Subversion Repositories Kolibri OS

Rev

Go to most recent revision | Blame | Last modification | View Log | RSS feed

  1. .. _rasterizer:
  2.  
  3. Rasterizer
  4. ==========
  5.  
  6. The rasterizer state controls the rendering of points, lines and triangles.
  7. Attributes include polygon culling state, line width, line stipple,
  8. multisample state, scissoring and flat/smooth shading.
  9.  
  10. Linkage
  11.  
  12. clamp_vertex_color
  13. ^^^^^^^^^^^^^^^^^^
  14.  
  15. If set, TGSI_SEMANTIC_COLOR registers are clamped to the [0, 1] range after
  16. the execution of the vertex shader, before being passed to the geometry
  17. shader or fragment shader.
  18.  
  19. OpenGL: glClampColor(GL_CLAMP_VERTEX_COLOR) in GL 3.0 or GL_ARB_color_buffer_float
  20.  
  21. D3D11: seems always disabled
  22.  
  23. Note the PIPE_CAP_VERTEX_COLOR_CLAMPED query indicates whether or not the
  24. driver supports this control.  If it's not supported, the state tracker may
  25. have to insert extra clamping code.
  26.  
  27.  
  28. clamp_fragment_color
  29. ^^^^^^^^^^^^^^^^^^^^
  30.  
  31. Controls whether TGSI_SEMANTIC_COLOR outputs of the fragment shader
  32. are clamped to [0, 1].
  33.  
  34. OpenGL: glClampColor(GL_CLAMP_FRAGMENT_COLOR) in GL 3.0 or ARB_color_buffer_float
  35.  
  36. D3D11: seems always disabled
  37.  
  38. Note the PIPE_CAP_FRAGMENT_COLOR_CLAMPED query indicates whether or not the
  39. driver supports this control.  If it's not supported, the state tracker may
  40. have to insert extra clamping code.
  41.  
  42.  
  43. Shading
  44. -------
  45.  
  46. flatshade
  47. ^^^^^^^^^
  48.  
  49. If set, the provoking vertex of each polygon is used to determine the color
  50. of the entire polygon.  If not set, fragment colors will be interpolated
  51. between the vertex colors.
  52.  
  53. The actual interpolated shading algorithm is obviously
  54. implementation-dependent, but will usually be Gourard for most hardware.
  55.  
  56. .. note::
  57.  
  58.     This is separate from the fragment shader input attributes
  59.     CONSTANT, LINEAR and PERSPECTIVE. The flatshade state is needed at
  60.     clipping time to determine how to set the color of new vertices.
  61.  
  62.     :ref:`Draw` can implement flat shading by copying the provoking vertex
  63.     color to all the other vertices in the primitive.
  64.  
  65. flatshade_first
  66. ^^^^^^^^^^^^^^^
  67.  
  68. Whether the first vertex should be the provoking vertex, for most primitives.
  69. If not set, the last vertex is the provoking vertex.
  70.  
  71. There are a few important exceptions to the specification of this rule.
  72.  
  73. * ``PIPE_PRIMITIVE_POLYGON``: The provoking vertex is always the first
  74.   vertex. If the caller wishes to change the provoking vertex, they merely
  75.   need to rotate the vertices themselves.
  76. * ``PIPE_PRIMITIVE_QUAD``, ``PIPE_PRIMITIVE_QUAD_STRIP``: The option only has
  77.   an effect if ``PIPE_CAP_QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION`` is true.
  78.   If it is not, the provoking vertex is always the last vertex.
  79. * ``PIPE_PRIMITIVE_TRIANGLE_FAN``: When set, the provoking vertex is the
  80.   second vertex, not the first. This permits each segment of the fan to have
  81.   a different color.
  82.  
  83. Polygons
  84. --------
  85.  
  86. light_twoside
  87. ^^^^^^^^^^^^^
  88.  
  89. If set, there are per-vertex back-facing colors.  The hardware
  90. (perhaps assisted by :ref:`Draw`) should be set up to use this state
  91. along with the front/back information to set the final vertex colors
  92. prior to rasterization.
  93.  
  94. The frontface vertex shader color output is marked with TGSI semantic
  95. COLOR[0], and backface COLOR[1].
  96.  
  97. front_ccw
  98.     Indicates whether the window order of front-facing polygons is
  99.     counter-clockwise (TRUE) or clockwise (FALSE).
  100.  
  101. cull_mode
  102.     Indicates which faces of polygons to cull, either PIPE_FACE_NONE
  103.     (cull no polygons), PIPE_FACE_FRONT (cull front-facing polygons),
  104.     PIPE_FACE_BACK (cull back-facing polygons), or
  105.     PIPE_FACE_FRONT_AND_BACK (cull all polygons).
  106.  
  107. fill_front
  108.     Indicates how to fill front-facing polygons, either
  109.     PIPE_POLYGON_MODE_FILL, PIPE_POLYGON_MODE_LINE or
  110.     PIPE_POLYGON_MODE_POINT.
  111. fill_back
  112.     Indicates how to fill back-facing polygons, either
  113.     PIPE_POLYGON_MODE_FILL, PIPE_POLYGON_MODE_LINE or
  114.     PIPE_POLYGON_MODE_POINT.
  115.  
  116. poly_stipple_enable
  117.     Whether polygon stippling is enabled.
  118. poly_smooth
  119.     Controls OpenGL-style polygon smoothing/antialiasing
  120.  
  121. offset_point
  122.     If set, point-filled polygons will have polygon offset factors applied
  123. offset_line
  124.     If set, line-filled polygons will have polygon offset factors applied
  125. offset_tri
  126.     If set, filled polygons will have polygon offset factors applied
  127.  
  128. offset_units
  129.     Specifies the polygon offset bias
  130. offset_scale
  131.     Specifies the polygon offset scale
  132. offset_clamp
  133.     Upper (if > 0) or lower (if < 0) bound on the polygon offset result
  134.  
  135.  
  136.  
  137. Lines
  138. -----
  139.  
  140. line_width
  141.     The width of lines.
  142. line_smooth
  143.     Whether lines should be smoothed. Line smoothing is simply anti-aliasing.
  144. line_stipple_enable
  145.     Whether line stippling is enabled.
  146. line_stipple_pattern
  147.     16-bit bitfield of on/off flags, used to pattern the line stipple.
  148. line_stipple_factor
  149.     When drawing a stippled line, each bit in the stipple pattern is
  150.     repeated N times, where N = line_stipple_factor + 1.
  151. line_last_pixel
  152.     Controls whether the last pixel in a line is drawn or not.  OpenGL
  153.     omits the last pixel to avoid double-drawing pixels at the ends of lines
  154.     when drawing connected lines.
  155.  
  156.  
  157. Points
  158. ------
  159.  
  160. sprite_coord_enable
  161. ^^^^^^^^^^^^^^^^^^^
  162. The effect of this state depends on PIPE_CAP_TGSI_TEXCOORD !
  163.  
  164. Controls automatic texture coordinate generation for rendering sprite points.
  165.  
  166. If PIPE_CAP_TGSI_TEXCOORD is false:
  167. When bit k in the sprite_coord_enable bitfield is set, then generic
  168. input k to the fragment shader will get an automatically computed
  169. texture coordinate.
  170.  
  171. If PIPE_CAP_TGSI_TEXCOORD is true:
  172. The bitfield refers to inputs with TEXCOORD semantic instead of generic inputs.
  173.  
  174. The texture coordinate will be of the form (s, t, 0, 1) where s varies
  175. from 0 to 1 from left to right while t varies from 0 to 1 according to
  176. the state of 'sprite_coord_mode' (see below).
  177.  
  178. If any bit is set, then point_smooth MUST be disabled (there are no
  179. round sprites) and point_quad_rasterization MUST be true (sprites are
  180. always rasterized as quads).  Any mismatch between these states should
  181. be considered a bug in the state-tracker.
  182.  
  183. This feature is implemented in the :ref:`Draw` module but may also be
  184. implemented natively by GPUs or implemented with a geometry shader.
  185.  
  186.  
  187. sprite_coord_mode
  188. ^^^^^^^^^^^^^^^^^
  189.  
  190. Specifies how the value for each shader output should be computed when drawing
  191. point sprites. For PIPE_SPRITE_COORD_LOWER_LEFT, the lower-left vertex will
  192. have coordinates (0,0,0,1). For PIPE_SPRITE_COORD_UPPER_LEFT, the upper-left
  193. vertex will have coordinates (0,0,0,1).
  194. This state is used by :ref:`Draw` to generate texcoords.
  195.  
  196.  
  197. point_quad_rasterization
  198. ^^^^^^^^^^^^^^^^^^^^^^^^
  199.  
  200. Determines if points should be rasterized according to quad or point
  201. rasterization rules.
  202.  
  203. OpenGL actually has quite different rasterization rules for points and
  204. point sprites - hence this indicates if points should be rasterized as
  205. points or according to point sprite (which decomposes them into quads,
  206. basically) rules.
  207.  
  208. Additionally Direct3D will always use quad rasterization rules for
  209. points, regardless of whether point sprites are enabled or not.
  210.  
  211. If this state is enabled, point smoothing and antialiasing are
  212. disabled. If it is disabled, point sprite coordinates are not
  213. generated.
  214.  
  215. .. note::
  216.  
  217.    Some renderers always internally translate points into quads; this state
  218.    still affects those renderers by overriding other rasterization state.
  219.  
  220. point_smooth
  221.     Whether points should be smoothed. Point smoothing turns rectangular
  222.     points into circles or ovals.
  223. point_size_per_vertex
  224.     Whether the vertex shader is expected to have a point size output.
  225.     Undefined behaviour is permitted if there is disagreement between
  226.     this flag and the actual bound shader.
  227. point_size
  228.     The size of points, if not specified per-vertex.
  229.  
  230.  
  231.  
  232. Other Members
  233. -------------
  234.  
  235. scissor
  236.     Whether the scissor test is enabled.
  237.  
  238. multisample
  239.     Whether :term:`MSAA` is enabled.
  240.  
  241. half_pixel_center
  242.     When true, the rasterizer should use (0.5, 0.5) pixel centers for
  243.     determining pixel ownership (e.g, OpenGL, D3D10 and higher)::
  244.  
  245.            0 0.5 1
  246.         0  +-----+
  247.            |     |
  248.        0.5 |  X  |
  249.            |     |
  250.         1  +-----+
  251.  
  252.     When false, the rasterizer should use (0, 0) pixel centers for determining
  253.     pixel ownership (e.g., D3D9 or ealier)::
  254.  
  255.          -0.5 0 0.5
  256.       -0.5 +-----+
  257.            |     |
  258.         0  |  X  |
  259.            |     |
  260.        0.5 +-----+
  261.  
  262. bottom_edge_rule
  263.     Determines what happens when a pixel sample lies precisely on a triangle
  264.     edge.
  265.  
  266.     When true, a pixel sample is considered to lie inside of a triangle if it
  267.     lies on the *bottom edge* or *left edge* (e.g., OpenGL drawables)::
  268.  
  269.         0                    x
  270.       0 +--------------------->
  271.         |
  272.         |  +-------------+
  273.         |  |             |
  274.         |  |             |
  275.         |  |             |
  276.         |  +=============+
  277.         |
  278.       y V
  279.  
  280.     When false, a pixel sample is considered to lie inside of a triangle if it
  281.     lies on the *top edge* or *left edge* (e.g., OpenGL FBOs, D3D)::
  282.  
  283.         0                    x
  284.       0 +--------------------->
  285.         |
  286.         |  +=============+
  287.         |  |             |
  288.         |  |             |
  289.         |  |             |
  290.         |  +-------------+
  291.         |
  292.       y V
  293.  
  294.     Where:
  295.      - a *top edge* is an edge that is horizontal and is above the other edges;
  296.      - a *bottom edge* is an edge that is horizontal and is below the other
  297.        edges;
  298.      - a *left edge* is an edge that is not horizontal and is on the left side of
  299.        the triangle.
  300.  
  301.     .. note::
  302.  
  303.         Actually all graphics APIs use a top-left rasterization rule for pixel
  304.         ownership, but their notion of top varies with the axis origin (which
  305.         can be either at y = 0 or at y = height).  Gallium instead always
  306.         assumes that top is always at y=0.
  307.  
  308.     See also:
  309.      - http://msdn.microsoft.com/en-us/library/windows/desktop/cc627092.aspx
  310.      - http://msdn.microsoft.com/en-us/library/windows/desktop/bb147314.aspx
  311.  
  312. clip_halfz
  313.     When true clip space in the z axis goes from [0..1] (D3D).  When false
  314.     [-1, 1] (GL)
  315.  
  316. depth_clip
  317.     When false, the near and far depth clipping planes of the view volume are
  318.     disabled and the depth value will be clamped at the per-pixel level, after
  319.     polygon offset has been applied and before depth testing.
  320.  
  321. clip_plane_enable
  322.     For each k in [0, PIPE_MAX_CLIP_PLANES), if bit k of this field is set,
  323.     clipping half-space k is enabled, if it is clear, it is disabled.
  324.     The clipping half-spaces are defined either by the user clip planes in
  325.     ``pipe_clip_state``, or by the clip distance outputs of the shader stage
  326.     preceding the fragment shader.
  327.     If any clip distance output is written, those half-spaces for which no
  328.     clip distance is written count as disabled; i.e. user clip planes and
  329.     shader clip distances cannot be mixed, and clip distances take precedence.
  330.