Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
  3.  *                Joakim Sindholt <opensource@zhasha.com>
  4.  * Copyright 2009 Marek Olšák <maraeo@gmail.com>
  5.  *
  6.  * Permission is hereby granted, free of charge, to any person obtaining a
  7.  * copy of this software and associated documentation files (the "Software"),
  8.  * to deal in the Software without restriction, including without limitation
  9.  * on the rights to use, copy, modify, merge, publish, distribute, sub
  10.  * license, and/or sell copies of the Software, and to permit persons to whom
  11.  * the Software is furnished to do so, subject to the following conditions:
  12.  *
  13.  * The above copyright notice and this permission notice (including the next
  14.  * paragraph) shall be included in all copies or substantial portions of the
  15.  * Software.
  16.  *
  17.  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18.  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19.  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  20.  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
  21.  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  22.  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  23.  * USE OR OTHER DEALINGS IN THE SOFTWARE. */
  24.  
  25. #include "util/u_format.h"
  26. #include "util/u_math.h"
  27. #include "util/u_memory.h"
  28.  
  29. #include "tgsi/tgsi_dump.h"
  30. #include "tgsi/tgsi_ureg.h"
  31.  
  32. #include "r300_cb.h"
  33. #include "r300_context.h"
  34. #include "r300_emit.h"
  35. #include "r300_screen.h"
  36. #include "r300_fs.h"
  37. #include "r300_reg.h"
  38. #include "r300_texture.h"
  39. #include "r300_tgsi_to_rc.h"
  40.  
  41. #include "compiler/radeon_compiler.h"
  42.  
  43. /* Convert info about FS input semantics to r300_shader_semantics. */
  44. void r300_shader_read_fs_inputs(struct tgsi_shader_info* info,
  45.                                 struct r300_shader_semantics* fs_inputs)
  46. {
  47.     int i;
  48.     unsigned index;
  49.  
  50.     r300_shader_semantics_reset(fs_inputs);
  51.  
  52.     for (i = 0; i < info->num_inputs; i++) {
  53.         index = info->input_semantic_index[i];
  54.  
  55.         switch (info->input_semantic_name[i]) {
  56.             case TGSI_SEMANTIC_COLOR:
  57.                 assert(index < ATTR_COLOR_COUNT);
  58.                 fs_inputs->color[index] = i;
  59.                 break;
  60.  
  61.             case TGSI_SEMANTIC_GENERIC:
  62.                 assert(index < ATTR_GENERIC_COUNT);
  63.                 fs_inputs->generic[index] = i;
  64.                 break;
  65.  
  66.             case TGSI_SEMANTIC_FOG:
  67.                 assert(index == 0);
  68.                 fs_inputs->fog = i;
  69.                 break;
  70.  
  71.             case TGSI_SEMANTIC_POSITION:
  72.                 assert(index == 0);
  73.                 fs_inputs->wpos = i;
  74.                 break;
  75.  
  76.             case TGSI_SEMANTIC_FACE:
  77.                 assert(index == 0);
  78.                 fs_inputs->face = i;
  79.                 break;
  80.  
  81.             default:
  82.                 fprintf(stderr, "r300: FP: Unknown input semantic: %i\n",
  83.                         info->input_semantic_name[i]);
  84.         }
  85.     }
  86. }
  87.  
  88. static void find_output_registers(struct r300_fragment_program_compiler * compiler,
  89.                                   struct r300_fragment_shader_code *shader)
  90. {
  91.     unsigned i, colorbuf_count = 0;
  92.  
  93.     /* Mark the outputs as not present initially */
  94.     compiler->OutputColor[0] = shader->info.num_outputs;
  95.     compiler->OutputColor[1] = shader->info.num_outputs;
  96.     compiler->OutputColor[2] = shader->info.num_outputs;
  97.     compiler->OutputColor[3] = shader->info.num_outputs;
  98.     compiler->OutputDepth = shader->info.num_outputs;
  99.  
  100.     /* Now see where they really are. */
  101.     for(i = 0; i < shader->info.num_outputs; ++i) {
  102.         switch(shader->info.output_semantic_name[i]) {
  103.             case TGSI_SEMANTIC_COLOR:
  104.                 compiler->OutputColor[colorbuf_count] = i;
  105.                 colorbuf_count++;
  106.                 break;
  107.             case TGSI_SEMANTIC_POSITION:
  108.                 compiler->OutputDepth = i;
  109.                 break;
  110.         }
  111.     }
  112. }
  113.  
  114. static void allocate_hardware_inputs(
  115.     struct r300_fragment_program_compiler * c,
  116.     void (*allocate)(void * data, unsigned input, unsigned hwreg),
  117.     void * mydata)
  118. {
  119.     struct r300_shader_semantics* inputs =
  120.         (struct r300_shader_semantics*)c->UserData;
  121.     int i, reg = 0;
  122.  
  123.     /* Allocate input registers. */
  124.     for (i = 0; i < ATTR_COLOR_COUNT; i++) {
  125.         if (inputs->color[i] != ATTR_UNUSED) {
  126.             allocate(mydata, inputs->color[i], reg++);
  127.         }
  128.     }
  129.     if (inputs->face != ATTR_UNUSED) {
  130.         allocate(mydata, inputs->face, reg++);
  131.     }
  132.     for (i = 0; i < ATTR_GENERIC_COUNT; i++) {
  133.         if (inputs->generic[i] != ATTR_UNUSED) {
  134.             allocate(mydata, inputs->generic[i], reg++);
  135.         }
  136.     }
  137.     if (inputs->fog != ATTR_UNUSED) {
  138.         allocate(mydata, inputs->fog, reg++);
  139.     }
  140.     if (inputs->wpos != ATTR_UNUSED) {
  141.         allocate(mydata, inputs->wpos, reg++);
  142.     }
  143. }
  144.  
  145. static void get_external_state(
  146.     struct r300_context* r300,
  147.     struct r300_fragment_program_external_state* state)
  148. {
  149.     struct r300_textures_state *texstate = r300->textures_state.state;
  150.     unsigned i;
  151.  
  152.     state->alpha_to_one = r300->alpha_to_one && r300->msaa_enable;
  153.  
  154.     for (i = 0; i < texstate->sampler_state_count; i++) {
  155.         struct r300_sampler_state *s = texstate->sampler_states[i];
  156.         struct r300_sampler_view *v = texstate->sampler_views[i];
  157.         struct r300_resource *t;
  158.  
  159.         if (!s || !v) {
  160.             continue;
  161.         }
  162.  
  163.         t = r300_resource(v->base.texture);
  164.  
  165.         if (s->state.compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) {
  166.             state->unit[i].compare_mode_enabled = 1;
  167.  
  168.             /* Fortunately, no need to translate this. */
  169.             state->unit[i].texture_compare_func = s->state.compare_func;
  170.         }
  171.  
  172.         state->unit[i].non_normalized_coords = !s->state.normalized_coords;
  173.  
  174.         /* Pass texture swizzling to the compiler, some lowering passes need it. */
  175.         if (state->unit[i].compare_mode_enabled) {
  176.             state->unit[i].texture_swizzle =
  177.                 RC_MAKE_SWIZZLE(v->swizzle[0], v->swizzle[1],
  178.                                 v->swizzle[2], v->swizzle[3]);
  179.         }
  180.  
  181.         /* XXX this should probably take into account STR, not just S. */
  182.         if (t->tex.is_npot) {
  183.             switch (s->state.wrap_s) {
  184.             case PIPE_TEX_WRAP_REPEAT:
  185.                 state->unit[i].wrap_mode = RC_WRAP_REPEAT;
  186.                 break;
  187.  
  188.             case PIPE_TEX_WRAP_MIRROR_REPEAT:
  189.                 state->unit[i].wrap_mode = RC_WRAP_MIRRORED_REPEAT;
  190.                 break;
  191.  
  192.             case PIPE_TEX_WRAP_MIRROR_CLAMP:
  193.             case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
  194.             case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
  195.                 state->unit[i].wrap_mode = RC_WRAP_MIRRORED_CLAMP;
  196.                 break;
  197.  
  198.             default:
  199.                 state->unit[i].wrap_mode = RC_WRAP_NONE;
  200.             }
  201.  
  202.             if (t->b.b.target == PIPE_TEXTURE_3D)
  203.                 state->unit[i].clamp_and_scale_before_fetch = TRUE;
  204.         }
  205.     }
  206. }
  207.  
  208. static void r300_translate_fragment_shader(
  209.     struct r300_context* r300,
  210.     struct r300_fragment_shader_code* shader,
  211.     const struct tgsi_token *tokens);
  212.  
  213. static void r300_dummy_fragment_shader(
  214.     struct r300_context* r300,
  215.     struct r300_fragment_shader_code* shader)
  216. {
  217.     struct pipe_shader_state state;
  218.     struct ureg_program *ureg;
  219.     struct ureg_dst out;
  220.     struct ureg_src imm;
  221.  
  222.     /* Make a simple fragment shader which outputs (0, 0, 0, 1) */
  223.     ureg = ureg_create(TGSI_PROCESSOR_FRAGMENT);
  224.     out = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0);
  225.     imm = ureg_imm4f(ureg, 0, 0, 0, 1);
  226.  
  227.     ureg_MOV(ureg, out, imm);
  228.     ureg_END(ureg);
  229.  
  230.     state.tokens = ureg_finalize(ureg);
  231.  
  232.     shader->dummy = TRUE;
  233.     r300_translate_fragment_shader(r300, shader, state.tokens);
  234.  
  235.     ureg_destroy(ureg);
  236. }
  237.  
  238. static void r300_emit_fs_code_to_buffer(
  239.     struct r300_context *r300,
  240.     struct r300_fragment_shader_code *shader)
  241. {
  242.     struct rX00_fragment_program_code *generic_code = &shader->code;
  243.     unsigned imm_count = shader->immediates_count;
  244.     unsigned imm_first = shader->externals_count;
  245.     unsigned imm_end = generic_code->constants.Count;
  246.     struct rc_constant *constants = generic_code->constants.Constants;
  247.     unsigned i;
  248.     CB_LOCALS;
  249.  
  250.     if (r300->screen->caps.is_r500) {
  251.         struct r500_fragment_program_code *code = &generic_code->code.r500;
  252.  
  253.         shader->cb_code_size = 19 +
  254.                                ((code->inst_end + 1) * 6) +
  255.                                imm_count * 7 +
  256.                                code->int_constant_count * 2;
  257.  
  258.         NEW_CB(shader->cb_code, shader->cb_code_size);
  259.         OUT_CB_REG(R500_US_CONFIG, R500_ZERO_TIMES_ANYTHING_EQUALS_ZERO);
  260.         OUT_CB_REG(R500_US_PIXSIZE, code->max_temp_idx);
  261.         OUT_CB_REG(R500_US_FC_CTRL, code->us_fc_ctrl);
  262.         for(i = 0; i < code->int_constant_count; i++){
  263.                 OUT_CB_REG(R500_US_FC_INT_CONST_0 + (i * 4),
  264.                                                 code->int_constants[i]);
  265.         }
  266.         OUT_CB_REG(R500_US_CODE_RANGE,
  267.                    R500_US_CODE_RANGE_ADDR(0) | R500_US_CODE_RANGE_SIZE(code->inst_end));
  268.         OUT_CB_REG(R500_US_CODE_OFFSET, 0);
  269.         OUT_CB_REG(R500_US_CODE_ADDR,
  270.                    R500_US_CODE_START_ADDR(0) | R500_US_CODE_END_ADDR(code->inst_end));
  271.  
  272.         OUT_CB_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_INSTR);
  273.         OUT_CB_ONE_REG(R500_GA_US_VECTOR_DATA, (code->inst_end + 1) * 6);
  274.         for (i = 0; i <= code->inst_end; i++) {
  275.             OUT_CB(code->inst[i].inst0);
  276.             OUT_CB(code->inst[i].inst1);
  277.             OUT_CB(code->inst[i].inst2);
  278.             OUT_CB(code->inst[i].inst3);
  279.             OUT_CB(code->inst[i].inst4);
  280.             OUT_CB(code->inst[i].inst5);
  281.         }
  282.  
  283.         /* Emit immediates. */
  284.         if (imm_count) {
  285.             for(i = imm_first; i < imm_end; ++i) {
  286.                 if (constants[i].Type == RC_CONSTANT_IMMEDIATE) {
  287.                     const float *data = constants[i].u.Immediate;
  288.  
  289.                     OUT_CB_REG(R500_GA_US_VECTOR_INDEX,
  290.                                R500_GA_US_VECTOR_INDEX_TYPE_CONST |
  291.                                (i & R500_GA_US_VECTOR_INDEX_MASK));
  292.                     OUT_CB_ONE_REG(R500_GA_US_VECTOR_DATA, 4);
  293.                     OUT_CB_TABLE(data, 4);
  294.                 }
  295.             }
  296.         }
  297.     } else { /* r300 */
  298.         struct r300_fragment_program_code *code = &generic_code->code.r300;
  299.         unsigned int alu_length = code->alu.length;
  300.         unsigned int alu_iterations = ((alu_length - 1) / 64) + 1;
  301.         unsigned int tex_length = code->tex.length;
  302.         unsigned int tex_iterations =
  303.             tex_length > 0 ? ((tex_length - 1) / 32) + 1 : 0;
  304.         unsigned int iterations =
  305.             alu_iterations > tex_iterations ? alu_iterations : tex_iterations;
  306.         unsigned int bank = 0;
  307.  
  308.         shader->cb_code_size = 15 +
  309.             /* R400_US_CODE_BANK */
  310.             (r300->screen->caps.is_r400 ? 2 * (iterations + 1): 0) +
  311.             /* R400_US_CODE_EXT */
  312.             (r300->screen->caps.is_r400 ? 2 : 0) +
  313.             /* R300_US_ALU_{RGB,ALPHA}_{INST,ADDR}_0, R400_US_ALU_EXT_ADDR_0 */
  314.             (code->r390_mode ? (5 * alu_iterations) : 4) +
  315.             /* R400_US_ALU_EXT_ADDR_[0-63] */
  316.             (code->r390_mode ? (code->alu.length) : 0) +
  317.             /* R300_US_ALU_{RGB,ALPHA}_{INST,ADDR}_0 */
  318.             code->alu.length * 4 +
  319.             /* R300_US_TEX_INST_0, R300_US_TEX_INST_[0-31] */
  320.             (code->tex.length > 0 ? code->tex.length + tex_iterations : 0) +
  321.             imm_count * 5;
  322.  
  323.         NEW_CB(shader->cb_code, shader->cb_code_size);
  324.  
  325.         OUT_CB_REG(R300_US_CONFIG, code->config);
  326.         OUT_CB_REG(R300_US_PIXSIZE, code->pixsize);
  327.         OUT_CB_REG(R300_US_CODE_OFFSET, code->code_offset);
  328.  
  329.         if (code->r390_mode) {
  330.             OUT_CB_REG(R400_US_CODE_EXT, code->r400_code_offset_ext);
  331.         } else if (r300->screen->caps.is_r400) {
  332.             /* This register appears to affect shaders even if r390_mode is
  333.              * disabled, so it needs to be set to 0 for shaders that
  334.              * don't use r390_mode. */
  335.             OUT_CB_REG(R400_US_CODE_EXT, 0);
  336.         }
  337.  
  338.         OUT_CB_REG_SEQ(R300_US_CODE_ADDR_0, 4);
  339.         OUT_CB_TABLE(code->code_addr, 4);
  340.  
  341.         do {
  342.             unsigned int bank_alu_length = (alu_length < 64 ? alu_length : 64);
  343.             unsigned int bank_alu_offset = bank * 64;
  344.             unsigned int bank_tex_length = (tex_length < 32 ? tex_length : 32);
  345.             unsigned int bank_tex_offset = bank * 32;
  346.  
  347.             if (r300->screen->caps.is_r400) {
  348.                 OUT_CB_REG(R400_US_CODE_BANK, code->r390_mode ?
  349.                                 (bank << R400_BANK_SHIFT) | R400_R390_MODE_ENABLE : 0);//2
  350.             }
  351.  
  352.             if (bank_alu_length > 0) {
  353.                 OUT_CB_REG_SEQ(R300_US_ALU_RGB_INST_0, bank_alu_length);
  354.                 for (i = 0; i < bank_alu_length; i++)
  355.                     OUT_CB(code->alu.inst[i + bank_alu_offset].rgb_inst);
  356.  
  357.                 OUT_CB_REG_SEQ(R300_US_ALU_RGB_ADDR_0, bank_alu_length);
  358.                 for (i = 0; i < bank_alu_length; i++)
  359.                     OUT_CB(code->alu.inst[i + bank_alu_offset].rgb_addr);
  360.  
  361.                 OUT_CB_REG_SEQ(R300_US_ALU_ALPHA_INST_0, bank_alu_length);
  362.                 for (i = 0; i < bank_alu_length; i++)
  363.                     OUT_CB(code->alu.inst[i + bank_alu_offset].alpha_inst);
  364.  
  365.                 OUT_CB_REG_SEQ(R300_US_ALU_ALPHA_ADDR_0, bank_alu_length);
  366.                 for (i = 0; i < bank_alu_length; i++)
  367.                     OUT_CB(code->alu.inst[i + bank_alu_offset].alpha_addr);
  368.  
  369.                 if (code->r390_mode) {
  370.                     OUT_CB_REG_SEQ(R400_US_ALU_EXT_ADDR_0, bank_alu_length);
  371.                     for (i = 0; i < bank_alu_length; i++)
  372.                         OUT_CB(code->alu.inst[i + bank_alu_offset].r400_ext_addr);
  373.                 }
  374.             }
  375.  
  376.             if (bank_tex_length > 0) {
  377.                 OUT_CB_REG_SEQ(R300_US_TEX_INST_0, bank_tex_length);
  378.                 OUT_CB_TABLE(code->tex.inst + bank_tex_offset, bank_tex_length);
  379.             }
  380.  
  381.             alu_length -= bank_alu_length;
  382.             tex_length -= bank_tex_length;
  383.             bank++;
  384.         } while(code->r390_mode && (alu_length > 0 || tex_length > 0));
  385.  
  386.         /* R400_US_CODE_BANK needs to be reset to 0, otherwise some shaders
  387.          * will be rendered incorrectly. */
  388.         if (r300->screen->caps.is_r400) {
  389.             OUT_CB_REG(R400_US_CODE_BANK,
  390.                 code->r390_mode ? R400_R390_MODE_ENABLE : 0);
  391.         }
  392.  
  393.         /* Emit immediates. */
  394.         if (imm_count) {
  395.             for(i = imm_first; i < imm_end; ++i) {
  396.                 if (constants[i].Type == RC_CONSTANT_IMMEDIATE) {
  397.                     const float *data = constants[i].u.Immediate;
  398.  
  399.                     OUT_CB_REG_SEQ(R300_PFS_PARAM_0_X + i * 16, 4);
  400.                     OUT_CB(pack_float24(data[0]));
  401.                     OUT_CB(pack_float24(data[1]));
  402.                     OUT_CB(pack_float24(data[2]));
  403.                     OUT_CB(pack_float24(data[3]));
  404.                 }
  405.             }
  406.         }
  407.     }
  408.  
  409.     OUT_CB_REG(R300_FG_DEPTH_SRC, shader->fg_depth_src);
  410.     OUT_CB_REG(R300_US_W_FMT, shader->us_out_w);
  411.     END_CB;
  412. }
  413.  
  414. static void r300_translate_fragment_shader(
  415.     struct r300_context* r300,
  416.     struct r300_fragment_shader_code* shader,
  417.     const struct tgsi_token *tokens)
  418. {
  419.     struct r300_fragment_program_compiler compiler;
  420.     struct tgsi_to_rc ttr;
  421.     int wpos, face;
  422.     unsigned i;
  423.  
  424.     tgsi_scan_shader(tokens, &shader->info);
  425.     r300_shader_read_fs_inputs(&shader->info, &shader->inputs);
  426.  
  427.     wpos = shader->inputs.wpos;
  428.     face = shader->inputs.face;
  429.  
  430.     /* Setup the compiler. */
  431.     memset(&compiler, 0, sizeof(compiler));
  432.     rc_init(&compiler.Base, &r300->fs_regalloc_state);
  433.     DBG_ON(r300, DBG_FP) ? compiler.Base.Debug |= RC_DBG_LOG : 0;
  434.     DBG_ON(r300, DBG_P_STAT) ? compiler.Base.Debug |= RC_DBG_STATS : 0;
  435.  
  436.     compiler.code = &shader->code;
  437.     compiler.state = shader->compare_state;
  438.     compiler.Base.is_r500 = r300->screen->caps.is_r500;
  439.     compiler.Base.is_r400 = r300->screen->caps.is_r400;
  440.     compiler.Base.disable_optimizations = DBG_ON(r300, DBG_NO_OPT);
  441.     compiler.Base.has_half_swizzles = TRUE;
  442.     compiler.Base.has_presub = TRUE;
  443.     compiler.Base.has_omod = TRUE;
  444.     compiler.Base.max_temp_regs =
  445.         compiler.Base.is_r500 ? 128 : (compiler.Base.is_r400 ? 64 : 32);
  446.     compiler.Base.max_constants = compiler.Base.is_r500 ? 256 : 32;
  447.     compiler.Base.max_alu_insts =
  448.         (compiler.Base.is_r500 || compiler.Base.is_r400) ? 512 : 64;
  449.     compiler.Base.max_tex_insts =
  450.         (compiler.Base.is_r500 || compiler.Base.is_r400) ? 512 : 32;
  451.     compiler.AllocateHwInputs = &allocate_hardware_inputs;
  452.     compiler.UserData = &shader->inputs;
  453.  
  454.     find_output_registers(&compiler, shader);
  455.  
  456.     shader->write_all =
  457.           shader->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS];
  458.  
  459.     if (compiler.Base.Debug & RC_DBG_LOG) {
  460.         DBG(r300, DBG_FP, "r300: Initial fragment program\n");
  461.         tgsi_dump(tokens, 0);
  462.     }
  463.  
  464.     /* Translate TGSI to our internal representation */
  465.     ttr.compiler = &compiler.Base;
  466.     ttr.info = &shader->info;
  467.     ttr.use_half_swizzles = TRUE;
  468.  
  469.     r300_tgsi_to_rc(&ttr, tokens);
  470.  
  471.     if (ttr.error) {
  472.         fprintf(stderr, "r300 FP: Cannot translate a shader. "
  473.                 "Using a dummy shader instead.\n");
  474.         r300_dummy_fragment_shader(r300, shader);
  475.         return;
  476.     }
  477.  
  478.     if (!r300->screen->caps.is_r500 ||
  479.         compiler.Base.Program.Constants.Count > 200) {
  480.         compiler.Base.remove_unused_constants = TRUE;
  481.     }
  482.  
  483.     /**
  484.      * Transform the program to support WPOS.
  485.      *
  486.      * Introduce a small fragment at the start of the program that will be
  487.      * the only code that directly reads the WPOS input.
  488.      * All other code pieces that reference that input will be rewritten
  489.      * to read from a newly allocated temporary. */
  490.     if (wpos != ATTR_UNUSED) {
  491.         /* Moving the input to some other reg is not really necessary. */
  492.         rc_transform_fragment_wpos(&compiler.Base, wpos, wpos, TRUE);
  493.     }
  494.  
  495.     if (face != ATTR_UNUSED) {
  496.         rc_transform_fragment_face(&compiler.Base, face);
  497.     }
  498.  
  499.     /* Invoke the compiler */
  500.     r3xx_compile_fragment_program(&compiler);
  501.  
  502.     if (compiler.Base.Error) {
  503.         fprintf(stderr, "r300 FP: Compiler Error:\n%sUsing a dummy shader"
  504.                 " instead.\n", compiler.Base.ErrorMsg);
  505.  
  506.         if (shader->dummy) {
  507.             fprintf(stderr, "r300 FP: Cannot compile the dummy shader! "
  508.                     "Giving up...\n");
  509.             abort();
  510.         }
  511.  
  512.         rc_destroy(&compiler.Base);
  513.         r300_dummy_fragment_shader(r300, shader);
  514.         return;
  515.     }
  516.  
  517.     /* Shaders with zero instructions are invalid,
  518.      * use the dummy shader instead. */
  519.     if (shader->code.code.r500.inst_end == -1) {
  520.         rc_destroy(&compiler.Base);
  521.         r300_dummy_fragment_shader(r300, shader);
  522.         return;
  523.     }
  524.  
  525.     /* Initialize numbers of constants for each type. */
  526.     shader->externals_count = 0;
  527.     for (i = 0;
  528.          i < shader->code.constants.Count &&
  529.          shader->code.constants.Constants[i].Type == RC_CONSTANT_EXTERNAL; i++) {
  530.         shader->externals_count = i+1;
  531.     }
  532.     shader->immediates_count = 0;
  533.     shader->rc_state_count = 0;
  534.  
  535.     for (i = shader->externals_count; i < shader->code.constants.Count; i++) {
  536.         switch (shader->code.constants.Constants[i].Type) {
  537.             case RC_CONSTANT_IMMEDIATE:
  538.                 ++shader->immediates_count;
  539.                 break;
  540.             case RC_CONSTANT_STATE:
  541.                 ++shader->rc_state_count;
  542.                 break;
  543.             default:
  544.                 assert(0);
  545.         }
  546.     }
  547.  
  548.     /* Setup shader depth output. */
  549.     if (shader->code.writes_depth) {
  550.         shader->fg_depth_src = R300_FG_DEPTH_SRC_SHADER;
  551.         shader->us_out_w = R300_W_FMT_W24 | R300_W_SRC_US;
  552.     } else {
  553.         shader->fg_depth_src = R300_FG_DEPTH_SRC_SCAN;
  554.         shader->us_out_w = R300_W_FMT_W0 | R300_W_SRC_US;
  555.     }
  556.  
  557.     /* And, finally... */
  558.     rc_destroy(&compiler.Base);
  559.  
  560.     /* Build the command buffer. */
  561.     r300_emit_fs_code_to_buffer(r300, shader);
  562. }
  563.  
  564. boolean r300_pick_fragment_shader(struct r300_context* r300)
  565. {
  566.     struct r300_fragment_shader* fs = r300_fs(r300);
  567.     struct r300_fragment_program_external_state state;
  568.     struct r300_fragment_shader_code* ptr;
  569.  
  570.     memset(&state, 0, sizeof(state));
  571.     get_external_state(r300, &state);
  572.  
  573.     if (!fs->first) {
  574.         /* Build the fragment shader for the first time. */
  575.         fs->first = fs->shader = CALLOC_STRUCT(r300_fragment_shader_code);
  576.  
  577.         memcpy(&fs->shader->compare_state, &state,
  578.             sizeof(struct r300_fragment_program_external_state));
  579.         r300_translate_fragment_shader(r300, fs->shader, fs->state.tokens);
  580.         return TRUE;
  581.  
  582.     } else {
  583.         /* Check if the currently-bound shader has been compiled
  584.          * with the texture-compare state we need. */
  585.         if (memcmp(&fs->shader->compare_state, &state, sizeof(state)) != 0) {
  586.             /* Search for the right shader. */
  587.             ptr = fs->first;
  588.             while (ptr) {
  589.                 if (memcmp(&ptr->compare_state, &state, sizeof(state)) == 0) {
  590.                     if (fs->shader != ptr) {
  591.                         fs->shader = ptr;
  592.                         return TRUE;
  593.                     }
  594.                     /* The currently-bound one is OK. */
  595.                     return FALSE;
  596.                 }
  597.                 ptr = ptr->next;
  598.             }
  599.  
  600.             /* Not found, gotta compile a new one. */
  601.             ptr = CALLOC_STRUCT(r300_fragment_shader_code);
  602.             ptr->next = fs->first;
  603.             fs->first = fs->shader = ptr;
  604.  
  605.             ptr->compare_state = state;
  606.             r300_translate_fragment_shader(r300, ptr, fs->state.tokens);
  607.             return TRUE;
  608.         }
  609.     }
  610.  
  611.     return FALSE;
  612. }
  613.