Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright © 2010 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21.  * IN THE SOFTWARE.
  22.  *
  23.  * Authors:
  24.  *    Eric Anholt <eric@anholt.net>
  25.  *
  26.  */
  27.  
  28. /** @file register_allocate.c
  29.  *
  30.  * Graph-coloring register allocator.
  31.  *
  32.  * The basic idea of graph coloring is to make a node in a graph for
  33.  * every thing that needs a register (color) number assigned, and make
  34.  * edges in the graph between nodes that interfere (can't be allocated
  35.  * to the same register at the same time).
  36.  *
  37.  * During the "simplify" process, any any node with fewer edges than
  38.  * there are registers means that that edge can get assigned a
  39.  * register regardless of what its neighbors choose, so that node is
  40.  * pushed on a stack and removed (with its edges) from the graph.
  41.  * That likely causes other nodes to become trivially colorable as well.
  42.  *
  43.  * Then during the "select" process, nodes are popped off of that
  44.  * stack, their edges restored, and assigned a color different from
  45.  * their neighbors.  Because they were pushed on the stack only when
  46.  * they were trivially colorable, any color chosen won't interfere
  47.  * with the registers to be popped later.
  48.  *
  49.  * The downside to most graph coloring is that real hardware often has
  50.  * limitations, like registers that need to be allocated to a node in
  51.  * pairs, or aligned on some boundary.  This implementation follows
  52.  * the paper "Retargetable Graph-Coloring Register Allocation for
  53.  * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
  54.  *
  55.  * In this system, there are register classes each containing various
  56.  * registers, and registers may interfere with other registers.  For
  57.  * example, one might have a class of base registers, and a class of
  58.  * aligned register pairs that would each interfere with their pair of
  59.  * the base registers.  Each node has a register class it needs to be
  60.  * assigned to.  Define p(B) to be the size of register class B, and
  61.  * q(B,C) to be the number of registers in B that the worst choice
  62.  * register in C could conflict with.  Then, this system replaces the
  63.  * basic graph coloring test of "fewer edges from this node than there
  64.  * are registers" with "For this node of class B, the sum of q(B,C)
  65.  * for each neighbor node of class C is less than pB".
  66.  *
  67.  * A nice feature of the pq test is that q(B,C) can be computed once
  68.  * up front and stored in a 2-dimensional array, so that the cost of
  69.  * coloring a node is constant with the number of registers.  We do
  70.  * this during ra_set_finalize().
  71.  */
  72.  
  73. #include <stdbool.h>
  74.  
  75. #include "ralloc.h"
  76. #include "main/imports.h"
  77. #include "main/macros.h"
  78. #include "main/mtypes.h"
  79. #include "util/bitset.h"
  80. #include "register_allocate.h"
  81.  
  82. #define NO_REG ~0U
  83.  
  84. struct ra_reg {
  85.    BITSET_WORD *conflicts;
  86.    unsigned int *conflict_list;
  87.    unsigned int conflict_list_size;
  88.    unsigned int num_conflicts;
  89. };
  90.  
  91. struct ra_regs {
  92.    struct ra_reg *regs;
  93.    unsigned int count;
  94.  
  95.    struct ra_class **classes;
  96.    unsigned int class_count;
  97.  
  98.    bool round_robin;
  99. };
  100.  
  101. struct ra_class {
  102.    /**
  103.     * Bitset indicating which registers belong to this class.
  104.     *
  105.     * (If bit N is set, then register N belongs to this class.)
  106.     */
  107.    BITSET_WORD *regs;
  108.  
  109.    /**
  110.     * p(B) in Runeson/Nyström paper.
  111.     *
  112.     * This is "how many regs are in the set."
  113.     */
  114.    unsigned int p;
  115.  
  116.    /**
  117.     * q(B,C) (indexed by C, B is this register class) in
  118.     * Runeson/Nyström paper.  This is "how many registers of B could
  119.     * the worst choice register from C conflict with".
  120.     */
  121.    unsigned int *q;
  122. };
  123.  
  124. struct ra_node {
  125.    /** @{
  126.     *
  127.     * List of which nodes this node interferes with.  This should be
  128.     * symmetric with the other node.
  129.     */
  130.    BITSET_WORD *adjacency;
  131.    unsigned int *adjacency_list;
  132.    unsigned int adjacency_list_size;
  133.    unsigned int adjacency_count;
  134.    /** @} */
  135.  
  136.    unsigned int class;
  137.  
  138.    /* Register, if assigned, or NO_REG. */
  139.    unsigned int reg;
  140.  
  141.    /**
  142.     * Set when the node is in the trivially colorable stack.  When
  143.     * set, the adjacency to this node is ignored, to implement the
  144.     * "remove the edge from the graph" in simplification without
  145.     * having to actually modify the adjacency_list.
  146.     */
  147.    bool in_stack;
  148.  
  149.    /**
  150.     * The q total, as defined in the Runeson/Nyström paper, for all the
  151.     * interfering nodes not in the stack.
  152.     */
  153.    unsigned int q_total;
  154.  
  155.    /* For an implementation that needs register spilling, this is the
  156.     * approximate cost of spilling this node.
  157.     */
  158.    float spill_cost;
  159. };
  160.  
  161. struct ra_graph {
  162.    struct ra_regs *regs;
  163.    /**
  164.     * the variables that need register allocation.
  165.     */
  166.    struct ra_node *nodes;
  167.    unsigned int count; /**< count of nodes. */
  168.  
  169.    unsigned int *stack;
  170.    unsigned int stack_count;
  171.  
  172.    /**
  173.     * Tracks the start of the set of optimistically-colored registers in the
  174.     * stack.
  175.     */
  176.    unsigned int stack_optimistic_start;
  177. };
  178.  
  179. /**
  180.  * Creates a set of registers for the allocator.
  181.  *
  182.  * mem_ctx is a ralloc context for the allocator.  The reg set may be freed
  183.  * using ralloc_free().
  184.  */
  185. struct ra_regs *
  186. ra_alloc_reg_set(void *mem_ctx, unsigned int count)
  187. {
  188.    unsigned int i;
  189.    struct ra_regs *regs;
  190.  
  191.    regs = rzalloc(mem_ctx, struct ra_regs);
  192.    regs->count = count;
  193.    regs->regs = rzalloc_array(regs, struct ra_reg, count);
  194.  
  195.    for (i = 0; i < count; i++) {
  196.       regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
  197.                                               BITSET_WORDS(count));
  198.       BITSET_SET(regs->regs[i].conflicts, i);
  199.  
  200.       regs->regs[i].conflict_list = ralloc_array(regs->regs, unsigned int, 4);
  201.       regs->regs[i].conflict_list_size = 4;
  202.       regs->regs[i].conflict_list[0] = i;
  203.       regs->regs[i].num_conflicts = 1;
  204.    }
  205.  
  206.    return regs;
  207. }
  208.  
  209. /**
  210.  * The register allocator by default prefers to allocate low register numbers,
  211.  * since it was written for hardware (gen4/5 Intel) that is limited in its
  212.  * multithreadedness by the number of registers used in a given shader.
  213.  *
  214.  * However, for hardware without that restriction, densely packed register
  215.  * allocation can put serious constraints on instruction scheduling.  This
  216.  * function tells the allocator to rotate around the registers if possible as
  217.  * it allocates the nodes.
  218.  */
  219. void
  220. ra_set_allocate_round_robin(struct ra_regs *regs)
  221. {
  222.    regs->round_robin = true;
  223. }
  224.  
  225. static void
  226. ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
  227. {
  228.    struct ra_reg *reg1 = &regs->regs[r1];
  229.  
  230.    if (reg1->conflict_list_size == reg1->num_conflicts) {
  231.       reg1->conflict_list_size *= 2;
  232.       reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
  233.                                      unsigned int, reg1->conflict_list_size);
  234.    }
  235.    reg1->conflict_list[reg1->num_conflicts++] = r2;
  236.    BITSET_SET(reg1->conflicts, r2);
  237. }
  238.  
  239. void
  240. ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
  241. {
  242.    if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
  243.       ra_add_conflict_list(regs, r1, r2);
  244.       ra_add_conflict_list(regs, r2, r1);
  245.    }
  246. }
  247.  
  248. /**
  249.  * Adds a conflict between base_reg and reg, and also between reg and
  250.  * anything that base_reg conflicts with.
  251.  *
  252.  * This can simplify code for setting up multiple register classes
  253.  * which are aggregates of some base hardware registers, compared to
  254.  * explicitly using ra_add_reg_conflict.
  255.  */
  256. void
  257. ra_add_transitive_reg_conflict(struct ra_regs *regs,
  258.                                unsigned int base_reg, unsigned int reg)
  259. {
  260.    unsigned int i;
  261.  
  262.    ra_add_reg_conflict(regs, reg, base_reg);
  263.  
  264.    for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
  265.       ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
  266.    }
  267. }
  268.  
  269. unsigned int
  270. ra_alloc_reg_class(struct ra_regs *regs)
  271. {
  272.    struct ra_class *class;
  273.  
  274.    regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
  275.                             regs->class_count + 1);
  276.  
  277.    class = rzalloc(regs, struct ra_class);
  278.    regs->classes[regs->class_count] = class;
  279.  
  280.    class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
  281.  
  282.    return regs->class_count++;
  283. }
  284.  
  285. void
  286. ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
  287. {
  288.    struct ra_class *class = regs->classes[c];
  289.  
  290.    BITSET_SET(class->regs, r);
  291.    class->p++;
  292. }
  293.  
  294. /**
  295.  * Returns true if the register belongs to the given class.
  296.  */
  297. static bool
  298. reg_belongs_to_class(unsigned int r, struct ra_class *c)
  299. {
  300.    return BITSET_TEST(c->regs, r);
  301. }
  302.  
  303. /**
  304.  * Must be called after all conflicts and register classes have been
  305.  * set up and before the register set is used for allocation.
  306.  * To avoid costly q value computation, use the q_values paramater
  307.  * to pass precomputed q values to this function.
  308.  */
  309. void
  310. ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
  311. {
  312.    unsigned int b, c;
  313.  
  314.    for (b = 0; b < regs->class_count; b++) {
  315.       regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
  316.    }
  317.  
  318.    if (q_values) {
  319.       for (b = 0; b < regs->class_count; b++) {
  320.          for (c = 0; c < regs->class_count; c++) {
  321.             regs->classes[b]->q[c] = q_values[b][c];
  322.          }
  323.       }
  324.       return;
  325.    }
  326.  
  327.    /* Compute, for each class B and C, how many regs of B an
  328.     * allocation to C could conflict with.
  329.     */
  330.    for (b = 0; b < regs->class_count; b++) {
  331.       for (c = 0; c < regs->class_count; c++) {
  332.          unsigned int rc;
  333.          int max_conflicts = 0;
  334.  
  335.          for (rc = 0; rc < regs->count; rc++) {
  336.             int conflicts = 0;
  337.             unsigned int i;
  338.  
  339.             if (!reg_belongs_to_class(rc, regs->classes[c]))
  340.                continue;
  341.  
  342.             for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
  343.                unsigned int rb = regs->regs[rc].conflict_list[i];
  344.                if (reg_belongs_to_class(rb, regs->classes[b]))
  345.                   conflicts++;
  346.             }
  347.             max_conflicts = MAX2(max_conflicts, conflicts);
  348.          }
  349.          regs->classes[b]->q[c] = max_conflicts;
  350.       }
  351.    }
  352. }
  353.  
  354. static void
  355. ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
  356. {
  357.    BITSET_SET(g->nodes[n1].adjacency, n2);
  358.  
  359.    if (n1 != n2) {
  360.       int n1_class = g->nodes[n1].class;
  361.       int n2_class = g->nodes[n2].class;
  362.       g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
  363.    }
  364.  
  365.    if (g->nodes[n1].adjacency_count >=
  366.        g->nodes[n1].adjacency_list_size) {
  367.       g->nodes[n1].adjacency_list_size *= 2;
  368.       g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
  369.                                              unsigned int,
  370.                                              g->nodes[n1].adjacency_list_size);
  371.    }
  372.  
  373.    g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
  374.    g->nodes[n1].adjacency_count++;
  375. }
  376.  
  377. struct ra_graph *
  378. ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
  379. {
  380.    struct ra_graph *g;
  381.    unsigned int i;
  382.  
  383.    g = rzalloc(NULL, struct ra_graph);
  384.    g->regs = regs;
  385.    g->nodes = rzalloc_array(g, struct ra_node, count);
  386.    g->count = count;
  387.  
  388.    g->stack = rzalloc_array(g, unsigned int, count);
  389.  
  390.    for (i = 0; i < count; i++) {
  391.       int bitset_count = BITSET_WORDS(count);
  392.       g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
  393.  
  394.       g->nodes[i].adjacency_list_size = 4;
  395.       g->nodes[i].adjacency_list =
  396.          ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
  397.       g->nodes[i].adjacency_count = 0;
  398.       g->nodes[i].q_total = 0;
  399.  
  400.       ra_add_node_adjacency(g, i, i);
  401.       g->nodes[i].reg = NO_REG;
  402.    }
  403.  
  404.    return g;
  405. }
  406.  
  407. void
  408. ra_set_node_class(struct ra_graph *g,
  409.                   unsigned int n, unsigned int class)
  410. {
  411.    g->nodes[n].class = class;
  412. }
  413.  
  414. void
  415. ra_add_node_interference(struct ra_graph *g,
  416.                          unsigned int n1, unsigned int n2)
  417. {
  418.    if (!BITSET_TEST(g->nodes[n1].adjacency, n2)) {
  419.       ra_add_node_adjacency(g, n1, n2);
  420.       ra_add_node_adjacency(g, n2, n1);
  421.    }
  422. }
  423.  
  424. static bool
  425. pq_test(struct ra_graph *g, unsigned int n)
  426. {
  427.    int n_class = g->nodes[n].class;
  428.  
  429.    return g->nodes[n].q_total < g->regs->classes[n_class]->p;
  430. }
  431.  
  432. static void
  433. decrement_q(struct ra_graph *g, unsigned int n)
  434. {
  435.    unsigned int i;
  436.    int n_class = g->nodes[n].class;
  437.  
  438.    for (i = 0; i < g->nodes[n].adjacency_count; i++) {
  439.       unsigned int n2 = g->nodes[n].adjacency_list[i];
  440.       unsigned int n2_class = g->nodes[n2].class;
  441.  
  442.       if (n != n2 && !g->nodes[n2].in_stack) {
  443.          assert(g->nodes[n2].q_total >= g->regs->classes[n2_class]->q[n_class]);
  444.          g->nodes[n2].q_total -= g->regs->classes[n2_class]->q[n_class];
  445.       }
  446.    }
  447. }
  448.  
  449. /**
  450.  * Simplifies the interference graph by pushing all
  451.  * trivially-colorable nodes into a stack of nodes to be colored,
  452.  * removing them from the graph, and rinsing and repeating.
  453.  *
  454.  * If we encounter a case where we can't push any nodes on the stack, then
  455.  * we optimistically choose a node and push it on the stack. We heuristically
  456.  * push the node with the lowest total q value, since it has the fewest
  457.  * neighbors and therefore is most likely to be allocated.
  458.  */
  459. static void
  460. ra_simplify(struct ra_graph *g)
  461. {
  462.    bool progress = true;
  463.    unsigned int stack_optimistic_start = UINT_MAX;
  464.    int i;
  465.  
  466.    while (progress) {
  467.       unsigned int best_optimistic_node = ~0;
  468.       unsigned int lowest_q_total = ~0;
  469.  
  470.       progress = false;
  471.  
  472.       for (i = g->count - 1; i >= 0; i--) {
  473.          if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
  474.             continue;
  475.  
  476.          if (pq_test(g, i)) {
  477.             decrement_q(g, i);
  478.             g->stack[g->stack_count] = i;
  479.             g->stack_count++;
  480.             g->nodes[i].in_stack = true;
  481.             progress = true;
  482.          } else {
  483.             unsigned int new_q_total = g->nodes[i].q_total;
  484.             if (new_q_total < lowest_q_total) {
  485.                best_optimistic_node = i;
  486.                lowest_q_total = new_q_total;
  487.             }
  488.          }
  489.       }
  490.  
  491.       if (!progress && best_optimistic_node != ~0U) {
  492.          if (stack_optimistic_start == UINT_MAX)
  493.             stack_optimistic_start = g->stack_count;
  494.  
  495.          decrement_q(g, best_optimistic_node);
  496.          g->stack[g->stack_count] = best_optimistic_node;
  497.          g->stack_count++;
  498.          g->nodes[best_optimistic_node].in_stack = true;
  499.          progress = true;
  500.       }
  501.    }
  502.  
  503.    g->stack_optimistic_start = stack_optimistic_start;
  504. }
  505.  
  506. /**
  507.  * Pops nodes from the stack back into the graph, coloring them with
  508.  * registers as they go.
  509.  *
  510.  * If all nodes were trivially colorable, then this must succeed.  If
  511.  * not (optimistic coloring), then it may return false;
  512.  */
  513. static bool
  514. ra_select(struct ra_graph *g)
  515. {
  516.    int start_search_reg = 0;
  517.  
  518.    while (g->stack_count != 0) {
  519.       unsigned int i;
  520.       unsigned int ri;
  521.       unsigned int r = -1;
  522.       int n = g->stack[g->stack_count - 1];
  523.       struct ra_class *c = g->regs->classes[g->nodes[n].class];
  524.  
  525.       /* Find the lowest-numbered reg which is not used by a member
  526.        * of the graph adjacent to us.
  527.        */
  528.       for (ri = 0; ri < g->regs->count; ri++) {
  529.          r = (start_search_reg + ri) % g->regs->count;
  530.          if (!reg_belongs_to_class(r, c))
  531.             continue;
  532.  
  533.          /* Check if any of our neighbors conflict with this register choice. */
  534.          for (i = 0; i < g->nodes[n].adjacency_count; i++) {
  535.             unsigned int n2 = g->nodes[n].adjacency_list[i];
  536.  
  537.             if (!g->nodes[n2].in_stack &&
  538.                 BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
  539.                break;
  540.             }
  541.          }
  542.          if (i == g->nodes[n].adjacency_count)
  543.             break;
  544.       }
  545.  
  546.       /* set this to false even if we return here so that
  547.        * ra_get_best_spill_node() considers this node later.
  548.        */
  549.       g->nodes[n].in_stack = false;
  550.  
  551.       if (ri == g->regs->count)
  552.          return false;
  553.  
  554.       g->nodes[n].reg = r;
  555.       g->stack_count--;
  556.  
  557.       /* Rotate the starting point except for any nodes above the lowest
  558.        * optimistically colorable node.  The likelihood that we will succeed
  559.        * at allocating optimistically colorable nodes is highly dependent on
  560.        * the way that the previous nodes popped off the stack are laid out.
  561.        * The round-robin strategy increases the fragmentation of the register
  562.        * file and decreases the number of nearby nodes assigned to the same
  563.        * color, what increases the likelihood of spilling with respect to the
  564.        * dense packing strategy.
  565.        */
  566.       if (g->regs->round_robin &&
  567.           g->stack_count - 1 <= g->stack_optimistic_start)
  568.          start_search_reg = r + 1;
  569.    }
  570.  
  571.    return true;
  572. }
  573.  
  574. bool
  575. ra_allocate(struct ra_graph *g)
  576. {
  577.    ra_simplify(g);
  578.    return ra_select(g);
  579. }
  580.  
  581. unsigned int
  582. ra_get_node_reg(struct ra_graph *g, unsigned int n)
  583. {
  584.    return g->nodes[n].reg;
  585. }
  586.  
  587. /**
  588.  * Forces a node to a specific register.  This can be used to avoid
  589.  * creating a register class containing one node when handling data
  590.  * that must live in a fixed location and is known to not conflict
  591.  * with other forced register assignment (as is common with shader
  592.  * input data).  These nodes do not end up in the stack during
  593.  * ra_simplify(), and thus at ra_select() time it is as if they were
  594.  * the first popped off the stack and assigned their fixed locations.
  595.  * Nodes that use this function do not need to be assigned a register
  596.  * class.
  597.  *
  598.  * Must be called before ra_simplify().
  599.  */
  600. void
  601. ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
  602. {
  603.    g->nodes[n].reg = reg;
  604.    g->nodes[n].in_stack = false;
  605. }
  606.  
  607. static float
  608. ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
  609. {
  610.    unsigned int j;
  611.    float benefit = 0;
  612.    int n_class = g->nodes[n].class;
  613.  
  614.    /* Define the benefit of eliminating an interference between n, n2
  615.     * through spilling as q(C, B) / p(C).  This is similar to the
  616.     * "count number of edges" approach of traditional graph coloring,
  617.     * but takes classes into account.
  618.     */
  619.    for (j = 0; j < g->nodes[n].adjacency_count; j++) {
  620.       unsigned int n2 = g->nodes[n].adjacency_list[j];
  621.       if (n != n2) {
  622.          unsigned int n2_class = g->nodes[n2].class;
  623.          benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
  624.                      g->regs->classes[n_class]->p);
  625.       }
  626.    }
  627.  
  628.    return benefit;
  629. }
  630.  
  631. /**
  632.  * Returns a node number to be spilled according to the cost/benefit using
  633.  * the pq test, or -1 if there are no spillable nodes.
  634.  */
  635. int
  636. ra_get_best_spill_node(struct ra_graph *g)
  637. {
  638.    unsigned int best_node = -1;
  639.    float best_benefit = 0.0;
  640.    unsigned int n;
  641.  
  642.    /* Consider any nodes that we colored successfully or the node we failed to
  643.     * color for spilling. When we failed to color a node in ra_select(), we
  644.     * only considered these nodes, so spilling any other ones would not result
  645.     * in us making progress.
  646.     */
  647.    for (n = 0; n < g->count; n++) {
  648.       float cost = g->nodes[n].spill_cost;
  649.       float benefit;
  650.  
  651.       if (cost <= 0.0)
  652.          continue;
  653.  
  654.       if (g->nodes[n].in_stack)
  655.          continue;
  656.  
  657.       benefit = ra_get_spill_benefit(g, n);
  658.  
  659.       if (benefit / cost > best_benefit) {
  660.          best_benefit = benefit / cost;
  661.          best_node = n;
  662.       }
  663.    }
  664.  
  665.    return best_node;
  666. }
  667.  
  668. /**
  669.  * Only nodes with a spill cost set (cost != 0.0) will be considered
  670.  * for register spilling.
  671.  */
  672. void
  673. ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
  674. {
  675.    g->nodes[n].spill_cost = cost;
  676. }
  677.