Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. /*
  2.  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
  3.  Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
  4.  develop this 3D driver.
  5.  
  6.  Permission is hereby granted, free of charge, to any person obtaining
  7.  a copy of this software and associated documentation files (the
  8.  "Software"), to deal in the Software without restriction, including
  9.  without limitation the rights to use, copy, modify, merge, publish,
  10.  distribute, sublicense, and/or sell copies of the Software, and to
  11.  permit persons to whom the Software is furnished to do so, subject to
  12.  the following conditions:
  13.  
  14.  The above copyright notice and this permission notice (including the
  15.  next paragraph) shall be included in all copies or substantial
  16.  portions of the Software.
  17.  
  18.  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  19.  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  20.  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
  21.  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
  22.  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  23.  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  24.  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  25.  
  26.  **********************************************************************/
  27.  /*
  28.   * Authors:
  29.   *   Keith Whitwell <keith@tungstengraphics.com>
  30.   */
  31.  
  32.  
  33. #include "main/compiler.h"
  34. #include "brw_context.h"
  35. #include "brw_vs.h"
  36. #include "brw_util.h"
  37. #include "brw_state.h"
  38. #include "program/prog_print.h"
  39. #include "program/prog_parameter.h"
  40.  
  41. #include "glsl/ralloc.h"
  42.  
  43. static inline void assign_vue_slot(struct brw_vue_map *vue_map,
  44.                                    int varying)
  45. {
  46.    /* Make sure this varying hasn't been assigned a slot already */
  47.    assert (vue_map->varying_to_slot[varying] == -1);
  48.  
  49.    vue_map->varying_to_slot[varying] = vue_map->num_slots;
  50.    vue_map->slot_to_varying[vue_map->num_slots++] = varying;
  51. }
  52.  
  53. /**
  54.  * Compute the VUE map for vertex shader program.
  55.  *
  56.  * Note that consumers of this map using cache keys must include
  57.  * prog_data->userclip and prog_data->outputs_written in their key
  58.  * (generated by CACHE_NEW_VS_PROG).
  59.  */
  60. void
  61. brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
  62.                     GLbitfield64 slots_valid, bool userclip_active)
  63. {
  64.    vue_map->slots_valid = slots_valid;
  65.    int i;
  66.  
  67.    /* Make sure that the values we store in vue_map->varying_to_slot and
  68.     * vue_map->slot_to_varying won't overflow the signed chars that are used
  69.     * to store them.  Note that since vue_map->slot_to_varying sometimes holds
  70.     * values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that
  71.     * BRW_VARYING_SLOT_COUNT is <= 127, not 128.
  72.     */
  73.    STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127);
  74.  
  75.    vue_map->num_slots = 0;
  76.    for (i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) {
  77.       vue_map->varying_to_slot[i] = -1;
  78.       vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_COUNT;
  79.    }
  80.  
  81.    /* VUE header: format depends on chip generation and whether clipping is
  82.     * enabled.
  83.     */
  84.    switch (brw->gen) {
  85.    case 4:
  86.    case 5:
  87.       /* There are 8 dwords in VUE header pre-Ironlake:
  88.        * dword 0-3 is indices, point width, clip flags.
  89.        * dword 4-7 is ndc position
  90.        * dword 8-11 is the first vertex data.
  91.        *
  92.        * On Ironlake the VUE header is nominally 20 dwords, but the hardware
  93.        * will accept the same header layout as Gen4 [and should be a bit faster]
  94.        */
  95.       assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
  96.       assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC);
  97.       assign_vue_slot(vue_map, VARYING_SLOT_POS);
  98.       break;
  99.    case 6:
  100.    case 7:
  101.       /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
  102.        * dword 0-3 of the header is indices, point width, clip flags.
  103.        * dword 4-7 is the 4D space position
  104.        * dword 8-15 of the vertex header is the user clip distance if
  105.        * enabled.
  106.        * dword 8-11 or 16-19 is the first vertex element data we fill.
  107.        */
  108.       assign_vue_slot(vue_map, VARYING_SLOT_PSIZ);
  109.       assign_vue_slot(vue_map, VARYING_SLOT_POS);
  110.       if (userclip_active) {
  111.          assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0);
  112.          assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1);
  113.       }
  114.       /* front and back colors need to be consecutive so that we can use
  115.        * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
  116.        * two-sided color.
  117.        */
  118.       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL0))
  119.          assign_vue_slot(vue_map, VARYING_SLOT_COL0);
  120.       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC0))
  121.          assign_vue_slot(vue_map, VARYING_SLOT_BFC0);
  122.       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL1))
  123.          assign_vue_slot(vue_map, VARYING_SLOT_COL1);
  124.       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC1))
  125.          assign_vue_slot(vue_map, VARYING_SLOT_BFC1);
  126.       break;
  127.    default:
  128.       assert (!"VUE map not known for this chip generation");
  129.       break;
  130.    }
  131.  
  132.    /* The hardware doesn't care about the rest of the vertex outputs, so just
  133.     * assign them contiguously.  Don't reassign outputs that already have a
  134.     * slot.
  135.     *
  136.     * We generally don't need to assign a slot for VARYING_SLOT_CLIP_VERTEX,
  137.     * since it's encoded as the clip distances by emit_clip_distances().
  138.     * However, it may be output by transform feedback, and we'd rather not
  139.     * recompute state when TF changes, so we just always include it.
  140.     */
  141.    for (int i = 0; i < VARYING_SLOT_MAX; ++i) {
  142.       if ((slots_valid & BITFIELD64_BIT(i)) &&
  143.           vue_map->varying_to_slot[i] == -1) {
  144.          assign_vue_slot(vue_map, i);
  145.       }
  146.    }
  147. }
  148.  
  149.  
  150. /**
  151.  * Decide which set of clip planes should be used when clipping via
  152.  * gl_Position or gl_ClipVertex.
  153.  */
  154. gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx)
  155. {
  156.    if (ctx->Shader.CurrentVertexProgram) {
  157.       /* There is currently a GLSL vertex shader, so clip according to GLSL
  158.        * rules, which means compare gl_ClipVertex (or gl_Position, if
  159.        * gl_ClipVertex wasn't assigned) against the eye-coordinate clip planes
  160.        * that were stored in EyeUserPlane at the time the clip planes were
  161.        * specified.
  162.        */
  163.       return ctx->Transform.EyeUserPlane;
  164.    } else {
  165.       /* Either we are using fixed function or an ARB vertex program.  In
  166.        * either case the clip planes are going to be compared against
  167.        * gl_Position (which is in clip coordinates) so we have to clip using
  168.        * _ClipUserPlane, which was transformed into clip coordinates by Mesa
  169.        * core.
  170.        */
  171.       return ctx->Transform._ClipUserPlane;
  172.    }
  173. }
  174.  
  175.  
  176. bool
  177. brw_vec4_prog_data_compare(const struct brw_vec4_prog_data *a,
  178.                            const struct brw_vec4_prog_data *b)
  179. {
  180.    /* Compare all the struct up to the pointers. */
  181.    if (memcmp(a, b, offsetof(struct brw_vec4_prog_data, param)))
  182.       return false;
  183.  
  184.    if (memcmp(a->param, b->param, a->nr_params * sizeof(void *)))
  185.       return false;
  186.  
  187.    if (memcmp(a->pull_param, b->pull_param, a->nr_pull_params * sizeof(void *)))
  188.       return false;
  189.  
  190.    return true;
  191. }
  192.  
  193.  
  194. bool
  195. brw_vs_prog_data_compare(const void *in_a, const void *in_b,
  196.                          int aux_size, const void *in_key)
  197. {
  198.    const struct brw_vs_prog_data *a = in_a;
  199.    const struct brw_vs_prog_data *b = in_b;
  200.  
  201.    /* Compare the base vec4 structure. */
  202.    if (!brw_vec4_prog_data_compare(&a->base, &b->base))
  203.       return false;
  204.  
  205.    /* Compare the rest of the struct. */
  206.    const unsigned offset = sizeof(struct brw_vec4_prog_data);
  207.    if (memcmp(((char *) a) + offset, ((char *) b) + offset,
  208.               sizeof(struct brw_vs_prog_data) - offset)) {
  209.       return false;
  210.    }
  211.  
  212.    return true;
  213. }
  214.  
  215. static bool
  216. do_vs_prog(struct brw_context *brw,
  217.            struct gl_shader_program *prog,
  218.            struct brw_vertex_program *vp,
  219.            struct brw_vs_prog_key *key)
  220. {
  221.    GLuint program_size;
  222.    const GLuint *program;
  223.    struct brw_vs_compile c;
  224.    struct brw_vs_prog_data prog_data;
  225.    void *mem_ctx;
  226.    int i;
  227.    struct gl_shader *vs = NULL;
  228.  
  229.    if (prog)
  230.       vs = prog->_LinkedShaders[MESA_SHADER_VERTEX];
  231.  
  232.    memset(&c, 0, sizeof(c));
  233.    memcpy(&c.key, key, sizeof(*key));
  234.    memset(&prog_data, 0, sizeof(prog_data));
  235.  
  236.    mem_ctx = ralloc_context(NULL);
  237.  
  238.    c.vp = vp;
  239.  
  240.    /* Allocate the references to the uniforms that will end up in the
  241.     * prog_data associated with the compiled program, and which will be freed
  242.     * by the state cache.
  243.     */
  244.    int param_count;
  245.    if (vs) {
  246.       /* We add padding around uniform values below vec4 size, with the worst
  247.        * case being a float value that gets blown up to a vec4, so be
  248.        * conservative here.
  249.        */
  250.       param_count = vs->num_uniform_components * 4;
  251.  
  252.    } else {
  253.       param_count = vp->program.Base.Parameters->NumParameters * 4;
  254.    }
  255.    /* We also upload clip plane data as uniforms */
  256.    param_count += MAX_CLIP_PLANES * 4;
  257.  
  258.    prog_data.base.param = rzalloc_array(NULL, const float *, param_count);
  259.    prog_data.base.pull_param = rzalloc_array(NULL, const float *, param_count);
  260.  
  261.    GLbitfield64 outputs_written = vp->program.Base.OutputsWritten;
  262.    prog_data.inputs_read = vp->program.Base.InputsRead;
  263.  
  264.    if (c.key.copy_edgeflag) {
  265.       outputs_written |= BITFIELD64_BIT(VARYING_SLOT_EDGE);
  266.       prog_data.inputs_read |= VERT_BIT_EDGEFLAG;
  267.    }
  268.  
  269.    if (brw->gen < 6) {
  270.       /* Put dummy slots into the VUE for the SF to put the replaced
  271.        * point sprite coords in.  We shouldn't need these dummy slots,
  272.        * which take up precious URB space, but it would mean that the SF
  273.        * doesn't get nice aligned pairs of input coords into output
  274.        * coords, which would be a pain to handle.
  275.        */
  276.       for (i = 0; i < 8; i++) {
  277.          if (c.key.point_coord_replace & (1 << i))
  278.             outputs_written |= BITFIELD64_BIT(VARYING_SLOT_TEX0 + i);
  279.       }
  280.  
  281.       /* if back colors are written, allocate slots for front colors too */
  282.       if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC0))
  283.          outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL0);
  284.       if (outputs_written & BITFIELD64_BIT(VARYING_SLOT_BFC1))
  285.          outputs_written |= BITFIELD64_BIT(VARYING_SLOT_COL1);
  286.    }
  287.  
  288.    brw_compute_vue_map(brw, &prog_data.base.vue_map, outputs_written,
  289.                        c.key.base.userclip_active);
  290.  
  291.    if (0) {
  292.       _mesa_fprint_program_opt(stdout, &c.vp->program.Base, PROG_PRINT_DEBUG,
  293.                                true);
  294.    }
  295.  
  296.    /* Emit GEN4 code.
  297.     */
  298.    program = brw_vs_emit(brw, prog, &c, &prog_data, mem_ctx, &program_size);
  299.    if (program == NULL) {
  300.       ralloc_free(mem_ctx);
  301.       return false;
  302.    }
  303.  
  304.    if (prog_data.base.nr_pull_params)
  305.       prog_data.base.num_surfaces = 1;
  306.    if (c.vp->program.Base.SamplersUsed)
  307.       prog_data.base.num_surfaces = SURF_INDEX_VS_TEXTURE(BRW_MAX_TEX_UNIT);
  308.    if (prog &&
  309.        prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks) {
  310.       prog_data.base.num_surfaces =
  311.          SURF_INDEX_VS_UBO(prog->_LinkedShaders[MESA_SHADER_VERTEX]->NumUniformBlocks);
  312.    }
  313.  
  314.    /* Scratch space is used for register spilling */
  315.    if (c.base.last_scratch) {
  316.       perf_debug("Vertex shader triggered register spilling.  "
  317.                  "Try reducing the number of live vec4 values to "
  318.                  "improve performance.\n");
  319.  
  320.       prog_data.base.total_scratch
  321.          = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);
  322.  
  323.       brw_get_scratch_bo(brw, &brw->vs.scratch_bo,
  324.                          prog_data.base.total_scratch * brw->max_vs_threads);
  325.    }
  326.  
  327.    brw_upload_cache(&brw->cache, BRW_VS_PROG,
  328.                     &c.key, sizeof(c.key),
  329.                     program, program_size,
  330.                     &prog_data, sizeof(prog_data),
  331.                     &brw->vs.prog_offset, &brw->vs.prog_data);
  332.    ralloc_free(mem_ctx);
  333.  
  334.    return true;
  335. }
  336.  
  337. static bool
  338. key_debug(struct brw_context *brw, const char *name, int a, int b)
  339. {
  340.    if (a != b) {
  341.       perf_debug("  %s %d->%d\n", name, a, b);
  342.       return true;
  343.    }
  344.    return false;
  345. }
  346.  
  347. void
  348. brw_vs_debug_recompile(struct brw_context *brw,
  349.                        struct gl_shader_program *prog,
  350.                        const struct brw_vs_prog_key *key)
  351. {
  352.    struct brw_cache_item *c = NULL;
  353.    const struct brw_vs_prog_key *old_key = NULL;
  354.    bool found = false;
  355.  
  356.    perf_debug("Recompiling vertex shader for program %d\n", prog->Name);
  357.  
  358.    for (unsigned int i = 0; i < brw->cache.size; i++) {
  359.       for (c = brw->cache.items[i]; c; c = c->next) {
  360.          if (c->cache_id == BRW_VS_PROG) {
  361.             old_key = c->key;
  362.  
  363.             if (old_key->base.program_string_id == key->base.program_string_id)
  364.                break;
  365.          }
  366.       }
  367.       if (c)
  368.          break;
  369.    }
  370.  
  371.    if (!c) {
  372.       perf_debug("  Didn't find previous compile in the shader cache for "
  373.                  "debug\n");
  374.       return;
  375.    }
  376.  
  377.    for (unsigned int i = 0; i < VERT_ATTRIB_MAX; i++) {
  378.       found |= key_debug(brw, "Vertex attrib w/a flags",
  379.                          old_key->gl_attrib_wa_flags[i],
  380.                          key->gl_attrib_wa_flags[i]);
  381.    }
  382.  
  383.    found |= key_debug(brw, "user clip flags",
  384.                       old_key->base.userclip_active, key->base.userclip_active);
  385.  
  386.    found |= key_debug(brw, "user clipping planes as push constants",
  387.                       old_key->base.nr_userclip_plane_consts,
  388.                       key->base.nr_userclip_plane_consts);
  389.  
  390.    found |= key_debug(brw, "clip distance enable",
  391.                       old_key->base.uses_clip_distance, key->base.uses_clip_distance);
  392.    found |= key_debug(brw, "clip plane enable bitfield",
  393.                       old_key->base.userclip_planes_enabled_gen_4_5,
  394.                       key->base.userclip_planes_enabled_gen_4_5);
  395.    found |= key_debug(brw, "copy edgeflag",
  396.                       old_key->copy_edgeflag, key->copy_edgeflag);
  397.    found |= key_debug(brw, "PointCoord replace",
  398.                       old_key->point_coord_replace, key->point_coord_replace);
  399.    found |= key_debug(brw, "vertex color clamping",
  400.                       old_key->base.clamp_vertex_color, key->base.clamp_vertex_color);
  401.  
  402.    found |= brw_debug_recompile_sampler_key(brw, &old_key->base.tex,
  403.                                             &key->base.tex);
  404.  
  405.    if (!found) {
  406.       perf_debug("  Something else\n");
  407.    }
  408. }
  409.  
  410. static void brw_upload_vs_prog(struct brw_context *brw)
  411. {
  412.    struct gl_context *ctx = &brw->ctx;
  413.    struct brw_vs_prog_key key;
  414.    /* BRW_NEW_VERTEX_PROGRAM */
  415.    struct brw_vertex_program *vp =
  416.       (struct brw_vertex_program *)brw->vertex_program;
  417.    struct gl_program *prog = (struct gl_program *) brw->vertex_program;
  418.    int i;
  419.  
  420.    memset(&key, 0, sizeof(key));
  421.  
  422.    /* Just upload the program verbatim for now.  Always send it all
  423.     * the inputs it asks for, whether they are varying or not.
  424.     */
  425.    key.base.program_string_id = vp->id;
  426.    key.base.userclip_active = (ctx->Transform.ClipPlanesEnabled != 0);
  427.    key.base.uses_clip_distance = vp->program.UsesClipDistance;
  428.    if (key.base.userclip_active && !key.base.uses_clip_distance) {
  429.       if (brw->gen < 6) {
  430.          key.base.nr_userclip_plane_consts
  431.             = _mesa_bitcount_64(ctx->Transform.ClipPlanesEnabled);
  432.          key.base.userclip_planes_enabled_gen_4_5
  433.             = ctx->Transform.ClipPlanesEnabled;
  434.       } else {
  435.          key.base.nr_userclip_plane_consts
  436.             = _mesa_logbase2(ctx->Transform.ClipPlanesEnabled) + 1;
  437.       }
  438.    }
  439.  
  440.    /* _NEW_POLYGON */
  441.    if (brw->gen < 6) {
  442.       key.copy_edgeflag = (ctx->Polygon.FrontMode != GL_FILL ||
  443.                            ctx->Polygon.BackMode != GL_FILL);
  444.    }
  445.  
  446.    /* _NEW_LIGHT | _NEW_BUFFERS */
  447.    key.base.clamp_vertex_color = ctx->Light._ClampVertexColor;
  448.  
  449.    /* _NEW_POINT */
  450.    if (brw->gen < 6 && ctx->Point.PointSprite) {
  451.       for (i = 0; i < 8; i++) {
  452.          if (ctx->Point.CoordReplace[i])
  453.             key.point_coord_replace |= (1 << i);
  454.       }
  455.    }
  456.  
  457.    /* _NEW_TEXTURE */
  458.    brw_populate_sampler_prog_key_data(ctx, prog, &key.base.tex);
  459.  
  460.    /* BRW_NEW_VERTICES */
  461.    if (brw->gen < 8 && !brw->is_haswell) {
  462.       /* Prior to Haswell, the hardware can't natively support GL_FIXED or
  463.        * 2_10_10_10_REV vertex formats.  Set appropriate workaround flags.
  464.        */
  465.       for (i = 0; i < VERT_ATTRIB_MAX; i++) {
  466.          if (!(vp->program.Base.InputsRead & BITFIELD64_BIT(i)))
  467.             continue;
  468.  
  469.          uint8_t wa_flags = 0;
  470.  
  471.          switch (brw->vb.inputs[i].glarray->Type) {
  472.  
  473.          case GL_FIXED:
  474.             wa_flags = brw->vb.inputs[i].glarray->Size;
  475.             break;
  476.  
  477.          case GL_INT_2_10_10_10_REV:
  478.             wa_flags |= BRW_ATTRIB_WA_SIGN;
  479.             /* fallthough */
  480.  
  481.          case GL_UNSIGNED_INT_2_10_10_10_REV:
  482.             if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
  483.                wa_flags |= BRW_ATTRIB_WA_BGRA;
  484.  
  485.             if (brw->vb.inputs[i].glarray->Normalized)
  486.                wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
  487.             else if (!brw->vb.inputs[i].glarray->Integer)
  488.                wa_flags |= BRW_ATTRIB_WA_SCALE;
  489.  
  490.             break;
  491.          }
  492.  
  493.          key.gl_attrib_wa_flags[i] = wa_flags;
  494.       }
  495.    }
  496.  
  497.    if (!brw_search_cache(&brw->cache, BRW_VS_PROG,
  498.                          &key, sizeof(key),
  499.                          &brw->vs.prog_offset, &brw->vs.prog_data)) {
  500.       bool success = do_vs_prog(brw, ctx->Shader.CurrentVertexProgram,
  501.                                 vp, &key);
  502.  
  503.       assert(success);
  504.    }
  505.    if (memcmp(&brw->vs.prog_data->base.vue_map, &brw->vue_map_geom_out,
  506.               sizeof(brw->vue_map_geom_out)) != 0) {
  507.       brw->vue_map_geom_out = brw->vs.prog_data->base.vue_map;
  508.       brw->state.dirty.brw |= BRW_NEW_VUE_MAP_GEOM_OUT;
  509.    }
  510. }
  511.  
  512. /* See brw_vs.c:
  513.  */
  514. const struct brw_tracked_state brw_vs_prog = {
  515.    .dirty = {
  516.       .mesa  = (_NEW_TRANSFORM | _NEW_POLYGON | _NEW_POINT | _NEW_LIGHT |
  517.                 _NEW_TEXTURE |
  518.                 _NEW_BUFFERS),
  519.       .brw   = (BRW_NEW_VERTEX_PROGRAM |
  520.                 BRW_NEW_VERTICES),
  521.       .cache = 0
  522.    },
  523.    .emit = brw_upload_vs_prog
  524. };
  525.  
  526. bool
  527. brw_vs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
  528. {
  529.    struct brw_context *brw = brw_context(ctx);
  530.    struct brw_vs_prog_key key;
  531.    uint32_t old_prog_offset = brw->vs.prog_offset;
  532.    struct brw_vs_prog_data *old_prog_data = brw->vs.prog_data;
  533.    bool success;
  534.  
  535.    if (!prog->_LinkedShaders[MESA_SHADER_VERTEX])
  536.       return true;
  537.  
  538.    struct gl_vertex_program *vp = (struct gl_vertex_program *)
  539.       prog->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
  540.    struct brw_vertex_program *bvp = brw_vertex_program(vp);
  541.  
  542.    memset(&key, 0, sizeof(key));
  543.  
  544.    key.base.program_string_id = bvp->id;
  545.    key.base.clamp_vertex_color = ctx->API == API_OPENGL_COMPAT;
  546.  
  547.    for (int i = 0; i < MAX_SAMPLERS; i++) {
  548.       if (vp->Base.ShadowSamplers & (1 << i)) {
  549.          /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
  550.          key.base.tex.swizzles[i] =
  551.             MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
  552.       } else {
  553.          /* Color sampler: assume no swizzling. */
  554.          key.base.tex.swizzles[i] = SWIZZLE_XYZW;
  555.       }
  556.    }
  557.  
  558.    success = do_vs_prog(brw, prog, bvp, &key);
  559.  
  560.    brw->vs.prog_offset = old_prog_offset;
  561.    brw->vs.prog_data = old_prog_data;
  562.  
  563.    return success;
  564. }
  565.  
  566.  
  567. void
  568. brw_vec4_prog_data_free(const struct brw_vec4_prog_data *prog_data)
  569. {
  570.    ralloc_free((void *)prog_data->param);
  571.    ralloc_free((void *)prog_data->pull_param);
  572. }
  573.  
  574.  
  575. void
  576. brw_vs_prog_data_free(const void *in_prog_data)
  577. {
  578.    const struct brw_vs_prog_data *prog_data = in_prog_data;
  579.  
  580.    brw_vec4_prog_data_free(&prog_data->base);
  581. }
  582.