Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Mesa 3-D graphics library
  3.  *
  4.  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
  5.  *
  6.  * Permission is hereby granted, free of charge, to any person obtaining a
  7.  * copy of this software and associated documentation files (the "Software"),
  8.  * to deal in the Software without restriction, including without limitation
  9.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10.  * and/or sell copies of the Software, and to permit persons to whom the
  11.  * Software is furnished to do so, subject to the following conditions:
  12.  *
  13.  * The above copyright notice and this permission notice shall be included
  14.  * in all copies or substantial portions of the Software.
  15.  *
  16.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  17.  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
  20.  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  21.  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  22.  * OTHER DEALINGS IN THE SOFTWARE.
  23.  */
  24.  
  25.  
  26. #include "c99_math.h"
  27. #include "main/glheader.h"
  28. #include "main/imports.h"
  29. #include "main/macros.h"
  30. #include "main/mtypes.h"
  31. #include "main/teximage.h"
  32. #include "swrast/s_aaline.h"
  33. #include "swrast/s_context.h"
  34. #include "swrast/s_span.h"
  35. #include "swrast/swrast.h"
  36.  
  37.  
  38. #define SUB_PIXEL 4
  39.  
  40.  
  41. /*
  42.  * Info about the AA line we're rendering
  43.  */
  44. struct LineInfo
  45. {
  46.    GLfloat x0, y0;        /* start */
  47.    GLfloat x1, y1;        /* end */
  48.    GLfloat dx, dy;        /* direction vector */
  49.    GLfloat len;           /* length */
  50.    GLfloat halfWidth;     /* half of line width */
  51.    GLfloat xAdj, yAdj;    /* X and Y adjustment for quad corners around line */
  52.    /* for coverage computation */
  53.    GLfloat qx0, qy0;      /* quad vertices */
  54.    GLfloat qx1, qy1;
  55.    GLfloat qx2, qy2;
  56.    GLfloat qx3, qy3;
  57.    GLfloat ex0, ey0;      /* quad edge vectors */
  58.    GLfloat ex1, ey1;
  59.    GLfloat ex2, ey2;
  60.    GLfloat ex3, ey3;
  61.  
  62.    /* DO_Z */
  63.    GLfloat zPlane[4];
  64.    /* DO_RGBA - always enabled */
  65.    GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
  66.    /* DO_ATTRIBS */
  67.    GLfloat wPlane[4];
  68.    GLfloat attrPlane[VARYING_SLOT_MAX][4][4];
  69.    GLfloat lambda[VARYING_SLOT_MAX];
  70.    GLfloat texWidth[VARYING_SLOT_MAX];
  71.    GLfloat texHeight[VARYING_SLOT_MAX];
  72.  
  73.    SWspan span;
  74. };
  75.  
  76.  
  77.  
  78. /*
  79.  * Compute the equation of a plane used to interpolate line fragment data
  80.  * such as color, Z, texture coords, etc.
  81.  * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
  82.  *        z0, and z1 are the end point values to interpolate.
  83.  * Output:  plane - the plane equation.
  84.  *
  85.  * Note: we don't really have enough parameters to specify a plane.
  86.  * We take the endpoints of the line and compute a plane such that
  87.  * the cross product of the line vector and the plane normal is
  88.  * parallel to the projection plane.
  89.  */
  90. static void
  91. compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
  92.               GLfloat z0, GLfloat z1, GLfloat plane[4])
  93. {
  94. #if 0
  95.    /* original */
  96.    const GLfloat px = x1 - x0;
  97.    const GLfloat py = y1 - y0;
  98.    const GLfloat pz = z1 - z0;
  99.    const GLfloat qx = -py;
  100.    const GLfloat qy = px;
  101.    const GLfloat qz = 0;
  102.    const GLfloat a = py * qz - pz * qy;
  103.    const GLfloat b = pz * qx - px * qz;
  104.    const GLfloat c = px * qy - py * qx;
  105.    const GLfloat d = -(a * x0 + b * y0 + c * z0);
  106.    plane[0] = a;
  107.    plane[1] = b;
  108.    plane[2] = c;
  109.    plane[3] = d;
  110. #else
  111.    /* simplified */
  112.    const GLfloat px = x1 - x0;
  113.    const GLfloat py = y1 - y0;
  114.    const GLfloat pz = z0 - z1;
  115.    const GLfloat a = pz * px;
  116.    const GLfloat b = pz * py;
  117.    const GLfloat c = px * px + py * py;
  118.    const GLfloat d = -(a * x0 + b * y0 + c * z0);
  119.    if (a == 0.0 && b == 0.0 && c == 0.0 && d == 0.0) {
  120.       plane[0] = 0.0;
  121.       plane[1] = 0.0;
  122.       plane[2] = 1.0;
  123.       plane[3] = 0.0;
  124.    }
  125.    else {
  126.       plane[0] = a;
  127.       plane[1] = b;
  128.       plane[2] = c;
  129.       plane[3] = d;
  130.    }
  131. #endif
  132. }
  133.  
  134.  
  135. static inline void
  136. constant_plane(GLfloat value, GLfloat plane[4])
  137. {
  138.    plane[0] = 0.0;
  139.    plane[1] = 0.0;
  140.    plane[2] = -1.0;
  141.    plane[3] = value;
  142. }
  143.  
  144.  
  145. static inline GLfloat
  146. solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
  147. {
  148.    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
  149.    return z;
  150. }
  151.  
  152. #define SOLVE_PLANE(X, Y, PLANE) \
  153.    ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
  154.  
  155.  
  156. /*
  157.  * Return 1 / solve_plane().
  158.  */
  159. static inline GLfloat
  160. solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
  161. {
  162.    const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
  163.    if (denom == 0.0)
  164.       return 0.0;
  165.    else
  166.       return -plane[2] / denom;
  167. }
  168.  
  169.  
  170. /*
  171.  * Solve plane and return clamped GLchan value.
  172.  */
  173. static inline GLchan
  174. solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
  175. {
  176.    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
  177. #if CHAN_TYPE == GL_FLOAT
  178.    return CLAMP(z, 0.0F, CHAN_MAXF);
  179. #else
  180.    if (z < 0)
  181.       return 0;
  182.    else if (z > CHAN_MAX)
  183.       return CHAN_MAX;
  184.    return (GLchan) IROUND_POS(z);
  185. #endif
  186. }
  187.  
  188.  
  189. /*
  190.  * Compute mipmap level of detail.
  191.  */
  192. static inline GLfloat
  193. compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
  194.                GLfloat invQ, GLfloat width, GLfloat height)
  195. {
  196.    GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
  197.    GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
  198.    GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
  199.    GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
  200.    GLfloat r1 = dudx * dudx + dudy * dudy;
  201.    GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
  202.    GLfloat rho2 = r1 + r2;
  203.    /* return log base 2 of rho */
  204.    if (rho2 == 0.0F)
  205.       return 0.0;
  206.    else
  207.       return logf(rho2) * 1.442695f * 0.5f;/* 1.442695 = 1/log(2) */
  208. }
  209.  
  210.  
  211.  
  212.  
  213. /*
  214.  * Fill in the samples[] array with the (x,y) subpixel positions of
  215.  * xSamples * ySamples sample positions.
  216.  * Note that the four corner samples are put into the first four
  217.  * positions of the array.  This allows us to optimize for the common
  218.  * case of all samples being inside the polygon.
  219.  */
  220. static void
  221. make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
  222. {
  223.    const GLfloat dx = 1.0F / (GLfloat) xSamples;
  224.    const GLfloat dy = 1.0F / (GLfloat) ySamples;
  225.    GLint x, y;
  226.    GLint i;
  227.  
  228.    i = 4;
  229.    for (x = 0; x < xSamples; x++) {
  230.       for (y = 0; y < ySamples; y++) {
  231.          GLint j;
  232.          if (x == 0 && y == 0) {
  233.             /* lower left */
  234.             j = 0;
  235.          }
  236.          else if (x == xSamples - 1 && y == 0) {
  237.             /* lower right */
  238.             j = 1;
  239.          }
  240.          else if (x == 0 && y == ySamples - 1) {
  241.             /* upper left */
  242.             j = 2;
  243.          }
  244.          else if (x == xSamples - 1 && y == ySamples - 1) {
  245.             /* upper right */
  246.             j = 3;
  247.          }
  248.          else {
  249.             j = i++;
  250.          }
  251.          samples[j][0] = x * dx + 0.5F * dx;
  252.          samples[j][1] = y * dy + 0.5F * dy;
  253.       }
  254.    }
  255. }
  256.  
  257.  
  258.  
  259. /*
  260.  * Compute how much of the given pixel's area is inside the rectangle
  261.  * defined by vertices v0, v1, v2, v3.
  262.  * Vertices MUST be specified in counter-clockwise order.
  263.  * Return:  coverage in [0, 1].
  264.  */
  265. static GLfloat
  266. compute_coveragef(const struct LineInfo *info,
  267.                   GLint winx, GLint winy)
  268. {
  269.    static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
  270.    static GLboolean haveSamples = GL_FALSE;
  271.    const GLfloat x = (GLfloat) winx;
  272.    const GLfloat y = (GLfloat) winy;
  273.    GLint stop = 4, i;
  274.    GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
  275.  
  276.    if (!haveSamples) {
  277.       make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
  278.       haveSamples = GL_TRUE;
  279.    }
  280.  
  281. #if 0 /*DEBUG*/
  282.    {
  283.       const GLfloat area = dx0 * dy1 - dx1 * dy0;
  284.       assert(area >= 0.0);
  285.    }
  286. #endif
  287.  
  288.    for (i = 0; i < stop; i++) {
  289.       const GLfloat sx = x + samples[i][0];
  290.       const GLfloat sy = y + samples[i][1];
  291.       const GLfloat fx0 = sx - info->qx0;
  292.       const GLfloat fy0 = sy - info->qy0;
  293.       const GLfloat fx1 = sx - info->qx1;
  294.       const GLfloat fy1 = sy - info->qy1;
  295.       const GLfloat fx2 = sx - info->qx2;
  296.       const GLfloat fy2 = sy - info->qy2;
  297.       const GLfloat fx3 = sx - info->qx3;
  298.       const GLfloat fy3 = sy - info->qy3;
  299.       /* cross product determines if sample is inside or outside each edge */
  300.       GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
  301.       GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
  302.       GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
  303.       GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
  304.       /* Check if the sample is exactly on an edge.  If so, let cross be a
  305.        * positive or negative value depending on the direction of the edge.
  306.        */
  307.       if (cross0 == 0.0F)
  308.          cross0 = info->ex0 + info->ey0;
  309.       if (cross1 == 0.0F)
  310.          cross1 = info->ex1 + info->ey1;
  311.       if (cross2 == 0.0F)
  312.          cross2 = info->ex2 + info->ey2;
  313.       if (cross3 == 0.0F)
  314.          cross3 = info->ex3 + info->ey3;
  315.       if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
  316.          /* point is outside quadrilateral */
  317.          insideCount -= 1.0F;
  318.          stop = SUB_PIXEL * SUB_PIXEL;
  319.       }
  320.    }
  321.    if (stop == 4)
  322.       return 1.0F;
  323.    else
  324.       return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
  325. }
  326.  
  327.  
  328. typedef void (*plot_func)(struct gl_context *ctx, struct LineInfo *line,
  329.                           int ix, int iy);
  330.                          
  331.  
  332.  
  333. /*
  334.  * Draw an AA line segment (called many times per line when stippling)
  335.  */
  336. static void
  337. segment(struct gl_context *ctx,
  338.         struct LineInfo *line,
  339.         plot_func plot,
  340.         GLfloat t0, GLfloat t1)
  341. {
  342.    const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
  343.    const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
  344.    /* compute the actual segment's endpoints */
  345.    const GLfloat x0 = line->x0 + t0 * line->dx;
  346.    const GLfloat y0 = line->y0 + t0 * line->dy;
  347.    const GLfloat x1 = line->x0 + t1 * line->dx;
  348.    const GLfloat y1 = line->y0 + t1 * line->dy;
  349.  
  350.    /* compute vertices of the line-aligned quadrilateral */
  351.    line->qx0 = x0 - line->yAdj;
  352.    line->qy0 = y0 + line->xAdj;
  353.    line->qx1 = x0 + line->yAdj;
  354.    line->qy1 = y0 - line->xAdj;
  355.    line->qx2 = x1 + line->yAdj;
  356.    line->qy2 = y1 - line->xAdj;
  357.    line->qx3 = x1 - line->yAdj;
  358.    line->qy3 = y1 + line->xAdj;
  359.    /* compute the quad's edge vectors (for coverage calc) */
  360.    line->ex0 = line->qx1 - line->qx0;
  361.    line->ey0 = line->qy1 - line->qy0;
  362.    line->ex1 = line->qx2 - line->qx1;
  363.    line->ey1 = line->qy2 - line->qy1;
  364.    line->ex2 = line->qx3 - line->qx2;
  365.    line->ey2 = line->qy3 - line->qy2;
  366.    line->ex3 = line->qx0 - line->qx3;
  367.    line->ey3 = line->qy0 - line->qy3;
  368.  
  369.    if (absDx > absDy) {
  370.       /* X-major line */
  371.       GLfloat dydx = line->dy / line->dx;
  372.       GLfloat xLeft, xRight, yBot, yTop;
  373.       GLint ix, ixRight;
  374.       if (x0 < x1) {
  375.          xLeft = x0 - line->halfWidth;
  376.          xRight = x1 + line->halfWidth;
  377.          if (line->dy >= 0.0) {
  378.             yBot = y0 - 3.0F * line->halfWidth;
  379.             yTop = y0 + line->halfWidth;
  380.          }
  381.          else {
  382.             yBot = y0 - line->halfWidth;
  383.             yTop = y0 + 3.0F * line->halfWidth;
  384.          }
  385.       }
  386.       else {
  387.          xLeft = x1 - line->halfWidth;
  388.          xRight = x0 + line->halfWidth;
  389.          if (line->dy <= 0.0) {
  390.             yBot = y1 - 3.0F * line->halfWidth;
  391.             yTop = y1 + line->halfWidth;
  392.          }
  393.          else {
  394.             yBot = y1 - line->halfWidth;
  395.             yTop = y1 + 3.0F * line->halfWidth;
  396.          }
  397.       }
  398.  
  399.       /* scan along the line, left-to-right */
  400.       ixRight = (GLint) (xRight + 1.0F);
  401.  
  402.       /*printf("avg span height: %g\n", yTop - yBot);*/
  403.       for (ix = (GLint) xLeft; ix < ixRight; ix++) {
  404.          const GLint iyBot = (GLint) yBot;
  405.          const GLint iyTop = (GLint) (yTop + 1.0F);
  406.          GLint iy;
  407.          /* scan across the line, bottom-to-top */
  408.          for (iy = iyBot; iy < iyTop; iy++) {
  409.             (*plot)(ctx, line, ix, iy);
  410.          }
  411.          yBot += dydx;
  412.          yTop += dydx;
  413.       }
  414.    }
  415.    else {
  416.       /* Y-major line */
  417.       GLfloat dxdy = line->dx / line->dy;
  418.       GLfloat yBot, yTop, xLeft, xRight;
  419.       GLint iy, iyTop;
  420.       if (y0 < y1) {
  421.          yBot = y0 - line->halfWidth;
  422.          yTop = y1 + line->halfWidth;
  423.          if (line->dx >= 0.0) {
  424.             xLeft = x0 - 3.0F * line->halfWidth;
  425.             xRight = x0 + line->halfWidth;
  426.          }
  427.          else {
  428.             xLeft = x0 - line->halfWidth;
  429.             xRight = x0 + 3.0F * line->halfWidth;
  430.          }
  431.       }
  432.       else {
  433.          yBot = y1 - line->halfWidth;
  434.          yTop = y0 + line->halfWidth;
  435.          if (line->dx <= 0.0) {
  436.             xLeft = x1 - 3.0F * line->halfWidth;
  437.             xRight = x1 + line->halfWidth;
  438.          }
  439.          else {
  440.             xLeft = x1 - line->halfWidth;
  441.             xRight = x1 + 3.0F * line->halfWidth;
  442.          }
  443.       }
  444.  
  445.       /* scan along the line, bottom-to-top */
  446.       iyTop = (GLint) (yTop + 1.0F);
  447.  
  448.       /*printf("avg span width: %g\n", xRight - xLeft);*/
  449.       for (iy = (GLint) yBot; iy < iyTop; iy++) {
  450.          const GLint ixLeft = (GLint) xLeft;
  451.          const GLint ixRight = (GLint) (xRight + 1.0F);
  452.          GLint ix;
  453.          /* scan across the line, left-to-right */
  454.          for (ix = ixLeft; ix < ixRight; ix++) {
  455.             (*plot)(ctx, line, ix, iy);
  456.          }
  457.          xLeft += dxdy;
  458.          xRight += dxdy;
  459.       }
  460.    }
  461. }
  462.  
  463.  
  464. #define NAME(x) aa_rgba_##x
  465. #define DO_Z
  466. #include "s_aalinetemp.h"
  467.  
  468.  
  469. #define NAME(x)  aa_general_rgba_##x
  470. #define DO_Z
  471. #define DO_ATTRIBS
  472. #include "s_aalinetemp.h"
  473.  
  474.  
  475.  
  476. void
  477. _swrast_choose_aa_line_function(struct gl_context *ctx)
  478. {
  479.    SWcontext *swrast = SWRAST_CONTEXT(ctx);
  480.  
  481.    assert(ctx->Line.SmoothFlag);
  482.  
  483.    if (ctx->Texture._EnabledCoordUnits != 0
  484.        || _swrast_use_fragment_program(ctx)
  485.        || (ctx->Light.Enabled &&
  486.            ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
  487.        || ctx->Fog.ColorSumEnabled
  488.        || swrast->_FogEnabled) {
  489.       swrast->Line = aa_general_rgba_line;
  490.    }
  491.    else {
  492.       swrast->Line = aa_rgba_line;
  493.    }
  494. }
  495.