Subversion Repositories Kolibri OS

Rev

Rev 6937 | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 6937 Rev 7144
1
/*
1
/*
2
 * Copyright © 2008-2010 Intel Corporation
2
 * Copyright © 2008-2010 Intel Corporation
3
 *
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
10
 *
11
 * The above copyright notice and this permission notice (including the next
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
13
 * Software.
14
 *
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
21
 * IN THE SOFTWARE.
22
 *
22
 *
23
 * Authors:
23
 * Authors:
24
 *    Eric Anholt 
24
 *    Eric Anholt 
25
 *    Zou Nan hai 
25
 *    Zou Nan hai 
26
 *    Xiang Hai hao
26
 *    Xiang Hai hao
27
 *
27
 *
28
 */
28
 */
29
 
29
 
30
#include 
30
#include 
31
#include 
31
#include 
32
#include "i915_drv.h"
32
#include "i915_drv.h"
33
#include 
33
#include 
34
#include "i915_trace.h"
34
#include "i915_trace.h"
35
#include "intel_drv.h"
35
#include "intel_drv.h"
36
 
36
 
37
int __intel_ring_space(int head, int tail, int size)
37
int __intel_ring_space(int head, int tail, int size)
38
{
38
{
39
	int space = head - tail;
39
	int space = head - tail;
40
	if (space <= 0)
40
	if (space <= 0)
41
		space += size;
41
		space += size;
42
	return space - I915_RING_FREE_SPACE;
42
	return space - I915_RING_FREE_SPACE;
43
}
43
}
44
 
44
 
45
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
45
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
46
{
46
{
47
	if (ringbuf->last_retired_head != -1) {
47
	if (ringbuf->last_retired_head != -1) {
48
		ringbuf->head = ringbuf->last_retired_head;
48
		ringbuf->head = ringbuf->last_retired_head;
49
		ringbuf->last_retired_head = -1;
49
		ringbuf->last_retired_head = -1;
50
	}
50
	}
51
 
51
 
52
	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
52
	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
53
					    ringbuf->tail, ringbuf->size);
53
					    ringbuf->tail, ringbuf->size);
54
}
54
}
55
 
55
 
56
int intel_ring_space(struct intel_ringbuffer *ringbuf)
56
int intel_ring_space(struct intel_ringbuffer *ringbuf)
57
{
57
{
58
	intel_ring_update_space(ringbuf);
58
	intel_ring_update_space(ringbuf);
59
	return ringbuf->space;
59
	return ringbuf->space;
60
}
60
}
61
 
61
 
62
bool intel_ring_stopped(struct intel_engine_cs *ring)
62
bool intel_ring_stopped(struct intel_engine_cs *ring)
63
{
63
{
64
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
64
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
65
	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
65
	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
66
}
66
}
67
 
67
 
68
static void __intel_ring_advance(struct intel_engine_cs *ring)
68
static void __intel_ring_advance(struct intel_engine_cs *ring)
69
{
69
{
70
	struct intel_ringbuffer *ringbuf = ring->buffer;
70
	struct intel_ringbuffer *ringbuf = ring->buffer;
71
	ringbuf->tail &= ringbuf->size - 1;
71
	ringbuf->tail &= ringbuf->size - 1;
72
	if (intel_ring_stopped(ring))
72
	if (intel_ring_stopped(ring))
73
		return;
73
		return;
74
	ring->write_tail(ring, ringbuf->tail);
74
	ring->write_tail(ring, ringbuf->tail);
75
}
75
}
76
 
76
 
77
static int
77
static int
78
gen2_render_ring_flush(struct drm_i915_gem_request *req,
78
gen2_render_ring_flush(struct drm_i915_gem_request *req,
79
		       u32	invalidate_domains,
79
		       u32	invalidate_domains,
80
		       u32	flush_domains)
80
		       u32	flush_domains)
81
{
81
{
82
	struct intel_engine_cs *ring = req->ring;
82
	struct intel_engine_cs *ring = req->ring;
83
	u32 cmd;
83
	u32 cmd;
84
	int ret;
84
	int ret;
85
 
85
 
86
	cmd = MI_FLUSH;
86
	cmd = MI_FLUSH;
87
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
87
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
88
		cmd |= MI_NO_WRITE_FLUSH;
88
		cmd |= MI_NO_WRITE_FLUSH;
89
 
89
 
90
	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
90
	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
91
		cmd |= MI_READ_FLUSH;
91
		cmd |= MI_READ_FLUSH;
92
 
92
 
93
	ret = intel_ring_begin(req, 2);
93
	ret = intel_ring_begin(req, 2);
94
	if (ret)
94
	if (ret)
95
		return ret;
95
		return ret;
96
 
96
 
97
	intel_ring_emit(ring, cmd);
97
	intel_ring_emit(ring, cmd);
98
	intel_ring_emit(ring, MI_NOOP);
98
	intel_ring_emit(ring, MI_NOOP);
99
	intel_ring_advance(ring);
99
	intel_ring_advance(ring);
100
 
100
 
101
	return 0;
101
	return 0;
102
}
102
}
103
 
103
 
104
static int
104
static int
105
gen4_render_ring_flush(struct drm_i915_gem_request *req,
105
gen4_render_ring_flush(struct drm_i915_gem_request *req,
106
		       u32	invalidate_domains,
106
		       u32	invalidate_domains,
107
		       u32	flush_domains)
107
		       u32	flush_domains)
108
{
108
{
109
	struct intel_engine_cs *ring = req->ring;
109
	struct intel_engine_cs *ring = req->ring;
110
	struct drm_device *dev = ring->dev;
110
	struct drm_device *dev = ring->dev;
111
	u32 cmd;
111
	u32 cmd;
112
	int ret;
112
	int ret;
113
 
113
 
114
	/*
114
	/*
115
	 * read/write caches:
115
	 * read/write caches:
116
	 *
116
	 *
117
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
117
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
118
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
118
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
119
	 * also flushed at 2d versus 3d pipeline switches.
119
	 * also flushed at 2d versus 3d pipeline switches.
120
	 *
120
	 *
121
	 * read-only caches:
121
	 * read-only caches:
122
	 *
122
	 *
123
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
123
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
124
	 * MI_READ_FLUSH is set, and is always flushed on 965.
124
	 * MI_READ_FLUSH is set, and is always flushed on 965.
125
	 *
125
	 *
126
	 * I915_GEM_DOMAIN_COMMAND may not exist?
126
	 * I915_GEM_DOMAIN_COMMAND may not exist?
127
	 *
127
	 *
128
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
128
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
129
	 * invalidated when MI_EXE_FLUSH is set.
129
	 * invalidated when MI_EXE_FLUSH is set.
130
	 *
130
	 *
131
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
131
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
132
	 * invalidated with every MI_FLUSH.
132
	 * invalidated with every MI_FLUSH.
133
	 *
133
	 *
134
	 * TLBs:
134
	 * TLBs:
135
	 *
135
	 *
136
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
136
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
137
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
137
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
138
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
138
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
139
	 * are flushed at any MI_FLUSH.
139
	 * are flushed at any MI_FLUSH.
140
	 */
140
	 */
141
 
141
 
142
	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
142
	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
143
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
143
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
144
		cmd &= ~MI_NO_WRITE_FLUSH;
144
		cmd &= ~MI_NO_WRITE_FLUSH;
145
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
145
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
146
		cmd |= MI_EXE_FLUSH;
146
		cmd |= MI_EXE_FLUSH;
147
 
147
 
148
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
148
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
149
	    (IS_G4X(dev) || IS_GEN5(dev)))
149
	    (IS_G4X(dev) || IS_GEN5(dev)))
150
		cmd |= MI_INVALIDATE_ISP;
150
		cmd |= MI_INVALIDATE_ISP;
151
 
151
 
152
	ret = intel_ring_begin(req, 2);
152
	ret = intel_ring_begin(req, 2);
153
	if (ret)
153
	if (ret)
154
		return ret;
154
		return ret;
155
 
155
 
156
	intel_ring_emit(ring, cmd);
156
	intel_ring_emit(ring, cmd);
157
	intel_ring_emit(ring, MI_NOOP);
157
	intel_ring_emit(ring, MI_NOOP);
158
	intel_ring_advance(ring);
158
	intel_ring_advance(ring);
159
 
159
 
160
	return 0;
160
	return 0;
161
}
161
}
162
 
162
 
163
/**
163
/**
164
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
164
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
165
 * implementing two workarounds on gen6.  From section 1.4.7.1
165
 * implementing two workarounds on gen6.  From section 1.4.7.1
166
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
166
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
167
 *
167
 *
168
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
168
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
169
 * produced by non-pipelined state commands), software needs to first
169
 * produced by non-pipelined state commands), software needs to first
170
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
170
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
171
 * 0.
171
 * 0.
172
 *
172
 *
173
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
173
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
174
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
174
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
175
 *
175
 *
176
 * And the workaround for these two requires this workaround first:
176
 * And the workaround for these two requires this workaround first:
177
 *
177
 *
178
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
178
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
179
 * BEFORE the pipe-control with a post-sync op and no write-cache
179
 * BEFORE the pipe-control with a post-sync op and no write-cache
180
 * flushes.
180
 * flushes.
181
 *
181
 *
182
 * And this last workaround is tricky because of the requirements on
182
 * And this last workaround is tricky because of the requirements on
183
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
183
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
184
 * volume 2 part 1:
184
 * volume 2 part 1:
185
 *
185
 *
186
 *     "1 of the following must also be set:
186
 *     "1 of the following must also be set:
187
 *      - Render Target Cache Flush Enable ([12] of DW1)
187
 *      - Render Target Cache Flush Enable ([12] of DW1)
188
 *      - Depth Cache Flush Enable ([0] of DW1)
188
 *      - Depth Cache Flush Enable ([0] of DW1)
189
 *      - Stall at Pixel Scoreboard ([1] of DW1)
189
 *      - Stall at Pixel Scoreboard ([1] of DW1)
190
 *      - Depth Stall ([13] of DW1)
190
 *      - Depth Stall ([13] of DW1)
191
 *      - Post-Sync Operation ([13] of DW1)
191
 *      - Post-Sync Operation ([13] of DW1)
192
 *      - Notify Enable ([8] of DW1)"
192
 *      - Notify Enable ([8] of DW1)"
193
 *
193
 *
194
 * The cache flushes require the workaround flush that triggered this
194
 * The cache flushes require the workaround flush that triggered this
195
 * one, so we can't use it.  Depth stall would trigger the same.
195
 * one, so we can't use it.  Depth stall would trigger the same.
196
 * Post-sync nonzero is what triggered this second workaround, so we
196
 * Post-sync nonzero is what triggered this second workaround, so we
197
 * can't use that one either.  Notify enable is IRQs, which aren't
197
 * can't use that one either.  Notify enable is IRQs, which aren't
198
 * really our business.  That leaves only stall at scoreboard.
198
 * really our business.  That leaves only stall at scoreboard.
199
 */
199
 */
200
static int
200
static int
201
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
201
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
202
{
202
{
203
	struct intel_engine_cs *ring = req->ring;
203
	struct intel_engine_cs *ring = req->ring;
204
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
204
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
205
	int ret;
205
	int ret;
206
 
206
 
207
	ret = intel_ring_begin(req, 6);
207
	ret = intel_ring_begin(req, 6);
208
	if (ret)
208
	if (ret)
209
		return ret;
209
		return ret;
210
 
210
 
211
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
211
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
212
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
212
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
213
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
213
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
214
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
214
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
215
	intel_ring_emit(ring, 0); /* low dword */
215
	intel_ring_emit(ring, 0); /* low dword */
216
	intel_ring_emit(ring, 0); /* high dword */
216
	intel_ring_emit(ring, 0); /* high dword */
217
	intel_ring_emit(ring, MI_NOOP);
217
	intel_ring_emit(ring, MI_NOOP);
218
	intel_ring_advance(ring);
218
	intel_ring_advance(ring);
219
 
219
 
220
	ret = intel_ring_begin(req, 6);
220
	ret = intel_ring_begin(req, 6);
221
	if (ret)
221
	if (ret)
222
		return ret;
222
		return ret;
223
 
223
 
224
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
224
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
225
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
225
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
226
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
226
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
227
	intel_ring_emit(ring, 0);
227
	intel_ring_emit(ring, 0);
228
	intel_ring_emit(ring, 0);
228
	intel_ring_emit(ring, 0);
229
	intel_ring_emit(ring, MI_NOOP);
229
	intel_ring_emit(ring, MI_NOOP);
230
	intel_ring_advance(ring);
230
	intel_ring_advance(ring);
231
 
231
 
232
	return 0;
232
	return 0;
233
}
233
}
234
 
234
 
235
static int
235
static int
236
gen6_render_ring_flush(struct drm_i915_gem_request *req,
236
gen6_render_ring_flush(struct drm_i915_gem_request *req,
237
		       u32 invalidate_domains, u32 flush_domains)
237
		       u32 invalidate_domains, u32 flush_domains)
238
{
238
{
239
	struct intel_engine_cs *ring = req->ring;
239
	struct intel_engine_cs *ring = req->ring;
240
	u32 flags = 0;
240
	u32 flags = 0;
241
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
241
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
242
	int ret;
242
	int ret;
243
 
243
 
244
	/* Force SNB workarounds for PIPE_CONTROL flushes */
244
	/* Force SNB workarounds for PIPE_CONTROL flushes */
245
	ret = intel_emit_post_sync_nonzero_flush(req);
245
	ret = intel_emit_post_sync_nonzero_flush(req);
246
	if (ret)
246
	if (ret)
247
		return ret;
247
		return ret;
248
 
248
 
249
	/* Just flush everything.  Experiments have shown that reducing the
249
	/* Just flush everything.  Experiments have shown that reducing the
250
	 * number of bits based on the write domains has little performance
250
	 * number of bits based on the write domains has little performance
251
	 * impact.
251
	 * impact.
252
	 */
252
	 */
253
	if (flush_domains) {
253
	if (flush_domains) {
254
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
254
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
255
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
255
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
256
		/*
256
		/*
257
		 * Ensure that any following seqno writes only happen
257
		 * Ensure that any following seqno writes only happen
258
		 * when the render cache is indeed flushed.
258
		 * when the render cache is indeed flushed.
259
		 */
259
		 */
260
		flags |= PIPE_CONTROL_CS_STALL;
260
		flags |= PIPE_CONTROL_CS_STALL;
261
	}
261
	}
262
	if (invalidate_domains) {
262
	if (invalidate_domains) {
263
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
263
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
264
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
264
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
265
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
265
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
266
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
266
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
267
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
267
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
268
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
268
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
269
		/*
269
		/*
270
		 * TLB invalidate requires a post-sync write.
270
		 * TLB invalidate requires a post-sync write.
271
		 */
271
		 */
272
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
272
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
273
	}
273
	}
274
 
274
 
275
	ret = intel_ring_begin(req, 4);
275
	ret = intel_ring_begin(req, 4);
276
	if (ret)
276
	if (ret)
277
		return ret;
277
		return ret;
278
 
278
 
279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
279
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
280
	intel_ring_emit(ring, flags);
280
	intel_ring_emit(ring, flags);
281
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
281
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
282
	intel_ring_emit(ring, 0);
282
	intel_ring_emit(ring, 0);
283
	intel_ring_advance(ring);
283
	intel_ring_advance(ring);
284
 
284
 
285
	return 0;
285
	return 0;
286
}
286
}
287
 
287
 
288
static int
288
static int
289
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
289
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
290
{
290
{
291
	struct intel_engine_cs *ring = req->ring;
291
	struct intel_engine_cs *ring = req->ring;
292
	int ret;
292
	int ret;
293
 
293
 
294
	ret = intel_ring_begin(req, 4);
294
	ret = intel_ring_begin(req, 4);
295
	if (ret)
295
	if (ret)
296
		return ret;
296
		return ret;
297
 
297
 
298
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
298
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
299
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
299
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
300
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
300
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
301
	intel_ring_emit(ring, 0);
301
	intel_ring_emit(ring, 0);
302
	intel_ring_emit(ring, 0);
302
	intel_ring_emit(ring, 0);
303
	intel_ring_advance(ring);
303
	intel_ring_advance(ring);
304
 
304
 
305
	return 0;
305
	return 0;
306
}
306
}
307
 
307
 
308
static int
308
static int
309
gen7_render_ring_flush(struct drm_i915_gem_request *req,
309
gen7_render_ring_flush(struct drm_i915_gem_request *req,
310
		       u32 invalidate_domains, u32 flush_domains)
310
		       u32 invalidate_domains, u32 flush_domains)
311
{
311
{
312
	struct intel_engine_cs *ring = req->ring;
312
	struct intel_engine_cs *ring = req->ring;
313
	u32 flags = 0;
313
	u32 flags = 0;
314
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
314
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
315
	int ret;
315
	int ret;
316
 
316
 
317
	/*
317
	/*
318
	 * Ensure that any following seqno writes only happen when the render
318
	 * Ensure that any following seqno writes only happen when the render
319
	 * cache is indeed flushed.
319
	 * cache is indeed flushed.
320
	 *
320
	 *
321
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
321
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
322
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
322
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
323
	 * don't try to be clever and just set it unconditionally.
323
	 * don't try to be clever and just set it unconditionally.
324
	 */
324
	 */
325
	flags |= PIPE_CONTROL_CS_STALL;
325
	flags |= PIPE_CONTROL_CS_STALL;
326
 
326
 
327
	/* Just flush everything.  Experiments have shown that reducing the
327
	/* Just flush everything.  Experiments have shown that reducing the
328
	 * number of bits based on the write domains has little performance
328
	 * number of bits based on the write domains has little performance
329
	 * impact.
329
	 * impact.
330
	 */
330
	 */
331
	if (flush_domains) {
331
	if (flush_domains) {
332
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
332
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
333
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
333
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
334
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
334
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
335
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
335
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
336
	}
336
	}
337
	if (invalidate_domains) {
337
	if (invalidate_domains) {
338
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
338
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
339
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
339
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
340
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
340
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
341
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
341
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
342
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
342
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
343
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
343
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
344
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
344
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
345
		/*
345
		/*
346
		 * TLB invalidate requires a post-sync write.
346
		 * TLB invalidate requires a post-sync write.
347
		 */
347
		 */
348
		flags |= PIPE_CONTROL_QW_WRITE;
348
		flags |= PIPE_CONTROL_QW_WRITE;
349
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
349
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
350
 
350
 
351
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
351
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
352
 
352
 
353
		/* Workaround: we must issue a pipe_control with CS-stall bit
353
		/* Workaround: we must issue a pipe_control with CS-stall bit
354
		 * set before a pipe_control command that has the state cache
354
		 * set before a pipe_control command that has the state cache
355
		 * invalidate bit set. */
355
		 * invalidate bit set. */
356
		gen7_render_ring_cs_stall_wa(req);
356
		gen7_render_ring_cs_stall_wa(req);
357
	}
357
	}
358
 
358
 
359
	ret = intel_ring_begin(req, 4);
359
	ret = intel_ring_begin(req, 4);
360
	if (ret)
360
	if (ret)
361
		return ret;
361
		return ret;
362
 
362
 
363
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
363
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
364
	intel_ring_emit(ring, flags);
364
	intel_ring_emit(ring, flags);
365
	intel_ring_emit(ring, scratch_addr);
365
	intel_ring_emit(ring, scratch_addr);
366
	intel_ring_emit(ring, 0);
366
	intel_ring_emit(ring, 0);
367
	intel_ring_advance(ring);
367
	intel_ring_advance(ring);
368
 
368
 
369
	return 0;
369
	return 0;
370
}
370
}
371
 
371
 
372
static int
372
static int
373
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
373
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
374
		       u32 flags, u32 scratch_addr)
374
		       u32 flags, u32 scratch_addr)
375
{
375
{
376
	struct intel_engine_cs *ring = req->ring;
376
	struct intel_engine_cs *ring = req->ring;
377
	int ret;
377
	int ret;
378
 
378
 
379
	ret = intel_ring_begin(req, 6);
379
	ret = intel_ring_begin(req, 6);
380
	if (ret)
380
	if (ret)
381
		return ret;
381
		return ret;
382
 
382
 
383
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
383
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
384
	intel_ring_emit(ring, flags);
384
	intel_ring_emit(ring, flags);
385
	intel_ring_emit(ring, scratch_addr);
385
	intel_ring_emit(ring, scratch_addr);
386
	intel_ring_emit(ring, 0);
386
	intel_ring_emit(ring, 0);
387
	intel_ring_emit(ring, 0);
387
	intel_ring_emit(ring, 0);
388
	intel_ring_emit(ring, 0);
388
	intel_ring_emit(ring, 0);
389
	intel_ring_advance(ring);
389
	intel_ring_advance(ring);
390
 
390
 
391
	return 0;
391
	return 0;
392
}
392
}
393
 
393
 
394
static int
394
static int
395
gen8_render_ring_flush(struct drm_i915_gem_request *req,
395
gen8_render_ring_flush(struct drm_i915_gem_request *req,
396
		       u32 invalidate_domains, u32 flush_domains)
396
		       u32 invalidate_domains, u32 flush_domains)
397
{
397
{
398
	u32 flags = 0;
398
	u32 flags = 0;
399
	u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
399
	u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
400
	int ret;
400
	int ret;
401
 
401
 
402
	flags |= PIPE_CONTROL_CS_STALL;
402
	flags |= PIPE_CONTROL_CS_STALL;
403
 
403
 
404
	if (flush_domains) {
404
	if (flush_domains) {
405
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
405
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
406
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
406
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
407
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
407
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
408
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
408
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
409
	}
409
	}
410
	if (invalidate_domains) {
410
	if (invalidate_domains) {
411
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
411
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
412
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
412
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
413
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
413
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
414
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
414
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
415
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
415
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
416
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
416
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
417
		flags |= PIPE_CONTROL_QW_WRITE;
417
		flags |= PIPE_CONTROL_QW_WRITE;
418
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
418
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
419
 
419
 
420
		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
420
		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
421
		ret = gen8_emit_pipe_control(req,
421
		ret = gen8_emit_pipe_control(req,
422
					     PIPE_CONTROL_CS_STALL |
422
					     PIPE_CONTROL_CS_STALL |
423
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
423
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
424
					     0);
424
					     0);
425
		if (ret)
425
		if (ret)
426
			return ret;
426
			return ret;
427
	}
427
	}
428
 
428
 
429
	return gen8_emit_pipe_control(req, flags, scratch_addr);
429
	return gen8_emit_pipe_control(req, flags, scratch_addr);
430
}
430
}
431
 
431
 
432
static void ring_write_tail(struct intel_engine_cs *ring,
432
static void ring_write_tail(struct intel_engine_cs *ring,
433
			    u32 value)
433
			    u32 value)
434
{
434
{
435
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
435
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
436
	I915_WRITE_TAIL(ring, value);
436
	I915_WRITE_TAIL(ring, value);
437
}
437
}
438
 
438
 
439
u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
439
u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
440
{
440
{
441
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
441
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
442
	u64 acthd;
442
	u64 acthd;
443
 
443
 
444
	if (INTEL_INFO(ring->dev)->gen >= 8)
444
	if (INTEL_INFO(ring->dev)->gen >= 8)
445
		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
445
		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
446
					 RING_ACTHD_UDW(ring->mmio_base));
446
					 RING_ACTHD_UDW(ring->mmio_base));
447
	else if (INTEL_INFO(ring->dev)->gen >= 4)
447
	else if (INTEL_INFO(ring->dev)->gen >= 4)
448
		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
448
		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
449
	else
449
	else
450
		acthd = I915_READ(ACTHD);
450
		acthd = I915_READ(ACTHD);
451
 
451
 
452
	return acthd;
452
	return acthd;
453
}
453
}
454
 
454
 
455
static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
455
static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
456
{
456
{
457
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
457
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
458
	u32 addr;
458
	u32 addr;
459
 
459
 
460
	addr = dev_priv->status_page_dmah->busaddr;
460
	addr = dev_priv->status_page_dmah->busaddr;
461
	if (INTEL_INFO(ring->dev)->gen >= 4)
461
	if (INTEL_INFO(ring->dev)->gen >= 4)
462
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
462
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
463
	I915_WRITE(HWS_PGA, addr);
463
	I915_WRITE(HWS_PGA, addr);
464
}
464
}
465
 
465
 
466
static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
466
static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
467
{
467
{
468
	struct drm_device *dev = ring->dev;
468
	struct drm_device *dev = ring->dev;
469
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
469
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
470
	i915_reg_t mmio;
470
	i915_reg_t mmio;
471
 
471
 
472
	/* The ring status page addresses are no longer next to the rest of
472
	/* The ring status page addresses are no longer next to the rest of
473
	 * the ring registers as of gen7.
473
	 * the ring registers as of gen7.
474
	 */
474
	 */
475
	if (IS_GEN7(dev)) {
475
	if (IS_GEN7(dev)) {
476
		switch (ring->id) {
476
		switch (ring->id) {
477
		case RCS:
477
		case RCS:
478
			mmio = RENDER_HWS_PGA_GEN7;
478
			mmio = RENDER_HWS_PGA_GEN7;
479
			break;
479
			break;
480
		case BCS:
480
		case BCS:
481
			mmio = BLT_HWS_PGA_GEN7;
481
			mmio = BLT_HWS_PGA_GEN7;
482
			break;
482
			break;
483
		/*
483
		/*
484
		 * VCS2 actually doesn't exist on Gen7. Only shut up
484
		 * VCS2 actually doesn't exist on Gen7. Only shut up
485
		 * gcc switch check warning
485
		 * gcc switch check warning
486
		 */
486
		 */
487
		case VCS2:
487
		case VCS2:
488
		case VCS:
488
		case VCS:
489
			mmio = BSD_HWS_PGA_GEN7;
489
			mmio = BSD_HWS_PGA_GEN7;
490
			break;
490
			break;
491
		case VECS:
491
		case VECS:
492
			mmio = VEBOX_HWS_PGA_GEN7;
492
			mmio = VEBOX_HWS_PGA_GEN7;
493
			break;
493
			break;
494
		}
494
		}
495
	} else if (IS_GEN6(ring->dev)) {
495
	} else if (IS_GEN6(ring->dev)) {
496
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
496
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
497
	} else {
497
	} else {
498
		/* XXX: gen8 returns to sanity */
498
		/* XXX: gen8 returns to sanity */
499
		mmio = RING_HWS_PGA(ring->mmio_base);
499
		mmio = RING_HWS_PGA(ring->mmio_base);
500
	}
500
	}
501
 
501
 
502
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
502
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
503
	POSTING_READ(mmio);
503
	POSTING_READ(mmio);
504
 
504
 
505
	/*
505
	/*
506
	 * Flush the TLB for this page
506
	 * Flush the TLB for this page
507
	 *
507
	 *
508
	 * FIXME: These two bits have disappeared on gen8, so a question
508
	 * FIXME: These two bits have disappeared on gen8, so a question
509
	 * arises: do we still need this and if so how should we go about
509
	 * arises: do we still need this and if so how should we go about
510
	 * invalidating the TLB?
510
	 * invalidating the TLB?
511
	 */
511
	 */
512
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
512
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
513
		i915_reg_t reg = RING_INSTPM(ring->mmio_base);
513
		i915_reg_t reg = RING_INSTPM(ring->mmio_base);
514
 
514
 
515
		/* ring should be idle before issuing a sync flush*/
515
		/* ring should be idle before issuing a sync flush*/
516
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
516
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
517
 
517
 
518
		I915_WRITE(reg,
518
		I915_WRITE(reg,
519
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
519
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
520
					      INSTPM_SYNC_FLUSH));
520
					      INSTPM_SYNC_FLUSH));
521
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
521
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
522
			     1000))
522
			     1000))
523
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
523
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
524
				  ring->name);
524
				  ring->name);
525
	}
525
	}
526
}
526
}
527
 
527
 
528
static bool stop_ring(struct intel_engine_cs *ring)
528
static bool stop_ring(struct intel_engine_cs *ring)
529
{
529
{
530
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
530
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
531
 
531
 
532
	if (!IS_GEN2(ring->dev)) {
532
	if (!IS_GEN2(ring->dev)) {
533
		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
533
		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
534
		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
534
		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
535
			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
535
			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
536
			/* Sometimes we observe that the idle flag is not
536
			/* Sometimes we observe that the idle flag is not
537
			 * set even though the ring is empty. So double
537
			 * set even though the ring is empty. So double
538
			 * check before giving up.
538
			 * check before giving up.
539
			 */
539
			 */
540
			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
540
			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
541
				return false;
541
				return false;
542
		}
542
		}
543
	}
543
	}
544
 
544
 
545
	I915_WRITE_CTL(ring, 0);
545
	I915_WRITE_CTL(ring, 0);
546
	I915_WRITE_HEAD(ring, 0);
546
	I915_WRITE_HEAD(ring, 0);
547
	ring->write_tail(ring, 0);
547
	ring->write_tail(ring, 0);
548
 
548
 
549
	if (!IS_GEN2(ring->dev)) {
549
	if (!IS_GEN2(ring->dev)) {
550
		(void)I915_READ_CTL(ring);
550
		(void)I915_READ_CTL(ring);
551
		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
551
		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
552
	}
552
	}
553
 
553
 
554
	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
554
	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
555
}
555
}
556
 
556
 
557
static int init_ring_common(struct intel_engine_cs *ring)
557
static int init_ring_common(struct intel_engine_cs *ring)
558
{
558
{
559
	struct drm_device *dev = ring->dev;
559
	struct drm_device *dev = ring->dev;
560
	struct drm_i915_private *dev_priv = dev->dev_private;
560
	struct drm_i915_private *dev_priv = dev->dev_private;
561
	struct intel_ringbuffer *ringbuf = ring->buffer;
561
	struct intel_ringbuffer *ringbuf = ring->buffer;
562
	struct drm_i915_gem_object *obj = ringbuf->obj;
562
	struct drm_i915_gem_object *obj = ringbuf->obj;
563
	int ret = 0;
563
	int ret = 0;
564
 
564
 
565
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
565
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
566
 
566
 
567
	if (!stop_ring(ring)) {
567
	if (!stop_ring(ring)) {
568
		/* G45 ring initialization often fails to reset head to zero */
568
		/* G45 ring initialization often fails to reset head to zero */
569
		DRM_DEBUG_KMS("%s head not reset to zero "
569
		DRM_DEBUG_KMS("%s head not reset to zero "
570
			      "ctl %08x head %08x tail %08x start %08x\n",
570
			      "ctl %08x head %08x tail %08x start %08x\n",
571
			      ring->name,
571
			      ring->name,
572
			      I915_READ_CTL(ring),
572
			      I915_READ_CTL(ring),
573
			      I915_READ_HEAD(ring),
573
			      I915_READ_HEAD(ring),
574
			      I915_READ_TAIL(ring),
574
			      I915_READ_TAIL(ring),
575
			      I915_READ_START(ring));
575
			      I915_READ_START(ring));
576
 
576
 
577
		if (!stop_ring(ring)) {
577
		if (!stop_ring(ring)) {
578
			DRM_ERROR("failed to set %s head to zero "
578
			DRM_ERROR("failed to set %s head to zero "
579
				  "ctl %08x head %08x tail %08x start %08x\n",
579
				  "ctl %08x head %08x tail %08x start %08x\n",
580
				  ring->name,
580
				  ring->name,
581
				  I915_READ_CTL(ring),
581
				  I915_READ_CTL(ring),
582
				  I915_READ_HEAD(ring),
582
				  I915_READ_HEAD(ring),
583
				  I915_READ_TAIL(ring),
583
				  I915_READ_TAIL(ring),
584
				  I915_READ_START(ring));
584
				  I915_READ_START(ring));
585
			ret = -EIO;
585
			ret = -EIO;
586
			goto out;
586
			goto out;
587
		}
587
		}
588
	}
588
	}
589
 
589
 
590
	if (I915_NEED_GFX_HWS(dev))
590
	if (I915_NEED_GFX_HWS(dev))
591
		intel_ring_setup_status_page(ring);
591
		intel_ring_setup_status_page(ring);
592
	else
592
	else
593
		ring_setup_phys_status_page(ring);
593
		ring_setup_phys_status_page(ring);
594
 
594
 
595
	/* Enforce ordering by reading HEAD register back */
595
	/* Enforce ordering by reading HEAD register back */
596
	I915_READ_HEAD(ring);
596
	I915_READ_HEAD(ring);
597
 
597
 
598
	/* Initialize the ring. This must happen _after_ we've cleared the ring
598
	/* Initialize the ring. This must happen _after_ we've cleared the ring
599
	 * registers with the above sequence (the readback of the HEAD registers
599
	 * registers with the above sequence (the readback of the HEAD registers
600
	 * also enforces ordering), otherwise the hw might lose the new ring
600
	 * also enforces ordering), otherwise the hw might lose the new ring
601
	 * register values. */
601
	 * register values. */
602
	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
602
	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
603
 
603
 
604
	/* WaClearRingBufHeadRegAtInit:ctg,elk */
604
	/* WaClearRingBufHeadRegAtInit:ctg,elk */
605
	if (I915_READ_HEAD(ring))
605
	if (I915_READ_HEAD(ring))
606
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
606
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
607
			  ring->name, I915_READ_HEAD(ring));
607
			  ring->name, I915_READ_HEAD(ring));
608
	I915_WRITE_HEAD(ring, 0);
608
	I915_WRITE_HEAD(ring, 0);
609
	(void)I915_READ_HEAD(ring);
609
	(void)I915_READ_HEAD(ring);
610
 
610
 
611
	I915_WRITE_CTL(ring,
611
	I915_WRITE_CTL(ring,
612
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
612
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
613
			| RING_VALID);
613
			| RING_VALID);
614
 
614
 
615
	/* If the head is still not zero, the ring is dead */
615
	/* If the head is still not zero, the ring is dead */
616
	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
616
	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
617
		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
617
		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
618
		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
618
		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
619
		DRM_ERROR("%s initialization failed "
619
		DRM_ERROR("%s initialization failed "
620
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
620
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
621
			  ring->name,
621
			  ring->name,
622
			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
622
			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
623
			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
623
			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
624
			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
624
			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
625
		ret = -EIO;
625
		ret = -EIO;
626
		goto out;
626
		goto out;
627
	}
627
	}
628
 
628
 
629
	ringbuf->last_retired_head = -1;
629
	ringbuf->last_retired_head = -1;
630
	ringbuf->head = I915_READ_HEAD(ring);
630
	ringbuf->head = I915_READ_HEAD(ring);
631
	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
631
	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
632
	intel_ring_update_space(ringbuf);
632
	intel_ring_update_space(ringbuf);
633
 
633
 
634
	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
634
	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
635
 
635
 
636
out:
636
out:
637
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
637
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
638
 
638
 
639
	return ret;
639
	return ret;
640
}
640
}
641
 
641
 
642
void
642
void
643
intel_fini_pipe_control(struct intel_engine_cs *ring)
643
intel_fini_pipe_control(struct intel_engine_cs *ring)
644
{
644
{
645
	struct drm_device *dev = ring->dev;
645
	struct drm_device *dev = ring->dev;
646
 
646
 
647
	if (ring->scratch.obj == NULL)
647
	if (ring->scratch.obj == NULL)
648
		return;
648
		return;
649
 
649
 
650
	if (INTEL_INFO(dev)->gen >= 5) {
650
	if (INTEL_INFO(dev)->gen >= 5) {
651
		kunmap(sg_page(ring->scratch.obj->pages->sgl));
651
		kunmap(sg_page(ring->scratch.obj->pages->sgl));
652
		i915_gem_object_ggtt_unpin(ring->scratch.obj);
652
		i915_gem_object_ggtt_unpin(ring->scratch.obj);
653
	}
653
	}
654
 
654
 
655
	drm_gem_object_unreference(&ring->scratch.obj->base);
655
	drm_gem_object_unreference(&ring->scratch.obj->base);
656
	ring->scratch.obj = NULL;
656
	ring->scratch.obj = NULL;
657
}
657
}
658
 
658
 
659
int
659
int
660
intel_init_pipe_control(struct intel_engine_cs *ring)
660
intel_init_pipe_control(struct intel_engine_cs *ring)
661
{
661
{
662
	int ret;
662
	int ret;
663
 
663
 
664
	WARN_ON(ring->scratch.obj);
664
	WARN_ON(ring->scratch.obj);
665
 
665
 
666
	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
666
	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
667
	if (ring->scratch.obj == NULL) {
667
	if (ring->scratch.obj == NULL) {
668
		DRM_ERROR("Failed to allocate seqno page\n");
668
		DRM_ERROR("Failed to allocate seqno page\n");
669
		ret = -ENOMEM;
669
		ret = -ENOMEM;
670
		goto err;
670
		goto err;
671
	}
671
	}
672
 
672
 
673
	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
673
	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
674
	if (ret)
674
	if (ret)
675
		goto err_unref;
675
		goto err_unref;
676
 
676
 
677
	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
677
	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
678
	if (ret)
678
	if (ret)
679
		goto err_unref;
679
		goto err_unref;
680
 
680
 
681
	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
681
	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
682
	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
682
	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
683
	if (ring->scratch.cpu_page == NULL) {
683
	if (ring->scratch.cpu_page == NULL) {
684
		ret = -ENOMEM;
684
		ret = -ENOMEM;
685
		goto err_unpin;
685
		goto err_unpin;
686
	}
686
	}
687
 
687
 
688
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
688
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
689
			 ring->name, ring->scratch.gtt_offset);
689
			 ring->name, ring->scratch.gtt_offset);
690
	return 0;
690
	return 0;
691
 
691
 
692
err_unpin:
692
err_unpin:
693
	i915_gem_object_ggtt_unpin(ring->scratch.obj);
693
	i915_gem_object_ggtt_unpin(ring->scratch.obj);
694
err_unref:
694
err_unref:
695
	drm_gem_object_unreference(&ring->scratch.obj->base);
695
	drm_gem_object_unreference(&ring->scratch.obj->base);
696
err:
696
err:
697
	return ret;
697
	return ret;
698
}
698
}
699
 
699
 
700
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
700
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
701
{
701
{
702
	int ret, i;
702
	int ret, i;
703
	struct intel_engine_cs *ring = req->ring;
703
	struct intel_engine_cs *ring = req->ring;
704
	struct drm_device *dev = ring->dev;
704
	struct drm_device *dev = ring->dev;
705
	struct drm_i915_private *dev_priv = dev->dev_private;
705
	struct drm_i915_private *dev_priv = dev->dev_private;
706
	struct i915_workarounds *w = &dev_priv->workarounds;
706
	struct i915_workarounds *w = &dev_priv->workarounds;
707
 
707
 
708
	if (w->count == 0)
708
	if (w->count == 0)
709
		return 0;
709
		return 0;
710
 
710
 
711
	ring->gpu_caches_dirty = true;
711
	ring->gpu_caches_dirty = true;
712
	ret = intel_ring_flush_all_caches(req);
712
	ret = intel_ring_flush_all_caches(req);
713
	if (ret)
713
	if (ret)
714
		return ret;
714
		return ret;
715
 
715
 
716
	ret = intel_ring_begin(req, (w->count * 2 + 2));
716
	ret = intel_ring_begin(req, (w->count * 2 + 2));
717
	if (ret)
717
	if (ret)
718
		return ret;
718
		return ret;
719
 
719
 
720
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
720
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
721
	for (i = 0; i < w->count; i++) {
721
	for (i = 0; i < w->count; i++) {
722
		intel_ring_emit_reg(ring, w->reg[i].addr);
722
		intel_ring_emit_reg(ring, w->reg[i].addr);
723
		intel_ring_emit(ring, w->reg[i].value);
723
		intel_ring_emit(ring, w->reg[i].value);
724
	}
724
	}
725
	intel_ring_emit(ring, MI_NOOP);
725
	intel_ring_emit(ring, MI_NOOP);
726
 
726
 
727
	intel_ring_advance(ring);
727
	intel_ring_advance(ring);
728
 
728
 
729
	ring->gpu_caches_dirty = true;
729
	ring->gpu_caches_dirty = true;
730
	ret = intel_ring_flush_all_caches(req);
730
	ret = intel_ring_flush_all_caches(req);
731
	if (ret)
731
	if (ret)
732
		return ret;
732
		return ret;
733
 
733
 
734
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
734
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
735
 
735
 
736
	return 0;
736
	return 0;
737
}
737
}
738
 
738
 
739
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
739
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
740
{
740
{
741
	int ret;
741
	int ret;
742
 
742
 
743
	ret = intel_ring_workarounds_emit(req);
743
	ret = intel_ring_workarounds_emit(req);
744
	if (ret != 0)
744
	if (ret != 0)
745
		return ret;
745
		return ret;
746
 
746
 
747
	ret = i915_gem_render_state_init(req);
747
	ret = i915_gem_render_state_init(req);
748
	if (ret)
748
	if (ret)
749
		DRM_ERROR("init render state: %d\n", ret);
-
 
750
 
-
 
751
	return ret;
749
		return ret;
-
 
750
 
-
 
751
	return 0;
752
}
752
}
753
 
753
 
754
static int wa_add(struct drm_i915_private *dev_priv,
754
static int wa_add(struct drm_i915_private *dev_priv,
755
		  i915_reg_t addr,
755
		  i915_reg_t addr,
756
		  const u32 mask, const u32 val)
756
		  const u32 mask, const u32 val)
757
{
757
{
758
	const u32 idx = dev_priv->workarounds.count;
758
	const u32 idx = dev_priv->workarounds.count;
759
 
759
 
760
	if (WARN_ON(idx >= I915_MAX_WA_REGS))
760
	if (WARN_ON(idx >= I915_MAX_WA_REGS))
761
		return -ENOSPC;
761
		return -ENOSPC;
762
 
762
 
763
	dev_priv->workarounds.reg[idx].addr = addr;
763
	dev_priv->workarounds.reg[idx].addr = addr;
764
	dev_priv->workarounds.reg[idx].value = val;
764
	dev_priv->workarounds.reg[idx].value = val;
765
	dev_priv->workarounds.reg[idx].mask = mask;
765
	dev_priv->workarounds.reg[idx].mask = mask;
766
 
766
 
767
	dev_priv->workarounds.count++;
767
	dev_priv->workarounds.count++;
768
 
768
 
769
	return 0;
769
	return 0;
770
}
770
}
771
 
771
 
772
#define WA_REG(addr, mask, val) do { \
772
#define WA_REG(addr, mask, val) do { \
773
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
773
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
774
		if (r) \
774
		if (r) \
775
			return r; \
775
			return r; \
776
	} while (0)
776
	} while (0)
777
 
777
 
778
#define WA_SET_BIT_MASKED(addr, mask) \
778
#define WA_SET_BIT_MASKED(addr, mask) \
779
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
779
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
780
 
780
 
781
#define WA_CLR_BIT_MASKED(addr, mask) \
781
#define WA_CLR_BIT_MASKED(addr, mask) \
782
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
782
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
783
 
783
 
784
#define WA_SET_FIELD_MASKED(addr, mask, value) \
784
#define WA_SET_FIELD_MASKED(addr, mask, value) \
785
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
785
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
786
 
786
 
787
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
787
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
788
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
788
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
789
 
789
 
790
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
790
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
-
 
791
 
-
 
792
static int wa_ring_whitelist_reg(struct intel_engine_cs *ring, i915_reg_t reg)
-
 
793
{
-
 
794
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
-
 
795
	struct i915_workarounds *wa = &dev_priv->workarounds;
-
 
796
	const uint32_t index = wa->hw_whitelist_count[ring->id];
-
 
797
 
-
 
798
	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
-
 
799
		return -EINVAL;
-
 
800
 
-
 
801
	WA_WRITE(RING_FORCE_TO_NONPRIV(ring->mmio_base, index),
-
 
802
		 i915_mmio_reg_offset(reg));
-
 
803
	wa->hw_whitelist_count[ring->id]++;
-
 
804
 
-
 
805
	return 0;
-
 
806
}
791
 
807
 
792
static int gen8_init_workarounds(struct intel_engine_cs *ring)
808
static int gen8_init_workarounds(struct intel_engine_cs *ring)
793
{
809
{
794
	struct drm_device *dev = ring->dev;
810
	struct drm_device *dev = ring->dev;
795
	struct drm_i915_private *dev_priv = dev->dev_private;
811
	struct drm_i915_private *dev_priv = dev->dev_private;
796
 
812
 
797
	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
813
	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
798
 
814
 
799
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
815
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
800
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
816
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
801
 
817
 
802
	/* WaDisablePartialInstShootdown:bdw,chv */
818
	/* WaDisablePartialInstShootdown:bdw,chv */
803
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
819
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
804
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
820
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
805
 
821
 
806
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
822
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
807
	 * workaround for for a possible hang in the unlikely event a TLB
823
	 * workaround for for a possible hang in the unlikely event a TLB
808
	 * invalidation occurs during a PSD flush.
824
	 * invalidation occurs during a PSD flush.
809
	 */
825
	 */
810
	/* WaForceEnableNonCoherent:bdw,chv */
826
	/* WaForceEnableNonCoherent:bdw,chv */
811
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
827
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
812
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
828
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
813
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
829
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
814
			  HDC_FORCE_NON_COHERENT);
830
			  HDC_FORCE_NON_COHERENT);
815
 
831
 
816
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
832
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
817
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
833
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
818
	 *  polygons in the same 8x4 pixel/sample area to be processed without
834
	 *  polygons in the same 8x4 pixel/sample area to be processed without
819
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
835
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
820
	 *  buffer."
836
	 *  buffer."
821
	 *
837
	 *
822
	 * This optimization is off by default for BDW and CHV; turn it on.
838
	 * This optimization is off by default for BDW and CHV; turn it on.
823
	 */
839
	 */
824
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
840
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
825
 
841
 
826
	/* Wa4x4STCOptimizationDisable:bdw,chv */
842
	/* Wa4x4STCOptimizationDisable:bdw,chv */
827
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
843
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
828
 
844
 
829
	/*
845
	/*
830
	 * BSpec recommends 8x4 when MSAA is used,
846
	 * BSpec recommends 8x4 when MSAA is used,
831
	 * however in practice 16x4 seems fastest.
847
	 * however in practice 16x4 seems fastest.
832
	 *
848
	 *
833
	 * Note that PS/WM thread counts depend on the WIZ hashing
849
	 * Note that PS/WM thread counts depend on the WIZ hashing
834
	 * disable bit, which we don't touch here, but it's good
850
	 * disable bit, which we don't touch here, but it's good
835
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
851
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
836
	 */
852
	 */
837
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
853
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
838
			    GEN6_WIZ_HASHING_MASK,
854
			    GEN6_WIZ_HASHING_MASK,
839
			    GEN6_WIZ_HASHING_16x4);
855
			    GEN6_WIZ_HASHING_16x4);
840
 
856
 
841
	return 0;
857
	return 0;
842
}
858
}
843
 
859
 
844
static int bdw_init_workarounds(struct intel_engine_cs *ring)
860
static int bdw_init_workarounds(struct intel_engine_cs *ring)
845
{
861
{
846
	int ret;
862
	int ret;
847
	struct drm_device *dev = ring->dev;
863
	struct drm_device *dev = ring->dev;
848
	struct drm_i915_private *dev_priv = dev->dev_private;
864
	struct drm_i915_private *dev_priv = dev->dev_private;
849
 
865
 
850
	ret = gen8_init_workarounds(ring);
866
	ret = gen8_init_workarounds(ring);
851
	if (ret)
867
	if (ret)
852
		return ret;
868
		return ret;
853
 
869
 
854
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
870
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
855
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
871
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
856
 
872
 
857
	/* WaDisableDopClockGating:bdw */
873
	/* WaDisableDopClockGating:bdw */
858
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
874
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
859
			  DOP_CLOCK_GATING_DISABLE);
875
			  DOP_CLOCK_GATING_DISABLE);
860
 
876
 
861
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
877
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
862
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
878
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
863
 
879
 
864
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
880
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
865
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
881
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
866
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
882
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
867
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
883
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
868
			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
884
			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
869
 
885
 
870
	return 0;
886
	return 0;
871
}
887
}
872
 
888
 
873
static int chv_init_workarounds(struct intel_engine_cs *ring)
889
static int chv_init_workarounds(struct intel_engine_cs *ring)
874
{
890
{
875
	int ret;
891
	int ret;
876
	struct drm_device *dev = ring->dev;
892
	struct drm_device *dev = ring->dev;
877
	struct drm_i915_private *dev_priv = dev->dev_private;
893
	struct drm_i915_private *dev_priv = dev->dev_private;
878
 
894
 
879
	ret = gen8_init_workarounds(ring);
895
	ret = gen8_init_workarounds(ring);
880
	if (ret)
896
	if (ret)
881
		return ret;
897
		return ret;
882
 
898
 
883
	/* WaDisableThreadStallDopClockGating:chv */
899
	/* WaDisableThreadStallDopClockGating:chv */
884
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
900
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
885
 
901
 
886
	/* Improve HiZ throughput on CHV. */
902
	/* Improve HiZ throughput on CHV. */
887
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
903
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
888
 
904
 
889
	return 0;
905
	return 0;
890
}
906
}
891
 
907
 
892
static int gen9_init_workarounds(struct intel_engine_cs *ring)
908
static int gen9_init_workarounds(struct intel_engine_cs *ring)
893
{
909
{
894
	struct drm_device *dev = ring->dev;
910
	struct drm_device *dev = ring->dev;
895
	struct drm_i915_private *dev_priv = dev->dev_private;
911
	struct drm_i915_private *dev_priv = dev->dev_private;
896
	uint32_t tmp;
912
	uint32_t tmp;
-
 
913
	int ret;
897
 
914
 
898
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
915
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
899
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
916
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
900
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
917
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
901
 
918
 
902
	/* WaDisableKillLogic:bxt,skl */
919
	/* WaDisableKillLogic:bxt,skl */
903
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
920
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
904
		   ECOCHK_DIS_TLB);
921
		   ECOCHK_DIS_TLB);
905
 
922
 
906
	/* WaDisablePartialInstShootdown:skl,bxt */
923
	/* WaDisablePartialInstShootdown:skl,bxt */
907
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
924
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
908
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
925
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
909
 
926
 
910
	/* Syncing dependencies between camera and graphics:skl,bxt */
927
	/* Syncing dependencies between camera and graphics:skl,bxt */
911
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
928
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
912
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
929
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
913
 
930
 
914
		/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
931
	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
915
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
932
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
916
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
933
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
917
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
934
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
918
				  GEN9_DG_MIRROR_FIX_ENABLE);
935
				  GEN9_DG_MIRROR_FIX_ENABLE);
919
 
936
 
920
		/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
937
	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
921
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
938
	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
922
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
939
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
923
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
940
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
924
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
941
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
925
		/*
942
		/*
926
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
943
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
927
		 * but we do that in per ctx batchbuffer as there is an issue
944
		 * but we do that in per ctx batchbuffer as there is an issue
928
		 * with this register not getting restored on ctx restore
945
		 * with this register not getting restored on ctx restore
929
		 */
946
		 */
930
	}
947
	}
931
 
948
 
932
		/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
949
	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
933
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
950
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
934
		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
951
		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
935
				  GEN9_ENABLE_YV12_BUGFIX);
952
				  GEN9_ENABLE_YV12_BUGFIX);
936
 
953
 
937
	/* Wa4x4STCOptimizationDisable:skl,bxt */
954
	/* Wa4x4STCOptimizationDisable:skl,bxt */
938
	/* WaDisablePartialResolveInVc:skl,bxt */
955
	/* WaDisablePartialResolveInVc:skl,bxt */
939
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
956
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
940
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
957
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
941
 
958
 
942
	/* WaCcsTlbPrefetchDisable:skl,bxt */
959
	/* WaCcsTlbPrefetchDisable:skl,bxt */
943
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
960
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
944
			  GEN9_CCS_TLB_PREFETCH_ENABLE);
961
			  GEN9_CCS_TLB_PREFETCH_ENABLE);
945
 
962
 
946
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
963
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
947
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
964
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
948
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
965
	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
949
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
966
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
950
				  PIXEL_MASK_CAMMING_DISABLE);
967
				  PIXEL_MASK_CAMMING_DISABLE);
951
 
968
 
952
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
969
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
953
	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
970
	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
954
	if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
971
	if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
955
	    IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
972
	    IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
956
		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
973
		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
957
	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
974
	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
958
 
975
 
959
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
976
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
960
	if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
977
	if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
961
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
978
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
962
				  GEN8_SAMPLER_POWER_BYPASS_DIS);
979
				  GEN8_SAMPLER_POWER_BYPASS_DIS);
963
 
980
 
964
	/* WaDisableSTUnitPowerOptimization:skl,bxt */
981
	/* WaDisableSTUnitPowerOptimization:skl,bxt */
965
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
982
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
-
 
983
 
-
 
984
	/* WaOCLCoherentLineFlush:skl,bxt */
-
 
985
	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
-
 
986
				    GEN8_LQSC_FLUSH_COHERENT_LINES));
-
 
987
 
-
 
988
	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
-
 
989
	ret= wa_ring_whitelist_reg(ring, GEN8_CS_CHICKEN1);
-
 
990
	if (ret)
-
 
991
		return ret;
-
 
992
 
-
 
993
	/* WaAllowUMDToModifyHDCChicken1:skl,bxt */
-
 
994
	ret = wa_ring_whitelist_reg(ring, GEN8_HDC_CHICKEN1);
-
 
995
	if (ret)
-
 
996
		return ret;
966
 
997
 
967
	return 0;
998
	return 0;
968
}
999
}
969
 
1000
 
970
static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
1001
static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
971
{
1002
{
972
	struct drm_device *dev = ring->dev;
1003
	struct drm_device *dev = ring->dev;
973
	struct drm_i915_private *dev_priv = dev->dev_private;
1004
	struct drm_i915_private *dev_priv = dev->dev_private;
974
	u8 vals[3] = { 0, 0, 0 };
1005
	u8 vals[3] = { 0, 0, 0 };
975
	unsigned int i;
1006
	unsigned int i;
976
 
1007
 
977
	for (i = 0; i < 3; i++) {
1008
	for (i = 0; i < 3; i++) {
978
		u8 ss;
1009
		u8 ss;
979
 
1010
 
980
		/*
1011
		/*
981
		 * Only consider slices where one, and only one, subslice has 7
1012
		 * Only consider slices where one, and only one, subslice has 7
982
		 * EUs
1013
		 * EUs
983
		 */
1014
		 */
984
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1015
		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
985
			continue;
1016
			continue;
986
 
1017
 
987
		/*
1018
		/*
988
		 * subslice_7eu[i] != 0 (because of the check above) and
1019
		 * subslice_7eu[i] != 0 (because of the check above) and
989
		 * ss_max == 4 (maximum number of subslices possible per slice)
1020
		 * ss_max == 4 (maximum number of subslices possible per slice)
990
		 *
1021
		 *
991
		 * ->    0 <= ss <= 3;
1022
		 * ->    0 <= ss <= 3;
992
		 */
1023
		 */
993
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1024
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
994
		vals[i] = 3 - ss;
1025
		vals[i] = 3 - ss;
995
	}
1026
	}
996
 
1027
 
997
	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1028
	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
998
		return 0;
1029
		return 0;
999
 
1030
 
1000
	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1031
	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1001
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1032
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1002
			    GEN9_IZ_HASHING_MASK(2) |
1033
			    GEN9_IZ_HASHING_MASK(2) |
1003
			    GEN9_IZ_HASHING_MASK(1) |
1034
			    GEN9_IZ_HASHING_MASK(1) |
1004
			    GEN9_IZ_HASHING_MASK(0),
1035
			    GEN9_IZ_HASHING_MASK(0),
1005
			    GEN9_IZ_HASHING(2, vals[2]) |
1036
			    GEN9_IZ_HASHING(2, vals[2]) |
1006
			    GEN9_IZ_HASHING(1, vals[1]) |
1037
			    GEN9_IZ_HASHING(1, vals[1]) |
1007
			    GEN9_IZ_HASHING(0, vals[0]));
1038
			    GEN9_IZ_HASHING(0, vals[0]));
1008
 
1039
 
1009
	return 0;
1040
	return 0;
1010
}
1041
}
1011
 
1042
 
1012
static int skl_init_workarounds(struct intel_engine_cs *ring)
1043
static int skl_init_workarounds(struct intel_engine_cs *ring)
1013
{
1044
{
1014
	int ret;
1045
	int ret;
1015
	struct drm_device *dev = ring->dev;
1046
	struct drm_device *dev = ring->dev;
1016
	struct drm_i915_private *dev_priv = dev->dev_private;
1047
	struct drm_i915_private *dev_priv = dev->dev_private;
1017
 
1048
 
1018
	ret = gen9_init_workarounds(ring);
1049
	ret = gen9_init_workarounds(ring);
1019
	if (ret)
1050
	if (ret)
1020
		return ret;
1051
		return ret;
-
 
1052
 
-
 
1053
	/*
-
 
1054
	 * Actual WA is to disable percontext preemption granularity control
-
 
1055
	 * until D0 which is the default case so this is equivalent to
-
 
1056
	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
-
 
1057
	 */
-
 
1058
	if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
-
 
1059
		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
-
 
1060
			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
-
 
1061
	}
1021
 
1062
 
1022
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1063
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1023
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1064
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1024
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1065
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1025
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1066
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1026
	}
1067
	}
1027
 
1068
 
1028
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1069
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1029
	 * involving this register should also be added to WA batch as required.
1070
	 * involving this register should also be added to WA batch as required.
1030
	 */
1071
	 */
1031
	if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1072
	if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1032
		/* WaDisableLSQCROPERFforOCL:skl */
1073
		/* WaDisableLSQCROPERFforOCL:skl */
1033
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1074
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1034
			   GEN8_LQSC_RO_PERF_DIS);
1075
			   GEN8_LQSC_RO_PERF_DIS);
1035
 
1076
 
1036
	/* WaEnableGapsTsvCreditFix:skl */
1077
	/* WaEnableGapsTsvCreditFix:skl */
1037
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1078
	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1038
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1079
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1039
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1080
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1040
	}
1081
	}
1041
 
1082
 
1042
	/* WaDisablePowerCompilerClockGating:skl */
1083
	/* WaDisablePowerCompilerClockGating:skl */
1043
	if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1084
	if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1044
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1085
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1045
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1086
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1046
 
1087
 
1047
	/* This is tied to WaForceContextSaveRestoreNonCoherent */
1088
	/* This is tied to WaForceContextSaveRestoreNonCoherent */
1048
	if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
1089
	if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
1049
		/*
1090
		/*
1050
		 *Use Force Non-Coherent whenever executing a 3D context. This
1091
		 *Use Force Non-Coherent whenever executing a 3D context. This
1051
		 * is a workaround for a possible hang in the unlikely event
1092
		 * is a workaround for a possible hang in the unlikely event
1052
		 * a TLB invalidation occurs during a PSD flush.
1093
		 * a TLB invalidation occurs during a PSD flush.
1053
		 */
1094
		 */
1054
		/* WaForceEnableNonCoherent:skl */
1095
		/* WaForceEnableNonCoherent:skl */
1055
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1096
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1056
				  HDC_FORCE_NON_COHERENT);
1097
				  HDC_FORCE_NON_COHERENT);
1057
 
1098
 
1058
		/* WaDisableHDCInvalidation:skl */
1099
		/* WaDisableHDCInvalidation:skl */
1059
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1100
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1060
			   BDW_DISABLE_HDC_INVALIDATION);
1101
			   BDW_DISABLE_HDC_INVALIDATION);
1061
	}
1102
	}
1062
 
1103
 
1063
		/* WaBarrierPerformanceFixDisable:skl */
1104
	/* WaBarrierPerformanceFixDisable:skl */
1064
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1105
	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1065
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1106
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1066
				  HDC_FENCE_DEST_SLM_DISABLE |
1107
				  HDC_FENCE_DEST_SLM_DISABLE |
1067
				  HDC_BARRIER_PERFORMANCE_DISABLE);
1108
				  HDC_BARRIER_PERFORMANCE_DISABLE);
1068
 
1109
 
1069
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1110
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1070
	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1111
	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1071
		WA_SET_BIT_MASKED(
1112
		WA_SET_BIT_MASKED(
1072
			GEN7_HALF_SLICE_CHICKEN1,
1113
			GEN7_HALF_SLICE_CHICKEN1,
1073
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1114
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
-
 
1115
 
-
 
1116
	/* WaDisableLSQCROPERFforOCL:skl */
-
 
1117
	ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
-
 
1118
	if (ret)
-
 
1119
		return ret;
1074
 
1120
 
1075
	return skl_tune_iz_hashing(ring);
1121
	return skl_tune_iz_hashing(ring);
1076
}
1122
}
1077
 
1123
 
1078
static int bxt_init_workarounds(struct intel_engine_cs *ring)
1124
static int bxt_init_workarounds(struct intel_engine_cs *ring)
1079
{
1125
{
1080
	int ret;
1126
	int ret;
1081
	struct drm_device *dev = ring->dev;
1127
	struct drm_device *dev = ring->dev;
1082
	struct drm_i915_private *dev_priv = dev->dev_private;
1128
	struct drm_i915_private *dev_priv = dev->dev_private;
1083
 
1129
 
1084
	ret = gen9_init_workarounds(ring);
1130
	ret = gen9_init_workarounds(ring);
1085
	if (ret)
1131
	if (ret)
1086
		return ret;
1132
		return ret;
1087
 
1133
 
1088
	/* WaStoreMultiplePTEenable:bxt */
1134
	/* WaStoreMultiplePTEenable:bxt */
1089
	/* This is a requirement according to Hardware specification */
1135
	/* This is a requirement according to Hardware specification */
1090
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1136
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1091
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1137
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1092
 
1138
 
1093
	/* WaSetClckGatingDisableMedia:bxt */
1139
	/* WaSetClckGatingDisableMedia:bxt */
1094
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1140
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1095
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1141
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1096
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1142
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1097
	}
1143
	}
1098
 
1144
 
1099
	/* WaDisableThreadStallDopClockGating:bxt */
1145
	/* WaDisableThreadStallDopClockGating:bxt */
1100
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1146
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1101
			  STALL_DOP_GATING_DISABLE);
1147
			  STALL_DOP_GATING_DISABLE);
1102
 
1148
 
1103
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1149
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1104
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1150
	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1105
		WA_SET_BIT_MASKED(
1151
		WA_SET_BIT_MASKED(
1106
			GEN7_HALF_SLICE_CHICKEN1,
1152
			GEN7_HALF_SLICE_CHICKEN1,
1107
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1153
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1108
	}
1154
	}
-
 
1155
 
-
 
1156
	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
-
 
1157
	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
-
 
1158
	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
-
 
1159
	/* WaDisableLSQCROPERFforOCL:bxt */
-
 
1160
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
-
 
1161
		ret = wa_ring_whitelist_reg(ring, GEN9_CS_DEBUG_MODE1);
-
 
1162
		if (ret)
-
 
1163
			return ret;
-
 
1164
 
-
 
1165
		ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
-
 
1166
		if (ret)
-
 
1167
			return ret;
-
 
1168
	}
1109
 
1169
 
1110
	return 0;
1170
	return 0;
1111
}
1171
}
1112
 
1172
 
1113
int init_workarounds_ring(struct intel_engine_cs *ring)
1173
int init_workarounds_ring(struct intel_engine_cs *ring)
1114
{
1174
{
1115
	struct drm_device *dev = ring->dev;
1175
	struct drm_device *dev = ring->dev;
1116
	struct drm_i915_private *dev_priv = dev->dev_private;
1176
	struct drm_i915_private *dev_priv = dev->dev_private;
1117
 
1177
 
1118
	WARN_ON(ring->id != RCS);
1178
	WARN_ON(ring->id != RCS);
1119
 
1179
 
1120
	dev_priv->workarounds.count = 0;
1180
	dev_priv->workarounds.count = 0;
-
 
1181
	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1121
 
1182
 
1122
	if (IS_BROADWELL(dev))
1183
	if (IS_BROADWELL(dev))
1123
		return bdw_init_workarounds(ring);
1184
		return bdw_init_workarounds(ring);
1124
 
1185
 
1125
	if (IS_CHERRYVIEW(dev))
1186
	if (IS_CHERRYVIEW(dev))
1126
		return chv_init_workarounds(ring);
1187
		return chv_init_workarounds(ring);
1127
 
1188
 
1128
	if (IS_SKYLAKE(dev))
1189
	if (IS_SKYLAKE(dev))
1129
		return skl_init_workarounds(ring);
1190
		return skl_init_workarounds(ring);
1130
 
1191
 
1131
	if (IS_BROXTON(dev))
1192
	if (IS_BROXTON(dev))
1132
		return bxt_init_workarounds(ring);
1193
		return bxt_init_workarounds(ring);
1133
 
1194
 
1134
	return 0;
1195
	return 0;
1135
}
1196
}
1136
 
1197
 
1137
static int init_render_ring(struct intel_engine_cs *ring)
1198
static int init_render_ring(struct intel_engine_cs *ring)
1138
{
1199
{
1139
	struct drm_device *dev = ring->dev;
1200
	struct drm_device *dev = ring->dev;
1140
	struct drm_i915_private *dev_priv = dev->dev_private;
1201
	struct drm_i915_private *dev_priv = dev->dev_private;
1141
	int ret = init_ring_common(ring);
1202
	int ret = init_ring_common(ring);
1142
	if (ret)
1203
	if (ret)
1143
		return ret;
1204
		return ret;
1144
 
1205
 
1145
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1206
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1146
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1207
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1147
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1208
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1148
 
1209
 
1149
	/* We need to disable the AsyncFlip performance optimisations in order
1210
	/* We need to disable the AsyncFlip performance optimisations in order
1150
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1211
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1151
	 * programmed to '1' on all products.
1212
	 * programmed to '1' on all products.
1152
	 *
1213
	 *
1153
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1214
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1154
	 */
1215
	 */
1155
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1216
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1156
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1217
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1157
 
1218
 
1158
	/* Required for the hardware to program scanline values for waiting */
1219
	/* Required for the hardware to program scanline values for waiting */
1159
	/* WaEnableFlushTlbInvalidationMode:snb */
1220
	/* WaEnableFlushTlbInvalidationMode:snb */
1160
	if (INTEL_INFO(dev)->gen == 6)
1221
	if (INTEL_INFO(dev)->gen == 6)
1161
		I915_WRITE(GFX_MODE,
1222
		I915_WRITE(GFX_MODE,
1162
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1223
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1163
 
1224
 
1164
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1225
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1165
	if (IS_GEN7(dev))
1226
	if (IS_GEN7(dev))
1166
		I915_WRITE(GFX_MODE_GEN7,
1227
		I915_WRITE(GFX_MODE_GEN7,
1167
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1228
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1168
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1229
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1169
 
1230
 
1170
	if (IS_GEN6(dev)) {
1231
	if (IS_GEN6(dev)) {
1171
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1232
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1172
		 * "If this bit is set, STCunit will have LRA as replacement
1233
		 * "If this bit is set, STCunit will have LRA as replacement
1173
		 *  policy. [...] This bit must be reset.  LRA replacement
1234
		 *  policy. [...] This bit must be reset.  LRA replacement
1174
		 *  policy is not supported."
1235
		 *  policy is not supported."
1175
		 */
1236
		 */
1176
		I915_WRITE(CACHE_MODE_0,
1237
		I915_WRITE(CACHE_MODE_0,
1177
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1238
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1178
	}
1239
	}
1179
 
1240
 
1180
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1241
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1181
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1242
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1182
 
1243
 
1183
	if (HAS_L3_DPF(dev))
1244
	if (HAS_L3_DPF(dev))
1184
		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1245
		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1185
 
1246
 
1186
	return init_workarounds_ring(ring);
1247
	return init_workarounds_ring(ring);
1187
}
1248
}
1188
 
1249
 
1189
static void render_ring_cleanup(struct intel_engine_cs *ring)
1250
static void render_ring_cleanup(struct intel_engine_cs *ring)
1190
{
1251
{
1191
	struct drm_device *dev = ring->dev;
1252
	struct drm_device *dev = ring->dev;
1192
	struct drm_i915_private *dev_priv = dev->dev_private;
1253
	struct drm_i915_private *dev_priv = dev->dev_private;
1193
 
1254
 
1194
	if (dev_priv->semaphore_obj) {
1255
	if (dev_priv->semaphore_obj) {
1195
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1256
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1196
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1257
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1197
		dev_priv->semaphore_obj = NULL;
1258
		dev_priv->semaphore_obj = NULL;
1198
	}
1259
	}
1199
 
1260
 
1200
	intel_fini_pipe_control(ring);
1261
	intel_fini_pipe_control(ring);
1201
}
1262
}
1202
 
1263
 
1203
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1264
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1204
			   unsigned int num_dwords)
1265
			   unsigned int num_dwords)
1205
{
1266
{
1206
#define MBOX_UPDATE_DWORDS 8
1267
#define MBOX_UPDATE_DWORDS 8
1207
	struct intel_engine_cs *signaller = signaller_req->ring;
1268
	struct intel_engine_cs *signaller = signaller_req->ring;
1208
	struct drm_device *dev = signaller->dev;
1269
	struct drm_device *dev = signaller->dev;
1209
	struct drm_i915_private *dev_priv = dev->dev_private;
1270
	struct drm_i915_private *dev_priv = dev->dev_private;
1210
	struct intel_engine_cs *waiter;
1271
	struct intel_engine_cs *waiter;
1211
	int i, ret, num_rings;
1272
	int i, ret, num_rings;
1212
 
1273
 
1213
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1274
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1214
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1275
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1215
#undef MBOX_UPDATE_DWORDS
1276
#undef MBOX_UPDATE_DWORDS
1216
 
1277
 
1217
	ret = intel_ring_begin(signaller_req, num_dwords);
1278
	ret = intel_ring_begin(signaller_req, num_dwords);
1218
	if (ret)
1279
	if (ret)
1219
		return ret;
1280
		return ret;
1220
 
1281
 
1221
	for_each_ring(waiter, dev_priv, i) {
1282
	for_each_ring(waiter, dev_priv, i) {
1222
		u32 seqno;
1283
		u32 seqno;
1223
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1284
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1224
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1285
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1225
			continue;
1286
			continue;
1226
 
1287
 
1227
		seqno = i915_gem_request_get_seqno(signaller_req);
1288
		seqno = i915_gem_request_get_seqno(signaller_req);
1228
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1289
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1229
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1290
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1230
					   PIPE_CONTROL_QW_WRITE |
1291
					   PIPE_CONTROL_QW_WRITE |
1231
					   PIPE_CONTROL_FLUSH_ENABLE);
1292
					   PIPE_CONTROL_FLUSH_ENABLE);
1232
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1293
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1233
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1294
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1234
		intel_ring_emit(signaller, seqno);
1295
		intel_ring_emit(signaller, seqno);
1235
		intel_ring_emit(signaller, 0);
1296
		intel_ring_emit(signaller, 0);
1236
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1297
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1237
					   MI_SEMAPHORE_TARGET(waiter->id));
1298
					   MI_SEMAPHORE_TARGET(waiter->id));
1238
		intel_ring_emit(signaller, 0);
1299
		intel_ring_emit(signaller, 0);
1239
	}
1300
	}
1240
 
1301
 
1241
	return 0;
1302
	return 0;
1242
}
1303
}
1243
 
1304
 
1244
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1305
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1245
			   unsigned int num_dwords)
1306
			   unsigned int num_dwords)
1246
{
1307
{
1247
#define MBOX_UPDATE_DWORDS 6
1308
#define MBOX_UPDATE_DWORDS 6
1248
	struct intel_engine_cs *signaller = signaller_req->ring;
1309
	struct intel_engine_cs *signaller = signaller_req->ring;
1249
	struct drm_device *dev = signaller->dev;
1310
	struct drm_device *dev = signaller->dev;
1250
	struct drm_i915_private *dev_priv = dev->dev_private;
1311
	struct drm_i915_private *dev_priv = dev->dev_private;
1251
	struct intel_engine_cs *waiter;
1312
	struct intel_engine_cs *waiter;
1252
	int i, ret, num_rings;
1313
	int i, ret, num_rings;
1253
 
1314
 
1254
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1315
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1255
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1316
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1256
#undef MBOX_UPDATE_DWORDS
1317
#undef MBOX_UPDATE_DWORDS
1257
 
1318
 
1258
	ret = intel_ring_begin(signaller_req, num_dwords);
1319
	ret = intel_ring_begin(signaller_req, num_dwords);
1259
	if (ret)
1320
	if (ret)
1260
		return ret;
1321
		return ret;
1261
 
1322
 
1262
	for_each_ring(waiter, dev_priv, i) {
1323
	for_each_ring(waiter, dev_priv, i) {
1263
		u32 seqno;
1324
		u32 seqno;
1264
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1325
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1265
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1326
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1266
			continue;
1327
			continue;
1267
 
1328
 
1268
		seqno = i915_gem_request_get_seqno(signaller_req);
1329
		seqno = i915_gem_request_get_seqno(signaller_req);
1269
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1330
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1270
					   MI_FLUSH_DW_OP_STOREDW);
1331
					   MI_FLUSH_DW_OP_STOREDW);
1271
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1332
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1272
					   MI_FLUSH_DW_USE_GTT);
1333
					   MI_FLUSH_DW_USE_GTT);
1273
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1334
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1274
		intel_ring_emit(signaller, seqno);
1335
		intel_ring_emit(signaller, seqno);
1275
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1336
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1276
					   MI_SEMAPHORE_TARGET(waiter->id));
1337
					   MI_SEMAPHORE_TARGET(waiter->id));
1277
		intel_ring_emit(signaller, 0);
1338
		intel_ring_emit(signaller, 0);
1278
	}
1339
	}
1279
 
1340
 
1280
	return 0;
1341
	return 0;
1281
}
1342
}
1282
 
1343
 
1283
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1344
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1284
		       unsigned int num_dwords)
1345
		       unsigned int num_dwords)
1285
{
1346
{
1286
	struct intel_engine_cs *signaller = signaller_req->ring;
1347
	struct intel_engine_cs *signaller = signaller_req->ring;
1287
	struct drm_device *dev = signaller->dev;
1348
	struct drm_device *dev = signaller->dev;
1288
	struct drm_i915_private *dev_priv = dev->dev_private;
1349
	struct drm_i915_private *dev_priv = dev->dev_private;
1289
	struct intel_engine_cs *useless;
1350
	struct intel_engine_cs *useless;
1290
	int i, ret, num_rings;
1351
	int i, ret, num_rings;
1291
 
1352
 
1292
#define MBOX_UPDATE_DWORDS 3
1353
#define MBOX_UPDATE_DWORDS 3
1293
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1354
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1294
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1355
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1295
#undef MBOX_UPDATE_DWORDS
1356
#undef MBOX_UPDATE_DWORDS
1296
 
1357
 
1297
	ret = intel_ring_begin(signaller_req, num_dwords);
1358
	ret = intel_ring_begin(signaller_req, num_dwords);
1298
	if (ret)
1359
	if (ret)
1299
		return ret;
1360
		return ret;
1300
 
1361
 
1301
	for_each_ring(useless, dev_priv, i) {
1362
	for_each_ring(useless, dev_priv, i) {
1302
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1363
		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1303
 
1364
 
1304
		if (i915_mmio_reg_valid(mbox_reg)) {
1365
		if (i915_mmio_reg_valid(mbox_reg)) {
1305
			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1366
			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1306
 
1367
 
1307
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1368
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1308
			intel_ring_emit_reg(signaller, mbox_reg);
1369
			intel_ring_emit_reg(signaller, mbox_reg);
1309
			intel_ring_emit(signaller, seqno);
1370
			intel_ring_emit(signaller, seqno);
1310
		}
1371
		}
1311
	}
1372
	}
1312
 
1373
 
1313
	/* If num_dwords was rounded, make sure the tail pointer is correct */
1374
	/* If num_dwords was rounded, make sure the tail pointer is correct */
1314
	if (num_rings % 2 == 0)
1375
	if (num_rings % 2 == 0)
1315
		intel_ring_emit(signaller, MI_NOOP);
1376
		intel_ring_emit(signaller, MI_NOOP);
1316
 
1377
 
1317
	return 0;
1378
	return 0;
1318
}
1379
}
1319
 
1380
 
1320
/**
1381
/**
1321
 * gen6_add_request - Update the semaphore mailbox registers
1382
 * gen6_add_request - Update the semaphore mailbox registers
1322
 *
1383
 *
1323
 * @request - request to write to the ring
1384
 * @request - request to write to the ring
1324
 *
1385
 *
1325
 * Update the mailbox registers in the *other* rings with the current seqno.
1386
 * Update the mailbox registers in the *other* rings with the current seqno.
1326
 * This acts like a signal in the canonical semaphore.
1387
 * This acts like a signal in the canonical semaphore.
1327
 */
1388
 */
1328
static int
1389
static int
1329
gen6_add_request(struct drm_i915_gem_request *req)
1390
gen6_add_request(struct drm_i915_gem_request *req)
1330
{
1391
{
1331
	struct intel_engine_cs *ring = req->ring;
1392
	struct intel_engine_cs *ring = req->ring;
1332
	int ret;
1393
	int ret;
1333
 
1394
 
1334
	if (ring->semaphore.signal)
1395
	if (ring->semaphore.signal)
1335
		ret = ring->semaphore.signal(req, 4);
1396
		ret = ring->semaphore.signal(req, 4);
1336
	else
1397
	else
1337
		ret = intel_ring_begin(req, 4);
1398
		ret = intel_ring_begin(req, 4);
1338
 
1399
 
1339
	if (ret)
1400
	if (ret)
1340
		return ret;
1401
		return ret;
1341
 
1402
 
1342
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1403
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1343
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1404
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1344
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1405
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1345
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1406
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1346
	__intel_ring_advance(ring);
1407
	__intel_ring_advance(ring);
1347
 
1408
 
1348
	return 0;
1409
	return 0;
1349
}
1410
}
1350
 
1411
 
1351
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1412
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1352
					      u32 seqno)
1413
					      u32 seqno)
1353
{
1414
{
1354
	struct drm_i915_private *dev_priv = dev->dev_private;
1415
	struct drm_i915_private *dev_priv = dev->dev_private;
1355
	return dev_priv->last_seqno < seqno;
1416
	return dev_priv->last_seqno < seqno;
1356
}
1417
}
1357
 
1418
 
1358
/**
1419
/**
1359
 * intel_ring_sync - sync the waiter to the signaller on seqno
1420
 * intel_ring_sync - sync the waiter to the signaller on seqno
1360
 *
1421
 *
1361
 * @waiter - ring that is waiting
1422
 * @waiter - ring that is waiting
1362
 * @signaller - ring which has, or will signal
1423
 * @signaller - ring which has, or will signal
1363
 * @seqno - seqno which the waiter will block on
1424
 * @seqno - seqno which the waiter will block on
1364
 */
1425
 */
1365
 
1426
 
1366
static int
1427
static int
1367
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1428
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1368
	       struct intel_engine_cs *signaller,
1429
	       struct intel_engine_cs *signaller,
1369
	       u32 seqno)
1430
	       u32 seqno)
1370
{
1431
{
1371
	struct intel_engine_cs *waiter = waiter_req->ring;
1432
	struct intel_engine_cs *waiter = waiter_req->ring;
1372
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1433
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1373
	int ret;
1434
	int ret;
1374
 
1435
 
1375
	ret = intel_ring_begin(waiter_req, 4);
1436
	ret = intel_ring_begin(waiter_req, 4);
1376
	if (ret)
1437
	if (ret)
1377
		return ret;
1438
		return ret;
1378
 
1439
 
1379
	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1440
	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1380
				MI_SEMAPHORE_GLOBAL_GTT |
1441
				MI_SEMAPHORE_GLOBAL_GTT |
1381
				MI_SEMAPHORE_POLL |
1442
				MI_SEMAPHORE_POLL |
1382
				MI_SEMAPHORE_SAD_GTE_SDD);
1443
				MI_SEMAPHORE_SAD_GTE_SDD);
1383
	intel_ring_emit(waiter, seqno);
1444
	intel_ring_emit(waiter, seqno);
1384
	intel_ring_emit(waiter,
1445
	intel_ring_emit(waiter,
1385
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1446
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1386
	intel_ring_emit(waiter,
1447
	intel_ring_emit(waiter,
1387
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1448
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1388
	intel_ring_advance(waiter);
1449
	intel_ring_advance(waiter);
1389
	return 0;
1450
	return 0;
1390
}
1451
}
1391
 
1452
 
1392
static int
1453
static int
1393
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1454
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1394
	       struct intel_engine_cs *signaller,
1455
	       struct intel_engine_cs *signaller,
1395
	       u32 seqno)
1456
	       u32 seqno)
1396
{
1457
{
1397
	struct intel_engine_cs *waiter = waiter_req->ring;
1458
	struct intel_engine_cs *waiter = waiter_req->ring;
1398
	u32 dw1 = MI_SEMAPHORE_MBOX |
1459
	u32 dw1 = MI_SEMAPHORE_MBOX |
1399
		  MI_SEMAPHORE_COMPARE |
1460
		  MI_SEMAPHORE_COMPARE |
1400
		  MI_SEMAPHORE_REGISTER;
1461
		  MI_SEMAPHORE_REGISTER;
1401
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1462
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1402
	int ret;
1463
	int ret;
1403
 
1464
 
1404
	/* Throughout all of the GEM code, seqno passed implies our current
1465
	/* Throughout all of the GEM code, seqno passed implies our current
1405
	 * seqno is >= the last seqno executed. However for hardware the
1466
	 * seqno is >= the last seqno executed. However for hardware the
1406
	 * comparison is strictly greater than.
1467
	 * comparison is strictly greater than.
1407
	 */
1468
	 */
1408
	seqno -= 1;
1469
	seqno -= 1;
1409
 
1470
 
1410
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1471
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1411
 
1472
 
1412
	ret = intel_ring_begin(waiter_req, 4);
1473
	ret = intel_ring_begin(waiter_req, 4);
1413
	if (ret)
1474
	if (ret)
1414
		return ret;
1475
		return ret;
1415
 
1476
 
1416
	/* If seqno wrap happened, omit the wait with no-ops */
1477
	/* If seqno wrap happened, omit the wait with no-ops */
1417
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1478
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1418
		intel_ring_emit(waiter, dw1 | wait_mbox);
1479
		intel_ring_emit(waiter, dw1 | wait_mbox);
1419
		intel_ring_emit(waiter, seqno);
1480
		intel_ring_emit(waiter, seqno);
1420
		intel_ring_emit(waiter, 0);
1481
		intel_ring_emit(waiter, 0);
1421
		intel_ring_emit(waiter, MI_NOOP);
1482
		intel_ring_emit(waiter, MI_NOOP);
1422
	} else {
1483
	} else {
1423
		intel_ring_emit(waiter, MI_NOOP);
1484
		intel_ring_emit(waiter, MI_NOOP);
1424
		intel_ring_emit(waiter, MI_NOOP);
1485
		intel_ring_emit(waiter, MI_NOOP);
1425
		intel_ring_emit(waiter, MI_NOOP);
1486
		intel_ring_emit(waiter, MI_NOOP);
1426
		intel_ring_emit(waiter, MI_NOOP);
1487
		intel_ring_emit(waiter, MI_NOOP);
1427
	}
1488
	}
1428
	intel_ring_advance(waiter);
1489
	intel_ring_advance(waiter);
1429
 
1490
 
1430
	return 0;
1491
	return 0;
1431
}
1492
}
1432
 
1493
 
1433
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1494
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1434
do {									\
1495
do {									\
1435
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1496
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1436
		 PIPE_CONTROL_DEPTH_STALL);				\
1497
		 PIPE_CONTROL_DEPTH_STALL);				\
1437
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1498
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1438
	intel_ring_emit(ring__, 0);							\
1499
	intel_ring_emit(ring__, 0);							\
1439
	intel_ring_emit(ring__, 0);							\
1500
	intel_ring_emit(ring__, 0);							\
1440
} while (0)
1501
} while (0)
1441
 
1502
 
1442
static int
1503
static int
1443
pc_render_add_request(struct drm_i915_gem_request *req)
1504
pc_render_add_request(struct drm_i915_gem_request *req)
1444
{
1505
{
1445
	struct intel_engine_cs *ring = req->ring;
1506
	struct intel_engine_cs *ring = req->ring;
1446
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1507
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1447
	int ret;
1508
	int ret;
1448
 
1509
 
1449
	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1510
	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1450
	 * incoherent with writes to memory, i.e. completely fubar,
1511
	 * incoherent with writes to memory, i.e. completely fubar,
1451
	 * so we need to use PIPE_NOTIFY instead.
1512
	 * so we need to use PIPE_NOTIFY instead.
1452
	 *
1513
	 *
1453
	 * However, we also need to workaround the qword write
1514
	 * However, we also need to workaround the qword write
1454
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1515
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1455
	 * memory before requesting an interrupt.
1516
	 * memory before requesting an interrupt.
1456
	 */
1517
	 */
1457
	ret = intel_ring_begin(req, 32);
1518
	ret = intel_ring_begin(req, 32);
1458
	if (ret)
1519
	if (ret)
1459
		return ret;
1520
		return ret;
1460
 
1521
 
1461
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1522
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1462
			PIPE_CONTROL_WRITE_FLUSH |
1523
			PIPE_CONTROL_WRITE_FLUSH |
1463
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1524
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1464
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1525
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1465
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1526
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1466
	intel_ring_emit(ring, 0);
1527
	intel_ring_emit(ring, 0);
1467
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1528
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1468
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1529
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1469
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1530
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1470
	scratch_addr += 2 * CACHELINE_BYTES;
1531
	scratch_addr += 2 * CACHELINE_BYTES;
1471
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1532
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1472
	scratch_addr += 2 * CACHELINE_BYTES;
1533
	scratch_addr += 2 * CACHELINE_BYTES;
1473
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1534
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1474
	scratch_addr += 2 * CACHELINE_BYTES;
1535
	scratch_addr += 2 * CACHELINE_BYTES;
1475
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1536
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1476
	scratch_addr += 2 * CACHELINE_BYTES;
1537
	scratch_addr += 2 * CACHELINE_BYTES;
1477
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1538
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1478
 
1539
 
1479
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1540
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1480
			PIPE_CONTROL_WRITE_FLUSH |
1541
			PIPE_CONTROL_WRITE_FLUSH |
1481
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1542
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1482
			PIPE_CONTROL_NOTIFY);
1543
			PIPE_CONTROL_NOTIFY);
1483
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1544
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1484
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1545
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1485
	intel_ring_emit(ring, 0);
1546
	intel_ring_emit(ring, 0);
1486
	__intel_ring_advance(ring);
1547
	__intel_ring_advance(ring);
1487
 
1548
 
1488
	return 0;
1549
	return 0;
1489
}
1550
}
1490
 
1551
 
1491
static u32
1552
static u32
1492
gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1553
gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1493
{
1554
{
1494
	/* Workaround to force correct ordering between irq and seqno writes on
1555
	/* Workaround to force correct ordering between irq and seqno writes on
1495
	 * ivb (and maybe also on snb) by reading from a CS register (like
1556
	 * ivb (and maybe also on snb) by reading from a CS register (like
1496
	 * ACTHD) before reading the status page. */
1557
	 * ACTHD) before reading the status page. */
1497
	if (!lazy_coherency) {
1558
	if (!lazy_coherency) {
1498
		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1559
		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1499
		POSTING_READ(RING_ACTHD(ring->mmio_base));
1560
		POSTING_READ(RING_ACTHD(ring->mmio_base));
1500
	}
1561
	}
1501
 
1562
 
1502
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1563
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1503
}
1564
}
1504
 
1565
 
1505
static u32
1566
static u32
1506
ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1567
ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1507
{
1568
{
1508
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1569
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1509
}
1570
}
1510
 
1571
 
1511
static void
1572
static void
1512
ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1573
ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1513
{
1574
{
1514
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1575
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1515
}
1576
}
1516
 
1577
 
1517
static u32
1578
static u32
1518
pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1579
pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1519
{
1580
{
1520
	return ring->scratch.cpu_page[0];
1581
	return ring->scratch.cpu_page[0];
1521
}
1582
}
1522
 
1583
 
1523
static void
1584
static void
1524
pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1585
pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1525
{
1586
{
1526
	ring->scratch.cpu_page[0] = seqno;
1587
	ring->scratch.cpu_page[0] = seqno;
1527
}
1588
}
1528
 
1589
 
1529
static bool
1590
static bool
1530
gen5_ring_get_irq(struct intel_engine_cs *ring)
1591
gen5_ring_get_irq(struct intel_engine_cs *ring)
1531
{
1592
{
1532
	struct drm_device *dev = ring->dev;
1593
	struct drm_device *dev = ring->dev;
1533
	struct drm_i915_private *dev_priv = dev->dev_private;
1594
	struct drm_i915_private *dev_priv = dev->dev_private;
1534
	unsigned long flags;
1595
	unsigned long flags;
1535
 
1596
 
1536
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1597
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1537
		return false;
1598
		return false;
1538
 
1599
 
1539
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1600
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1540
	if (ring->irq_refcount++ == 0)
1601
	if (ring->irq_refcount++ == 0)
1541
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1602
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1542
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1603
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1543
 
1604
 
1544
	return true;
1605
	return true;
1545
}
1606
}
1546
 
1607
 
1547
static void
1608
static void
1548
gen5_ring_put_irq(struct intel_engine_cs *ring)
1609
gen5_ring_put_irq(struct intel_engine_cs *ring)
1549
{
1610
{
1550
	struct drm_device *dev = ring->dev;
1611
	struct drm_device *dev = ring->dev;
1551
	struct drm_i915_private *dev_priv = dev->dev_private;
1612
	struct drm_i915_private *dev_priv = dev->dev_private;
1552
	unsigned long flags;
1613
	unsigned long flags;
1553
 
1614
 
1554
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1615
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1555
	if (--ring->irq_refcount == 0)
1616
	if (--ring->irq_refcount == 0)
1556
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1617
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1557
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1618
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1558
}
1619
}
1559
 
1620
 
1560
static bool
1621
static bool
1561
i9xx_ring_get_irq(struct intel_engine_cs *ring)
1622
i9xx_ring_get_irq(struct intel_engine_cs *ring)
1562
{
1623
{
1563
	struct drm_device *dev = ring->dev;
1624
	struct drm_device *dev = ring->dev;
1564
	struct drm_i915_private *dev_priv = dev->dev_private;
1625
	struct drm_i915_private *dev_priv = dev->dev_private;
1565
	unsigned long flags;
1626
	unsigned long flags;
1566
 
1627
 
1567
	if (!intel_irqs_enabled(dev_priv))
1628
	if (!intel_irqs_enabled(dev_priv))
1568
		return false;
1629
		return false;
1569
 
1630
 
1570
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1631
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1571
	if (ring->irq_refcount++ == 0) {
1632
	if (ring->irq_refcount++ == 0) {
1572
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1633
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1573
		I915_WRITE(IMR, dev_priv->irq_mask);
1634
		I915_WRITE(IMR, dev_priv->irq_mask);
1574
		POSTING_READ(IMR);
1635
		POSTING_READ(IMR);
1575
	}
1636
	}
1576
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1637
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1577
 
1638
 
1578
	return true;
1639
	return true;
1579
}
1640
}
1580
 
1641
 
1581
static void
1642
static void
1582
i9xx_ring_put_irq(struct intel_engine_cs *ring)
1643
i9xx_ring_put_irq(struct intel_engine_cs *ring)
1583
{
1644
{
1584
	struct drm_device *dev = ring->dev;
1645
	struct drm_device *dev = ring->dev;
1585
	struct drm_i915_private *dev_priv = dev->dev_private;
1646
	struct drm_i915_private *dev_priv = dev->dev_private;
1586
	unsigned long flags;
1647
	unsigned long flags;
1587
 
1648
 
1588
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1649
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1589
	if (--ring->irq_refcount == 0) {
1650
	if (--ring->irq_refcount == 0) {
1590
		dev_priv->irq_mask |= ring->irq_enable_mask;
1651
		dev_priv->irq_mask |= ring->irq_enable_mask;
1591
		I915_WRITE(IMR, dev_priv->irq_mask);
1652
		I915_WRITE(IMR, dev_priv->irq_mask);
1592
		POSTING_READ(IMR);
1653
		POSTING_READ(IMR);
1593
	}
1654
	}
1594
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1655
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1595
}
1656
}
1596
 
1657
 
1597
static bool
1658
static bool
1598
i8xx_ring_get_irq(struct intel_engine_cs *ring)
1659
i8xx_ring_get_irq(struct intel_engine_cs *ring)
1599
{
1660
{
1600
	struct drm_device *dev = ring->dev;
1661
	struct drm_device *dev = ring->dev;
1601
	struct drm_i915_private *dev_priv = dev->dev_private;
1662
	struct drm_i915_private *dev_priv = dev->dev_private;
1602
	unsigned long flags;
1663
	unsigned long flags;
1603
 
1664
 
1604
	if (!intel_irqs_enabled(dev_priv))
1665
	if (!intel_irqs_enabled(dev_priv))
1605
		return false;
1666
		return false;
1606
 
1667
 
1607
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1668
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1608
	if (ring->irq_refcount++ == 0) {
1669
	if (ring->irq_refcount++ == 0) {
1609
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1670
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1610
		I915_WRITE16(IMR, dev_priv->irq_mask);
1671
		I915_WRITE16(IMR, dev_priv->irq_mask);
1611
		POSTING_READ16(IMR);
1672
		POSTING_READ16(IMR);
1612
	}
1673
	}
1613
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1674
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1614
 
1675
 
1615
	return true;
1676
	return true;
1616
}
1677
}
1617
 
1678
 
1618
static void
1679
static void
1619
i8xx_ring_put_irq(struct intel_engine_cs *ring)
1680
i8xx_ring_put_irq(struct intel_engine_cs *ring)
1620
{
1681
{
1621
	struct drm_device *dev = ring->dev;
1682
	struct drm_device *dev = ring->dev;
1622
	struct drm_i915_private *dev_priv = dev->dev_private;
1683
	struct drm_i915_private *dev_priv = dev->dev_private;
1623
	unsigned long flags;
1684
	unsigned long flags;
1624
 
1685
 
1625
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1686
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1626
	if (--ring->irq_refcount == 0) {
1687
	if (--ring->irq_refcount == 0) {
1627
		dev_priv->irq_mask |= ring->irq_enable_mask;
1688
		dev_priv->irq_mask |= ring->irq_enable_mask;
1628
		I915_WRITE16(IMR, dev_priv->irq_mask);
1689
		I915_WRITE16(IMR, dev_priv->irq_mask);
1629
		POSTING_READ16(IMR);
1690
		POSTING_READ16(IMR);
1630
	}
1691
	}
1631
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1692
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1632
}
1693
}
1633
 
1694
 
1634
static int
1695
static int
1635
bsd_ring_flush(struct drm_i915_gem_request *req,
1696
bsd_ring_flush(struct drm_i915_gem_request *req,
1636
	       u32     invalidate_domains,
1697
	       u32     invalidate_domains,
1637
	       u32     flush_domains)
1698
	       u32     flush_domains)
1638
{
1699
{
1639
	struct intel_engine_cs *ring = req->ring;
1700
	struct intel_engine_cs *ring = req->ring;
1640
	int ret;
1701
	int ret;
1641
 
1702
 
1642
	ret = intel_ring_begin(req, 2);
1703
	ret = intel_ring_begin(req, 2);
1643
	if (ret)
1704
	if (ret)
1644
		return ret;
1705
		return ret;
1645
 
1706
 
1646
	intel_ring_emit(ring, MI_FLUSH);
1707
	intel_ring_emit(ring, MI_FLUSH);
1647
	intel_ring_emit(ring, MI_NOOP);
1708
	intel_ring_emit(ring, MI_NOOP);
1648
	intel_ring_advance(ring);
1709
	intel_ring_advance(ring);
1649
	return 0;
1710
	return 0;
1650
}
1711
}
1651
 
1712
 
1652
static int
1713
static int
1653
i9xx_add_request(struct drm_i915_gem_request *req)
1714
i9xx_add_request(struct drm_i915_gem_request *req)
1654
{
1715
{
1655
	struct intel_engine_cs *ring = req->ring;
1716
	struct intel_engine_cs *ring = req->ring;
1656
	int ret;
1717
	int ret;
1657
 
1718
 
1658
	ret = intel_ring_begin(req, 4);
1719
	ret = intel_ring_begin(req, 4);
1659
	if (ret)
1720
	if (ret)
1660
		return ret;
1721
		return ret;
1661
 
1722
 
1662
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1723
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1663
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1724
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1664
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1725
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1665
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1726
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1666
	__intel_ring_advance(ring);
1727
	__intel_ring_advance(ring);
1667
 
1728
 
1668
	return 0;
1729
	return 0;
1669
}
1730
}
1670
 
1731
 
1671
static bool
1732
static bool
1672
gen6_ring_get_irq(struct intel_engine_cs *ring)
1733
gen6_ring_get_irq(struct intel_engine_cs *ring)
1673
{
1734
{
1674
	struct drm_device *dev = ring->dev;
1735
	struct drm_device *dev = ring->dev;
1675
	struct drm_i915_private *dev_priv = dev->dev_private;
1736
	struct drm_i915_private *dev_priv = dev->dev_private;
1676
	unsigned long flags;
1737
	unsigned long flags;
1677
 
1738
 
1678
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1739
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1679
		return false;
1740
		return false;
1680
 
1741
 
1681
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1742
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1682
	if (ring->irq_refcount++ == 0) {
1743
	if (ring->irq_refcount++ == 0) {
1683
		if (HAS_L3_DPF(dev) && ring->id == RCS)
1744
		if (HAS_L3_DPF(dev) && ring->id == RCS)
1684
			I915_WRITE_IMR(ring,
1745
			I915_WRITE_IMR(ring,
1685
				       ~(ring->irq_enable_mask |
1746
				       ~(ring->irq_enable_mask |
1686
					 GT_PARITY_ERROR(dev)));
1747
					 GT_PARITY_ERROR(dev)));
1687
		else
1748
		else
1688
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1749
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1689
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1750
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1690
	}
1751
	}
1691
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1752
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1692
 
1753
 
1693
	return true;
1754
	return true;
1694
}
1755
}
1695
 
1756
 
1696
static void
1757
static void
1697
gen6_ring_put_irq(struct intel_engine_cs *ring)
1758
gen6_ring_put_irq(struct intel_engine_cs *ring)
1698
{
1759
{
1699
	struct drm_device *dev = ring->dev;
1760
	struct drm_device *dev = ring->dev;
1700
	struct drm_i915_private *dev_priv = dev->dev_private;
1761
	struct drm_i915_private *dev_priv = dev->dev_private;
1701
	unsigned long flags;
1762
	unsigned long flags;
1702
 
1763
 
1703
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1764
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1704
	if (--ring->irq_refcount == 0) {
1765
	if (--ring->irq_refcount == 0) {
1705
		if (HAS_L3_DPF(dev) && ring->id == RCS)
1766
		if (HAS_L3_DPF(dev) && ring->id == RCS)
1706
			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1767
			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1707
		else
1768
		else
1708
			I915_WRITE_IMR(ring, ~0);
1769
			I915_WRITE_IMR(ring, ~0);
1709
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1770
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1710
	}
1771
	}
1711
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1772
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1712
}
1773
}
1713
 
1774
 
1714
static bool
1775
static bool
1715
hsw_vebox_get_irq(struct intel_engine_cs *ring)
1776
hsw_vebox_get_irq(struct intel_engine_cs *ring)
1716
{
1777
{
1717
	struct drm_device *dev = ring->dev;
1778
	struct drm_device *dev = ring->dev;
1718
	struct drm_i915_private *dev_priv = dev->dev_private;
1779
	struct drm_i915_private *dev_priv = dev->dev_private;
1719
	unsigned long flags;
1780
	unsigned long flags;
1720
 
1781
 
1721
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1782
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1722
		return false;
1783
		return false;
1723
 
1784
 
1724
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1785
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1725
	if (ring->irq_refcount++ == 0) {
1786
	if (ring->irq_refcount++ == 0) {
1726
		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1787
		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1727
		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1788
		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1728
	}
1789
	}
1729
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1790
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1730
 
1791
 
1731
	return true;
1792
	return true;
1732
}
1793
}
1733
 
1794
 
1734
static void
1795
static void
1735
hsw_vebox_put_irq(struct intel_engine_cs *ring)
1796
hsw_vebox_put_irq(struct intel_engine_cs *ring)
1736
{
1797
{
1737
	struct drm_device *dev = ring->dev;
1798
	struct drm_device *dev = ring->dev;
1738
	struct drm_i915_private *dev_priv = dev->dev_private;
1799
	struct drm_i915_private *dev_priv = dev->dev_private;
1739
	unsigned long flags;
1800
	unsigned long flags;
1740
 
1801
 
1741
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1802
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1742
	if (--ring->irq_refcount == 0) {
1803
	if (--ring->irq_refcount == 0) {
1743
		I915_WRITE_IMR(ring, ~0);
1804
		I915_WRITE_IMR(ring, ~0);
1744
		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1805
		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1745
	}
1806
	}
1746
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1807
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1747
}
1808
}
1748
 
1809
 
1749
static bool
1810
static bool
1750
gen8_ring_get_irq(struct intel_engine_cs *ring)
1811
gen8_ring_get_irq(struct intel_engine_cs *ring)
1751
{
1812
{
1752
	struct drm_device *dev = ring->dev;
1813
	struct drm_device *dev = ring->dev;
1753
	struct drm_i915_private *dev_priv = dev->dev_private;
1814
	struct drm_i915_private *dev_priv = dev->dev_private;
1754
	unsigned long flags;
1815
	unsigned long flags;
1755
 
1816
 
1756
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1817
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1757
		return false;
1818
		return false;
1758
 
1819
 
1759
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1820
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1760
	if (ring->irq_refcount++ == 0) {
1821
	if (ring->irq_refcount++ == 0) {
1761
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1822
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1762
			I915_WRITE_IMR(ring,
1823
			I915_WRITE_IMR(ring,
1763
				       ~(ring->irq_enable_mask |
1824
				       ~(ring->irq_enable_mask |
1764
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1825
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1765
		} else {
1826
		} else {
1766
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1827
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1767
		}
1828
		}
1768
		POSTING_READ(RING_IMR(ring->mmio_base));
1829
		POSTING_READ(RING_IMR(ring->mmio_base));
1769
	}
1830
	}
1770
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1831
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1771
 
1832
 
1772
	return true;
1833
	return true;
1773
}
1834
}
1774
 
1835
 
1775
static void
1836
static void
1776
gen8_ring_put_irq(struct intel_engine_cs *ring)
1837
gen8_ring_put_irq(struct intel_engine_cs *ring)
1777
{
1838
{
1778
	struct drm_device *dev = ring->dev;
1839
	struct drm_device *dev = ring->dev;
1779
	struct drm_i915_private *dev_priv = dev->dev_private;
1840
	struct drm_i915_private *dev_priv = dev->dev_private;
1780
	unsigned long flags;
1841
	unsigned long flags;
1781
 
1842
 
1782
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1843
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1783
	if (--ring->irq_refcount == 0) {
1844
	if (--ring->irq_refcount == 0) {
1784
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1845
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1785
			I915_WRITE_IMR(ring,
1846
			I915_WRITE_IMR(ring,
1786
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1847
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1787
		} else {
1848
		} else {
1788
			I915_WRITE_IMR(ring, ~0);
1849
			I915_WRITE_IMR(ring, ~0);
1789
		}
1850
		}
1790
		POSTING_READ(RING_IMR(ring->mmio_base));
1851
		POSTING_READ(RING_IMR(ring->mmio_base));
1791
	}
1852
	}
1792
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1853
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1793
}
1854
}
1794
 
1855
 
1795
static int
1856
static int
1796
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1857
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1797
			 u64 offset, u32 length,
1858
			 u64 offset, u32 length,
1798
			 unsigned dispatch_flags)
1859
			 unsigned dispatch_flags)
1799
{
1860
{
1800
	struct intel_engine_cs *ring = req->ring;
1861
	struct intel_engine_cs *ring = req->ring;
1801
	int ret;
1862
	int ret;
1802
 
1863
 
1803
	ret = intel_ring_begin(req, 2);
1864
	ret = intel_ring_begin(req, 2);
1804
	if (ret)
1865
	if (ret)
1805
		return ret;
1866
		return ret;
1806
 
1867
 
1807
	intel_ring_emit(ring,
1868
	intel_ring_emit(ring,
1808
			MI_BATCH_BUFFER_START |
1869
			MI_BATCH_BUFFER_START |
1809
			MI_BATCH_GTT |
1870
			MI_BATCH_GTT |
1810
			(dispatch_flags & I915_DISPATCH_SECURE ?
1871
			(dispatch_flags & I915_DISPATCH_SECURE ?
1811
			 0 : MI_BATCH_NON_SECURE_I965));
1872
			 0 : MI_BATCH_NON_SECURE_I965));
1812
	intel_ring_emit(ring, offset);
1873
	intel_ring_emit(ring, offset);
1813
	intel_ring_advance(ring);
1874
	intel_ring_advance(ring);
1814
 
1875
 
1815
	return 0;
1876
	return 0;
1816
}
1877
}
1817
 
1878
 
1818
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1879
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1819
#define I830_BATCH_LIMIT (256*1024)
1880
#define I830_BATCH_LIMIT (256*1024)
1820
#define I830_TLB_ENTRIES (2)
1881
#define I830_TLB_ENTRIES (2)
1821
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1882
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1822
static int
1883
static int
1823
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1884
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1824
			 u64 offset, u32 len,
1885
			 u64 offset, u32 len,
1825
			 unsigned dispatch_flags)
1886
			 unsigned dispatch_flags)
1826
{
1887
{
1827
	struct intel_engine_cs *ring = req->ring;
1888
	struct intel_engine_cs *ring = req->ring;
1828
	u32 cs_offset = ring->scratch.gtt_offset;
1889
	u32 cs_offset = ring->scratch.gtt_offset;
1829
	int ret;
1890
	int ret;
1830
 
1891
 
1831
	ret = intel_ring_begin(req, 6);
1892
	ret = intel_ring_begin(req, 6);
1832
	if (ret)
1893
	if (ret)
1833
		return ret;
1894
		return ret;
1834
 
1895
 
1835
	/* Evict the invalid PTE TLBs */
1896
	/* Evict the invalid PTE TLBs */
1836
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1897
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1837
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1898
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1838
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1899
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1839
	intel_ring_emit(ring, cs_offset);
1900
	intel_ring_emit(ring, cs_offset);
1840
	intel_ring_emit(ring, 0xdeadbeef);
1901
	intel_ring_emit(ring, 0xdeadbeef);
1841
	intel_ring_emit(ring, MI_NOOP);
1902
	intel_ring_emit(ring, MI_NOOP);
1842
	intel_ring_advance(ring);
1903
	intel_ring_advance(ring);
1843
 
1904
 
1844
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1905
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1845
		if (len > I830_BATCH_LIMIT)
1906
		if (len > I830_BATCH_LIMIT)
1846
			return -ENOSPC;
1907
			return -ENOSPC;
1847
 
1908
 
1848
		ret = intel_ring_begin(req, 6 + 2);
1909
		ret = intel_ring_begin(req, 6 + 2);
1849
		if (ret)
1910
		if (ret)
1850
			return ret;
1911
			return ret;
1851
 
1912
 
1852
		/* Blit the batch (which has now all relocs applied) to the
1913
		/* Blit the batch (which has now all relocs applied) to the
1853
		 * stable batch scratch bo area (so that the CS never
1914
		 * stable batch scratch bo area (so that the CS never
1854
		 * stumbles over its tlb invalidation bug) ...
1915
		 * stumbles over its tlb invalidation bug) ...
1855
		 */
1916
		 */
1856
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1917
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1857
		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1918
		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1858
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1919
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1859
		intel_ring_emit(ring, cs_offset);
1920
		intel_ring_emit(ring, cs_offset);
1860
		intel_ring_emit(ring, 4096);
1921
		intel_ring_emit(ring, 4096);
1861
		intel_ring_emit(ring, offset);
1922
		intel_ring_emit(ring, offset);
1862
 
1923
 
1863
		intel_ring_emit(ring, MI_FLUSH);
1924
		intel_ring_emit(ring, MI_FLUSH);
1864
		intel_ring_emit(ring, MI_NOOP);
1925
		intel_ring_emit(ring, MI_NOOP);
1865
		intel_ring_advance(ring);
1926
		intel_ring_advance(ring);
1866
 
1927
 
1867
		/* ... and execute it. */
1928
		/* ... and execute it. */
1868
		offset = cs_offset;
1929
		offset = cs_offset;
1869
	}
1930
	}
1870
 
1931
 
1871
	ret = intel_ring_begin(req, 4);
1932
	ret = intel_ring_begin(req, 2);
1872
	if (ret)
1933
	if (ret)
1873
		return ret;
1934
		return ret;
1874
 
1935
 
1875
	intel_ring_emit(ring, MI_BATCH_BUFFER);
1936
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1876
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1937
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1877
					0 : MI_BATCH_NON_SECURE));
-
 
1878
	intel_ring_emit(ring, offset + len - 8);
-
 
1879
	intel_ring_emit(ring, MI_NOOP);
1938
					0 : MI_BATCH_NON_SECURE));
1880
	intel_ring_advance(ring);
1939
	intel_ring_advance(ring);
1881
 
1940
 
1882
	return 0;
1941
	return 0;
1883
}
1942
}
1884
 
1943
 
1885
static int
1944
static int
1886
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1945
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1887
			 u64 offset, u32 len,
1946
			 u64 offset, u32 len,
1888
			 unsigned dispatch_flags)
1947
			 unsigned dispatch_flags)
1889
{
1948
{
1890
	struct intel_engine_cs *ring = req->ring;
1949
	struct intel_engine_cs *ring = req->ring;
1891
	int ret;
1950
	int ret;
1892
 
1951
 
1893
	ret = intel_ring_begin(req, 2);
1952
	ret = intel_ring_begin(req, 2);
1894
	if (ret)
1953
	if (ret)
1895
		return ret;
1954
		return ret;
1896
 
1955
 
1897
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1956
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1898
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1957
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1899
					0 : MI_BATCH_NON_SECURE));
1958
					0 : MI_BATCH_NON_SECURE));
1900
	intel_ring_advance(ring);
1959
	intel_ring_advance(ring);
1901
 
1960
 
1902
	return 0;
1961
	return 0;
1903
}
1962
}
1904
 
1963
 
1905
static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1964
static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1906
{
1965
{
1907
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1966
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1908
 
1967
 
1909
	if (!dev_priv->status_page_dmah)
1968
	if (!dev_priv->status_page_dmah)
1910
		return;
1969
		return;
1911
 
1970
 
1912
	drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1971
	drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1913
	ring->status_page.page_addr = NULL;
1972
	ring->status_page.page_addr = NULL;
1914
}
1973
}
1915
 
1974
 
1916
static void cleanup_status_page(struct intel_engine_cs *ring)
1975
static void cleanup_status_page(struct intel_engine_cs *ring)
1917
{
1976
{
1918
	struct drm_i915_gem_object *obj;
1977
	struct drm_i915_gem_object *obj;
1919
 
1978
 
1920
	obj = ring->status_page.obj;
1979
	obj = ring->status_page.obj;
1921
	if (obj == NULL)
1980
	if (obj == NULL)
1922
		return;
1981
		return;
1923
 
1982
 
1924
	kunmap(sg_page(obj->pages->sgl));
1983
	kunmap(sg_page(obj->pages->sgl));
1925
	i915_gem_object_ggtt_unpin(obj);
1984
	i915_gem_object_ggtt_unpin(obj);
1926
	drm_gem_object_unreference(&obj->base);
1985
	drm_gem_object_unreference(&obj->base);
1927
	ring->status_page.obj = NULL;
1986
	ring->status_page.obj = NULL;
1928
}
1987
}
1929
 
1988
 
1930
static int init_status_page(struct intel_engine_cs *ring)
1989
static int init_status_page(struct intel_engine_cs *ring)
1931
{
1990
{
1932
	struct drm_i915_gem_object *obj = ring->status_page.obj;
1991
	struct drm_i915_gem_object *obj = ring->status_page.obj;
1933
 
1992
 
1934
	if (obj == NULL) {
1993
	if (obj == NULL) {
1935
		unsigned flags;
1994
		unsigned flags;
1936
		int ret;
1995
		int ret;
1937
 
1996
 
1938
		obj = i915_gem_alloc_object(ring->dev, 4096);
1997
		obj = i915_gem_alloc_object(ring->dev, 4096);
1939
		if (obj == NULL) {
1998
		if (obj == NULL) {
1940
			DRM_ERROR("Failed to allocate status page\n");
1999
			DRM_ERROR("Failed to allocate status page\n");
1941
			return -ENOMEM;
2000
			return -ENOMEM;
1942
		}
2001
		}
1943
 
2002
 
1944
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2003
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1945
		if (ret)
2004
		if (ret)
1946
			goto err_unref;
2005
			goto err_unref;
1947
 
2006
 
1948
		flags = 0;
2007
		flags = 0;
1949
		if (!HAS_LLC(ring->dev))
2008
		if (!HAS_LLC(ring->dev))
1950
			/* On g33, we cannot place HWS above 256MiB, so
2009
			/* On g33, we cannot place HWS above 256MiB, so
1951
			 * restrict its pinning to the low mappable arena.
2010
			 * restrict its pinning to the low mappable arena.
1952
			 * Though this restriction is not documented for
2011
			 * Though this restriction is not documented for
1953
			 * gen4, gen5, or byt, they also behave similarly
2012
			 * gen4, gen5, or byt, they also behave similarly
1954
			 * and hang if the HWS is placed at the top of the
2013
			 * and hang if the HWS is placed at the top of the
1955
			 * GTT. To generalise, it appears that all !llc
2014
			 * GTT. To generalise, it appears that all !llc
1956
			 * platforms have issues with us placing the HWS
2015
			 * platforms have issues with us placing the HWS
1957
			 * above the mappable region (even though we never
2016
			 * above the mappable region (even though we never
1958
			 * actualy map it).
2017
			 * actualy map it).
1959
			 */
2018
			 */
1960
			flags |= PIN_MAPPABLE;
2019
			flags |= PIN_MAPPABLE;
1961
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2020
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1962
		if (ret) {
2021
		if (ret) {
1963
err_unref:
2022
err_unref:
1964
			drm_gem_object_unreference(&obj->base);
2023
			drm_gem_object_unreference(&obj->base);
1965
			return ret;
2024
			return ret;
1966
		}
2025
		}
1967
 
2026
 
1968
		ring->status_page.obj = obj;
2027
		ring->status_page.obj = obj;
1969
	}
2028
	}
1970
 
2029
 
1971
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2030
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1972
	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2031
	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1973
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2032
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1974
 
2033
 
1975
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2034
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1976
			ring->name, ring->status_page.gfx_addr);
2035
			ring->name, ring->status_page.gfx_addr);
1977
 
2036
 
1978
	return 0;
2037
	return 0;
1979
}
2038
}
1980
 
2039
 
1981
static int init_phys_status_page(struct intel_engine_cs *ring)
2040
static int init_phys_status_page(struct intel_engine_cs *ring)
1982
{
2041
{
1983
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2042
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1984
 
2043
 
1985
	if (!dev_priv->status_page_dmah) {
2044
	if (!dev_priv->status_page_dmah) {
1986
		dev_priv->status_page_dmah =
2045
		dev_priv->status_page_dmah =
1987
			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
2046
			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1988
		if (!dev_priv->status_page_dmah)
2047
		if (!dev_priv->status_page_dmah)
1989
			return -ENOMEM;
2048
			return -ENOMEM;
1990
	}
2049
	}
1991
 
2050
 
1992
	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2051
	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1993
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2052
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1994
 
2053
 
1995
	return 0;
2054
	return 0;
1996
}
2055
}
1997
 
2056
 
1998
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2057
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1999
{
2058
{
-
 
2059
	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
-
 
2060
		vunmap(ringbuf->virtual_start);
-
 
2061
	else
2000
	iounmap(ringbuf->virtual_start);
2062
		iounmap(ringbuf->virtual_start);
2001
	ringbuf->virtual_start = NULL;
2063
	ringbuf->virtual_start = NULL;
-
 
2064
	ringbuf->vma = NULL;
2002
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2065
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2003
}
2066
}
-
 
2067
 
-
 
2068
static u32 *vmap_obj(struct drm_i915_gem_object *obj)
-
 
2069
{
-
 
2070
	struct sg_page_iter sg_iter;
-
 
2071
	struct page **pages;
-
 
2072
	void *addr;
-
 
2073
	int i;
-
 
2074
 
-
 
2075
	pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
-
 
2076
	if (pages == NULL)
-
 
2077
		return NULL;
-
 
2078
 
-
 
2079
	i = 0;
-
 
2080
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
-
 
2081
		pages[i++] = sg_page_iter_page(&sg_iter);
-
 
2082
 
-
 
2083
	addr = vmap(pages, i, 0, PAGE_KERNEL);
-
 
2084
	drm_free_large(pages);
-
 
2085
 
-
 
2086
	return addr;
-
 
2087
}
2004
 
2088
 
2005
int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2089
int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2006
				     struct intel_ringbuffer *ringbuf)
2090
				     struct intel_ringbuffer *ringbuf)
2007
{
2091
{
2008
	struct drm_i915_private *dev_priv = to_i915(dev);
2092
	struct drm_i915_private *dev_priv = to_i915(dev);
2009
	struct drm_i915_gem_object *obj = ringbuf->obj;
2093
	struct drm_i915_gem_object *obj = ringbuf->obj;
2010
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2094
	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2011
	unsigned flags = PIN_OFFSET_BIAS | 4096;
2095
	unsigned flags = PIN_OFFSET_BIAS | 4096;
2012
	int ret;
2096
	int ret;
-
 
2097
 
2013
 
2098
	if (HAS_LLC(dev_priv) && !obj->stolen) {
-
 
2099
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
-
 
2100
		if (ret)
-
 
2101
			return ret;
-
 
2102
 
-
 
2103
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
-
 
2104
		if (ret) {
-
 
2105
			i915_gem_object_ggtt_unpin(obj);
-
 
2106
			return ret;
-
 
2107
		}
-
 
2108
 
-
 
2109
		ringbuf->virtual_start = vmap_obj(obj);
-
 
2110
		if (ringbuf->virtual_start == NULL) {
-
 
2111
			i915_gem_object_ggtt_unpin(obj);
-
 
2112
			return -ENOMEM;
-
 
2113
		}
-
 
2114
	} else {
-
 
2115
		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2014
	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2116
					    flags | PIN_MAPPABLE);
2015
	if (ret)
2117
		if (ret)
2016
		return ret;
2118
			return ret;
2017
 
2119
 
2018
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
2120
		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2019
	if (ret) {
2121
		if (ret) {
2020
		i915_gem_object_ggtt_unpin(obj);
2122
			i915_gem_object_ggtt_unpin(obj);
2021
		return ret;
2123
			return ret;
2022
	}
2124
		}
-
 
2125
 
-
 
2126
		/* Access through the GTT requires the device to be awake. */
-
 
2127
		assert_rpm_wakelock_held(dev_priv);
2023
 
2128
 
2024
	ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2129
		ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2025
			i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2130
						    i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2026
	if (ringbuf->virtual_start == NULL) {
2131
		if (ringbuf->virtual_start == NULL) {
2027
		i915_gem_object_ggtt_unpin(obj);
2132
			i915_gem_object_ggtt_unpin(obj);
2028
		return -EINVAL;
2133
			return -EINVAL;
2029
	}
2134
		}
-
 
2135
	}
-
 
2136
 
-
 
2137
	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2030
 
2138
 
2031
	return 0;
2139
	return 0;
2032
}
2140
}
2033
 
2141
 
2034
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2142
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2035
{
2143
{
2036
	drm_gem_object_unreference(&ringbuf->obj->base);
2144
	drm_gem_object_unreference(&ringbuf->obj->base);
2037
	ringbuf->obj = NULL;
2145
	ringbuf->obj = NULL;
2038
}
2146
}
2039
 
2147
 
2040
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2148
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2041
				      struct intel_ringbuffer *ringbuf)
2149
				      struct intel_ringbuffer *ringbuf)
2042
{
2150
{
2043
	struct drm_i915_gem_object *obj;
2151
	struct drm_i915_gem_object *obj;
2044
 
2152
 
2045
	obj = NULL;
2153
	obj = NULL;
2046
	if (!HAS_LLC(dev))
2154
	if (!HAS_LLC(dev))
2047
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2155
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2048
	if (obj == NULL)
2156
	if (obj == NULL)
2049
		obj = i915_gem_alloc_object(dev, ringbuf->size);
2157
		obj = i915_gem_alloc_object(dev, ringbuf->size);
2050
	if (obj == NULL)
2158
	if (obj == NULL)
2051
		return -ENOMEM;
2159
		return -ENOMEM;
2052
 
2160
 
2053
	/* mark ring buffers as read-only from GPU side by default */
2161
	/* mark ring buffers as read-only from GPU side by default */
2054
	obj->gt_ro = 1;
2162
	obj->gt_ro = 1;
2055
 
2163
 
2056
	ringbuf->obj = obj;
2164
	ringbuf->obj = obj;
2057
 
2165
 
2058
	return 0;
2166
	return 0;
2059
}
2167
}
2060
 
2168
 
2061
struct intel_ringbuffer *
2169
struct intel_ringbuffer *
2062
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2170
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2063
{
2171
{
2064
	struct intel_ringbuffer *ring;
2172
	struct intel_ringbuffer *ring;
2065
	int ret;
2173
	int ret;
2066
 
2174
 
2067
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2175
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2068
	if (ring == NULL) {
2176
	if (ring == NULL) {
2069
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2177
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2070
				 engine->name);
2178
				 engine->name);
2071
		return ERR_PTR(-ENOMEM);
2179
		return ERR_PTR(-ENOMEM);
2072
	}
2180
	}
2073
 
2181
 
2074
	ring->ring = engine;
2182
	ring->ring = engine;
2075
	list_add(&ring->link, &engine->buffers);
2183
	list_add(&ring->link, &engine->buffers);
2076
 
2184
 
2077
	ring->size = size;
2185
	ring->size = size;
2078
	/* Workaround an erratum on the i830 which causes a hang if
2186
	/* Workaround an erratum on the i830 which causes a hang if
2079
	 * the TAIL pointer points to within the last 2 cachelines
2187
	 * the TAIL pointer points to within the last 2 cachelines
2080
	 * of the buffer.
2188
	 * of the buffer.
2081
	 */
2189
	 */
2082
	ring->effective_size = size;
2190
	ring->effective_size = size;
2083
	if (IS_I830(engine->dev) || IS_845G(engine->dev))
2191
	if (IS_I830(engine->dev) || IS_845G(engine->dev))
2084
		ring->effective_size -= 2 * CACHELINE_BYTES;
2192
		ring->effective_size -= 2 * CACHELINE_BYTES;
2085
 
2193
 
2086
	ring->last_retired_head = -1;
2194
	ring->last_retired_head = -1;
2087
	intel_ring_update_space(ring);
2195
	intel_ring_update_space(ring);
2088
 
2196
 
2089
	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2197
	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2090
	if (ret) {
2198
	if (ret) {
2091
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2199
		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2092
			  engine->name, ret);
2200
				 engine->name, ret);
2093
		list_del(&ring->link);
2201
		list_del(&ring->link);
2094
		kfree(ring);
2202
		kfree(ring);
2095
		return ERR_PTR(ret);
2203
		return ERR_PTR(ret);
2096
	}
2204
	}
2097
 
2205
 
2098
	return ring;
2206
	return ring;
2099
}
2207
}
2100
 
2208
 
2101
void
2209
void
2102
intel_ringbuffer_free(struct intel_ringbuffer *ring)
2210
intel_ringbuffer_free(struct intel_ringbuffer *ring)
2103
{
2211
{
2104
	intel_destroy_ringbuffer_obj(ring);
2212
	intel_destroy_ringbuffer_obj(ring);
2105
	list_del(&ring->link);
2213
	list_del(&ring->link);
2106
	kfree(ring);
2214
	kfree(ring);
2107
}
2215
}
2108
 
2216
 
2109
static int intel_init_ring_buffer(struct drm_device *dev,
2217
static int intel_init_ring_buffer(struct drm_device *dev,
2110
				  struct intel_engine_cs *ring)
2218
				  struct intel_engine_cs *ring)
2111
{
2219
{
2112
	struct intel_ringbuffer *ringbuf;
2220
	struct intel_ringbuffer *ringbuf;
2113
	int ret;
2221
	int ret;
2114
 
2222
 
2115
	WARN_ON(ring->buffer);
2223
	WARN_ON(ring->buffer);
2116
 
2224
 
2117
	ring->dev = dev;
2225
	ring->dev = dev;
2118
	INIT_LIST_HEAD(&ring->active_list);
2226
	INIT_LIST_HEAD(&ring->active_list);
2119
	INIT_LIST_HEAD(&ring->request_list);
2227
	INIT_LIST_HEAD(&ring->request_list);
2120
	INIT_LIST_HEAD(&ring->execlist_queue);
2228
	INIT_LIST_HEAD(&ring->execlist_queue);
2121
	INIT_LIST_HEAD(&ring->buffers);
2229
	INIT_LIST_HEAD(&ring->buffers);
2122
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2230
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2123
	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2231
	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2124
 
2232
 
2125
	init_waitqueue_head(&ring->irq_queue);
2233
	init_waitqueue_head(&ring->irq_queue);
2126
 
2234
 
2127
	ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2235
	ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2128
	if (IS_ERR(ringbuf)) {
2236
	if (IS_ERR(ringbuf)) {
2129
		ret = PTR_ERR(ringbuf);
2237
		ret = PTR_ERR(ringbuf);
2130
		goto error;
2238
		goto error;
2131
	}
2239
	}
2132
	ring->buffer = ringbuf;
2240
	ring->buffer = ringbuf;
2133
 
2241
 
2134
	if (I915_NEED_GFX_HWS(dev)) {
2242
	if (I915_NEED_GFX_HWS(dev)) {
2135
		ret = init_status_page(ring);
2243
		ret = init_status_page(ring);
2136
		if (ret)
2244
		if (ret)
2137
			goto error;
2245
			goto error;
2138
	} else {
2246
	} else {
2139
		WARN_ON(ring->id != RCS);
2247
		WARN_ON(ring->id != RCS);
2140
		ret = init_phys_status_page(ring);
2248
		ret = init_phys_status_page(ring);
2141
		if (ret)
2249
		if (ret)
2142
			goto error;
2250
			goto error;
2143
	}
2251
	}
2144
 
2252
 
2145
	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2253
	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2146
	if (ret) {
2254
	if (ret) {
2147
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2255
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2148
				ring->name, ret);
2256
				ring->name, ret);
2149
		intel_destroy_ringbuffer_obj(ringbuf);
2257
		intel_destroy_ringbuffer_obj(ringbuf);
2150
		goto error;
2258
		goto error;
2151
	}
2259
	}
2152
 
2260
 
2153
	ret = i915_cmd_parser_init_ring(ring);
2261
	ret = i915_cmd_parser_init_ring(ring);
2154
	if (ret)
2262
	if (ret)
2155
		goto error;
2263
		goto error;
2156
 
2264
 
2157
	return 0;
2265
	return 0;
2158
 
2266
 
2159
error:
2267
error:
2160
	intel_cleanup_ring_buffer(ring);
2268
	intel_cleanup_ring_buffer(ring);
2161
	return ret;
2269
	return ret;
2162
}
2270
}
2163
 
2271
 
2164
void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2272
void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2165
{
2273
{
2166
	struct drm_i915_private *dev_priv;
2274
	struct drm_i915_private *dev_priv;
2167
 
2275
 
2168
	if (!intel_ring_initialized(ring))
2276
	if (!intel_ring_initialized(ring))
2169
		return;
2277
		return;
2170
 
2278
 
2171
	dev_priv = to_i915(ring->dev);
2279
	dev_priv = to_i915(ring->dev);
2172
 
2280
 
2173
	if (ring->buffer) {
2281
	if (ring->buffer) {
2174
	intel_stop_ring_buffer(ring);
2282
		intel_stop_ring_buffer(ring);
2175
	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2283
		WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2176
 
2284
 
2177
	intel_unpin_ringbuffer_obj(ring->buffer);
2285
		intel_unpin_ringbuffer_obj(ring->buffer);
2178
	intel_ringbuffer_free(ring->buffer);
2286
		intel_ringbuffer_free(ring->buffer);
2179
	ring->buffer = NULL;
2287
		ring->buffer = NULL;
2180
	}
2288
	}
2181
 
2289
 
2182
	if (ring->cleanup)
2290
	if (ring->cleanup)
2183
		ring->cleanup(ring);
2291
		ring->cleanup(ring);
2184
 
2292
 
2185
	if (I915_NEED_GFX_HWS(ring->dev)) {
2293
	if (I915_NEED_GFX_HWS(ring->dev)) {
2186
	cleanup_status_page(ring);
2294
		cleanup_status_page(ring);
2187
	} else {
2295
	} else {
2188
		WARN_ON(ring->id != RCS);
2296
		WARN_ON(ring->id != RCS);
2189
		cleanup_phys_status_page(ring);
2297
		cleanup_phys_status_page(ring);
2190
	}
2298
	}
2191
 
2299
 
2192
	i915_cmd_parser_fini_ring(ring);
2300
	i915_cmd_parser_fini_ring(ring);
2193
	i915_gem_batch_pool_fini(&ring->batch_pool);
2301
	i915_gem_batch_pool_fini(&ring->batch_pool);
2194
	ring->dev = NULL;
2302
	ring->dev = NULL;
2195
}
2303
}
2196
 
2304
 
2197
static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2305
static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2198
{
2306
{
2199
	struct intel_ringbuffer *ringbuf = ring->buffer;
2307
	struct intel_ringbuffer *ringbuf = ring->buffer;
2200
	struct drm_i915_gem_request *request;
2308
	struct drm_i915_gem_request *request;
2201
	unsigned space;
2309
	unsigned space;
2202
	int ret;
2310
	int ret;
2203
 
2311
 
2204
	if (intel_ring_space(ringbuf) >= n)
2312
	if (intel_ring_space(ringbuf) >= n)
2205
		return 0;
2313
		return 0;
2206
 
2314
 
2207
	/* The whole point of reserving space is to not wait! */
2315
	/* The whole point of reserving space is to not wait! */
2208
	WARN_ON(ringbuf->reserved_in_use);
2316
	WARN_ON(ringbuf->reserved_in_use);
2209
 
2317
 
2210
	list_for_each_entry(request, &ring->request_list, list) {
2318
	list_for_each_entry(request, &ring->request_list, list) {
2211
		space = __intel_ring_space(request->postfix, ringbuf->tail,
2319
		space = __intel_ring_space(request->postfix, ringbuf->tail,
2212
					   ringbuf->size);
2320
					   ringbuf->size);
2213
		if (space >= n)
2321
		if (space >= n)
2214
			break;
2322
			break;
2215
	}
2323
	}
2216
 
2324
 
2217
	if (WARN_ON(&request->list == &ring->request_list))
2325
	if (WARN_ON(&request->list == &ring->request_list))
2218
		return -ENOSPC;
2326
		return -ENOSPC;
2219
 
2327
 
2220
	ret = i915_wait_request(request);
2328
	ret = i915_wait_request(request);
2221
	if (ret)
2329
	if (ret)
2222
		return ret;
2330
		return ret;
2223
 
2331
 
2224
	ringbuf->space = space;
2332
	ringbuf->space = space;
2225
	return 0;
2333
	return 0;
2226
}
2334
}
2227
 
2335
 
2228
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2336
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2229
{
2337
{
2230
	uint32_t __iomem *virt;
2338
	uint32_t __iomem *virt;
2231
	int rem = ringbuf->size - ringbuf->tail;
2339
	int rem = ringbuf->size - ringbuf->tail;
2232
 
2340
 
2233
	virt = ringbuf->virtual_start + ringbuf->tail;
2341
	virt = ringbuf->virtual_start + ringbuf->tail;
2234
	rem /= 4;
2342
	rem /= 4;
2235
	while (rem--)
2343
	while (rem--)
2236
		iowrite32(MI_NOOP, virt++);
2344
		iowrite32(MI_NOOP, virt++);
2237
 
2345
 
2238
	ringbuf->tail = 0;
2346
	ringbuf->tail = 0;
2239
	intel_ring_update_space(ringbuf);
2347
	intel_ring_update_space(ringbuf);
2240
}
2348
}
2241
 
2349
 
2242
int intel_ring_idle(struct intel_engine_cs *ring)
2350
int intel_ring_idle(struct intel_engine_cs *ring)
2243
{
2351
{
2244
	struct drm_i915_gem_request *req;
2352
	struct drm_i915_gem_request *req;
2245
 
2353
 
2246
	/* Wait upon the last request to be completed */
2354
	/* Wait upon the last request to be completed */
2247
	if (list_empty(&ring->request_list))
2355
	if (list_empty(&ring->request_list))
2248
		return 0;
2356
		return 0;
2249
 
2357
 
2250
	req = list_entry(ring->request_list.prev,
2358
	req = list_entry(ring->request_list.prev,
2251
			struct drm_i915_gem_request,
2359
			struct drm_i915_gem_request,
2252
			list);
2360
			list);
2253
 
2361
 
2254
	/* Make sure we do not trigger any retires */
2362
	/* Make sure we do not trigger any retires */
2255
	return __i915_wait_request(req,
2363
	return __i915_wait_request(req,
2256
				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2364
				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2257
				   to_i915(ring->dev)->mm.interruptible,
2365
				   to_i915(ring->dev)->mm.interruptible,
2258
				   NULL, NULL);
2366
				   NULL, NULL);
2259
}
2367
}
2260
 
2368
 
2261
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2369
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2262
{
2370
{
2263
	request->ringbuf = request->ring->buffer;
2371
	request->ringbuf = request->ring->buffer;
2264
	return 0;
2372
	return 0;
2265
}
2373
}
2266
 
2374
 
2267
int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2375
int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2268
{
2376
{
2269
	/*
2377
	/*
2270
	 * The first call merely notes the reserve request and is common for
2378
	 * The first call merely notes the reserve request and is common for
2271
	 * all back ends. The subsequent localised _begin() call actually
2379
	 * all back ends. The subsequent localised _begin() call actually
2272
	 * ensures that the reservation is available. Without the begin, if
2380
	 * ensures that the reservation is available. Without the begin, if
2273
	 * the request creator immediately submitted the request without
2381
	 * the request creator immediately submitted the request without
2274
	 * adding any commands to it then there might not actually be
2382
	 * adding any commands to it then there might not actually be
2275
	 * sufficient room for the submission commands.
2383
	 * sufficient room for the submission commands.
2276
	 */
2384
	 */
2277
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2385
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2278
 
2386
 
2279
	return intel_ring_begin(request, 0);
2387
	return intel_ring_begin(request, 0);
2280
}
2388
}
2281
 
2389
 
2282
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2390
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2283
{
2391
{
2284
	WARN_ON(ringbuf->reserved_size);
2392
	WARN_ON(ringbuf->reserved_size);
2285
	WARN_ON(ringbuf->reserved_in_use);
2393
	WARN_ON(ringbuf->reserved_in_use);
2286
 
2394
 
2287
	ringbuf->reserved_size = size;
2395
	ringbuf->reserved_size = size;
2288
}
2396
}
2289
 
2397
 
2290
void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2398
void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2291
{
2399
{
2292
	WARN_ON(ringbuf->reserved_in_use);
2400
	WARN_ON(ringbuf->reserved_in_use);
2293
 
2401
 
2294
	ringbuf->reserved_size   = 0;
2402
	ringbuf->reserved_size   = 0;
2295
	ringbuf->reserved_in_use = false;
2403
	ringbuf->reserved_in_use = false;
2296
}
2404
}
2297
 
2405
 
2298
void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2406
void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2299
{
2407
{
2300
	WARN_ON(ringbuf->reserved_in_use);
2408
	WARN_ON(ringbuf->reserved_in_use);
2301
 
2409
 
2302
	ringbuf->reserved_in_use = true;
2410
	ringbuf->reserved_in_use = true;
2303
	ringbuf->reserved_tail   = ringbuf->tail;
2411
	ringbuf->reserved_tail   = ringbuf->tail;
2304
}
2412
}
2305
 
2413
 
2306
void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2414
void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2307
{
2415
{
2308
	WARN_ON(!ringbuf->reserved_in_use);
2416
	WARN_ON(!ringbuf->reserved_in_use);
2309
	if (ringbuf->tail > ringbuf->reserved_tail) {
2417
	if (ringbuf->tail > ringbuf->reserved_tail) {
2310
		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2418
		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2311
		     "request reserved size too small: %d vs %d!\n",
2419
		     "request reserved size too small: %d vs %d!\n",
2312
		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2420
		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2313
	} else {
2421
	} else {
2314
		/*
2422
		/*
2315
		 * The ring was wrapped while the reserved space was in use.
2423
		 * The ring was wrapped while the reserved space was in use.
2316
		 * That means that some unknown amount of the ring tail was
2424
		 * That means that some unknown amount of the ring tail was
2317
		 * no-op filled and skipped. Thus simply adding the ring size
2425
		 * no-op filled and skipped. Thus simply adding the ring size
2318
		 * to the tail and doing the above space check will not work.
2426
		 * to the tail and doing the above space check will not work.
2319
		 * Rather than attempt to track how much tail was skipped,
2427
		 * Rather than attempt to track how much tail was skipped,
2320
		 * it is much simpler to say that also skipping the sanity
2428
		 * it is much simpler to say that also skipping the sanity
2321
		 * check every once in a while is not a big issue.
2429
		 * check every once in a while is not a big issue.
2322
		 */
2430
		 */
2323
	}
2431
	}
2324
 
2432
 
2325
	ringbuf->reserved_size   = 0;
2433
	ringbuf->reserved_size   = 0;
2326
	ringbuf->reserved_in_use = false;
2434
	ringbuf->reserved_in_use = false;
2327
}
2435
}
2328
 
2436
 
2329
static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2437
static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2330
{
2438
{
2331
	struct intel_ringbuffer *ringbuf = ring->buffer;
2439
	struct intel_ringbuffer *ringbuf = ring->buffer;
2332
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2440
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2333
	int remain_actual = ringbuf->size - ringbuf->tail;
2441
	int remain_actual = ringbuf->size - ringbuf->tail;
2334
	int ret, total_bytes, wait_bytes = 0;
2442
	int ret, total_bytes, wait_bytes = 0;
2335
	bool need_wrap = false;
2443
	bool need_wrap = false;
2336
 
2444
 
2337
	if (ringbuf->reserved_in_use)
2445
	if (ringbuf->reserved_in_use)
2338
		total_bytes = bytes;
2446
		total_bytes = bytes;
2339
	else
2447
	else
2340
		total_bytes = bytes + ringbuf->reserved_size;
2448
		total_bytes = bytes + ringbuf->reserved_size;
2341
 
2449
 
2342
	if (unlikely(bytes > remain_usable)) {
2450
	if (unlikely(bytes > remain_usable)) {
2343
		/*
2451
		/*
2344
		 * Not enough space for the basic request. So need to flush
2452
		 * Not enough space for the basic request. So need to flush
2345
		 * out the remainder and then wait for base + reserved.
2453
		 * out the remainder and then wait for base + reserved.
2346
		 */
2454
		 */
2347
		wait_bytes = remain_actual + total_bytes;
2455
		wait_bytes = remain_actual + total_bytes;
2348
		need_wrap = true;
2456
		need_wrap = true;
2349
	} else {
2457
	} else {
2350
		if (unlikely(total_bytes > remain_usable)) {
2458
		if (unlikely(total_bytes > remain_usable)) {
2351
			/*
2459
			/*
2352
			 * The base request will fit but the reserved space
2460
			 * The base request will fit but the reserved space
2353
			 * falls off the end. So don't need an immediate wrap
2461
			 * falls off the end. So don't need an immediate wrap
2354
			 * and only need to effectively wait for the reserved
2462
			 * and only need to effectively wait for the reserved
2355
			 * size space from the start of ringbuffer.
2463
			 * size space from the start of ringbuffer.
2356
			 */
2464
			 */
2357
			wait_bytes = remain_actual + ringbuf->reserved_size;
2465
			wait_bytes = remain_actual + ringbuf->reserved_size;
2358
		} else if (total_bytes > ringbuf->space) {
2466
		} else if (total_bytes > ringbuf->space) {
2359
			/* No wrapping required, just waiting. */
2467
			/* No wrapping required, just waiting. */
2360
			wait_bytes = total_bytes;
2468
			wait_bytes = total_bytes;
2361
		}
2469
		}
2362
	}
2470
	}
2363
 
2471
 
2364
	if (wait_bytes) {
2472
	if (wait_bytes) {
2365
		ret = ring_wait_for_space(ring, wait_bytes);
2473
		ret = ring_wait_for_space(ring, wait_bytes);
2366
		if (unlikely(ret))
2474
		if (unlikely(ret))
2367
			return ret;
2475
			return ret;
2368
 
2476
 
2369
		if (need_wrap)
2477
		if (need_wrap)
2370
			__wrap_ring_buffer(ringbuf);
2478
			__wrap_ring_buffer(ringbuf);
2371
	}
2479
	}
2372
 
2480
 
2373
	return 0;
2481
	return 0;
2374
}
2482
}
2375
 
2483
 
2376
int intel_ring_begin(struct drm_i915_gem_request *req,
2484
int intel_ring_begin(struct drm_i915_gem_request *req,
2377
		     int num_dwords)
2485
		     int num_dwords)
2378
{
2486
{
2379
	struct intel_engine_cs *ring;
2487
	struct intel_engine_cs *ring;
2380
	struct drm_i915_private *dev_priv;
2488
	struct drm_i915_private *dev_priv;
2381
	int ret;
2489
	int ret;
2382
 
2490
 
2383
	WARN_ON(req == NULL);
2491
	WARN_ON(req == NULL);
2384
	ring = req->ring;
2492
	ring = req->ring;
2385
	dev_priv = ring->dev->dev_private;
2493
	dev_priv = ring->dev->dev_private;
2386
 
2494
 
2387
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2495
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2388
				   dev_priv->mm.interruptible);
2496
				   dev_priv->mm.interruptible);
2389
	if (ret)
2497
	if (ret)
2390
		return ret;
2498
		return ret;
2391
 
2499
 
2392
	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2500
	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2393
	if (ret)
2501
	if (ret)
2394
		return ret;
2502
		return ret;
2395
 
2503
 
2396
	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2504
	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2397
	return 0;
2505
	return 0;
2398
}
2506
}
2399
 
2507
 
2400
/* Align the ring tail to a cacheline boundary */
2508
/* Align the ring tail to a cacheline boundary */
2401
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2509
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2402
{
2510
{
2403
	struct intel_engine_cs *ring = req->ring;
2511
	struct intel_engine_cs *ring = req->ring;
2404
	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2512
	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2405
	int ret;
2513
	int ret;
2406
 
2514
 
2407
	if (num_dwords == 0)
2515
	if (num_dwords == 0)
2408
		return 0;
2516
		return 0;
2409
 
2517
 
2410
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2518
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2411
	ret = intel_ring_begin(req, num_dwords);
2519
	ret = intel_ring_begin(req, num_dwords);
2412
	if (ret)
2520
	if (ret)
2413
		return ret;
2521
		return ret;
2414
 
2522
 
2415
	while (num_dwords--)
2523
	while (num_dwords--)
2416
		intel_ring_emit(ring, MI_NOOP);
2524
		intel_ring_emit(ring, MI_NOOP);
2417
 
2525
 
2418
	intel_ring_advance(ring);
2526
	intel_ring_advance(ring);
2419
 
2527
 
2420
	return 0;
2528
	return 0;
2421
}
2529
}
2422
 
2530
 
2423
void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2531
void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2424
{
2532
{
2425
	struct drm_device *dev = ring->dev;
2533
	struct drm_device *dev = ring->dev;
2426
	struct drm_i915_private *dev_priv = dev->dev_private;
2534
	struct drm_i915_private *dev_priv = dev->dev_private;
2427
 
2535
 
2428
	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2536
	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2429
		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2537
		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2430
		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2538
		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2431
		if (HAS_VEBOX(dev))
2539
		if (HAS_VEBOX(dev))
2432
			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2540
			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2433
	}
2541
	}
2434
 
2542
 
2435
	ring->set_seqno(ring, seqno);
2543
	ring->set_seqno(ring, seqno);
2436
	ring->hangcheck.seqno = seqno;
2544
	ring->hangcheck.seqno = seqno;
2437
}
2545
}
2438
 
2546
 
2439
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2547
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2440
				     u32 value)
2548
				     u32 value)
2441
{
2549
{
2442
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2550
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2443
 
2551
 
2444
       /* Every tail move must follow the sequence below */
2552
       /* Every tail move must follow the sequence below */
2445
 
2553
 
2446
	/* Disable notification that the ring is IDLE. The GT
2554
	/* Disable notification that the ring is IDLE. The GT
2447
	 * will then assume that it is busy and bring it out of rc6.
2555
	 * will then assume that it is busy and bring it out of rc6.
2448
	 */
2556
	 */
2449
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2557
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2450
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2558
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2451
 
2559
 
2452
	/* Clear the context id. Here be magic! */
2560
	/* Clear the context id. Here be magic! */
2453
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2561
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2454
 
2562
 
2455
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2563
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2456
	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2564
	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2457
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2565
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2458
		     50))
2566
		     50))
2459
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2567
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2460
 
2568
 
2461
	/* Now that the ring is fully powered up, update the tail */
2569
	/* Now that the ring is fully powered up, update the tail */
2462
	I915_WRITE_TAIL(ring, value);
2570
	I915_WRITE_TAIL(ring, value);
2463
	POSTING_READ(RING_TAIL(ring->mmio_base));
2571
	POSTING_READ(RING_TAIL(ring->mmio_base));
2464
 
2572
 
2465
	/* Let the ring send IDLE messages to the GT again,
2573
	/* Let the ring send IDLE messages to the GT again,
2466
	 * and so let it sleep to conserve power when idle.
2574
	 * and so let it sleep to conserve power when idle.
2467
	 */
2575
	 */
2468
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2576
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2469
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2577
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2470
}
2578
}
2471
 
2579
 
2472
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2580
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2473
			       u32 invalidate, u32 flush)
2581
			       u32 invalidate, u32 flush)
2474
{
2582
{
2475
	struct intel_engine_cs *ring = req->ring;
2583
	struct intel_engine_cs *ring = req->ring;
2476
	uint32_t cmd;
2584
	uint32_t cmd;
2477
	int ret;
2585
	int ret;
2478
 
2586
 
2479
	ret = intel_ring_begin(req, 4);
2587
	ret = intel_ring_begin(req, 4);
2480
	if (ret)
2588
	if (ret)
2481
		return ret;
2589
		return ret;
2482
 
2590
 
2483
	cmd = MI_FLUSH_DW;
2591
	cmd = MI_FLUSH_DW;
2484
	if (INTEL_INFO(ring->dev)->gen >= 8)
2592
	if (INTEL_INFO(ring->dev)->gen >= 8)
2485
		cmd += 1;
2593
		cmd += 1;
2486
 
2594
 
2487
	/* We always require a command barrier so that subsequent
2595
	/* We always require a command barrier so that subsequent
2488
	 * commands, such as breadcrumb interrupts, are strictly ordered
2596
	 * commands, such as breadcrumb interrupts, are strictly ordered
2489
	 * wrt the contents of the write cache being flushed to memory
2597
	 * wrt the contents of the write cache being flushed to memory
2490
	 * (and thus being coherent from the CPU).
2598
	 * (and thus being coherent from the CPU).
2491
	 */
2599
	 */
2492
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2600
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2493
 
2601
 
2494
	/*
2602
	/*
2495
	 * Bspec vol 1c.5 - video engine command streamer:
2603
	 * Bspec vol 1c.5 - video engine command streamer:
2496
	 * "If ENABLED, all TLBs will be invalidated once the flush
2604
	 * "If ENABLED, all TLBs will be invalidated once the flush
2497
	 * operation is complete. This bit is only valid when the
2605
	 * operation is complete. This bit is only valid when the
2498
	 * Post-Sync Operation field is a value of 1h or 3h."
2606
	 * Post-Sync Operation field is a value of 1h or 3h."
2499
	 */
2607
	 */
2500
	if (invalidate & I915_GEM_GPU_DOMAINS)
2608
	if (invalidate & I915_GEM_GPU_DOMAINS)
2501
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2609
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2502
 
2610
 
2503
	intel_ring_emit(ring, cmd);
2611
	intel_ring_emit(ring, cmd);
2504
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2612
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2505
	if (INTEL_INFO(ring->dev)->gen >= 8) {
2613
	if (INTEL_INFO(ring->dev)->gen >= 8) {
2506
		intel_ring_emit(ring, 0); /* upper addr */
2614
		intel_ring_emit(ring, 0); /* upper addr */
2507
		intel_ring_emit(ring, 0); /* value */
2615
		intel_ring_emit(ring, 0); /* value */
2508
	} else  {
2616
	} else  {
2509
		intel_ring_emit(ring, 0);
2617
		intel_ring_emit(ring, 0);
2510
		intel_ring_emit(ring, MI_NOOP);
2618
		intel_ring_emit(ring, MI_NOOP);
2511
	}
2619
	}
2512
	intel_ring_advance(ring);
2620
	intel_ring_advance(ring);
2513
	return 0;
2621
	return 0;
2514
}
2622
}
2515
 
2623
 
2516
static int
2624
static int
2517
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2625
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2518
			      u64 offset, u32 len,
2626
			      u64 offset, u32 len,
2519
			      unsigned dispatch_flags)
2627
			      unsigned dispatch_flags)
2520
{
2628
{
2521
	struct intel_engine_cs *ring = req->ring;
2629
	struct intel_engine_cs *ring = req->ring;
2522
	bool ppgtt = USES_PPGTT(ring->dev) &&
2630
	bool ppgtt = USES_PPGTT(ring->dev) &&
2523
			!(dispatch_flags & I915_DISPATCH_SECURE);
2631
			!(dispatch_flags & I915_DISPATCH_SECURE);
2524
	int ret;
2632
	int ret;
2525
 
2633
 
2526
	ret = intel_ring_begin(req, 4);
2634
	ret = intel_ring_begin(req, 4);
2527
	if (ret)
2635
	if (ret)
2528
		return ret;
2636
		return ret;
2529
 
2637
 
2530
	/* FIXME(BDW): Address space and security selectors. */
2638
	/* FIXME(BDW): Address space and security selectors. */
2531
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2639
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2532
			(dispatch_flags & I915_DISPATCH_RS ?
2640
			(dispatch_flags & I915_DISPATCH_RS ?
2533
			 MI_BATCH_RESOURCE_STREAMER : 0));
2641
			 MI_BATCH_RESOURCE_STREAMER : 0));
2534
	intel_ring_emit(ring, lower_32_bits(offset));
2642
	intel_ring_emit(ring, lower_32_bits(offset));
2535
	intel_ring_emit(ring, upper_32_bits(offset));
2643
	intel_ring_emit(ring, upper_32_bits(offset));
2536
	intel_ring_emit(ring, MI_NOOP);
2644
	intel_ring_emit(ring, MI_NOOP);
2537
	intel_ring_advance(ring);
2645
	intel_ring_advance(ring);
2538
 
2646
 
2539
	return 0;
2647
	return 0;
2540
}
2648
}
2541
 
2649
 
2542
static int
2650
static int
2543
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2651
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2544
			     u64 offset, u32 len,
2652
			     u64 offset, u32 len,
2545
			     unsigned dispatch_flags)
2653
			     unsigned dispatch_flags)
2546
{
2654
{
2547
	struct intel_engine_cs *ring = req->ring;
2655
	struct intel_engine_cs *ring = req->ring;
2548
	int ret;
2656
	int ret;
2549
 
2657
 
2550
	ret = intel_ring_begin(req, 2);
2658
	ret = intel_ring_begin(req, 2);
2551
	if (ret)
2659
	if (ret)
2552
		return ret;
2660
		return ret;
2553
 
2661
 
2554
	intel_ring_emit(ring,
2662
	intel_ring_emit(ring,
2555
			MI_BATCH_BUFFER_START |
2663
			MI_BATCH_BUFFER_START |
2556
			(dispatch_flags & I915_DISPATCH_SECURE ?
2664
			(dispatch_flags & I915_DISPATCH_SECURE ?
2557
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2665
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2558
			(dispatch_flags & I915_DISPATCH_RS ?
2666
			(dispatch_flags & I915_DISPATCH_RS ?
2559
			 MI_BATCH_RESOURCE_STREAMER : 0));
2667
			 MI_BATCH_RESOURCE_STREAMER : 0));
2560
	/* bit0-7 is the length on GEN6+ */
2668
	/* bit0-7 is the length on GEN6+ */
2561
	intel_ring_emit(ring, offset);
2669
	intel_ring_emit(ring, offset);
2562
	intel_ring_advance(ring);
2670
	intel_ring_advance(ring);
2563
 
2671
 
2564
	return 0;
2672
	return 0;
2565
}
2673
}
2566
 
2674
 
2567
static int
2675
static int
2568
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2676
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2569
			      u64 offset, u32 len,
2677
			      u64 offset, u32 len,
2570
			      unsigned dispatch_flags)
2678
			      unsigned dispatch_flags)
2571
{
2679
{
2572
	struct intel_engine_cs *ring = req->ring;
2680
	struct intel_engine_cs *ring = req->ring;
2573
	int ret;
2681
	int ret;
2574
 
2682
 
2575
	ret = intel_ring_begin(req, 2);
2683
	ret = intel_ring_begin(req, 2);
2576
	if (ret)
2684
	if (ret)
2577
		return ret;
2685
		return ret;
2578
 
2686
 
2579
	intel_ring_emit(ring,
2687
	intel_ring_emit(ring,
2580
			MI_BATCH_BUFFER_START |
2688
			MI_BATCH_BUFFER_START |
2581
			(dispatch_flags & I915_DISPATCH_SECURE ?
2689
			(dispatch_flags & I915_DISPATCH_SECURE ?
2582
			 0 : MI_BATCH_NON_SECURE_I965));
2690
			 0 : MI_BATCH_NON_SECURE_I965));
2583
	/* bit0-7 is the length on GEN6+ */
2691
	/* bit0-7 is the length on GEN6+ */
2584
	intel_ring_emit(ring, offset);
2692
	intel_ring_emit(ring, offset);
2585
	intel_ring_advance(ring);
2693
	intel_ring_advance(ring);
2586
 
2694
 
2587
	return 0;
2695
	return 0;
2588
}
2696
}
2589
 
2697
 
2590
/* Blitter support (SandyBridge+) */
2698
/* Blitter support (SandyBridge+) */
2591
 
2699
 
2592
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2700
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2593
			   u32 invalidate, u32 flush)
2701
			   u32 invalidate, u32 flush)
2594
{
2702
{
2595
	struct intel_engine_cs *ring = req->ring;
2703
	struct intel_engine_cs *ring = req->ring;
2596
	struct drm_device *dev = ring->dev;
2704
	struct drm_device *dev = ring->dev;
2597
	uint32_t cmd;
2705
	uint32_t cmd;
2598
	int ret;
2706
	int ret;
2599
 
2707
 
2600
	ret = intel_ring_begin(req, 4);
2708
	ret = intel_ring_begin(req, 4);
2601
	if (ret)
2709
	if (ret)
2602
		return ret;
2710
		return ret;
2603
 
2711
 
2604
	cmd = MI_FLUSH_DW;
2712
	cmd = MI_FLUSH_DW;
2605
	if (INTEL_INFO(dev)->gen >= 8)
2713
	if (INTEL_INFO(dev)->gen >= 8)
2606
		cmd += 1;
2714
		cmd += 1;
2607
 
2715
 
2608
	/* We always require a command barrier so that subsequent
2716
	/* We always require a command barrier so that subsequent
2609
	 * commands, such as breadcrumb interrupts, are strictly ordered
2717
	 * commands, such as breadcrumb interrupts, are strictly ordered
2610
	 * wrt the contents of the write cache being flushed to memory
2718
	 * wrt the contents of the write cache being flushed to memory
2611
	 * (and thus being coherent from the CPU).
2719
	 * (and thus being coherent from the CPU).
2612
	 */
2720
	 */
2613
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2721
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2614
 
2722
 
2615
	/*
2723
	/*
2616
	 * Bspec vol 1c.3 - blitter engine command streamer:
2724
	 * Bspec vol 1c.3 - blitter engine command streamer:
2617
	 * "If ENABLED, all TLBs will be invalidated once the flush
2725
	 * "If ENABLED, all TLBs will be invalidated once the flush
2618
	 * operation is complete. This bit is only valid when the
2726
	 * operation is complete. This bit is only valid when the
2619
	 * Post-Sync Operation field is a value of 1h or 3h."
2727
	 * Post-Sync Operation field is a value of 1h or 3h."
2620
	 */
2728
	 */
2621
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2729
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2622
		cmd |= MI_INVALIDATE_TLB;
2730
		cmd |= MI_INVALIDATE_TLB;
2623
	intel_ring_emit(ring, cmd);
2731
	intel_ring_emit(ring, cmd);
2624
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2732
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2625
	if (INTEL_INFO(dev)->gen >= 8) {
2733
	if (INTEL_INFO(dev)->gen >= 8) {
2626
		intel_ring_emit(ring, 0); /* upper addr */
2734
		intel_ring_emit(ring, 0); /* upper addr */
2627
		intel_ring_emit(ring, 0); /* value */
2735
		intel_ring_emit(ring, 0); /* value */
2628
	} else  {
2736
	} else  {
2629
		intel_ring_emit(ring, 0);
2737
		intel_ring_emit(ring, 0);
2630
		intel_ring_emit(ring, MI_NOOP);
2738
		intel_ring_emit(ring, MI_NOOP);
2631
	}
2739
	}
2632
	intel_ring_advance(ring);
2740
	intel_ring_advance(ring);
2633
 
2741
 
2634
	return 0;
2742
	return 0;
2635
}
2743
}
2636
 
2744
 
2637
int intel_init_render_ring_buffer(struct drm_device *dev)
2745
int intel_init_render_ring_buffer(struct drm_device *dev)
2638
{
2746
{
2639
	struct drm_i915_private *dev_priv = dev->dev_private;
2747
	struct drm_i915_private *dev_priv = dev->dev_private;
2640
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2748
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2641
	struct drm_i915_gem_object *obj;
2749
	struct drm_i915_gem_object *obj;
2642
	int ret;
2750
	int ret;
2643
 
2751
 
2644
	ring->name = "render ring";
2752
	ring->name = "render ring";
2645
	ring->id = RCS;
2753
	ring->id = RCS;
-
 
2754
	ring->exec_id = I915_EXEC_RENDER;
2646
	ring->mmio_base = RENDER_RING_BASE;
2755
	ring->mmio_base = RENDER_RING_BASE;
2647
 
2756
 
2648
	if (INTEL_INFO(dev)->gen >= 8) {
2757
	if (INTEL_INFO(dev)->gen >= 8) {
2649
		if (i915_semaphore_is_enabled(dev)) {
2758
		if (i915_semaphore_is_enabled(dev)) {
2650
			obj = i915_gem_alloc_object(dev, 4096);
2759
			obj = i915_gem_alloc_object(dev, 4096);
2651
			if (obj == NULL) {
2760
			if (obj == NULL) {
2652
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2761
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2653
				i915.semaphores = 0;
2762
				i915.semaphores = 0;
2654
			} else {
2763
			} else {
2655
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2764
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2656
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2765
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2657
				if (ret != 0) {
2766
				if (ret != 0) {
2658
					drm_gem_object_unreference(&obj->base);
2767
					drm_gem_object_unreference(&obj->base);
2659
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2768
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2660
					i915.semaphores = 0;
2769
					i915.semaphores = 0;
2661
				} else
2770
				} else
2662
					dev_priv->semaphore_obj = obj;
2771
					dev_priv->semaphore_obj = obj;
2663
			}
2772
			}
2664
		}
2773
		}
2665
 
2774
 
2666
		ring->init_context = intel_rcs_ctx_init;
2775
		ring->init_context = intel_rcs_ctx_init;
2667
		ring->add_request = gen6_add_request;
2776
		ring->add_request = gen6_add_request;
2668
		ring->flush = gen8_render_ring_flush;
2777
		ring->flush = gen8_render_ring_flush;
2669
		ring->irq_get = gen8_ring_get_irq;
2778
		ring->irq_get = gen8_ring_get_irq;
2670
		ring->irq_put = gen8_ring_put_irq;
2779
		ring->irq_put = gen8_ring_put_irq;
2671
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2780
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2672
		ring->get_seqno = gen6_ring_get_seqno;
2781
		ring->get_seqno = gen6_ring_get_seqno;
2673
		ring->set_seqno = ring_set_seqno;
2782
		ring->set_seqno = ring_set_seqno;
2674
		if (i915_semaphore_is_enabled(dev)) {
2783
		if (i915_semaphore_is_enabled(dev)) {
2675
			WARN_ON(!dev_priv->semaphore_obj);
2784
			WARN_ON(!dev_priv->semaphore_obj);
2676
			ring->semaphore.sync_to = gen8_ring_sync;
2785
			ring->semaphore.sync_to = gen8_ring_sync;
2677
			ring->semaphore.signal = gen8_rcs_signal;
2786
			ring->semaphore.signal = gen8_rcs_signal;
2678
			GEN8_RING_SEMAPHORE_INIT;
2787
			GEN8_RING_SEMAPHORE_INIT;
2679
		}
2788
		}
2680
	} else if (INTEL_INFO(dev)->gen >= 6) {
2789
	} else if (INTEL_INFO(dev)->gen >= 6) {
2681
		ring->init_context = intel_rcs_ctx_init;
2790
		ring->init_context = intel_rcs_ctx_init;
2682
		ring->add_request = gen6_add_request;
2791
		ring->add_request = gen6_add_request;
2683
		ring->flush = gen7_render_ring_flush;
2792
		ring->flush = gen7_render_ring_flush;
2684
		if (INTEL_INFO(dev)->gen == 6)
2793
		if (INTEL_INFO(dev)->gen == 6)
2685
			ring->flush = gen6_render_ring_flush;
2794
			ring->flush = gen6_render_ring_flush;
2686
		ring->irq_get = gen6_ring_get_irq;
2795
		ring->irq_get = gen6_ring_get_irq;
2687
		ring->irq_put = gen6_ring_put_irq;
2796
		ring->irq_put = gen6_ring_put_irq;
2688
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2797
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2689
		ring->get_seqno = gen6_ring_get_seqno;
2798
		ring->get_seqno = gen6_ring_get_seqno;
2690
		ring->set_seqno = ring_set_seqno;
2799
		ring->set_seqno = ring_set_seqno;
2691
		if (i915_semaphore_is_enabled(dev)) {
2800
		if (i915_semaphore_is_enabled(dev)) {
2692
			ring->semaphore.sync_to = gen6_ring_sync;
2801
			ring->semaphore.sync_to = gen6_ring_sync;
2693
			ring->semaphore.signal = gen6_signal;
2802
			ring->semaphore.signal = gen6_signal;
2694
			/*
2803
			/*
2695
			 * The current semaphore is only applied on pre-gen8
2804
			 * The current semaphore is only applied on pre-gen8
2696
			 * platform.  And there is no VCS2 ring on the pre-gen8
2805
			 * platform.  And there is no VCS2 ring on the pre-gen8
2697
			 * platform. So the semaphore between RCS and VCS2 is
2806
			 * platform. So the semaphore between RCS and VCS2 is
2698
			 * initialized as INVALID.  Gen8 will initialize the
2807
			 * initialized as INVALID.  Gen8 will initialize the
2699
			 * sema between VCS2 and RCS later.
2808
			 * sema between VCS2 and RCS later.
2700
			 */
2809
			 */
2701
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2810
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2702
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2811
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2703
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2812
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2704
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2813
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2705
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2814
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2706
			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2815
			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2707
			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2816
			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2708
			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2817
			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2709
			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2818
			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2710
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2819
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2711
		}
2820
		}
2712
	} else if (IS_GEN5(dev)) {
2821
	} else if (IS_GEN5(dev)) {
2713
		ring->add_request = pc_render_add_request;
2822
		ring->add_request = pc_render_add_request;
2714
		ring->flush = gen4_render_ring_flush;
2823
		ring->flush = gen4_render_ring_flush;
2715
		ring->get_seqno = pc_render_get_seqno;
2824
		ring->get_seqno = pc_render_get_seqno;
2716
		ring->set_seqno = pc_render_set_seqno;
2825
		ring->set_seqno = pc_render_set_seqno;
2717
		ring->irq_get = gen5_ring_get_irq;
2826
		ring->irq_get = gen5_ring_get_irq;
2718
		ring->irq_put = gen5_ring_put_irq;
2827
		ring->irq_put = gen5_ring_put_irq;
2719
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2828
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2720
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2829
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2721
	} else {
2830
	} else {
2722
		ring->add_request = i9xx_add_request;
2831
		ring->add_request = i9xx_add_request;
2723
		if (INTEL_INFO(dev)->gen < 4)
2832
		if (INTEL_INFO(dev)->gen < 4)
2724
			ring->flush = gen2_render_ring_flush;
2833
			ring->flush = gen2_render_ring_flush;
2725
		else
2834
		else
2726
			ring->flush = gen4_render_ring_flush;
2835
			ring->flush = gen4_render_ring_flush;
2727
		ring->get_seqno = ring_get_seqno;
2836
		ring->get_seqno = ring_get_seqno;
2728
		ring->set_seqno = ring_set_seqno;
2837
		ring->set_seqno = ring_set_seqno;
2729
		if (IS_GEN2(dev)) {
2838
		if (IS_GEN2(dev)) {
2730
			ring->irq_get = i8xx_ring_get_irq;
2839
			ring->irq_get = i8xx_ring_get_irq;
2731
			ring->irq_put = i8xx_ring_put_irq;
2840
			ring->irq_put = i8xx_ring_put_irq;
2732
		} else {
2841
		} else {
2733
			ring->irq_get = i9xx_ring_get_irq;
2842
			ring->irq_get = i9xx_ring_get_irq;
2734
			ring->irq_put = i9xx_ring_put_irq;
2843
			ring->irq_put = i9xx_ring_put_irq;
2735
		}
2844
		}
2736
		ring->irq_enable_mask = I915_USER_INTERRUPT;
2845
		ring->irq_enable_mask = I915_USER_INTERRUPT;
2737
	}
2846
	}
2738
	ring->write_tail = ring_write_tail;
2847
	ring->write_tail = ring_write_tail;
2739
 
2848
 
2740
	if (IS_HASWELL(dev))
2849
	if (IS_HASWELL(dev))
2741
		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2850
		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2742
	else if (IS_GEN8(dev))
2851
	else if (IS_GEN8(dev))
2743
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2852
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2744
	else if (INTEL_INFO(dev)->gen >= 6)
2853
	else if (INTEL_INFO(dev)->gen >= 6)
2745
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2854
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2746
	else if (INTEL_INFO(dev)->gen >= 4)
2855
	else if (INTEL_INFO(dev)->gen >= 4)
2747
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2856
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2748
	else if (IS_I830(dev) || IS_845G(dev))
2857
	else if (IS_I830(dev) || IS_845G(dev))
2749
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2858
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2750
	else
2859
	else
2751
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2860
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2752
	ring->init_hw = init_render_ring;
2861
	ring->init_hw = init_render_ring;
2753
	ring->cleanup = render_ring_cleanup;
2862
	ring->cleanup = render_ring_cleanup;
2754
 
2863
 
2755
	/* Workaround batchbuffer to combat CS tlb bug. */
2864
	/* Workaround batchbuffer to combat CS tlb bug. */
2756
	if (HAS_BROKEN_CS_TLB(dev)) {
2865
	if (HAS_BROKEN_CS_TLB(dev)) {
2757
		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2866
		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2758
		if (obj == NULL) {
2867
		if (obj == NULL) {
2759
			DRM_ERROR("Failed to allocate batch bo\n");
2868
			DRM_ERROR("Failed to allocate batch bo\n");
2760
			return -ENOMEM;
2869
			return -ENOMEM;
2761
		}
2870
		}
2762
 
2871
 
2763
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2872
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2764
		if (ret != 0) {
2873
		if (ret != 0) {
2765
			drm_gem_object_unreference(&obj->base);
2874
			drm_gem_object_unreference(&obj->base);
2766
			DRM_ERROR("Failed to ping batch bo\n");
2875
			DRM_ERROR("Failed to ping batch bo\n");
2767
			return ret;
2876
			return ret;
2768
		}
2877
		}
2769
 
2878
 
2770
		ring->scratch.obj = obj;
2879
		ring->scratch.obj = obj;
2771
		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2880
		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2772
	}
2881
	}
2773
 
2882
 
2774
	ret = intel_init_ring_buffer(dev, ring);
2883
	ret = intel_init_ring_buffer(dev, ring);
2775
	if (ret)
2884
	if (ret)
2776
		return ret;
2885
		return ret;
2777
 
2886
 
2778
	if (INTEL_INFO(dev)->gen >= 5) {
2887
	if (INTEL_INFO(dev)->gen >= 5) {
2779
		ret = intel_init_pipe_control(ring);
2888
		ret = intel_init_pipe_control(ring);
2780
		if (ret)
2889
		if (ret)
2781
			return ret;
2890
			return ret;
2782
	}
2891
	}
2783
 
2892
 
2784
	return 0;
2893
	return 0;
2785
}
2894
}
2786
 
2895
 
2787
int intel_init_bsd_ring_buffer(struct drm_device *dev)
2896
int intel_init_bsd_ring_buffer(struct drm_device *dev)
2788
{
2897
{
2789
	struct drm_i915_private *dev_priv = dev->dev_private;
2898
	struct drm_i915_private *dev_priv = dev->dev_private;
2790
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2899
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2791
 
2900
 
2792
	ring->name = "bsd ring";
2901
	ring->name = "bsd ring";
2793
	ring->id = VCS;
2902
	ring->id = VCS;
-
 
2903
	ring->exec_id = I915_EXEC_BSD;
2794
 
2904
 
2795
	ring->write_tail = ring_write_tail;
2905
	ring->write_tail = ring_write_tail;
2796
	if (INTEL_INFO(dev)->gen >= 6) {
2906
	if (INTEL_INFO(dev)->gen >= 6) {
2797
		ring->mmio_base = GEN6_BSD_RING_BASE;
2907
		ring->mmio_base = GEN6_BSD_RING_BASE;
2798
		/* gen6 bsd needs a special wa for tail updates */
2908
		/* gen6 bsd needs a special wa for tail updates */
2799
		if (IS_GEN6(dev))
2909
		if (IS_GEN6(dev))
2800
			ring->write_tail = gen6_bsd_ring_write_tail;
2910
			ring->write_tail = gen6_bsd_ring_write_tail;
2801
		ring->flush = gen6_bsd_ring_flush;
2911
		ring->flush = gen6_bsd_ring_flush;
2802
		ring->add_request = gen6_add_request;
2912
		ring->add_request = gen6_add_request;
2803
		ring->get_seqno = gen6_ring_get_seqno;
2913
		ring->get_seqno = gen6_ring_get_seqno;
2804
		ring->set_seqno = ring_set_seqno;
2914
		ring->set_seqno = ring_set_seqno;
2805
		if (INTEL_INFO(dev)->gen >= 8) {
2915
		if (INTEL_INFO(dev)->gen >= 8) {
2806
			ring->irq_enable_mask =
2916
			ring->irq_enable_mask =
2807
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2917
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2808
			ring->irq_get = gen8_ring_get_irq;
2918
			ring->irq_get = gen8_ring_get_irq;
2809
			ring->irq_put = gen8_ring_put_irq;
2919
			ring->irq_put = gen8_ring_put_irq;
2810
			ring->dispatch_execbuffer =
2920
			ring->dispatch_execbuffer =
2811
				gen8_ring_dispatch_execbuffer;
2921
				gen8_ring_dispatch_execbuffer;
2812
			if (i915_semaphore_is_enabled(dev)) {
2922
			if (i915_semaphore_is_enabled(dev)) {
2813
				ring->semaphore.sync_to = gen8_ring_sync;
2923
				ring->semaphore.sync_to = gen8_ring_sync;
2814
				ring->semaphore.signal = gen8_xcs_signal;
2924
				ring->semaphore.signal = gen8_xcs_signal;
2815
				GEN8_RING_SEMAPHORE_INIT;
2925
				GEN8_RING_SEMAPHORE_INIT;
2816
			}
2926
			}
2817
		} else {
2927
		} else {
2818
			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2928
			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2819
			ring->irq_get = gen6_ring_get_irq;
2929
			ring->irq_get = gen6_ring_get_irq;
2820
			ring->irq_put = gen6_ring_put_irq;
2930
			ring->irq_put = gen6_ring_put_irq;
2821
			ring->dispatch_execbuffer =
2931
			ring->dispatch_execbuffer =
2822
				gen6_ring_dispatch_execbuffer;
2932
				gen6_ring_dispatch_execbuffer;
2823
			if (i915_semaphore_is_enabled(dev)) {
2933
			if (i915_semaphore_is_enabled(dev)) {
2824
				ring->semaphore.sync_to = gen6_ring_sync;
2934
				ring->semaphore.sync_to = gen6_ring_sync;
2825
				ring->semaphore.signal = gen6_signal;
2935
				ring->semaphore.signal = gen6_signal;
2826
				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2936
				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2827
				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2937
				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2828
				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2938
				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2829
				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2939
				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2830
				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2940
				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2831
				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2941
				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2832
				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2942
				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2833
				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2943
				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2834
				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2944
				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2835
				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2945
				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2836
			}
2946
			}
2837
		}
2947
		}
2838
	} else {
2948
	} else {
2839
		ring->mmio_base = BSD_RING_BASE;
2949
		ring->mmio_base = BSD_RING_BASE;
2840
		ring->flush = bsd_ring_flush;
2950
		ring->flush = bsd_ring_flush;
2841
		ring->add_request = i9xx_add_request;
2951
		ring->add_request = i9xx_add_request;
2842
		ring->get_seqno = ring_get_seqno;
2952
		ring->get_seqno = ring_get_seqno;
2843
		ring->set_seqno = ring_set_seqno;
2953
		ring->set_seqno = ring_set_seqno;
2844
		if (IS_GEN5(dev)) {
2954
		if (IS_GEN5(dev)) {
2845
			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2955
			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2846
			ring->irq_get = gen5_ring_get_irq;
2956
			ring->irq_get = gen5_ring_get_irq;
2847
			ring->irq_put = gen5_ring_put_irq;
2957
			ring->irq_put = gen5_ring_put_irq;
2848
		} else {
2958
		} else {
2849
			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2959
			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2850
			ring->irq_get = i9xx_ring_get_irq;
2960
			ring->irq_get = i9xx_ring_get_irq;
2851
			ring->irq_put = i9xx_ring_put_irq;
2961
			ring->irq_put = i9xx_ring_put_irq;
2852
		}
2962
		}
2853
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2963
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2854
	}
2964
	}
2855
	ring->init_hw = init_ring_common;
2965
	ring->init_hw = init_ring_common;
2856
 
2966
 
2857
	return intel_init_ring_buffer(dev, ring);
2967
	return intel_init_ring_buffer(dev, ring);
2858
}
2968
}
2859
 
2969
 
2860
/**
2970
/**
2861
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2971
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2862
 */
2972
 */
2863
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2973
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2864
{
2974
{
2865
	struct drm_i915_private *dev_priv = dev->dev_private;
2975
	struct drm_i915_private *dev_priv = dev->dev_private;
2866
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2976
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2867
 
2977
 
2868
	ring->name = "bsd2 ring";
2978
	ring->name = "bsd2 ring";
2869
	ring->id = VCS2;
2979
	ring->id = VCS2;
-
 
2980
	ring->exec_id = I915_EXEC_BSD;
2870
 
2981
 
2871
	ring->write_tail = ring_write_tail;
2982
	ring->write_tail = ring_write_tail;
2872
	ring->mmio_base = GEN8_BSD2_RING_BASE;
2983
	ring->mmio_base = GEN8_BSD2_RING_BASE;
2873
	ring->flush = gen6_bsd_ring_flush;
2984
	ring->flush = gen6_bsd_ring_flush;
2874
	ring->add_request = gen6_add_request;
2985
	ring->add_request = gen6_add_request;
2875
	ring->get_seqno = gen6_ring_get_seqno;
2986
	ring->get_seqno = gen6_ring_get_seqno;
2876
	ring->set_seqno = ring_set_seqno;
2987
	ring->set_seqno = ring_set_seqno;
2877
	ring->irq_enable_mask =
2988
	ring->irq_enable_mask =
2878
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2989
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2879
	ring->irq_get = gen8_ring_get_irq;
2990
	ring->irq_get = gen8_ring_get_irq;
2880
	ring->irq_put = gen8_ring_put_irq;
2991
	ring->irq_put = gen8_ring_put_irq;
2881
	ring->dispatch_execbuffer =
2992
	ring->dispatch_execbuffer =
2882
			gen8_ring_dispatch_execbuffer;
2993
			gen8_ring_dispatch_execbuffer;
2883
	if (i915_semaphore_is_enabled(dev)) {
2994
	if (i915_semaphore_is_enabled(dev)) {
2884
		ring->semaphore.sync_to = gen8_ring_sync;
2995
		ring->semaphore.sync_to = gen8_ring_sync;
2885
		ring->semaphore.signal = gen8_xcs_signal;
2996
		ring->semaphore.signal = gen8_xcs_signal;
2886
		GEN8_RING_SEMAPHORE_INIT;
2997
		GEN8_RING_SEMAPHORE_INIT;
2887
	}
2998
	}
2888
	ring->init_hw = init_ring_common;
2999
	ring->init_hw = init_ring_common;
2889
 
3000
 
2890
	return intel_init_ring_buffer(dev, ring);
3001
	return intel_init_ring_buffer(dev, ring);
2891
}
3002
}
2892
 
3003
 
2893
int intel_init_blt_ring_buffer(struct drm_device *dev)
3004
int intel_init_blt_ring_buffer(struct drm_device *dev)
2894
{
3005
{
2895
	struct drm_i915_private *dev_priv = dev->dev_private;
3006
	struct drm_i915_private *dev_priv = dev->dev_private;
2896
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
3007
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2897
 
3008
 
2898
	ring->name = "blitter ring";
3009
	ring->name = "blitter ring";
2899
	ring->id = BCS;
3010
	ring->id = BCS;
-
 
3011
	ring->exec_id = I915_EXEC_BLT;
2900
 
3012
 
2901
	ring->mmio_base = BLT_RING_BASE;
3013
	ring->mmio_base = BLT_RING_BASE;
2902
	ring->write_tail = ring_write_tail;
3014
	ring->write_tail = ring_write_tail;
2903
	ring->flush = gen6_ring_flush;
3015
	ring->flush = gen6_ring_flush;
2904
	ring->add_request = gen6_add_request;
3016
	ring->add_request = gen6_add_request;
2905
	ring->get_seqno = gen6_ring_get_seqno;
3017
	ring->get_seqno = gen6_ring_get_seqno;
2906
	ring->set_seqno = ring_set_seqno;
3018
	ring->set_seqno = ring_set_seqno;
2907
	if (INTEL_INFO(dev)->gen >= 8) {
3019
	if (INTEL_INFO(dev)->gen >= 8) {
2908
		ring->irq_enable_mask =
3020
		ring->irq_enable_mask =
2909
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3021
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2910
		ring->irq_get = gen8_ring_get_irq;
3022
		ring->irq_get = gen8_ring_get_irq;
2911
		ring->irq_put = gen8_ring_put_irq;
3023
		ring->irq_put = gen8_ring_put_irq;
2912
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3024
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2913
		if (i915_semaphore_is_enabled(dev)) {
3025
		if (i915_semaphore_is_enabled(dev)) {
2914
			ring->semaphore.sync_to = gen8_ring_sync;
3026
			ring->semaphore.sync_to = gen8_ring_sync;
2915
			ring->semaphore.signal = gen8_xcs_signal;
3027
			ring->semaphore.signal = gen8_xcs_signal;
2916
			GEN8_RING_SEMAPHORE_INIT;
3028
			GEN8_RING_SEMAPHORE_INIT;
2917
		}
3029
		}
2918
	} else {
3030
	} else {
2919
		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3031
		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2920
		ring->irq_get = gen6_ring_get_irq;
3032
		ring->irq_get = gen6_ring_get_irq;
2921
		ring->irq_put = gen6_ring_put_irq;
3033
		ring->irq_put = gen6_ring_put_irq;
2922
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3034
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2923
		if (i915_semaphore_is_enabled(dev)) {
3035
		if (i915_semaphore_is_enabled(dev)) {
2924
			ring->semaphore.signal = gen6_signal;
3036
			ring->semaphore.signal = gen6_signal;
2925
			ring->semaphore.sync_to = gen6_ring_sync;
3037
			ring->semaphore.sync_to = gen6_ring_sync;
2926
			/*
3038
			/*
2927
			 * The current semaphore is only applied on pre-gen8
3039
			 * The current semaphore is only applied on pre-gen8
2928
			 * platform.  And there is no VCS2 ring on the pre-gen8
3040
			 * platform.  And there is no VCS2 ring on the pre-gen8
2929
			 * platform. So the semaphore between BCS and VCS2 is
3041
			 * platform. So the semaphore between BCS and VCS2 is
2930
			 * initialized as INVALID.  Gen8 will initialize the
3042
			 * initialized as INVALID.  Gen8 will initialize the
2931
			 * sema between BCS and VCS2 later.
3043
			 * sema between BCS and VCS2 later.
2932
			 */
3044
			 */
2933
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3045
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2934
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3046
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2935
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3047
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2936
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3048
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2937
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3049
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2938
			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3050
			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2939
			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3051
			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2940
			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3052
			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2941
			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3053
			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2942
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3054
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2943
		}
3055
		}
2944
	}
3056
	}
2945
	ring->init_hw = init_ring_common;
3057
	ring->init_hw = init_ring_common;
2946
 
3058
 
2947
	return intel_init_ring_buffer(dev, ring);
3059
	return intel_init_ring_buffer(dev, ring);
2948
}
3060
}
2949
 
3061
 
2950
int intel_init_vebox_ring_buffer(struct drm_device *dev)
3062
int intel_init_vebox_ring_buffer(struct drm_device *dev)
2951
{
3063
{
2952
	struct drm_i915_private *dev_priv = dev->dev_private;
3064
	struct drm_i915_private *dev_priv = dev->dev_private;
2953
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
3065
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2954
 
3066
 
2955
	ring->name = "video enhancement ring";
3067
	ring->name = "video enhancement ring";
2956
	ring->id = VECS;
3068
	ring->id = VECS;
-
 
3069
	ring->exec_id = I915_EXEC_VEBOX;
2957
 
3070
 
2958
	ring->mmio_base = VEBOX_RING_BASE;
3071
	ring->mmio_base = VEBOX_RING_BASE;
2959
	ring->write_tail = ring_write_tail;
3072
	ring->write_tail = ring_write_tail;
2960
	ring->flush = gen6_ring_flush;
3073
	ring->flush = gen6_ring_flush;
2961
	ring->add_request = gen6_add_request;
3074
	ring->add_request = gen6_add_request;
2962
	ring->get_seqno = gen6_ring_get_seqno;
3075
	ring->get_seqno = gen6_ring_get_seqno;
2963
	ring->set_seqno = ring_set_seqno;
3076
	ring->set_seqno = ring_set_seqno;
2964
 
3077
 
2965
	if (INTEL_INFO(dev)->gen >= 8) {
3078
	if (INTEL_INFO(dev)->gen >= 8) {
2966
		ring->irq_enable_mask =
3079
		ring->irq_enable_mask =
2967
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3080
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2968
		ring->irq_get = gen8_ring_get_irq;
3081
		ring->irq_get = gen8_ring_get_irq;
2969
		ring->irq_put = gen8_ring_put_irq;
3082
		ring->irq_put = gen8_ring_put_irq;
2970
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3083
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2971
		if (i915_semaphore_is_enabled(dev)) {
3084
		if (i915_semaphore_is_enabled(dev)) {
2972
			ring->semaphore.sync_to = gen8_ring_sync;
3085
			ring->semaphore.sync_to = gen8_ring_sync;
2973
			ring->semaphore.signal = gen8_xcs_signal;
3086
			ring->semaphore.signal = gen8_xcs_signal;
2974
			GEN8_RING_SEMAPHORE_INIT;
3087
			GEN8_RING_SEMAPHORE_INIT;
2975
		}
3088
		}
2976
	} else {
3089
	} else {
2977
		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3090
		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2978
		ring->irq_get = hsw_vebox_get_irq;
3091
		ring->irq_get = hsw_vebox_get_irq;
2979
		ring->irq_put = hsw_vebox_put_irq;
3092
		ring->irq_put = hsw_vebox_put_irq;
2980
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3093
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2981
		if (i915_semaphore_is_enabled(dev)) {
3094
		if (i915_semaphore_is_enabled(dev)) {
2982
			ring->semaphore.sync_to = gen6_ring_sync;
3095
			ring->semaphore.sync_to = gen6_ring_sync;
2983
			ring->semaphore.signal = gen6_signal;
3096
			ring->semaphore.signal = gen6_signal;
2984
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3097
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2985
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3098
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2986
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3099
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2987
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3100
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2988
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3101
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2989
			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3102
			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2990
			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3103
			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2991
			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3104
			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2992
			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3105
			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2993
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3106
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2994
		}
3107
		}
2995
	}
3108
	}
2996
	ring->init_hw = init_ring_common;
3109
	ring->init_hw = init_ring_common;
2997
 
3110
 
2998
	return intel_init_ring_buffer(dev, ring);
3111
	return intel_init_ring_buffer(dev, ring);
2999
}
3112
}
3000
 
3113
 
3001
int
3114
int
3002
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3115
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3003
{
3116
{
3004
	struct intel_engine_cs *ring = req->ring;
3117
	struct intel_engine_cs *ring = req->ring;
3005
	int ret;
3118
	int ret;
3006
 
3119
 
3007
	if (!ring->gpu_caches_dirty)
3120
	if (!ring->gpu_caches_dirty)
3008
		return 0;
3121
		return 0;
3009
 
3122
 
3010
	ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3123
	ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3011
	if (ret)
3124
	if (ret)
3012
		return ret;
3125
		return ret;
3013
 
3126
 
3014
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3127
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3015
 
3128
 
3016
	ring->gpu_caches_dirty = false;
3129
	ring->gpu_caches_dirty = false;
3017
	return 0;
3130
	return 0;
3018
}
3131
}
3019
 
3132
 
3020
int
3133
int
3021
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3134
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3022
{
3135
{
3023
	struct intel_engine_cs *ring = req->ring;
3136
	struct intel_engine_cs *ring = req->ring;
3024
	uint32_t flush_domains;
3137
	uint32_t flush_domains;
3025
	int ret;
3138
	int ret;
3026
 
3139
 
3027
	flush_domains = 0;
3140
	flush_domains = 0;
3028
	if (ring->gpu_caches_dirty)
3141
	if (ring->gpu_caches_dirty)
3029
		flush_domains = I915_GEM_GPU_DOMAINS;
3142
		flush_domains = I915_GEM_GPU_DOMAINS;
3030
 
3143
 
3031
	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3144
	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3032
	if (ret)
3145
	if (ret)
3033
		return ret;
3146
		return ret;
3034
 
3147
 
3035
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3148
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3036
 
3149
 
3037
	ring->gpu_caches_dirty = false;
3150
	ring->gpu_caches_dirty = false;
3038
	return 0;
3151
	return 0;
3039
}
3152
}
3040
 
3153
 
3041
void
3154
void
3042
intel_stop_ring_buffer(struct intel_engine_cs *ring)
3155
intel_stop_ring_buffer(struct intel_engine_cs *ring)
3043
{
3156
{
3044
	int ret;
3157
	int ret;
3045
 
3158
 
3046
	if (!intel_ring_initialized(ring))
3159
	if (!intel_ring_initialized(ring))
3047
		return;
3160
		return;
3048
 
3161
 
3049
	ret = intel_ring_idle(ring);
3162
	ret = intel_ring_idle(ring);
3050
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3163
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3051
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3164
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3052
			  ring->name, ret);
3165
			  ring->name, ret);
3053
 
3166
 
3054
	stop_ring(ring);
3167
	stop_ring(ring);
3055
}
3168
}