Subversion Repositories Kolibri OS

Rev

Rev 6320 | Rev 6937 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 6320 Rev 6660
1
/*
1
/*
2
 * Copyright © 2008-2010 Intel Corporation
2
 * Copyright © 2008-2010 Intel Corporation
3
 *
3
 *
4
 * Permission is hereby granted, free of charge, to any person obtaining a
4
 * Permission is hereby granted, free of charge, to any person obtaining a
5
 * copy of this software and associated documentation files (the "Software"),
5
 * copy of this software and associated documentation files (the "Software"),
6
 * to deal in the Software without restriction, including without limitation
6
 * to deal in the Software without restriction, including without limitation
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
7
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
 * and/or sell copies of the Software, and to permit persons to whom the
8
 * and/or sell copies of the Software, and to permit persons to whom the
9
 * Software is furnished to do so, subject to the following conditions:
9
 * Software is furnished to do so, subject to the following conditions:
10
 *
10
 *
11
 * The above copyright notice and this permission notice (including the next
11
 * The above copyright notice and this permission notice (including the next
12
 * paragraph) shall be included in all copies or substantial portions of the
12
 * paragraph) shall be included in all copies or substantial portions of the
13
 * Software.
13
 * Software.
14
 *
14
 *
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
20
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
 * IN THE SOFTWARE.
21
 * IN THE SOFTWARE.
22
 *
22
 *
23
 * Authors:
23
 * Authors:
24
 *    Eric Anholt 
24
 *    Eric Anholt 
25
 *    Zou Nan hai 
25
 *    Zou Nan hai 
26
 *    Xiang Hai hao
26
 *    Xiang Hai hao
27
 *
27
 *
28
 */
28
 */
29
 
29
 
30
#include 
30
#include 
31
#include "i915_drv.h"
31
#include "i915_drv.h"
32
#include 
32
#include 
33
#include "i915_trace.h"
33
#include "i915_trace.h"
34
#include "intel_drv.h"
34
#include "intel_drv.h"
35
 
35
 
36
bool
36
bool
37
intel_ring_initialized(struct intel_engine_cs *ring)
37
intel_ring_initialized(struct intel_engine_cs *ring)
38
{
38
{
39
	struct drm_device *dev = ring->dev;
39
	struct drm_device *dev = ring->dev;
40
 
40
 
41
	if (!dev)
41
	if (!dev)
42
		return false;
42
		return false;
43
 
43
 
44
	if (i915.enable_execlists) {
44
	if (i915.enable_execlists) {
45
		struct intel_context *dctx = ring->default_context;
45
		struct intel_context *dctx = ring->default_context;
46
		struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
46
		struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
 
47
 
48
		return ringbuf->obj;
48
		return ringbuf->obj;
49
	} else
49
	} else
50
		return ring->buffer && ring->buffer->obj;
50
		return ring->buffer && ring->buffer->obj;
51
}
51
}
52
 
52
 
53
int __intel_ring_space(int head, int tail, int size)
53
int __intel_ring_space(int head, int tail, int size)
54
{
54
{
55
	int space = head - tail;
55
	int space = head - tail;
56
	if (space <= 0)
56
	if (space <= 0)
57
		space += size;
57
		space += size;
58
	return space - I915_RING_FREE_SPACE;
58
	return space - I915_RING_FREE_SPACE;
59
}
59
}
60
 
60
 
61
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
61
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
62
{
62
{
63
	if (ringbuf->last_retired_head != -1) {
63
	if (ringbuf->last_retired_head != -1) {
64
		ringbuf->head = ringbuf->last_retired_head;
64
		ringbuf->head = ringbuf->last_retired_head;
65
		ringbuf->last_retired_head = -1;
65
		ringbuf->last_retired_head = -1;
66
	}
66
	}
67
 
67
 
68
	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
68
	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
69
					    ringbuf->tail, ringbuf->size);
69
					    ringbuf->tail, ringbuf->size);
70
}
70
}
71
 
71
 
72
int intel_ring_space(struct intel_ringbuffer *ringbuf)
72
int intel_ring_space(struct intel_ringbuffer *ringbuf)
73
{
73
{
74
	intel_ring_update_space(ringbuf);
74
	intel_ring_update_space(ringbuf);
75
	return ringbuf->space;
75
	return ringbuf->space;
76
}
76
}
77
 
77
 
78
bool intel_ring_stopped(struct intel_engine_cs *ring)
78
bool intel_ring_stopped(struct intel_engine_cs *ring)
79
{
79
{
80
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
80
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
81
	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
81
	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
82
}
82
}
83
 
83
 
84
static void __intel_ring_advance(struct intel_engine_cs *ring)
84
static void __intel_ring_advance(struct intel_engine_cs *ring)
85
{
85
{
86
	struct intel_ringbuffer *ringbuf = ring->buffer;
86
	struct intel_ringbuffer *ringbuf = ring->buffer;
87
	ringbuf->tail &= ringbuf->size - 1;
87
	ringbuf->tail &= ringbuf->size - 1;
88
	if (intel_ring_stopped(ring))
88
	if (intel_ring_stopped(ring))
89
		return;
89
		return;
90
	ring->write_tail(ring, ringbuf->tail);
90
	ring->write_tail(ring, ringbuf->tail);
91
}
91
}
92
 
92
 
93
static int
93
static int
94
gen2_render_ring_flush(struct drm_i915_gem_request *req,
94
gen2_render_ring_flush(struct drm_i915_gem_request *req,
95
		       u32	invalidate_domains,
95
		       u32	invalidate_domains,
96
		       u32	flush_domains)
96
		       u32	flush_domains)
97
{
97
{
98
	struct intel_engine_cs *ring = req->ring;
98
	struct intel_engine_cs *ring = req->ring;
99
	u32 cmd;
99
	u32 cmd;
100
	int ret;
100
	int ret;
101
 
101
 
102
	cmd = MI_FLUSH;
102
	cmd = MI_FLUSH;
103
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
103
	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
104
		cmd |= MI_NO_WRITE_FLUSH;
104
		cmd |= MI_NO_WRITE_FLUSH;
105
 
105
 
106
	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
106
	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
107
		cmd |= MI_READ_FLUSH;
107
		cmd |= MI_READ_FLUSH;
108
 
108
 
109
	ret = intel_ring_begin(req, 2);
109
	ret = intel_ring_begin(req, 2);
110
	if (ret)
110
	if (ret)
111
		return ret;
111
		return ret;
112
 
112
 
113
	intel_ring_emit(ring, cmd);
113
	intel_ring_emit(ring, cmd);
114
	intel_ring_emit(ring, MI_NOOP);
114
	intel_ring_emit(ring, MI_NOOP);
115
	intel_ring_advance(ring);
115
	intel_ring_advance(ring);
116
 
116
 
117
	return 0;
117
	return 0;
118
}
118
}
119
 
119
 
120
static int
120
static int
121
gen4_render_ring_flush(struct drm_i915_gem_request *req,
121
gen4_render_ring_flush(struct drm_i915_gem_request *req,
122
		       u32	invalidate_domains,
122
		       u32	invalidate_domains,
123
		       u32	flush_domains)
123
		       u32	flush_domains)
124
{
124
{
125
	struct intel_engine_cs *ring = req->ring;
125
	struct intel_engine_cs *ring = req->ring;
126
	struct drm_device *dev = ring->dev;
126
	struct drm_device *dev = ring->dev;
127
	u32 cmd;
127
	u32 cmd;
128
	int ret;
128
	int ret;
129
 
129
 
130
	/*
130
	/*
131
	 * read/write caches:
131
	 * read/write caches:
132
	 *
132
	 *
133
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
133
	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
134
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
134
	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
135
	 * also flushed at 2d versus 3d pipeline switches.
135
	 * also flushed at 2d versus 3d pipeline switches.
136
	 *
136
	 *
137
	 * read-only caches:
137
	 * read-only caches:
138
	 *
138
	 *
139
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
139
	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
140
	 * MI_READ_FLUSH is set, and is always flushed on 965.
140
	 * MI_READ_FLUSH is set, and is always flushed on 965.
141
	 *
141
	 *
142
	 * I915_GEM_DOMAIN_COMMAND may not exist?
142
	 * I915_GEM_DOMAIN_COMMAND may not exist?
143
	 *
143
	 *
144
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
144
	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
145
	 * invalidated when MI_EXE_FLUSH is set.
145
	 * invalidated when MI_EXE_FLUSH is set.
146
	 *
146
	 *
147
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
147
	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
148
	 * invalidated with every MI_FLUSH.
148
	 * invalidated with every MI_FLUSH.
149
	 *
149
	 *
150
	 * TLBs:
150
	 * TLBs:
151
	 *
151
	 *
152
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
152
	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
153
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
153
	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
154
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
154
	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
155
	 * are flushed at any MI_FLUSH.
155
	 * are flushed at any MI_FLUSH.
156
	 */
156
	 */
157
 
157
 
158
	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
158
	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
159
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
159
	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
160
		cmd &= ~MI_NO_WRITE_FLUSH;
160
		cmd &= ~MI_NO_WRITE_FLUSH;
161
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
161
	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
162
		cmd |= MI_EXE_FLUSH;
162
		cmd |= MI_EXE_FLUSH;
163
 
163
 
164
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
164
	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
165
	    (IS_G4X(dev) || IS_GEN5(dev)))
165
	    (IS_G4X(dev) || IS_GEN5(dev)))
166
		cmd |= MI_INVALIDATE_ISP;
166
		cmd |= MI_INVALIDATE_ISP;
167
 
167
 
168
	ret = intel_ring_begin(req, 2);
168
	ret = intel_ring_begin(req, 2);
169
	if (ret)
169
	if (ret)
170
		return ret;
170
		return ret;
171
 
171
 
172
	intel_ring_emit(ring, cmd);
172
	intel_ring_emit(ring, cmd);
173
	intel_ring_emit(ring, MI_NOOP);
173
	intel_ring_emit(ring, MI_NOOP);
174
	intel_ring_advance(ring);
174
	intel_ring_advance(ring);
175
 
175
 
176
	return 0;
176
	return 0;
177
}
177
}
178
 
178
 
179
/**
179
/**
180
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
180
 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
181
 * implementing two workarounds on gen6.  From section 1.4.7.1
181
 * implementing two workarounds on gen6.  From section 1.4.7.1
182
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
182
 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
183
 *
183
 *
184
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
184
 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
185
 * produced by non-pipelined state commands), software needs to first
185
 * produced by non-pipelined state commands), software needs to first
186
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
186
 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
187
 * 0.
187
 * 0.
188
 *
188
 *
189
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
189
 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
190
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
190
 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
191
 *
191
 *
192
 * And the workaround for these two requires this workaround first:
192
 * And the workaround for these two requires this workaround first:
193
 *
193
 *
194
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
194
 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
195
 * BEFORE the pipe-control with a post-sync op and no write-cache
195
 * BEFORE the pipe-control with a post-sync op and no write-cache
196
 * flushes.
196
 * flushes.
197
 *
197
 *
198
 * And this last workaround is tricky because of the requirements on
198
 * And this last workaround is tricky because of the requirements on
199
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
199
 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
200
 * volume 2 part 1:
200
 * volume 2 part 1:
201
 *
201
 *
202
 *     "1 of the following must also be set:
202
 *     "1 of the following must also be set:
203
 *      - Render Target Cache Flush Enable ([12] of DW1)
203
 *      - Render Target Cache Flush Enable ([12] of DW1)
204
 *      - Depth Cache Flush Enable ([0] of DW1)
204
 *      - Depth Cache Flush Enable ([0] of DW1)
205
 *      - Stall at Pixel Scoreboard ([1] of DW1)
205
 *      - Stall at Pixel Scoreboard ([1] of DW1)
206
 *      - Depth Stall ([13] of DW1)
206
 *      - Depth Stall ([13] of DW1)
207
 *      - Post-Sync Operation ([13] of DW1)
207
 *      - Post-Sync Operation ([13] of DW1)
208
 *      - Notify Enable ([8] of DW1)"
208
 *      - Notify Enable ([8] of DW1)"
209
 *
209
 *
210
 * The cache flushes require the workaround flush that triggered this
210
 * The cache flushes require the workaround flush that triggered this
211
 * one, so we can't use it.  Depth stall would trigger the same.
211
 * one, so we can't use it.  Depth stall would trigger the same.
212
 * Post-sync nonzero is what triggered this second workaround, so we
212
 * Post-sync nonzero is what triggered this second workaround, so we
213
 * can't use that one either.  Notify enable is IRQs, which aren't
213
 * can't use that one either.  Notify enable is IRQs, which aren't
214
 * really our business.  That leaves only stall at scoreboard.
214
 * really our business.  That leaves only stall at scoreboard.
215
 */
215
 */
216
static int
216
static int
217
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
217
intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
218
{
218
{
219
	struct intel_engine_cs *ring = req->ring;
219
	struct intel_engine_cs *ring = req->ring;
220
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
220
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
221
	int ret;
221
	int ret;
222
 
222
 
223
	ret = intel_ring_begin(req, 6);
223
	ret = intel_ring_begin(req, 6);
224
	if (ret)
224
	if (ret)
225
		return ret;
225
		return ret;
226
 
226
 
227
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
227
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
228
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
229
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
229
			PIPE_CONTROL_STALL_AT_SCOREBOARD);
230
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
231
	intel_ring_emit(ring, 0); /* low dword */
231
	intel_ring_emit(ring, 0); /* low dword */
232
	intel_ring_emit(ring, 0); /* high dword */
232
	intel_ring_emit(ring, 0); /* high dword */
233
	intel_ring_emit(ring, MI_NOOP);
233
	intel_ring_emit(ring, MI_NOOP);
234
	intel_ring_advance(ring);
234
	intel_ring_advance(ring);
235
 
235
 
236
	ret = intel_ring_begin(req, 6);
236
	ret = intel_ring_begin(req, 6);
237
	if (ret)
237
	if (ret)
238
		return ret;
238
		return ret;
239
 
239
 
240
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
240
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
241
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
241
	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
242
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
242
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
243
	intel_ring_emit(ring, 0);
243
	intel_ring_emit(ring, 0);
244
	intel_ring_emit(ring, 0);
244
	intel_ring_emit(ring, 0);
245
	intel_ring_emit(ring, MI_NOOP);
245
	intel_ring_emit(ring, MI_NOOP);
246
	intel_ring_advance(ring);
246
	intel_ring_advance(ring);
247
 
247
 
248
	return 0;
248
	return 0;
249
}
249
}
250
 
250
 
251
static int
251
static int
252
gen6_render_ring_flush(struct drm_i915_gem_request *req,
252
gen6_render_ring_flush(struct drm_i915_gem_request *req,
253
		       u32 invalidate_domains, u32 flush_domains)
253
		       u32 invalidate_domains, u32 flush_domains)
254
{
254
{
255
	struct intel_engine_cs *ring = req->ring;
255
	struct intel_engine_cs *ring = req->ring;
256
	u32 flags = 0;
256
	u32 flags = 0;
257
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
257
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
258
	int ret;
258
	int ret;
259
 
259
 
260
	/* Force SNB workarounds for PIPE_CONTROL flushes */
260
	/* Force SNB workarounds for PIPE_CONTROL flushes */
261
	ret = intel_emit_post_sync_nonzero_flush(req);
261
	ret = intel_emit_post_sync_nonzero_flush(req);
262
	if (ret)
262
	if (ret)
263
		return ret;
263
		return ret;
264
 
264
 
265
	/* Just flush everything.  Experiments have shown that reducing the
265
	/* Just flush everything.  Experiments have shown that reducing the
266
	 * number of bits based on the write domains has little performance
266
	 * number of bits based on the write domains has little performance
267
	 * impact.
267
	 * impact.
268
	 */
268
	 */
269
	if (flush_domains) {
269
	if (flush_domains) {
270
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
270
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
271
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
271
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
272
		/*
272
		/*
273
		 * Ensure that any following seqno writes only happen
273
		 * Ensure that any following seqno writes only happen
274
		 * when the render cache is indeed flushed.
274
		 * when the render cache is indeed flushed.
275
		 */
275
		 */
276
		flags |= PIPE_CONTROL_CS_STALL;
276
		flags |= PIPE_CONTROL_CS_STALL;
277
	}
277
	}
278
	if (invalidate_domains) {
278
	if (invalidate_domains) {
279
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
279
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
280
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
280
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
281
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
281
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
282
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
282
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
283
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
283
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
284
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
284
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
285
		/*
285
		/*
286
		 * TLB invalidate requires a post-sync write.
286
		 * TLB invalidate requires a post-sync write.
287
		 */
287
		 */
288
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
288
		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
289
	}
289
	}
290
 
290
 
291
	ret = intel_ring_begin(req, 4);
291
	ret = intel_ring_begin(req, 4);
292
	if (ret)
292
	if (ret)
293
		return ret;
293
		return ret;
294
 
294
 
295
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
295
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
296
	intel_ring_emit(ring, flags);
296
	intel_ring_emit(ring, flags);
297
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
297
	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
298
	intel_ring_emit(ring, 0);
298
	intel_ring_emit(ring, 0);
299
	intel_ring_advance(ring);
299
	intel_ring_advance(ring);
300
 
300
 
301
	return 0;
301
	return 0;
302
}
302
}
303
 
303
 
304
static int
304
static int
305
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
305
gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
306
{
306
{
307
	struct intel_engine_cs *ring = req->ring;
307
	struct intel_engine_cs *ring = req->ring;
308
	int ret;
308
	int ret;
309
 
309
 
310
	ret = intel_ring_begin(req, 4);
310
	ret = intel_ring_begin(req, 4);
311
	if (ret)
311
	if (ret)
312
		return ret;
312
		return ret;
313
 
313
 
314
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
314
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
315
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
315
	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
316
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
316
			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
317
	intel_ring_emit(ring, 0);
317
	intel_ring_emit(ring, 0);
318
	intel_ring_emit(ring, 0);
318
	intel_ring_emit(ring, 0);
319
	intel_ring_advance(ring);
319
	intel_ring_advance(ring);
320
 
320
 
321
	return 0;
321
	return 0;
322
}
322
}
323
 
323
 
324
static int
324
static int
325
gen7_render_ring_flush(struct drm_i915_gem_request *req,
325
gen7_render_ring_flush(struct drm_i915_gem_request *req,
326
		       u32 invalidate_domains, u32 flush_domains)
326
		       u32 invalidate_domains, u32 flush_domains)
327
{
327
{
328
	struct intel_engine_cs *ring = req->ring;
328
	struct intel_engine_cs *ring = req->ring;
329
	u32 flags = 0;
329
	u32 flags = 0;
330
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
330
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
331
	int ret;
331
	int ret;
332
 
332
 
333
	/*
333
	/*
334
	 * Ensure that any following seqno writes only happen when the render
334
	 * Ensure that any following seqno writes only happen when the render
335
	 * cache is indeed flushed.
335
	 * cache is indeed flushed.
336
	 *
336
	 *
337
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
337
	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
338
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
338
	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
339
	 * don't try to be clever and just set it unconditionally.
339
	 * don't try to be clever and just set it unconditionally.
340
	 */
340
	 */
341
	flags |= PIPE_CONTROL_CS_STALL;
341
	flags |= PIPE_CONTROL_CS_STALL;
342
 
342
 
343
	/* Just flush everything.  Experiments have shown that reducing the
343
	/* Just flush everything.  Experiments have shown that reducing the
344
	 * number of bits based on the write domains has little performance
344
	 * number of bits based on the write domains has little performance
345
	 * impact.
345
	 * impact.
346
	 */
346
	 */
347
	if (flush_domains) {
347
	if (flush_domains) {
348
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
348
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
349
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
349
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
350
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
350
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
351
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
351
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
352
	}
352
	}
353
	if (invalidate_domains) {
353
	if (invalidate_domains) {
354
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
354
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
355
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
355
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
356
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
356
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
357
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
357
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
358
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
358
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
359
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
359
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
360
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
360
		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
361
		/*
361
		/*
362
		 * TLB invalidate requires a post-sync write.
362
		 * TLB invalidate requires a post-sync write.
363
		 */
363
		 */
364
		flags |= PIPE_CONTROL_QW_WRITE;
364
		flags |= PIPE_CONTROL_QW_WRITE;
365
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
365
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
366
 
366
 
367
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
367
		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
368
 
368
 
369
		/* Workaround: we must issue a pipe_control with CS-stall bit
369
		/* Workaround: we must issue a pipe_control with CS-stall bit
370
		 * set before a pipe_control command that has the state cache
370
		 * set before a pipe_control command that has the state cache
371
		 * invalidate bit set. */
371
		 * invalidate bit set. */
372
		gen7_render_ring_cs_stall_wa(req);
372
		gen7_render_ring_cs_stall_wa(req);
373
	}
373
	}
374
 
374
 
375
	ret = intel_ring_begin(req, 4);
375
	ret = intel_ring_begin(req, 4);
376
	if (ret)
376
	if (ret)
377
		return ret;
377
		return ret;
378
 
378
 
379
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
379
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
380
	intel_ring_emit(ring, flags);
380
	intel_ring_emit(ring, flags);
381
	intel_ring_emit(ring, scratch_addr);
381
	intel_ring_emit(ring, scratch_addr);
382
	intel_ring_emit(ring, 0);
382
	intel_ring_emit(ring, 0);
383
	intel_ring_advance(ring);
383
	intel_ring_advance(ring);
384
 
384
 
385
	return 0;
385
	return 0;
386
}
386
}
387
 
387
 
388
static int
388
static int
389
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
389
gen8_emit_pipe_control(struct drm_i915_gem_request *req,
390
		       u32 flags, u32 scratch_addr)
390
		       u32 flags, u32 scratch_addr)
391
{
391
{
392
	struct intel_engine_cs *ring = req->ring;
392
	struct intel_engine_cs *ring = req->ring;
393
	int ret;
393
	int ret;
394
 
394
 
395
	ret = intel_ring_begin(req, 6);
395
	ret = intel_ring_begin(req, 6);
396
	if (ret)
396
	if (ret)
397
		return ret;
397
		return ret;
398
 
398
 
399
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
399
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
400
	intel_ring_emit(ring, flags);
400
	intel_ring_emit(ring, flags);
401
	intel_ring_emit(ring, scratch_addr);
401
	intel_ring_emit(ring, scratch_addr);
402
	intel_ring_emit(ring, 0);
402
	intel_ring_emit(ring, 0);
403
	intel_ring_emit(ring, 0);
403
	intel_ring_emit(ring, 0);
404
	intel_ring_emit(ring, 0);
404
	intel_ring_emit(ring, 0);
405
	intel_ring_advance(ring);
405
	intel_ring_advance(ring);
406
 
406
 
407
	return 0;
407
	return 0;
408
}
408
}
409
 
409
 
410
static int
410
static int
411
gen8_render_ring_flush(struct drm_i915_gem_request *req,
411
gen8_render_ring_flush(struct drm_i915_gem_request *req,
412
		       u32 invalidate_domains, u32 flush_domains)
412
		       u32 invalidate_domains, u32 flush_domains)
413
{
413
{
414
	u32 flags = 0;
414
	u32 flags = 0;
415
	u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
415
	u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
416
	int ret;
416
	int ret;
417
 
417
 
418
	flags |= PIPE_CONTROL_CS_STALL;
418
	flags |= PIPE_CONTROL_CS_STALL;
419
 
419
 
420
	if (flush_domains) {
420
	if (flush_domains) {
421
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
421
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
422
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
422
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
423
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
423
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
424
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
424
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
425
	}
425
	}
426
	if (invalidate_domains) {
426
	if (invalidate_domains) {
427
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
427
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
428
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
428
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
429
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
429
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
430
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
430
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
431
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
431
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
432
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
432
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
433
		flags |= PIPE_CONTROL_QW_WRITE;
433
		flags |= PIPE_CONTROL_QW_WRITE;
434
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
434
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
435
 
435
 
436
		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
436
		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
437
		ret = gen8_emit_pipe_control(req,
437
		ret = gen8_emit_pipe_control(req,
438
					     PIPE_CONTROL_CS_STALL |
438
					     PIPE_CONTROL_CS_STALL |
439
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
439
					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
440
					     0);
440
					     0);
441
		if (ret)
441
		if (ret)
442
			return ret;
442
			return ret;
443
	}
443
	}
444
 
444
 
445
	return gen8_emit_pipe_control(req, flags, scratch_addr);
445
	return gen8_emit_pipe_control(req, flags, scratch_addr);
446
}
446
}
447
 
447
 
448
static void ring_write_tail(struct intel_engine_cs *ring,
448
static void ring_write_tail(struct intel_engine_cs *ring,
449
			    u32 value)
449
			    u32 value)
450
{
450
{
451
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
451
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
452
	I915_WRITE_TAIL(ring, value);
452
	I915_WRITE_TAIL(ring, value);
453
}
453
}
454
 
454
 
455
u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
455
u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
456
{
456
{
457
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
457
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
458
	u64 acthd;
458
	u64 acthd;
459
 
459
 
460
	if (INTEL_INFO(ring->dev)->gen >= 8)
460
	if (INTEL_INFO(ring->dev)->gen >= 8)
461
		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
461
		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
462
					 RING_ACTHD_UDW(ring->mmio_base));
462
					 RING_ACTHD_UDW(ring->mmio_base));
463
	else if (INTEL_INFO(ring->dev)->gen >= 4)
463
	else if (INTEL_INFO(ring->dev)->gen >= 4)
464
		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
464
		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
465
	else
465
	else
466
		acthd = I915_READ(ACTHD);
466
		acthd = I915_READ(ACTHD);
467
 
467
 
468
	return acthd;
468
	return acthd;
469
}
469
}
470
 
470
 
471
static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
471
static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
472
{
472
{
473
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
473
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
474
	u32 addr;
474
	u32 addr;
475
 
475
 
476
	addr = dev_priv->status_page_dmah->busaddr;
476
	addr = dev_priv->status_page_dmah->busaddr;
477
	if (INTEL_INFO(ring->dev)->gen >= 4)
477
	if (INTEL_INFO(ring->dev)->gen >= 4)
478
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
478
		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
479
	I915_WRITE(HWS_PGA, addr);
479
	I915_WRITE(HWS_PGA, addr);
480
}
480
}
481
 
481
 
482
static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
482
static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
483
{
483
{
484
	struct drm_device *dev = ring->dev;
484
	struct drm_device *dev = ring->dev;
485
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
485
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
486
	u32 mmio = 0;
486
	u32 mmio = 0;
487
 
487
 
488
	/* The ring status page addresses are no longer next to the rest of
488
	/* The ring status page addresses are no longer next to the rest of
489
	 * the ring registers as of gen7.
489
	 * the ring registers as of gen7.
490
	 */
490
	 */
491
	if (IS_GEN7(dev)) {
491
	if (IS_GEN7(dev)) {
492
		switch (ring->id) {
492
		switch (ring->id) {
493
		case RCS:
493
		case RCS:
494
			mmio = RENDER_HWS_PGA_GEN7;
494
			mmio = RENDER_HWS_PGA_GEN7;
495
			break;
495
			break;
496
		case BCS:
496
		case BCS:
497
			mmio = BLT_HWS_PGA_GEN7;
497
			mmio = BLT_HWS_PGA_GEN7;
498
			break;
498
			break;
499
		/*
499
		/*
500
		 * VCS2 actually doesn't exist on Gen7. Only shut up
500
		 * VCS2 actually doesn't exist on Gen7. Only shut up
501
		 * gcc switch check warning
501
		 * gcc switch check warning
502
		 */
502
		 */
503
		case VCS2:
503
		case VCS2:
504
		case VCS:
504
		case VCS:
505
			mmio = BSD_HWS_PGA_GEN7;
505
			mmio = BSD_HWS_PGA_GEN7;
506
			break;
506
			break;
507
		case VECS:
507
		case VECS:
508
			mmio = VEBOX_HWS_PGA_GEN7;
508
			mmio = VEBOX_HWS_PGA_GEN7;
509
			break;
509
			break;
510
		}
510
		}
511
	} else if (IS_GEN6(ring->dev)) {
511
	} else if (IS_GEN6(ring->dev)) {
512
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
512
		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
513
	} else {
513
	} else {
514
		/* XXX: gen8 returns to sanity */
514
		/* XXX: gen8 returns to sanity */
515
		mmio = RING_HWS_PGA(ring->mmio_base);
515
		mmio = RING_HWS_PGA(ring->mmio_base);
516
	}
516
	}
517
 
517
 
518
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
518
	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
519
	POSTING_READ(mmio);
519
	POSTING_READ(mmio);
520
 
520
 
521
	/*
521
	/*
522
	 * Flush the TLB for this page
522
	 * Flush the TLB for this page
523
	 *
523
	 *
524
	 * FIXME: These two bits have disappeared on gen8, so a question
524
	 * FIXME: These two bits have disappeared on gen8, so a question
525
	 * arises: do we still need this and if so how should we go about
525
	 * arises: do we still need this and if so how should we go about
526
	 * invalidating the TLB?
526
	 * invalidating the TLB?
527
	 */
527
	 */
528
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
528
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
529
		u32 reg = RING_INSTPM(ring->mmio_base);
529
		u32 reg = RING_INSTPM(ring->mmio_base);
530
 
530
 
531
		/* ring should be idle before issuing a sync flush*/
531
		/* ring should be idle before issuing a sync flush*/
532
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
532
		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
533
 
533
 
534
		I915_WRITE(reg,
534
		I915_WRITE(reg,
535
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
535
			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
536
					      INSTPM_SYNC_FLUSH));
536
					      INSTPM_SYNC_FLUSH));
537
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
537
		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
538
			     1000))
538
			     1000))
539
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
539
			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
540
				  ring->name);
540
				  ring->name);
541
	}
541
	}
542
}
542
}
543
 
543
 
544
static bool stop_ring(struct intel_engine_cs *ring)
544
static bool stop_ring(struct intel_engine_cs *ring)
545
{
545
{
546
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
546
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
547
 
547
 
548
	if (!IS_GEN2(ring->dev)) {
548
	if (!IS_GEN2(ring->dev)) {
549
		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
549
		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
550
		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
550
		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
551
			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
551
			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
552
			/* Sometimes we observe that the idle flag is not
552
			/* Sometimes we observe that the idle flag is not
553
			 * set even though the ring is empty. So double
553
			 * set even though the ring is empty. So double
554
			 * check before giving up.
554
			 * check before giving up.
555
			 */
555
			 */
556
			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
556
			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
557
				return false;
557
				return false;
558
		}
558
		}
559
	}
559
	}
560
 
560
 
561
	I915_WRITE_CTL(ring, 0);
561
	I915_WRITE_CTL(ring, 0);
562
	I915_WRITE_HEAD(ring, 0);
562
	I915_WRITE_HEAD(ring, 0);
563
	ring->write_tail(ring, 0);
563
	ring->write_tail(ring, 0);
564
 
564
 
565
	if (!IS_GEN2(ring->dev)) {
565
	if (!IS_GEN2(ring->dev)) {
566
		(void)I915_READ_CTL(ring);
566
		(void)I915_READ_CTL(ring);
567
		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
567
		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
568
	}
568
	}
569
 
569
 
570
	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
570
	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
571
}
571
}
572
 
572
 
573
static int init_ring_common(struct intel_engine_cs *ring)
573
static int init_ring_common(struct intel_engine_cs *ring)
574
{
574
{
575
	struct drm_device *dev = ring->dev;
575
	struct drm_device *dev = ring->dev;
576
	struct drm_i915_private *dev_priv = dev->dev_private;
576
	struct drm_i915_private *dev_priv = dev->dev_private;
577
	struct intel_ringbuffer *ringbuf = ring->buffer;
577
	struct intel_ringbuffer *ringbuf = ring->buffer;
578
	struct drm_i915_gem_object *obj = ringbuf->obj;
578
	struct drm_i915_gem_object *obj = ringbuf->obj;
579
	int ret = 0;
579
	int ret = 0;
580
 
580
 
581
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
581
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
582
 
582
 
583
	if (!stop_ring(ring)) {
583
	if (!stop_ring(ring)) {
584
		/* G45 ring initialization often fails to reset head to zero */
584
		/* G45 ring initialization often fails to reset head to zero */
585
		DRM_DEBUG_KMS("%s head not reset to zero "
585
		DRM_DEBUG_KMS("%s head not reset to zero "
586
			      "ctl %08x head %08x tail %08x start %08x\n",
586
			      "ctl %08x head %08x tail %08x start %08x\n",
587
			      ring->name,
587
			      ring->name,
588
			      I915_READ_CTL(ring),
588
			      I915_READ_CTL(ring),
589
			      I915_READ_HEAD(ring),
589
			      I915_READ_HEAD(ring),
590
			      I915_READ_TAIL(ring),
590
			      I915_READ_TAIL(ring),
591
			      I915_READ_START(ring));
591
			      I915_READ_START(ring));
592
 
592
 
593
		if (!stop_ring(ring)) {
593
		if (!stop_ring(ring)) {
594
			DRM_ERROR("failed to set %s head to zero "
594
			DRM_ERROR("failed to set %s head to zero "
595
				  "ctl %08x head %08x tail %08x start %08x\n",
595
				  "ctl %08x head %08x tail %08x start %08x\n",
596
				  ring->name,
596
				  ring->name,
597
				  I915_READ_CTL(ring),
597
				  I915_READ_CTL(ring),
598
				  I915_READ_HEAD(ring),
598
				  I915_READ_HEAD(ring),
599
				  I915_READ_TAIL(ring),
599
				  I915_READ_TAIL(ring),
600
				  I915_READ_START(ring));
600
				  I915_READ_START(ring));
601
			ret = -EIO;
601
			ret = -EIO;
602
			goto out;
602
			goto out;
603
		}
603
		}
604
	}
604
	}
605
 
605
 
606
	if (I915_NEED_GFX_HWS(dev))
606
	if (I915_NEED_GFX_HWS(dev))
607
		intel_ring_setup_status_page(ring);
607
		intel_ring_setup_status_page(ring);
608
	else
608
	else
609
		ring_setup_phys_status_page(ring);
609
		ring_setup_phys_status_page(ring);
610
 
610
 
611
	/* Enforce ordering by reading HEAD register back */
611
	/* Enforce ordering by reading HEAD register back */
612
	I915_READ_HEAD(ring);
612
	I915_READ_HEAD(ring);
613
 
613
 
614
	/* Initialize the ring. This must happen _after_ we've cleared the ring
614
	/* Initialize the ring. This must happen _after_ we've cleared the ring
615
	 * registers with the above sequence (the readback of the HEAD registers
615
	 * registers with the above sequence (the readback of the HEAD registers
616
	 * also enforces ordering), otherwise the hw might lose the new ring
616
	 * also enforces ordering), otherwise the hw might lose the new ring
617
	 * register values. */
617
	 * register values. */
618
	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
618
	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
619
 
619
 
620
	/* WaClearRingBufHeadRegAtInit:ctg,elk */
620
	/* WaClearRingBufHeadRegAtInit:ctg,elk */
621
	if (I915_READ_HEAD(ring))
621
	if (I915_READ_HEAD(ring))
622
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
622
		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
623
			  ring->name, I915_READ_HEAD(ring));
623
			  ring->name, I915_READ_HEAD(ring));
624
	I915_WRITE_HEAD(ring, 0);
624
	I915_WRITE_HEAD(ring, 0);
625
	(void)I915_READ_HEAD(ring);
625
	(void)I915_READ_HEAD(ring);
626
 
626
 
627
	I915_WRITE_CTL(ring,
627
	I915_WRITE_CTL(ring,
628
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
628
			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
629
			| RING_VALID);
629
			| RING_VALID);
630
 
630
 
631
	/* If the head is still not zero, the ring is dead */
631
	/* If the head is still not zero, the ring is dead */
632
	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
632
	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
633
		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
633
		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
634
		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
634
		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
635
		DRM_ERROR("%s initialization failed "
635
		DRM_ERROR("%s initialization failed "
636
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
636
			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
637
			  ring->name,
637
			  ring->name,
638
			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
638
			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
639
			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
639
			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
640
			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
640
			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
641
		ret = -EIO;
641
		ret = -EIO;
642
		goto out;
642
		goto out;
643
	}
643
	}
644
 
644
 
645
	ringbuf->last_retired_head = -1;
645
	ringbuf->last_retired_head = -1;
646
	ringbuf->head = I915_READ_HEAD(ring);
646
	ringbuf->head = I915_READ_HEAD(ring);
647
	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
647
	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
648
	intel_ring_update_space(ringbuf);
648
	intel_ring_update_space(ringbuf);
649
 
649
 
650
	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
650
	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
651
 
651
 
652
out:
652
out:
653
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
653
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
654
 
654
 
655
	return ret;
655
	return ret;
656
}
656
}
657
 
657
 
658
void
658
void
659
intel_fini_pipe_control(struct intel_engine_cs *ring)
659
intel_fini_pipe_control(struct intel_engine_cs *ring)
660
{
660
{
661
	struct drm_device *dev = ring->dev;
661
	struct drm_device *dev = ring->dev;
662
 
662
 
663
	if (ring->scratch.obj == NULL)
663
	if (ring->scratch.obj == NULL)
664
		return;
664
		return;
665
 
665
 
666
	if (INTEL_INFO(dev)->gen >= 5) {
666
	if (INTEL_INFO(dev)->gen >= 5) {
667
		kunmap(sg_page(ring->scratch.obj->pages->sgl));
667
		kunmap(sg_page(ring->scratch.obj->pages->sgl));
668
		i915_gem_object_ggtt_unpin(ring->scratch.obj);
668
		i915_gem_object_ggtt_unpin(ring->scratch.obj);
669
	}
669
	}
670
 
670
 
671
	drm_gem_object_unreference(&ring->scratch.obj->base);
671
	drm_gem_object_unreference(&ring->scratch.obj->base);
672
	ring->scratch.obj = NULL;
672
	ring->scratch.obj = NULL;
673
}
673
}
674
 
674
 
675
int
675
int
676
intel_init_pipe_control(struct intel_engine_cs *ring)
676
intel_init_pipe_control(struct intel_engine_cs *ring)
677
{
677
{
678
	int ret;
678
	int ret;
679
 
679
 
680
	WARN_ON(ring->scratch.obj);
680
	WARN_ON(ring->scratch.obj);
681
 
681
 
682
	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
682
	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
683
	if (ring->scratch.obj == NULL) {
683
	if (ring->scratch.obj == NULL) {
684
		DRM_ERROR("Failed to allocate seqno page\n");
684
		DRM_ERROR("Failed to allocate seqno page\n");
685
		ret = -ENOMEM;
685
		ret = -ENOMEM;
686
		goto err;
686
		goto err;
687
	}
687
	}
688
 
688
 
689
	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
689
	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
690
	if (ret)
690
	if (ret)
691
		goto err_unref;
691
		goto err_unref;
692
 
692
 
693
	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
693
	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
694
	if (ret)
694
	if (ret)
695
		goto err_unref;
695
		goto err_unref;
696
 
696
 
697
	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
697
	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
698
	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
698
	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
699
	if (ring->scratch.cpu_page == NULL) {
699
	if (ring->scratch.cpu_page == NULL) {
700
		ret = -ENOMEM;
700
		ret = -ENOMEM;
701
		goto err_unpin;
701
		goto err_unpin;
702
	}
702
	}
703
 
703
 
704
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
704
	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
705
			 ring->name, ring->scratch.gtt_offset);
705
			 ring->name, ring->scratch.gtt_offset);
706
	return 0;
706
	return 0;
707
 
707
 
708
err_unpin:
708
err_unpin:
709
	i915_gem_object_ggtt_unpin(ring->scratch.obj);
709
	i915_gem_object_ggtt_unpin(ring->scratch.obj);
710
err_unref:
710
err_unref:
711
	drm_gem_object_unreference(&ring->scratch.obj->base);
711
	drm_gem_object_unreference(&ring->scratch.obj->base);
712
err:
712
err:
713
	return ret;
713
	return ret;
714
}
714
}
715
 
715
 
716
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
716
static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
717
{
717
{
718
	int ret, i;
718
	int ret, i;
719
	struct intel_engine_cs *ring = req->ring;
719
	struct intel_engine_cs *ring = req->ring;
720
	struct drm_device *dev = ring->dev;
720
	struct drm_device *dev = ring->dev;
721
	struct drm_i915_private *dev_priv = dev->dev_private;
721
	struct drm_i915_private *dev_priv = dev->dev_private;
722
	struct i915_workarounds *w = &dev_priv->workarounds;
722
	struct i915_workarounds *w = &dev_priv->workarounds;
723
 
723
 
724
	if (w->count == 0)
724
	if (w->count == 0)
725
		return 0;
725
		return 0;
726
 
726
 
727
	ring->gpu_caches_dirty = true;
727
	ring->gpu_caches_dirty = true;
728
	ret = intel_ring_flush_all_caches(req);
728
	ret = intel_ring_flush_all_caches(req);
729
	if (ret)
729
	if (ret)
730
		return ret;
730
		return ret;
731
 
731
 
732
	ret = intel_ring_begin(req, (w->count * 2 + 2));
732
	ret = intel_ring_begin(req, (w->count * 2 + 2));
733
	if (ret)
733
	if (ret)
734
		return ret;
734
		return ret;
735
 
735
 
736
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
736
	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
737
	for (i = 0; i < w->count; i++) {
737
	for (i = 0; i < w->count; i++) {
738
		intel_ring_emit(ring, w->reg[i].addr);
738
		intel_ring_emit(ring, w->reg[i].addr);
739
		intel_ring_emit(ring, w->reg[i].value);
739
		intel_ring_emit(ring, w->reg[i].value);
740
	}
740
	}
741
	intel_ring_emit(ring, MI_NOOP);
741
	intel_ring_emit(ring, MI_NOOP);
742
 
742
 
743
	intel_ring_advance(ring);
743
	intel_ring_advance(ring);
744
 
744
 
745
	ring->gpu_caches_dirty = true;
745
	ring->gpu_caches_dirty = true;
746
	ret = intel_ring_flush_all_caches(req);
746
	ret = intel_ring_flush_all_caches(req);
747
	if (ret)
747
	if (ret)
748
		return ret;
748
		return ret;
749
 
749
 
750
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
750
	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
751
 
751
 
752
	return 0;
752
	return 0;
753
}
753
}
754
 
754
 
755
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
755
static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
756
{
756
{
757
	int ret;
757
	int ret;
758
 
758
 
759
	ret = intel_ring_workarounds_emit(req);
759
	ret = intel_ring_workarounds_emit(req);
760
	if (ret != 0)
760
	if (ret != 0)
761
		return ret;
761
		return ret;
762
 
762
 
763
	ret = i915_gem_render_state_init(req);
763
	ret = i915_gem_render_state_init(req);
764
	if (ret)
764
	if (ret)
765
		DRM_ERROR("init render state: %d\n", ret);
765
		DRM_ERROR("init render state: %d\n", ret);
766
 
766
 
767
	return ret;
767
	return ret;
768
}
768
}
769
 
769
 
770
static int wa_add(struct drm_i915_private *dev_priv,
770
static int wa_add(struct drm_i915_private *dev_priv,
771
		  const u32 addr, const u32 mask, const u32 val)
771
		  const u32 addr, const u32 mask, const u32 val)
772
{
772
{
773
	const u32 idx = dev_priv->workarounds.count;
773
	const u32 idx = dev_priv->workarounds.count;
774
 
774
 
775
	if (WARN_ON(idx >= I915_MAX_WA_REGS))
775
	if (WARN_ON(idx >= I915_MAX_WA_REGS))
776
		return -ENOSPC;
776
		return -ENOSPC;
777
 
777
 
778
	dev_priv->workarounds.reg[idx].addr = addr;
778
	dev_priv->workarounds.reg[idx].addr = addr;
779
	dev_priv->workarounds.reg[idx].value = val;
779
	dev_priv->workarounds.reg[idx].value = val;
780
	dev_priv->workarounds.reg[idx].mask = mask;
780
	dev_priv->workarounds.reg[idx].mask = mask;
781
 
781
 
782
	dev_priv->workarounds.count++;
782
	dev_priv->workarounds.count++;
783
 
783
 
784
	return 0;
784
	return 0;
785
}
785
}
786
 
786
 
787
#define WA_REG(addr, mask, val) do { \
787
#define WA_REG(addr, mask, val) do { \
788
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
788
		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
789
		if (r) \
789
		if (r) \
790
			return r; \
790
			return r; \
791
	} while (0)
791
	} while (0)
792
 
792
 
793
#define WA_SET_BIT_MASKED(addr, mask) \
793
#define WA_SET_BIT_MASKED(addr, mask) \
794
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
794
	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
795
 
795
 
796
#define WA_CLR_BIT_MASKED(addr, mask) \
796
#define WA_CLR_BIT_MASKED(addr, mask) \
797
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
797
	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
798
 
798
 
799
#define WA_SET_FIELD_MASKED(addr, mask, value) \
799
#define WA_SET_FIELD_MASKED(addr, mask, value) \
800
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
800
	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
801
 
801
 
802
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
802
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
803
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
803
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
804
 
804
 
805
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
805
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
806
 
806
 
807
static int gen8_init_workarounds(struct intel_engine_cs *ring)
807
static int gen8_init_workarounds(struct intel_engine_cs *ring)
808
{
808
{
809
	struct drm_device *dev = ring->dev;
809
	struct drm_device *dev = ring->dev;
810
	struct drm_i915_private *dev_priv = dev->dev_private;
810
	struct drm_i915_private *dev_priv = dev->dev_private;
811
 
811
 
812
	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
812
	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
813
 
813
 
814
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
814
	/* WaDisableAsyncFlipPerfMode:bdw,chv */
815
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
815
	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
816
 
816
 
817
	/* WaDisablePartialInstShootdown:bdw,chv */
817
	/* WaDisablePartialInstShootdown:bdw,chv */
818
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
818
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
819
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
819
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
820
 
820
 
821
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
821
	/* Use Force Non-Coherent whenever executing a 3D context. This is a
822
	 * workaround for for a possible hang in the unlikely event a TLB
822
	 * workaround for for a possible hang in the unlikely event a TLB
823
	 * invalidation occurs during a PSD flush.
823
	 * invalidation occurs during a PSD flush.
824
	 */
824
	 */
825
	/* WaForceEnableNonCoherent:bdw,chv */
825
	/* WaForceEnableNonCoherent:bdw,chv */
826
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
826
	/* WaHdcDisableFetchWhenMasked:bdw,chv */
827
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
827
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
828
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
828
			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
829
			  HDC_FORCE_NON_COHERENT);
829
			  HDC_FORCE_NON_COHERENT);
830
 
830
 
831
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
831
	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
832
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
832
	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
833
	 *  polygons in the same 8x4 pixel/sample area to be processed without
833
	 *  polygons in the same 8x4 pixel/sample area to be processed without
834
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
834
	 *  stalling waiting for the earlier ones to write to Hierarchical Z
835
	 *  buffer."
835
	 *  buffer."
836
	 *
836
	 *
837
	 * This optimization is off by default for BDW and CHV; turn it on.
837
	 * This optimization is off by default for BDW and CHV; turn it on.
838
	 */
838
	 */
839
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
839
	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
840
 
840
 
841
	/* Wa4x4STCOptimizationDisable:bdw,chv */
841
	/* Wa4x4STCOptimizationDisable:bdw,chv */
842
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
842
	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
843
 
843
 
844
	/*
844
	/*
845
	 * BSpec recommends 8x4 when MSAA is used,
845
	 * BSpec recommends 8x4 when MSAA is used,
846
	 * however in practice 16x4 seems fastest.
846
	 * however in practice 16x4 seems fastest.
847
	 *
847
	 *
848
	 * Note that PS/WM thread counts depend on the WIZ hashing
848
	 * Note that PS/WM thread counts depend on the WIZ hashing
849
	 * disable bit, which we don't touch here, but it's good
849
	 * disable bit, which we don't touch here, but it's good
850
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
850
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
851
	 */
851
	 */
852
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
852
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
853
			    GEN6_WIZ_HASHING_MASK,
853
			    GEN6_WIZ_HASHING_MASK,
854
			    GEN6_WIZ_HASHING_16x4);
854
			    GEN6_WIZ_HASHING_16x4);
855
 
855
 
856
	return 0;
856
	return 0;
857
}
857
}
858
 
858
 
859
static int bdw_init_workarounds(struct intel_engine_cs *ring)
859
static int bdw_init_workarounds(struct intel_engine_cs *ring)
860
{
860
{
861
	int ret;
861
	int ret;
862
	struct drm_device *dev = ring->dev;
862
	struct drm_device *dev = ring->dev;
863
	struct drm_i915_private *dev_priv = dev->dev_private;
863
	struct drm_i915_private *dev_priv = dev->dev_private;
864
 
864
 
865
	ret = gen8_init_workarounds(ring);
865
	ret = gen8_init_workarounds(ring);
866
	if (ret)
866
	if (ret)
867
		return ret;
867
		return ret;
868
 
868
 
869
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
869
	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
870
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
870
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
871
 
871
 
872
	/* WaDisableDopClockGating:bdw */
872
	/* WaDisableDopClockGating:bdw */
873
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
873
	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
874
			  DOP_CLOCK_GATING_DISABLE);
874
			  DOP_CLOCK_GATING_DISABLE);
875
 
875
 
876
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
876
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
877
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
877
			  GEN8_SAMPLER_POWER_BYPASS_DIS);
878
 
878
 
879
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
879
	WA_SET_BIT_MASKED(HDC_CHICKEN0,
880
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
880
			  /* WaForceContextSaveRestoreNonCoherent:bdw */
881
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
881
			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
882
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
882
			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
883
			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
883
			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
884
 
884
 
885
	return 0;
885
	return 0;
886
}
886
}
887
 
887
 
888
static int chv_init_workarounds(struct intel_engine_cs *ring)
888
static int chv_init_workarounds(struct intel_engine_cs *ring)
889
{
889
{
890
	int ret;
890
	int ret;
891
	struct drm_device *dev = ring->dev;
891
	struct drm_device *dev = ring->dev;
892
	struct drm_i915_private *dev_priv = dev->dev_private;
892
	struct drm_i915_private *dev_priv = dev->dev_private;
893
 
893
 
894
	ret = gen8_init_workarounds(ring);
894
	ret = gen8_init_workarounds(ring);
895
	if (ret)
895
	if (ret)
896
		return ret;
896
		return ret;
897
 
897
 
898
	/* WaDisableThreadStallDopClockGating:chv */
898
	/* WaDisableThreadStallDopClockGating:chv */
899
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
899
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
900
 
900
 
901
	/* Improve HiZ throughput on CHV. */
901
	/* Improve HiZ throughput on CHV. */
902
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
902
	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
903
 
903
 
904
	return 0;
904
	return 0;
905
}
905
}
906
 
906
 
907
static int gen9_init_workarounds(struct intel_engine_cs *ring)
907
static int gen9_init_workarounds(struct intel_engine_cs *ring)
908
{
908
{
909
	struct drm_device *dev = ring->dev;
909
	struct drm_device *dev = ring->dev;
910
	struct drm_i915_private *dev_priv = dev->dev_private;
910
	struct drm_i915_private *dev_priv = dev->dev_private;
911
	uint32_t tmp;
911
	uint32_t tmp;
912
 
912
 
913
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
913
	/* WaEnableLbsSlaRetryTimerDecrement:skl */
914
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
914
	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
915
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
915
		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
916
 
916
 
917
	/* WaDisableKillLogic:bxt,skl */
917
	/* WaDisableKillLogic:bxt,skl */
918
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
918
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
919
		   ECOCHK_DIS_TLB);
919
		   ECOCHK_DIS_TLB);
920
 
920
 
921
	/* WaDisablePartialInstShootdown:skl,bxt */
921
	/* WaDisablePartialInstShootdown:skl,bxt */
922
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
922
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
923
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
923
			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
924
 
924
 
925
	/* Syncing dependencies between camera and graphics:skl,bxt */
925
	/* Syncing dependencies between camera and graphics:skl,bxt */
926
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
926
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
927
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
927
			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
928
 
928
 
929
	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
929
	if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
930
	    INTEL_REVID(dev) == SKL_REVID_B0)) ||
930
	    INTEL_REVID(dev) == SKL_REVID_B0)) ||
931
	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
931
	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
932
		/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
932
		/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
933
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
933
		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
934
				  GEN9_DG_MIRROR_FIX_ENABLE);
934
				  GEN9_DG_MIRROR_FIX_ENABLE);
935
	}
935
	}
936
 
936
 
937
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
937
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
938
	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
938
	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
939
		/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
939
		/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
940
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
940
		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
941
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
941
				  GEN9_RHWO_OPTIMIZATION_DISABLE);
942
		/*
942
		/*
943
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
943
		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
944
		 * but we do that in per ctx batchbuffer as there is an issue
944
		 * but we do that in per ctx batchbuffer as there is an issue
945
		 * with this register not getting restored on ctx restore
945
		 * with this register not getting restored on ctx restore
946
		 */
946
		 */
947
	}
947
	}
948
 
948
 
949
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
949
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
950
	    IS_BROXTON(dev)) {
950
	    IS_BROXTON(dev)) {
951
		/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
951
		/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
952
		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
952
		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
953
				  GEN9_ENABLE_YV12_BUGFIX);
953
				  GEN9_ENABLE_YV12_BUGFIX);
954
	}
954
	}
955
 
955
 
956
	/* Wa4x4STCOptimizationDisable:skl,bxt */
956
	/* Wa4x4STCOptimizationDisable:skl,bxt */
957
	/* WaDisablePartialResolveInVc:skl,bxt */
957
	/* WaDisablePartialResolveInVc:skl,bxt */
958
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
958
	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
959
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
959
					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
960
 
960
 
961
	/* WaCcsTlbPrefetchDisable:skl,bxt */
961
	/* WaCcsTlbPrefetchDisable:skl,bxt */
962
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
962
	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
963
			  GEN9_CCS_TLB_PREFETCH_ENABLE);
963
			  GEN9_CCS_TLB_PREFETCH_ENABLE);
964
 
964
 
965
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
965
	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
966
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
966
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
967
	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
967
	    (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
968
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
968
		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
969
				  PIXEL_MASK_CAMMING_DISABLE);
969
				  PIXEL_MASK_CAMMING_DISABLE);
970
 
970
 
971
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
971
	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
972
	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
972
	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
973
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
973
	if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
974
	    (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
974
	    (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
975
		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
975
		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
976
	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
976
	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
977
 
977
 
978
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
978
	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
979
	if (IS_SKYLAKE(dev) ||
979
	if (IS_SKYLAKE(dev) ||
980
	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
980
	    (IS_BROXTON(dev) && INTEL_REVID(dev) <= BXT_REVID_B0)) {
981
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
981
		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
982
				  GEN8_SAMPLER_POWER_BYPASS_DIS);
982
				  GEN8_SAMPLER_POWER_BYPASS_DIS);
983
	}
983
	}
984
 
984
 
985
	/* WaDisableSTUnitPowerOptimization:skl,bxt */
985
	/* WaDisableSTUnitPowerOptimization:skl,bxt */
986
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
986
	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
987
 
987
 
988
	return 0;
988
	return 0;
989
}
989
}
990
 
990
 
991
static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
991
static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
992
{
992
{
993
	struct drm_device *dev = ring->dev;
993
	struct drm_device *dev = ring->dev;
994
	struct drm_i915_private *dev_priv = dev->dev_private;
994
	struct drm_i915_private *dev_priv = dev->dev_private;
995
	u8 vals[3] = { 0, 0, 0 };
995
	u8 vals[3] = { 0, 0, 0 };
996
	unsigned int i;
996
	unsigned int i;
997
 
997
 
998
	for (i = 0; i < 3; i++) {
998
	for (i = 0; i < 3; i++) {
999
		u8 ss;
999
		u8 ss;
1000
 
1000
 
1001
		/*
1001
		/*
1002
		 * Only consider slices where one, and only one, subslice has 7
1002
		 * Only consider slices where one, and only one, subslice has 7
1003
		 * EUs
1003
		 * EUs
1004
		 */
1004
		 */
1005
		if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1005
		if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
1006
			continue;
1006
			continue;
1007
 
1007
 
1008
		/*
1008
		/*
1009
		 * subslice_7eu[i] != 0 (because of the check above) and
1009
		 * subslice_7eu[i] != 0 (because of the check above) and
1010
		 * ss_max == 4 (maximum number of subslices possible per slice)
1010
		 * ss_max == 4 (maximum number of subslices possible per slice)
1011
		 *
1011
		 *
1012
		 * ->    0 <= ss <= 3;
1012
		 * ->    0 <= ss <= 3;
1013
		 */
1013
		 */
1014
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1014
		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1015
		vals[i] = 3 - ss;
1015
		vals[i] = 3 - ss;
1016
	}
1016
	}
1017
 
1017
 
1018
	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1018
	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1019
		return 0;
1019
		return 0;
1020
 
1020
 
1021
	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1021
	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1022
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1022
	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1023
			    GEN9_IZ_HASHING_MASK(2) |
1023
			    GEN9_IZ_HASHING_MASK(2) |
1024
			    GEN9_IZ_HASHING_MASK(1) |
1024
			    GEN9_IZ_HASHING_MASK(1) |
1025
			    GEN9_IZ_HASHING_MASK(0),
1025
			    GEN9_IZ_HASHING_MASK(0),
1026
			    GEN9_IZ_HASHING(2, vals[2]) |
1026
			    GEN9_IZ_HASHING(2, vals[2]) |
1027
			    GEN9_IZ_HASHING(1, vals[1]) |
1027
			    GEN9_IZ_HASHING(1, vals[1]) |
1028
			    GEN9_IZ_HASHING(0, vals[0]));
1028
			    GEN9_IZ_HASHING(0, vals[0]));
1029
 
1029
 
1030
	return 0;
1030
	return 0;
1031
}
1031
}
1032
 
1032
 
1033
static int skl_init_workarounds(struct intel_engine_cs *ring)
1033
static int skl_init_workarounds(struct intel_engine_cs *ring)
1034
{
1034
{
1035
	int ret;
1035
	int ret;
1036
	struct drm_device *dev = ring->dev;
1036
	struct drm_device *dev = ring->dev;
1037
	struct drm_i915_private *dev_priv = dev->dev_private;
1037
	struct drm_i915_private *dev_priv = dev->dev_private;
1038
 
1038
 
1039
	ret = gen9_init_workarounds(ring);
1039
	ret = gen9_init_workarounds(ring);
1040
	if (ret)
1040
	if (ret)
1041
		return ret;
1041
		return ret;
1042
 
1042
 
1043
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1043
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1044
		/* WaDisableHDCInvalidation:skl */
1044
		/* WaDisableHDCInvalidation:skl */
1045
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1045
		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1046
			   BDW_DISABLE_HDC_INVALIDATION);
1046
			   BDW_DISABLE_HDC_INVALIDATION);
1047
 
1047
 
1048
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1048
		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1049
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1049
		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1050
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1050
			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1051
	}
1051
	}
1052
 
1052
 
1053
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1053
	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1054
	 * involving this register should also be added to WA batch as required.
1054
	 * involving this register should also be added to WA batch as required.
1055
	 */
1055
	 */
1056
	if (INTEL_REVID(dev) <= SKL_REVID_E0)
1056
	if (INTEL_REVID(dev) <= SKL_REVID_E0)
1057
		/* WaDisableLSQCROPERFforOCL:skl */
1057
		/* WaDisableLSQCROPERFforOCL:skl */
1058
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1058
		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1059
			   GEN8_LQSC_RO_PERF_DIS);
1059
			   GEN8_LQSC_RO_PERF_DIS);
1060
 
1060
 
1061
	/* WaEnableGapsTsvCreditFix:skl */
1061
	/* WaEnableGapsTsvCreditFix:skl */
1062
	if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
1062
	if (IS_SKYLAKE(dev) && (INTEL_REVID(dev) >= SKL_REVID_C0)) {
1063
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1063
		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1064
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1064
					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1065
	}
1065
	}
1066
 
1066
 
1067
	/* WaDisablePowerCompilerClockGating:skl */
1067
	/* WaDisablePowerCompilerClockGating:skl */
1068
	if (INTEL_REVID(dev) == SKL_REVID_B0)
1068
	if (INTEL_REVID(dev) == SKL_REVID_B0)
1069
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1069
		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1070
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1070
				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1071
 
1071
 
1072
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1072
	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
1073
		/*
1073
		/*
1074
		 *Use Force Non-Coherent whenever executing a 3D context. This
1074
		 *Use Force Non-Coherent whenever executing a 3D context. This
1075
		 * is a workaround for a possible hang in the unlikely event
1075
		 * is a workaround for a possible hang in the unlikely event
1076
		 * a TLB invalidation occurs during a PSD flush.
1076
		 * a TLB invalidation occurs during a PSD flush.
1077
		 */
1077
		 */
1078
		/* WaForceEnableNonCoherent:skl */
1078
		/* WaForceEnableNonCoherent:skl */
1079
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1079
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1080
				  HDC_FORCE_NON_COHERENT);
1080
				  HDC_FORCE_NON_COHERENT);
1081
	}
1081
	}
1082
 
1082
 
1083
	if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1083
	if (INTEL_REVID(dev) == SKL_REVID_C0 ||
1084
	    INTEL_REVID(dev) == SKL_REVID_D0)
1084
	    INTEL_REVID(dev) == SKL_REVID_D0)
1085
		/* WaBarrierPerformanceFixDisable:skl */
1085
		/* WaBarrierPerformanceFixDisable:skl */
1086
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1086
		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1087
				  HDC_FENCE_DEST_SLM_DISABLE |
1087
				  HDC_FENCE_DEST_SLM_DISABLE |
1088
				  HDC_BARRIER_PERFORMANCE_DISABLE);
1088
				  HDC_BARRIER_PERFORMANCE_DISABLE);
1089
 
1089
 
1090
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1090
	/* WaDisableSbeCacheDispatchPortSharing:skl */
1091
	if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1091
	if (INTEL_REVID(dev) <= SKL_REVID_F0) {
1092
		WA_SET_BIT_MASKED(
1092
		WA_SET_BIT_MASKED(
1093
			GEN7_HALF_SLICE_CHICKEN1,
1093
			GEN7_HALF_SLICE_CHICKEN1,
1094
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1094
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1095
	}
1095
	}
1096
 
1096
 
1097
	return skl_tune_iz_hashing(ring);
1097
	return skl_tune_iz_hashing(ring);
1098
}
1098
}
1099
 
1099
 
1100
static int bxt_init_workarounds(struct intel_engine_cs *ring)
1100
static int bxt_init_workarounds(struct intel_engine_cs *ring)
1101
{
1101
{
1102
	int ret;
1102
	int ret;
1103
	struct drm_device *dev = ring->dev;
1103
	struct drm_device *dev = ring->dev;
1104
	struct drm_i915_private *dev_priv = dev->dev_private;
1104
	struct drm_i915_private *dev_priv = dev->dev_private;
1105
 
1105
 
1106
	ret = gen9_init_workarounds(ring);
1106
	ret = gen9_init_workarounds(ring);
1107
	if (ret)
1107
	if (ret)
1108
		return ret;
1108
		return ret;
1109
 
1109
 
1110
	/* WaStoreMultiplePTEenable:bxt */
1110
	/* WaStoreMultiplePTEenable:bxt */
1111
	/* This is a requirement according to Hardware specification */
1111
	/* This is a requirement according to Hardware specification */
1112
	if (INTEL_REVID(dev) == BXT_REVID_A0)
1112
	if (INTEL_REVID(dev) == BXT_REVID_A0)
1113
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1113
		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1114
 
1114
 
1115
	/* WaSetClckGatingDisableMedia:bxt */
1115
	/* WaSetClckGatingDisableMedia:bxt */
1116
	if (INTEL_REVID(dev) == BXT_REVID_A0) {
1116
	if (INTEL_REVID(dev) == BXT_REVID_A0) {
1117
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1117
		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1118
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1118
					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1119
	}
1119
	}
1120
 
1120
 
1121
	/* WaDisableThreadStallDopClockGating:bxt */
1121
	/* WaDisableThreadStallDopClockGating:bxt */
1122
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1122
	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1123
			  STALL_DOP_GATING_DISABLE);
1123
			  STALL_DOP_GATING_DISABLE);
1124
 
1124
 
1125
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1125
	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1126
	if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1126
	if (INTEL_REVID(dev) <= BXT_REVID_B0) {
1127
		WA_SET_BIT_MASKED(
1127
		WA_SET_BIT_MASKED(
1128
			GEN7_HALF_SLICE_CHICKEN1,
1128
			GEN7_HALF_SLICE_CHICKEN1,
1129
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1129
			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1130
	}
1130
	}
1131
 
1131
 
1132
	return 0;
1132
	return 0;
1133
}
1133
}
1134
 
1134
 
1135
int init_workarounds_ring(struct intel_engine_cs *ring)
1135
int init_workarounds_ring(struct intel_engine_cs *ring)
1136
{
1136
{
1137
	struct drm_device *dev = ring->dev;
1137
	struct drm_device *dev = ring->dev;
1138
	struct drm_i915_private *dev_priv = dev->dev_private;
1138
	struct drm_i915_private *dev_priv = dev->dev_private;
1139
 
1139
 
1140
	WARN_ON(ring->id != RCS);
1140
	WARN_ON(ring->id != RCS);
1141
 
1141
 
1142
	dev_priv->workarounds.count = 0;
1142
	dev_priv->workarounds.count = 0;
1143
 
1143
 
1144
	if (IS_BROADWELL(dev))
1144
	if (IS_BROADWELL(dev))
1145
		return bdw_init_workarounds(ring);
1145
		return bdw_init_workarounds(ring);
1146
 
1146
 
1147
	if (IS_CHERRYVIEW(dev))
1147
	if (IS_CHERRYVIEW(dev))
1148
		return chv_init_workarounds(ring);
1148
		return chv_init_workarounds(ring);
1149
 
1149
 
1150
	if (IS_SKYLAKE(dev))
1150
	if (IS_SKYLAKE(dev))
1151
		return skl_init_workarounds(ring);
1151
		return skl_init_workarounds(ring);
1152
 
1152
 
1153
	if (IS_BROXTON(dev))
1153
	if (IS_BROXTON(dev))
1154
		return bxt_init_workarounds(ring);
1154
		return bxt_init_workarounds(ring);
1155
 
1155
 
1156
	return 0;
1156
	return 0;
1157
}
1157
}
1158
 
1158
 
1159
static int init_render_ring(struct intel_engine_cs *ring)
1159
static int init_render_ring(struct intel_engine_cs *ring)
1160
{
1160
{
1161
	struct drm_device *dev = ring->dev;
1161
	struct drm_device *dev = ring->dev;
1162
	struct drm_i915_private *dev_priv = dev->dev_private;
1162
	struct drm_i915_private *dev_priv = dev->dev_private;
1163
	int ret = init_ring_common(ring);
1163
	int ret = init_ring_common(ring);
1164
	if (ret)
1164
	if (ret)
1165
		return ret;
1165
		return ret;
1166
 
1166
 
1167
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1167
	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1168
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1168
	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1169
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1169
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1170
 
1170
 
1171
	/* We need to disable the AsyncFlip performance optimisations in order
1171
	/* We need to disable the AsyncFlip performance optimisations in order
1172
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1172
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1173
	 * programmed to '1' on all products.
1173
	 * programmed to '1' on all products.
1174
	 *
1174
	 *
1175
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1175
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1176
	 */
1176
	 */
1177
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1177
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1178
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1178
		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1179
 
1179
 
1180
	/* Required for the hardware to program scanline values for waiting */
1180
	/* Required for the hardware to program scanline values for waiting */
1181
	/* WaEnableFlushTlbInvalidationMode:snb */
1181
	/* WaEnableFlushTlbInvalidationMode:snb */
1182
	if (INTEL_INFO(dev)->gen == 6)
1182
	if (INTEL_INFO(dev)->gen == 6)
1183
		I915_WRITE(GFX_MODE,
1183
		I915_WRITE(GFX_MODE,
1184
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1184
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1185
 
1185
 
1186
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1186
	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1187
	if (IS_GEN7(dev))
1187
	if (IS_GEN7(dev))
1188
		I915_WRITE(GFX_MODE_GEN7,
1188
		I915_WRITE(GFX_MODE_GEN7,
1189
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1189
			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1190
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1190
			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1191
 
1191
 
1192
	if (IS_GEN6(dev)) {
1192
	if (IS_GEN6(dev)) {
1193
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1193
		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1194
		 * "If this bit is set, STCunit will have LRA as replacement
1194
		 * "If this bit is set, STCunit will have LRA as replacement
1195
		 *  policy. [...] This bit must be reset.  LRA replacement
1195
		 *  policy. [...] This bit must be reset.  LRA replacement
1196
		 *  policy is not supported."
1196
		 *  policy is not supported."
1197
		 */
1197
		 */
1198
		I915_WRITE(CACHE_MODE_0,
1198
		I915_WRITE(CACHE_MODE_0,
1199
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1199
			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1200
	}
1200
	}
1201
 
1201
 
1202
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1202
	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1203
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1203
		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1204
 
1204
 
1205
	if (HAS_L3_DPF(dev))
1205
	if (HAS_L3_DPF(dev))
1206
		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1206
		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1207
 
1207
 
1208
	return init_workarounds_ring(ring);
1208
	return init_workarounds_ring(ring);
1209
}
1209
}
1210
 
1210
 
1211
static void render_ring_cleanup(struct intel_engine_cs *ring)
1211
static void render_ring_cleanup(struct intel_engine_cs *ring)
1212
{
1212
{
1213
	struct drm_device *dev = ring->dev;
1213
	struct drm_device *dev = ring->dev;
1214
	struct drm_i915_private *dev_priv = dev->dev_private;
1214
	struct drm_i915_private *dev_priv = dev->dev_private;
1215
 
1215
 
1216
	if (dev_priv->semaphore_obj) {
1216
	if (dev_priv->semaphore_obj) {
1217
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1217
		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1218
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1218
		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1219
		dev_priv->semaphore_obj = NULL;
1219
		dev_priv->semaphore_obj = NULL;
1220
	}
1220
	}
1221
 
1221
 
1222
	intel_fini_pipe_control(ring);
1222
	intel_fini_pipe_control(ring);
1223
}
1223
}
1224
 
1224
 
1225
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1225
static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1226
			   unsigned int num_dwords)
1226
			   unsigned int num_dwords)
1227
{
1227
{
1228
#define MBOX_UPDATE_DWORDS 8
1228
#define MBOX_UPDATE_DWORDS 8
1229
	struct intel_engine_cs *signaller = signaller_req->ring;
1229
	struct intel_engine_cs *signaller = signaller_req->ring;
1230
	struct drm_device *dev = signaller->dev;
1230
	struct drm_device *dev = signaller->dev;
1231
	struct drm_i915_private *dev_priv = dev->dev_private;
1231
	struct drm_i915_private *dev_priv = dev->dev_private;
1232
	struct intel_engine_cs *waiter;
1232
	struct intel_engine_cs *waiter;
1233
	int i, ret, num_rings;
1233
	int i, ret, num_rings;
1234
 
1234
 
1235
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1235
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1236
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1236
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1237
#undef MBOX_UPDATE_DWORDS
1237
#undef MBOX_UPDATE_DWORDS
1238
 
1238
 
1239
	ret = intel_ring_begin(signaller_req, num_dwords);
1239
	ret = intel_ring_begin(signaller_req, num_dwords);
1240
	if (ret)
1240
	if (ret)
1241
		return ret;
1241
		return ret;
1242
 
1242
 
1243
	for_each_ring(waiter, dev_priv, i) {
1243
	for_each_ring(waiter, dev_priv, i) {
1244
		u32 seqno;
1244
		u32 seqno;
1245
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1245
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1246
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1246
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1247
			continue;
1247
			continue;
1248
 
1248
 
1249
		seqno = i915_gem_request_get_seqno(signaller_req);
1249
		seqno = i915_gem_request_get_seqno(signaller_req);
1250
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1250
		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1251
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1251
		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1252
					   PIPE_CONTROL_QW_WRITE |
1252
					   PIPE_CONTROL_QW_WRITE |
1253
					   PIPE_CONTROL_FLUSH_ENABLE);
1253
					   PIPE_CONTROL_FLUSH_ENABLE);
1254
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1254
		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1255
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1255
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1256
		intel_ring_emit(signaller, seqno);
1256
		intel_ring_emit(signaller, seqno);
1257
		intel_ring_emit(signaller, 0);
1257
		intel_ring_emit(signaller, 0);
1258
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1258
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1259
					   MI_SEMAPHORE_TARGET(waiter->id));
1259
					   MI_SEMAPHORE_TARGET(waiter->id));
1260
		intel_ring_emit(signaller, 0);
1260
		intel_ring_emit(signaller, 0);
1261
	}
1261
	}
1262
 
1262
 
1263
	return 0;
1263
	return 0;
1264
}
1264
}
1265
 
1265
 
1266
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1266
static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1267
			   unsigned int num_dwords)
1267
			   unsigned int num_dwords)
1268
{
1268
{
1269
#define MBOX_UPDATE_DWORDS 6
1269
#define MBOX_UPDATE_DWORDS 6
1270
	struct intel_engine_cs *signaller = signaller_req->ring;
1270
	struct intel_engine_cs *signaller = signaller_req->ring;
1271
	struct drm_device *dev = signaller->dev;
1271
	struct drm_device *dev = signaller->dev;
1272
	struct drm_i915_private *dev_priv = dev->dev_private;
1272
	struct drm_i915_private *dev_priv = dev->dev_private;
1273
	struct intel_engine_cs *waiter;
1273
	struct intel_engine_cs *waiter;
1274
	int i, ret, num_rings;
1274
	int i, ret, num_rings;
1275
 
1275
 
1276
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1276
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1277
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1277
	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1278
#undef MBOX_UPDATE_DWORDS
1278
#undef MBOX_UPDATE_DWORDS
1279
 
1279
 
1280
	ret = intel_ring_begin(signaller_req, num_dwords);
1280
	ret = intel_ring_begin(signaller_req, num_dwords);
1281
	if (ret)
1281
	if (ret)
1282
		return ret;
1282
		return ret;
1283
 
1283
 
1284
	for_each_ring(waiter, dev_priv, i) {
1284
	for_each_ring(waiter, dev_priv, i) {
1285
		u32 seqno;
1285
		u32 seqno;
1286
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1286
		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1287
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1287
		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1288
			continue;
1288
			continue;
1289
 
1289
 
1290
		seqno = i915_gem_request_get_seqno(signaller_req);
1290
		seqno = i915_gem_request_get_seqno(signaller_req);
1291
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1291
		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1292
					   MI_FLUSH_DW_OP_STOREDW);
1292
					   MI_FLUSH_DW_OP_STOREDW);
1293
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1293
		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1294
					   MI_FLUSH_DW_USE_GTT);
1294
					   MI_FLUSH_DW_USE_GTT);
1295
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1295
		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1296
		intel_ring_emit(signaller, seqno);
1296
		intel_ring_emit(signaller, seqno);
1297
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1297
		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1298
					   MI_SEMAPHORE_TARGET(waiter->id));
1298
					   MI_SEMAPHORE_TARGET(waiter->id));
1299
		intel_ring_emit(signaller, 0);
1299
		intel_ring_emit(signaller, 0);
1300
	}
1300
	}
1301
 
1301
 
1302
	return 0;
1302
	return 0;
1303
}
1303
}
1304
 
1304
 
1305
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1305
static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1306
		       unsigned int num_dwords)
1306
		       unsigned int num_dwords)
1307
{
1307
{
1308
	struct intel_engine_cs *signaller = signaller_req->ring;
1308
	struct intel_engine_cs *signaller = signaller_req->ring;
1309
	struct drm_device *dev = signaller->dev;
1309
	struct drm_device *dev = signaller->dev;
1310
	struct drm_i915_private *dev_priv = dev->dev_private;
1310
	struct drm_i915_private *dev_priv = dev->dev_private;
1311
	struct intel_engine_cs *useless;
1311
	struct intel_engine_cs *useless;
1312
	int i, ret, num_rings;
1312
	int i, ret, num_rings;
1313
 
1313
 
1314
#define MBOX_UPDATE_DWORDS 3
1314
#define MBOX_UPDATE_DWORDS 3
1315
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1315
	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1316
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1316
	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1317
#undef MBOX_UPDATE_DWORDS
1317
#undef MBOX_UPDATE_DWORDS
1318
 
1318
 
1319
	ret = intel_ring_begin(signaller_req, num_dwords);
1319
	ret = intel_ring_begin(signaller_req, num_dwords);
1320
	if (ret)
1320
	if (ret)
1321
		return ret;
1321
		return ret;
1322
 
1322
 
1323
	for_each_ring(useless, dev_priv, i) {
1323
	for_each_ring(useless, dev_priv, i) {
1324
		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1324
		u32 mbox_reg = signaller->semaphore.mbox.signal[i];
1325
		if (mbox_reg != GEN6_NOSYNC) {
1325
		if (mbox_reg != GEN6_NOSYNC) {
1326
			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1326
			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1327
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1327
			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1328
			intel_ring_emit(signaller, mbox_reg);
1328
			intel_ring_emit(signaller, mbox_reg);
1329
			intel_ring_emit(signaller, seqno);
1329
			intel_ring_emit(signaller, seqno);
1330
		}
1330
		}
1331
	}
1331
	}
1332
 
1332
 
1333
	/* If num_dwords was rounded, make sure the tail pointer is correct */
1333
	/* If num_dwords was rounded, make sure the tail pointer is correct */
1334
	if (num_rings % 2 == 0)
1334
	if (num_rings % 2 == 0)
1335
		intel_ring_emit(signaller, MI_NOOP);
1335
		intel_ring_emit(signaller, MI_NOOP);
1336
 
1336
 
1337
	return 0;
1337
	return 0;
1338
}
1338
}
1339
 
1339
 
1340
/**
1340
/**
1341
 * gen6_add_request - Update the semaphore mailbox registers
1341
 * gen6_add_request - Update the semaphore mailbox registers
1342
 *
1342
 *
1343
 * @request - request to write to the ring
1343
 * @request - request to write to the ring
1344
 *
1344
 *
1345
 * Update the mailbox registers in the *other* rings with the current seqno.
1345
 * Update the mailbox registers in the *other* rings with the current seqno.
1346
 * This acts like a signal in the canonical semaphore.
1346
 * This acts like a signal in the canonical semaphore.
1347
 */
1347
 */
1348
static int
1348
static int
1349
gen6_add_request(struct drm_i915_gem_request *req)
1349
gen6_add_request(struct drm_i915_gem_request *req)
1350
{
1350
{
1351
	struct intel_engine_cs *ring = req->ring;
1351
	struct intel_engine_cs *ring = req->ring;
1352
	int ret;
1352
	int ret;
1353
 
1353
 
1354
	if (ring->semaphore.signal)
1354
	if (ring->semaphore.signal)
1355
		ret = ring->semaphore.signal(req, 4);
1355
		ret = ring->semaphore.signal(req, 4);
1356
	else
1356
	else
1357
		ret = intel_ring_begin(req, 4);
1357
		ret = intel_ring_begin(req, 4);
1358
 
1358
 
1359
	if (ret)
1359
	if (ret)
1360
		return ret;
1360
		return ret;
1361
 
1361
 
1362
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1362
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1363
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1363
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1364
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1364
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1365
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1365
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1366
	__intel_ring_advance(ring);
1366
	__intel_ring_advance(ring);
1367
 
1367
 
1368
	return 0;
1368
	return 0;
1369
}
1369
}
1370
 
1370
 
1371
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1371
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1372
					      u32 seqno)
1372
					      u32 seqno)
1373
{
1373
{
1374
	struct drm_i915_private *dev_priv = dev->dev_private;
1374
	struct drm_i915_private *dev_priv = dev->dev_private;
1375
	return dev_priv->last_seqno < seqno;
1375
	return dev_priv->last_seqno < seqno;
1376
}
1376
}
1377
 
1377
 
1378
/**
1378
/**
1379
 * intel_ring_sync - sync the waiter to the signaller on seqno
1379
 * intel_ring_sync - sync the waiter to the signaller on seqno
1380
 *
1380
 *
1381
 * @waiter - ring that is waiting
1381
 * @waiter - ring that is waiting
1382
 * @signaller - ring which has, or will signal
1382
 * @signaller - ring which has, or will signal
1383
 * @seqno - seqno which the waiter will block on
1383
 * @seqno - seqno which the waiter will block on
1384
 */
1384
 */
1385
 
1385
 
1386
static int
1386
static int
1387
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1387
gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1388
	       struct intel_engine_cs *signaller,
1388
	       struct intel_engine_cs *signaller,
1389
	       u32 seqno)
1389
	       u32 seqno)
1390
{
1390
{
1391
	struct intel_engine_cs *waiter = waiter_req->ring;
1391
	struct intel_engine_cs *waiter = waiter_req->ring;
1392
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1392
	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1393
	int ret;
1393
	int ret;
1394
 
1394
 
1395
	ret = intel_ring_begin(waiter_req, 4);
1395
	ret = intel_ring_begin(waiter_req, 4);
1396
	if (ret)
1396
	if (ret)
1397
		return ret;
1397
		return ret;
1398
 
1398
 
1399
	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1399
	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1400
				MI_SEMAPHORE_GLOBAL_GTT |
1400
				MI_SEMAPHORE_GLOBAL_GTT |
1401
				MI_SEMAPHORE_POLL |
1401
				MI_SEMAPHORE_POLL |
1402
				MI_SEMAPHORE_SAD_GTE_SDD);
1402
				MI_SEMAPHORE_SAD_GTE_SDD);
1403
	intel_ring_emit(waiter, seqno);
1403
	intel_ring_emit(waiter, seqno);
1404
	intel_ring_emit(waiter,
1404
	intel_ring_emit(waiter,
1405
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1405
			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1406
	intel_ring_emit(waiter,
1406
	intel_ring_emit(waiter,
1407
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1407
			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1408
	intel_ring_advance(waiter);
1408
	intel_ring_advance(waiter);
1409
	return 0;
1409
	return 0;
1410
}
1410
}
1411
 
1411
 
1412
static int
1412
static int
1413
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1413
gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1414
	       struct intel_engine_cs *signaller,
1414
	       struct intel_engine_cs *signaller,
1415
	       u32 seqno)
1415
	       u32 seqno)
1416
{
1416
{
1417
	struct intel_engine_cs *waiter = waiter_req->ring;
1417
	struct intel_engine_cs *waiter = waiter_req->ring;
1418
	u32 dw1 = MI_SEMAPHORE_MBOX |
1418
	u32 dw1 = MI_SEMAPHORE_MBOX |
1419
		  MI_SEMAPHORE_COMPARE |
1419
		  MI_SEMAPHORE_COMPARE |
1420
		  MI_SEMAPHORE_REGISTER;
1420
		  MI_SEMAPHORE_REGISTER;
1421
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1421
	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1422
	int ret;
1422
	int ret;
1423
 
1423
 
1424
	/* Throughout all of the GEM code, seqno passed implies our current
1424
	/* Throughout all of the GEM code, seqno passed implies our current
1425
	 * seqno is >= the last seqno executed. However for hardware the
1425
	 * seqno is >= the last seqno executed. However for hardware the
1426
	 * comparison is strictly greater than.
1426
	 * comparison is strictly greater than.
1427
	 */
1427
	 */
1428
	seqno -= 1;
1428
	seqno -= 1;
1429
 
1429
 
1430
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1430
	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1431
 
1431
 
1432
	ret = intel_ring_begin(waiter_req, 4);
1432
	ret = intel_ring_begin(waiter_req, 4);
1433
	if (ret)
1433
	if (ret)
1434
		return ret;
1434
		return ret;
1435
 
1435
 
1436
	/* If seqno wrap happened, omit the wait with no-ops */
1436
	/* If seqno wrap happened, omit the wait with no-ops */
1437
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1437
	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1438
		intel_ring_emit(waiter, dw1 | wait_mbox);
1438
		intel_ring_emit(waiter, dw1 | wait_mbox);
1439
		intel_ring_emit(waiter, seqno);
1439
		intel_ring_emit(waiter, seqno);
1440
		intel_ring_emit(waiter, 0);
1440
		intel_ring_emit(waiter, 0);
1441
		intel_ring_emit(waiter, MI_NOOP);
1441
		intel_ring_emit(waiter, MI_NOOP);
1442
	} else {
1442
	} else {
1443
		intel_ring_emit(waiter, MI_NOOP);
1443
		intel_ring_emit(waiter, MI_NOOP);
1444
		intel_ring_emit(waiter, MI_NOOP);
1444
		intel_ring_emit(waiter, MI_NOOP);
1445
		intel_ring_emit(waiter, MI_NOOP);
1445
		intel_ring_emit(waiter, MI_NOOP);
1446
		intel_ring_emit(waiter, MI_NOOP);
1446
		intel_ring_emit(waiter, MI_NOOP);
1447
	}
1447
	}
1448
	intel_ring_advance(waiter);
1448
	intel_ring_advance(waiter);
1449
 
1449
 
1450
	return 0;
1450
	return 0;
1451
}
1451
}
1452
 
1452
 
1453
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1453
#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1454
do {									\
1454
do {									\
1455
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1455
	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1456
		 PIPE_CONTROL_DEPTH_STALL);				\
1456
		 PIPE_CONTROL_DEPTH_STALL);				\
1457
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1457
	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1458
	intel_ring_emit(ring__, 0);							\
1458
	intel_ring_emit(ring__, 0);							\
1459
	intel_ring_emit(ring__, 0);							\
1459
	intel_ring_emit(ring__, 0);							\
1460
} while (0)
1460
} while (0)
1461
 
1461
 
1462
static int
1462
static int
1463
pc_render_add_request(struct drm_i915_gem_request *req)
1463
pc_render_add_request(struct drm_i915_gem_request *req)
1464
{
1464
{
1465
	struct intel_engine_cs *ring = req->ring;
1465
	struct intel_engine_cs *ring = req->ring;
1466
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1466
	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1467
	int ret;
1467
	int ret;
1468
 
1468
 
1469
	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1469
	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1470
	 * incoherent with writes to memory, i.e. completely fubar,
1470
	 * incoherent with writes to memory, i.e. completely fubar,
1471
	 * so we need to use PIPE_NOTIFY instead.
1471
	 * so we need to use PIPE_NOTIFY instead.
1472
	 *
1472
	 *
1473
	 * However, we also need to workaround the qword write
1473
	 * However, we also need to workaround the qword write
1474
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1474
	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1475
	 * memory before requesting an interrupt.
1475
	 * memory before requesting an interrupt.
1476
	 */
1476
	 */
1477
	ret = intel_ring_begin(req, 32);
1477
	ret = intel_ring_begin(req, 32);
1478
	if (ret)
1478
	if (ret)
1479
		return ret;
1479
		return ret;
1480
 
1480
 
1481
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1481
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1482
			PIPE_CONTROL_WRITE_FLUSH |
1482
			PIPE_CONTROL_WRITE_FLUSH |
1483
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1483
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1484
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1484
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1485
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1485
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1486
	intel_ring_emit(ring, 0);
1486
	intel_ring_emit(ring, 0);
1487
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1487
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1488
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1488
	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1489
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1489
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1490
	scratch_addr += 2 * CACHELINE_BYTES;
1490
	scratch_addr += 2 * CACHELINE_BYTES;
1491
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1491
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1492
	scratch_addr += 2 * CACHELINE_BYTES;
1492
	scratch_addr += 2 * CACHELINE_BYTES;
1493
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1493
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1494
	scratch_addr += 2 * CACHELINE_BYTES;
1494
	scratch_addr += 2 * CACHELINE_BYTES;
1495
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1495
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1496
	scratch_addr += 2 * CACHELINE_BYTES;
1496
	scratch_addr += 2 * CACHELINE_BYTES;
1497
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1497
	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1498
 
1498
 
1499
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1499
	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1500
			PIPE_CONTROL_WRITE_FLUSH |
1500
			PIPE_CONTROL_WRITE_FLUSH |
1501
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1501
			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1502
			PIPE_CONTROL_NOTIFY);
1502
			PIPE_CONTROL_NOTIFY);
1503
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1503
	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1504
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1504
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1505
	intel_ring_emit(ring, 0);
1505
	intel_ring_emit(ring, 0);
1506
	__intel_ring_advance(ring);
1506
	__intel_ring_advance(ring);
1507
 
1507
 
1508
	return 0;
1508
	return 0;
1509
}
1509
}
1510
 
1510
 
1511
static u32
1511
static u32
1512
gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1512
gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1513
{
1513
{
1514
	/* Workaround to force correct ordering between irq and seqno writes on
1514
	/* Workaround to force correct ordering between irq and seqno writes on
1515
	 * ivb (and maybe also on snb) by reading from a CS register (like
1515
	 * ivb (and maybe also on snb) by reading from a CS register (like
1516
	 * ACTHD) before reading the status page. */
1516
	 * ACTHD) before reading the status page. */
1517
	if (!lazy_coherency) {
1517
	if (!lazy_coherency) {
1518
		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1518
		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1519
		POSTING_READ(RING_ACTHD(ring->mmio_base));
1519
		POSTING_READ(RING_ACTHD(ring->mmio_base));
1520
	}
1520
	}
1521
 
1521
 
1522
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1522
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1523
}
1523
}
1524
 
1524
 
1525
static u32
1525
static u32
1526
ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1526
ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1527
{
1527
{
1528
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1528
	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1529
}
1529
}
1530
 
1530
 
1531
static void
1531
static void
1532
ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1532
ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1533
{
1533
{
1534
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1534
	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1535
}
1535
}
1536
 
1536
 
1537
static u32
1537
static u32
1538
pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1538
pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1539
{
1539
{
1540
	return ring->scratch.cpu_page[0];
1540
	return ring->scratch.cpu_page[0];
1541
}
1541
}
1542
 
1542
 
1543
static void
1543
static void
1544
pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1544
pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1545
{
1545
{
1546
	ring->scratch.cpu_page[0] = seqno;
1546
	ring->scratch.cpu_page[0] = seqno;
1547
}
1547
}
1548
 
1548
 
1549
static bool
1549
static bool
1550
gen5_ring_get_irq(struct intel_engine_cs *ring)
1550
gen5_ring_get_irq(struct intel_engine_cs *ring)
1551
{
1551
{
1552
	struct drm_device *dev = ring->dev;
1552
	struct drm_device *dev = ring->dev;
1553
	struct drm_i915_private *dev_priv = dev->dev_private;
1553
	struct drm_i915_private *dev_priv = dev->dev_private;
1554
	unsigned long flags;
1554
	unsigned long flags;
1555
 
1555
 
1556
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1556
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1557
		return false;
1557
		return false;
1558
 
1558
 
1559
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1559
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1560
	if (ring->irq_refcount++ == 0)
1560
	if (ring->irq_refcount++ == 0)
1561
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1561
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1562
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1562
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1563
 
1563
 
1564
	return true;
1564
	return true;
1565
}
1565
}
1566
 
1566
 
1567
static void
1567
static void
1568
gen5_ring_put_irq(struct intel_engine_cs *ring)
1568
gen5_ring_put_irq(struct intel_engine_cs *ring)
1569
{
1569
{
1570
	struct drm_device *dev = ring->dev;
1570
	struct drm_device *dev = ring->dev;
1571
	struct drm_i915_private *dev_priv = dev->dev_private;
1571
	struct drm_i915_private *dev_priv = dev->dev_private;
1572
	unsigned long flags;
1572
	unsigned long flags;
1573
 
1573
 
1574
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1574
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1575
	if (--ring->irq_refcount == 0)
1575
	if (--ring->irq_refcount == 0)
1576
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1576
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1577
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1577
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1578
}
1578
}
1579
 
1579
 
1580
static bool
1580
static bool
1581
i9xx_ring_get_irq(struct intel_engine_cs *ring)
1581
i9xx_ring_get_irq(struct intel_engine_cs *ring)
1582
{
1582
{
1583
	struct drm_device *dev = ring->dev;
1583
	struct drm_device *dev = ring->dev;
1584
	struct drm_i915_private *dev_priv = dev->dev_private;
1584
	struct drm_i915_private *dev_priv = dev->dev_private;
1585
	unsigned long flags;
1585
	unsigned long flags;
1586
 
1586
 
1587
	if (!intel_irqs_enabled(dev_priv))
1587
	if (!intel_irqs_enabled(dev_priv))
1588
		return false;
1588
		return false;
1589
 
1589
 
1590
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1590
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1591
	if (ring->irq_refcount++ == 0) {
1591
	if (ring->irq_refcount++ == 0) {
1592
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1592
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1593
		I915_WRITE(IMR, dev_priv->irq_mask);
1593
		I915_WRITE(IMR, dev_priv->irq_mask);
1594
		POSTING_READ(IMR);
1594
		POSTING_READ(IMR);
1595
	}
1595
	}
1596
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1596
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1597
 
1597
 
1598
	return true;
1598
	return true;
1599
}
1599
}
1600
 
1600
 
1601
static void
1601
static void
1602
i9xx_ring_put_irq(struct intel_engine_cs *ring)
1602
i9xx_ring_put_irq(struct intel_engine_cs *ring)
1603
{
1603
{
1604
	struct drm_device *dev = ring->dev;
1604
	struct drm_device *dev = ring->dev;
1605
	struct drm_i915_private *dev_priv = dev->dev_private;
1605
	struct drm_i915_private *dev_priv = dev->dev_private;
1606
	unsigned long flags;
1606
	unsigned long flags;
1607
 
1607
 
1608
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1608
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1609
	if (--ring->irq_refcount == 0) {
1609
	if (--ring->irq_refcount == 0) {
1610
		dev_priv->irq_mask |= ring->irq_enable_mask;
1610
		dev_priv->irq_mask |= ring->irq_enable_mask;
1611
		I915_WRITE(IMR, dev_priv->irq_mask);
1611
		I915_WRITE(IMR, dev_priv->irq_mask);
1612
		POSTING_READ(IMR);
1612
		POSTING_READ(IMR);
1613
	}
1613
	}
1614
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1614
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1615
}
1615
}
1616
 
1616
 
1617
static bool
1617
static bool
1618
i8xx_ring_get_irq(struct intel_engine_cs *ring)
1618
i8xx_ring_get_irq(struct intel_engine_cs *ring)
1619
{
1619
{
1620
	struct drm_device *dev = ring->dev;
1620
	struct drm_device *dev = ring->dev;
1621
	struct drm_i915_private *dev_priv = dev->dev_private;
1621
	struct drm_i915_private *dev_priv = dev->dev_private;
1622
	unsigned long flags;
1622
	unsigned long flags;
1623
 
1623
 
1624
	if (!intel_irqs_enabled(dev_priv))
1624
	if (!intel_irqs_enabled(dev_priv))
1625
		return false;
1625
		return false;
1626
 
1626
 
1627
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1627
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1628
	if (ring->irq_refcount++ == 0) {
1628
	if (ring->irq_refcount++ == 0) {
1629
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1629
		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1630
		I915_WRITE16(IMR, dev_priv->irq_mask);
1630
		I915_WRITE16(IMR, dev_priv->irq_mask);
1631
		POSTING_READ16(IMR);
1631
		POSTING_READ16(IMR);
1632
	}
1632
	}
1633
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1633
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1634
 
1634
 
1635
	return true;
1635
	return true;
1636
}
1636
}
1637
 
1637
 
1638
static void
1638
static void
1639
i8xx_ring_put_irq(struct intel_engine_cs *ring)
1639
i8xx_ring_put_irq(struct intel_engine_cs *ring)
1640
{
1640
{
1641
	struct drm_device *dev = ring->dev;
1641
	struct drm_device *dev = ring->dev;
1642
	struct drm_i915_private *dev_priv = dev->dev_private;
1642
	struct drm_i915_private *dev_priv = dev->dev_private;
1643
	unsigned long flags;
1643
	unsigned long flags;
1644
 
1644
 
1645
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1645
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1646
	if (--ring->irq_refcount == 0) {
1646
	if (--ring->irq_refcount == 0) {
1647
		dev_priv->irq_mask |= ring->irq_enable_mask;
1647
		dev_priv->irq_mask |= ring->irq_enable_mask;
1648
		I915_WRITE16(IMR, dev_priv->irq_mask);
1648
		I915_WRITE16(IMR, dev_priv->irq_mask);
1649
		POSTING_READ16(IMR);
1649
		POSTING_READ16(IMR);
1650
	}
1650
	}
1651
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1651
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1652
}
1652
}
1653
 
1653
 
1654
static int
1654
static int
1655
bsd_ring_flush(struct drm_i915_gem_request *req,
1655
bsd_ring_flush(struct drm_i915_gem_request *req,
1656
	       u32     invalidate_domains,
1656
	       u32     invalidate_domains,
1657
	       u32     flush_domains)
1657
	       u32     flush_domains)
1658
{
1658
{
1659
	struct intel_engine_cs *ring = req->ring;
1659
	struct intel_engine_cs *ring = req->ring;
1660
	int ret;
1660
	int ret;
1661
 
1661
 
1662
	ret = intel_ring_begin(req, 2);
1662
	ret = intel_ring_begin(req, 2);
1663
	if (ret)
1663
	if (ret)
1664
		return ret;
1664
		return ret;
1665
 
1665
 
1666
	intel_ring_emit(ring, MI_FLUSH);
1666
	intel_ring_emit(ring, MI_FLUSH);
1667
	intel_ring_emit(ring, MI_NOOP);
1667
	intel_ring_emit(ring, MI_NOOP);
1668
	intel_ring_advance(ring);
1668
	intel_ring_advance(ring);
1669
	return 0;
1669
	return 0;
1670
}
1670
}
1671
 
1671
 
1672
static int
1672
static int
1673
i9xx_add_request(struct drm_i915_gem_request *req)
1673
i9xx_add_request(struct drm_i915_gem_request *req)
1674
{
1674
{
1675
	struct intel_engine_cs *ring = req->ring;
1675
	struct intel_engine_cs *ring = req->ring;
1676
	int ret;
1676
	int ret;
1677
 
1677
 
1678
	ret = intel_ring_begin(req, 4);
1678
	ret = intel_ring_begin(req, 4);
1679
	if (ret)
1679
	if (ret)
1680
		return ret;
1680
		return ret;
1681
 
1681
 
1682
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1682
	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1683
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1683
	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1684
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1684
	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1685
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1685
	intel_ring_emit(ring, MI_USER_INTERRUPT);
1686
	__intel_ring_advance(ring);
1686
	__intel_ring_advance(ring);
1687
 
1687
 
1688
	return 0;
1688
	return 0;
1689
}
1689
}
1690
 
1690
 
1691
static bool
1691
static bool
1692
gen6_ring_get_irq(struct intel_engine_cs *ring)
1692
gen6_ring_get_irq(struct intel_engine_cs *ring)
1693
{
1693
{
1694
	struct drm_device *dev = ring->dev;
1694
	struct drm_device *dev = ring->dev;
1695
	struct drm_i915_private *dev_priv = dev->dev_private;
1695
	struct drm_i915_private *dev_priv = dev->dev_private;
1696
	unsigned long flags;
1696
	unsigned long flags;
1697
 
1697
 
1698
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1698
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1699
		return false;
1699
		return false;
1700
 
1700
 
1701
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1701
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1702
	if (ring->irq_refcount++ == 0) {
1702
	if (ring->irq_refcount++ == 0) {
1703
		if (HAS_L3_DPF(dev) && ring->id == RCS)
1703
		if (HAS_L3_DPF(dev) && ring->id == RCS)
1704
			I915_WRITE_IMR(ring,
1704
			I915_WRITE_IMR(ring,
1705
				       ~(ring->irq_enable_mask |
1705
				       ~(ring->irq_enable_mask |
1706
					 GT_PARITY_ERROR(dev)));
1706
					 GT_PARITY_ERROR(dev)));
1707
		else
1707
		else
1708
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1708
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1709
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1709
		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1710
	}
1710
	}
1711
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1711
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1712
 
1712
 
1713
	return true;
1713
	return true;
1714
}
1714
}
1715
 
1715
 
1716
static void
1716
static void
1717
gen6_ring_put_irq(struct intel_engine_cs *ring)
1717
gen6_ring_put_irq(struct intel_engine_cs *ring)
1718
{
1718
{
1719
	struct drm_device *dev = ring->dev;
1719
	struct drm_device *dev = ring->dev;
1720
	struct drm_i915_private *dev_priv = dev->dev_private;
1720
	struct drm_i915_private *dev_priv = dev->dev_private;
1721
	unsigned long flags;
1721
	unsigned long flags;
1722
 
1722
 
1723
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1723
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1724
	if (--ring->irq_refcount == 0) {
1724
	if (--ring->irq_refcount == 0) {
1725
		if (HAS_L3_DPF(dev) && ring->id == RCS)
1725
		if (HAS_L3_DPF(dev) && ring->id == RCS)
1726
			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1726
			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1727
		else
1727
		else
1728
			I915_WRITE_IMR(ring, ~0);
1728
			I915_WRITE_IMR(ring, ~0);
1729
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1729
		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1730
	}
1730
	}
1731
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1731
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1732
}
1732
}
1733
 
1733
 
1734
static bool
1734
static bool
1735
hsw_vebox_get_irq(struct intel_engine_cs *ring)
1735
hsw_vebox_get_irq(struct intel_engine_cs *ring)
1736
{
1736
{
1737
	struct drm_device *dev = ring->dev;
1737
	struct drm_device *dev = ring->dev;
1738
	struct drm_i915_private *dev_priv = dev->dev_private;
1738
	struct drm_i915_private *dev_priv = dev->dev_private;
1739
	unsigned long flags;
1739
	unsigned long flags;
1740
 
1740
 
1741
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1741
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1742
		return false;
1742
		return false;
1743
 
1743
 
1744
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1744
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1745
	if (ring->irq_refcount++ == 0) {
1745
	if (ring->irq_refcount++ == 0) {
1746
		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1746
		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1747
		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1747
		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1748
	}
1748
	}
1749
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1749
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1750
 
1750
 
1751
	return true;
1751
	return true;
1752
}
1752
}
1753
 
1753
 
1754
static void
1754
static void
1755
hsw_vebox_put_irq(struct intel_engine_cs *ring)
1755
hsw_vebox_put_irq(struct intel_engine_cs *ring)
1756
{
1756
{
1757
	struct drm_device *dev = ring->dev;
1757
	struct drm_device *dev = ring->dev;
1758
	struct drm_i915_private *dev_priv = dev->dev_private;
1758
	struct drm_i915_private *dev_priv = dev->dev_private;
1759
	unsigned long flags;
1759
	unsigned long flags;
1760
 
1760
 
1761
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1761
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1762
	if (--ring->irq_refcount == 0) {
1762
	if (--ring->irq_refcount == 0) {
1763
		I915_WRITE_IMR(ring, ~0);
1763
		I915_WRITE_IMR(ring, ~0);
1764
		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1764
		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1765
	}
1765
	}
1766
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1766
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1767
}
1767
}
1768
 
1768
 
1769
static bool
1769
static bool
1770
gen8_ring_get_irq(struct intel_engine_cs *ring)
1770
gen8_ring_get_irq(struct intel_engine_cs *ring)
1771
{
1771
{
1772
	struct drm_device *dev = ring->dev;
1772
	struct drm_device *dev = ring->dev;
1773
	struct drm_i915_private *dev_priv = dev->dev_private;
1773
	struct drm_i915_private *dev_priv = dev->dev_private;
1774
	unsigned long flags;
1774
	unsigned long flags;
1775
 
1775
 
1776
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1776
	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1777
		return false;
1777
		return false;
1778
 
1778
 
1779
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1779
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1780
	if (ring->irq_refcount++ == 0) {
1780
	if (ring->irq_refcount++ == 0) {
1781
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1781
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1782
			I915_WRITE_IMR(ring,
1782
			I915_WRITE_IMR(ring,
1783
				       ~(ring->irq_enable_mask |
1783
				       ~(ring->irq_enable_mask |
1784
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1784
					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1785
		} else {
1785
		} else {
1786
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1786
			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1787
		}
1787
		}
1788
		POSTING_READ(RING_IMR(ring->mmio_base));
1788
		POSTING_READ(RING_IMR(ring->mmio_base));
1789
	}
1789
	}
1790
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1790
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1791
 
1791
 
1792
	return true;
1792
	return true;
1793
}
1793
}
1794
 
1794
 
1795
static void
1795
static void
1796
gen8_ring_put_irq(struct intel_engine_cs *ring)
1796
gen8_ring_put_irq(struct intel_engine_cs *ring)
1797
{
1797
{
1798
	struct drm_device *dev = ring->dev;
1798
	struct drm_device *dev = ring->dev;
1799
	struct drm_i915_private *dev_priv = dev->dev_private;
1799
	struct drm_i915_private *dev_priv = dev->dev_private;
1800
	unsigned long flags;
1800
	unsigned long flags;
1801
 
1801
 
1802
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1802
	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1803
	if (--ring->irq_refcount == 0) {
1803
	if (--ring->irq_refcount == 0) {
1804
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1804
		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1805
			I915_WRITE_IMR(ring,
1805
			I915_WRITE_IMR(ring,
1806
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1806
				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1807
		} else {
1807
		} else {
1808
			I915_WRITE_IMR(ring, ~0);
1808
			I915_WRITE_IMR(ring, ~0);
1809
		}
1809
		}
1810
		POSTING_READ(RING_IMR(ring->mmio_base));
1810
		POSTING_READ(RING_IMR(ring->mmio_base));
1811
	}
1811
	}
1812
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1812
	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1813
}
1813
}
1814
 
1814
 
1815
static int
1815
static int
1816
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1816
i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1817
			 u64 offset, u32 length,
1817
			 u64 offset, u32 length,
1818
			 unsigned dispatch_flags)
1818
			 unsigned dispatch_flags)
1819
{
1819
{
1820
	struct intel_engine_cs *ring = req->ring;
1820
	struct intel_engine_cs *ring = req->ring;
1821
	int ret;
1821
	int ret;
1822
 
1822
 
1823
	ret = intel_ring_begin(req, 2);
1823
	ret = intel_ring_begin(req, 2);
1824
	if (ret)
1824
	if (ret)
1825
		return ret;
1825
		return ret;
1826
 
1826
 
1827
	intel_ring_emit(ring,
1827
	intel_ring_emit(ring,
1828
			MI_BATCH_BUFFER_START |
1828
			MI_BATCH_BUFFER_START |
1829
			MI_BATCH_GTT |
1829
			MI_BATCH_GTT |
1830
			(dispatch_flags & I915_DISPATCH_SECURE ?
1830
			(dispatch_flags & I915_DISPATCH_SECURE ?
1831
			 0 : MI_BATCH_NON_SECURE_I965));
1831
			 0 : MI_BATCH_NON_SECURE_I965));
1832
	intel_ring_emit(ring, offset);
1832
	intel_ring_emit(ring, offset);
1833
	intel_ring_advance(ring);
1833
	intel_ring_advance(ring);
1834
 
1834
 
1835
	return 0;
1835
	return 0;
1836
}
1836
}
1837
 
1837
 
1838
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1838
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1839
#define I830_BATCH_LIMIT (256*1024)
1839
#define I830_BATCH_LIMIT (256*1024)
1840
#define I830_TLB_ENTRIES (2)
1840
#define I830_TLB_ENTRIES (2)
1841
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1841
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1842
static int
1842
static int
1843
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1843
i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1844
			 u64 offset, u32 len,
1844
			 u64 offset, u32 len,
1845
			 unsigned dispatch_flags)
1845
			 unsigned dispatch_flags)
1846
{
1846
{
1847
	struct intel_engine_cs *ring = req->ring;
1847
	struct intel_engine_cs *ring = req->ring;
1848
	u32 cs_offset = ring->scratch.gtt_offset;
1848
	u32 cs_offset = ring->scratch.gtt_offset;
1849
	int ret;
1849
	int ret;
1850
 
1850
 
1851
	ret = intel_ring_begin(req, 6);
1851
	ret = intel_ring_begin(req, 6);
1852
	if (ret)
1852
	if (ret)
1853
		return ret;
1853
		return ret;
1854
 
1854
 
1855
	/* Evict the invalid PTE TLBs */
1855
	/* Evict the invalid PTE TLBs */
1856
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1856
	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1857
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1857
	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1858
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1858
	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1859
	intel_ring_emit(ring, cs_offset);
1859
	intel_ring_emit(ring, cs_offset);
1860
	intel_ring_emit(ring, 0xdeadbeef);
1860
	intel_ring_emit(ring, 0xdeadbeef);
1861
	intel_ring_emit(ring, MI_NOOP);
1861
	intel_ring_emit(ring, MI_NOOP);
1862
	intel_ring_advance(ring);
1862
	intel_ring_advance(ring);
1863
 
1863
 
1864
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1864
	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1865
		if (len > I830_BATCH_LIMIT)
1865
		if (len > I830_BATCH_LIMIT)
1866
			return -ENOSPC;
1866
			return -ENOSPC;
1867
 
1867
 
1868
		ret = intel_ring_begin(req, 6 + 2);
1868
		ret = intel_ring_begin(req, 6 + 2);
1869
		if (ret)
1869
		if (ret)
1870
			return ret;
1870
			return ret;
1871
 
1871
 
1872
		/* Blit the batch (which has now all relocs applied) to the
1872
		/* Blit the batch (which has now all relocs applied) to the
1873
		 * stable batch scratch bo area (so that the CS never
1873
		 * stable batch scratch bo area (so that the CS never
1874
		 * stumbles over its tlb invalidation bug) ...
1874
		 * stumbles over its tlb invalidation bug) ...
1875
		 */
1875
		 */
1876
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1876
		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1877
		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1877
		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1878
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1878
		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1879
		intel_ring_emit(ring, cs_offset);
1879
		intel_ring_emit(ring, cs_offset);
1880
		intel_ring_emit(ring, 4096);
1880
		intel_ring_emit(ring, 4096);
1881
		intel_ring_emit(ring, offset);
1881
		intel_ring_emit(ring, offset);
1882
 
1882
 
1883
		intel_ring_emit(ring, MI_FLUSH);
1883
		intel_ring_emit(ring, MI_FLUSH);
1884
		intel_ring_emit(ring, MI_NOOP);
1884
		intel_ring_emit(ring, MI_NOOP);
1885
		intel_ring_advance(ring);
1885
		intel_ring_advance(ring);
1886
 
1886
 
1887
		/* ... and execute it. */
1887
		/* ... and execute it. */
1888
		offset = cs_offset;
1888
		offset = cs_offset;
1889
	}
1889
	}
1890
 
1890
 
1891
	ret = intel_ring_begin(req, 4);
1891
	ret = intel_ring_begin(req, 4);
1892
	if (ret)
1892
	if (ret)
1893
		return ret;
1893
		return ret;
1894
 
1894
 
1895
	intel_ring_emit(ring, MI_BATCH_BUFFER);
1895
	intel_ring_emit(ring, MI_BATCH_BUFFER);
1896
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1896
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1897
					0 : MI_BATCH_NON_SECURE));
1897
					0 : MI_BATCH_NON_SECURE));
1898
	intel_ring_emit(ring, offset + len - 8);
1898
	intel_ring_emit(ring, offset + len - 8);
1899
	intel_ring_emit(ring, MI_NOOP);
1899
	intel_ring_emit(ring, MI_NOOP);
1900
	intel_ring_advance(ring);
1900
	intel_ring_advance(ring);
1901
 
1901
 
1902
	return 0;
1902
	return 0;
1903
}
1903
}
1904
 
1904
 
1905
static int
1905
static int
1906
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1906
i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1907
			 u64 offset, u32 len,
1907
			 u64 offset, u32 len,
1908
			 unsigned dispatch_flags)
1908
			 unsigned dispatch_flags)
1909
{
1909
{
1910
	struct intel_engine_cs *ring = req->ring;
1910
	struct intel_engine_cs *ring = req->ring;
1911
	int ret;
1911
	int ret;
1912
 
1912
 
1913
	ret = intel_ring_begin(req, 2);
1913
	ret = intel_ring_begin(req, 2);
1914
	if (ret)
1914
	if (ret)
1915
		return ret;
1915
		return ret;
1916
 
1916
 
1917
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1917
	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1918
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1918
	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1919
					0 : MI_BATCH_NON_SECURE));
1919
					0 : MI_BATCH_NON_SECURE));
1920
	intel_ring_advance(ring);
1920
	intel_ring_advance(ring);
1921
 
1921
 
1922
	return 0;
1922
	return 0;
1923
}
1923
}
-
 
1924
 
-
 
1925
static void cleanup_phys_status_page(struct intel_engine_cs *ring)
-
 
1926
{
-
 
1927
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
-
 
1928
 
-
 
1929
	if (!dev_priv->status_page_dmah)
-
 
1930
		return;
-
 
1931
 
-
 
1932
	drm_pci_free(ring->dev, dev_priv->status_page_dmah);
-
 
1933
	ring->status_page.page_addr = NULL;
-
 
1934
}
1924
 
1935
 
1925
static void cleanup_status_page(struct intel_engine_cs *ring)
1936
static void cleanup_status_page(struct intel_engine_cs *ring)
1926
{
1937
{
1927
	struct drm_i915_gem_object *obj;
1938
	struct drm_i915_gem_object *obj;
1928
 
1939
 
1929
	obj = ring->status_page.obj;
1940
	obj = ring->status_page.obj;
1930
	if (obj == NULL)
1941
	if (obj == NULL)
1931
		return;
1942
		return;
1932
 
1943
 
1933
	kunmap(sg_page(obj->pages->sgl));
1944
	kunmap(sg_page(obj->pages->sgl));
1934
	i915_gem_object_ggtt_unpin(obj);
1945
	i915_gem_object_ggtt_unpin(obj);
1935
	drm_gem_object_unreference(&obj->base);
1946
	drm_gem_object_unreference(&obj->base);
1936
	ring->status_page.obj = NULL;
1947
	ring->status_page.obj = NULL;
1937
}
1948
}
1938
 
1949
 
1939
static int init_status_page(struct intel_engine_cs *ring)
1950
static int init_status_page(struct intel_engine_cs *ring)
1940
{
1951
{
1941
	struct drm_i915_gem_object *obj;
1952
	struct drm_i915_gem_object *obj = ring->status_page.obj;
1942
 
1953
 
1943
	if ((obj = ring->status_page.obj) == NULL) {
1954
	if (obj == NULL) {
1944
		unsigned flags;
1955
		unsigned flags;
1945
		int ret;
1956
		int ret;
1946
 
1957
 
1947
		obj = i915_gem_alloc_object(ring->dev, 4096);
1958
		obj = i915_gem_alloc_object(ring->dev, 4096);
1948
		if (obj == NULL) {
1959
		if (obj == NULL) {
1949
			DRM_ERROR("Failed to allocate status page\n");
1960
			DRM_ERROR("Failed to allocate status page\n");
1950
			return -ENOMEM;
1961
			return -ENOMEM;
1951
		}
1962
		}
1952
 
1963
 
1953
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1964
		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1954
		if (ret)
1965
		if (ret)
1955
			goto err_unref;
1966
			goto err_unref;
1956
 
1967
 
1957
		flags = 0;
1968
		flags = 0;
1958
		if (!HAS_LLC(ring->dev))
1969
		if (!HAS_LLC(ring->dev))
1959
			/* On g33, we cannot place HWS above 256MiB, so
1970
			/* On g33, we cannot place HWS above 256MiB, so
1960
			 * restrict its pinning to the low mappable arena.
1971
			 * restrict its pinning to the low mappable arena.
1961
			 * Though this restriction is not documented for
1972
			 * Though this restriction is not documented for
1962
			 * gen4, gen5, or byt, they also behave similarly
1973
			 * gen4, gen5, or byt, they also behave similarly
1963
			 * and hang if the HWS is placed at the top of the
1974
			 * and hang if the HWS is placed at the top of the
1964
			 * GTT. To generalise, it appears that all !llc
1975
			 * GTT. To generalise, it appears that all !llc
1965
			 * platforms have issues with us placing the HWS
1976
			 * platforms have issues with us placing the HWS
1966
			 * above the mappable region (even though we never
1977
			 * above the mappable region (even though we never
1967
			 * actualy map it).
1978
			 * actualy map it).
1968
			 */
1979
			 */
1969
			flags |= PIN_MAPPABLE;
1980
			flags |= PIN_MAPPABLE;
1970
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1981
		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1971
		if (ret) {
1982
		if (ret) {
1972
err_unref:
1983
err_unref:
1973
			drm_gem_object_unreference(&obj->base);
1984
			drm_gem_object_unreference(&obj->base);
1974
			return ret;
1985
			return ret;
1975
		}
1986
		}
1976
 
1987
 
1977
		ring->status_page.obj = obj;
1988
		ring->status_page.obj = obj;
1978
	}
1989
	}
1979
 
1990
 
1980
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1991
	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1981
	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1992
	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1982
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1993
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1983
 
1994
 
1984
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1995
	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1985
			ring->name, ring->status_page.gfx_addr);
1996
			ring->name, ring->status_page.gfx_addr);
1986
 
1997
 
1987
	return 0;
1998
	return 0;
1988
}
1999
}
1989
 
2000
 
1990
static int init_phys_status_page(struct intel_engine_cs *ring)
2001
static int init_phys_status_page(struct intel_engine_cs *ring)
1991
{
2002
{
1992
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2003
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1993
 
2004
 
1994
	if (!dev_priv->status_page_dmah) {
2005
	if (!dev_priv->status_page_dmah) {
1995
		dev_priv->status_page_dmah =
2006
		dev_priv->status_page_dmah =
1996
			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
2007
			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1997
		if (!dev_priv->status_page_dmah)
2008
		if (!dev_priv->status_page_dmah)
1998
			return -ENOMEM;
2009
			return -ENOMEM;
1999
	}
2010
	}
2000
 
2011
 
2001
	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2012
	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2002
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2013
	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2003
 
2014
 
2004
	return 0;
2015
	return 0;
2005
}
2016
}
2006
 
2017
 
2007
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2018
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2008
{
2019
{
2009
	iounmap(ringbuf->virtual_start);
2020
	iounmap(ringbuf->virtual_start);
2010
	ringbuf->virtual_start = NULL;
2021
	ringbuf->virtual_start = NULL;
2011
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2022
	i915_gem_object_ggtt_unpin(ringbuf->obj);
2012
}
2023
}
2013
 
2024
 
2014
int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2025
int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2015
				     struct intel_ringbuffer *ringbuf)
2026
				     struct intel_ringbuffer *ringbuf)
2016
{
2027
{
2017
	struct drm_i915_private *dev_priv = to_i915(dev);
2028
	struct drm_i915_private *dev_priv = to_i915(dev);
2018
	struct drm_i915_gem_object *obj = ringbuf->obj;
2029
	struct drm_i915_gem_object *obj = ringbuf->obj;
2019
	int ret;
2030
	int ret;
2020
 
2031
 
2021
	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2032
	ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
2022
	if (ret)
2033
	if (ret)
2023
		return ret;
2034
		return ret;
2024
 
2035
 
2025
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
2036
	ret = i915_gem_object_set_to_gtt_domain(obj, true);
2026
	if (ret) {
2037
	if (ret) {
2027
		i915_gem_object_ggtt_unpin(obj);
2038
		i915_gem_object_ggtt_unpin(obj);
2028
		return ret;
2039
		return ret;
2029
	}
2040
	}
2030
 
2041
 
2031
	ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2042
	ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2032
			i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2043
			i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2033
	if (ringbuf->virtual_start == NULL) {
2044
	if (ringbuf->virtual_start == NULL) {
2034
		i915_gem_object_ggtt_unpin(obj);
2045
		i915_gem_object_ggtt_unpin(obj);
2035
		return -EINVAL;
2046
		return -EINVAL;
2036
	}
2047
	}
2037
 
2048
 
2038
	return 0;
2049
	return 0;
2039
}
2050
}
2040
 
2051
 
2041
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2052
static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2042
{
2053
{
2043
	drm_gem_object_unreference(&ringbuf->obj->base);
2054
	drm_gem_object_unreference(&ringbuf->obj->base);
2044
	ringbuf->obj = NULL;
2055
	ringbuf->obj = NULL;
2045
}
2056
}
2046
 
2057
 
2047
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2058
static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2048
				      struct intel_ringbuffer *ringbuf)
2059
				      struct intel_ringbuffer *ringbuf)
2049
{
2060
{
2050
	struct drm_i915_gem_object *obj;
2061
	struct drm_i915_gem_object *obj;
2051
 
2062
 
2052
	obj = NULL;
2063
	obj = NULL;
2053
	if (!HAS_LLC(dev))
2064
	if (!HAS_LLC(dev))
2054
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2065
		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2055
	if (obj == NULL)
2066
	if (obj == NULL)
2056
		obj = i915_gem_alloc_object(dev, ringbuf->size);
2067
		obj = i915_gem_alloc_object(dev, ringbuf->size);
2057
	if (obj == NULL)
2068
	if (obj == NULL)
2058
		return -ENOMEM;
2069
		return -ENOMEM;
2059
 
2070
 
2060
	/* mark ring buffers as read-only from GPU side by default */
2071
	/* mark ring buffers as read-only from GPU side by default */
2061
	obj->gt_ro = 1;
2072
	obj->gt_ro = 1;
2062
 
2073
 
2063
	ringbuf->obj = obj;
2074
	ringbuf->obj = obj;
2064
 
2075
 
2065
	return 0;
2076
	return 0;
2066
}
2077
}
2067
 
2078
 
2068
struct intel_ringbuffer *
2079
struct intel_ringbuffer *
2069
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2080
intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2070
{
2081
{
2071
	struct intel_ringbuffer *ring;
2082
	struct intel_ringbuffer *ring;
2072
	int ret;
2083
	int ret;
2073
 
2084
 
2074
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2085
	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2075
	if (ring == NULL)
2086
	if (ring == NULL)
2076
		return ERR_PTR(-ENOMEM);
2087
		return ERR_PTR(-ENOMEM);
2077
 
2088
 
2078
	ring->ring = engine;
2089
	ring->ring = engine;
2079
 
2090
 
2080
	ring->size = size;
2091
	ring->size = size;
2081
	/* Workaround an erratum on the i830 which causes a hang if
2092
	/* Workaround an erratum on the i830 which causes a hang if
2082
	 * the TAIL pointer points to within the last 2 cachelines
2093
	 * the TAIL pointer points to within the last 2 cachelines
2083
	 * of the buffer.
2094
	 * of the buffer.
2084
	 */
2095
	 */
2085
	ring->effective_size = size;
2096
	ring->effective_size = size;
2086
	if (IS_I830(engine->dev) || IS_845G(engine->dev))
2097
	if (IS_I830(engine->dev) || IS_845G(engine->dev))
2087
		ring->effective_size -= 2 * CACHELINE_BYTES;
2098
		ring->effective_size -= 2 * CACHELINE_BYTES;
2088
 
2099
 
2089
	ring->last_retired_head = -1;
2100
	ring->last_retired_head = -1;
2090
	intel_ring_update_space(ring);
2101
	intel_ring_update_space(ring);
2091
 
2102
 
2092
	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2103
	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2093
	if (ret) {
2104
	if (ret) {
2094
		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2105
		DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
2095
			  engine->name, ret);
2106
			  engine->name, ret);
2096
		kfree(ring);
2107
		kfree(ring);
2097
		return ERR_PTR(ret);
2108
		return ERR_PTR(ret);
2098
	}
2109
	}
2099
 
2110
 
2100
	return ring;
2111
	return ring;
2101
}
2112
}
2102
 
2113
 
2103
void
2114
void
2104
intel_ringbuffer_free(struct intel_ringbuffer *ring)
2115
intel_ringbuffer_free(struct intel_ringbuffer *ring)
2105
{
2116
{
2106
	intel_destroy_ringbuffer_obj(ring);
2117
	intel_destroy_ringbuffer_obj(ring);
2107
	kfree(ring);
2118
	kfree(ring);
2108
}
2119
}
2109
 
2120
 
2110
static int intel_init_ring_buffer(struct drm_device *dev,
2121
static int intel_init_ring_buffer(struct drm_device *dev,
2111
				  struct intel_engine_cs *ring)
2122
				  struct intel_engine_cs *ring)
2112
{
2123
{
2113
	struct intel_ringbuffer *ringbuf;
2124
	struct intel_ringbuffer *ringbuf;
2114
	int ret;
2125
	int ret;
2115
 
2126
 
2116
	WARN_ON(ring->buffer);
2127
	WARN_ON(ring->buffer);
2117
 
2128
 
2118
	ring->dev = dev;
2129
	ring->dev = dev;
2119
	INIT_LIST_HEAD(&ring->active_list);
2130
	INIT_LIST_HEAD(&ring->active_list);
2120
	INIT_LIST_HEAD(&ring->request_list);
2131
	INIT_LIST_HEAD(&ring->request_list);
2121
	INIT_LIST_HEAD(&ring->execlist_queue);
2132
	INIT_LIST_HEAD(&ring->execlist_queue);
2122
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2133
	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2123
	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2134
	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2124
 
2135
 
2125
	init_waitqueue_head(&ring->irq_queue);
2136
	init_waitqueue_head(&ring->irq_queue);
2126
 
2137
 
2127
	ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2138
	ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2128
	if (IS_ERR(ringbuf))
2139
	if (IS_ERR(ringbuf))
2129
		return PTR_ERR(ringbuf);
2140
		return PTR_ERR(ringbuf);
2130
	ring->buffer = ringbuf;
2141
	ring->buffer = ringbuf;
2131
 
2142
 
2132
	if (I915_NEED_GFX_HWS(dev)) {
2143
	if (I915_NEED_GFX_HWS(dev)) {
2133
		ret = init_status_page(ring);
2144
		ret = init_status_page(ring);
2134
		if (ret)
2145
		if (ret)
2135
			goto error;
2146
			goto error;
2136
	} else {
2147
	} else {
2137
		BUG_ON(ring->id != RCS);
2148
		WARN_ON(ring->id != RCS);
2138
		ret = init_phys_status_page(ring);
2149
		ret = init_phys_status_page(ring);
2139
		if (ret)
2150
		if (ret)
2140
			goto error;
2151
			goto error;
2141
	}
2152
	}
2142
 
2153
 
2143
	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2154
	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2144
	if (ret) {
2155
	if (ret) {
2145
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2156
		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2146
				ring->name, ret);
2157
				ring->name, ret);
2147
		intel_destroy_ringbuffer_obj(ringbuf);
2158
		intel_destroy_ringbuffer_obj(ringbuf);
2148
		goto error;
2159
		goto error;
2149
	}
2160
	}
2150
 
2161
 
2151
	ret = i915_cmd_parser_init_ring(ring);
2162
	ret = i915_cmd_parser_init_ring(ring);
2152
	if (ret)
2163
	if (ret)
2153
		goto error;
2164
		goto error;
2154
 
2165
 
2155
	return 0;
2166
	return 0;
2156
 
2167
 
2157
error:
2168
error:
2158
	intel_ringbuffer_free(ringbuf);
2169
	intel_ringbuffer_free(ringbuf);
2159
	ring->buffer = NULL;
2170
	ring->buffer = NULL;
2160
	return ret;
2171
	return ret;
2161
}
2172
}
2162
 
2173
 
2163
void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2174
void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2164
{
2175
{
2165
	struct drm_i915_private *dev_priv;
2176
	struct drm_i915_private *dev_priv;
2166
 
2177
 
2167
	if (!intel_ring_initialized(ring))
2178
	if (!intel_ring_initialized(ring))
2168
		return;
2179
		return;
2169
 
2180
 
2170
	dev_priv = to_i915(ring->dev);
2181
	dev_priv = to_i915(ring->dev);
2171
 
2182
 
2172
	intel_stop_ring_buffer(ring);
2183
	intel_stop_ring_buffer(ring);
2173
	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2184
	WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2174
 
2185
 
2175
	intel_unpin_ringbuffer_obj(ring->buffer);
2186
	intel_unpin_ringbuffer_obj(ring->buffer);
2176
	intel_ringbuffer_free(ring->buffer);
2187
	intel_ringbuffer_free(ring->buffer);
2177
	ring->buffer = NULL;
2188
	ring->buffer = NULL;
2178
 
2189
 
2179
	if (ring->cleanup)
2190
	if (ring->cleanup)
2180
		ring->cleanup(ring);
2191
		ring->cleanup(ring);
-
 
2192
 
2181
 
2193
	if (I915_NEED_GFX_HWS(ring->dev)) {
-
 
2194
	cleanup_status_page(ring);
-
 
2195
	} else {
-
 
2196
		WARN_ON(ring->id != RCS);
-
 
2197
		cleanup_phys_status_page(ring);
2182
	cleanup_status_page(ring);
2198
	}
2183
 
2199
 
2184
	i915_cmd_parser_fini_ring(ring);
2200
	i915_cmd_parser_fini_ring(ring);
2185
	i915_gem_batch_pool_fini(&ring->batch_pool);
2201
	i915_gem_batch_pool_fini(&ring->batch_pool);
2186
}
2202
}
2187
 
2203
 
2188
static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2204
static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2189
{
2205
{
2190
	struct intel_ringbuffer *ringbuf = ring->buffer;
2206
	struct intel_ringbuffer *ringbuf = ring->buffer;
2191
	struct drm_i915_gem_request *request;
2207
	struct drm_i915_gem_request *request;
2192
	unsigned space;
2208
	unsigned space;
2193
	int ret;
2209
	int ret;
2194
 
2210
 
2195
	if (intel_ring_space(ringbuf) >= n)
2211
	if (intel_ring_space(ringbuf) >= n)
2196
		return 0;
2212
		return 0;
2197
 
2213
 
2198
	/* The whole point of reserving space is to not wait! */
2214
	/* The whole point of reserving space is to not wait! */
2199
	WARN_ON(ringbuf->reserved_in_use);
2215
	WARN_ON(ringbuf->reserved_in_use);
2200
 
2216
 
2201
	list_for_each_entry(request, &ring->request_list, list) {
2217
	list_for_each_entry(request, &ring->request_list, list) {
2202
		space = __intel_ring_space(request->postfix, ringbuf->tail,
2218
		space = __intel_ring_space(request->postfix, ringbuf->tail,
2203
					   ringbuf->size);
2219
					   ringbuf->size);
2204
		if (space >= n)
2220
		if (space >= n)
2205
			break;
2221
			break;
2206
	}
2222
	}
2207
 
2223
 
2208
	if (WARN_ON(&request->list == &ring->request_list))
2224
	if (WARN_ON(&request->list == &ring->request_list))
2209
		return -ENOSPC;
2225
		return -ENOSPC;
2210
 
2226
 
2211
	ret = i915_wait_request(request);
2227
	ret = i915_wait_request(request);
2212
	if (ret)
2228
	if (ret)
2213
		return ret;
2229
		return ret;
2214
 
2230
 
2215
	ringbuf->space = space;
2231
	ringbuf->space = space;
2216
	return 0;
2232
	return 0;
2217
}
2233
}
2218
 
2234
 
2219
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2235
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2220
{
2236
{
2221
	uint32_t __iomem *virt;
2237
	uint32_t __iomem *virt;
2222
	int rem = ringbuf->size - ringbuf->tail;
2238
	int rem = ringbuf->size - ringbuf->tail;
2223
 
2239
 
2224
	virt = ringbuf->virtual_start + ringbuf->tail;
2240
	virt = ringbuf->virtual_start + ringbuf->tail;
2225
	rem /= 4;
2241
	rem /= 4;
2226
	while (rem--)
2242
	while (rem--)
2227
		iowrite32(MI_NOOP, virt++);
2243
		iowrite32(MI_NOOP, virt++);
2228
 
2244
 
2229
	ringbuf->tail = 0;
2245
	ringbuf->tail = 0;
2230
	intel_ring_update_space(ringbuf);
2246
	intel_ring_update_space(ringbuf);
2231
}
2247
}
2232
 
2248
 
2233
int intel_ring_idle(struct intel_engine_cs *ring)
2249
int intel_ring_idle(struct intel_engine_cs *ring)
2234
{
2250
{
2235
	struct drm_i915_gem_request *req;
2251
	struct drm_i915_gem_request *req;
2236
 
2252
 
2237
	/* Wait upon the last request to be completed */
2253
	/* Wait upon the last request to be completed */
2238
	if (list_empty(&ring->request_list))
2254
	if (list_empty(&ring->request_list))
2239
		return 0;
2255
		return 0;
2240
 
2256
 
2241
	req = list_entry(ring->request_list.prev,
2257
	req = list_entry(ring->request_list.prev,
2242
			struct drm_i915_gem_request,
2258
			struct drm_i915_gem_request,
2243
			list);
2259
			list);
2244
 
2260
 
2245
	/* Make sure we do not trigger any retires */
2261
	/* Make sure we do not trigger any retires */
2246
	return __i915_wait_request(req,
2262
	return __i915_wait_request(req,
2247
				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2263
				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2248
				   to_i915(ring->dev)->mm.interruptible,
2264
				   to_i915(ring->dev)->mm.interruptible,
2249
				   NULL, NULL);
2265
				   NULL, NULL);
2250
}
2266
}
2251
 
2267
 
2252
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2268
int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2253
{
2269
{
2254
	request->ringbuf = request->ring->buffer;
2270
	request->ringbuf = request->ring->buffer;
2255
	return 0;
2271
	return 0;
2256
}
2272
}
2257
 
2273
 
2258
int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2274
int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2259
{
2275
{
2260
	/*
2276
	/*
2261
	 * The first call merely notes the reserve request and is common for
2277
	 * The first call merely notes the reserve request and is common for
2262
	 * all back ends. The subsequent localised _begin() call actually
2278
	 * all back ends. The subsequent localised _begin() call actually
2263
	 * ensures that the reservation is available. Without the begin, if
2279
	 * ensures that the reservation is available. Without the begin, if
2264
	 * the request creator immediately submitted the request without
2280
	 * the request creator immediately submitted the request without
2265
	 * adding any commands to it then there might not actually be
2281
	 * adding any commands to it then there might not actually be
2266
	 * sufficient room for the submission commands.
2282
	 * sufficient room for the submission commands.
2267
	 */
2283
	 */
2268
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2284
	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2269
 
2285
 
2270
	return intel_ring_begin(request, 0);
2286
	return intel_ring_begin(request, 0);
2271
}
2287
}
2272
 
2288
 
2273
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2289
void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2274
{
2290
{
2275
	WARN_ON(ringbuf->reserved_size);
2291
	WARN_ON(ringbuf->reserved_size);
2276
	WARN_ON(ringbuf->reserved_in_use);
2292
	WARN_ON(ringbuf->reserved_in_use);
2277
 
2293
 
2278
	ringbuf->reserved_size = size;
2294
	ringbuf->reserved_size = size;
2279
}
2295
}
2280
 
2296
 
2281
void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2297
void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2282
{
2298
{
2283
	WARN_ON(ringbuf->reserved_in_use);
2299
	WARN_ON(ringbuf->reserved_in_use);
2284
 
2300
 
2285
	ringbuf->reserved_size   = 0;
2301
	ringbuf->reserved_size   = 0;
2286
	ringbuf->reserved_in_use = false;
2302
	ringbuf->reserved_in_use = false;
2287
}
2303
}
2288
 
2304
 
2289
void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2305
void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2290
{
2306
{
2291
	WARN_ON(ringbuf->reserved_in_use);
2307
	WARN_ON(ringbuf->reserved_in_use);
2292
 
2308
 
2293
	ringbuf->reserved_in_use = true;
2309
	ringbuf->reserved_in_use = true;
2294
	ringbuf->reserved_tail   = ringbuf->tail;
2310
	ringbuf->reserved_tail   = ringbuf->tail;
2295
}
2311
}
2296
 
2312
 
2297
void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2313
void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2298
{
2314
{
2299
	WARN_ON(!ringbuf->reserved_in_use);
2315
	WARN_ON(!ringbuf->reserved_in_use);
2300
	if (ringbuf->tail > ringbuf->reserved_tail) {
2316
	if (ringbuf->tail > ringbuf->reserved_tail) {
2301
		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2317
		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2302
		     "request reserved size too small: %d vs %d!\n",
2318
		     "request reserved size too small: %d vs %d!\n",
2303
		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2319
		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2304
	} else {
2320
	} else {
2305
		/*
2321
		/*
2306
		 * The ring was wrapped while the reserved space was in use.
2322
		 * The ring was wrapped while the reserved space was in use.
2307
		 * That means that some unknown amount of the ring tail was
2323
		 * That means that some unknown amount of the ring tail was
2308
		 * no-op filled and skipped. Thus simply adding the ring size
2324
		 * no-op filled and skipped. Thus simply adding the ring size
2309
		 * to the tail and doing the above space check will not work.
2325
		 * to the tail and doing the above space check will not work.
2310
		 * Rather than attempt to track how much tail was skipped,
2326
		 * Rather than attempt to track how much tail was skipped,
2311
		 * it is much simpler to say that also skipping the sanity
2327
		 * it is much simpler to say that also skipping the sanity
2312
		 * check every once in a while is not a big issue.
2328
		 * check every once in a while is not a big issue.
2313
		 */
2329
		 */
2314
	}
2330
	}
2315
 
2331
 
2316
	ringbuf->reserved_size   = 0;
2332
	ringbuf->reserved_size   = 0;
2317
	ringbuf->reserved_in_use = false;
2333
	ringbuf->reserved_in_use = false;
2318
}
2334
}
2319
 
2335
 
2320
static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2336
static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2321
{
2337
{
2322
	struct intel_ringbuffer *ringbuf = ring->buffer;
2338
	struct intel_ringbuffer *ringbuf = ring->buffer;
2323
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2339
	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2324
	int remain_actual = ringbuf->size - ringbuf->tail;
2340
	int remain_actual = ringbuf->size - ringbuf->tail;
2325
	int ret, total_bytes, wait_bytes = 0;
2341
	int ret, total_bytes, wait_bytes = 0;
2326
	bool need_wrap = false;
2342
	bool need_wrap = false;
2327
 
2343
 
2328
	if (ringbuf->reserved_in_use)
2344
	if (ringbuf->reserved_in_use)
2329
		total_bytes = bytes;
2345
		total_bytes = bytes;
2330
	else
2346
	else
2331
		total_bytes = bytes + ringbuf->reserved_size;
2347
		total_bytes = bytes + ringbuf->reserved_size;
2332
 
2348
 
2333
	if (unlikely(bytes > remain_usable)) {
2349
	if (unlikely(bytes > remain_usable)) {
2334
		/*
2350
		/*
2335
		 * Not enough space for the basic request. So need to flush
2351
		 * Not enough space for the basic request. So need to flush
2336
		 * out the remainder and then wait for base + reserved.
2352
		 * out the remainder and then wait for base + reserved.
2337
		 */
2353
		 */
2338
		wait_bytes = remain_actual + total_bytes;
2354
		wait_bytes = remain_actual + total_bytes;
2339
		need_wrap = true;
2355
		need_wrap = true;
2340
	} else {
2356
	} else {
2341
		if (unlikely(total_bytes > remain_usable)) {
2357
		if (unlikely(total_bytes > remain_usable)) {
2342
			/*
2358
			/*
2343
			 * The base request will fit but the reserved space
2359
			 * The base request will fit but the reserved space
2344
			 * falls off the end. So only need to to wait for the
2360
			 * falls off the end. So don't need an immediate wrap
-
 
2361
			 * and only need to effectively wait for the reserved
2345
			 * reserved size after flushing out the remainder.
2362
			 * size space from the start of ringbuffer.
2346
			 */
2363
			 */
2347
			wait_bytes = remain_actual + ringbuf->reserved_size;
2364
			wait_bytes = remain_actual + ringbuf->reserved_size;
2348
			need_wrap = true;
-
 
2349
		} else if (total_bytes > ringbuf->space) {
2365
		} else if (total_bytes > ringbuf->space) {
2350
			/* No wrapping required, just waiting. */
2366
			/* No wrapping required, just waiting. */
2351
			wait_bytes = total_bytes;
2367
			wait_bytes = total_bytes;
2352
		}
2368
		}
2353
	}
2369
	}
2354
 
2370
 
2355
	if (wait_bytes) {
2371
	if (wait_bytes) {
2356
		ret = ring_wait_for_space(ring, wait_bytes);
2372
		ret = ring_wait_for_space(ring, wait_bytes);
2357
		if (unlikely(ret))
2373
		if (unlikely(ret))
2358
			return ret;
2374
			return ret;
2359
 
2375
 
2360
		if (need_wrap)
2376
		if (need_wrap)
2361
			__wrap_ring_buffer(ringbuf);
2377
			__wrap_ring_buffer(ringbuf);
2362
	}
2378
	}
2363
 
2379
 
2364
	return 0;
2380
	return 0;
2365
}
2381
}
2366
 
2382
 
2367
int intel_ring_begin(struct drm_i915_gem_request *req,
2383
int intel_ring_begin(struct drm_i915_gem_request *req,
2368
		     int num_dwords)
2384
		     int num_dwords)
2369
{
2385
{
2370
	struct intel_engine_cs *ring;
2386
	struct intel_engine_cs *ring;
2371
	struct drm_i915_private *dev_priv;
2387
	struct drm_i915_private *dev_priv;
2372
	int ret;
2388
	int ret;
2373
 
2389
 
2374
	WARN_ON(req == NULL);
2390
	WARN_ON(req == NULL);
2375
	ring = req->ring;
2391
	ring = req->ring;
2376
	dev_priv = ring->dev->dev_private;
2392
	dev_priv = ring->dev->dev_private;
2377
 
2393
 
2378
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2394
	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2379
				   dev_priv->mm.interruptible);
2395
				   dev_priv->mm.interruptible);
2380
	if (ret)
2396
	if (ret)
2381
		return ret;
2397
		return ret;
2382
 
2398
 
2383
	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2399
	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2384
	if (ret)
2400
	if (ret)
2385
		return ret;
2401
		return ret;
2386
 
2402
 
2387
	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2403
	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2388
	return 0;
2404
	return 0;
2389
}
2405
}
2390
 
2406
 
2391
/* Align the ring tail to a cacheline boundary */
2407
/* Align the ring tail to a cacheline boundary */
2392
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2408
int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2393
{
2409
{
2394
	struct intel_engine_cs *ring = req->ring;
2410
	struct intel_engine_cs *ring = req->ring;
2395
	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2411
	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2396
	int ret;
2412
	int ret;
2397
 
2413
 
2398
	if (num_dwords == 0)
2414
	if (num_dwords == 0)
2399
		return 0;
2415
		return 0;
2400
 
2416
 
2401
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2417
	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2402
	ret = intel_ring_begin(req, num_dwords);
2418
	ret = intel_ring_begin(req, num_dwords);
2403
	if (ret)
2419
	if (ret)
2404
		return ret;
2420
		return ret;
2405
 
2421
 
2406
	while (num_dwords--)
2422
	while (num_dwords--)
2407
		intel_ring_emit(ring, MI_NOOP);
2423
		intel_ring_emit(ring, MI_NOOP);
2408
 
2424
 
2409
	intel_ring_advance(ring);
2425
	intel_ring_advance(ring);
2410
 
2426
 
2411
	return 0;
2427
	return 0;
2412
}
2428
}
2413
 
2429
 
2414
void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2430
void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2415
{
2431
{
2416
	struct drm_device *dev = ring->dev;
2432
	struct drm_device *dev = ring->dev;
2417
	struct drm_i915_private *dev_priv = dev->dev_private;
2433
	struct drm_i915_private *dev_priv = dev->dev_private;
2418
 
2434
 
2419
	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2435
	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2420
		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2436
		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2421
		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2437
		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2422
		if (HAS_VEBOX(dev))
2438
		if (HAS_VEBOX(dev))
2423
			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2439
			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2424
	}
2440
	}
2425
 
2441
 
2426
	ring->set_seqno(ring, seqno);
2442
	ring->set_seqno(ring, seqno);
2427
	ring->hangcheck.seqno = seqno;
2443
	ring->hangcheck.seqno = seqno;
2428
}
2444
}
2429
 
2445
 
2430
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2446
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2431
				     u32 value)
2447
				     u32 value)
2432
{
2448
{
2433
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2449
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2434
 
2450
 
2435
       /* Every tail move must follow the sequence below */
2451
       /* Every tail move must follow the sequence below */
2436
 
2452
 
2437
	/* Disable notification that the ring is IDLE. The GT
2453
	/* Disable notification that the ring is IDLE. The GT
2438
	 * will then assume that it is busy and bring it out of rc6.
2454
	 * will then assume that it is busy and bring it out of rc6.
2439
	 */
2455
	 */
2440
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2456
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2441
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2457
		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2442
 
2458
 
2443
	/* Clear the context id. Here be magic! */
2459
	/* Clear the context id. Here be magic! */
2444
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2460
	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2445
 
2461
 
2446
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2462
	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2447
	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2463
	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2448
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2464
		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2449
		     50))
2465
		     50))
2450
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2466
		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2451
 
2467
 
2452
	/* Now that the ring is fully powered up, update the tail */
2468
	/* Now that the ring is fully powered up, update the tail */
2453
	I915_WRITE_TAIL(ring, value);
2469
	I915_WRITE_TAIL(ring, value);
2454
	POSTING_READ(RING_TAIL(ring->mmio_base));
2470
	POSTING_READ(RING_TAIL(ring->mmio_base));
2455
 
2471
 
2456
	/* Let the ring send IDLE messages to the GT again,
2472
	/* Let the ring send IDLE messages to the GT again,
2457
	 * and so let it sleep to conserve power when idle.
2473
	 * and so let it sleep to conserve power when idle.
2458
	 */
2474
	 */
2459
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2475
	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2460
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2476
		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2461
}
2477
}
2462
 
2478
 
2463
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2479
static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2464
			       u32 invalidate, u32 flush)
2480
			       u32 invalidate, u32 flush)
2465
{
2481
{
2466
	struct intel_engine_cs *ring = req->ring;
2482
	struct intel_engine_cs *ring = req->ring;
2467
	uint32_t cmd;
2483
	uint32_t cmd;
2468
	int ret;
2484
	int ret;
2469
 
2485
 
2470
	ret = intel_ring_begin(req, 4);
2486
	ret = intel_ring_begin(req, 4);
2471
	if (ret)
2487
	if (ret)
2472
		return ret;
2488
		return ret;
2473
 
2489
 
2474
	cmd = MI_FLUSH_DW;
2490
	cmd = MI_FLUSH_DW;
2475
	if (INTEL_INFO(ring->dev)->gen >= 8)
2491
	if (INTEL_INFO(ring->dev)->gen >= 8)
2476
		cmd += 1;
2492
		cmd += 1;
2477
 
2493
 
2478
	/* We always require a command barrier so that subsequent
2494
	/* We always require a command barrier so that subsequent
2479
	 * commands, such as breadcrumb interrupts, are strictly ordered
2495
	 * commands, such as breadcrumb interrupts, are strictly ordered
2480
	 * wrt the contents of the write cache being flushed to memory
2496
	 * wrt the contents of the write cache being flushed to memory
2481
	 * (and thus being coherent from the CPU).
2497
	 * (and thus being coherent from the CPU).
2482
	 */
2498
	 */
2483
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2499
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2484
 
2500
 
2485
	/*
2501
	/*
2486
	 * Bspec vol 1c.5 - video engine command streamer:
2502
	 * Bspec vol 1c.5 - video engine command streamer:
2487
	 * "If ENABLED, all TLBs will be invalidated once the flush
2503
	 * "If ENABLED, all TLBs will be invalidated once the flush
2488
	 * operation is complete. This bit is only valid when the
2504
	 * operation is complete. This bit is only valid when the
2489
	 * Post-Sync Operation field is a value of 1h or 3h."
2505
	 * Post-Sync Operation field is a value of 1h or 3h."
2490
	 */
2506
	 */
2491
	if (invalidate & I915_GEM_GPU_DOMAINS)
2507
	if (invalidate & I915_GEM_GPU_DOMAINS)
2492
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2508
		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2493
 
2509
 
2494
	intel_ring_emit(ring, cmd);
2510
	intel_ring_emit(ring, cmd);
2495
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2511
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2496
	if (INTEL_INFO(ring->dev)->gen >= 8) {
2512
	if (INTEL_INFO(ring->dev)->gen >= 8) {
2497
		intel_ring_emit(ring, 0); /* upper addr */
2513
		intel_ring_emit(ring, 0); /* upper addr */
2498
		intel_ring_emit(ring, 0); /* value */
2514
		intel_ring_emit(ring, 0); /* value */
2499
	} else  {
2515
	} else  {
2500
		intel_ring_emit(ring, 0);
2516
		intel_ring_emit(ring, 0);
2501
		intel_ring_emit(ring, MI_NOOP);
2517
		intel_ring_emit(ring, MI_NOOP);
2502
	}
2518
	}
2503
	intel_ring_advance(ring);
2519
	intel_ring_advance(ring);
2504
	return 0;
2520
	return 0;
2505
}
2521
}
2506
 
2522
 
2507
static int
2523
static int
2508
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2524
gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2509
			      u64 offset, u32 len,
2525
			      u64 offset, u32 len,
2510
			      unsigned dispatch_flags)
2526
			      unsigned dispatch_flags)
2511
{
2527
{
2512
	struct intel_engine_cs *ring = req->ring;
2528
	struct intel_engine_cs *ring = req->ring;
2513
	bool ppgtt = USES_PPGTT(ring->dev) &&
2529
	bool ppgtt = USES_PPGTT(ring->dev) &&
2514
			!(dispatch_flags & I915_DISPATCH_SECURE);
2530
			!(dispatch_flags & I915_DISPATCH_SECURE);
2515
	int ret;
2531
	int ret;
2516
 
2532
 
2517
	ret = intel_ring_begin(req, 4);
2533
	ret = intel_ring_begin(req, 4);
2518
	if (ret)
2534
	if (ret)
2519
		return ret;
2535
		return ret;
2520
 
2536
 
2521
	/* FIXME(BDW): Address space and security selectors. */
2537
	/* FIXME(BDW): Address space and security selectors. */
2522
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2538
	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2523
			(dispatch_flags & I915_DISPATCH_RS ?
2539
			(dispatch_flags & I915_DISPATCH_RS ?
2524
			 MI_BATCH_RESOURCE_STREAMER : 0));
2540
			 MI_BATCH_RESOURCE_STREAMER : 0));
2525
	intel_ring_emit(ring, lower_32_bits(offset));
2541
	intel_ring_emit(ring, lower_32_bits(offset));
2526
	intel_ring_emit(ring, upper_32_bits(offset));
2542
	intel_ring_emit(ring, upper_32_bits(offset));
2527
	intel_ring_emit(ring, MI_NOOP);
2543
	intel_ring_emit(ring, MI_NOOP);
2528
	intel_ring_advance(ring);
2544
	intel_ring_advance(ring);
2529
 
2545
 
2530
	return 0;
2546
	return 0;
2531
}
2547
}
2532
 
2548
 
2533
static int
2549
static int
2534
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2550
hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2535
			     u64 offset, u32 len,
2551
			     u64 offset, u32 len,
2536
			     unsigned dispatch_flags)
2552
			     unsigned dispatch_flags)
2537
{
2553
{
2538
	struct intel_engine_cs *ring = req->ring;
2554
	struct intel_engine_cs *ring = req->ring;
2539
	int ret;
2555
	int ret;
2540
 
2556
 
2541
	ret = intel_ring_begin(req, 2);
2557
	ret = intel_ring_begin(req, 2);
2542
	if (ret)
2558
	if (ret)
2543
		return ret;
2559
		return ret;
2544
 
2560
 
2545
	intel_ring_emit(ring,
2561
	intel_ring_emit(ring,
2546
			MI_BATCH_BUFFER_START |
2562
			MI_BATCH_BUFFER_START |
2547
			(dispatch_flags & I915_DISPATCH_SECURE ?
2563
			(dispatch_flags & I915_DISPATCH_SECURE ?
2548
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2564
			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2549
			(dispatch_flags & I915_DISPATCH_RS ?
2565
			(dispatch_flags & I915_DISPATCH_RS ?
2550
			 MI_BATCH_RESOURCE_STREAMER : 0));
2566
			 MI_BATCH_RESOURCE_STREAMER : 0));
2551
	/* bit0-7 is the length on GEN6+ */
2567
	/* bit0-7 is the length on GEN6+ */
2552
	intel_ring_emit(ring, offset);
2568
	intel_ring_emit(ring, offset);
2553
	intel_ring_advance(ring);
2569
	intel_ring_advance(ring);
2554
 
2570
 
2555
	return 0;
2571
	return 0;
2556
}
2572
}
2557
 
2573
 
2558
static int
2574
static int
2559
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2575
gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2560
			      u64 offset, u32 len,
2576
			      u64 offset, u32 len,
2561
			      unsigned dispatch_flags)
2577
			      unsigned dispatch_flags)
2562
{
2578
{
2563
	struct intel_engine_cs *ring = req->ring;
2579
	struct intel_engine_cs *ring = req->ring;
2564
	int ret;
2580
	int ret;
2565
 
2581
 
2566
	ret = intel_ring_begin(req, 2);
2582
	ret = intel_ring_begin(req, 2);
2567
	if (ret)
2583
	if (ret)
2568
		return ret;
2584
		return ret;
2569
 
2585
 
2570
	intel_ring_emit(ring,
2586
	intel_ring_emit(ring,
2571
			MI_BATCH_BUFFER_START |
2587
			MI_BATCH_BUFFER_START |
2572
			(dispatch_flags & I915_DISPATCH_SECURE ?
2588
			(dispatch_flags & I915_DISPATCH_SECURE ?
2573
			 0 : MI_BATCH_NON_SECURE_I965));
2589
			 0 : MI_BATCH_NON_SECURE_I965));
2574
	/* bit0-7 is the length on GEN6+ */
2590
	/* bit0-7 is the length on GEN6+ */
2575
	intel_ring_emit(ring, offset);
2591
	intel_ring_emit(ring, offset);
2576
	intel_ring_advance(ring);
2592
	intel_ring_advance(ring);
2577
 
2593
 
2578
	return 0;
2594
	return 0;
2579
}
2595
}
2580
 
2596
 
2581
/* Blitter support (SandyBridge+) */
2597
/* Blitter support (SandyBridge+) */
2582
 
2598
 
2583
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2599
static int gen6_ring_flush(struct drm_i915_gem_request *req,
2584
			   u32 invalidate, u32 flush)
2600
			   u32 invalidate, u32 flush)
2585
{
2601
{
2586
	struct intel_engine_cs *ring = req->ring;
2602
	struct intel_engine_cs *ring = req->ring;
2587
	struct drm_device *dev = ring->dev;
2603
	struct drm_device *dev = ring->dev;
2588
	uint32_t cmd;
2604
	uint32_t cmd;
2589
	int ret;
2605
	int ret;
2590
 
2606
 
2591
	ret = intel_ring_begin(req, 4);
2607
	ret = intel_ring_begin(req, 4);
2592
	if (ret)
2608
	if (ret)
2593
		return ret;
2609
		return ret;
2594
 
2610
 
2595
	cmd = MI_FLUSH_DW;
2611
	cmd = MI_FLUSH_DW;
2596
	if (INTEL_INFO(dev)->gen >= 8)
2612
	if (INTEL_INFO(dev)->gen >= 8)
2597
		cmd += 1;
2613
		cmd += 1;
2598
 
2614
 
2599
	/* We always require a command barrier so that subsequent
2615
	/* We always require a command barrier so that subsequent
2600
	 * commands, such as breadcrumb interrupts, are strictly ordered
2616
	 * commands, such as breadcrumb interrupts, are strictly ordered
2601
	 * wrt the contents of the write cache being flushed to memory
2617
	 * wrt the contents of the write cache being flushed to memory
2602
	 * (and thus being coherent from the CPU).
2618
	 * (and thus being coherent from the CPU).
2603
	 */
2619
	 */
2604
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2620
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2605
 
2621
 
2606
	/*
2622
	/*
2607
	 * Bspec vol 1c.3 - blitter engine command streamer:
2623
	 * Bspec vol 1c.3 - blitter engine command streamer:
2608
	 * "If ENABLED, all TLBs will be invalidated once the flush
2624
	 * "If ENABLED, all TLBs will be invalidated once the flush
2609
	 * operation is complete. This bit is only valid when the
2625
	 * operation is complete. This bit is only valid when the
2610
	 * Post-Sync Operation field is a value of 1h or 3h."
2626
	 * Post-Sync Operation field is a value of 1h or 3h."
2611
	 */
2627
	 */
2612
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2628
	if (invalidate & I915_GEM_DOMAIN_RENDER)
2613
		cmd |= MI_INVALIDATE_TLB;
2629
		cmd |= MI_INVALIDATE_TLB;
2614
	intel_ring_emit(ring, cmd);
2630
	intel_ring_emit(ring, cmd);
2615
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2631
	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2616
	if (INTEL_INFO(dev)->gen >= 8) {
2632
	if (INTEL_INFO(dev)->gen >= 8) {
2617
		intel_ring_emit(ring, 0); /* upper addr */
2633
		intel_ring_emit(ring, 0); /* upper addr */
2618
		intel_ring_emit(ring, 0); /* value */
2634
		intel_ring_emit(ring, 0); /* value */
2619
	} else  {
2635
	} else  {
2620
		intel_ring_emit(ring, 0);
2636
		intel_ring_emit(ring, 0);
2621
		intel_ring_emit(ring, MI_NOOP);
2637
		intel_ring_emit(ring, MI_NOOP);
2622
	}
2638
	}
2623
	intel_ring_advance(ring);
2639
	intel_ring_advance(ring);
2624
 
2640
 
2625
	return 0;
2641
	return 0;
2626
}
2642
}
2627
 
2643
 
2628
int intel_init_render_ring_buffer(struct drm_device *dev)
2644
int intel_init_render_ring_buffer(struct drm_device *dev)
2629
{
2645
{
2630
	struct drm_i915_private *dev_priv = dev->dev_private;
2646
	struct drm_i915_private *dev_priv = dev->dev_private;
2631
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2647
	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2632
	struct drm_i915_gem_object *obj;
2648
	struct drm_i915_gem_object *obj;
2633
	int ret;
2649
	int ret;
2634
 
2650
 
2635
	ring->name = "render ring";
2651
	ring->name = "render ring";
2636
	ring->id = RCS;
2652
	ring->id = RCS;
2637
	ring->mmio_base = RENDER_RING_BASE;
2653
	ring->mmio_base = RENDER_RING_BASE;
2638
 
2654
 
2639
	if (INTEL_INFO(dev)->gen >= 8) {
2655
	if (INTEL_INFO(dev)->gen >= 8) {
2640
		if (i915_semaphore_is_enabled(dev)) {
2656
		if (i915_semaphore_is_enabled(dev)) {
2641
			obj = i915_gem_alloc_object(dev, 4096);
2657
			obj = i915_gem_alloc_object(dev, 4096);
2642
			if (obj == NULL) {
2658
			if (obj == NULL) {
2643
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2659
				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2644
				i915.semaphores = 0;
2660
				i915.semaphores = 0;
2645
			} else {
2661
			} else {
2646
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2662
				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2647
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2663
				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2648
				if (ret != 0) {
2664
				if (ret != 0) {
2649
					drm_gem_object_unreference(&obj->base);
2665
					drm_gem_object_unreference(&obj->base);
2650
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2666
					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2651
					i915.semaphores = 0;
2667
					i915.semaphores = 0;
2652
				} else
2668
				} else
2653
					dev_priv->semaphore_obj = obj;
2669
					dev_priv->semaphore_obj = obj;
2654
			}
2670
			}
2655
		}
2671
		}
2656
 
2672
 
2657
		ring->init_context = intel_rcs_ctx_init;
2673
		ring->init_context = intel_rcs_ctx_init;
2658
		ring->add_request = gen6_add_request;
2674
		ring->add_request = gen6_add_request;
2659
		ring->flush = gen8_render_ring_flush;
2675
		ring->flush = gen8_render_ring_flush;
2660
		ring->irq_get = gen8_ring_get_irq;
2676
		ring->irq_get = gen8_ring_get_irq;
2661
		ring->irq_put = gen8_ring_put_irq;
2677
		ring->irq_put = gen8_ring_put_irq;
2662
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2678
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2663
		ring->get_seqno = gen6_ring_get_seqno;
2679
		ring->get_seqno = gen6_ring_get_seqno;
2664
		ring->set_seqno = ring_set_seqno;
2680
		ring->set_seqno = ring_set_seqno;
2665
		if (i915_semaphore_is_enabled(dev)) {
2681
		if (i915_semaphore_is_enabled(dev)) {
2666
			WARN_ON(!dev_priv->semaphore_obj);
2682
			WARN_ON(!dev_priv->semaphore_obj);
2667
			ring->semaphore.sync_to = gen8_ring_sync;
2683
			ring->semaphore.sync_to = gen8_ring_sync;
2668
			ring->semaphore.signal = gen8_rcs_signal;
2684
			ring->semaphore.signal = gen8_rcs_signal;
2669
			GEN8_RING_SEMAPHORE_INIT;
2685
			GEN8_RING_SEMAPHORE_INIT;
2670
		}
2686
		}
2671
	} else if (INTEL_INFO(dev)->gen >= 6) {
2687
	} else if (INTEL_INFO(dev)->gen >= 6) {
2672
		ring->init_context = intel_rcs_ctx_init;
2688
		ring->init_context = intel_rcs_ctx_init;
2673
		ring->add_request = gen6_add_request;
2689
		ring->add_request = gen6_add_request;
2674
		ring->flush = gen7_render_ring_flush;
2690
		ring->flush = gen7_render_ring_flush;
2675
		if (INTEL_INFO(dev)->gen == 6)
2691
		if (INTEL_INFO(dev)->gen == 6)
2676
			ring->flush = gen6_render_ring_flush;
2692
			ring->flush = gen6_render_ring_flush;
2677
		ring->irq_get = gen6_ring_get_irq;
2693
		ring->irq_get = gen6_ring_get_irq;
2678
		ring->irq_put = gen6_ring_put_irq;
2694
		ring->irq_put = gen6_ring_put_irq;
2679
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2695
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2680
		ring->get_seqno = gen6_ring_get_seqno;
2696
		ring->get_seqno = gen6_ring_get_seqno;
2681
		ring->set_seqno = ring_set_seqno;
2697
		ring->set_seqno = ring_set_seqno;
2682
		if (i915_semaphore_is_enabled(dev)) {
2698
		if (i915_semaphore_is_enabled(dev)) {
2683
			ring->semaphore.sync_to = gen6_ring_sync;
2699
			ring->semaphore.sync_to = gen6_ring_sync;
2684
			ring->semaphore.signal = gen6_signal;
2700
			ring->semaphore.signal = gen6_signal;
2685
			/*
2701
			/*
2686
			 * The current semaphore is only applied on pre-gen8
2702
			 * The current semaphore is only applied on pre-gen8
2687
			 * platform.  And there is no VCS2 ring on the pre-gen8
2703
			 * platform.  And there is no VCS2 ring on the pre-gen8
2688
			 * platform. So the semaphore between RCS and VCS2 is
2704
			 * platform. So the semaphore between RCS and VCS2 is
2689
			 * initialized as INVALID.  Gen8 will initialize the
2705
			 * initialized as INVALID.  Gen8 will initialize the
2690
			 * sema between VCS2 and RCS later.
2706
			 * sema between VCS2 and RCS later.
2691
			 */
2707
			 */
2692
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2708
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2693
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2709
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2694
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2710
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2695
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2711
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2696
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2712
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2697
			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2713
			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2698
			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2714
			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2699
			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2715
			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2700
			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2716
			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2701
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2717
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2702
		}
2718
		}
2703
	} else if (IS_GEN5(dev)) {
2719
	} else if (IS_GEN5(dev)) {
2704
		ring->add_request = pc_render_add_request;
2720
		ring->add_request = pc_render_add_request;
2705
		ring->flush = gen4_render_ring_flush;
2721
		ring->flush = gen4_render_ring_flush;
2706
		ring->get_seqno = pc_render_get_seqno;
2722
		ring->get_seqno = pc_render_get_seqno;
2707
		ring->set_seqno = pc_render_set_seqno;
2723
		ring->set_seqno = pc_render_set_seqno;
2708
		ring->irq_get = gen5_ring_get_irq;
2724
		ring->irq_get = gen5_ring_get_irq;
2709
		ring->irq_put = gen5_ring_put_irq;
2725
		ring->irq_put = gen5_ring_put_irq;
2710
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2726
		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2711
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2727
					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2712
	} else {
2728
	} else {
2713
		ring->add_request = i9xx_add_request;
2729
		ring->add_request = i9xx_add_request;
2714
		if (INTEL_INFO(dev)->gen < 4)
2730
		if (INTEL_INFO(dev)->gen < 4)
2715
			ring->flush = gen2_render_ring_flush;
2731
			ring->flush = gen2_render_ring_flush;
2716
		else
2732
		else
2717
			ring->flush = gen4_render_ring_flush;
2733
			ring->flush = gen4_render_ring_flush;
2718
		ring->get_seqno = ring_get_seqno;
2734
		ring->get_seqno = ring_get_seqno;
2719
		ring->set_seqno = ring_set_seqno;
2735
		ring->set_seqno = ring_set_seqno;
2720
		if (IS_GEN2(dev)) {
2736
		if (IS_GEN2(dev)) {
2721
			ring->irq_get = i8xx_ring_get_irq;
2737
			ring->irq_get = i8xx_ring_get_irq;
2722
			ring->irq_put = i8xx_ring_put_irq;
2738
			ring->irq_put = i8xx_ring_put_irq;
2723
		} else {
2739
		} else {
2724
			ring->irq_get = i9xx_ring_get_irq;
2740
			ring->irq_get = i9xx_ring_get_irq;
2725
			ring->irq_put = i9xx_ring_put_irq;
2741
			ring->irq_put = i9xx_ring_put_irq;
2726
		}
2742
		}
2727
		ring->irq_enable_mask = I915_USER_INTERRUPT;
2743
		ring->irq_enable_mask = I915_USER_INTERRUPT;
2728
	}
2744
	}
2729
	ring->write_tail = ring_write_tail;
2745
	ring->write_tail = ring_write_tail;
2730
 
2746
 
2731
	if (IS_HASWELL(dev))
2747
	if (IS_HASWELL(dev))
2732
		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2748
		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2733
	else if (IS_GEN8(dev))
2749
	else if (IS_GEN8(dev))
2734
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2750
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2735
	else if (INTEL_INFO(dev)->gen >= 6)
2751
	else if (INTEL_INFO(dev)->gen >= 6)
2736
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2752
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2737
	else if (INTEL_INFO(dev)->gen >= 4)
2753
	else if (INTEL_INFO(dev)->gen >= 4)
2738
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2754
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2739
	else if (IS_I830(dev) || IS_845G(dev))
2755
	else if (IS_I830(dev) || IS_845G(dev))
2740
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2756
		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2741
	else
2757
	else
2742
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2758
		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2743
	ring->init_hw = init_render_ring;
2759
	ring->init_hw = init_render_ring;
2744
	ring->cleanup = render_ring_cleanup;
2760
	ring->cleanup = render_ring_cleanup;
2745
 
2761
 
2746
	/* Workaround batchbuffer to combat CS tlb bug. */
2762
	/* Workaround batchbuffer to combat CS tlb bug. */
2747
	if (HAS_BROKEN_CS_TLB(dev)) {
2763
	if (HAS_BROKEN_CS_TLB(dev)) {
2748
		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2764
		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2749
		if (obj == NULL) {
2765
		if (obj == NULL) {
2750
			DRM_ERROR("Failed to allocate batch bo\n");
2766
			DRM_ERROR("Failed to allocate batch bo\n");
2751
			return -ENOMEM;
2767
			return -ENOMEM;
2752
		}
2768
		}
2753
 
2769
 
2754
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2770
		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2755
		if (ret != 0) {
2771
		if (ret != 0) {
2756
			drm_gem_object_unreference(&obj->base);
2772
			drm_gem_object_unreference(&obj->base);
2757
			DRM_ERROR("Failed to ping batch bo\n");
2773
			DRM_ERROR("Failed to ping batch bo\n");
2758
			return ret;
2774
			return ret;
2759
		}
2775
		}
2760
 
2776
 
2761
		ring->scratch.obj = obj;
2777
		ring->scratch.obj = obj;
2762
		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2778
		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2763
	}
2779
	}
2764
 
2780
 
2765
	ret = intel_init_ring_buffer(dev, ring);
2781
	ret = intel_init_ring_buffer(dev, ring);
2766
	if (ret)
2782
	if (ret)
2767
		return ret;
2783
		return ret;
2768
 
2784
 
2769
	if (INTEL_INFO(dev)->gen >= 5) {
2785
	if (INTEL_INFO(dev)->gen >= 5) {
2770
		ret = intel_init_pipe_control(ring);
2786
		ret = intel_init_pipe_control(ring);
2771
		if (ret)
2787
		if (ret)
2772
			return ret;
2788
			return ret;
2773
	}
2789
	}
2774
 
2790
 
2775
	return 0;
2791
	return 0;
2776
}
2792
}
2777
 
2793
 
2778
int intel_init_bsd_ring_buffer(struct drm_device *dev)
2794
int intel_init_bsd_ring_buffer(struct drm_device *dev)
2779
{
2795
{
2780
	struct drm_i915_private *dev_priv = dev->dev_private;
2796
	struct drm_i915_private *dev_priv = dev->dev_private;
2781
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2797
	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2782
 
2798
 
2783
	ring->name = "bsd ring";
2799
	ring->name = "bsd ring";
2784
	ring->id = VCS;
2800
	ring->id = VCS;
2785
 
2801
 
2786
	ring->write_tail = ring_write_tail;
2802
	ring->write_tail = ring_write_tail;
2787
	if (INTEL_INFO(dev)->gen >= 6) {
2803
	if (INTEL_INFO(dev)->gen >= 6) {
2788
		ring->mmio_base = GEN6_BSD_RING_BASE;
2804
		ring->mmio_base = GEN6_BSD_RING_BASE;
2789
		/* gen6 bsd needs a special wa for tail updates */
2805
		/* gen6 bsd needs a special wa for tail updates */
2790
		if (IS_GEN6(dev))
2806
		if (IS_GEN6(dev))
2791
			ring->write_tail = gen6_bsd_ring_write_tail;
2807
			ring->write_tail = gen6_bsd_ring_write_tail;
2792
		ring->flush = gen6_bsd_ring_flush;
2808
		ring->flush = gen6_bsd_ring_flush;
2793
		ring->add_request = gen6_add_request;
2809
		ring->add_request = gen6_add_request;
2794
		ring->get_seqno = gen6_ring_get_seqno;
2810
		ring->get_seqno = gen6_ring_get_seqno;
2795
		ring->set_seqno = ring_set_seqno;
2811
		ring->set_seqno = ring_set_seqno;
2796
		if (INTEL_INFO(dev)->gen >= 8) {
2812
		if (INTEL_INFO(dev)->gen >= 8) {
2797
			ring->irq_enable_mask =
2813
			ring->irq_enable_mask =
2798
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2814
				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2799
			ring->irq_get = gen8_ring_get_irq;
2815
			ring->irq_get = gen8_ring_get_irq;
2800
			ring->irq_put = gen8_ring_put_irq;
2816
			ring->irq_put = gen8_ring_put_irq;
2801
			ring->dispatch_execbuffer =
2817
			ring->dispatch_execbuffer =
2802
				gen8_ring_dispatch_execbuffer;
2818
				gen8_ring_dispatch_execbuffer;
2803
			if (i915_semaphore_is_enabled(dev)) {
2819
			if (i915_semaphore_is_enabled(dev)) {
2804
				ring->semaphore.sync_to = gen8_ring_sync;
2820
				ring->semaphore.sync_to = gen8_ring_sync;
2805
				ring->semaphore.signal = gen8_xcs_signal;
2821
				ring->semaphore.signal = gen8_xcs_signal;
2806
				GEN8_RING_SEMAPHORE_INIT;
2822
				GEN8_RING_SEMAPHORE_INIT;
2807
			}
2823
			}
2808
		} else {
2824
		} else {
2809
			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2825
			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2810
			ring->irq_get = gen6_ring_get_irq;
2826
			ring->irq_get = gen6_ring_get_irq;
2811
			ring->irq_put = gen6_ring_put_irq;
2827
			ring->irq_put = gen6_ring_put_irq;
2812
			ring->dispatch_execbuffer =
2828
			ring->dispatch_execbuffer =
2813
				gen6_ring_dispatch_execbuffer;
2829
				gen6_ring_dispatch_execbuffer;
2814
			if (i915_semaphore_is_enabled(dev)) {
2830
			if (i915_semaphore_is_enabled(dev)) {
2815
				ring->semaphore.sync_to = gen6_ring_sync;
2831
				ring->semaphore.sync_to = gen6_ring_sync;
2816
				ring->semaphore.signal = gen6_signal;
2832
				ring->semaphore.signal = gen6_signal;
2817
				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2833
				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2818
				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2834
				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2819
				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2835
				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2820
				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2836
				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2821
				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2837
				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2822
				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2838
				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2823
				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2839
				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2824
				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2840
				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2825
				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2841
				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2826
				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2842
				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2827
			}
2843
			}
2828
		}
2844
		}
2829
	} else {
2845
	} else {
2830
		ring->mmio_base = BSD_RING_BASE;
2846
		ring->mmio_base = BSD_RING_BASE;
2831
		ring->flush = bsd_ring_flush;
2847
		ring->flush = bsd_ring_flush;
2832
		ring->add_request = i9xx_add_request;
2848
		ring->add_request = i9xx_add_request;
2833
		ring->get_seqno = ring_get_seqno;
2849
		ring->get_seqno = ring_get_seqno;
2834
		ring->set_seqno = ring_set_seqno;
2850
		ring->set_seqno = ring_set_seqno;
2835
		if (IS_GEN5(dev)) {
2851
		if (IS_GEN5(dev)) {
2836
			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2852
			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2837
			ring->irq_get = gen5_ring_get_irq;
2853
			ring->irq_get = gen5_ring_get_irq;
2838
			ring->irq_put = gen5_ring_put_irq;
2854
			ring->irq_put = gen5_ring_put_irq;
2839
		} else {
2855
		} else {
2840
			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2856
			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2841
			ring->irq_get = i9xx_ring_get_irq;
2857
			ring->irq_get = i9xx_ring_get_irq;
2842
			ring->irq_put = i9xx_ring_put_irq;
2858
			ring->irq_put = i9xx_ring_put_irq;
2843
		}
2859
		}
2844
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2860
		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2845
	}
2861
	}
2846
	ring->init_hw = init_ring_common;
2862
	ring->init_hw = init_ring_common;
2847
 
2863
 
2848
	return intel_init_ring_buffer(dev, ring);
2864
	return intel_init_ring_buffer(dev, ring);
2849
}
2865
}
2850
 
2866
 
2851
/**
2867
/**
2852
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2868
 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2853
 */
2869
 */
2854
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2870
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2855
{
2871
{
2856
	struct drm_i915_private *dev_priv = dev->dev_private;
2872
	struct drm_i915_private *dev_priv = dev->dev_private;
2857
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2873
	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2858
 
2874
 
2859
	ring->name = "bsd2 ring";
2875
	ring->name = "bsd2 ring";
2860
	ring->id = VCS2;
2876
	ring->id = VCS2;
2861
 
2877
 
2862
	ring->write_tail = ring_write_tail;
2878
	ring->write_tail = ring_write_tail;
2863
	ring->mmio_base = GEN8_BSD2_RING_BASE;
2879
	ring->mmio_base = GEN8_BSD2_RING_BASE;
2864
	ring->flush = gen6_bsd_ring_flush;
2880
	ring->flush = gen6_bsd_ring_flush;
2865
	ring->add_request = gen6_add_request;
2881
	ring->add_request = gen6_add_request;
2866
	ring->get_seqno = gen6_ring_get_seqno;
2882
	ring->get_seqno = gen6_ring_get_seqno;
2867
	ring->set_seqno = ring_set_seqno;
2883
	ring->set_seqno = ring_set_seqno;
2868
	ring->irq_enable_mask =
2884
	ring->irq_enable_mask =
2869
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2885
			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2870
	ring->irq_get = gen8_ring_get_irq;
2886
	ring->irq_get = gen8_ring_get_irq;
2871
	ring->irq_put = gen8_ring_put_irq;
2887
	ring->irq_put = gen8_ring_put_irq;
2872
	ring->dispatch_execbuffer =
2888
	ring->dispatch_execbuffer =
2873
			gen8_ring_dispatch_execbuffer;
2889
			gen8_ring_dispatch_execbuffer;
2874
	if (i915_semaphore_is_enabled(dev)) {
2890
	if (i915_semaphore_is_enabled(dev)) {
2875
		ring->semaphore.sync_to = gen8_ring_sync;
2891
		ring->semaphore.sync_to = gen8_ring_sync;
2876
		ring->semaphore.signal = gen8_xcs_signal;
2892
		ring->semaphore.signal = gen8_xcs_signal;
2877
		GEN8_RING_SEMAPHORE_INIT;
2893
		GEN8_RING_SEMAPHORE_INIT;
2878
	}
2894
	}
2879
	ring->init_hw = init_ring_common;
2895
	ring->init_hw = init_ring_common;
2880
 
2896
 
2881
	return intel_init_ring_buffer(dev, ring);
2897
	return intel_init_ring_buffer(dev, ring);
2882
}
2898
}
2883
 
2899
 
2884
int intel_init_blt_ring_buffer(struct drm_device *dev)
2900
int intel_init_blt_ring_buffer(struct drm_device *dev)
2885
{
2901
{
2886
	struct drm_i915_private *dev_priv = dev->dev_private;
2902
	struct drm_i915_private *dev_priv = dev->dev_private;
2887
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2903
	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2888
 
2904
 
2889
	ring->name = "blitter ring";
2905
	ring->name = "blitter ring";
2890
	ring->id = BCS;
2906
	ring->id = BCS;
2891
 
2907
 
2892
	ring->mmio_base = BLT_RING_BASE;
2908
	ring->mmio_base = BLT_RING_BASE;
2893
	ring->write_tail = ring_write_tail;
2909
	ring->write_tail = ring_write_tail;
2894
	ring->flush = gen6_ring_flush;
2910
	ring->flush = gen6_ring_flush;
2895
	ring->add_request = gen6_add_request;
2911
	ring->add_request = gen6_add_request;
2896
	ring->get_seqno = gen6_ring_get_seqno;
2912
	ring->get_seqno = gen6_ring_get_seqno;
2897
	ring->set_seqno = ring_set_seqno;
2913
	ring->set_seqno = ring_set_seqno;
2898
	if (INTEL_INFO(dev)->gen >= 8) {
2914
	if (INTEL_INFO(dev)->gen >= 8) {
2899
		ring->irq_enable_mask =
2915
		ring->irq_enable_mask =
2900
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2916
			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2901
		ring->irq_get = gen8_ring_get_irq;
2917
		ring->irq_get = gen8_ring_get_irq;
2902
		ring->irq_put = gen8_ring_put_irq;
2918
		ring->irq_put = gen8_ring_put_irq;
2903
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2919
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2904
		if (i915_semaphore_is_enabled(dev)) {
2920
		if (i915_semaphore_is_enabled(dev)) {
2905
			ring->semaphore.sync_to = gen8_ring_sync;
2921
			ring->semaphore.sync_to = gen8_ring_sync;
2906
			ring->semaphore.signal = gen8_xcs_signal;
2922
			ring->semaphore.signal = gen8_xcs_signal;
2907
			GEN8_RING_SEMAPHORE_INIT;
2923
			GEN8_RING_SEMAPHORE_INIT;
2908
		}
2924
		}
2909
	} else {
2925
	} else {
2910
		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2926
		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2911
		ring->irq_get = gen6_ring_get_irq;
2927
		ring->irq_get = gen6_ring_get_irq;
2912
		ring->irq_put = gen6_ring_put_irq;
2928
		ring->irq_put = gen6_ring_put_irq;
2913
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2929
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2914
		if (i915_semaphore_is_enabled(dev)) {
2930
		if (i915_semaphore_is_enabled(dev)) {
2915
			ring->semaphore.signal = gen6_signal;
2931
			ring->semaphore.signal = gen6_signal;
2916
			ring->semaphore.sync_to = gen6_ring_sync;
2932
			ring->semaphore.sync_to = gen6_ring_sync;
2917
			/*
2933
			/*
2918
			 * The current semaphore is only applied on pre-gen8
2934
			 * The current semaphore is only applied on pre-gen8
2919
			 * platform.  And there is no VCS2 ring on the pre-gen8
2935
			 * platform.  And there is no VCS2 ring on the pre-gen8
2920
			 * platform. So the semaphore between BCS and VCS2 is
2936
			 * platform. So the semaphore between BCS and VCS2 is
2921
			 * initialized as INVALID.  Gen8 will initialize the
2937
			 * initialized as INVALID.  Gen8 will initialize the
2922
			 * sema between BCS and VCS2 later.
2938
			 * sema between BCS and VCS2 later.
2923
			 */
2939
			 */
2924
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2940
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2925
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2941
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2926
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2942
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2927
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2943
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2928
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2944
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2929
			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2945
			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2930
			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2946
			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2931
			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2947
			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2932
			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2948
			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2933
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2949
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2934
		}
2950
		}
2935
	}
2951
	}
2936
	ring->init_hw = init_ring_common;
2952
	ring->init_hw = init_ring_common;
2937
 
2953
 
2938
	return intel_init_ring_buffer(dev, ring);
2954
	return intel_init_ring_buffer(dev, ring);
2939
}
2955
}
2940
 
2956
 
2941
int intel_init_vebox_ring_buffer(struct drm_device *dev)
2957
int intel_init_vebox_ring_buffer(struct drm_device *dev)
2942
{
2958
{
2943
	struct drm_i915_private *dev_priv = dev->dev_private;
2959
	struct drm_i915_private *dev_priv = dev->dev_private;
2944
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2960
	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2945
 
2961
 
2946
	ring->name = "video enhancement ring";
2962
	ring->name = "video enhancement ring";
2947
	ring->id = VECS;
2963
	ring->id = VECS;
2948
 
2964
 
2949
	ring->mmio_base = VEBOX_RING_BASE;
2965
	ring->mmio_base = VEBOX_RING_BASE;
2950
	ring->write_tail = ring_write_tail;
2966
	ring->write_tail = ring_write_tail;
2951
	ring->flush = gen6_ring_flush;
2967
	ring->flush = gen6_ring_flush;
2952
	ring->add_request = gen6_add_request;
2968
	ring->add_request = gen6_add_request;
2953
	ring->get_seqno = gen6_ring_get_seqno;
2969
	ring->get_seqno = gen6_ring_get_seqno;
2954
	ring->set_seqno = ring_set_seqno;
2970
	ring->set_seqno = ring_set_seqno;
2955
 
2971
 
2956
	if (INTEL_INFO(dev)->gen >= 8) {
2972
	if (INTEL_INFO(dev)->gen >= 8) {
2957
		ring->irq_enable_mask =
2973
		ring->irq_enable_mask =
2958
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2974
			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2959
		ring->irq_get = gen8_ring_get_irq;
2975
		ring->irq_get = gen8_ring_get_irq;
2960
		ring->irq_put = gen8_ring_put_irq;
2976
		ring->irq_put = gen8_ring_put_irq;
2961
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2977
		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2962
		if (i915_semaphore_is_enabled(dev)) {
2978
		if (i915_semaphore_is_enabled(dev)) {
2963
			ring->semaphore.sync_to = gen8_ring_sync;
2979
			ring->semaphore.sync_to = gen8_ring_sync;
2964
			ring->semaphore.signal = gen8_xcs_signal;
2980
			ring->semaphore.signal = gen8_xcs_signal;
2965
			GEN8_RING_SEMAPHORE_INIT;
2981
			GEN8_RING_SEMAPHORE_INIT;
2966
		}
2982
		}
2967
	} else {
2983
	} else {
2968
		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2984
		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2969
		ring->irq_get = hsw_vebox_get_irq;
2985
		ring->irq_get = hsw_vebox_get_irq;
2970
		ring->irq_put = hsw_vebox_put_irq;
2986
		ring->irq_put = hsw_vebox_put_irq;
2971
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2987
		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2972
		if (i915_semaphore_is_enabled(dev)) {
2988
		if (i915_semaphore_is_enabled(dev)) {
2973
			ring->semaphore.sync_to = gen6_ring_sync;
2989
			ring->semaphore.sync_to = gen6_ring_sync;
2974
			ring->semaphore.signal = gen6_signal;
2990
			ring->semaphore.signal = gen6_signal;
2975
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2991
			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2976
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2992
			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2977
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2993
			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2978
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2994
			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2979
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2995
			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2980
			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2996
			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2981
			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2997
			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2982
			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2998
			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2983
			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2999
			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2984
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3000
			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2985
		}
3001
		}
2986
	}
3002
	}
2987
	ring->init_hw = init_ring_common;
3003
	ring->init_hw = init_ring_common;
2988
 
3004
 
2989
	return intel_init_ring_buffer(dev, ring);
3005
	return intel_init_ring_buffer(dev, ring);
2990
}
3006
}
2991
 
3007
 
2992
int
3008
int
2993
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3009
intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
2994
{
3010
{
2995
	struct intel_engine_cs *ring = req->ring;
3011
	struct intel_engine_cs *ring = req->ring;
2996
	int ret;
3012
	int ret;
2997
 
3013
 
2998
	if (!ring->gpu_caches_dirty)
3014
	if (!ring->gpu_caches_dirty)
2999
		return 0;
3015
		return 0;
3000
 
3016
 
3001
	ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3017
	ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3002
	if (ret)
3018
	if (ret)
3003
		return ret;
3019
		return ret;
3004
 
3020
 
3005
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3021
	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3006
 
3022
 
3007
	ring->gpu_caches_dirty = false;
3023
	ring->gpu_caches_dirty = false;
3008
	return 0;
3024
	return 0;
3009
}
3025
}
3010
 
3026
 
3011
int
3027
int
3012
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3028
intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3013
{
3029
{
3014
	struct intel_engine_cs *ring = req->ring;
3030
	struct intel_engine_cs *ring = req->ring;
3015
	uint32_t flush_domains;
3031
	uint32_t flush_domains;
3016
	int ret;
3032
	int ret;
3017
 
3033
 
3018
	flush_domains = 0;
3034
	flush_domains = 0;
3019
	if (ring->gpu_caches_dirty)
3035
	if (ring->gpu_caches_dirty)
3020
		flush_domains = I915_GEM_GPU_DOMAINS;
3036
		flush_domains = I915_GEM_GPU_DOMAINS;
3021
 
3037
 
3022
	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3038
	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3023
	if (ret)
3039
	if (ret)
3024
		return ret;
3040
		return ret;
3025
 
3041
 
3026
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3042
	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3027
 
3043
 
3028
	ring->gpu_caches_dirty = false;
3044
	ring->gpu_caches_dirty = false;
3029
	return 0;
3045
	return 0;
3030
}
3046
}
3031
 
3047
 
3032
void
3048
void
3033
intel_stop_ring_buffer(struct intel_engine_cs *ring)
3049
intel_stop_ring_buffer(struct intel_engine_cs *ring)
3034
{
3050
{
3035
	int ret;
3051
	int ret;
3036
 
3052
 
3037
	if (!intel_ring_initialized(ring))
3053
	if (!intel_ring_initialized(ring))
3038
		return;
3054
		return;
3039
 
3055
 
3040
	ret = intel_ring_idle(ring);
3056
	ret = intel_ring_idle(ring);
3041
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3057
	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3042
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3058
		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3043
			  ring->name, ret);
3059
			  ring->name, ret);
3044
 
3060
 
3045
	stop_ring(ring);
3061
	stop_ring(ring);
3046
}
3062
}