Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright © 2010 Luca Barbieri
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21.  * DEALINGS IN THE SOFTWARE.
  22.  */
  23.  
  24. /**
  25.  * \file lower_variable_index_to_cond_assign.cpp
  26.  *
  27.  * Turns non-constant indexing into array types to a series of
  28.  * conditional moves of each element into a temporary.
  29.  *
  30.  * Pre-DX10 GPUs often don't have a native way to do this operation,
  31.  * and this works around that.
  32.  *
  33.  * The lowering process proceeds as follows.  Each non-constant index
  34.  * found in an r-value is converted to a canonical form \c array[i].  Each
  35.  * element of the array is conditionally assigned to a temporary by comparing
  36.  * \c i to a constant index.  This is done by cloning the canonical form and
  37.  * replacing all occurances of \c i with a constant.  Each remaining occurance
  38.  * of the canonical form in the IR is replaced with a dereference of the
  39.  * temporary variable.
  40.  *
  41.  * L-values with non-constant indices are handled similarly.  In this case,
  42.  * the RHS of the assignment is assigned to a temporary.  The non-constant
  43.  * index is replace with the canonical form (just like for r-values).  The
  44.  * temporary is conditionally assigned to each element of the canonical form
  45.  * by comparing \c i with each index.  The same clone-and-replace scheme is
  46.  * used.
  47.  */
  48.  
  49. #include "ir.h"
  50. #include "ir_rvalue_visitor.h"
  51. #include "ir_optimization.h"
  52. #include "glsl_types.h"
  53. #include "main/macros.h"
  54.  
  55. /**
  56.  * Generate a comparison value for a block of indices
  57.  *
  58.  * Lowering passes for non-constant indexing of arrays, matrices, or vectors
  59.  * can use this to generate blocks of index comparison values.
  60.  *
  61.  * \param instructions  List where new instructions will be appended
  62.  * \param index         \c ir_variable containing the desired index
  63.  * \param base          Base value for this block of comparisons
  64.  * \param components    Number of unique index values to compare.  This must
  65.  *                      be on the range [1, 4].
  66.  * \param mem_ctx       ralloc memory context to be used for all allocations.
  67.  *
  68.  * \returns
  69.  * An \c ir_rvalue that \b must be cloned for each use in conditional
  70.  * assignments, etc.
  71.  */
  72. ir_rvalue *
  73. compare_index_block(exec_list *instructions, ir_variable *index,
  74.                     unsigned base, unsigned components, void *mem_ctx)
  75. {
  76.    ir_rvalue *broadcast_index = new(mem_ctx) ir_dereference_variable(index);
  77.  
  78.    assert(index->type->is_scalar());
  79.    assert(index->type->base_type == GLSL_TYPE_INT || index->type->base_type == GLSL_TYPE_UINT);
  80.    assert(components >= 1 && components <= 4);
  81.  
  82.    if (components > 1) {
  83.       const ir_swizzle_mask m = { 0, 0, 0, 0, components, false };
  84.       broadcast_index = new(mem_ctx) ir_swizzle(broadcast_index, m);
  85.    }
  86.  
  87.    /* Compare the desired index value with the next block of four indices.
  88.     */
  89.    ir_constant_data test_indices_data;
  90.    memset(&test_indices_data, 0, sizeof(test_indices_data));
  91.    test_indices_data.i[0] = base;
  92.    test_indices_data.i[1] = base + 1;
  93.    test_indices_data.i[2] = base + 2;
  94.    test_indices_data.i[3] = base + 3;
  95.  
  96.    ir_constant *const test_indices =
  97.       new(mem_ctx) ir_constant(broadcast_index->type,
  98.                                &test_indices_data);
  99.  
  100.    ir_rvalue *const condition_val =
  101.       new(mem_ctx) ir_expression(ir_binop_equal,
  102.                                  glsl_type::bvec(components),
  103.                                  broadcast_index,
  104.                                  test_indices);
  105.  
  106.    ir_variable *const condition =
  107.       new(mem_ctx) ir_variable(condition_val->type,
  108.                                "dereference_condition",
  109.                                ir_var_temporary);
  110.    instructions->push_tail(condition);
  111.  
  112.    ir_rvalue *const cond_deref =
  113.       new(mem_ctx) ir_dereference_variable(condition);
  114.    instructions->push_tail(new(mem_ctx) ir_assignment(cond_deref, condition_val, 0));
  115.  
  116.    return cond_deref;
  117. }
  118.  
  119. static inline bool
  120. is_array_or_matrix(const ir_rvalue *ir)
  121. {
  122.    return (ir->type->is_array() || ir->type->is_matrix());
  123. }
  124.  
  125. namespace {
  126. /**
  127.  * Replace a dereference of a variable with a specified r-value
  128.  *
  129.  * Each time a dereference of the specified value is replaced, the r-value
  130.  * tree is cloned.
  131.  */
  132. class deref_replacer : public ir_rvalue_visitor {
  133. public:
  134.    deref_replacer(const ir_variable *variable_to_replace, ir_rvalue *value)
  135.       : variable_to_replace(variable_to_replace), value(value),
  136.         progress(false)
  137.    {
  138.       assert(this->variable_to_replace != NULL);
  139.       assert(this->value != NULL);
  140.    }
  141.  
  142.    virtual void handle_rvalue(ir_rvalue **rvalue)
  143.    {
  144.       ir_dereference_variable *const dv = (*rvalue)->as_dereference_variable();
  145.  
  146.       if ((dv != NULL) && (dv->var == this->variable_to_replace)) {
  147.          this->progress = true;
  148.          *rvalue = this->value->clone(ralloc_parent(*rvalue), NULL);
  149.       }
  150.    }
  151.  
  152.    const ir_variable *variable_to_replace;
  153.    ir_rvalue *value;
  154.    bool progress;
  155. };
  156.  
  157. /**
  158.  * Find a variable index dereference of an array in an rvalue tree
  159.  */
  160. class find_variable_index : public ir_hierarchical_visitor {
  161. public:
  162.    find_variable_index()
  163.       : deref(NULL)
  164.    {
  165.       /* empty */
  166.    }
  167.  
  168.    virtual ir_visitor_status visit_enter(ir_dereference_array *ir)
  169.    {
  170.       if (is_array_or_matrix(ir->array)
  171.           && (ir->array_index->as_constant() == NULL)) {
  172.          this->deref = ir;
  173.          return visit_stop;
  174.       }
  175.  
  176.       return visit_continue;
  177.    }
  178.  
  179.    /**
  180.     * First array dereference found in the tree that has a non-constant index.
  181.     */
  182.    ir_dereference_array *deref;
  183. };
  184.  
  185. struct assignment_generator
  186. {
  187.    ir_instruction* base_ir;
  188.    ir_dereference *rvalue;
  189.    ir_variable *old_index;
  190.    bool is_write;
  191.    unsigned int write_mask;
  192.    ir_variable* var;
  193.  
  194.    assignment_generator()
  195.       : base_ir(NULL),
  196.         rvalue(NULL),
  197.         old_index(NULL),
  198.         is_write(false),
  199.         write_mask(0),
  200.         var(NULL)
  201.    {
  202.    }
  203.  
  204.    void generate(unsigned i, ir_rvalue* condition, exec_list *list) const
  205.    {
  206.       /* Just clone the rest of the deref chain when trying to get at the
  207.        * underlying variable.
  208.        */
  209.       void *mem_ctx = ralloc_parent(base_ir);
  210.  
  211.       /* Clone the old r-value in its entirety.  Then replace any occurances of
  212.        * the old variable index with the new constant index.
  213.        */
  214.       ir_dereference *element = this->rvalue->clone(mem_ctx, NULL);
  215.       ir_constant *const index = new(mem_ctx) ir_constant(i);
  216.       deref_replacer r(this->old_index, index);
  217.       element->accept(&r);
  218.       assert(r.progress);
  219.  
  220.       /* Generate a conditional assignment to (or from) the constant indexed
  221.        * array dereference.
  222.        */
  223.       ir_rvalue *variable = new(mem_ctx) ir_dereference_variable(this->var);
  224.       ir_assignment *const assignment = (is_write)
  225.          ? new(mem_ctx) ir_assignment(element, variable, condition, write_mask)
  226.          : new(mem_ctx) ir_assignment(variable, element, condition);
  227.  
  228.       list->push_tail(assignment);
  229.    }
  230. };
  231.  
  232. struct switch_generator
  233. {
  234.    /* make TFunction a template parameter if you need to use other generators */
  235.    typedef assignment_generator TFunction;
  236.    const TFunction& generator;
  237.  
  238.    ir_variable* index;
  239.    unsigned linear_sequence_max_length;
  240.    unsigned condition_components;
  241.  
  242.    void *mem_ctx;
  243.  
  244.    switch_generator(const TFunction& generator, ir_variable *index,
  245.                     unsigned linear_sequence_max_length,
  246.                     unsigned condition_components)
  247.       : generator(generator), index(index),
  248.         linear_sequence_max_length(linear_sequence_max_length),
  249.         condition_components(condition_components)
  250.    {
  251.       this->mem_ctx = ralloc_parent(index);
  252.    }
  253.  
  254.    void linear_sequence(unsigned begin, unsigned end, exec_list *list)
  255.    {
  256.       if (begin == end)
  257.          return;
  258.  
  259.       /* If the array access is a read, read the first element of this subregion
  260.        * unconditionally.  The remaining tests will possibly overwrite this
  261.        * value with one of the other array elements.
  262.        *
  263.        * This optimization cannot be done for writes because it will cause the
  264.        * first element of the subregion to be written possibly *in addition* to
  265.        * one of the other elements.
  266.        */
  267.       unsigned first;
  268.       if (!this->generator.is_write) {
  269.          this->generator.generate(begin, 0, list);
  270.          first = begin + 1;
  271.       } else {
  272.          first = begin;
  273.       }
  274.  
  275.       for (unsigned i = first; i < end; i += 4) {
  276.          const unsigned comps = MIN2(condition_components, end - i);
  277.  
  278.          ir_rvalue *const cond_deref =
  279.             compare_index_block(list, index, i, comps, this->mem_ctx);
  280.  
  281.          if (comps == 1) {
  282.             this->generator.generate(i, cond_deref->clone(this->mem_ctx, NULL),
  283.                                      list);
  284.          } else {
  285.             for (unsigned j = 0; j < comps; j++) {
  286.                ir_rvalue *const cond_swiz =
  287.                   new(this->mem_ctx) ir_swizzle(cond_deref->clone(this->mem_ctx, NULL),
  288.                                                 j, 0, 0, 0, 1);
  289.  
  290.                this->generator.generate(i + j, cond_swiz, list);
  291.             }
  292.          }
  293.       }
  294.    }
  295.  
  296.    void bisect(unsigned begin, unsigned end, exec_list *list)
  297.    {
  298.       unsigned middle = (begin + end) >> 1;
  299.  
  300.       assert(index->type->is_integer());
  301.  
  302.       ir_constant *const middle_c = (index->type->base_type == GLSL_TYPE_UINT)
  303.          ? new(this->mem_ctx) ir_constant((unsigned)middle)
  304.          : new(this->mem_ctx) ir_constant((int)middle);
  305.  
  306.  
  307.       ir_dereference_variable *deref =
  308.          new(this->mem_ctx) ir_dereference_variable(this->index);
  309.  
  310.       ir_expression *less =
  311.          new(this->mem_ctx) ir_expression(ir_binop_less, glsl_type::bool_type,
  312.                                           deref, middle_c);
  313.  
  314.       ir_if *if_less = new(this->mem_ctx) ir_if(less);
  315.  
  316.       generate(begin, middle, &if_less->then_instructions);
  317.       generate(middle, end, &if_less->else_instructions);
  318.  
  319.       list->push_tail(if_less);
  320.    }
  321.  
  322.    void generate(unsigned begin, unsigned end, exec_list *list)
  323.    {
  324.       unsigned length = end - begin;
  325.       if (length <= this->linear_sequence_max_length)
  326.          return linear_sequence(begin, end, list);
  327.       else
  328.          return bisect(begin, end, list);
  329.    }
  330. };
  331.  
  332. /**
  333.  * Visitor class for replacing expressions with ir_constant values.
  334.  */
  335.  
  336. class variable_index_to_cond_assign_visitor : public ir_rvalue_visitor {
  337. public:
  338.    variable_index_to_cond_assign_visitor(bool lower_input,
  339.                                          bool lower_output,
  340.                                          bool lower_temp,
  341.                                          bool lower_uniform)
  342.    {
  343.       this->progress = false;
  344.       this->lower_inputs = lower_input;
  345.       this->lower_outputs = lower_output;
  346.       this->lower_temps = lower_temp;
  347.       this->lower_uniforms = lower_uniform;
  348.    }
  349.  
  350.    bool progress;
  351.    bool lower_inputs;
  352.    bool lower_outputs;
  353.    bool lower_temps;
  354.    bool lower_uniforms;
  355.  
  356.    bool storage_type_needs_lowering(ir_dereference_array *deref) const
  357.    {
  358.       /* If a variable isn't eventually the target of this dereference, then
  359.        * it must be a constant or some sort of anonymous temporary storage.
  360.        *
  361.        * FINISHME: Is this correct?  Most drivers treat arrays of constants as
  362.        * FINISHME: uniforms.  It seems like this should do the same.
  363.        */
  364.       const ir_variable *const var = deref->array->variable_referenced();
  365.       if (var == NULL)
  366.          return this->lower_temps;
  367.  
  368.       switch (var->data.mode) {
  369.       case ir_var_auto:
  370.       case ir_var_temporary:
  371.          return this->lower_temps;
  372.       case ir_var_uniform:
  373.          return this->lower_uniforms;
  374.       case ir_var_function_in:
  375.       case ir_var_const_in:
  376.          return this->lower_temps;
  377.       case ir_var_shader_in:
  378.          return this->lower_inputs;
  379.       case ir_var_function_out:
  380.          return this->lower_temps;
  381.       case ir_var_shader_out:
  382.          return this->lower_outputs;
  383.       case ir_var_function_inout:
  384.          return this->lower_temps;
  385.       }
  386.  
  387.       assert(!"Should not get here.");
  388.       return false;
  389.    }
  390.  
  391.    bool needs_lowering(ir_dereference_array *deref) const
  392.    {
  393.       if (deref == NULL || deref->array_index->as_constant()
  394.           || !is_array_or_matrix(deref->array))
  395.          return false;
  396.  
  397.       return this->storage_type_needs_lowering(deref);
  398.    }
  399.  
  400.    ir_variable *convert_dereference_array(ir_dereference_array *orig_deref,
  401.                                           ir_assignment* orig_assign,
  402.                                           ir_dereference *orig_base)
  403.    {
  404.       assert(is_array_or_matrix(orig_deref->array));
  405.  
  406.       const unsigned length = (orig_deref->array->type->is_array())
  407.          ? orig_deref->array->type->length
  408.          : orig_deref->array->type->matrix_columns;
  409.  
  410.       void *const mem_ctx = ralloc_parent(base_ir);
  411.  
  412.       /* Temporary storage for either the result of the dereference of
  413.        * the array, or the RHS that's being assigned into the
  414.        * dereference of the array.
  415.        */
  416.       ir_variable *var;
  417.  
  418.       if (orig_assign) {
  419.          var = new(mem_ctx) ir_variable(orig_assign->rhs->type,
  420.                                         "dereference_array_value",
  421.                                         ir_var_temporary);
  422.          base_ir->insert_before(var);
  423.  
  424.          ir_dereference *lhs = new(mem_ctx) ir_dereference_variable(var);
  425.          ir_assignment *assign = new(mem_ctx) ir_assignment(lhs,
  426.                                                             orig_assign->rhs,
  427.                                                             NULL);
  428.  
  429.          base_ir->insert_before(assign);
  430.       } else {
  431.          var = new(mem_ctx) ir_variable(orig_deref->type,
  432.                                         "dereference_array_value",
  433.                                         ir_var_temporary);
  434.          base_ir->insert_before(var);
  435.       }
  436.  
  437.       /* Store the index to a temporary to avoid reusing its tree. */
  438.       ir_variable *index =
  439.          new(mem_ctx) ir_variable(orig_deref->array_index->type,
  440.                                   "dereference_array_index", ir_var_temporary);
  441.       base_ir->insert_before(index);
  442.  
  443.       ir_dereference *lhs = new(mem_ctx) ir_dereference_variable(index);
  444.       ir_assignment *assign =
  445.          new(mem_ctx) ir_assignment(lhs, orig_deref->array_index, NULL);
  446.       base_ir->insert_before(assign);
  447.  
  448.       orig_deref->array_index = lhs->clone(mem_ctx, NULL);
  449.  
  450.       assignment_generator ag;
  451.       ag.rvalue = orig_base;
  452.       ag.base_ir = base_ir;
  453.       ag.old_index = index;
  454.       ag.var = var;
  455.       if (orig_assign) {
  456.          ag.is_write = true;
  457.          ag.write_mask = orig_assign->write_mask;
  458.       } else {
  459.          ag.is_write = false;
  460.       }
  461.  
  462.       switch_generator sg(ag, index, 4, 4);
  463.  
  464.       /* If the original assignment has a condition, respect that original
  465.        * condition!  This is acomplished by wrapping the new conditional
  466.        * assignments in an if-statement that uses the original condition.
  467.        */
  468.       if ((orig_assign != NULL) && (orig_assign->condition != NULL)) {
  469.          /* No need to clone the condition because the IR that it hangs on is
  470.           * going to be removed from the instruction sequence.
  471.           */
  472.          ir_if *if_stmt = new(mem_ctx) ir_if(orig_assign->condition);
  473.  
  474.          sg.generate(0, length, &if_stmt->then_instructions);
  475.          base_ir->insert_before(if_stmt);
  476.       } else {
  477.          exec_list list;
  478.  
  479.          sg.generate(0, length, &list);
  480.          base_ir->insert_before(&list);
  481.       }
  482.  
  483.       return var;
  484.    }
  485.  
  486.    virtual void handle_rvalue(ir_rvalue **pir)
  487.    {
  488.       if (this->in_assignee)
  489.          return;
  490.  
  491.       if (!*pir)
  492.          return;
  493.  
  494.       ir_dereference_array* orig_deref = (*pir)->as_dereference_array();
  495.       if (needs_lowering(orig_deref)) {
  496.          ir_variable *var =
  497.             convert_dereference_array(orig_deref, NULL, orig_deref);
  498.          assert(var);
  499.          *pir = new(ralloc_parent(base_ir)) ir_dereference_variable(var);
  500.          this->progress = true;
  501.       }
  502.    }
  503.  
  504.    ir_visitor_status
  505.    visit_leave(ir_assignment *ir)
  506.    {
  507.       ir_rvalue_visitor::visit_leave(ir);
  508.  
  509.       find_variable_index f;
  510.       ir->lhs->accept(&f);
  511.  
  512.       if ((f.deref != NULL) && storage_type_needs_lowering(f.deref)) {
  513.          convert_dereference_array(f.deref, ir, ir->lhs);
  514.          ir->remove();
  515.          this->progress = true;
  516.       }
  517.  
  518.       return visit_continue;
  519.    }
  520. };
  521.  
  522. } /* anonymous namespace */
  523.  
  524. bool
  525. lower_variable_index_to_cond_assign(exec_list *instructions,
  526.                                     bool lower_input,
  527.                                     bool lower_output,
  528.                                     bool lower_temp,
  529.                                     bool lower_uniform)
  530. {
  531.    variable_index_to_cond_assign_visitor v(lower_input,
  532.                                            lower_output,
  533.                                            lower_temp,
  534.                                            lower_uniform);
  535.  
  536.    /* Continue lowering until no progress is made.  If there are multiple
  537.     * levels of indirection (e.g., non-constant indexing of array elements and
  538.     * matrix columns of an array of matrix), each pass will only lower one
  539.     * level of indirection.
  540.     */
  541.    bool progress_ever = false;
  542.    do {
  543.       v.progress = false;
  544.       visit_list_elements(&v, instructions);
  545.       progress_ever = v.progress || progress_ever;
  546.    } while (v.progress);
  547.  
  548.    return progress_ever;
  549. }
  550.