Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright © 2010 Intel Corporation
  3.  *
  4.  * Permission is hereby granted, free of charge, to any person obtaining a
  5.  * copy of this software and associated documentation files (the "Software"),
  6.  * to deal in the Software without restriction, including without limitation
  7.  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8.  * and/or sell copies of the Software, and to permit persons to whom the
  9.  * Software is furnished to do so, subject to the following conditions:
  10.  *
  11.  * The above copyright notice and this permission notice (including the next
  12.  * paragraph) shall be included in all copies or substantial portions of the
  13.  * Software.
  14.  *
  15.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17.  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18.  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19.  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20.  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21.  * DEALINGS IN THE SOFTWARE.
  22.  */
  23.  
  24. #include "ir_reader.h"
  25. #include "glsl_parser_extras.h"
  26. #include "glsl_types.h"
  27. #include "s_expression.h"
  28.  
  29. const static bool debug = false;
  30.  
  31. namespace {
  32.  
  33. class ir_reader {
  34. public:
  35.    ir_reader(_mesa_glsl_parse_state *);
  36.  
  37.    void read(exec_list *instructions, const char *src, bool scan_for_protos);
  38.  
  39. private:
  40.    void *mem_ctx;
  41.    _mesa_glsl_parse_state *state;
  42.  
  43.    void ir_read_error(s_expression *, const char *fmt, ...);
  44.  
  45.    const glsl_type *read_type(s_expression *);
  46.  
  47.    void scan_for_prototypes(exec_list *, s_expression *);
  48.    ir_function *read_function(s_expression *, bool skip_body);
  49.    void read_function_sig(ir_function *, s_expression *, bool skip_body);
  50.  
  51.    void read_instructions(exec_list *, s_expression *, ir_loop *);
  52.    ir_instruction *read_instruction(s_expression *, ir_loop *);
  53.    ir_variable *read_declaration(s_expression *);
  54.    ir_if *read_if(s_expression *, ir_loop *);
  55.    ir_loop *read_loop(s_expression *);
  56.    ir_call *read_call(s_expression *);
  57.    ir_return *read_return(s_expression *);
  58.    ir_rvalue *read_rvalue(s_expression *);
  59.    ir_assignment *read_assignment(s_expression *);
  60.    ir_expression *read_expression(s_expression *);
  61.    ir_swizzle *read_swizzle(s_expression *);
  62.    ir_constant *read_constant(s_expression *);
  63.    ir_texture *read_texture(s_expression *);
  64.    ir_emit_vertex *read_emit_vertex(s_expression *);
  65.    ir_end_primitive *read_end_primitive(s_expression *);
  66.  
  67.    ir_dereference *read_dereference(s_expression *);
  68.    ir_dereference_variable *read_var_ref(s_expression *);
  69. };
  70.  
  71. } /* anonymous namespace */
  72.  
  73. ir_reader::ir_reader(_mesa_glsl_parse_state *state) : state(state)
  74. {
  75.    this->mem_ctx = state;
  76. }
  77.  
  78. void
  79. _mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions,
  80.                    const char *src, bool scan_for_protos)
  81. {
  82.    ir_reader r(state);
  83.    r.read(instructions, src, scan_for_protos);
  84. }
  85.  
  86. void
  87. ir_reader::read(exec_list *instructions, const char *src, bool scan_for_protos)
  88. {
  89.    void *sx_mem_ctx = ralloc_context(NULL);
  90.    s_expression *expr = s_expression::read_expression(sx_mem_ctx, src);
  91.    if (expr == NULL) {
  92.       ir_read_error(NULL, "couldn't parse S-Expression.");
  93.       return;
  94.    }
  95.    
  96.    if (scan_for_protos) {
  97.       scan_for_prototypes(instructions, expr);
  98.       if (state->error)
  99.          return;
  100.    }
  101.  
  102.    read_instructions(instructions, expr, NULL);
  103.    ralloc_free(sx_mem_ctx);
  104.  
  105.    if (debug)
  106.       validate_ir_tree(instructions);
  107. }
  108.  
  109. void
  110. ir_reader::ir_read_error(s_expression *expr, const char *fmt, ...)
  111. {
  112.    va_list ap;
  113.  
  114.    state->error = true;
  115.  
  116.    if (state->current_function != NULL)
  117.       ralloc_asprintf_append(&state->info_log, "In function %s:\n",
  118.                              state->current_function->function_name());
  119.    ralloc_strcat(&state->info_log, "error: ");
  120.  
  121.    va_start(ap, fmt);
  122.    ralloc_vasprintf_append(&state->info_log, fmt, ap);
  123.    va_end(ap);
  124.    ralloc_strcat(&state->info_log, "\n");
  125.  
  126.    if (expr != NULL) {
  127.       ralloc_strcat(&state->info_log, "...in this context:\n   ");
  128.       expr->print();
  129.       ralloc_strcat(&state->info_log, "\n\n");
  130.    }
  131. }
  132.  
  133. const glsl_type *
  134. ir_reader::read_type(s_expression *expr)
  135. {
  136.    s_expression *s_base_type;
  137.    s_int *s_size;
  138.  
  139.    s_pattern pat[] = { "array", s_base_type, s_size };
  140.    if (MATCH(expr, pat)) {
  141.       const glsl_type *base_type = read_type(s_base_type);
  142.       if (base_type == NULL) {
  143.          ir_read_error(NULL, "when reading base type of array type");
  144.          return NULL;
  145.       }
  146.  
  147.       return glsl_type::get_array_instance(base_type, s_size->value());
  148.    }
  149.    
  150.    s_symbol *type_sym = SX_AS_SYMBOL(expr);
  151.    if (type_sym == NULL) {
  152.       ir_read_error(expr, "expected <type>");
  153.       return NULL;
  154.    }
  155.  
  156.    const glsl_type *type = state->symbols->get_type(type_sym->value());
  157.    if (type == NULL)
  158.       ir_read_error(expr, "invalid type: %s", type_sym->value());
  159.  
  160.    return type;
  161. }
  162.  
  163.  
  164. void
  165. ir_reader::scan_for_prototypes(exec_list *instructions, s_expression *expr)
  166. {
  167.    s_list *list = SX_AS_LIST(expr);
  168.    if (list == NULL) {
  169.       ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
  170.       return;
  171.    }
  172.  
  173.    foreach_in_list(s_list, sub, &list->subexpressions) {
  174.       if (!sub->is_list())
  175.          continue; // not a (function ...); ignore it.
  176.  
  177.       s_symbol *tag = SX_AS_SYMBOL(sub->subexpressions.get_head());
  178.       if (tag == NULL || strcmp(tag->value(), "function") != 0)
  179.          continue; // not a (function ...); ignore it.
  180.  
  181.       ir_function *f = read_function(sub, true);
  182.       if (f == NULL)
  183.          return;
  184.       instructions->push_tail(f);
  185.    }
  186. }
  187.  
  188. ir_function *
  189. ir_reader::read_function(s_expression *expr, bool skip_body)
  190. {
  191.    bool added = false;
  192.    s_symbol *name;
  193.  
  194.    s_pattern pat[] = { "function", name };
  195.    if (!PARTIAL_MATCH(expr, pat)) {
  196.       ir_read_error(expr, "Expected (function <name> (signature ...) ...)");
  197.       return NULL;
  198.    }
  199.  
  200.    ir_function *f = state->symbols->get_function(name->value());
  201.    if (f == NULL) {
  202.       f = new(mem_ctx) ir_function(name->value());
  203.       added = state->symbols->add_function(f);
  204.       assert(added);
  205.    }
  206.  
  207.    /* Skip over "function" tag and function name (which are guaranteed to be
  208.     * present by the above PARTIAL_MATCH call).
  209.     */
  210.    exec_node *node = ((s_list *) expr)->subexpressions.head->next->next;
  211.    for (/* nothing */; !node->is_tail_sentinel(); node = node->next) {
  212.       s_expression *s_sig = (s_expression *) node;
  213.       read_function_sig(f, s_sig, skip_body);
  214.    }
  215.    return added ? f : NULL;
  216. }
  217.  
  218. static bool
  219. always_available(const _mesa_glsl_parse_state *)
  220. {
  221.    return true;
  222. }
  223.  
  224. void
  225. ir_reader::read_function_sig(ir_function *f, s_expression *expr, bool skip_body)
  226. {
  227.    s_expression *type_expr;
  228.    s_list *paramlist;
  229.    s_list *body_list;
  230.  
  231.    s_pattern pat[] = { "signature", type_expr, paramlist, body_list };
  232.    if (!MATCH(expr, pat)) {
  233.       ir_read_error(expr, "Expected (signature <type> (parameters ...) "
  234.                           "(<instruction> ...))");
  235.       return;
  236.    }
  237.  
  238.    const glsl_type *return_type = read_type(type_expr);
  239.    if (return_type == NULL)
  240.       return;
  241.  
  242.    s_symbol *paramtag = SX_AS_SYMBOL(paramlist->subexpressions.get_head());
  243.    if (paramtag == NULL || strcmp(paramtag->value(), "parameters") != 0) {
  244.       ir_read_error(paramlist, "Expected (parameters ...)");
  245.       return;
  246.    }
  247.  
  248.    // Read the parameters list into a temporary place.
  249.    exec_list hir_parameters;
  250.    state->symbols->push_scope();
  251.  
  252.    /* Skip over the "parameters" tag. */
  253.    exec_node *node = paramlist->subexpressions.head->next;
  254.    for (/* nothing */; !node->is_tail_sentinel(); node = node->next) {
  255.       ir_variable *var = read_declaration((s_expression *) node);
  256.       if (var == NULL)
  257.          return;
  258.  
  259.       hir_parameters.push_tail(var);
  260.    }
  261.  
  262.    ir_function_signature *sig =
  263.       f->exact_matching_signature(state, &hir_parameters);
  264.    if (sig == NULL && skip_body) {
  265.       /* If scanning for prototypes, generate a new signature. */
  266.       /* ir_reader doesn't know what languages support a given built-in, so
  267.        * just say that they're always available.  For now, other mechanisms
  268.        * guarantee the right built-ins are available.
  269.        */
  270.       sig = new(mem_ctx) ir_function_signature(return_type, always_available);
  271.       f->add_signature(sig);
  272.    } else if (sig != NULL) {
  273.       const char *badvar = sig->qualifiers_match(&hir_parameters);
  274.       if (badvar != NULL) {
  275.          ir_read_error(expr, "function `%s' parameter `%s' qualifiers "
  276.                        "don't match prototype", f->name, badvar);
  277.          return;
  278.       }
  279.  
  280.       if (sig->return_type != return_type) {
  281.          ir_read_error(expr, "function `%s' return type doesn't "
  282.                        "match prototype", f->name);
  283.          return;
  284.       }
  285.    } else {
  286.       /* No prototype for this body exists - skip it. */
  287.       state->symbols->pop_scope();
  288.       return;
  289.    }
  290.    assert(sig != NULL);
  291.  
  292.    sig->replace_parameters(&hir_parameters);
  293.  
  294.    if (!skip_body && !body_list->subexpressions.is_empty()) {
  295.       if (sig->is_defined) {
  296.          ir_read_error(expr, "function %s redefined", f->name);
  297.          return;
  298.       }
  299.       state->current_function = sig;
  300.       read_instructions(&sig->body, body_list, NULL);
  301.       state->current_function = NULL;
  302.       sig->is_defined = true;
  303.    }
  304.  
  305.    state->symbols->pop_scope();
  306. }
  307.  
  308. void
  309. ir_reader::read_instructions(exec_list *instructions, s_expression *expr,
  310.                              ir_loop *loop_ctx)
  311. {
  312.    // Read in a list of instructions
  313.    s_list *list = SX_AS_LIST(expr);
  314.    if (list == NULL) {
  315.       ir_read_error(expr, "Expected (<instruction> ...); found an atom.");
  316.       return;
  317.    }
  318.  
  319.    foreach_in_list(s_expression, sub, &list->subexpressions) {
  320.       ir_instruction *ir = read_instruction(sub, loop_ctx);
  321.       if (ir != NULL) {
  322.          /* Global variable declarations should be moved to the top, before
  323.           * any functions that might use them.  Functions are added to the
  324.           * instruction stream when scanning for prototypes, so without this
  325.           * hack, they always appear before variable declarations.
  326.           */
  327.          if (state->current_function == NULL && ir->as_variable() != NULL)
  328.             instructions->push_head(ir);
  329.          else
  330.             instructions->push_tail(ir);
  331.       }
  332.    }
  333. }
  334.  
  335.  
  336. ir_instruction *
  337. ir_reader::read_instruction(s_expression *expr, ir_loop *loop_ctx)
  338. {
  339.    s_symbol *symbol = SX_AS_SYMBOL(expr);
  340.    if (symbol != NULL) {
  341.       if (strcmp(symbol->value(), "break") == 0 && loop_ctx != NULL)
  342.          return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
  343.       if (strcmp(symbol->value(), "continue") == 0 && loop_ctx != NULL)
  344.          return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_continue);
  345.    }
  346.  
  347.    s_list *list = SX_AS_LIST(expr);
  348.    if (list == NULL || list->subexpressions.is_empty()) {
  349.       ir_read_error(expr, "Invalid instruction.\n");
  350.       return NULL;
  351.    }
  352.  
  353.    s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
  354.    if (tag == NULL) {
  355.       ir_read_error(expr, "expected instruction tag");
  356.       return NULL;
  357.    }
  358.  
  359.    ir_instruction *inst = NULL;
  360.    if (strcmp(tag->value(), "declare") == 0) {
  361.       inst = read_declaration(list);
  362.    } else if (strcmp(tag->value(), "assign") == 0) {
  363.       inst = read_assignment(list);
  364.    } else if (strcmp(tag->value(), "if") == 0) {
  365.       inst = read_if(list, loop_ctx);
  366.    } else if (strcmp(tag->value(), "loop") == 0) {
  367.       inst = read_loop(list);
  368.    } else if (strcmp(tag->value(), "call") == 0) {
  369.       inst = read_call(list);
  370.    } else if (strcmp(tag->value(), "return") == 0) {
  371.       inst = read_return(list);
  372.    } else if (strcmp(tag->value(), "function") == 0) {
  373.       inst = read_function(list, false);
  374.    } else if (strcmp(tag->value(), "emit-vertex") == 0) {
  375.       inst = read_emit_vertex(list);
  376.    } else if (strcmp(tag->value(), "end-primitive") == 0) {
  377.       inst = read_end_primitive(list);
  378.    } else {
  379.       inst = read_rvalue(list);
  380.       if (inst == NULL)
  381.          ir_read_error(NULL, "when reading instruction");
  382.    }
  383.    return inst;
  384. }
  385.  
  386. ir_variable *
  387. ir_reader::read_declaration(s_expression *expr)
  388. {
  389.    s_list *s_quals;
  390.    s_expression *s_type;
  391.    s_symbol *s_name;
  392.  
  393.    s_pattern pat[] = { "declare", s_quals, s_type, s_name };
  394.    if (!MATCH(expr, pat)) {
  395.       ir_read_error(expr, "expected (declare (<qualifiers>) <type> <name>)");
  396.       return NULL;
  397.    }
  398.  
  399.    const glsl_type *type = read_type(s_type);
  400.    if (type == NULL)
  401.       return NULL;
  402.  
  403.    ir_variable *var = new(mem_ctx) ir_variable(type, s_name->value(),
  404.                                                ir_var_auto);
  405.  
  406.    foreach_in_list(s_symbol, qualifier, &s_quals->subexpressions) {
  407.       if (!qualifier->is_symbol()) {
  408.          ir_read_error(expr, "qualifier list must contain only symbols");
  409.          return NULL;
  410.       }
  411.  
  412.       // FINISHME: Check for duplicate/conflicting qualifiers.
  413.       if (strcmp(qualifier->value(), "centroid") == 0) {
  414.          var->data.centroid = 1;
  415.       } else if (strcmp(qualifier->value(), "sample") == 0) {
  416.          var->data.sample = 1;
  417.       } else if (strcmp(qualifier->value(), "invariant") == 0) {
  418.          var->data.invariant = 1;
  419.       } else if (strcmp(qualifier->value(), "uniform") == 0) {
  420.          var->data.mode = ir_var_uniform;
  421.       } else if (strcmp(qualifier->value(), "auto") == 0) {
  422.          var->data.mode = ir_var_auto;
  423.       } else if (strcmp(qualifier->value(), "in") == 0) {
  424.          var->data.mode = ir_var_function_in;
  425.       } else if (strcmp(qualifier->value(), "shader_in") == 0) {
  426.          var->data.mode = ir_var_shader_in;
  427.       } else if (strcmp(qualifier->value(), "const_in") == 0) {
  428.          var->data.mode = ir_var_const_in;
  429.       } else if (strcmp(qualifier->value(), "out") == 0) {
  430.          var->data.mode = ir_var_function_out;
  431.       } else if (strcmp(qualifier->value(), "shader_out") == 0) {
  432.          var->data.mode = ir_var_shader_out;
  433.       } else if (strcmp(qualifier->value(), "inout") == 0) {
  434.          var->data.mode = ir_var_function_inout;
  435.       } else if (strcmp(qualifier->value(), "temporary") == 0) {
  436.          var->data.mode = ir_var_temporary;
  437.       } else if (strcmp(qualifier->value(), "stream1") == 0) {
  438.          var->data.stream = 1;
  439.       } else if (strcmp(qualifier->value(), "stream2") == 0) {
  440.          var->data.stream = 2;
  441.       } else if (strcmp(qualifier->value(), "stream3") == 0) {
  442.          var->data.stream = 3;
  443.       } else if (strcmp(qualifier->value(), "smooth") == 0) {
  444.          var->data.interpolation = INTERP_QUALIFIER_SMOOTH;
  445.       } else if (strcmp(qualifier->value(), "flat") == 0) {
  446.          var->data.interpolation = INTERP_QUALIFIER_FLAT;
  447.       } else if (strcmp(qualifier->value(), "noperspective") == 0) {
  448.          var->data.interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
  449.       } else {
  450.          ir_read_error(expr, "unknown qualifier: %s", qualifier->value());
  451.          return NULL;
  452.       }
  453.    }
  454.  
  455.    // Add the variable to the symbol table
  456.    state->symbols->add_variable(var);
  457.  
  458.    return var;
  459. }
  460.  
  461.  
  462. ir_if *
  463. ir_reader::read_if(s_expression *expr, ir_loop *loop_ctx)
  464. {
  465.    s_expression *s_cond;
  466.    s_expression *s_then;
  467.    s_expression *s_else;
  468.  
  469.    s_pattern pat[] = { "if", s_cond, s_then, s_else };
  470.    if (!MATCH(expr, pat)) {
  471.       ir_read_error(expr, "expected (if <condition> (<then>...) (<else>...))");
  472.       return NULL;
  473.    }
  474.  
  475.    ir_rvalue *condition = read_rvalue(s_cond);
  476.    if (condition == NULL) {
  477.       ir_read_error(NULL, "when reading condition of (if ...)");
  478.       return NULL;
  479.    }
  480.  
  481.    ir_if *iff = new(mem_ctx) ir_if(condition);
  482.  
  483.    read_instructions(&iff->then_instructions, s_then, loop_ctx);
  484.    read_instructions(&iff->else_instructions, s_else, loop_ctx);
  485.    if (state->error) {
  486.       delete iff;
  487.       iff = NULL;
  488.    }
  489.    return iff;
  490. }
  491.  
  492.  
  493. ir_loop *
  494. ir_reader::read_loop(s_expression *expr)
  495. {
  496.    s_expression *s_body;
  497.  
  498.    s_pattern loop_pat[] = { "loop", s_body };
  499.    if (!MATCH(expr, loop_pat)) {
  500.       ir_read_error(expr, "expected (loop <body>)");
  501.       return NULL;
  502.    }
  503.  
  504.    ir_loop *loop = new(mem_ctx) ir_loop;
  505.  
  506.    read_instructions(&loop->body_instructions, s_body, loop);
  507.    if (state->error) {
  508.       delete loop;
  509.       loop = NULL;
  510.    }
  511.    return loop;
  512. }
  513.  
  514.  
  515. ir_return *
  516. ir_reader::read_return(s_expression *expr)
  517. {
  518.    s_expression *s_retval;
  519.  
  520.    s_pattern return_value_pat[] = { "return", s_retval};
  521.    s_pattern return_void_pat[] = { "return" };
  522.    if (MATCH(expr, return_value_pat)) {
  523.       ir_rvalue *retval = read_rvalue(s_retval);
  524.       if (retval == NULL) {
  525.          ir_read_error(NULL, "when reading return value");
  526.          return NULL;
  527.       }
  528.       return new(mem_ctx) ir_return(retval);
  529.    } else if (MATCH(expr, return_void_pat)) {
  530.       return new(mem_ctx) ir_return;
  531.    } else {
  532.       ir_read_error(expr, "expected (return <rvalue>) or (return)");
  533.       return NULL;
  534.    }
  535. }
  536.  
  537.  
  538. ir_rvalue *
  539. ir_reader::read_rvalue(s_expression *expr)
  540. {
  541.    s_list *list = SX_AS_LIST(expr);
  542.    if (list == NULL || list->subexpressions.is_empty())
  543.       return NULL;
  544.  
  545.    s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
  546.    if (tag == NULL) {
  547.       ir_read_error(expr, "expected rvalue tag");
  548.       return NULL;
  549.    }
  550.  
  551.    ir_rvalue *rvalue = read_dereference(list);
  552.    if (rvalue != NULL || state->error)
  553.       return rvalue;
  554.    else if (strcmp(tag->value(), "swiz") == 0) {
  555.       rvalue = read_swizzle(list);
  556.    } else if (strcmp(tag->value(), "expression") == 0) {
  557.       rvalue = read_expression(list);
  558.    } else if (strcmp(tag->value(), "constant") == 0) {
  559.       rvalue = read_constant(list);
  560.    } else {
  561.       rvalue = read_texture(list);
  562.       if (rvalue == NULL && !state->error)
  563.          ir_read_error(expr, "unrecognized rvalue tag: %s", tag->value());
  564.    }
  565.  
  566.    return rvalue;
  567. }
  568.  
  569. ir_assignment *
  570. ir_reader::read_assignment(s_expression *expr)
  571. {
  572.    s_expression *cond_expr = NULL;
  573.    s_expression *lhs_expr, *rhs_expr;
  574.    s_list       *mask_list;
  575.  
  576.    s_pattern pat4[] = { "assign",            mask_list, lhs_expr, rhs_expr };
  577.    s_pattern pat5[] = { "assign", cond_expr, mask_list, lhs_expr, rhs_expr };
  578.    if (!MATCH(expr, pat4) && !MATCH(expr, pat5)) {
  579.       ir_read_error(expr, "expected (assign [<condition>] (<write mask>) "
  580.                           "<lhs> <rhs>)");
  581.       return NULL;
  582.    }
  583.  
  584.    ir_rvalue *condition = NULL;
  585.    if (cond_expr != NULL) {
  586.       condition = read_rvalue(cond_expr);
  587.       if (condition == NULL) {
  588.          ir_read_error(NULL, "when reading condition of assignment");
  589.          return NULL;
  590.       }
  591.    }
  592.  
  593.    unsigned mask = 0;
  594.  
  595.    s_symbol *mask_symbol;
  596.    s_pattern mask_pat[] = { mask_symbol };
  597.    if (MATCH(mask_list, mask_pat)) {
  598.       const char *mask_str = mask_symbol->value();
  599.       unsigned mask_length = strlen(mask_str);
  600.       if (mask_length > 4) {
  601.          ir_read_error(expr, "invalid write mask: %s", mask_str);
  602.          return NULL;
  603.       }
  604.  
  605.       const unsigned idx_map[] = { 3, 0, 1, 2 }; /* w=bit 3, x=0, y=1, z=2 */
  606.  
  607.       for (unsigned i = 0; i < mask_length; i++) {
  608.          if (mask_str[i] < 'w' || mask_str[i] > 'z') {
  609.             ir_read_error(expr, "write mask contains invalid character: %c",
  610.                           mask_str[i]);
  611.             return NULL;
  612.          }
  613.          mask |= 1 << idx_map[mask_str[i] - 'w'];
  614.       }
  615.    } else if (!mask_list->subexpressions.is_empty()) {
  616.       ir_read_error(mask_list, "expected () or (<write mask>)");
  617.       return NULL;
  618.    }
  619.  
  620.    ir_dereference *lhs = read_dereference(lhs_expr);
  621.    if (lhs == NULL) {
  622.       ir_read_error(NULL, "when reading left-hand side of assignment");
  623.       return NULL;
  624.    }
  625.  
  626.    ir_rvalue *rhs = read_rvalue(rhs_expr);
  627.    if (rhs == NULL) {
  628.       ir_read_error(NULL, "when reading right-hand side of assignment");
  629.       return NULL;
  630.    }
  631.  
  632.    if (mask == 0 && (lhs->type->is_vector() || lhs->type->is_scalar())) {
  633.       ir_read_error(expr, "non-zero write mask required.");
  634.       return NULL;
  635.    }
  636.  
  637.    return new(mem_ctx) ir_assignment(lhs, rhs, condition, mask);
  638. }
  639.  
  640. ir_call *
  641. ir_reader::read_call(s_expression *expr)
  642. {
  643.    s_symbol *name;
  644.    s_list *params;
  645.    s_list *s_return = NULL;
  646.  
  647.    ir_dereference_variable *return_deref = NULL;
  648.  
  649.    s_pattern void_pat[] = { "call", name, params };
  650.    s_pattern non_void_pat[] = { "call", name, s_return, params };
  651.    if (MATCH(expr, non_void_pat)) {
  652.       return_deref = read_var_ref(s_return);
  653.       if (return_deref == NULL) {
  654.          ir_read_error(s_return, "when reading a call's return storage");
  655.          return NULL;
  656.       }
  657.    } else if (!MATCH(expr, void_pat)) {
  658.       ir_read_error(expr, "expected (call <name> [<deref>] (<param> ...))");
  659.       return NULL;
  660.    }
  661.  
  662.    exec_list parameters;
  663.  
  664.    foreach_in_list(s_expression, e, &params->subexpressions) {
  665.       ir_rvalue *param = read_rvalue(e);
  666.       if (param == NULL) {
  667.          ir_read_error(e, "when reading parameter to function call");
  668.          return NULL;
  669.       }
  670.       parameters.push_tail(param);
  671.    }
  672.  
  673.    ir_function *f = state->symbols->get_function(name->value());
  674.    if (f == NULL) {
  675.       ir_read_error(expr, "found call to undefined function %s",
  676.                     name->value());
  677.       return NULL;
  678.    }
  679.  
  680.    ir_function_signature *callee =
  681.       f->matching_signature(state, &parameters, true);
  682.    if (callee == NULL) {
  683.       ir_read_error(expr, "couldn't find matching signature for function "
  684.                     "%s", name->value());
  685.       return NULL;
  686.    }
  687.  
  688.    if (callee->return_type == glsl_type::void_type && return_deref) {
  689.       ir_read_error(expr, "call has return value storage but void type");
  690.       return NULL;
  691.    } else if (callee->return_type != glsl_type::void_type && !return_deref) {
  692.       ir_read_error(expr, "call has non-void type but no return value storage");
  693.       return NULL;
  694.    }
  695.  
  696.    return new(mem_ctx) ir_call(callee, return_deref, &parameters);
  697. }
  698.  
  699. ir_expression *
  700. ir_reader::read_expression(s_expression *expr)
  701. {
  702.    s_expression *s_type;
  703.    s_symbol *s_op;
  704.    s_expression *s_arg[4] = {NULL};
  705.  
  706.    s_pattern pat[] = { "expression", s_type, s_op, s_arg[0] };
  707.    if (!PARTIAL_MATCH(expr, pat)) {
  708.       ir_read_error(expr, "expected (expression <type> <operator> "
  709.                           "<operand> [<operand>] [<operand>] [<operand>])");
  710.       return NULL;
  711.    }
  712.    s_arg[1] = (s_expression *) s_arg[0]->next; // may be tail sentinel
  713.    s_arg[2] = (s_expression *) s_arg[1]->next; // may be tail sentinel or NULL
  714.    if (s_arg[2])
  715.       s_arg[3] = (s_expression *) s_arg[2]->next; // may be tail sentinel or NULL
  716.  
  717.    const glsl_type *type = read_type(s_type);
  718.    if (type == NULL)
  719.       return NULL;
  720.  
  721.    /* Read the operator */
  722.    ir_expression_operation op = ir_expression::get_operator(s_op->value());
  723.    if (op == (ir_expression_operation) -1) {
  724.       ir_read_error(expr, "invalid operator: %s", s_op->value());
  725.       return NULL;
  726.    }
  727.  
  728.    /* Skip "expression" <type> <operation> by subtracting 3. */
  729.    int num_operands = (int) ((s_list *) expr)->subexpressions.length() - 3;
  730.  
  731.    int expected_operands = ir_expression::get_num_operands(op);
  732.    if (num_operands != expected_operands) {
  733.       ir_read_error(expr, "found %d expression operands, expected %d",
  734.                     num_operands, expected_operands);
  735.       return NULL;
  736.    }
  737.  
  738.    ir_rvalue *arg[4] = {NULL};
  739.    for (int i = 0; i < num_operands; i++) {
  740.       arg[i] = read_rvalue(s_arg[i]);
  741.       if (arg[i] == NULL) {
  742.          ir_read_error(NULL, "when reading operand #%d of %s", i, s_op->value());
  743.          return NULL;
  744.       }
  745.    }
  746.  
  747.    return new(mem_ctx) ir_expression(op, type, arg[0], arg[1], arg[2], arg[3]);
  748. }
  749.  
  750. ir_swizzle *
  751. ir_reader::read_swizzle(s_expression *expr)
  752. {
  753.    s_symbol *swiz;
  754.    s_expression *sub;
  755.  
  756.    s_pattern pat[] = { "swiz", swiz, sub };
  757.    if (!MATCH(expr, pat)) {
  758.       ir_read_error(expr, "expected (swiz <swizzle> <rvalue>)");
  759.       return NULL;
  760.    }
  761.  
  762.    if (strlen(swiz->value()) > 4) {
  763.       ir_read_error(expr, "expected a valid swizzle; found %s", swiz->value());
  764.       return NULL;
  765.    }
  766.  
  767.    ir_rvalue *rvalue = read_rvalue(sub);
  768.    if (rvalue == NULL)
  769.       return NULL;
  770.  
  771.    ir_swizzle *ir = ir_swizzle::create(rvalue, swiz->value(),
  772.                                        rvalue->type->vector_elements);
  773.    if (ir == NULL)
  774.       ir_read_error(expr, "invalid swizzle");
  775.  
  776.    return ir;
  777. }
  778.  
  779. ir_constant *
  780. ir_reader::read_constant(s_expression *expr)
  781. {
  782.    s_expression *type_expr;
  783.    s_list *values;
  784.  
  785.    s_pattern pat[] = { "constant", type_expr, values };
  786.    if (!MATCH(expr, pat)) {
  787.       ir_read_error(expr, "expected (constant <type> (...))");
  788.       return NULL;
  789.    }
  790.  
  791.    const glsl_type *type = read_type(type_expr);
  792.    if (type == NULL)
  793.       return NULL;
  794.  
  795.    if (values == NULL) {
  796.       ir_read_error(expr, "expected (constant <type> (...))");
  797.       return NULL;
  798.    }
  799.  
  800.    if (type->is_array()) {
  801.       unsigned elements_supplied = 0;
  802.       exec_list elements;
  803.       foreach_in_list(s_expression, elt, &values->subexpressions) {
  804.          ir_constant *ir_elt = read_constant(elt);
  805.          if (ir_elt == NULL)
  806.             return NULL;
  807.          elements.push_tail(ir_elt);
  808.          elements_supplied++;
  809.       }
  810.  
  811.       if (elements_supplied != type->length) {
  812.          ir_read_error(values, "expected exactly %u array elements, "
  813.                        "given %u", type->length, elements_supplied);
  814.          return NULL;
  815.       }
  816.       return new(mem_ctx) ir_constant(type, &elements);
  817.    }
  818.  
  819.    ir_constant_data data = { { 0 } };
  820.  
  821.    // Read in list of values (at most 16).
  822.    unsigned k = 0;
  823.    foreach_in_list(s_expression, expr, &values->subexpressions) {
  824.       if (k >= 16) {
  825.          ir_read_error(values, "expected at most 16 numbers");
  826.          return NULL;
  827.       }
  828.  
  829.       if (type->base_type == GLSL_TYPE_FLOAT) {
  830.          s_number *value = SX_AS_NUMBER(expr);
  831.          if (value == NULL) {
  832.             ir_read_error(values, "expected numbers");
  833.             return NULL;
  834.          }
  835.          data.f[k] = value->fvalue();
  836.       } else {
  837.          s_int *value = SX_AS_INT(expr);
  838.          if (value == NULL) {
  839.             ir_read_error(values, "expected integers");
  840.             return NULL;
  841.          }
  842.  
  843.          switch (type->base_type) {
  844.          case GLSL_TYPE_UINT: {
  845.             data.u[k] = value->value();
  846.             break;
  847.          }
  848.          case GLSL_TYPE_INT: {
  849.             data.i[k] = value->value();
  850.             break;
  851.          }
  852.          case GLSL_TYPE_BOOL: {
  853.             data.b[k] = value->value();
  854.             break;
  855.          }
  856.          default:
  857.             ir_read_error(values, "unsupported constant type");
  858.             return NULL;
  859.          }
  860.       }
  861.       ++k;
  862.    }
  863.    if (k != type->components()) {
  864.       ir_read_error(values, "expected %u constant values, found %u",
  865.                     type->components(), k);
  866.       return NULL;
  867.    }
  868.  
  869.    return new(mem_ctx) ir_constant(type, &data);
  870. }
  871.  
  872. ir_dereference_variable *
  873. ir_reader::read_var_ref(s_expression *expr)
  874. {
  875.    s_symbol *s_var;
  876.    s_pattern var_pat[] = { "var_ref", s_var };
  877.  
  878.    if (MATCH(expr, var_pat)) {
  879.       ir_variable *var = state->symbols->get_variable(s_var->value());
  880.       if (var == NULL) {
  881.          ir_read_error(expr, "undeclared variable: %s", s_var->value());
  882.          return NULL;
  883.       }
  884.       return new(mem_ctx) ir_dereference_variable(var);
  885.    }
  886.    return NULL;
  887. }
  888.  
  889. ir_dereference *
  890. ir_reader::read_dereference(s_expression *expr)
  891. {
  892.    s_expression *s_subject;
  893.    s_expression *s_index;
  894.    s_symbol *s_field;
  895.  
  896.    s_pattern array_pat[] = { "array_ref", s_subject, s_index };
  897.    s_pattern record_pat[] = { "record_ref", s_subject, s_field };
  898.  
  899.    ir_dereference_variable *var_ref = read_var_ref(expr);
  900.    if (var_ref != NULL) {
  901.       return var_ref;
  902.    } else if (MATCH(expr, array_pat)) {
  903.       ir_rvalue *subject = read_rvalue(s_subject);
  904.       if (subject == NULL) {
  905.          ir_read_error(NULL, "when reading the subject of an array_ref");
  906.          return NULL;
  907.       }
  908.  
  909.       ir_rvalue *idx = read_rvalue(s_index);
  910.       if (idx == NULL) {
  911.          ir_read_error(NULL, "when reading the index of an array_ref");
  912.          return NULL;
  913.       }
  914.       return new(mem_ctx) ir_dereference_array(subject, idx);
  915.    } else if (MATCH(expr, record_pat)) {
  916.       ir_rvalue *subject = read_rvalue(s_subject);
  917.       if (subject == NULL) {
  918.          ir_read_error(NULL, "when reading the subject of a record_ref");
  919.          return NULL;
  920.       }
  921.       return new(mem_ctx) ir_dereference_record(subject, s_field->value());
  922.    }
  923.    return NULL;
  924. }
  925.  
  926. ir_texture *
  927. ir_reader::read_texture(s_expression *expr)
  928. {
  929.    s_symbol *tag = NULL;
  930.    s_expression *s_type = NULL;
  931.    s_expression *s_sampler = NULL;
  932.    s_expression *s_coord = NULL;
  933.    s_expression *s_offset = NULL;
  934.    s_expression *s_proj = NULL;
  935.    s_list *s_shadow = NULL;
  936.    s_expression *s_lod = NULL;
  937.    s_expression *s_sample_index = NULL;
  938.    s_expression *s_component = NULL;
  939.  
  940.    ir_texture_opcode op = ir_tex; /* silence warning */
  941.  
  942.    s_pattern tex_pattern[] =
  943.       { "tex", s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow };
  944.    s_pattern lod_pattern[] =
  945.       { "lod", s_type, s_sampler, s_coord };
  946.    s_pattern txf_pattern[] =
  947.       { "txf", s_type, s_sampler, s_coord, s_offset, s_lod };
  948.    s_pattern txf_ms_pattern[] =
  949.       { "txf_ms", s_type, s_sampler, s_coord, s_sample_index };
  950.    s_pattern txs_pattern[] =
  951.       { "txs", s_type, s_sampler, s_lod };
  952.    s_pattern tg4_pattern[] =
  953.       { "tg4", s_type, s_sampler, s_coord, s_offset, s_component };
  954.    s_pattern query_levels_pattern[] =
  955.       { "query_levels", s_type, s_sampler };
  956.    s_pattern other_pattern[] =
  957.       { tag, s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow, s_lod };
  958.  
  959.    if (MATCH(expr, lod_pattern)) {
  960.       op = ir_lod;
  961.    } else if (MATCH(expr, tex_pattern)) {
  962.       op = ir_tex;
  963.    } else if (MATCH(expr, txf_pattern)) {
  964.       op = ir_txf;
  965.    } else if (MATCH(expr, txf_ms_pattern)) {
  966.       op = ir_txf_ms;
  967.    } else if (MATCH(expr, txs_pattern)) {
  968.       op = ir_txs;
  969.    } else if (MATCH(expr, tg4_pattern)) {
  970.       op = ir_tg4;
  971.    } else if (MATCH(expr, query_levels_pattern)) {
  972.       op = ir_query_levels;
  973.    } else if (MATCH(expr, other_pattern)) {
  974.       op = ir_texture::get_opcode(tag->value());
  975.       if (op == (ir_texture_opcode) -1)
  976.          return NULL;
  977.    } else {
  978.       ir_read_error(NULL, "unexpected texture pattern %s", tag->value());
  979.       return NULL;
  980.    }
  981.  
  982.    ir_texture *tex = new(mem_ctx) ir_texture(op);
  983.  
  984.    // Read return type
  985.    const glsl_type *type = read_type(s_type);
  986.    if (type == NULL) {
  987.       ir_read_error(NULL, "when reading type in (%s ...)",
  988.                     tex->opcode_string());
  989.       return NULL;
  990.    }
  991.  
  992.    // Read sampler (must be a deref)
  993.    ir_dereference *sampler = read_dereference(s_sampler);
  994.    if (sampler == NULL) {
  995.       ir_read_error(NULL, "when reading sampler in (%s ...)",
  996.                     tex->opcode_string());
  997.       return NULL;
  998.    }
  999.    tex->set_sampler(sampler, type);
  1000.  
  1001.    if (op != ir_txs) {
  1002.       // Read coordinate (any rvalue)
  1003.       tex->coordinate = read_rvalue(s_coord);
  1004.       if (tex->coordinate == NULL) {
  1005.          ir_read_error(NULL, "when reading coordinate in (%s ...)",
  1006.                        tex->opcode_string());
  1007.          return NULL;
  1008.       }
  1009.  
  1010.       if (op != ir_txf_ms && op != ir_lod) {
  1011.          // Read texel offset - either 0 or an rvalue.
  1012.          s_int *si_offset = SX_AS_INT(s_offset);
  1013.          if (si_offset == NULL || si_offset->value() != 0) {
  1014.             tex->offset = read_rvalue(s_offset);
  1015.             if (tex->offset == NULL) {
  1016.                ir_read_error(s_offset, "expected 0 or an expression");
  1017.                return NULL;
  1018.             }
  1019.          }
  1020.       }
  1021.    }
  1022.  
  1023.    if (op != ir_txf && op != ir_txf_ms &&
  1024.        op != ir_txs && op != ir_lod && op != ir_tg4 &&
  1025.        op != ir_query_levels) {
  1026.       s_int *proj_as_int = SX_AS_INT(s_proj);
  1027.       if (proj_as_int && proj_as_int->value() == 1) {
  1028.          tex->projector = NULL;
  1029.       } else {
  1030.          tex->projector = read_rvalue(s_proj);
  1031.          if (tex->projector == NULL) {
  1032.             ir_read_error(NULL, "when reading projective divide in (%s ..)",
  1033.                           tex->opcode_string());
  1034.             return NULL;
  1035.          }
  1036.       }
  1037.  
  1038.       if (s_shadow->subexpressions.is_empty()) {
  1039.          tex->shadow_comparitor = NULL;
  1040.       } else {
  1041.          tex->shadow_comparitor = read_rvalue(s_shadow);
  1042.          if (tex->shadow_comparitor == NULL) {
  1043.             ir_read_error(NULL, "when reading shadow comparitor in (%s ..)",
  1044.                           tex->opcode_string());
  1045.             return NULL;
  1046.          }
  1047.       }
  1048.    }
  1049.  
  1050.    switch (op) {
  1051.    case ir_txb:
  1052.       tex->lod_info.bias = read_rvalue(s_lod);
  1053.       if (tex->lod_info.bias == NULL) {
  1054.          ir_read_error(NULL, "when reading LOD bias in (txb ...)");
  1055.          return NULL;
  1056.       }
  1057.       break;
  1058.    case ir_txl:
  1059.    case ir_txf:
  1060.    case ir_txs:
  1061.       tex->lod_info.lod = read_rvalue(s_lod);
  1062.       if (tex->lod_info.lod == NULL) {
  1063.          ir_read_error(NULL, "when reading LOD in (%s ...)",
  1064.                        tex->opcode_string());
  1065.          return NULL;
  1066.       }
  1067.       break;
  1068.    case ir_txf_ms:
  1069.       tex->lod_info.sample_index = read_rvalue(s_sample_index);
  1070.       if (tex->lod_info.sample_index == NULL) {
  1071.          ir_read_error(NULL, "when reading sample_index in (txf_ms ...)");
  1072.          return NULL;
  1073.       }
  1074.       break;
  1075.    case ir_txd: {
  1076.       s_expression *s_dx, *s_dy;
  1077.       s_pattern dxdy_pat[] = { s_dx, s_dy };
  1078.       if (!MATCH(s_lod, dxdy_pat)) {
  1079.          ir_read_error(s_lod, "expected (dPdx dPdy) in (txd ...)");
  1080.          return NULL;
  1081.       }
  1082.       tex->lod_info.grad.dPdx = read_rvalue(s_dx);
  1083.       if (tex->lod_info.grad.dPdx == NULL) {
  1084.          ir_read_error(NULL, "when reading dPdx in (txd ...)");
  1085.          return NULL;
  1086.       }
  1087.       tex->lod_info.grad.dPdy = read_rvalue(s_dy);
  1088.       if (tex->lod_info.grad.dPdy == NULL) {
  1089.          ir_read_error(NULL, "when reading dPdy in (txd ...)");
  1090.          return NULL;
  1091.       }
  1092.       break;
  1093.    }
  1094.    case ir_tg4:
  1095.       tex->lod_info.component = read_rvalue(s_component);
  1096.       if (tex->lod_info.component == NULL) {
  1097.          ir_read_error(NULL, "when reading component in (tg4 ...)");
  1098.          return NULL;
  1099.       }
  1100.       break;
  1101.    default:
  1102.       // tex and lod don't have any extra parameters.
  1103.       break;
  1104.    };
  1105.    return tex;
  1106. }
  1107.  
  1108. ir_emit_vertex *
  1109. ir_reader::read_emit_vertex(s_expression *expr)
  1110. {
  1111.    s_expression *s_stream = NULL;
  1112.  
  1113.    s_pattern pat[] = { "emit-vertex", s_stream };
  1114.  
  1115.    if (MATCH(expr, pat)) {
  1116.       ir_rvalue *stream = read_dereference(s_stream);
  1117.       if (stream == NULL) {
  1118.          ir_read_error(NULL, "when reading stream info in emit-vertex");
  1119.          return NULL;
  1120.       }
  1121.       return new(mem_ctx) ir_emit_vertex(stream);
  1122.    }
  1123.    ir_read_error(NULL, "when reading emit-vertex");
  1124.    return NULL;
  1125. }
  1126.  
  1127. ir_end_primitive *
  1128. ir_reader::read_end_primitive(s_expression *expr)
  1129. {
  1130.    s_expression *s_stream = NULL;
  1131.  
  1132.    s_pattern pat[] = { "end-primitive", s_stream };
  1133.  
  1134.    if (MATCH(expr, pat)) {
  1135.       ir_rvalue *stream = read_dereference(s_stream);
  1136.       if (stream == NULL) {
  1137.          ir_read_error(NULL, "when reading stream info in end-primitive");
  1138.          return NULL;
  1139.       }
  1140.       return new(mem_ctx) ir_end_primitive(stream);
  1141.    }
  1142.    ir_read_error(NULL, "when reading end-primitive");
  1143.    return NULL;
  1144. }
  1145.