Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /**************************************************************************
  2.  *
  3.  * Copyright 2007 VMware, Inc.
  4.  * All Rights Reserved.
  5.  *
  6.  * Permission is hereby granted, free of charge, to any person obtaining a
  7.  * copy of this software and associated documentation files (the
  8.  * "Software"), to deal in the Software without restriction, including
  9.  * without limitation the rights to use, copy, modify, merge, publish,
  10.  * distribute, sub license, and/or sell copies of the Software, and to
  11.  * permit persons to whom the Software is furnished to do so, subject to
  12.  * the following conditions:
  13.  *
  14.  * The above copyright notice and this permission notice (including the
  15.  * next paragraph) shall be included in all copies or substantial portions
  16.  * of the Software.
  17.  *
  18.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  19.  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  20.  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  21.  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
  22.  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  23.  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  24.  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  25.  *
  26.  **************************************************************************/
  27.  
  28.  /*
  29.   * Authors:
  30.   *   Brian Paul
  31.   */
  32.  
  33. #include "main/imports.h"
  34. #include "main/image.h"
  35. #include "main/bufferobj.h"
  36. #include "main/format_pack.h"
  37. #include "main/macros.h"
  38. #include "main/mtypes.h"
  39. #include "main/pack.h"
  40. #include "main/pbo.h"
  41. #include "main/readpix.h"
  42. #include "main/texformat.h"
  43. #include "main/teximage.h"
  44. #include "main/texstore.h"
  45. #include "main/glformats.h"
  46. #include "program/program.h"
  47. #include "program/prog_print.h"
  48. #include "program/prog_instruction.h"
  49.  
  50. #include "st_atom.h"
  51. #include "st_atom_constbuf.h"
  52. #include "st_cb_drawpixels.h"
  53. #include "st_cb_readpixels.h"
  54. #include "st_cb_fbo.h"
  55. #include "st_context.h"
  56. #include "st_debug.h"
  57. #include "st_format.h"
  58. #include "st_program.h"
  59. #include "st_texture.h"
  60.  
  61. #include "pipe/p_context.h"
  62. #include "pipe/p_defines.h"
  63. #include "tgsi/tgsi_ureg.h"
  64. #include "util/u_draw_quad.h"
  65. #include "util/u_format.h"
  66. #include "util/u_inlines.h"
  67. #include "util/u_math.h"
  68. #include "util/u_tile.h"
  69. #include "util/u_upload_mgr.h"
  70. #include "cso_cache/cso_context.h"
  71.  
  72.  
  73. /**
  74.  * Check if the given program is:
  75.  * 0: MOVE result.color, fragment.color;
  76.  * 1: END;
  77.  */
  78. static GLboolean
  79. is_passthrough_program(const struct gl_fragment_program *prog)
  80. {
  81.    if (prog->Base.NumInstructions == 2) {
  82.       const struct prog_instruction *inst = prog->Base.Instructions;
  83.       if (inst[0].Opcode == OPCODE_MOV &&
  84.           inst[1].Opcode == OPCODE_END &&
  85.           inst[0].DstReg.File == PROGRAM_OUTPUT &&
  86.           inst[0].DstReg.Index == FRAG_RESULT_COLOR &&
  87.           inst[0].DstReg.WriteMask == WRITEMASK_XYZW &&
  88.           inst[0].SrcReg[0].File == PROGRAM_INPUT &&
  89.           inst[0].SrcReg[0].Index == VARYING_SLOT_COL0 &&
  90.           inst[0].SrcReg[0].Swizzle == SWIZZLE_XYZW) {
  91.          return GL_TRUE;
  92.       }
  93.    }
  94.    return GL_FALSE;
  95. }
  96.  
  97.  
  98. /**
  99.  * Returns a fragment program which implements the current pixel transfer ops.
  100.  */
  101. static struct gl_fragment_program *
  102. get_glsl_pixel_transfer_program(struct st_context *st,
  103.                                 struct st_fragment_program *orig)
  104. {
  105.    int pixelMaps = 0, scaleAndBias = 0;
  106.    struct gl_context *ctx = st->ctx;
  107.    struct st_fragment_program *fp = (struct st_fragment_program *)
  108.       ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
  109.  
  110.    if (!fp)
  111.       return NULL;
  112.  
  113.    if (ctx->Pixel.RedBias != 0.0 || ctx->Pixel.RedScale != 1.0 ||
  114.        ctx->Pixel.GreenBias != 0.0 || ctx->Pixel.GreenScale != 1.0 ||
  115.        ctx->Pixel.BlueBias != 0.0 || ctx->Pixel.BlueScale != 1.0 ||
  116.        ctx->Pixel.AlphaBias != 0.0 || ctx->Pixel.AlphaScale != 1.0) {
  117.       scaleAndBias = 1;
  118.    }
  119.  
  120.    pixelMaps = ctx->Pixel.MapColorFlag;
  121.  
  122.    if (pixelMaps) {
  123.       /* create the colormap/texture now if not already done */
  124.       if (!st->pixel_xfer.pixelmap_texture) {
  125.          st->pixel_xfer.pixelmap_texture = st_create_color_map_texture(ctx);
  126.          st->pixel_xfer.pixelmap_sampler_view =
  127.             st_create_texture_sampler_view(st->pipe,
  128.                                            st->pixel_xfer.pixelmap_texture);
  129.       }
  130.    }
  131.  
  132.    get_pixel_transfer_visitor(fp, orig->glsl_to_tgsi,
  133.                               scaleAndBias, pixelMaps);
  134.  
  135.    return &fp->Base;
  136. }
  137.  
  138.  
  139. /**
  140.  * Make fragment shader for glDraw/CopyPixels.  This shader is made
  141.  * by combining the pixel transfer shader with the user-defined shader.
  142.  * \param fpIn  the current/incoming fragment program
  143.  * \param fpOut  returns the combined fragment program
  144.  */
  145. void
  146. st_make_drawpix_fragment_program(struct st_context *st,
  147.                                  struct gl_fragment_program *fpIn,
  148.                                  struct gl_fragment_program **fpOut)
  149. {
  150.    struct gl_program *newProg;
  151.    struct st_fragment_program *stfp = (struct st_fragment_program *) fpIn;
  152.  
  153.    if (is_passthrough_program(fpIn)) {
  154.       newProg = (struct gl_program *) _mesa_clone_fragment_program(st->ctx,
  155.                                              &st->pixel_xfer.program->Base);
  156.    }
  157.    else if (stfp->glsl_to_tgsi != NULL) {
  158.       newProg = (struct gl_program *) get_glsl_pixel_transfer_program(st, stfp);
  159.    }
  160.    else {
  161. #if 0
  162.       /* debug */
  163.       printf("Base program:\n");
  164.       _mesa_print_program(&fpIn->Base);
  165.       printf("DrawPix program:\n");
  166.       _mesa_print_program(&st->pixel_xfer.program->Base.Base);
  167. #endif
  168.       newProg = _mesa_combine_programs(st->ctx,
  169.                                        &st->pixel_xfer.program->Base.Base,
  170.                                        &fpIn->Base);
  171.    }
  172.  
  173. #if 0
  174.    /* debug */
  175.    printf("Combined DrawPixels program:\n");
  176.    _mesa_print_program(newProg);
  177.    printf("InputsRead: 0x%x\n", newProg->InputsRead);
  178.    printf("OutputsWritten: 0x%x\n", newProg->OutputsWritten);
  179.    _mesa_print_parameter_list(newProg->Parameters);
  180. #endif
  181.  
  182.    *fpOut = (struct gl_fragment_program *) newProg;
  183. }
  184.  
  185.  
  186. /**
  187.  * Create fragment program that does a TEX() instruction to get a Z and/or
  188.  * stencil value value, then writes to FRAG_RESULT_DEPTH/FRAG_RESULT_STENCIL.
  189.  * Used for glDrawPixels(GL_DEPTH_COMPONENT / GL_STENCIL_INDEX).
  190.  * Pass fragment color through as-is.
  191.  * \return pointer to the gl_fragment program
  192.  */
  193. struct gl_fragment_program *
  194. st_make_drawpix_z_stencil_program(struct st_context *st,
  195.                                   GLboolean write_depth,
  196.                                   GLboolean write_stencil)
  197. {
  198.    struct gl_context *ctx = st->ctx;
  199.    struct gl_program *p;
  200.    struct gl_fragment_program *fp;
  201.    GLuint ic = 0;
  202.    const GLuint shaderIndex = write_depth * 2 + write_stencil;
  203.  
  204.    assert(shaderIndex < ARRAY_SIZE(st->drawpix.shaders));
  205.  
  206.    if (st->drawpix.shaders[shaderIndex]) {
  207.       /* already have the proper shader */
  208.       return st->drawpix.shaders[shaderIndex];
  209.    }
  210.  
  211.    /*
  212.     * Create shader now
  213.     */
  214.    p = ctx->Driver.NewProgram(ctx, GL_FRAGMENT_PROGRAM_ARB, 0);
  215.    if (!p)
  216.       return NULL;
  217.  
  218.    p->NumInstructions = write_depth ? 3 : 1;
  219.    p->NumInstructions += write_stencil ? 1 : 0;
  220.  
  221.    p->Instructions = _mesa_alloc_instructions(p->NumInstructions);
  222.    if (!p->Instructions) {
  223.       ctx->Driver.DeleteProgram(ctx, p);
  224.       return NULL;
  225.    }
  226.    _mesa_init_instructions(p->Instructions, p->NumInstructions);
  227.  
  228.    if (write_depth) {
  229.       /* TEX result.depth, fragment.texcoord[0], texture[0], 2D; */
  230.       p->Instructions[ic].Opcode = OPCODE_TEX;
  231.       p->Instructions[ic].DstReg.File = PROGRAM_OUTPUT;
  232.       p->Instructions[ic].DstReg.Index = FRAG_RESULT_DEPTH;
  233.       p->Instructions[ic].DstReg.WriteMask = WRITEMASK_Z;
  234.       p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT;
  235.       p->Instructions[ic].SrcReg[0].Index = VARYING_SLOT_TEX0;
  236.       p->Instructions[ic].TexSrcUnit = 0;
  237.       p->Instructions[ic].TexSrcTarget = TEXTURE_2D_INDEX;
  238.       ic++;
  239.       /* MOV result.color, fragment.color; */
  240.       p->Instructions[ic].Opcode = OPCODE_MOV;
  241.       p->Instructions[ic].DstReg.File = PROGRAM_OUTPUT;
  242.       p->Instructions[ic].DstReg.Index = FRAG_RESULT_COLOR;
  243.       p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT;
  244.       p->Instructions[ic].SrcReg[0].Index = VARYING_SLOT_COL0;
  245.       ic++;
  246.    }
  247.  
  248.    if (write_stencil) {
  249.       /* TEX result.stencil, fragment.texcoord[0], texture[0], 2D; */
  250.       p->Instructions[ic].Opcode = OPCODE_TEX;
  251.       p->Instructions[ic].DstReg.File = PROGRAM_OUTPUT;
  252.       p->Instructions[ic].DstReg.Index = FRAG_RESULT_STENCIL;
  253.       p->Instructions[ic].DstReg.WriteMask = WRITEMASK_Y;
  254.       p->Instructions[ic].SrcReg[0].File = PROGRAM_INPUT;
  255.       p->Instructions[ic].SrcReg[0].Index = VARYING_SLOT_TEX0;
  256.       p->Instructions[ic].TexSrcUnit = 1;
  257.       p->Instructions[ic].TexSrcTarget = TEXTURE_2D_INDEX;
  258.       ic++;
  259.    }
  260.  
  261.    /* END; */
  262.    p->Instructions[ic++].Opcode = OPCODE_END;
  263.  
  264.    assert(ic == p->NumInstructions);
  265.  
  266.    p->InputsRead = VARYING_BIT_TEX0 | VARYING_BIT_COL0;
  267.    p->OutputsWritten = 0;
  268.    if (write_depth) {
  269.       p->OutputsWritten |= BITFIELD64_BIT(FRAG_RESULT_DEPTH);
  270.       p->OutputsWritten |= BITFIELD64_BIT(FRAG_RESULT_COLOR);
  271.    }
  272.    if (write_stencil)
  273.       p->OutputsWritten |= BITFIELD64_BIT(FRAG_RESULT_STENCIL);
  274.  
  275.    p->SamplersUsed =  0x1;  /* sampler 0 (bit 0) is used */
  276.    if (write_stencil)
  277.       p->SamplersUsed |= 1 << 1;
  278.  
  279.    fp = (struct gl_fragment_program *) p;
  280.  
  281.    /* save the new shader */
  282.    st->drawpix.shaders[shaderIndex] = fp;
  283.  
  284.    return fp;
  285. }
  286.  
  287.  
  288. /**
  289.  * Create a simple vertex shader that just passes through the
  290.  * vertex position and texcoord (and optionally, color).
  291.  */
  292. static void *
  293. make_passthrough_vertex_shader(struct st_context *st,
  294.                                GLboolean passColor)
  295. {
  296.    const unsigned texcoord_semantic = st->needs_texcoord_semantic ?
  297.       TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC;
  298.  
  299.    if (!st->drawpix.vert_shaders[passColor]) {
  300.       struct ureg_program *ureg = ureg_create( TGSI_PROCESSOR_VERTEX );
  301.  
  302.       if (ureg == NULL)
  303.          return NULL;
  304.  
  305.       /* MOV result.pos, vertex.pos; */
  306.       ureg_MOV(ureg,
  307.                ureg_DECL_output( ureg, TGSI_SEMANTIC_POSITION, 0 ),
  308.                ureg_DECL_vs_input( ureg, 0 ));
  309.      
  310.       /* MOV result.texcoord0, vertex.attr[1]; */
  311.       ureg_MOV(ureg,
  312.                ureg_DECL_output( ureg, texcoord_semantic, 0 ),
  313.                ureg_DECL_vs_input( ureg, 1 ));
  314.      
  315.       if (passColor) {
  316.          /* MOV result.color0, vertex.attr[2]; */
  317.          ureg_MOV(ureg,
  318.                   ureg_DECL_output( ureg, TGSI_SEMANTIC_COLOR, 0 ),
  319.                   ureg_DECL_vs_input( ureg, 2 ));
  320.       }
  321.  
  322.       ureg_END( ureg );
  323.      
  324.       st->drawpix.vert_shaders[passColor] =
  325.          ureg_create_shader_and_destroy( ureg, st->pipe );
  326.    }
  327.  
  328.    return st->drawpix.vert_shaders[passColor];
  329. }
  330.  
  331.  
  332. /**
  333.  * Return a texture internalFormat for drawing/copying an image
  334.  * of the given format and type.
  335.  */
  336. static GLenum
  337. internal_format(struct gl_context *ctx, GLenum format, GLenum type)
  338. {
  339.    switch (format) {
  340.    case GL_DEPTH_COMPONENT:
  341.       switch (type) {
  342.       case GL_UNSIGNED_SHORT:
  343.          return GL_DEPTH_COMPONENT16;
  344.  
  345.       case GL_UNSIGNED_INT:
  346.          return GL_DEPTH_COMPONENT32;
  347.  
  348.       case GL_FLOAT:
  349.          if (ctx->Extensions.ARB_depth_buffer_float)
  350.             return GL_DEPTH_COMPONENT32F;
  351.          else
  352.             return GL_DEPTH_COMPONENT;
  353.  
  354.       default:
  355.          return GL_DEPTH_COMPONENT;
  356.       }
  357.  
  358.    case GL_DEPTH_STENCIL:
  359.       switch (type) {
  360.       case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
  361.          return GL_DEPTH32F_STENCIL8;
  362.  
  363.       case GL_UNSIGNED_INT_24_8:
  364.       default:
  365.          return GL_DEPTH24_STENCIL8;
  366.       }
  367.  
  368.    case GL_STENCIL_INDEX:
  369.       return GL_STENCIL_INDEX;
  370.  
  371.    default:
  372.       if (_mesa_is_enum_format_integer(format)) {
  373.          switch (type) {
  374.          case GL_BYTE:
  375.             return GL_RGBA8I;
  376.          case GL_UNSIGNED_BYTE:
  377.             return GL_RGBA8UI;
  378.          case GL_SHORT:
  379.             return GL_RGBA16I;
  380.          case GL_UNSIGNED_SHORT:
  381.             return GL_RGBA16UI;
  382.          case GL_INT:
  383.             return GL_RGBA32I;
  384.          case GL_UNSIGNED_INT:
  385.             return GL_RGBA32UI;
  386.          default:
  387.             assert(0 && "Unexpected type in internal_format()");
  388.             return GL_RGBA_INTEGER;
  389.          }
  390.       }
  391.       else {
  392.          switch (type) {
  393.          case GL_UNSIGNED_BYTE:
  394.          case GL_UNSIGNED_INT_8_8_8_8:
  395.          case GL_UNSIGNED_INT_8_8_8_8_REV:
  396.          default:
  397.             return GL_RGBA8;
  398.  
  399.          case GL_UNSIGNED_BYTE_3_3_2:
  400.          case GL_UNSIGNED_BYTE_2_3_3_REV:
  401.             return GL_R3_G3_B2;
  402.  
  403.          case GL_UNSIGNED_SHORT_4_4_4_4:
  404.          case GL_UNSIGNED_SHORT_4_4_4_4_REV:
  405.             return GL_RGBA4;
  406.  
  407.          case GL_UNSIGNED_SHORT_5_6_5:
  408.          case GL_UNSIGNED_SHORT_5_6_5_REV:
  409.             return GL_RGB565;
  410.  
  411.          case GL_UNSIGNED_SHORT_5_5_5_1:
  412.          case GL_UNSIGNED_SHORT_1_5_5_5_REV:
  413.             return GL_RGB5_A1;
  414.  
  415.          case GL_UNSIGNED_INT_10_10_10_2:
  416.          case GL_UNSIGNED_INT_2_10_10_10_REV:
  417.             return GL_RGB10_A2;
  418.  
  419.          case GL_UNSIGNED_SHORT:
  420.          case GL_UNSIGNED_INT:
  421.             return GL_RGBA16;
  422.  
  423.          case GL_BYTE:
  424.             return
  425.                ctx->Extensions.EXT_texture_snorm ? GL_RGBA8_SNORM : GL_RGBA8;
  426.  
  427.          case GL_SHORT:
  428.          case GL_INT:
  429.             return
  430.                ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16;
  431.  
  432.          case GL_HALF_FLOAT_ARB:
  433.             return
  434.                ctx->Extensions.ARB_texture_float ? GL_RGBA16F :
  435.                ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16;
  436.  
  437.          case GL_FLOAT:
  438.          case GL_DOUBLE:
  439.             return
  440.                ctx->Extensions.ARB_texture_float ? GL_RGBA32F :
  441.                ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16;
  442.  
  443.          case GL_UNSIGNED_INT_5_9_9_9_REV:
  444.             assert(ctx->Extensions.EXT_texture_shared_exponent);
  445.             return GL_RGB9_E5;
  446.  
  447.          case GL_UNSIGNED_INT_10F_11F_11F_REV:
  448.             assert(ctx->Extensions.EXT_packed_float);
  449.             return GL_R11F_G11F_B10F;
  450.          }
  451.       }
  452.    }
  453. }
  454.  
  455.  
  456. /**
  457.  * Create a temporary texture to hold an image of the given size.
  458.  * If width, height are not POT and the driver only handles POT textures,
  459.  * allocate the next larger size of texture that is POT.
  460.  */
  461. static struct pipe_resource *
  462. alloc_texture(struct st_context *st, GLsizei width, GLsizei height,
  463.               enum pipe_format texFormat, unsigned bind)
  464. {
  465.    struct pipe_resource *pt;
  466.  
  467.    pt = st_texture_create(st, st->internal_target, texFormat, 0,
  468.                           width, height, 1, 1, 0, bind);
  469.  
  470.    return pt;
  471. }
  472.  
  473.  
  474. /**
  475.  * Make texture containing an image for glDrawPixels image.
  476.  * If 'pixels' is NULL, leave the texture image data undefined.
  477.  */
  478. static struct pipe_resource *
  479. make_texture(struct st_context *st,
  480.              GLsizei width, GLsizei height, GLenum format, GLenum type,
  481.              const struct gl_pixelstore_attrib *unpack,
  482.              const GLvoid *pixels)
  483. {
  484.    struct gl_context *ctx = st->ctx;
  485.    struct pipe_context *pipe = st->pipe;
  486.    mesa_format mformat;
  487.    struct pipe_resource *pt;
  488.    enum pipe_format pipeFormat;
  489.    GLenum baseInternalFormat;
  490.  
  491.    /* Choose a pixel format for the temp texture which will hold the
  492.     * image to draw.
  493.     */
  494.    pipeFormat = st_choose_matching_format(st, PIPE_BIND_SAMPLER_VIEW,
  495.                                           format, type, unpack->SwapBytes);
  496.  
  497.    if (pipeFormat == PIPE_FORMAT_NONE) {
  498.       /* Use the generic approach. */
  499.       GLenum intFormat = internal_format(ctx, format, type);
  500.  
  501.       pipeFormat = st_choose_format(st, intFormat, format, type,
  502.                                     PIPE_TEXTURE_2D, 0, PIPE_BIND_SAMPLER_VIEW,
  503.                                     FALSE);
  504.       assert(pipeFormat != PIPE_FORMAT_NONE);
  505.    }
  506.  
  507.    mformat = st_pipe_format_to_mesa_format(pipeFormat);
  508.    baseInternalFormat = _mesa_get_format_base_format(mformat);
  509.  
  510.    pixels = _mesa_map_pbo_source(ctx, unpack, pixels);
  511.    if (!pixels)
  512.       return NULL;
  513.  
  514.    /* alloc temporary texture */
  515.    pt = alloc_texture(st, width, height, pipeFormat, PIPE_BIND_SAMPLER_VIEW);
  516.    if (!pt) {
  517.       _mesa_unmap_pbo_source(ctx, unpack);
  518.       return NULL;
  519.    }
  520.  
  521.    {
  522.       struct pipe_transfer *transfer;
  523.       GLboolean success;
  524.       GLubyte *dest;
  525.       const GLbitfield imageTransferStateSave = ctx->_ImageTransferState;
  526.  
  527.       /* we'll do pixel transfer in a fragment shader */
  528.       ctx->_ImageTransferState = 0x0;
  529.  
  530.       /* map texture transfer */
  531.       dest = pipe_transfer_map(pipe, pt, 0, 0,
  532.                                PIPE_TRANSFER_WRITE, 0, 0,
  533.                                width, height, &transfer);
  534.  
  535.  
  536.       /* Put image into texture transfer.
  537.        * Note that the image is actually going to be upside down in
  538.        * the texture.  We deal with that with texcoords.
  539.        */
  540.       success = _mesa_texstore(ctx, 2,           /* dims */
  541.                                baseInternalFormat, /* baseInternalFormat */
  542.                                mformat,          /* mesa_format */
  543.                                transfer->stride, /* dstRowStride, bytes */
  544.                                &dest,            /* destSlices */
  545.                                width, height, 1, /* size */
  546.                                format, type,     /* src format/type */
  547.                                pixels,           /* data source */
  548.                                unpack);
  549.  
  550.       /* unmap */
  551.       pipe_transfer_unmap(pipe, transfer);
  552.  
  553.       assert(success);
  554.  
  555.       /* restore */
  556.       ctx->_ImageTransferState = imageTransferStateSave;
  557.    }
  558.  
  559.    _mesa_unmap_pbo_source(ctx, unpack);
  560.  
  561.    return pt;
  562. }
  563.  
  564.  
  565. /**
  566.  * Draw quad with texcoords and optional color.
  567.  * Coords are gallium window coords with y=0=top.
  568.  * \param color  may be null
  569.  * \param invertTex  if true, flip texcoords vertically
  570.  */
  571. static void
  572. draw_quad(struct gl_context *ctx, GLfloat x0, GLfloat y0, GLfloat z,
  573.           GLfloat x1, GLfloat y1, const GLfloat *color,
  574.           GLboolean invertTex, GLfloat maxXcoord, GLfloat maxYcoord)
  575. {
  576.    struct st_context *st = st_context(ctx);
  577.    struct pipe_context *pipe = st->pipe;
  578.    GLfloat (*verts)[3][4]; /* four verts, three attribs, XYZW */
  579.    struct pipe_resource *buf = NULL;
  580.    unsigned offset;
  581.  
  582.    if (u_upload_alloc(st->uploader, 0, 4 * sizeof(verts[0]), &offset,
  583.                       &buf, (void **) &verts) != PIPE_OK) {
  584.       return;
  585.    }
  586.  
  587.    /* setup vertex data */
  588.    {
  589.       const struct gl_framebuffer *fb = st->ctx->DrawBuffer;
  590.       const GLfloat fb_width = (GLfloat) fb->Width;
  591.       const GLfloat fb_height = (GLfloat) fb->Height;
  592.       const GLfloat clip_x0 = x0 / fb_width * 2.0f - 1.0f;
  593.       const GLfloat clip_y0 = y0 / fb_height * 2.0f - 1.0f;
  594.       const GLfloat clip_x1 = x1 / fb_width * 2.0f - 1.0f;
  595.       const GLfloat clip_y1 = y1 / fb_height * 2.0f - 1.0f;
  596.       const GLfloat sLeft = 0.0f, sRight = maxXcoord;
  597.       const GLfloat tTop = invertTex ? maxYcoord : 0.0f;
  598.       const GLfloat tBot = invertTex ? 0.0f : maxYcoord;
  599.       GLuint i;
  600.  
  601.       /* upper-left */
  602.       verts[0][0][0] = clip_x0;    /* v[0].attr[0].x */
  603.       verts[0][0][1] = clip_y0;    /* v[0].attr[0].y */
  604.  
  605.       /* upper-right */
  606.       verts[1][0][0] = clip_x1;
  607.       verts[1][0][1] = clip_y0;
  608.  
  609.       /* lower-right */
  610.       verts[2][0][0] = clip_x1;
  611.       verts[2][0][1] = clip_y1;
  612.  
  613.       /* lower-left */
  614.       verts[3][0][0] = clip_x0;
  615.       verts[3][0][1] = clip_y1;
  616.  
  617.       verts[0][1][0] = sLeft; /* v[0].attr[1].S */
  618.       verts[0][1][1] = tTop;  /* v[0].attr[1].T */
  619.       verts[1][1][0] = sRight;
  620.       verts[1][1][1] = tTop;
  621.       verts[2][1][0] = sRight;
  622.       verts[2][1][1] = tBot;
  623.       verts[3][1][0] = sLeft;
  624.       verts[3][1][1] = tBot;
  625.  
  626.       /* same for all verts: */
  627.       if (color) {
  628.          for (i = 0; i < 4; i++) {
  629.             verts[i][0][2] = z;         /* v[i].attr[0].z */
  630.             verts[i][0][3] = 1.0f;      /* v[i].attr[0].w */
  631.             verts[i][2][0] = color[0];  /* v[i].attr[2].r */
  632.             verts[i][2][1] = color[1];  /* v[i].attr[2].g */
  633.             verts[i][2][2] = color[2];  /* v[i].attr[2].b */
  634.             verts[i][2][3] = color[3];  /* v[i].attr[2].a */
  635.             verts[i][1][2] = 0.0f;      /* v[i].attr[1].R */
  636.             verts[i][1][3] = 1.0f;      /* v[i].attr[1].Q */
  637.          }
  638.       }
  639.       else {
  640.          for (i = 0; i < 4; i++) {
  641.             verts[i][0][2] = z;    /*Z*/
  642.             verts[i][0][3] = 1.0f; /*W*/
  643.             verts[i][1][2] = 0.0f; /*R*/
  644.             verts[i][1][3] = 1.0f; /*Q*/
  645.          }
  646.       }
  647.    }
  648.  
  649.    u_upload_unmap(st->uploader);
  650.    util_draw_vertex_buffer(pipe, st->cso_context, buf,
  651.                            cso_get_aux_vertex_buffer_slot(st->cso_context),
  652.                            offset,
  653.                            PIPE_PRIM_QUADS,
  654.                            4,  /* verts */
  655.                            3); /* attribs/vert */
  656.    pipe_resource_reference(&buf, NULL);
  657. }
  658.  
  659.  
  660.  
  661. static void
  662. draw_textured_quad(struct gl_context *ctx, GLint x, GLint y, GLfloat z,
  663.                    GLsizei width, GLsizei height,
  664.                    GLfloat zoomX, GLfloat zoomY,
  665.                    struct pipe_sampler_view **sv,
  666.                    int num_sampler_view,
  667.                    void *driver_vp,
  668.                    void *driver_fp,
  669.                    const GLfloat *color,
  670.                    GLboolean invertTex,
  671.                    GLboolean write_depth, GLboolean write_stencil)
  672. {
  673.    struct st_context *st = st_context(ctx);
  674.    struct pipe_context *pipe = st->pipe;
  675.    struct cso_context *cso = st->cso_context;
  676.    GLfloat x0, y0, x1, y1;
  677.    GLsizei maxSize;
  678.    boolean normalized = sv[0]->texture->target != PIPE_TEXTURE_RECT;
  679.  
  680.    /* limit checks */
  681.    /* XXX if DrawPixels image is larger than max texture size, break
  682.     * it up into chunks.
  683.     */
  684.    maxSize = 1 << (pipe->screen->get_param(pipe->screen,
  685.                                         PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1);
  686.    assert(width <= maxSize);
  687.    assert(height <= maxSize);
  688.  
  689.    cso_save_rasterizer(cso);
  690.    cso_save_viewport(cso);
  691.    cso_save_samplers(cso, PIPE_SHADER_FRAGMENT);
  692.    cso_save_sampler_views(cso, PIPE_SHADER_FRAGMENT);
  693.    cso_save_fragment_shader(cso);
  694.    cso_save_stream_outputs(cso);
  695.    cso_save_vertex_shader(cso);
  696.    cso_save_tessctrl_shader(cso);
  697.    cso_save_tesseval_shader(cso);
  698.    cso_save_geometry_shader(cso);
  699.    cso_save_vertex_elements(cso);
  700.    cso_save_aux_vertex_buffer_slot(cso);
  701.    if (write_stencil) {
  702.       cso_save_depth_stencil_alpha(cso);
  703.       cso_save_blend(cso);
  704.    }
  705.  
  706.    /* rasterizer state: just scissor */
  707.    {
  708.       struct pipe_rasterizer_state rasterizer;
  709.       memset(&rasterizer, 0, sizeof(rasterizer));
  710.       rasterizer.clamp_fragment_color = !st->clamp_frag_color_in_shader &&
  711.                                         ctx->Color._ClampFragmentColor;
  712.       rasterizer.half_pixel_center = 1;
  713.       rasterizer.bottom_edge_rule = 1;
  714.       rasterizer.depth_clip = !ctx->Transform.DepthClamp;
  715.       rasterizer.scissor = ctx->Scissor.EnableFlags;
  716.       cso_set_rasterizer(cso, &rasterizer);
  717.    }
  718.  
  719.    if (write_stencil) {
  720.       /* Stencil writing bypasses the normal fragment pipeline to
  721.        * disable color writing and set stencil test to always pass.
  722.        */
  723.       struct pipe_depth_stencil_alpha_state dsa;
  724.       struct pipe_blend_state blend;
  725.  
  726.       /* depth/stencil */
  727.       memset(&dsa, 0, sizeof(dsa));
  728.       dsa.stencil[0].enabled = 1;
  729.       dsa.stencil[0].func = PIPE_FUNC_ALWAYS;
  730.       dsa.stencil[0].writemask = ctx->Stencil.WriteMask[0] & 0xff;
  731.       dsa.stencil[0].zpass_op = PIPE_STENCIL_OP_REPLACE;
  732.       if (write_depth) {
  733.          /* writing depth+stencil: depth test always passes */
  734.          dsa.depth.enabled = 1;
  735.          dsa.depth.writemask = ctx->Depth.Mask;
  736.          dsa.depth.func = PIPE_FUNC_ALWAYS;
  737.       }
  738.       cso_set_depth_stencil_alpha(cso, &dsa);
  739.  
  740.       /* blend (colormask) */
  741.       memset(&blend, 0, sizeof(blend));
  742.       cso_set_blend(cso, &blend);
  743.    }
  744.  
  745.    /* fragment shader state: TEX lookup program */
  746.    cso_set_fragment_shader_handle(cso, driver_fp);
  747.  
  748.    /* vertex shader state: position + texcoord pass-through */
  749.    cso_set_vertex_shader_handle(cso, driver_vp);
  750.  
  751.    /* disable other shaders */
  752.    cso_set_tessctrl_shader_handle(cso, NULL);
  753.    cso_set_tesseval_shader_handle(cso, NULL);
  754.    cso_set_geometry_shader_handle(cso, NULL);
  755.  
  756.    /* texture sampling state: */
  757.    {
  758.       struct pipe_sampler_state sampler;
  759.       memset(&sampler, 0, sizeof(sampler));
  760.       sampler.wrap_s = PIPE_TEX_WRAP_CLAMP;
  761.       sampler.wrap_t = PIPE_TEX_WRAP_CLAMP;
  762.       sampler.wrap_r = PIPE_TEX_WRAP_CLAMP;
  763.       sampler.min_img_filter = PIPE_TEX_FILTER_NEAREST;
  764.       sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
  765.       sampler.mag_img_filter = PIPE_TEX_FILTER_NEAREST;
  766.       sampler.normalized_coords = normalized;
  767.  
  768.       cso_single_sampler(cso, PIPE_SHADER_FRAGMENT, 0, &sampler);
  769.       if (num_sampler_view > 1) {
  770.          cso_single_sampler(cso, PIPE_SHADER_FRAGMENT, 1, &sampler);
  771.       }
  772.       cso_single_sampler_done(cso, PIPE_SHADER_FRAGMENT);
  773.    }
  774.  
  775.    /* viewport state: viewport matching window dims */
  776.    {
  777.       const float w = (float) ctx->DrawBuffer->Width;
  778.       const float h = (float) ctx->DrawBuffer->Height;
  779.       struct pipe_viewport_state vp;
  780.       vp.scale[0] =  0.5f * w;
  781.       vp.scale[1] = -0.5f * h;
  782.       vp.scale[2] = 0.5f;
  783.       vp.translate[0] = 0.5f * w;
  784.       vp.translate[1] = 0.5f * h;
  785.       vp.translate[2] = 0.5f;
  786.       cso_set_viewport(cso, &vp);
  787.    }
  788.  
  789.    cso_set_vertex_elements(cso, 3, st->velems_util_draw);
  790.    cso_set_stream_outputs(st->cso_context, 0, NULL, NULL);
  791.  
  792.    /* texture state: */
  793.    cso_set_sampler_views(cso, PIPE_SHADER_FRAGMENT, num_sampler_view, sv);
  794.  
  795.    /* Compute Gallium window coords (y=0=top) with pixel zoom.
  796.     * Recall that these coords are transformed by the current
  797.     * vertex shader and viewport transformation.
  798.     */
  799.    if (st_fb_orientation(ctx->DrawBuffer) == Y_0_BOTTOM) {
  800.       y = ctx->DrawBuffer->Height - (int) (y + height * ctx->Pixel.ZoomY);
  801.       invertTex = !invertTex;
  802.    }
  803.  
  804.    x0 = (GLfloat) x;
  805.    x1 = x + width * ctx->Pixel.ZoomX;
  806.    y0 = (GLfloat) y;
  807.    y1 = y + height * ctx->Pixel.ZoomY;
  808.  
  809.    /* convert Z from [0,1] to [-1,-1] to match viewport Z scale/bias */
  810.    z = z * 2.0f - 1.0f;
  811.  
  812.    draw_quad(ctx, x0, y0, z, x1, y1, color, invertTex,
  813.              normalized ? ((GLfloat) width / sv[0]->texture->width0) : (GLfloat)width,
  814.              normalized ? ((GLfloat) height / sv[0]->texture->height0) : (GLfloat)height);
  815.  
  816.    /* restore state */
  817.    cso_restore_rasterizer(cso);
  818.    cso_restore_viewport(cso);
  819.    cso_restore_samplers(cso, PIPE_SHADER_FRAGMENT);
  820.    cso_restore_sampler_views(cso, PIPE_SHADER_FRAGMENT);
  821.    cso_restore_fragment_shader(cso);
  822.    cso_restore_vertex_shader(cso);
  823.    cso_restore_tessctrl_shader(cso);
  824.    cso_restore_tesseval_shader(cso);
  825.    cso_restore_geometry_shader(cso);
  826.    cso_restore_vertex_elements(cso);
  827.    cso_restore_aux_vertex_buffer_slot(cso);
  828.    cso_restore_stream_outputs(cso);
  829.    if (write_stencil) {
  830.       cso_restore_depth_stencil_alpha(cso);
  831.       cso_restore_blend(cso);
  832.    }
  833. }
  834.  
  835.  
  836. /**
  837.  * Software fallback to do glDrawPixels(GL_STENCIL_INDEX) when we
  838.  * can't use a fragment shader to write stencil values.
  839.  */
  840. static void
  841. draw_stencil_pixels(struct gl_context *ctx, GLint x, GLint y,
  842.                     GLsizei width, GLsizei height, GLenum format, GLenum type,
  843.                     const struct gl_pixelstore_attrib *unpack,
  844.                     const GLvoid *pixels)
  845. {
  846.    struct st_context *st = st_context(ctx);
  847.    struct pipe_context *pipe = st->pipe;
  848.    struct st_renderbuffer *strb;
  849.    enum pipe_transfer_usage usage;
  850.    struct pipe_transfer *pt;
  851.    const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0;
  852.    ubyte *stmap;
  853.    struct gl_pixelstore_attrib clippedUnpack = *unpack;
  854.    GLubyte *sValues;
  855.    GLuint *zValues;
  856.  
  857.    if (!zoom) {
  858.       if (!_mesa_clip_drawpixels(ctx, &x, &y, &width, &height,
  859.                                  &clippedUnpack)) {
  860.          /* totally clipped */
  861.          return;
  862.       }
  863.    }
  864.  
  865.    strb = st_renderbuffer(ctx->DrawBuffer->
  866.                           Attachment[BUFFER_STENCIL].Renderbuffer);
  867.  
  868.    if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
  869.       y = ctx->DrawBuffer->Height - y - height;
  870.    }
  871.  
  872.    if (format == GL_STENCIL_INDEX &&
  873.        _mesa_is_format_packed_depth_stencil(strb->Base.Format)) {
  874.       /* writing stencil to a combined depth+stencil buffer */
  875.       usage = PIPE_TRANSFER_READ_WRITE;
  876.    }
  877.    else {
  878.       usage = PIPE_TRANSFER_WRITE;
  879.    }
  880.  
  881.    stmap = pipe_transfer_map(pipe, strb->texture,
  882.                              strb->surface->u.tex.level,
  883.                              strb->surface->u.tex.first_layer,
  884.                              usage, x, y,
  885.                              width, height, &pt);
  886.  
  887.    pixels = _mesa_map_pbo_source(ctx, &clippedUnpack, pixels);
  888.    assert(pixels);
  889.  
  890.    sValues = malloc(width * sizeof(GLubyte));
  891.    zValues = malloc(width * sizeof(GLuint));
  892.  
  893.    if (sValues && zValues) {
  894.       GLint row;
  895.       for (row = 0; row < height; row++) {
  896.          GLfloat *zValuesFloat = (GLfloat*)zValues;
  897.          GLenum destType = GL_UNSIGNED_BYTE;
  898.          const GLvoid *source = _mesa_image_address2d(&clippedUnpack, pixels,
  899.                                                       width, height,
  900.                                                       format, type,
  901.                                                       row, 0);
  902.          _mesa_unpack_stencil_span(ctx, width, destType, sValues,
  903.                                    type, source, &clippedUnpack,
  904.                                    ctx->_ImageTransferState);
  905.  
  906.          if (format == GL_DEPTH_STENCIL) {
  907.             GLenum ztype =
  908.                pt->resource->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT ?
  909.                GL_FLOAT : GL_UNSIGNED_INT;
  910.  
  911.             _mesa_unpack_depth_span(ctx, width, ztype, zValues,
  912.                                     (1 << 24) - 1, type, source,
  913.                                     &clippedUnpack);
  914.          }
  915.  
  916.          if (zoom) {
  917.             _mesa_problem(ctx, "Gallium glDrawPixels(GL_STENCIL) with "
  918.                           "zoom not complete");
  919.          }
  920.  
  921.          {
  922.             GLint spanY;
  923.  
  924.             if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
  925.                spanY = height - row - 1;
  926.             }
  927.             else {
  928.                spanY = row;
  929.             }
  930.  
  931.             /* now pack the stencil (and Z) values in the dest format */
  932.             switch (pt->resource->format) {
  933.             case PIPE_FORMAT_S8_UINT:
  934.                {
  935.                   ubyte *dest = stmap + spanY * pt->stride;
  936.                   assert(usage == PIPE_TRANSFER_WRITE);
  937.                   memcpy(dest, sValues, width);
  938.                }
  939.                break;
  940.             case PIPE_FORMAT_Z24_UNORM_S8_UINT:
  941.                if (format == GL_DEPTH_STENCIL) {
  942.                   uint *dest = (uint *) (stmap + spanY * pt->stride);
  943.                   GLint k;
  944.                   assert(usage == PIPE_TRANSFER_WRITE);
  945.                   for (k = 0; k < width; k++) {
  946.                      dest[k] = zValues[k] | (sValues[k] << 24);
  947.                   }
  948.                }
  949.                else {
  950.                   uint *dest = (uint *) (stmap + spanY * pt->stride);
  951.                   GLint k;
  952.                   assert(usage == PIPE_TRANSFER_READ_WRITE);
  953.                   for (k = 0; k < width; k++) {
  954.                      dest[k] = (dest[k] & 0xffffff) | (sValues[k] << 24);
  955.                   }
  956.                }
  957.                break;
  958.             case PIPE_FORMAT_S8_UINT_Z24_UNORM:
  959.                if (format == GL_DEPTH_STENCIL) {
  960.                   uint *dest = (uint *) (stmap + spanY * pt->stride);
  961.                   GLint k;
  962.                   assert(usage == PIPE_TRANSFER_WRITE);
  963.                   for (k = 0; k < width; k++) {
  964.                      dest[k] = (zValues[k] << 8) | (sValues[k] & 0xff);
  965.                   }
  966.                }
  967.                else {
  968.                   uint *dest = (uint *) (stmap + spanY * pt->stride);
  969.                   GLint k;
  970.                   assert(usage == PIPE_TRANSFER_READ_WRITE);
  971.                   for (k = 0; k < width; k++) {
  972.                      dest[k] = (dest[k] & 0xffffff00) | (sValues[k] & 0xff);
  973.                   }
  974.                }
  975.                break;
  976.             case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
  977.                if (format == GL_DEPTH_STENCIL) {
  978.                   uint *dest = (uint *) (stmap + spanY * pt->stride);
  979.                   GLfloat *destf = (GLfloat*)dest;
  980.                   GLint k;
  981.                   assert(usage == PIPE_TRANSFER_WRITE);
  982.                   for (k = 0; k < width; k++) {
  983.                      destf[k*2] = zValuesFloat[k];
  984.                      dest[k*2+1] = sValues[k] & 0xff;
  985.                   }
  986.                }
  987.                else {
  988.                   uint *dest = (uint *) (stmap + spanY * pt->stride);
  989.                   GLint k;
  990.                   assert(usage == PIPE_TRANSFER_READ_WRITE);
  991.                   for (k = 0; k < width; k++) {
  992.                      dest[k*2+1] = sValues[k] & 0xff;
  993.                   }
  994.                }
  995.                break;
  996.             default:
  997.                assert(0);
  998.             }
  999.          }
  1000.       }
  1001.    }
  1002.    else {
  1003.       _mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels()");
  1004.    }
  1005.  
  1006.    free(sValues);
  1007.    free(zValues);
  1008.  
  1009.    _mesa_unmap_pbo_source(ctx, &clippedUnpack);
  1010.  
  1011.    /* unmap the stencil buffer */
  1012.    pipe_transfer_unmap(pipe, pt);
  1013. }
  1014.  
  1015.  
  1016. /**
  1017.  * Get fragment program variant for a glDrawPixels or glCopyPixels
  1018.  * command for RGBA data.
  1019.  */
  1020. static struct st_fp_variant *
  1021. get_color_fp_variant(struct st_context *st)
  1022. {
  1023.    struct gl_context *ctx = st->ctx;
  1024.    struct st_fp_variant_key key;
  1025.    struct st_fp_variant *fpv;
  1026.  
  1027.    memset(&key, 0, sizeof(key));
  1028.  
  1029.    key.st = st;
  1030.    key.drawpixels = 1;
  1031.    key.scaleAndBias = (ctx->Pixel.RedBias != 0.0 ||
  1032.                        ctx->Pixel.RedScale != 1.0 ||
  1033.                        ctx->Pixel.GreenBias != 0.0 ||
  1034.                        ctx->Pixel.GreenScale != 1.0 ||
  1035.                        ctx->Pixel.BlueBias != 0.0 ||
  1036.                        ctx->Pixel.BlueScale != 1.0 ||
  1037.                        ctx->Pixel.AlphaBias != 0.0 ||
  1038.                        ctx->Pixel.AlphaScale != 1.0);
  1039.    key.pixelMaps = ctx->Pixel.MapColorFlag;
  1040.    key.clamp_color = st->clamp_frag_color_in_shader &&
  1041.                      st->ctx->Color._ClampFragmentColor;
  1042.  
  1043.    fpv = st_get_fp_variant(st, st->fp, &key);
  1044.  
  1045.    return fpv;
  1046. }
  1047.  
  1048.  
  1049. /**
  1050.  * Get fragment program variant for a glDrawPixels or glCopyPixels
  1051.  * command for depth/stencil data.
  1052.  */
  1053. static struct st_fp_variant *
  1054. get_depth_stencil_fp_variant(struct st_context *st, GLboolean write_depth,
  1055.                              GLboolean write_stencil)
  1056. {
  1057.    struct st_fp_variant_key key;
  1058.    struct st_fp_variant *fpv;
  1059.  
  1060.    memset(&key, 0, sizeof(key));
  1061.  
  1062.    key.st = st;
  1063.    key.drawpixels = 1;
  1064.    key.drawpixels_z = write_depth;
  1065.    key.drawpixels_stencil = write_stencil;
  1066.  
  1067.    fpv = st_get_fp_variant(st, st->fp, &key);
  1068.  
  1069.    return fpv;
  1070. }
  1071.  
  1072.  
  1073. /**
  1074.  * Clamp glDrawPixels width and height to the maximum texture size.
  1075.  */
  1076. static void
  1077. clamp_size(struct pipe_context *pipe, GLsizei *width, GLsizei *height,
  1078.            struct gl_pixelstore_attrib *unpack)
  1079. {
  1080.    const int maxSize =
  1081.       1 << (pipe->screen->get_param(pipe->screen,
  1082.                                     PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1);
  1083.  
  1084.    if (*width > maxSize) {
  1085.       if (unpack->RowLength == 0)
  1086.          unpack->RowLength = *width;
  1087.       *width = maxSize;
  1088.    }
  1089.    if (*height > maxSize) {
  1090.       *height = maxSize;
  1091.    }
  1092. }
  1093.  
  1094.  
  1095. /**
  1096.  * Called via ctx->Driver.DrawPixels()
  1097.  */
  1098. static void
  1099. st_DrawPixels(struct gl_context *ctx, GLint x, GLint y,
  1100.               GLsizei width, GLsizei height,
  1101.               GLenum format, GLenum type,
  1102.               const struct gl_pixelstore_attrib *unpack, const GLvoid *pixels)
  1103. {
  1104.    void *driver_vp, *driver_fp;
  1105.    struct st_context *st = st_context(ctx);
  1106.    const GLfloat *color;
  1107.    struct pipe_context *pipe = st->pipe;
  1108.    GLboolean write_stencil = GL_FALSE, write_depth = GL_FALSE;
  1109.    struct pipe_sampler_view *sv[2] = { NULL };
  1110.    int num_sampler_view = 1;
  1111.    struct st_fp_variant *fpv;
  1112.    struct gl_pixelstore_attrib clippedUnpack;
  1113.  
  1114.    /* Mesa state should be up to date by now */
  1115.    assert(ctx->NewState == 0x0);
  1116.  
  1117.    st_validate_state(st);
  1118.  
  1119.    /* Limit the size of the glDrawPixels to the max texture size.
  1120.     * Strictly speaking, that's not correct but since we don't handle
  1121.     * larger images yet, this is better than crashing.
  1122.     */
  1123.    clippedUnpack = *unpack;
  1124.    unpack = &clippedUnpack;
  1125.    clamp_size(st->pipe, &width, &height, &clippedUnpack);
  1126.  
  1127.    if (format == GL_DEPTH_STENCIL)
  1128.       write_stencil = write_depth = GL_TRUE;
  1129.    else if (format == GL_STENCIL_INDEX)
  1130.       write_stencil = GL_TRUE;
  1131.    else if (format == GL_DEPTH_COMPONENT)
  1132.       write_depth = GL_TRUE;
  1133.  
  1134.    if (write_stencil &&
  1135.        !pipe->screen->get_param(pipe->screen, PIPE_CAP_SHADER_STENCIL_EXPORT)) {
  1136.       /* software fallback */
  1137.       draw_stencil_pixels(ctx, x, y, width, height, format, type,
  1138.                           unpack, pixels);
  1139.       return;
  1140.    }
  1141.  
  1142.    /*
  1143.     * Get vertex/fragment shaders
  1144.     */
  1145.    if (write_depth || write_stencil) {
  1146.       fpv = get_depth_stencil_fp_variant(st, write_depth, write_stencil);
  1147.  
  1148.       driver_fp = fpv->driver_shader;
  1149.  
  1150.       driver_vp = make_passthrough_vertex_shader(st, GL_TRUE);
  1151.  
  1152.       color = ctx->Current.RasterColor;
  1153.    }
  1154.    else {
  1155.       fpv = get_color_fp_variant(st);
  1156.  
  1157.       driver_fp = fpv->driver_shader;
  1158.  
  1159.       driver_vp = make_passthrough_vertex_shader(st, GL_FALSE);
  1160.  
  1161.       color = NULL;
  1162.       if (st->pixel_xfer.pixelmap_enabled) {
  1163.          pipe_sampler_view_reference(&sv[1],
  1164.                                      st->pixel_xfer.pixelmap_sampler_view);
  1165.          num_sampler_view++;
  1166.       }
  1167.    }
  1168.  
  1169.    /* update fragment program constants */
  1170.    st_upload_constants(st, fpv->parameters, PIPE_SHADER_FRAGMENT);
  1171.  
  1172.    /* draw with textured quad */
  1173.    {
  1174.       struct pipe_resource *pt
  1175.          = make_texture(st, width, height, format, type, unpack, pixels);
  1176.       if (pt) {
  1177.          sv[0] = st_create_texture_sampler_view(st->pipe, pt);
  1178.  
  1179.          if (sv[0]) {
  1180.             /* Create a second sampler view to read stencil.
  1181.              * The stencil is written using the shader stencil export
  1182.              * functionality. */
  1183.             if (write_stencil) {
  1184.                enum pipe_format stencil_format =
  1185.                      util_format_stencil_only(pt->format);
  1186.                /* we should not be doing pixel map/transfer (see above) */
  1187.                assert(num_sampler_view == 1);
  1188.                sv[1] = st_create_texture_sampler_view_format(st->pipe, pt,
  1189.                                                              stencil_format);
  1190.                num_sampler_view++;
  1191.             }
  1192.  
  1193.             draw_textured_quad(ctx, x, y, ctx->Current.RasterPos[2],
  1194.                                width, height,
  1195.                                ctx->Pixel.ZoomX, ctx->Pixel.ZoomY,
  1196.                                sv,
  1197.                                num_sampler_view,
  1198.                                driver_vp,
  1199.                                driver_fp,
  1200.                                color, GL_FALSE, write_depth, write_stencil);
  1201.             pipe_sampler_view_reference(&sv[0], NULL);
  1202.             if (num_sampler_view > 1)
  1203.                pipe_sampler_view_reference(&sv[1], NULL);
  1204.          }
  1205.          pipe_resource_reference(&pt, NULL);
  1206.       }
  1207.    }
  1208. }
  1209.  
  1210.  
  1211.  
  1212. /**
  1213.  * Software fallback for glCopyPixels(GL_STENCIL).
  1214.  */
  1215. static void
  1216. copy_stencil_pixels(struct gl_context *ctx, GLint srcx, GLint srcy,
  1217.                     GLsizei width, GLsizei height,
  1218.                     GLint dstx, GLint dsty)
  1219. {
  1220.    struct st_renderbuffer *rbDraw;
  1221.    struct pipe_context *pipe = st_context(ctx)->pipe;
  1222.    enum pipe_transfer_usage usage;
  1223.    struct pipe_transfer *ptDraw;
  1224.    ubyte *drawMap;
  1225.    ubyte *buffer;
  1226.    int i;
  1227.  
  1228.    buffer = malloc(width * height * sizeof(ubyte));
  1229.    if (!buffer) {
  1230.       _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels(stencil)");
  1231.       return;
  1232.    }
  1233.  
  1234.    /* Get the dest renderbuffer */
  1235.    rbDraw = st_renderbuffer(ctx->DrawBuffer->
  1236.                             Attachment[BUFFER_STENCIL].Renderbuffer);
  1237.  
  1238.    /* this will do stencil pixel transfer ops */
  1239.    _mesa_readpixels(ctx, srcx, srcy, width, height,
  1240.                     GL_STENCIL_INDEX, GL_UNSIGNED_BYTE,
  1241.                     &ctx->DefaultPacking, buffer);
  1242.  
  1243.    if (0) {
  1244.       /* debug code: dump stencil values */
  1245.       GLint row, col;
  1246.       for (row = 0; row < height; row++) {
  1247.          printf("%3d: ", row);
  1248.          for (col = 0; col < width; col++) {
  1249.             printf("%02x ", buffer[col + row * width]);
  1250.          }
  1251.          printf("\n");
  1252.       }
  1253.    }
  1254.  
  1255.    if (_mesa_is_format_packed_depth_stencil(rbDraw->Base.Format))
  1256.       usage = PIPE_TRANSFER_READ_WRITE;
  1257.    else
  1258.       usage = PIPE_TRANSFER_WRITE;
  1259.  
  1260.    if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
  1261.       dsty = rbDraw->Base.Height - dsty - height;
  1262.    }
  1263.  
  1264.    assert(util_format_get_blockwidth(rbDraw->texture->format) == 1);
  1265.    assert(util_format_get_blockheight(rbDraw->texture->format) == 1);
  1266.  
  1267.    /* map the stencil buffer */
  1268.    drawMap = pipe_transfer_map(pipe,
  1269.                                rbDraw->texture,
  1270.                                rbDraw->surface->u.tex.level,
  1271.                                rbDraw->surface->u.tex.first_layer,
  1272.                                usage, dstx, dsty,
  1273.                                width, height, &ptDraw);
  1274.  
  1275.    /* draw */
  1276.    /* XXX PixelZoom not handled yet */
  1277.    for (i = 0; i < height; i++) {
  1278.       ubyte *dst;
  1279.       const ubyte *src;
  1280.       int y;
  1281.  
  1282.       y = i;
  1283.  
  1284.       if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
  1285.          y = height - y - 1;
  1286.       }
  1287.  
  1288.       dst = drawMap + y * ptDraw->stride;
  1289.       src = buffer + i * width;
  1290.  
  1291.       _mesa_pack_ubyte_stencil_row(rbDraw->Base.Format, width, src, dst);
  1292.    }
  1293.  
  1294.    free(buffer);
  1295.  
  1296.    /* unmap the stencil buffer */
  1297.    pipe_transfer_unmap(pipe, ptDraw);
  1298. }
  1299.  
  1300.  
  1301. /**
  1302.  * Return renderbuffer to use for reading color pixels for glCopyPixels
  1303.  */
  1304. static struct st_renderbuffer *
  1305. st_get_color_read_renderbuffer(struct gl_context *ctx)
  1306. {
  1307.    struct gl_framebuffer *fb = ctx->ReadBuffer;
  1308.    struct st_renderbuffer *strb =
  1309.       st_renderbuffer(fb->_ColorReadBuffer);
  1310.  
  1311.    return strb;
  1312. }
  1313.  
  1314.  
  1315. /**
  1316.  * \return TRUE if two regions overlap, FALSE otherwise
  1317.  */
  1318. static boolean
  1319. regions_overlap(int srcX0, int srcY0,
  1320.                 int srcX1, int srcY1,
  1321.                 int dstX0, int dstY0,
  1322.                 int dstX1, int dstY1)
  1323. {
  1324.    if (MAX2(srcX0, srcX1) < MIN2(dstX0, dstX1))
  1325.       return FALSE; /* src completely left of dst */
  1326.  
  1327.    if (MAX2(dstX0, dstX1) < MIN2(srcX0, srcX1))
  1328.       return FALSE; /* dst completely left of src */
  1329.  
  1330.    if (MAX2(srcY0, srcY1) < MIN2(dstY0, dstY1))
  1331.       return FALSE; /* src completely above dst */
  1332.  
  1333.    if (MAX2(dstY0, dstY1) < MIN2(srcY0, srcY1))
  1334.       return FALSE; /* dst completely above src */
  1335.  
  1336.    return TRUE; /* some overlap */
  1337. }
  1338.  
  1339.  
  1340. /**
  1341.  * Try to do a glCopyPixels for simple cases with a blit by calling
  1342.  * pipe->blit().
  1343.  *
  1344.  * We can do this when we're copying color pixels (depth/stencil
  1345.  * eventually) with no pixel zoom, no pixel transfer ops, no
  1346.  * per-fragment ops, and the src/dest regions don't overlap.
  1347.  */
  1348. static GLboolean
  1349. blit_copy_pixels(struct gl_context *ctx, GLint srcx, GLint srcy,
  1350.                  GLsizei width, GLsizei height,
  1351.                  GLint dstx, GLint dsty, GLenum type)
  1352. {
  1353.    struct st_context *st = st_context(ctx);
  1354.    struct pipe_context *pipe = st->pipe;
  1355.    struct pipe_screen *screen = pipe->screen;
  1356.    struct gl_pixelstore_attrib pack, unpack;
  1357.    GLint readX, readY, readW, readH, drawX, drawY, drawW, drawH;
  1358.  
  1359.    if (type == GL_COLOR &&
  1360.        ctx->Pixel.ZoomX == 1.0 &&
  1361.        ctx->Pixel.ZoomY == 1.0 &&
  1362.        ctx->_ImageTransferState == 0x0 &&
  1363.        !ctx->Color.BlendEnabled &&
  1364.        !ctx->Color.AlphaEnabled &&
  1365.        !ctx->Depth.Test &&
  1366.        !ctx->Fog.Enabled &&
  1367.        !ctx->Stencil.Enabled &&
  1368.        !ctx->FragmentProgram.Enabled &&
  1369.        !ctx->VertexProgram.Enabled &&
  1370.        !ctx->_Shader->CurrentProgram[MESA_SHADER_FRAGMENT] &&
  1371.        ctx->DrawBuffer->_NumColorDrawBuffers == 1 &&
  1372.        !ctx->Query.CondRenderQuery &&
  1373.        !ctx->Query.CurrentOcclusionObject) {
  1374.       struct st_renderbuffer *rbRead, *rbDraw;
  1375.  
  1376.       /*
  1377.        * Clip the read region against the src buffer bounds.
  1378.        * We'll still allocate a temporary buffer/texture for the original
  1379.        * src region size but we'll only read the region which is on-screen.
  1380.        * This may mean that we draw garbage pixels into the dest region, but
  1381.        * that's expected.
  1382.        */
  1383.       readX = srcx;
  1384.       readY = srcy;
  1385.       readW = width;
  1386.       readH = height;
  1387.       pack = ctx->DefaultPacking;
  1388.       if (!_mesa_clip_readpixels(ctx, &readX, &readY, &readW, &readH, &pack))
  1389.          return GL_TRUE; /* all done */
  1390.  
  1391.       /* clip against dest buffer bounds and scissor box */
  1392.       drawX = dstx + pack.SkipPixels;
  1393.       drawY = dsty + pack.SkipRows;
  1394.       unpack = pack;
  1395.       if (!_mesa_clip_drawpixels(ctx, &drawX, &drawY, &readW, &readH, &unpack))
  1396.          return GL_TRUE; /* all done */
  1397.  
  1398.       readX = readX - pack.SkipPixels + unpack.SkipPixels;
  1399.       readY = readY - pack.SkipRows + unpack.SkipRows;
  1400.  
  1401.       drawW = readW;
  1402.       drawH = readH;
  1403.  
  1404.       rbRead = st_get_color_read_renderbuffer(ctx);
  1405.       rbDraw = st_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[0]);
  1406.  
  1407.       /* Flip src/dst position depending on the orientation of buffers. */
  1408.       if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) {
  1409.          readY = rbRead->Base.Height - readY;
  1410.          readH = -readH;
  1411.       }
  1412.  
  1413.       if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
  1414.          /* We can't flip the destination for pipe->blit, so we only adjust
  1415.           * its position and flip the source.
  1416.           */
  1417.          drawY = rbDraw->Base.Height - drawY - drawH;
  1418.          readY += readH;
  1419.          readH = -readH;
  1420.       }
  1421.  
  1422.       if (rbRead != rbDraw ||
  1423.           !regions_overlap(readX, readY, readX + readW, readY + readH,
  1424.                            drawX, drawY, drawX + drawW, drawY + drawH)) {
  1425.          struct pipe_blit_info blit;
  1426.  
  1427.          memset(&blit, 0, sizeof(blit));
  1428.          blit.src.resource = rbRead->texture;
  1429.          blit.src.level = rbRead->surface->u.tex.level;
  1430.          blit.src.format = rbRead->texture->format;
  1431.          blit.src.box.x = readX;
  1432.          blit.src.box.y = readY;
  1433.          blit.src.box.z = rbRead->surface->u.tex.first_layer;
  1434.          blit.src.box.width = readW;
  1435.          blit.src.box.height = readH;
  1436.          blit.src.box.depth = 1;
  1437.          blit.dst.resource = rbDraw->texture;
  1438.          blit.dst.level = rbDraw->surface->u.tex.level;
  1439.          blit.dst.format = rbDraw->texture->format;
  1440.          blit.dst.box.x = drawX;
  1441.          blit.dst.box.y = drawY;
  1442.          blit.dst.box.z = rbDraw->surface->u.tex.first_layer;
  1443.          blit.dst.box.width = drawW;
  1444.          blit.dst.box.height = drawH;
  1445.          blit.dst.box.depth = 1;
  1446.          blit.mask = PIPE_MASK_RGBA;
  1447.          blit.filter = PIPE_TEX_FILTER_NEAREST;
  1448.  
  1449.          if (screen->is_format_supported(screen, blit.src.format,
  1450.                                          blit.src.resource->target,
  1451.                                          blit.src.resource->nr_samples,
  1452.                                          PIPE_BIND_SAMPLER_VIEW) &&
  1453.              screen->is_format_supported(screen, blit.dst.format,
  1454.                                          blit.dst.resource->target,
  1455.                                          blit.dst.resource->nr_samples,
  1456.                                          PIPE_BIND_RENDER_TARGET)) {
  1457.             pipe->blit(pipe, &blit);
  1458.             return GL_TRUE;
  1459.          }
  1460.       }
  1461.    }
  1462.  
  1463.    return GL_FALSE;
  1464. }
  1465.  
  1466.  
  1467. static void
  1468. st_CopyPixels(struct gl_context *ctx, GLint srcx, GLint srcy,
  1469.               GLsizei width, GLsizei height,
  1470.               GLint dstx, GLint dsty, GLenum type)
  1471. {
  1472.    struct st_context *st = st_context(ctx);
  1473.    struct pipe_context *pipe = st->pipe;
  1474.    struct pipe_screen *screen = pipe->screen;
  1475.    struct st_renderbuffer *rbRead;
  1476.    void *driver_vp, *driver_fp;
  1477.    struct pipe_resource *pt;
  1478.    struct pipe_sampler_view *sv[2] = { NULL };
  1479.    int num_sampler_view = 1;
  1480.    GLfloat *color;
  1481.    enum pipe_format srcFormat;
  1482.    unsigned srcBind;
  1483.    GLboolean invertTex = GL_FALSE;
  1484.    GLint readX, readY, readW, readH;
  1485.    struct gl_pixelstore_attrib pack = ctx->DefaultPacking;
  1486.    struct st_fp_variant *fpv;
  1487.  
  1488.    st_validate_state(st);
  1489.  
  1490.    if (type == GL_DEPTH_STENCIL) {
  1491.       /* XXX make this more efficient */
  1492.       st_CopyPixels(ctx, srcx, srcy, width, height, dstx, dsty, GL_STENCIL);
  1493.       st_CopyPixels(ctx, srcx, srcy, width, height, dstx, dsty, GL_DEPTH);
  1494.       return;
  1495.    }
  1496.  
  1497.    if (type == GL_STENCIL) {
  1498.       /* can't use texturing to do stencil */
  1499.       copy_stencil_pixels(ctx, srcx, srcy, width, height, dstx, dsty);
  1500.       return;
  1501.    }
  1502.  
  1503.    if (blit_copy_pixels(ctx, srcx, srcy, width, height, dstx, dsty, type))
  1504.       return;
  1505.  
  1506.    /*
  1507.     * The subsequent code implements glCopyPixels by copying the source
  1508.     * pixels into a temporary texture that's then applied to a textured quad.
  1509.     * When we draw the textured quad, all the usual per-fragment operations
  1510.     * are handled.
  1511.     */
  1512.  
  1513.  
  1514.    /*
  1515.     * Get vertex/fragment shaders
  1516.     */
  1517.    if (type == GL_COLOR) {
  1518.       rbRead = st_get_color_read_renderbuffer(ctx);
  1519.       color = NULL;
  1520.  
  1521.       fpv = get_color_fp_variant(st);
  1522.       driver_fp = fpv->driver_shader;
  1523.  
  1524.       driver_vp = make_passthrough_vertex_shader(st, GL_FALSE);
  1525.  
  1526.       if (st->pixel_xfer.pixelmap_enabled) {
  1527.          pipe_sampler_view_reference(&sv[1],
  1528.                                      st->pixel_xfer.pixelmap_sampler_view);
  1529.          num_sampler_view++;
  1530.       }
  1531.    }
  1532.    else {
  1533.       assert(type == GL_DEPTH);
  1534.       rbRead = st_renderbuffer(ctx->ReadBuffer->
  1535.                                Attachment[BUFFER_DEPTH].Renderbuffer);
  1536.       color = ctx->Current.Attrib[VERT_ATTRIB_COLOR0];
  1537.  
  1538.       fpv = get_depth_stencil_fp_variant(st, GL_TRUE, GL_FALSE);
  1539.       driver_fp = fpv->driver_shader;
  1540.  
  1541.       driver_vp = make_passthrough_vertex_shader(st, GL_TRUE);
  1542.    }
  1543.  
  1544.    /* update fragment program constants */
  1545.    st_upload_constants(st, fpv->parameters, PIPE_SHADER_FRAGMENT);
  1546.  
  1547.    /* Choose the format for the temporary texture. */
  1548.    srcFormat = rbRead->texture->format;
  1549.    srcBind = PIPE_BIND_SAMPLER_VIEW |
  1550.       (type == GL_COLOR ? PIPE_BIND_RENDER_TARGET : PIPE_BIND_DEPTH_STENCIL);
  1551.  
  1552.    if (!screen->is_format_supported(screen, srcFormat, st->internal_target, 0,
  1553.                                     srcBind)) {
  1554.       /* srcFormat is non-renderable. Find a compatible renderable format. */
  1555.       if (type == GL_DEPTH) {
  1556.          srcFormat = st_choose_format(st, GL_DEPTH_COMPONENT, GL_NONE,
  1557.                                       GL_NONE, st->internal_target, 0,
  1558.                                       srcBind, FALSE);
  1559.       }
  1560.       else {
  1561.          assert(type == GL_COLOR);
  1562.  
  1563.          if (util_format_is_float(srcFormat)) {
  1564.             srcFormat = st_choose_format(st, GL_RGBA32F, GL_NONE,
  1565.                                          GL_NONE, st->internal_target, 0,
  1566.                                          srcBind, FALSE);
  1567.          }
  1568.          else if (util_format_is_pure_sint(srcFormat)) {
  1569.             srcFormat = st_choose_format(st, GL_RGBA32I, GL_NONE,
  1570.                                          GL_NONE, st->internal_target, 0,
  1571.                                          srcBind, FALSE);
  1572.          }
  1573.          else if (util_format_is_pure_uint(srcFormat)) {
  1574.             srcFormat = st_choose_format(st, GL_RGBA32UI, GL_NONE,
  1575.                                          GL_NONE, st->internal_target, 0,
  1576.                                          srcBind, FALSE);
  1577.          }
  1578.          else if (util_format_is_snorm(srcFormat)) {
  1579.             srcFormat = st_choose_format(st, GL_RGBA16_SNORM, GL_NONE,
  1580.                                          GL_NONE, st->internal_target, 0,
  1581.                                          srcBind, FALSE);
  1582.          }
  1583.          else {
  1584.             srcFormat = st_choose_format(st, GL_RGBA, GL_NONE,
  1585.                                          GL_NONE, st->internal_target, 0,
  1586.                                          srcBind, FALSE);
  1587.          }
  1588.       }
  1589.  
  1590.       if (srcFormat == PIPE_FORMAT_NONE) {
  1591.          assert(0 && "cannot choose a format for src of CopyPixels");
  1592.          return;
  1593.       }
  1594.    }
  1595.  
  1596.    /* Invert src region if needed */
  1597.    if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) {
  1598.       srcy = ctx->ReadBuffer->Height - srcy - height;
  1599.       invertTex = !invertTex;
  1600.    }
  1601.  
  1602.    /* Clip the read region against the src buffer bounds.
  1603.     * We'll still allocate a temporary buffer/texture for the original
  1604.     * src region size but we'll only read the region which is on-screen.
  1605.     * This may mean that we draw garbage pixels into the dest region, but
  1606.     * that's expected.
  1607.     */
  1608.    readX = srcx;
  1609.    readY = srcy;
  1610.    readW = width;
  1611.    readH = height;
  1612.    if (!_mesa_clip_readpixels(ctx, &readX, &readY, &readW, &readH, &pack)) {
  1613.       /* The source region is completely out of bounds.  Do nothing.
  1614.        * The GL spec says "Results of copies from outside the window,
  1615.        * or from regions of the window that are not exposed, are
  1616.        * hardware dependent and undefined."
  1617.        */
  1618.       return;
  1619.    }
  1620.  
  1621.    readW = MAX2(0, readW);
  1622.    readH = MAX2(0, readH);
  1623.  
  1624.    /* Allocate the temporary texture. */
  1625.    pt = alloc_texture(st, width, height, srcFormat, srcBind);
  1626.    if (!pt)
  1627.       return;
  1628.  
  1629.    sv[0] = st_create_texture_sampler_view(st->pipe, pt);
  1630.    if (!sv[0]) {
  1631.       pipe_resource_reference(&pt, NULL);
  1632.       return;
  1633.    }
  1634.  
  1635.    /* Copy the src region to the temporary texture. */
  1636.    {
  1637.       struct pipe_blit_info blit;
  1638.  
  1639.       memset(&blit, 0, sizeof(blit));
  1640.       blit.src.resource = rbRead->texture;
  1641.       blit.src.level = rbRead->surface->u.tex.level;
  1642.       blit.src.format = rbRead->texture->format;
  1643.       blit.src.box.x = readX;
  1644.       blit.src.box.y = readY;
  1645.       blit.src.box.z = rbRead->surface->u.tex.first_layer;
  1646.       blit.src.box.width = readW;
  1647.       blit.src.box.height = readH;
  1648.       blit.src.box.depth = 1;
  1649.       blit.dst.resource = pt;
  1650.       blit.dst.level = 0;
  1651.       blit.dst.format = pt->format;
  1652.       blit.dst.box.x = pack.SkipPixels;
  1653.       blit.dst.box.y = pack.SkipRows;
  1654.       blit.dst.box.z = 0;
  1655.       blit.dst.box.width = readW;
  1656.       blit.dst.box.height = readH;
  1657.       blit.dst.box.depth = 1;
  1658.       blit.mask = util_format_get_mask(pt->format) & ~PIPE_MASK_S;
  1659.       blit.filter = PIPE_TEX_FILTER_NEAREST;
  1660.  
  1661.       pipe->blit(pipe, &blit);
  1662.    }
  1663.  
  1664.    /* OK, the texture 'pt' contains the src image/pixels.  Now draw a
  1665.     * textured quad with that texture.
  1666.     */
  1667.    draw_textured_quad(ctx, dstx, dsty, ctx->Current.RasterPos[2],
  1668.                       width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY,
  1669.                       sv,
  1670.                       num_sampler_view,
  1671.                       driver_vp,
  1672.                       driver_fp,
  1673.                       color, invertTex, GL_FALSE, GL_FALSE);
  1674.  
  1675.    pipe_resource_reference(&pt, NULL);
  1676.    pipe_sampler_view_reference(&sv[0], NULL);
  1677. }
  1678.  
  1679.  
  1680.  
  1681. void st_init_drawpixels_functions(struct dd_function_table *functions)
  1682. {
  1683.    functions->DrawPixels = st_DrawPixels;
  1684.    functions->CopyPixels = st_CopyPixels;
  1685. }
  1686.  
  1687.  
  1688. void
  1689. st_destroy_drawpix(struct st_context *st)
  1690. {
  1691.    GLuint i;
  1692.  
  1693.    for (i = 0; i < ARRAY_SIZE(st->drawpix.shaders); i++) {
  1694.       if (st->drawpix.shaders[i])
  1695.          _mesa_reference_fragprog(st->ctx, &st->drawpix.shaders[i], NULL);
  1696.    }
  1697.  
  1698.    st_reference_fragprog(st, &st->pixel_xfer.combined_prog, NULL);
  1699.    if (st->drawpix.vert_shaders[0])
  1700.       cso_delete_vertex_shader(st->cso_context, st->drawpix.vert_shaders[0]);
  1701.    if (st->drawpix.vert_shaders[1])
  1702.       cso_delete_vertex_shader(st->cso_context, st->drawpix.vert_shaders[1]);
  1703. }
  1704.