, make a temp to store an
  1895.     * aggregate constant and move each constant value into it.  If we
  1896.     * get lucky, copy propagation will eliminate the extra moves.
  1897.     */
  1898.  
  1899.    if (ir->type->base_type == GLSL_TYPE_STRUCT) {
  1900.       src_reg temp_base = get_temp(ir->type);
  1901.       dst_reg temp = dst_reg(temp_base);
  1902.  
  1903.       foreach_iter(exec_list_iterator, iter, ir->components) {
  1904.          ir_constant *field_value = (ir_constant *)iter.get();
  1905.          int size = type_size(field_value->type);
  1906.  
  1907.          assert(size > 0);
  1908.  
  1909.          field_value->accept(this);
  1910.          src = this->result;
  1911.  
  1912.          for (i = 0; i < (unsigned int)size; i++) {
  1913.             emit(ir, OPCODE_MOV, temp, src);
  1914.  
  1915.             src.index++;
  1916.             temp.index++;
  1917.          }
  1918.       }
  1919.       this->result = temp_base;
  1920.       return;
  1921.    }
  1922.  
  1923.    if (ir->type->is_array()) {
  1924.       src_reg temp_base = get_temp(ir->type);
  1925.       dst_reg temp = dst_reg(temp_base);
  1926.       int size = type_size(ir->type->fields.array);
  1927.  
  1928.       assert(size > 0);
  1929.  
  1930.       for (i = 0; i < ir->type->length; i++) {
  1931.          ir->array_elements[i]->accept(this);
  1932.          src = this->result;
  1933.          for (int j = 0; j < size; j++) {
  1934.             emit(ir, OPCODE_MOV, temp, src);
  1935.  
  1936.             src.index++;
  1937.             temp.index++;
  1938.          }
  1939.       }
  1940.       this->result = temp_base;
  1941.       return;
  1942.    }
  1943.  
  1944.    if (ir->type->is_matrix()) {
  1945.       src_reg mat = get_temp(ir->type);
  1946.       dst_reg mat_column = dst_reg(mat);
  1947.  
  1948.       for (i = 0; i < ir->type->matrix_columns; i++) {
  1949.          assert(ir->type->base_type == GLSL_TYPE_FLOAT);
  1950.          values = &ir->value.f[i * ir->type->vector_elements];
  1951.  
  1952.          src = src_reg(PROGRAM_CONSTANT, -1, NULL);
  1953.          src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
  1954.                                                 (gl_constant_value *) values,
  1955.                                                 ir->type->vector_elements,
  1956.                                                 &src.swizzle);
  1957.          emit(ir, OPCODE_MOV, mat_column, src);
  1958.  
  1959.          mat_column.index++;
  1960.       }
  1961.  
  1962.       this->result = mat;
  1963.       return;
  1964.    }
  1965.  
  1966.    src.file = PROGRAM_CONSTANT;
  1967.    switch (ir->type->base_type) {
  1968.    case GLSL_TYPE_FLOAT:
  1969.       values = &ir->value.f[0];
  1970.       break;
  1971.    case GLSL_TYPE_UINT:
  1972.       for (i = 0; i < ir->type->vector_elements; i++) {
  1973.          values[i] = ir->value.u[i];
  1974.       }
  1975.       break;
  1976.    case GLSL_TYPE_INT:
  1977.       for (i = 0; i < ir->type->vector_elements; i++) {
  1978.          values[i] = ir->value.i[i];
  1979.       }
  1980.       break;
  1981.    case GLSL_TYPE_BOOL:
  1982.       for (i = 0; i < ir->type->vector_elements; i++) {
  1983.          values[i] = ir->value.b[i];
  1984.       }
  1985.       break;
  1986.    default:
  1987.       assert(!"Non-float/uint/int/bool constant");
  1988.    }
  1989.  
  1990.    this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
  1991.    this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
  1992.                                                    (gl_constant_value *) values,
  1993.                                                    ir->type->vector_elements,
  1994.                                                    &this->result.swizzle);
  1995. }
  1996.  
  1997. void
  1998. ir_to_mesa_visitor::visit(ir_call *ir)
  1999. {
  2000.    assert(!"ir_to_mesa: All function calls should have been inlined by now.");
  2001. }
  2002.  
  2003. void
  2004. ir_to_mesa_visitor::visit(ir_texture *ir)
  2005. {
  2006.    src_reg result_src, coord, lod_info, projector, dx, dy;
  2007.    dst_reg result_dst, coord_dst;
  2008.    ir_to_mesa_instruction *inst = NULL;
  2009.    prog_opcode opcode = OPCODE_NOP;
  2010.  
  2011.    if (ir->op == ir_txs)
  2012.       this->result = src_reg_for_float(0.0);
  2013.    else
  2014.       ir->coordinate->accept(this);
  2015.  
  2016.    /* Put our coords in a temp.  We'll need to modify them for shadow,
  2017.     * projection, or LOD, so the only case we'd use it as is is if
  2018.     * we're doing plain old texturing.  Mesa IR optimization should
  2019.     * handle cleaning up our mess in that case.
  2020.     */
  2021.    coord = get_temp(glsl_type::vec4_type);
  2022.    coord_dst = dst_reg(coord);
  2023.    emit(ir, OPCODE_MOV, coord_dst, this->result);
  2024.  
  2025.    if (ir->projector) {
  2026.       ir->projector->accept(this);
  2027.       projector = this->result;
  2028.    }
  2029.  
  2030.    /* Storage for our result.  Ideally for an assignment we'd be using
  2031.     * the actual storage for the result here, instead.
  2032.     */
  2033.    result_src = get_temp(glsl_type::vec4_type);
  2034.    result_dst = dst_reg(result_src);
  2035.  
  2036.    switch (ir->op) {
  2037.    case ir_tex:
  2038.    case ir_txs:
  2039.       opcode = OPCODE_TEX;
  2040.       break;
  2041.    case ir_txb:
  2042.       opcode = OPCODE_TXB;
  2043.       ir->lod_info.bias->accept(this);
  2044.       lod_info = this->result;
  2045.       break;
  2046.    case ir_txf:
  2047.       /* Pretend to be TXL so the sampler, coordinate, lod are available */
  2048.    case ir_txl:
  2049.       opcode = OPCODE_TXL;
  2050.       ir->lod_info.lod->accept(this);
  2051.       lod_info = this->result;
  2052.       break;
  2053.    case ir_txd:
  2054.       opcode = OPCODE_TXD;
  2055.       ir->lod_info.grad.dPdx->accept(this);
  2056.       dx = this->result;
  2057.       ir->lod_info.grad.dPdy->accept(this);
  2058.       dy = this->result;
  2059.       break;
  2060.    case ir_txf_ms:
  2061.       assert(!"Unexpected ir_txf_ms opcode");
  2062.       break;
  2063.    case ir_lod:
  2064.       assert(!"Unexpected ir_lod opcode");
  2065.       break;
  2066.    }
  2067.  
  2068.    const glsl_type *sampler_type = ir->sampler->type;
  2069.  
  2070.    if (ir->projector) {
  2071.       if (opcode == OPCODE_TEX) {
  2072.          /* Slot the projector in as the last component of the coord. */
  2073.          coord_dst.writemask = WRITEMASK_W;
  2074.          emit(ir, OPCODE_MOV, coord_dst, projector);
  2075.          coord_dst.writemask = WRITEMASK_XYZW;
  2076.          opcode = OPCODE_TXP;
  2077.       } else {
  2078.          src_reg coord_w = coord;
  2079.          coord_w.swizzle = SWIZZLE_WWWW;
  2080.  
  2081.          /* For the other TEX opcodes there's no projective version
  2082.           * since the last slot is taken up by lod info.  Do the
  2083.           * projective divide now.
  2084.           */
  2085.          coord_dst.writemask = WRITEMASK_W;
  2086.          emit(ir, OPCODE_RCP, coord_dst, projector);
  2087.  
  2088.          /* In the case where we have to project the coordinates "by hand,"
  2089.           * the shadow comparitor value must also be projected.
  2090.           */
  2091.          src_reg tmp_src = coord;
  2092.          if (ir->shadow_comparitor) {
  2093.             /* Slot the shadow value in as the second to last component of the
  2094.              * coord.
  2095.              */
  2096.             ir->shadow_comparitor->accept(this);
  2097.  
  2098.             tmp_src = get_temp(glsl_type::vec4_type);
  2099.             dst_reg tmp_dst = dst_reg(tmp_src);
  2100.  
  2101.             /* Projective division not allowed for array samplers. */
  2102.             assert(!sampler_type->sampler_array);
  2103.  
  2104.             tmp_dst.writemask = WRITEMASK_Z;
  2105.             emit(ir, OPCODE_MOV, tmp_dst, this->result);
  2106.  
  2107.             tmp_dst.writemask = WRITEMASK_XY;
  2108.             emit(ir, OPCODE_MOV, tmp_dst, coord);
  2109.          }
  2110.  
  2111.          coord_dst.writemask = WRITEMASK_XYZ;
  2112.          emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
  2113.  
  2114.          coord_dst.writemask = WRITEMASK_XYZW;
  2115.          coord.swizzle = SWIZZLE_XYZW;
  2116.       }
  2117.    }
  2118.  
  2119.    /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
  2120.     * comparitor was put in the correct place (and projected) by the code,
  2121.     * above, that handles by-hand projection.
  2122.     */
  2123.    if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
  2124.       /* Slot the shadow value in as the second to last component of the
  2125.        * coord.
  2126.        */
  2127.       ir->shadow_comparitor->accept(this);
  2128.  
  2129.       /* XXX This will need to be updated for cubemap array samplers. */
  2130.       if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
  2131.           sampler_type->sampler_array) {
  2132.          coord_dst.writemask = WRITEMASK_W;
  2133.       } else {
  2134.          coord_dst.writemask = WRITEMASK_Z;
  2135.       }
  2136.  
  2137.       emit(ir, OPCODE_MOV, coord_dst, this->result);
  2138.       coord_dst.writemask = WRITEMASK_XYZW;
  2139.    }
  2140.  
  2141.    if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
  2142.       /* Mesa IR stores lod or lod bias in the last channel of the coords. */
  2143.       coord_dst.writemask = WRITEMASK_W;
  2144.       emit(ir, OPCODE_MOV, coord_dst, lod_info);
  2145.       coord_dst.writemask = WRITEMASK_XYZW;
  2146.    }
  2147.  
  2148.    if (opcode == OPCODE_TXD)
  2149.       inst = emit(ir, opcode, result_dst, coord, dx, dy);
  2150.    else
  2151.       inst = emit(ir, opcode, result_dst, coord);
  2152.  
  2153.    if (ir->shadow_comparitor)
  2154.       inst->tex_shadow = GL_TRUE;
  2155.  
  2156.    inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
  2157.                                                    this->shader_program,
  2158.                                                    this->prog);
  2159.  
  2160.    switch (sampler_type->sampler_dimensionality) {
  2161.    case GLSL_SAMPLER_DIM_1D:
  2162.       inst->tex_target = (sampler_type->sampler_array)
  2163.          ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
  2164.       break;
  2165.    case GLSL_SAMPLER_DIM_2D:
  2166.       inst->tex_target = (sampler_type->sampler_array)
  2167.          ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
  2168.       break;
  2169.    case GLSL_SAMPLER_DIM_3D:
  2170.       inst->tex_target = TEXTURE_3D_INDEX;
  2171.       break;
  2172.    case GLSL_SAMPLER_DIM_CUBE:
  2173.       inst->tex_target = TEXTURE_CUBE_INDEX;
  2174.       break;
  2175.    case GLSL_SAMPLER_DIM_RECT:
  2176.       inst->tex_target = TEXTURE_RECT_INDEX;
  2177.       break;
  2178.    case GLSL_SAMPLER_DIM_BUF:
  2179.       assert(!"FINISHME: Implement ARB_texture_buffer_object");
  2180.       break;
  2181.    case GLSL_SAMPLER_DIM_EXTERNAL:
  2182.       inst->tex_target = TEXTURE_EXTERNAL_INDEX;
  2183.       break;
  2184.    default:
  2185.       assert(!"Should not get here.");
  2186.    }
  2187.  
  2188.    this->result = result_src;
  2189. }
  2190.  
  2191. void
  2192. ir_to_mesa_visitor::visit(ir_return *ir)
  2193. {
  2194.    /* Non-void functions should have been inlined.  We may still emit RETs
  2195.     * from main() unless the EmitNoMainReturn option is set.
  2196.     */
  2197.    assert(!ir->get_value());
  2198.    emit(ir, OPCODE_RET);
  2199. }
  2200.  
  2201. void
  2202. ir_to_mesa_visitor::visit(ir_discard *ir)
  2203. {
  2204.    if (ir->condition) {
  2205.       ir->condition->accept(this);
  2206.       this->result.negate = ~this->result.negate;
  2207.       emit(ir, OPCODE_KIL, undef_dst, this->result);
  2208.    } else {
  2209.       emit(ir, OPCODE_KIL_NV);
  2210.    }
  2211. }
  2212.  
  2213. void
  2214. ir_to_mesa_visitor::visit(ir_if *ir)
  2215. {
  2216.    ir_to_mesa_instruction *cond_inst, *if_inst;
  2217.    ir_to_mesa_instruction *prev_inst;
  2218.  
  2219.    prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
  2220.  
  2221.    ir->condition->accept(this);
  2222.    assert(this->result.file != PROGRAM_UNDEFINED);
  2223.  
  2224.    if (this->options->EmitCondCodes) {
  2225.       cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
  2226.  
  2227.       /* See if we actually generated any instruction for generating
  2228.        * the condition.  If not, then cook up a move to a temp so we
  2229.        * have something to set cond_update on.
  2230.        */
  2231.       if (cond_inst == prev_inst) {
  2232.          src_reg temp = get_temp(glsl_type::bool_type);
  2233.          cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
  2234.       }
  2235.       cond_inst->cond_update = GL_TRUE;
  2236.  
  2237.       if_inst = emit(ir->condition, OPCODE_IF);
  2238.       if_inst->dst.cond_mask = COND_NE;
  2239.    } else {
  2240.       if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
  2241.    }
  2242.  
  2243.    this->instructions.push_tail(if_inst);
  2244.  
  2245.    visit_exec_list(&ir->then_instructions, this);
  2246.  
  2247.    if (!ir->else_instructions.is_empty()) {
  2248.       emit(ir->condition, OPCODE_ELSE);
  2249.       visit_exec_list(&ir->else_instructions, this);
  2250.    }
  2251.  
  2252.    if_inst = emit(ir->condition, OPCODE_ENDIF);
  2253. }
  2254.  
  2255. ir_to_mesa_visitor::ir_to_mesa_visitor()
  2256. {
  2257.    result.file = PROGRAM_UNDEFINED;
  2258.    next_temp = 1;
  2259.    next_signature_id = 1;
  2260.    current_function = NULL;
  2261.    mem_ctx = ralloc_context(NULL);
  2262. }
  2263.  
  2264. ir_to_mesa_visitor::~ir_to_mesa_visitor()
  2265. {
  2266.    ralloc_free(mem_ctx);
  2267. }
  2268.  
  2269. static struct prog_src_register
  2270. mesa_src_reg_from_ir_src_reg(src_reg reg)
  2271. {
  2272.    struct prog_src_register mesa_reg;
  2273.  
  2274.    mesa_reg.File = reg.file;
  2275.    assert(reg.index < (1 << INST_INDEX_BITS));
  2276.    mesa_reg.Index = reg.index;
  2277.    mesa_reg.Swizzle = reg.swizzle;
  2278.    mesa_reg.RelAddr = reg.reladdr != NULL;
  2279.    mesa_reg.Negate = reg.negate;
  2280.    mesa_reg.Abs = 0;
  2281.    mesa_reg.HasIndex2 = GL_FALSE;
  2282.    mesa_reg.RelAddr2 = 0;
  2283.    mesa_reg.Index2 = 0;
  2284.  
  2285.    return mesa_reg;
  2286. }
  2287.  
  2288. static void
  2289. set_branchtargets(ir_to_mesa_visitor *v,
  2290.                   struct prog_instruction *mesa_instructions,
  2291.                   int num_instructions)
  2292. {
  2293.    int if_count = 0, loop_count = 0;
  2294.    int *if_stack, *loop_stack;
  2295.    int if_stack_pos = 0, loop_stack_pos = 0;
  2296.    int i, j;
  2297.  
  2298.    for (i = 0; i < num_instructions; i++) {
  2299.       switch (mesa_instructions[i].Opcode) {
  2300.       case OPCODE_IF:
  2301.          if_count++;
  2302.          break;
  2303.       case OPCODE_BGNLOOP:
  2304.          loop_count++;
  2305.          break;
  2306.       case OPCODE_BRK:
  2307.       case OPCODE_CONT:
  2308.          mesa_instructions[i].BranchTarget = -1;
  2309.          break;
  2310.       default:
  2311.          break;
  2312.       }
  2313.    }
  2314.  
  2315.    if_stack = rzalloc_array(v->mem_ctx, int, if_count);
  2316.    loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
  2317.  
  2318.    for (i = 0; i < num_instructions; i++) {
  2319.       switch (mesa_instructions[i].Opcode) {
  2320.       case OPCODE_IF:
  2321.          if_stack[if_stack_pos] = i;
  2322.          if_stack_pos++;
  2323.          break;
  2324.       case OPCODE_ELSE:
  2325.          mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
  2326.          if_stack[if_stack_pos - 1] = i;
  2327.          break;
  2328.       case OPCODE_ENDIF:
  2329.          mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
  2330.          if_stack_pos--;
  2331.          break;
  2332.       case OPCODE_BGNLOOP:
  2333.          loop_stack[loop_stack_pos] = i;
  2334.          loop_stack_pos++;
  2335.          break;
  2336.       case OPCODE_ENDLOOP:
  2337.          loop_stack_pos--;
  2338.          /* Rewrite any breaks/conts at this nesting level (haven't
  2339.           * already had a BranchTarget assigned) to point to the end
  2340.           * of the loop.
  2341.           */
  2342.          for (j = loop_stack[loop_stack_pos]; j < i; j++) {
  2343.             if (mesa_instructions[j].Opcode == OPCODE_BRK ||
  2344.                 mesa_instructions[j].Opcode == OPCODE_CONT) {
  2345.                if (mesa_instructions[j].BranchTarget == -1) {
  2346.                   mesa_instructions[j].BranchTarget = i;
  2347.                }
  2348.             }
  2349.          }
  2350.          /* The loop ends point at each other. */
  2351.          mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
  2352.          mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
  2353.          break;
  2354.       case OPCODE_CAL:
  2355.          foreach_iter(exec_list_iterator, iter, v->function_signatures) {
  2356.             function_entry *entry = (function_entry *)iter.get();
  2357.  
  2358.             if (entry->sig_id == mesa_instructions[i].BranchTarget) {
  2359.                mesa_instructions[i].BranchTarget = entry->inst;
  2360.                break;
  2361.             }
  2362.          }
  2363.          break;
  2364.       default:
  2365.          break;
  2366.       }
  2367.    }
  2368. }
  2369.  
  2370. static void
  2371. print_program(struct prog_instruction *mesa_instructions,
  2372.               ir_instruction **mesa_instruction_annotation,
  2373.               int num_instructions)
  2374. {
  2375.    ir_instruction *last_ir = NULL;
  2376.    int i;
  2377.    int indent = 0;
  2378.  
  2379.    for (i = 0; i < num_instructions; i++) {
  2380.       struct prog_instruction *mesa_inst = mesa_instructions + i;
  2381.       ir_instruction *ir = mesa_instruction_annotation[i];
  2382.  
  2383.       fprintf(stdout, "%3d: ", i);
  2384.  
  2385.       if (last_ir != ir && ir) {
  2386.          int j;
  2387.  
  2388.          for (j = 0; j < indent; j++) {
  2389.             fprintf(stdout, " ");
  2390.          }
  2391.          ir->print();
  2392.          printf("\n");
  2393.          last_ir = ir;
  2394.  
  2395.          fprintf(stdout, "     "); /* line number spacing. */
  2396.       }
  2397.  
  2398.       indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
  2399.                                             PROG_PRINT_DEBUG, NULL);
  2400.    }
  2401. }
  2402.  
  2403. class add_uniform_to_shader : public program_resource_visitor {
  2404. public:
  2405.    add_uniform_to_shader(struct gl_shader_program *shader_program,
  2406.                          struct gl_program_parameter_list *params,
  2407.                          gl_shader_type shader_type)
  2408.       : shader_program(shader_program), params(params), idx(-1),
  2409.         shader_type(shader_type)
  2410.    {
  2411.       /* empty */
  2412.    }
  2413.  
  2414.    void process(ir_variable *var)
  2415.    {
  2416.       this->idx = -1;
  2417.       this->program_resource_visitor::process(var);
  2418.  
  2419.       var->location = this->idx;
  2420.    }
  2421.  
  2422. private:
  2423.    virtual void visit_field(const glsl_type *type, const char *name,
  2424.                             bool row_major);
  2425.  
  2426.    struct gl_shader_program *shader_program;
  2427.    struct gl_program_parameter_list *params;
  2428.    int idx;
  2429.    gl_shader_type shader_type;
  2430. };
  2431.  
  2432. void
  2433. add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
  2434.                                    bool row_major)
  2435. {
  2436.    unsigned int size;
  2437.  
  2438.    (void) row_major;
  2439.  
  2440.    if (type->is_vector() || type->is_scalar()) {
  2441.       size = type->vector_elements;
  2442.    } else {
  2443.       size = type_size(type) * 4;
  2444.    }
  2445.  
  2446.    gl_register_file file;
  2447.    if (type->is_sampler() ||
  2448.        (type->is_array() && type->fields.array->is_sampler())) {
  2449.       file = PROGRAM_SAMPLER;
  2450.    } else {
  2451.       file = PROGRAM_UNIFORM;
  2452.    }
  2453.  
  2454.    int index = _mesa_lookup_parameter_index(params, -1, name);
  2455.    if (index < 0) {
  2456.       index = _mesa_add_parameter(params, file, name, size, type->gl_type,
  2457.                                   NULL, NULL);
  2458.  
  2459.       /* Sampler uniform values are stored in prog->SamplerUnits,
  2460.        * and the entry in that array is selected by this index we
  2461.        * store in ParameterValues[].
  2462.        */
  2463.       if (file == PROGRAM_SAMPLER) {
  2464.          unsigned location;
  2465.          const bool found =
  2466.             this->shader_program->UniformHash->get(location,
  2467.                                                    params->Parameters[index].Name);
  2468.          assert(found);
  2469.  
  2470.          if (!found)
  2471.             return;
  2472.  
  2473.          struct gl_uniform_storage *storage =
  2474.             &this->shader_program->UniformStorage[location];
  2475.  
  2476.          assert(storage->sampler[shader_type].active);
  2477.  
  2478.          for (unsigned int j = 0; j < size / 4; j++)
  2479.             params->ParameterValues[index + j][0].f =
  2480.                storage->sampler[shader_type].index + j;
  2481.       }
  2482.    }
  2483.  
  2484.    /* The first part of the uniform that's processed determines the base
  2485.     * location of the whole uniform (for structures).
  2486.     */
  2487.    if (this->idx < 0)
  2488.       this->idx = index;
  2489. }
  2490.  
  2491. /**
  2492.  * Generate the program parameters list for the user uniforms in a shader
  2493.  *
  2494.  * \param shader_program Linked shader program.  This is only used to
  2495.  *                       emit possible link errors to the info log.
  2496.  * \param sh             Shader whose uniforms are to be processed.
  2497.  * \param params         Parameter list to be filled in.
  2498.  */
  2499. void
  2500. _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
  2501.                                             *shader_program,
  2502.                                             struct gl_shader *sh,
  2503.                                             struct gl_program_parameter_list
  2504.                                             *params)
  2505. {
  2506.    add_uniform_to_shader add(shader_program, params,
  2507.                              _mesa_shader_type_to_index(sh->Type));
  2508.  
  2509.    foreach_list(node, sh->ir) {
  2510.       ir_variable *var = ((ir_instruction *) node)->as_variable();
  2511.  
  2512.       if ((var == NULL) || (var->mode != ir_var_uniform)
  2513.           || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
  2514.          continue;
  2515.  
  2516.       add.process(var);
  2517.    }
  2518. }
  2519.  
  2520. void
  2521. _mesa_associate_uniform_storage(struct gl_context *ctx,
  2522.                                 struct gl_shader_program *shader_program,
  2523.                                 struct gl_program_parameter_list *params)
  2524. {
  2525.    /* After adding each uniform to the parameter list, connect the storage for
  2526.     * the parameter with the tracking structure used by the API for the
  2527.     * uniform.
  2528.     */
  2529.    unsigned last_location = unsigned(~0);
  2530.    for (unsigned i = 0; i < params->NumParameters; i++) {
  2531.       if (params->Parameters[i].Type != PROGRAM_UNIFORM)
  2532.          continue;
  2533.  
  2534.       unsigned location;
  2535.       const bool found =
  2536.          shader_program->UniformHash->get(location, params->Parameters[i].Name);
  2537.       assert(found);
  2538.  
  2539.       if (!found)
  2540.          continue;
  2541.  
  2542.       if (location != last_location) {
  2543.          struct gl_uniform_storage *storage =
  2544.             &shader_program->UniformStorage[location];
  2545.          enum gl_uniform_driver_format format = uniform_native;
  2546.  
  2547.          unsigned columns = 0;
  2548.          switch (storage->type->base_type) {
  2549.          case GLSL_TYPE_UINT:
  2550.             assert(ctx->Const.NativeIntegers);
  2551.             format = uniform_native;
  2552.             columns = 1;
  2553.             break;
  2554.          case GLSL_TYPE_INT:
  2555.             format =
  2556.                (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
  2557.             columns = 1;
  2558.             break;
  2559.          case GLSL_TYPE_FLOAT:
  2560.             format = uniform_native;
  2561.             columns = storage->type->matrix_columns;
  2562.             break;
  2563.          case GLSL_TYPE_BOOL:
  2564.             if (ctx->Const.NativeIntegers) {
  2565.                format = (ctx->Const.UniformBooleanTrue == 1)
  2566.                   ? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
  2567.             } else {
  2568.                format = uniform_bool_float;
  2569.             }
  2570.             columns = 1;
  2571.             break;
  2572.          case GLSL_TYPE_SAMPLER:
  2573.             format = uniform_native;
  2574.             columns = 1;
  2575.             break;
  2576.          case GLSL_TYPE_ARRAY:
  2577.          case GLSL_TYPE_VOID:
  2578.          case GLSL_TYPE_STRUCT:
  2579.          case GLSL_TYPE_ERROR:
  2580.          case GLSL_TYPE_INTERFACE:
  2581.             assert(!"Should not get here.");
  2582.             break;
  2583.          }
  2584.  
  2585.          _mesa_uniform_attach_driver_storage(storage,
  2586.                                              4 * sizeof(float) * columns,
  2587.                                              4 * sizeof(float),
  2588.                                              format,
  2589.                                              &params->ParameterValues[i]);
  2590.  
  2591.          /* After attaching the driver's storage to the uniform, propagate any
  2592.           * data from the linker's backing store.  This will cause values from
  2593.           * initializers in the source code to be copied over.
  2594.           */
  2595.          _mesa_propagate_uniforms_to_driver_storage(storage,
  2596.                                                     0,
  2597.                                                     MAX2(1, storage->array_elements));
  2598.  
  2599.          last_location = location;
  2600.       }
  2601.    }
  2602. }
  2603.  
  2604. /*
  2605.  * On a basic block basis, tracks available PROGRAM_TEMPORARY register
  2606.  * channels for copy propagation and updates following instructions to
  2607.  * use the original versions.
  2608.  *
  2609.  * The ir_to_mesa_visitor lazily produces code assuming that this pass
  2610.  * will occur.  As an example, a TXP production before this pass:
  2611.  *
  2612.  * 0: MOV TEMP[1], INPUT[4].xyyy;
  2613.  * 1: MOV TEMP[1].w, INPUT[4].wwww;
  2614.  * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
  2615.  *
  2616.  * and after:
  2617.  *
  2618.  * 0: MOV TEMP[1], INPUT[4].xyyy;
  2619.  * 1: MOV TEMP[1].w, INPUT[4].wwww;
  2620.  * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
  2621.  *
  2622.  * which allows for dead code elimination on TEMP[1]'s writes.
  2623.  */
  2624. void
  2625. ir_to_mesa_visitor::copy_propagate(void)
  2626. {
  2627.    ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
  2628.                                                     ir_to_mesa_instruction *,
  2629.                                                     this->next_temp * 4);
  2630.    int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
  2631.    int level = 0;
  2632.  
  2633.    foreach_iter(exec_list_iterator, iter, this->instructions) {
  2634.       ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
  2635.  
  2636.       assert(inst->dst.file != PROGRAM_TEMPORARY
  2637.              || inst->dst.index < this->next_temp);
  2638.  
  2639.       /* First, do any copy propagation possible into the src regs. */
  2640.       for (int r = 0; r < 3; r++) {
  2641.          ir_to_mesa_instruction *first = NULL;
  2642.          bool good = true;
  2643.          int acp_base = inst->src[r].index * 4;
  2644.  
  2645.          if (inst->src[r].file != PROGRAM_TEMPORARY ||
  2646.              inst->src[r].reladdr)
  2647.             continue;
  2648.  
  2649.          /* See if we can find entries in the ACP consisting of MOVs
  2650.           * from the same src register for all the swizzled channels
  2651.           * of this src register reference.
  2652.           */
  2653.          for (int i = 0; i < 4; i++) {
  2654.             int src_chan = GET_SWZ(inst->src[r].swizzle, i);
  2655.             ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
  2656.  
  2657.             if (!copy_chan) {
  2658.                good = false;
  2659.                break;
  2660.             }
  2661.  
  2662.             assert(acp_level[acp_base + src_chan] <= level);
  2663.  
  2664.             if (!first) {
  2665.                first = copy_chan;
  2666.             } else {
  2667.                if (first->src[0].file != copy_chan->src[0].file ||
  2668.                    first->src[0].index != copy_chan->src[0].index) {
  2669.                   good = false;
  2670.                   break;
  2671.                }
  2672.             }
  2673.          }
  2674.  
  2675.          if (good) {
  2676.             /* We've now validated that we can copy-propagate to
  2677.              * replace this src register reference.  Do it.
  2678.              */
  2679.             inst->src[r].file = first->src[0].file;
  2680.             inst->src[r].index = first->src[0].index;
  2681.  
  2682.             int swizzle = 0;
  2683.             for (int i = 0; i < 4; i++) {
  2684.                int src_chan = GET_SWZ(inst->src[r].swizzle, i);
  2685.                ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
  2686.                swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
  2687.                            (3 * i));
  2688.             }
  2689.             inst->src[r].swizzle = swizzle;
  2690.          }
  2691.       }
  2692.  
  2693.       switch (inst->op) {
  2694.       case OPCODE_BGNLOOP:
  2695.       case OPCODE_ENDLOOP:
  2696.          /* End of a basic block, clear the ACP entirely. */
  2697.          memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
  2698.          break;
  2699.  
  2700.       case OPCODE_IF:
  2701.          ++level;
  2702.          break;
  2703.  
  2704.       case OPCODE_ENDIF:
  2705.       case OPCODE_ELSE:
  2706.          /* Clear all channels written inside the block from the ACP, but
  2707.           * leaving those that were not touched.
  2708.           */
  2709.          for (int r = 0; r < this->next_temp; r++) {
  2710.             for (int c = 0; c < 4; c++) {
  2711.                if (!acp[4 * r + c])
  2712.                   continue;
  2713.  
  2714.                if (acp_level[4 * r + c] >= level)
  2715.                   acp[4 * r + c] = NULL;
  2716.             }
  2717.          }
  2718.          if (inst->op == OPCODE_ENDIF)
  2719.             --level;
  2720.          break;
  2721.  
  2722.       default:
  2723.          /* Continuing the block, clear any written channels from
  2724.           * the ACP.
  2725.           */
  2726.          if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
  2727.             /* Any temporary might be written, so no copy propagation
  2728.              * across this instruction.
  2729.              */
  2730.             memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
  2731.          } else if (inst->dst.file == PROGRAM_OUTPUT &&
  2732.                     inst->dst.reladdr) {
  2733.             /* Any output might be written, so no copy propagation
  2734.              * from outputs across this instruction.
  2735.              */
  2736.             for (int r = 0; r < this->next_temp; r++) {
  2737.                for (int c = 0; c < 4; c++) {
  2738.                   if (!acp[4 * r + c])
  2739.                      continue;
  2740.  
  2741.                   if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
  2742.                      acp[4 * r + c] = NULL;
  2743.                }
  2744.             }
  2745.          } else if (inst->dst.file == PROGRAM_TEMPORARY ||
  2746.                     inst->dst.file == PROGRAM_OUTPUT) {
  2747.             /* Clear where it's used as dst. */
  2748.             if (inst->dst.file == PROGRAM_TEMPORARY) {
  2749.                for (int c = 0; c < 4; c++) {
  2750.                   if (inst->dst.writemask & (1 << c)) {
  2751.                      acp[4 * inst->dst.index + c] = NULL;
  2752.                   }
  2753.                }
  2754.             }
  2755.  
  2756.             /* Clear where it's used as src. */
  2757.             for (int r = 0; r < this->next_temp; r++) {
  2758.                for (int c = 0; c < 4; c++) {
  2759.                   if (!acp[4 * r + c])
  2760.                      continue;
  2761.  
  2762.                   int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
  2763.  
  2764.                   if (acp[4 * r + c]->src[0].file == inst->dst.file &&
  2765.                       acp[4 * r + c]->src[0].index == inst->dst.index &&
  2766.                       inst->dst.writemask & (1 << src_chan))
  2767.                   {
  2768.                      acp[4 * r + c] = NULL;
  2769.                   }
  2770.                }
  2771.             }
  2772.          }
  2773.          break;
  2774.       }
  2775.  
  2776.       /* If this is a copy, add it to the ACP. */
  2777.       if (inst->op == OPCODE_MOV &&
  2778.           inst->dst.file == PROGRAM_TEMPORARY &&
  2779.           !(inst->dst.file == inst->src[0].file &&
  2780.             inst->dst.index == inst->src[0].index) &&
  2781.           !inst->dst.reladdr &&
  2782.           !inst->saturate &&
  2783.           !inst->src[0].reladdr &&
  2784.           !inst->src[0].negate) {
  2785.          for (int i = 0; i < 4; i++) {
  2786.             if (inst->dst.writemask & (1 << i)) {
  2787.                acp[4 * inst->dst.index + i] = inst;
  2788.                acp_level[4 * inst->dst.index + i] = level;
  2789.             }
  2790.          }
  2791.       }
  2792.    }
  2793.  
  2794.    ralloc_free(acp_level);
  2795.    ralloc_free(acp);
  2796. }
  2797.  
  2798.  
  2799. /**
  2800.  * Convert a shader's GLSL IR into a Mesa gl_program.
  2801.  */
  2802. static struct gl_program *
  2803. get_mesa_program(struct gl_context *ctx,
  2804.                  struct gl_shader_program *shader_program,
  2805.                  struct gl_shader *shader)
  2806. {
  2807.    ir_to_mesa_visitor v;
  2808.    struct prog_instruction *mesa_instructions, *mesa_inst;
  2809.    ir_instruction **mesa_instruction_annotation;
  2810.    int i;
  2811.    struct gl_program *prog;
  2812.    GLenum target;
  2813.    const char *target_string = _mesa_glsl_shader_target_name(shader->Type);
  2814.    struct gl_shader_compiler_options *options =
  2815.          &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
  2816.  
  2817.    switch (shader->Type) {
  2818.    case GL_VERTEX_SHADER:
  2819.       target = GL_VERTEX_PROGRAM_ARB;
  2820.       break;
  2821.    case GL_FRAGMENT_SHADER:
  2822.       target = GL_FRAGMENT_PROGRAM_ARB;
  2823.       break;
  2824.    case GL_GEOMETRY_SHADER:
  2825.       target = GL_GEOMETRY_PROGRAM_NV;
  2826.       break;
  2827.    default:
  2828.       assert(!"should not be reached");
  2829.       return NULL;
  2830.    }
  2831.  
  2832.    validate_ir_tree(shader->ir);
  2833.  
  2834.    prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
  2835.    if (!prog)
  2836.       return NULL;
  2837.    prog->Parameters = _mesa_new_parameter_list();
  2838.    v.ctx = ctx;
  2839.    v.prog = prog;
  2840.    v.shader_program = shader_program;
  2841.    v.options = options;
  2842.  
  2843.    _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
  2844.                                                prog->Parameters);
  2845.  
  2846.    /* Emit Mesa IR for main(). */
  2847.    visit_exec_list(shader->ir, &v);
  2848.    v.emit(NULL, OPCODE_END);
  2849.  
  2850.    prog->NumTemporaries = v.next_temp;
  2851.  
  2852.    int num_instructions = 0;
  2853.    foreach_iter(exec_list_iterator, iter, v.instructions) {
  2854.       num_instructions++;
  2855.    }
  2856.  
  2857.    mesa_instructions =
  2858.       (struct prog_instruction *)calloc(num_instructions,
  2859.                                         sizeof(*mesa_instructions));
  2860.    mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
  2861.                                               num_instructions);
  2862.  
  2863.    v.copy_propagate();
  2864.  
  2865.    /* Convert ir_mesa_instructions into prog_instructions.
  2866.     */
  2867.    mesa_inst = mesa_instructions;
  2868.    i = 0;
  2869.    foreach_iter(exec_list_iterator, iter, v.instructions) {
  2870.       const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
  2871.  
  2872.       mesa_inst->Opcode = inst->op;
  2873.       mesa_inst->CondUpdate = inst->cond_update;
  2874.       if (inst->saturate)
  2875.          mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
  2876.       mesa_inst->DstReg.File = inst->dst.file;
  2877.       mesa_inst->DstReg.Index = inst->dst.index;
  2878.       mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
  2879.       mesa_inst->DstReg.WriteMask = inst->dst.writemask;
  2880.       mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
  2881.       mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
  2882.       mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
  2883.       mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
  2884.       mesa_inst->TexSrcUnit = inst->sampler;
  2885.       mesa_inst->TexSrcTarget = inst->tex_target;
  2886.       mesa_inst->TexShadow = inst->tex_shadow;
  2887.       mesa_instruction_annotation[i] = inst->ir;
  2888.  
  2889.       /* Set IndirectRegisterFiles. */
  2890.       if (mesa_inst->DstReg.RelAddr)
  2891.          prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
  2892.  
  2893.       /* Update program's bitmask of indirectly accessed register files */
  2894.       for (unsigned src = 0; src < 3; src++)
  2895.          if (mesa_inst->SrcReg[src].RelAddr)
  2896.             prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
  2897.  
  2898.       switch (mesa_inst->Opcode) {
  2899.       case OPCODE_IF:
  2900.          if (options->MaxIfDepth == 0) {
  2901.             linker_warning(shader_program,
  2902.                            "Couldn't flatten if-statement.  "
  2903.                            "This will likely result in software "
  2904.                            "rasterization.\n");
  2905.          }
  2906.          break;
  2907.       case OPCODE_BGNLOOP:
  2908.          if (options->EmitNoLoops) {
  2909.             linker_warning(shader_program,
  2910.                            "Couldn't unroll loop.  "
  2911.                            "This will likely result in software "
  2912.                            "rasterization.\n");
  2913.          }
  2914.          break;
  2915.       case OPCODE_CONT:
  2916.          if (options->EmitNoCont) {
  2917.             linker_warning(shader_program,
  2918.                            "Couldn't lower continue-statement.  "
  2919.                            "This will likely result in software "
  2920.                            "rasterization.\n");
  2921.          }
  2922.          break;
  2923.       case OPCODE_ARL:
  2924.          prog->NumAddressRegs = 1;
  2925.          break;
  2926.       default:
  2927.          break;
  2928.       }
  2929.  
  2930.       mesa_inst++;
  2931.       i++;
  2932.  
  2933.       if (!shader_program->LinkStatus)
  2934.          break;
  2935.    }
  2936.  
  2937.    if (!shader_program->LinkStatus) {
  2938.       goto fail_exit;
  2939.    }
  2940.  
  2941.    set_branchtargets(&v, mesa_instructions, num_instructions);
  2942.  
  2943.    if (ctx->Shader.Flags & GLSL_DUMP) {
  2944.       printf("\n");
  2945.       printf("GLSL IR for linked %s program %d:\n", target_string,
  2946.              shader_program->Name);
  2947.       _mesa_print_ir(shader->ir, NULL);
  2948.       printf("\n");
  2949.       printf("\n");
  2950.       printf("Mesa IR for linked %s program %d:\n", target_string,
  2951.              shader_program->Name);
  2952.       print_program(mesa_instructions, mesa_instruction_annotation,
  2953.                     num_instructions);
  2954.    }
  2955.  
  2956.    prog->Instructions = mesa_instructions;
  2957.    prog->NumInstructions = num_instructions;
  2958.  
  2959.    /* Setting this to NULL prevents a possible double free in the fail_exit
  2960.     * path (far below).
  2961.     */
  2962.    mesa_instructions = NULL;
  2963.  
  2964.    do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
  2965.  
  2966.    prog->SamplersUsed = shader->active_samplers;
  2967.    prog->ShadowSamplers = shader->shadow_samplers;
  2968.    _mesa_update_shader_textures_used(shader_program, prog);
  2969.  
  2970.    /* Set the gl_FragDepth layout. */
  2971.    if (target == GL_FRAGMENT_PROGRAM_ARB) {
  2972.       struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
  2973.       fp->FragDepthLayout = shader_program->FragDepthLayout;
  2974.    }
  2975.  
  2976.    _mesa_reference_program(ctx, &shader->Program, prog);
  2977.  
  2978.    if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
  2979.       _mesa_optimize_program(ctx, prog);
  2980.    }
  2981.  
  2982.    /* This has to be done last.  Any operation that can cause
  2983.     * prog->ParameterValues to get reallocated (e.g., anything that adds a
  2984.     * program constant) has to happen before creating this linkage.
  2985.     */
  2986.    _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
  2987.    if (!shader_program->LinkStatus) {
  2988.       goto fail_exit;
  2989.    }
  2990.  
  2991.    return prog;
  2992.  
  2993. fail_exit:
  2994.    free(mesa_instructions);
  2995.    _mesa_reference_program(ctx, &shader->Program, NULL);
  2996.    return NULL;
  2997. }
  2998.  
  2999. extern "C" {
  3000.  
  3001. /**
  3002.  * Link a shader.
  3003.  * Called via ctx->Driver.LinkShader()
  3004.  * This actually involves converting GLSL IR into Mesa gl_programs with
  3005.  * code lowering and other optimizations.
  3006.  */
  3007. GLboolean
  3008. _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
  3009. {
  3010.    assert(prog->LinkStatus);
  3011.  
  3012.    for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
  3013.       if (prog->_LinkedShaders[i] == NULL)
  3014.          continue;
  3015.  
  3016.       bool progress;
  3017.       exec_list *ir = prog->_LinkedShaders[i]->ir;
  3018.       const struct gl_shader_compiler_options *options =
  3019.             &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
  3020.  
  3021.       do {
  3022.          progress = false;
  3023.  
  3024.          /* Lowering */
  3025.          do_mat_op_to_vec(ir);
  3026.          lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
  3027.                                  | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
  3028.                                  | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
  3029.  
  3030.          progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
  3031.  
  3032.          progress = do_common_optimization(ir, true, true,
  3033.                                            options->MaxUnrollIterations,
  3034.                                            options)
  3035.            || progress;
  3036.  
  3037.          progress = lower_quadop_vector(ir, true) || progress;
  3038.  
  3039.          if (options->MaxIfDepth == 0)
  3040.             progress = lower_discard(ir) || progress;
  3041.  
  3042.          progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
  3043.  
  3044.          if (options->EmitNoNoise)
  3045.             progress = lower_noise(ir) || progress;
  3046.  
  3047.          /* If there are forms of indirect addressing that the driver
  3048.           * cannot handle, perform the lowering pass.
  3049.           */
  3050.          if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
  3051.              || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
  3052.            progress =
  3053.              lower_variable_index_to_cond_assign(ir,
  3054.                                                  options->EmitNoIndirectInput,
  3055.                                                  options->EmitNoIndirectOutput,
  3056.                                                  options->EmitNoIndirectTemp,
  3057.                                                  options->EmitNoIndirectUniform)
  3058.              || progress;
  3059.  
  3060.          progress = do_vec_index_to_cond_assign(ir) || progress;
  3061.          progress = lower_vector_insert(ir, true) || progress;
  3062.       } while (progress);
  3063.  
  3064.       validate_ir_tree(ir);
  3065.    }
  3066.  
  3067.    for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
  3068.       struct gl_program *linked_prog;
  3069.  
  3070.       if (prog->_LinkedShaders[i] == NULL)
  3071.          continue;
  3072.  
  3073.       linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
  3074.  
  3075.       if (linked_prog) {
  3076.          if (i == MESA_SHADER_VERTEX) {
  3077.             ((struct gl_vertex_program *)linked_prog)->UsesClipDistance
  3078.                = prog->Vert.UsesClipDistance;
  3079.          }
  3080.  
  3081.          _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
  3082.                                  linked_prog);
  3083.          if (!ctx->Driver.ProgramStringNotify(ctx,
  3084.                                               _mesa_program_index_to_target(i),
  3085.                                               linked_prog)) {
  3086.             return GL_FALSE;
  3087.          }
  3088.       }
  3089.  
  3090.       _mesa_reference_program(ctx, &linked_prog, NULL);
  3091.    }
  3092.  
  3093.    return prog->LinkStatus;
  3094. }
  3095.  
  3096. /**
  3097.  * Link a GLSL shader program.  Called via glLinkProgram().
  3098.  */
  3099. void
  3100. _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
  3101. {
  3102.    unsigned int i;
  3103.  
  3104.    _mesa_clear_shader_program_data(ctx, prog);
  3105.  
  3106.    prog->LinkStatus = GL_TRUE;
  3107.  
  3108.    for (i = 0; i < prog->NumShaders; i++) {
  3109.       if (!prog->Shaders[i]->CompileStatus) {
  3110.          linker_error(prog, "linking with uncompiled shader");
  3111.          prog->LinkStatus = GL_FALSE;
  3112.       }
  3113.    }
  3114.  
  3115.    if (prog->LinkStatus) {
  3116.       link_shaders(ctx, prog);
  3117.    }
  3118.  
  3119.    if (prog->LinkStatus) {
  3120.       if (!ctx->Driver.LinkShader(ctx, prog)) {
  3121.          prog->LinkStatus = GL_FALSE;
  3122.       }
  3123.    }
  3124.  
  3125.    if (ctx->Shader.Flags & GLSL_DUMP) {
  3126.       if (!prog->LinkStatus) {
  3127.          printf("GLSL shader program %d failed to link\n", prog->Name);
  3128.       }
  3129.  
  3130.       if (prog->InfoLog && prog->InfoLog[0] != 0) {
  3131.          printf("GLSL shader program %d info log:\n", prog->Name);
  3132.          printf("%s\n", prog->InfoLog);
  3133.       }
  3134.    }
  3135. }
  3136.  
  3137. } /* extern "C" */
  3138.