Subversion Repositories Kolibri OS

Rev

Blame | Last modification | View Log | RSS feed

  1. /*
  2.  * Ut Video encoder
  3.  * Copyright (c) 2012 Jan Ekström
  4.  *
  5.  * This file is part of FFmpeg.
  6.  *
  7.  * FFmpeg is free software; you can redistribute it and/or
  8.  * modify it under the terms of the GNU Lesser General Public
  9.  * License as published by the Free Software Foundation; either
  10.  * version 2.1 of the License, or (at your option) any later version.
  11.  *
  12.  * FFmpeg is distributed in the hope that it will be useful,
  13.  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14.  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15.  * Lesser General Public License for more details.
  16.  *
  17.  * You should have received a copy of the GNU Lesser General Public
  18.  * License along with FFmpeg; if not, write to the Free Software
  19.  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20.  */
  21.  
  22. /**
  23.  * @file
  24.  * Ut Video encoder
  25.  */
  26.  
  27. #include "libavutil/imgutils.h"
  28. #include "libavutil/intreadwrite.h"
  29. #include "avcodec.h"
  30. #include "internal.h"
  31. #include "bswapdsp.h"
  32. #include "bytestream.h"
  33. #include "put_bits.h"
  34. #include "huffyuvencdsp.h"
  35. #include "mathops.h"
  36. #include "utvideo.h"
  37. #include "huffman.h"
  38.  
  39. /* Compare huffentry symbols */
  40. static int huff_cmp_sym(const void *a, const void *b)
  41. {
  42.     const HuffEntry *aa = a, *bb = b;
  43.     return aa->sym - bb->sym;
  44. }
  45.  
  46. static av_cold int utvideo_encode_close(AVCodecContext *avctx)
  47. {
  48.     UtvideoContext *c = avctx->priv_data;
  49.     int i;
  50.  
  51.     av_freep(&c->slice_bits);
  52.     for (i = 0; i < 4; i++)
  53.         av_freep(&c->slice_buffer[i]);
  54.  
  55.     return 0;
  56. }
  57.  
  58. static av_cold int utvideo_encode_init(AVCodecContext *avctx)
  59. {
  60.     UtvideoContext *c = avctx->priv_data;
  61.     int i, subsampled_height;
  62.     uint32_t original_format;
  63.  
  64.     c->avctx           = avctx;
  65.     c->frame_info_size = 4;
  66.     c->slice_stride    = FFALIGN(avctx->width, 32);
  67.  
  68.     switch (avctx->pix_fmt) {
  69.     case AV_PIX_FMT_RGB24:
  70.         c->planes        = 3;
  71.         avctx->codec_tag = MKTAG('U', 'L', 'R', 'G');
  72.         original_format  = UTVIDEO_RGB;
  73.         break;
  74.     case AV_PIX_FMT_RGBA:
  75.         c->planes        = 4;
  76.         avctx->codec_tag = MKTAG('U', 'L', 'R', 'A');
  77.         original_format  = UTVIDEO_RGBA;
  78.         break;
  79.     case AV_PIX_FMT_YUV420P:
  80.         if (avctx->width & 1 || avctx->height & 1) {
  81.             av_log(avctx, AV_LOG_ERROR,
  82.                    "4:2:0 video requires even width and height.\n");
  83.             return AVERROR_INVALIDDATA;
  84.         }
  85.         c->planes        = 3;
  86.         if (avctx->colorspace == AVCOL_SPC_BT709)
  87.             avctx->codec_tag = MKTAG('U', 'L', 'H', '0');
  88.         else
  89.             avctx->codec_tag = MKTAG('U', 'L', 'Y', '0');
  90.         original_format  = UTVIDEO_420;
  91.         break;
  92.     case AV_PIX_FMT_YUV422P:
  93.         if (avctx->width & 1) {
  94.             av_log(avctx, AV_LOG_ERROR,
  95.                    "4:2:2 video requires even width.\n");
  96.             return AVERROR_INVALIDDATA;
  97.         }
  98.         c->planes        = 3;
  99.         if (avctx->colorspace == AVCOL_SPC_BT709)
  100.             avctx->codec_tag = MKTAG('U', 'L', 'H', '2');
  101.         else
  102.             avctx->codec_tag = MKTAG('U', 'L', 'Y', '2');
  103.         original_format  = UTVIDEO_422;
  104.         break;
  105.     default:
  106.         av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
  107.                avctx->pix_fmt);
  108.         return AVERROR_INVALIDDATA;
  109.     }
  110.  
  111.     ff_bswapdsp_init(&c->bdsp);
  112.     ff_huffyuvencdsp_init(&c->hdsp);
  113.  
  114.     /* Check the prediction method, and error out if unsupported */
  115.     if (avctx->prediction_method < 0 || avctx->prediction_method > 4) {
  116.         av_log(avctx, AV_LOG_WARNING,
  117.                "Prediction method %d is not supported in Ut Video.\n",
  118.                avctx->prediction_method);
  119.         return AVERROR_OPTION_NOT_FOUND;
  120.     }
  121.  
  122.     if (avctx->prediction_method == FF_PRED_PLANE) {
  123.         av_log(avctx, AV_LOG_ERROR,
  124.                "Plane prediction is not supported in Ut Video.\n");
  125.         return AVERROR_OPTION_NOT_FOUND;
  126.     }
  127.  
  128.     /* Convert from libavcodec prediction type to Ut Video's */
  129.     c->frame_pred = ff_ut_pred_order[avctx->prediction_method];
  130.  
  131.     if (c->frame_pred == PRED_GRADIENT) {
  132.         av_log(avctx, AV_LOG_ERROR, "Gradient prediction is not supported.\n");
  133.         return AVERROR_OPTION_NOT_FOUND;
  134.     }
  135.  
  136.     /*
  137.      * Check the asked slice count for obviously invalid
  138.      * values (> 256 or negative).
  139.      */
  140.     if (avctx->slices > 256 || avctx->slices < 0) {
  141.         av_log(avctx, AV_LOG_ERROR,
  142.                "Slice count %d is not supported in Ut Video (theoretical range is 0-256).\n",
  143.                avctx->slices);
  144.         return AVERROR(EINVAL);
  145.     }
  146.  
  147.     /* Check that the slice count is not larger than the subsampled height */
  148.     subsampled_height = avctx->height >> av_pix_fmt_desc_get(avctx->pix_fmt)->log2_chroma_h;
  149.     if (avctx->slices > subsampled_height) {
  150.         av_log(avctx, AV_LOG_ERROR,
  151.                "Slice count %d is larger than the subsampling-applied height %d.\n",
  152.                avctx->slices, subsampled_height);
  153.         return AVERROR(EINVAL);
  154.     }
  155.  
  156.     /* extradata size is 4 * 32bit */
  157.     avctx->extradata_size = 16;
  158.  
  159.     avctx->extradata = av_mallocz(avctx->extradata_size +
  160.                                   AV_INPUT_BUFFER_PADDING_SIZE);
  161.  
  162.     if (!avctx->extradata) {
  163.         av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
  164.         utvideo_encode_close(avctx);
  165.         return AVERROR(ENOMEM);
  166.     }
  167.  
  168.     for (i = 0; i < c->planes; i++) {
  169.         c->slice_buffer[i] = av_malloc(c->slice_stride * (avctx->height + 2) +
  170.                                        AV_INPUT_BUFFER_PADDING_SIZE);
  171.         if (!c->slice_buffer[i]) {
  172.             av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 1.\n");
  173.             utvideo_encode_close(avctx);
  174.             return AVERROR(ENOMEM);
  175.         }
  176.     }
  177.  
  178.     /*
  179.      * Set the version of the encoder.
  180.      * Last byte is "implementation ID", which is
  181.      * obtained from the creator of the format.
  182.      * Libavcodec has been assigned with the ID 0xF0.
  183.      */
  184.     AV_WB32(avctx->extradata, MKTAG(1, 0, 0, 0xF0));
  185.  
  186.     /*
  187.      * Set the "original format"
  188.      * Not used for anything during decoding.
  189.      */
  190.     AV_WL32(avctx->extradata + 4, original_format);
  191.  
  192.     /* Write 4 as the 'frame info size' */
  193.     AV_WL32(avctx->extradata + 8, c->frame_info_size);
  194.  
  195.     /*
  196.      * Set how many slices are going to be used.
  197.      * By default uses multiple slices depending on the subsampled height.
  198.      * This enables multithreading in the official decoder.
  199.      */
  200.     if (!avctx->slices) {
  201.         c->slices = subsampled_height / 120;
  202.  
  203.         if (!c->slices)
  204.             c->slices = 1;
  205.         else if (c->slices > 256)
  206.             c->slices = 256;
  207.     } else {
  208.         c->slices = avctx->slices;
  209.     }
  210.  
  211.     /* Set compression mode */
  212.     c->compression = COMP_HUFF;
  213.  
  214.     /*
  215.      * Set the encoding flags:
  216.      * - Slice count minus 1
  217.      * - Interlaced encoding mode flag, set to zero for now.
  218.      * - Compression mode (none/huff)
  219.      * And write the flags.
  220.      */
  221.     c->flags  = (c->slices - 1) << 24;
  222.     c->flags |= 0 << 11; // bit field to signal interlaced encoding mode
  223.     c->flags |= c->compression;
  224.  
  225.     AV_WL32(avctx->extradata + 12, c->flags);
  226.  
  227.     return 0;
  228. }
  229.  
  230. static void mangle_rgb_planes(uint8_t *dst[4], int dst_stride, uint8_t *src,
  231.                               int step, int stride, int width, int height)
  232. {
  233.     int i, j;
  234.     int k = 2 * dst_stride;
  235.     unsigned int g;
  236.  
  237.     for (j = 0; j < height; j++) {
  238.         if (step == 3) {
  239.             for (i = 0; i < width * step; i += step) {
  240.                 g         = src[i + 1];
  241.                 dst[0][k] = g;
  242.                 g        += 0x80;
  243.                 dst[1][k] = src[i + 2] - g;
  244.                 dst[2][k] = src[i + 0] - g;
  245.                 k++;
  246.             }
  247.         } else {
  248.             for (i = 0; i < width * step; i += step) {
  249.                 g         = src[i + 1];
  250.                 dst[0][k] = g;
  251.                 g        += 0x80;
  252.                 dst[1][k] = src[i + 2] - g;
  253.                 dst[2][k] = src[i + 0] - g;
  254.                 dst[3][k] = src[i + 3];
  255.                 k++;
  256.             }
  257.         }
  258.         k += dst_stride - width;
  259.         src += stride;
  260.     }
  261. }
  262.  
  263. /* Write data to a plane with left prediction */
  264. static void left_predict(uint8_t *src, uint8_t *dst, int stride,
  265.                          int width, int height)
  266. {
  267.     int i, j;
  268.     uint8_t prev;
  269.  
  270.     prev = 0x80; /* Set the initial value */
  271.     for (j = 0; j < height; j++) {
  272.         for (i = 0; i < width; i++) {
  273.             *dst++ = src[i] - prev;
  274.             prev   = src[i];
  275.         }
  276.         src += stride;
  277.     }
  278. }
  279.  
  280. /* Write data to a plane with median prediction */
  281. static void median_predict(UtvideoContext *c, uint8_t *src, uint8_t *dst, int stride,
  282.                            int width, int height)
  283. {
  284.     int i, j;
  285.     int A, B;
  286.     uint8_t prev;
  287.  
  288.     /* First line uses left neighbour prediction */
  289.     prev = 0x80; /* Set the initial value */
  290.     for (i = 0; i < width; i++) {
  291.         *dst++ = src[i] - prev;
  292.         prev   = src[i];
  293.     }
  294.  
  295.     if (height == 1)
  296.         return;
  297.  
  298.     src += stride;
  299.  
  300.     /*
  301.      * Second line uses top prediction for the first sample,
  302.      * and median for the rest.
  303.      */
  304.     A = B = 0;
  305.  
  306.     /* Rest of the coded part uses median prediction */
  307.     for (j = 1; j < height; j++) {
  308.         c->hdsp.sub_hfyu_median_pred(dst, src - stride, src, width, &A, &B);
  309.         dst += width;
  310.         src += stride;
  311.     }
  312. }
  313.  
  314. /* Count the usage of values in a plane */
  315. static void count_usage(uint8_t *src, int width,
  316.                         int height, uint64_t *counts)
  317. {
  318.     int i, j;
  319.  
  320.     for (j = 0; j < height; j++) {
  321.         for (i = 0; i < width; i++) {
  322.             counts[src[i]]++;
  323.         }
  324.         src += width;
  325.     }
  326. }
  327.  
  328. /* Calculate the actual huffman codes from the code lengths */
  329. static void calculate_codes(HuffEntry *he)
  330. {
  331.     int last, i;
  332.     uint32_t code;
  333.  
  334.     qsort(he, 256, sizeof(*he), ff_ut_huff_cmp_len);
  335.  
  336.     last = 255;
  337.     while (he[last].len == 255 && last)
  338.         last--;
  339.  
  340.     code = 1;
  341.     for (i = last; i >= 0; i--) {
  342.         he[i].code  = code >> (32 - he[i].len);
  343.         code       += 0x80000000u >> (he[i].len - 1);
  344.     }
  345.  
  346.     qsort(he, 256, sizeof(*he), huff_cmp_sym);
  347. }
  348.  
  349. /* Write huffman bit codes to a memory block */
  350. static int write_huff_codes(uint8_t *src, uint8_t *dst, int dst_size,
  351.                             int width, int height, HuffEntry *he)
  352. {
  353.     PutBitContext pb;
  354.     int i, j;
  355.     int count;
  356.  
  357.     init_put_bits(&pb, dst, dst_size);
  358.  
  359.     /* Write the codes */
  360.     for (j = 0; j < height; j++) {
  361.         for (i = 0; i < width; i++)
  362.             put_bits(&pb, he[src[i]].len, he[src[i]].code);
  363.  
  364.         src += width;
  365.     }
  366.  
  367.     /* Pad output to a 32bit boundary */
  368.     count = put_bits_count(&pb) & 0x1F;
  369.  
  370.     if (count)
  371.         put_bits(&pb, 32 - count, 0);
  372.  
  373.     /* Get the amount of bits written */
  374.     count = put_bits_count(&pb);
  375.  
  376.     /* Flush the rest with zeroes */
  377.     flush_put_bits(&pb);
  378.  
  379.     return count;
  380. }
  381.  
  382. static int encode_plane(AVCodecContext *avctx, uint8_t *src,
  383.                         uint8_t *dst, int stride, int plane_no,
  384.                         int width, int height, PutByteContext *pb)
  385. {
  386.     UtvideoContext *c        = avctx->priv_data;
  387.     uint8_t  lengths[256];
  388.     uint64_t counts[256]     = { 0 };
  389.  
  390.     HuffEntry he[256];
  391.  
  392.     uint32_t offset = 0, slice_len = 0;
  393.     const int cmask = ~(!plane_no && avctx->pix_fmt == AV_PIX_FMT_YUV420P);
  394.     int      i, sstart, send = 0;
  395.     int      symbol;
  396.     int      ret;
  397.  
  398.     /* Do prediction / make planes */
  399.     switch (c->frame_pred) {
  400.     case PRED_NONE:
  401.         for (i = 0; i < c->slices; i++) {
  402.             sstart = send;
  403.             send   = height * (i + 1) / c->slices & cmask;
  404.             av_image_copy_plane(dst + sstart * width, width,
  405.                                 src + sstart * stride, stride,
  406.                                 width, send - sstart);
  407.         }
  408.         break;
  409.     case PRED_LEFT:
  410.         for (i = 0; i < c->slices; i++) {
  411.             sstart = send;
  412.             send   = height * (i + 1) / c->slices & cmask;
  413.             left_predict(src + sstart * stride, dst + sstart * width,
  414.                          stride, width, send - sstart);
  415.         }
  416.         break;
  417.     case PRED_MEDIAN:
  418.         for (i = 0; i < c->slices; i++) {
  419.             sstart = send;
  420.             send   = height * (i + 1) / c->slices & cmask;
  421.             median_predict(c, src + sstart * stride, dst + sstart * width,
  422.                            stride, width, send - sstart);
  423.         }
  424.         break;
  425.     default:
  426.         av_log(avctx, AV_LOG_ERROR, "Unknown prediction mode: %d\n",
  427.                c->frame_pred);
  428.         return AVERROR_OPTION_NOT_FOUND;
  429.     }
  430.  
  431.     /* Count the usage of values */
  432.     count_usage(dst, width, height, counts);
  433.  
  434.     /* Check for a special case where only one symbol was used */
  435.     for (symbol = 0; symbol < 256; symbol++) {
  436.         /* If non-zero count is found, see if it matches width * height */
  437.         if (counts[symbol]) {
  438.             /* Special case if only one symbol was used */
  439.             if (counts[symbol] == width * (int64_t)height) {
  440.                 /*
  441.                  * Write a zero for the single symbol
  442.                  * used in the plane, else 0xFF.
  443.                  */
  444.                 for (i = 0; i < 256; i++) {
  445.                     if (i == symbol)
  446.                         bytestream2_put_byte(pb, 0);
  447.                     else
  448.                         bytestream2_put_byte(pb, 0xFF);
  449.                 }
  450.  
  451.                 /* Write zeroes for lengths */
  452.                 for (i = 0; i < c->slices; i++)
  453.                     bytestream2_put_le32(pb, 0);
  454.  
  455.                 /* And that's all for that plane folks */
  456.                 return 0;
  457.             }
  458.             break;
  459.         }
  460.     }
  461.  
  462.     /* Calculate huffman lengths */
  463.     if ((ret = ff_huff_gen_len_table(lengths, counts, 256, 1)) < 0)
  464.         return ret;
  465.  
  466.     /*
  467.      * Write the plane's header into the output packet:
  468.      * - huffman code lengths (256 bytes)
  469.      * - slice end offsets (gotten from the slice lengths)
  470.      */
  471.     for (i = 0; i < 256; i++) {
  472.         bytestream2_put_byte(pb, lengths[i]);
  473.  
  474.         he[i].len = lengths[i];
  475.         he[i].sym = i;
  476.     }
  477.  
  478.     /* Calculate the huffman codes themselves */
  479.     calculate_codes(he);
  480.  
  481.     send = 0;
  482.     for (i = 0; i < c->slices; i++) {
  483.         sstart  = send;
  484.         send    = height * (i + 1) / c->slices & cmask;
  485.  
  486.         /*
  487.          * Write the huffman codes to a buffer,
  488.          * get the offset in bits and convert to bytes.
  489.          */
  490.         offset += write_huff_codes(dst + sstart * width, c->slice_bits,
  491.                                    width * height + 4, width,
  492.                                    send - sstart, he) >> 3;
  493.  
  494.         slice_len = offset - slice_len;
  495.  
  496.         /* Byteswap the written huffman codes */
  497.         c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
  498.                           (uint32_t *) c->slice_bits,
  499.                           slice_len >> 2);
  500.  
  501.         /* Write the offset to the stream */
  502.         bytestream2_put_le32(pb, offset);
  503.  
  504.         /* Seek to the data part of the packet */
  505.         bytestream2_seek_p(pb, 4 * (c->slices - i - 1) +
  506.                            offset - slice_len, SEEK_CUR);
  507.  
  508.         /* Write the slices' data into the output packet */
  509.         bytestream2_put_buffer(pb, c->slice_bits, slice_len);
  510.  
  511.         /* Seek back to the slice offsets */
  512.         bytestream2_seek_p(pb, -4 * (c->slices - i - 1) - offset,
  513.                            SEEK_CUR);
  514.  
  515.         slice_len = offset;
  516.     }
  517.  
  518.     /* And at the end seek to the end of written slice(s) */
  519.     bytestream2_seek_p(pb, offset, SEEK_CUR);
  520.  
  521.     return 0;
  522. }
  523.  
  524. static int utvideo_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  525.                                 const AVFrame *pic, int *got_packet)
  526. {
  527.     UtvideoContext *c = avctx->priv_data;
  528.     PutByteContext pb;
  529.  
  530.     uint32_t frame_info;
  531.  
  532.     uint8_t *dst;
  533.  
  534.     int width = avctx->width, height = avctx->height;
  535.     int i, ret = 0;
  536.  
  537.     /* Allocate a new packet if needed, and set it to the pointer dst */
  538.     ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * c->slices + width * height) *
  539.                            c->planes + 4, 0);
  540.  
  541.     if (ret < 0)
  542.         return ret;
  543.  
  544.     dst = pkt->data;
  545.  
  546.     bytestream2_init_writer(&pb, dst, pkt->size);
  547.  
  548.     av_fast_padded_malloc(&c->slice_bits, &c->slice_bits_size, width * height + 4);
  549.  
  550.     if (!c->slice_bits) {
  551.         av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer 2.\n");
  552.         return AVERROR(ENOMEM);
  553.     }
  554.  
  555.     /* In case of RGB, mangle the planes to Ut Video's format */
  556.     if (avctx->pix_fmt == AV_PIX_FMT_RGBA || avctx->pix_fmt == AV_PIX_FMT_RGB24)
  557.         mangle_rgb_planes(c->slice_buffer, c->slice_stride, pic->data[0],
  558.                           c->planes, pic->linesize[0], width, height);
  559.  
  560.     /* Deal with the planes */
  561.     switch (avctx->pix_fmt) {
  562.     case AV_PIX_FMT_RGB24:
  563.     case AV_PIX_FMT_RGBA:
  564.         for (i = 0; i < c->planes; i++) {
  565.             ret = encode_plane(avctx, c->slice_buffer[i] + 2 * c->slice_stride,
  566.                                c->slice_buffer[i], c->slice_stride, i,
  567.                                width, height, &pb);
  568.  
  569.             if (ret) {
  570.                 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
  571.                 return ret;
  572.             }
  573.         }
  574.         break;
  575.     case AV_PIX_FMT_YUV422P:
  576.         for (i = 0; i < c->planes; i++) {
  577.             ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
  578.                                pic->linesize[i], i, width >> !!i, height, &pb);
  579.  
  580.             if (ret) {
  581.                 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
  582.                 return ret;
  583.             }
  584.         }
  585.         break;
  586.     case AV_PIX_FMT_YUV420P:
  587.         for (i = 0; i < c->planes; i++) {
  588.             ret = encode_plane(avctx, pic->data[i], c->slice_buffer[0],
  589.                                pic->linesize[i], i, width >> !!i, height >> !!i,
  590.                                &pb);
  591.  
  592.             if (ret) {
  593.                 av_log(avctx, AV_LOG_ERROR, "Error encoding plane %d.\n", i);
  594.                 return ret;
  595.             }
  596.         }
  597.         break;
  598.     default:
  599.         av_log(avctx, AV_LOG_ERROR, "Unknown pixel format: %d\n",
  600.                avctx->pix_fmt);
  601.         return AVERROR_INVALIDDATA;
  602.     }
  603.  
  604.     /*
  605.      * Write frame information (LE 32bit unsigned)
  606.      * into the output packet.
  607.      * Contains the prediction method.
  608.      */
  609.     frame_info = c->frame_pred << 8;
  610.     bytestream2_put_le32(&pb, frame_info);
  611.  
  612.     /*
  613.      * At least currently Ut Video is IDR only.
  614.      * Set flags accordingly.
  615.      */
  616. #if FF_API_CODED_FRAME
  617. FF_DISABLE_DEPRECATION_WARNINGS
  618.     avctx->coded_frame->key_frame = 1;
  619.     avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  620. FF_ENABLE_DEPRECATION_WARNINGS
  621. #endif
  622.  
  623.     pkt->size   = bytestream2_tell_p(&pb);
  624.     pkt->flags |= AV_PKT_FLAG_KEY;
  625.  
  626.     /* Packet should be done */
  627.     *got_packet = 1;
  628.  
  629.     return 0;
  630. }
  631.  
  632. AVCodec ff_utvideo_encoder = {
  633.     .name           = "utvideo",
  634.     .long_name      = NULL_IF_CONFIG_SMALL("Ut Video"),
  635.     .type           = AVMEDIA_TYPE_VIDEO,
  636.     .id             = AV_CODEC_ID_UTVIDEO,
  637.     .priv_data_size = sizeof(UtvideoContext),
  638.     .init           = utvideo_encode_init,
  639.     .encode2        = utvideo_encode_frame,
  640.     .close          = utvideo_encode_close,
  641.     .capabilities   = AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_INTRA_ONLY,
  642.     .pix_fmts       = (const enum AVPixelFormat[]) {
  643.                           AV_PIX_FMT_RGB24, AV_PIX_FMT_RGBA, AV_PIX_FMT_YUV422P,
  644.                           AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE
  645.                       },
  646. };
  647.