Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2. ** $Id: ltable.c,v 2.67 2011/11/30 12:41:45 roberto Exp $
  3. ** Lua tables (hash)
  4. ** See Copyright Notice in lua.h
  5. */
  6.  
  7.  
  8. /*
  9. ** Implementation of tables (aka arrays, objects, or hash tables).
  10. ** Tables keep its elements in two parts: an array part and a hash part.
  11. ** Non-negative integer keys are all candidates to be kept in the array
  12. ** part. The actual size of the array is the largest `n' such that at
  13. ** least half the slots between 0 and n are in use.
  14. ** Hash uses a mix of chained scatter table with Brent's variation.
  15. ** A main invariant of these tables is that, if an element is not
  16. ** in its main position (i.e. the `original' position that its hash gives
  17. ** to it), then the colliding element is in its own main position.
  18. ** Hence even when the load factor reaches 100%, performance remains good.
  19. */
  20.  
  21. #include <string.h>
  22.  
  23. #define ltable_c
  24. #define LUA_CORE
  25.  
  26. #include "lua.h"
  27.  
  28. #include "ldebug.h"
  29. #include "ldo.h"
  30. #include "lgc.h"
  31. #include "lmem.h"
  32. #include "lobject.h"
  33. #include "lstate.h"
  34. #include "lstring.h"
  35. #include "ltable.h"
  36. #include "lvm.h"
  37.  
  38.  
  39. /*
  40. ** max size of array part is 2^MAXBITS
  41. */
  42. #if LUAI_BITSINT >= 32
  43. #define MAXBITS         30
  44. #else
  45. #define MAXBITS         (LUAI_BITSINT-2)
  46. #endif
  47.  
  48. #define MAXASIZE        (1 << MAXBITS)
  49.  
  50.  
  51. #define hashpow2(t,n)      (gnode(t, lmod((n), sizenode(t))))
  52.  
  53. #define hashstr(t,str)  hashpow2(t, (str)->tsv.hash)
  54. #define hashboolean(t,p)        hashpow2(t, p)
  55.  
  56.  
  57. /*
  58. ** for some types, it is better to avoid modulus by power of 2, as
  59. ** they tend to have many 2 factors.
  60. */
  61. #define hashmod(t,n)    (gnode(t, ((n) % ((sizenode(t)-1)|1))))
  62.  
  63.  
  64. #define hashpointer(t,p)        hashmod(t, IntPoint(p))
  65.  
  66.  
  67. #define dummynode               (&dummynode_)
  68.  
  69. #define isdummy(n)              ((n) == dummynode)
  70.  
  71. static const Node dummynode_ = {
  72.   {NILCONSTANT},  /* value */
  73.   {{NILCONSTANT, NULL}}  /* key */
  74. };
  75.  
  76.  
  77. /*
  78. ** hash for lua_Numbers
  79. */
  80. static Node *hashnum (const Table *t, lua_Number n) {
  81.   int i;
  82.   luai_hashnum(i, n);
  83.   if (i < 0) {
  84.     if (cast(unsigned int, i) == 0u - i)  /* use unsigned to avoid overflows */
  85.       i = 0;  /* handle INT_MIN */
  86.     i = -i;  /* must be a positive value */
  87.   }
  88.   return hashmod(t, i);
  89. }
  90.  
  91.  
  92.  
  93. /*
  94. ** returns the `main' position of an element in a table (that is, the index
  95. ** of its hash value)
  96. */
  97. static Node *mainposition (const Table *t, const TValue *key) {
  98.   switch (ttype(key)) {
  99.     case LUA_TNUMBER:
  100.       return hashnum(t, nvalue(key));
  101.     case LUA_TSTRING:
  102.       return hashstr(t, rawtsvalue(key));
  103.     case LUA_TBOOLEAN:
  104.       return hashboolean(t, bvalue(key));
  105.     case LUA_TLIGHTUSERDATA:
  106.       return hashpointer(t, pvalue(key));
  107.     case LUA_TLCF:
  108.       return hashpointer(t, fvalue(key));
  109.     default:
  110.       return hashpointer(t, gcvalue(key));
  111.   }
  112. }
  113.  
  114.  
  115. /*
  116. ** returns the index for `key' if `key' is an appropriate key to live in
  117. ** the array part of the table, -1 otherwise.
  118. */
  119. static int arrayindex (const TValue *key) {
  120.   if (ttisnumber(key)) {
  121.     lua_Number n = nvalue(key);
  122.     int k;
  123.     lua_number2int(k, n);
  124.     if (luai_numeq(cast_num(k), n))
  125.       return k;
  126.   }
  127.   return -1;  /* `key' did not match some condition */
  128. }
  129.  
  130.  
  131. /*
  132. ** returns the index of a `key' for table traversals. First goes all
  133. ** elements in the array part, then elements in the hash part. The
  134. ** beginning of a traversal is signaled by -1.
  135. */
  136. static int findindex (lua_State *L, Table *t, StkId key) {
  137.   int i;
  138.   if (ttisnil(key)) return -1;  /* first iteration */
  139.   i = arrayindex(key);
  140.   if (0 < i && i <= t->sizearray)  /* is `key' inside array part? */
  141.     return i-1;  /* yes; that's the index (corrected to C) */
  142.   else {
  143.     Node *n = mainposition(t, key);
  144.     for (;;) {  /* check whether `key' is somewhere in the chain */
  145.       /* key may be dead already, but it is ok to use it in `next' */
  146.       if (luaV_rawequalobj(gkey(n), key) ||
  147.             (ttisdeadkey(gkey(n)) && iscollectable(key) &&
  148.              deadvalue(gkey(n)) == gcvalue(key))) {
  149.         i = cast_int(n - gnode(t, 0));  /* key index in hash table */
  150.         /* hash elements are numbered after array ones */
  151.         return i + t->sizearray;
  152.       }
  153.       else n = gnext(n);
  154.       if (n == NULL)
  155.         luaG_runerror(L, "invalid key to " LUA_QL("next"));  /* key not found */
  156.     }
  157.   }
  158. }
  159.  
  160.  
  161. int luaH_next (lua_State *L, Table *t, StkId key) {
  162.   int i = findindex(L, t, key);  /* find original element */
  163.   for (i++; i < t->sizearray; i++) {  /* try first array part */
  164.     if (!ttisnil(&t->array[i])) {  /* a non-nil value? */
  165.       setnvalue(key, cast_num(i+1));
  166.       setobj2s(L, key+1, &t->array[i]);
  167.       return 1;
  168.     }
  169.   }
  170.   for (i -= t->sizearray; i < sizenode(t); i++) {  /* then hash part */
  171.     if (!ttisnil(gval(gnode(t, i)))) {  /* a non-nil value? */
  172.       setobj2s(L, key, gkey(gnode(t, i)));
  173.       setobj2s(L, key+1, gval(gnode(t, i)));
  174.       return 1;
  175.     }
  176.   }
  177.   return 0;  /* no more elements */
  178. }
  179.  
  180.  
  181. /*
  182. ** {=============================================================
  183. ** Rehash
  184. ** ==============================================================
  185. */
  186.  
  187.  
  188. static int computesizes (int nums[], int *narray) {
  189.   int i;
  190.   int twotoi;  /* 2^i */
  191.   int a = 0;  /* number of elements smaller than 2^i */
  192.   int na = 0;  /* number of elements to go to array part */
  193.   int n = 0;  /* optimal size for array part */
  194.   for (i = 0, twotoi = 1; twotoi/2 < *narray; i++, twotoi *= 2) {
  195.     if (nums[i] > 0) {
  196.       a += nums[i];
  197.       if (a > twotoi/2) {  /* more than half elements present? */
  198.         n = twotoi;  /* optimal size (till now) */
  199.         na = a;  /* all elements smaller than n will go to array part */
  200.       }
  201.     }
  202.     if (a == *narray) break;  /* all elements already counted */
  203.   }
  204.   *narray = n;
  205.   lua_assert(*narray/2 <= na && na <= *narray);
  206.   return na;
  207. }
  208.  
  209.  
  210. static int countint (const TValue *key, int *nums) {
  211.   int k = arrayindex(key);
  212.   if (0 < k && k <= MAXASIZE) {  /* is `key' an appropriate array index? */
  213.     nums[luaO_ceillog2(k)]++;  /* count as such */
  214.     return 1;
  215.   }
  216.   else
  217.     return 0;
  218. }
  219.  
  220.  
  221. static int numusearray (const Table *t, int *nums) {
  222.   int lg;
  223.   int ttlg;  /* 2^lg */
  224.   int ause = 0;  /* summation of `nums' */
  225.   int i = 1;  /* count to traverse all array keys */
  226.   for (lg=0, ttlg=1; lg<=MAXBITS; lg++, ttlg*=2) {  /* for each slice */
  227.     int lc = 0;  /* counter */
  228.     int lim = ttlg;
  229.     if (lim > t->sizearray) {
  230.       lim = t->sizearray;  /* adjust upper limit */
  231.       if (i > lim)
  232.         break;  /* no more elements to count */
  233.     }
  234.     /* count elements in range (2^(lg-1), 2^lg] */
  235.     for (; i <= lim; i++) {
  236.       if (!ttisnil(&t->array[i-1]))
  237.         lc++;
  238.     }
  239.     nums[lg] += lc;
  240.     ause += lc;
  241.   }
  242.   return ause;
  243. }
  244.  
  245.  
  246. static int numusehash (const Table *t, int *nums, int *pnasize) {
  247.   int totaluse = 0;  /* total number of elements */
  248.   int ause = 0;  /* summation of `nums' */
  249.   int i = sizenode(t);
  250.   while (i--) {
  251.     Node *n = &t->node[i];
  252.     if (!ttisnil(gval(n))) {
  253.       ause += countint(gkey(n), nums);
  254.       totaluse++;
  255.     }
  256.   }
  257.   *pnasize += ause;
  258.   return totaluse;
  259. }
  260.  
  261.  
  262. static void setarrayvector (lua_State *L, Table *t, int size) {
  263.   int i;
  264.   luaM_reallocvector(L, t->array, t->sizearray, size, TValue);
  265.   for (i=t->sizearray; i<size; i++)
  266.      setnilvalue(&t->array[i]);
  267.   t->sizearray = size;
  268. }
  269.  
  270.  
  271. static void setnodevector (lua_State *L, Table *t, int size) {
  272.   int lsize;
  273.   if (size == 0) {  /* no elements to hash part? */
  274.     t->node = cast(Node *, dummynode);  /* use common `dummynode' */
  275.     lsize = 0;
  276.   }
  277.   else {
  278.     int i;
  279.     lsize = luaO_ceillog2(size);
  280.     if (lsize > MAXBITS)
  281.       luaG_runerror(L, "table overflow");
  282.     size = twoto(lsize);
  283.     t->node = luaM_newvector(L, size, Node);
  284.     for (i=0; i<size; i++) {
  285.       Node *n = gnode(t, i);
  286.       gnext(n) = NULL;
  287.       setnilvalue(gkey(n));
  288.       setnilvalue(gval(n));
  289.     }
  290.   }
  291.   t->lsizenode = cast_byte(lsize);
  292.   t->lastfree = gnode(t, size);  /* all positions are free */
  293. }
  294.  
  295.  
  296. void luaH_resize (lua_State *L, Table *t, int nasize, int nhsize) {
  297.   int i;
  298.   int oldasize = t->sizearray;
  299.   int oldhsize = t->lsizenode;
  300.   Node *nold = t->node;  /* save old hash ... */
  301.   if (nasize > oldasize)  /* array part must grow? */
  302.     setarrayvector(L, t, nasize);
  303.   /* create new hash part with appropriate size */
  304.   setnodevector(L, t, nhsize);
  305.   if (nasize < oldasize) {  /* array part must shrink? */
  306.     t->sizearray = nasize;
  307.     /* re-insert elements from vanishing slice */
  308.     for (i=nasize; i<oldasize; i++) {
  309.       if (!ttisnil(&t->array[i]))
  310.         luaH_setint(L, t, i + 1, &t->array[i]);
  311.     }
  312.     /* shrink array */
  313.     luaM_reallocvector(L, t->array, oldasize, nasize, TValue);
  314.   }
  315.   /* re-insert elements from hash part */
  316.   for (i = twoto(oldhsize) - 1; i >= 0; i--) {
  317.     Node *old = nold+i;
  318.     if (!ttisnil(gval(old))) {
  319.       /* doesn't need barrier/invalidate cache, as entry was
  320.          already present in the table */
  321.       setobjt2t(L, luaH_set(L, t, gkey(old)), gval(old));
  322.     }
  323.   }
  324.   if (!isdummy(nold))
  325.     luaM_freearray(L, nold, cast(size_t, twoto(oldhsize))); /* free old array */
  326. }
  327.  
  328.  
  329. void luaH_resizearray (lua_State *L, Table *t, int nasize) {
  330.   int nsize = isdummy(t->node) ? 0 : sizenode(t);
  331.   luaH_resize(L, t, nasize, nsize);
  332. }
  333.  
  334.  
  335. static void rehash (lua_State *L, Table *t, const TValue *ek) {
  336.   int nasize, na;
  337.   int nums[MAXBITS+1];  /* nums[i] = number of keys with 2^(i-1) < k <= 2^i */
  338.   int i;
  339.   int totaluse;
  340.   for (i=0; i<=MAXBITS; i++) nums[i] = 0;  /* reset counts */
  341.   nasize = numusearray(t, nums);  /* count keys in array part */
  342.   totaluse = nasize;  /* all those keys are integer keys */
  343.   totaluse += numusehash(t, nums, &nasize);  /* count keys in hash part */
  344.   /* count extra key */
  345.   nasize += countint(ek, nums);
  346.   totaluse++;
  347.   /* compute new size for array part */
  348.   na = computesizes(nums, &nasize);
  349.   /* resize the table to new computed sizes */
  350.   luaH_resize(L, t, nasize, totaluse - na);
  351. }
  352.  
  353.  
  354.  
  355. /*
  356. ** }=============================================================
  357. */
  358.  
  359.  
  360. Table *luaH_new (lua_State *L) {
  361.   Table *t = &luaC_newobj(L, LUA_TTABLE, sizeof(Table), NULL, 0)->h;
  362.   t->metatable = NULL;
  363.   t->flags = cast_byte(~0);
  364.   t->array = NULL;
  365.   t->sizearray = 0;
  366.   setnodevector(L, t, 0);
  367.   return t;
  368. }
  369.  
  370.  
  371. void luaH_free (lua_State *L, Table *t) {
  372.   if (!isdummy(t->node))
  373.     luaM_freearray(L, t->node, cast(size_t, sizenode(t)));
  374.   luaM_freearray(L, t->array, t->sizearray);
  375.   luaM_free(L, t);
  376. }
  377.  
  378.  
  379. static Node *getfreepos (Table *t) {
  380.   while (t->lastfree > t->node) {
  381.     t->lastfree--;
  382.     if (ttisnil(gkey(t->lastfree)))
  383.       return t->lastfree;
  384.   }
  385.   return NULL;  /* could not find a free place */
  386. }
  387.  
  388.  
  389.  
  390. /*
  391. ** inserts a new key into a hash table; first, check whether key's main
  392. ** position is free. If not, check whether colliding node is in its main
  393. ** position or not: if it is not, move colliding node to an empty place and
  394. ** put new key in its main position; otherwise (colliding node is in its main
  395. ** position), new key goes to an empty position.
  396. */
  397. TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) {
  398.   Node *mp;
  399.   if (ttisnil(key)) luaG_runerror(L, "table index is nil");
  400.   else if (ttisnumber(key) && luai_numisnan(L, nvalue(key)))
  401.     luaG_runerror(L, "table index is NaN");
  402.   mp = mainposition(t, key);
  403.   if (!ttisnil(gval(mp)) || isdummy(mp)) {  /* main position is taken? */
  404.     Node *othern;
  405.     Node *n = getfreepos(t);  /* get a free place */
  406.     if (n == NULL) {  /* cannot find a free place? */
  407.       rehash(L, t, key);  /* grow table */
  408.       /* whatever called 'newkey' take care of TM cache and GC barrier */
  409.       return luaH_set(L, t, key);  /* insert key into grown table */
  410.     }
  411.     lua_assert(!isdummy(n));
  412.     othern = mainposition(t, gkey(mp));
  413.     if (othern != mp) {  /* is colliding node out of its main position? */
  414.       /* yes; move colliding node into free position */
  415.       while (gnext(othern) != mp) othern = gnext(othern);  /* find previous */
  416.       gnext(othern) = n;  /* redo the chain with `n' in place of `mp' */
  417.       *n = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
  418.       gnext(mp) = NULL;  /* now `mp' is free */
  419.       setnilvalue(gval(mp));
  420.     }
  421.     else {  /* colliding node is in its own main position */
  422.       /* new node will go into free position */
  423.       gnext(n) = gnext(mp);  /* chain new position */
  424.       gnext(mp) = n;
  425.       mp = n;
  426.     }
  427.   }
  428.   setobj2t(L, gkey(mp), key);
  429.   luaC_barrierback(L, obj2gco(t), key);
  430.   lua_assert(ttisnil(gval(mp)));
  431.   return gval(mp);
  432. }
  433.  
  434.  
  435. /*
  436. ** search function for integers
  437. */
  438. const TValue *luaH_getint (Table *t, int key) {
  439.   /* (1 <= key && key <= t->sizearray) */
  440.   if (cast(unsigned int, key-1) < cast(unsigned int, t->sizearray))
  441.     return &t->array[key-1];
  442.   else {
  443.     lua_Number nk = cast_num(key);
  444.     Node *n = hashnum(t, nk);
  445.     do {  /* check whether `key' is somewhere in the chain */
  446.       if (ttisnumber(gkey(n)) && luai_numeq(nvalue(gkey(n)), nk))
  447.         return gval(n);  /* that's it */
  448.       else n = gnext(n);
  449.     } while (n);
  450.     return luaO_nilobject;
  451.   }
  452. }
  453.  
  454.  
  455. /*
  456. ** search function for strings
  457. */
  458. const TValue *luaH_getstr (Table *t, TString *key) {
  459.   Node *n = hashstr(t, key);
  460.   do {  /* check whether `key' is somewhere in the chain */
  461.     if (ttisstring(gkey(n)) && eqstr(rawtsvalue(gkey(n)), key))
  462.       return gval(n);  /* that's it */
  463.     else n = gnext(n);
  464.   } while (n);
  465.   return luaO_nilobject;
  466. }
  467.  
  468.  
  469. /*
  470. ** main search function
  471. */
  472. const TValue *luaH_get (Table *t, const TValue *key) {
  473.   switch (ttypenv(key)) {
  474.     case LUA_TNIL: return luaO_nilobject;
  475.     case LUA_TSTRING: return luaH_getstr(t, rawtsvalue(key));
  476.     case LUA_TNUMBER: {
  477.       int k;
  478.       lua_Number n = nvalue(key);
  479.       lua_number2int(k, n);
  480.       if (luai_numeq(cast_num(k), nvalue(key))) /* index is int? */
  481.         return luaH_getint(t, k);  /* use specialized version */
  482.       /* else go through */
  483.     }
  484.     default: {
  485.       Node *n = mainposition(t, key);
  486.       do {  /* check whether `key' is somewhere in the chain */
  487.         if (luaV_rawequalobj(gkey(n), key))
  488.           return gval(n);  /* that's it */
  489.         else n = gnext(n);
  490.       } while (n);
  491.       return luaO_nilobject;
  492.     }
  493.   }
  494. }
  495.  
  496.  
  497. /*
  498. ** beware: when using this function you probably need to check a GC
  499. ** barrier and invalidate the TM cache.
  500. */
  501. TValue *luaH_set (lua_State *L, Table *t, const TValue *key) {
  502.   const TValue *p = luaH_get(t, key);
  503.   if (p != luaO_nilobject)
  504.     return cast(TValue *, p);
  505.   else return luaH_newkey(L, t, key);
  506. }
  507.  
  508.  
  509. void luaH_setint (lua_State *L, Table *t, int key, TValue *value) {
  510.   const TValue *p = luaH_getint(t, key);
  511.   TValue *cell;
  512.   if (p != luaO_nilobject)
  513.     cell = cast(TValue *, p);
  514.   else {
  515.     TValue k;
  516.     setnvalue(&k, cast_num(key));
  517.     cell = luaH_newkey(L, t, &k);
  518.   }
  519.   setobj2t(L, cell, value);
  520. }
  521.  
  522.  
  523. static int unbound_search (Table *t, unsigned int j) {
  524.   unsigned int i = j;  /* i is zero or a present index */
  525.   j++;
  526.   /* find `i' and `j' such that i is present and j is not */
  527.   while (!ttisnil(luaH_getint(t, j))) {
  528.     i = j;
  529.     j *= 2;
  530.     if (j > cast(unsigned int, MAX_INT)) {  /* overflow? */
  531.       /* table was built with bad purposes: resort to linear search */
  532.       i = 1;
  533.       while (!ttisnil(luaH_getint(t, i))) i++;
  534.       return i - 1;
  535.     }
  536.   }
  537.   /* now do a binary search between them */
  538.   while (j - i > 1) {
  539.     unsigned int m = (i+j)/2;
  540.     if (ttisnil(luaH_getint(t, m))) j = m;
  541.     else i = m;
  542.   }
  543.   return i;
  544. }
  545.  
  546.  
  547. /*
  548. ** Try to find a boundary in table `t'. A `boundary' is an integer index
  549. ** such that t[i] is non-nil and t[i+1] is nil (and 0 if t[1] is nil).
  550. */
  551. int luaH_getn (Table *t) {
  552.   unsigned int j = t->sizearray;
  553.   if (j > 0 && ttisnil(&t->array[j - 1])) {
  554.     /* there is a boundary in the array part: (binary) search for it */
  555.     unsigned int i = 0;
  556.     while (j - i > 1) {
  557.       unsigned int m = (i+j)/2;
  558.       if (ttisnil(&t->array[m - 1])) j = m;
  559.       else i = m;
  560.     }
  561.     return i;
  562.   }
  563.   /* else must find a boundary in hash part */
  564.   else if (isdummy(t->node))  /* hash part is empty? */
  565.     return j;  /* that is easy... */
  566.   else return unbound_search(t, j);
  567. }
  568.  
  569.  
  570.  
  571. #if defined(LUA_DEBUG)
  572.  
  573. Node *luaH_mainposition (const Table *t, const TValue *key) {
  574.   return mainposition(t, key);
  575. }
  576.  
  577. int luaH_isdummy (Node *n) { return isdummy(n); }
  578.  
  579. #endif
  580.