Subversion Repositories Kolibri OS

Rev

Rev 6934 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 6934 Rev 6936
1
#ifndef __LINUX_SEQLOCK_H
1
#ifndef __LINUX_SEQLOCK_H
2
#define __LINUX_SEQLOCK_H
2
#define __LINUX_SEQLOCK_H
3
/*
3
/*
4
 * Reader/writer consistent mechanism without starving writers. This type of
4
 * Reader/writer consistent mechanism without starving writers. This type of
5
 * lock for data where the reader wants a consistent set of information
5
 * lock for data where the reader wants a consistent set of information
6
 * and is willing to retry if the information changes. There are two types
6
 * and is willing to retry if the information changes. There are two types
7
 * of readers:
7
 * of readers:
8
 * 1. Sequence readers which never block a writer but they may have to retry
8
 * 1. Sequence readers which never block a writer but they may have to retry
9
 *    if a writer is in progress by detecting change in sequence number.
9
 *    if a writer is in progress by detecting change in sequence number.
10
 *    Writers do not wait for a sequence reader.
10
 *    Writers do not wait for a sequence reader.
11
 * 2. Locking readers which will wait if a writer or another locking reader
11
 * 2. Locking readers which will wait if a writer or another locking reader
12
 *    is in progress. A locking reader in progress will also block a writer
12
 *    is in progress. A locking reader in progress will also block a writer
13
 *    from going forward. Unlike the regular rwlock, the read lock here is
13
 *    from going forward. Unlike the regular rwlock, the read lock here is
14
 *    exclusive so that only one locking reader can get it.
14
 *    exclusive so that only one locking reader can get it.
15
 *
15
 *
16
 * This is not as cache friendly as brlock. Also, this may not work well
16
 * This is not as cache friendly as brlock. Also, this may not work well
17
 * for data that contains pointers, because any writer could
17
 * for data that contains pointers, because any writer could
18
 * invalidate a pointer that a reader was following.
18
 * invalidate a pointer that a reader was following.
19
 *
19
 *
20
 * Expected non-blocking reader usage:
20
 * Expected non-blocking reader usage:
21
 * 	do {
21
 * 	do {
22
 *	    seq = read_seqbegin(&foo);
22
 *	    seq = read_seqbegin(&foo);
23
 * 	...
23
 * 	...
24
 *      } while (read_seqretry(&foo, seq));
24
 *      } while (read_seqretry(&foo, seq));
25
 *
25
 *
26
 *
26
 *
27
 * On non-SMP the spin locks disappear but the writer still needs
27
 * On non-SMP the spin locks disappear but the writer still needs
28
 * to increment the sequence variables because an interrupt routine could
28
 * to increment the sequence variables because an interrupt routine could
29
 * change the state of the data.
29
 * change the state of the data.
30
 *
30
 *
31
 * Based on x86_64 vsyscall gettimeofday 
31
 * Based on x86_64 vsyscall gettimeofday 
32
 * by Keith Owens and Andrea Arcangeli
32
 * by Keith Owens and Andrea Arcangeli
33
 */
33
 */
34
 
34
 
35
#include 
35
#include 
36
#include 
36
#include 
37
#include 
37
#include 
38
#include 
38
#include 
39
#include 
39
#include 
40
 
40
 
41
/*
41
/*
42
 * Version using sequence counter only.
42
 * Version using sequence counter only.
43
 * This can be used when code has its own mutex protecting the
43
 * This can be used when code has its own mutex protecting the
44
 * updating starting before the write_seqcountbeqin() and ending
44
 * updating starting before the write_seqcountbeqin() and ending
45
 * after the write_seqcount_end().
45
 * after the write_seqcount_end().
46
 */
46
 */
47
typedef struct seqcount {
47
typedef struct seqcount {
48
	unsigned sequence;
48
	unsigned sequence;
49
#ifdef CONFIG_DEBUG_LOCK_ALLOC
49
#ifdef CONFIG_DEBUG_LOCK_ALLOC
50
	struct lockdep_map dep_map;
50
	struct lockdep_map dep_map;
51
#endif
51
#endif
52
} seqcount_t;
52
} seqcount_t;
53
 
53
 
54
static inline void __seqcount_init(seqcount_t *s, const char *name,
54
static inline void __seqcount_init(seqcount_t *s, const char *name,
55
					  struct lock_class_key *key)
55
					  struct lock_class_key *key)
56
{
56
{
57
	/*
57
	/*
58
	 * Make sure we are not reinitializing a held lock:
58
	 * Make sure we are not reinitializing a held lock:
59
	 */
59
	 */
60
	lockdep_init_map(&s->dep_map, name, key, 0);
60
	lockdep_init_map(&s->dep_map, name, key, 0);
61
	s->sequence = 0;
61
	s->sequence = 0;
62
}
62
}
63
 
63
 
64
#ifdef CONFIG_DEBUG_LOCK_ALLOC
64
#ifdef CONFIG_DEBUG_LOCK_ALLOC
65
# define SEQCOUNT_DEP_MAP_INIT(lockname) \
65
# define SEQCOUNT_DEP_MAP_INIT(lockname) \
66
		.dep_map = { .name = #lockname } \
66
		.dep_map = { .name = #lockname } \
67
 
67
 
68
# define seqcount_init(s)				\
68
# define seqcount_init(s)				\
69
	do {						\
69
	do {						\
70
		static struct lock_class_key __key;	\
70
		static struct lock_class_key __key;	\
71
		__seqcount_init((s), #s, &__key);	\
71
		__seqcount_init((s), #s, &__key);	\
72
	} while (0)
72
	} while (0)
73
 
73
 
74
static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
74
static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
75
{
75
{
76
	seqcount_t *l = (seqcount_t *)s;
76
	seqcount_t *l = (seqcount_t *)s;
77
	unsigned long flags;
77
	unsigned long flags;
78
 
78
 
79
	local_irq_save(flags);
79
	local_irq_save(flags);
80
	seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
80
	seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
81
	seqcount_release(&l->dep_map, 1, _RET_IP_);
81
	seqcount_release(&l->dep_map, 1, _RET_IP_);
82
	local_irq_restore(flags);
82
	local_irq_restore(flags);
83
}
83
}
84
 
84
 
85
#else
85
#else
86
# define SEQCOUNT_DEP_MAP_INIT(lockname)
86
# define SEQCOUNT_DEP_MAP_INIT(lockname)
87
# define seqcount_init(s) __seqcount_init(s, NULL, NULL)
87
# define seqcount_init(s) __seqcount_init(s, NULL, NULL)
88
# define seqcount_lockdep_reader_access(x)
88
# define seqcount_lockdep_reader_access(x)
89
#endif
89
#endif
90
 
90
 
91
#define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}
91
#define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}
92
 
92
 
93
 
93
 
94
/**
94
/**
95
 * __read_seqcount_begin - begin a seq-read critical section (without barrier)
95
 * __read_seqcount_begin - begin a seq-read critical section (without barrier)
96
 * @s: pointer to seqcount_t
96
 * @s: pointer to seqcount_t
97
 * Returns: count to be passed to read_seqcount_retry
97
 * Returns: count to be passed to read_seqcount_retry
98
 *
98
 *
99
 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
99
 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
100
 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
100
 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
101
 * provided before actually loading any of the variables that are to be
101
 * provided before actually loading any of the variables that are to be
102
 * protected in this critical section.
102
 * protected in this critical section.
103
 *
103
 *
104
 * Use carefully, only in critical code, and comment how the barrier is
104
 * Use carefully, only in critical code, and comment how the barrier is
105
 * provided.
105
 * provided.
106
 */
106
 */
107
static inline unsigned __read_seqcount_begin(const seqcount_t *s)
107
static inline unsigned __read_seqcount_begin(const seqcount_t *s)
108
{
108
{
109
	unsigned ret;
109
	unsigned ret;
110
 
110
 
111
repeat:
111
repeat:
112
	ret = READ_ONCE(s->sequence);
112
	ret = READ_ONCE(s->sequence);
113
	if (unlikely(ret & 1)) {
113
	if (unlikely(ret & 1)) {
114
		cpu_relax();
114
		cpu_relax();
115
		goto repeat;
115
		goto repeat;
116
	}
116
	}
117
	return ret;
117
	return ret;
118
}
118
}
119
 
119
 
120
/**
120
/**
121
 * raw_read_seqcount - Read the raw seqcount
121
 * raw_read_seqcount - Read the raw seqcount
122
 * @s: pointer to seqcount_t
122
 * @s: pointer to seqcount_t
123
 * Returns: count to be passed to read_seqcount_retry
123
 * Returns: count to be passed to read_seqcount_retry
124
 *
124
 *
125
 * raw_read_seqcount opens a read critical section of the given
125
 * raw_read_seqcount opens a read critical section of the given
126
 * seqcount without any lockdep checking and without checking or
126
 * seqcount without any lockdep checking and without checking or
127
 * masking the LSB. Calling code is responsible for handling that.
127
 * masking the LSB. Calling code is responsible for handling that.
128
 */
128
 */
129
static inline unsigned raw_read_seqcount(const seqcount_t *s)
129
static inline unsigned raw_read_seqcount(const seqcount_t *s)
130
{
130
{
131
	unsigned ret = READ_ONCE(s->sequence);
131
	unsigned ret = READ_ONCE(s->sequence);
132
	smp_rmb();
132
	smp_rmb();
133
	return ret;
133
	return ret;
134
}
134
}
135
 
135
 
136
/**
136
/**
137
 * raw_read_seqcount_begin - start seq-read critical section w/o lockdep
137
 * raw_read_seqcount_begin - start seq-read critical section w/o lockdep
138
 * @s: pointer to seqcount_t
138
 * @s: pointer to seqcount_t
139
 * Returns: count to be passed to read_seqcount_retry
139
 * Returns: count to be passed to read_seqcount_retry
140
 *
140
 *
141
 * raw_read_seqcount_begin opens a read critical section of the given
141
 * raw_read_seqcount_begin opens a read critical section of the given
142
 * seqcount, but without any lockdep checking. Validity of the critical
142
 * seqcount, but without any lockdep checking. Validity of the critical
143
 * section is tested by checking read_seqcount_retry function.
143
 * section is tested by checking read_seqcount_retry function.
144
 */
144
 */
145
static inline unsigned raw_read_seqcount_begin(const seqcount_t *s)
145
static inline unsigned raw_read_seqcount_begin(const seqcount_t *s)
146
{
146
{
147
	unsigned ret = __read_seqcount_begin(s);
147
	unsigned ret = __read_seqcount_begin(s);
148
	smp_rmb();
148
	smp_rmb();
149
	return ret;
149
	return ret;
150
}
150
}
151
 
151
 
152
/**
152
/**
153
 * read_seqcount_begin - begin a seq-read critical section
153
 * read_seqcount_begin - begin a seq-read critical section
154
 * @s: pointer to seqcount_t
154
 * @s: pointer to seqcount_t
155
 * Returns: count to be passed to read_seqcount_retry
155
 * Returns: count to be passed to read_seqcount_retry
156
 *
156
 *
157
 * read_seqcount_begin opens a read critical section of the given seqcount.
157
 * read_seqcount_begin opens a read critical section of the given seqcount.
158
 * Validity of the critical section is tested by checking read_seqcount_retry
158
 * Validity of the critical section is tested by checking read_seqcount_retry
159
 * function.
159
 * function.
160
 */
160
 */
161
static inline unsigned read_seqcount_begin(const seqcount_t *s)
161
static inline unsigned read_seqcount_begin(const seqcount_t *s)
162
{
162
{
163
	seqcount_lockdep_reader_access(s);
163
	seqcount_lockdep_reader_access(s);
164
	return raw_read_seqcount_begin(s);
164
	return raw_read_seqcount_begin(s);
165
}
165
}
166
 
166
 
167
/**
167
/**
168
 * raw_seqcount_begin - begin a seq-read critical section
168
 * raw_seqcount_begin - begin a seq-read critical section
169
 * @s: pointer to seqcount_t
169
 * @s: pointer to seqcount_t
170
 * Returns: count to be passed to read_seqcount_retry
170
 * Returns: count to be passed to read_seqcount_retry
171
 *
171
 *
172
 * raw_seqcount_begin opens a read critical section of the given seqcount.
172
 * raw_seqcount_begin opens a read critical section of the given seqcount.
173
 * Validity of the critical section is tested by checking read_seqcount_retry
173
 * Validity of the critical section is tested by checking read_seqcount_retry
174
 * function.
174
 * function.
175
 *
175
 *
176
 * Unlike read_seqcount_begin(), this function will not wait for the count
176
 * Unlike read_seqcount_begin(), this function will not wait for the count
177
 * to stabilize. If a writer is active when we begin, we will fail the
177
 * to stabilize. If a writer is active when we begin, we will fail the
178
 * read_seqcount_retry() instead of stabilizing at the beginning of the
178
 * read_seqcount_retry() instead of stabilizing at the beginning of the
179
 * critical section.
179
 * critical section.
180
 */
180
 */
181
static inline unsigned raw_seqcount_begin(const seqcount_t *s)
181
static inline unsigned raw_seqcount_begin(const seqcount_t *s)
182
{
182
{
183
	unsigned ret = READ_ONCE(s->sequence);
183
	unsigned ret = READ_ONCE(s->sequence);
184
	smp_rmb();
184
	smp_rmb();
185
	return ret & ~1;
185
	return ret & ~1;
186
}
186
}
187
 
187
 
188
/**
188
/**
189
 * __read_seqcount_retry - end a seq-read critical section (without barrier)
189
 * __read_seqcount_retry - end a seq-read critical section (without barrier)
190
 * @s: pointer to seqcount_t
190
 * @s: pointer to seqcount_t
191
 * @start: count, from read_seqcount_begin
191
 * @start: count, from read_seqcount_begin
192
 * Returns: 1 if retry is required, else 0
192
 * Returns: 1 if retry is required, else 0
193
 *
193
 *
194
 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
194
 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
195
 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
195
 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
196
 * provided before actually loading any of the variables that are to be
196
 * provided before actually loading any of the variables that are to be
197
 * protected in this critical section.
197
 * protected in this critical section.
198
 *
198
 *
199
 * Use carefully, only in critical code, and comment how the barrier is
199
 * Use carefully, only in critical code, and comment how the barrier is
200
 * provided.
200
 * provided.
201
 */
201
 */
202
static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
202
static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
203
{
203
{
204
	return unlikely(s->sequence != start);
204
	return unlikely(s->sequence != start);
205
}
205
}
206
 
206
 
207
/**
207
/**
208
 * read_seqcount_retry - end a seq-read critical section
208
 * read_seqcount_retry - end a seq-read critical section
209
 * @s: pointer to seqcount_t
209
 * @s: pointer to seqcount_t
210
 * @start: count, from read_seqcount_begin
210
 * @start: count, from read_seqcount_begin
211
 * Returns: 1 if retry is required, else 0
211
 * Returns: 1 if retry is required, else 0
212
 *
212
 *
213
 * read_seqcount_retry closes a read critical section of the given seqcount.
213
 * read_seqcount_retry closes a read critical section of the given seqcount.
214
 * If the critical section was invalid, it must be ignored (and typically
214
 * If the critical section was invalid, it must be ignored (and typically
215
 * retried).
215
 * retried).
216
 */
216
 */
217
static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
217
static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
218
{
218
{
219
	smp_rmb();
219
	smp_rmb();
220
	return __read_seqcount_retry(s, start);
220
	return __read_seqcount_retry(s, start);
221
}
221
}
222
 
222
 
223
 
223
 
224
 
224
 
225
static inline void raw_write_seqcount_begin(seqcount_t *s)
225
static inline void raw_write_seqcount_begin(seqcount_t *s)
226
{
226
{
227
	s->sequence++;
227
	s->sequence++;
228
	smp_wmb();
228
	smp_wmb();
229
}
229
}
230
 
230
 
231
static inline void raw_write_seqcount_end(seqcount_t *s)
231
static inline void raw_write_seqcount_end(seqcount_t *s)
232
{
232
{
233
	smp_wmb();
233
	smp_wmb();
234
	s->sequence++;
234
	s->sequence++;
235
}
235
}
-
 
236
 
-
 
237
/**
-
 
238
 * raw_write_seqcount_barrier - do a seq write barrier
-
 
239
 * @s: pointer to seqcount_t
-
 
240
 *
-
 
241
 * This can be used to provide an ordering guarantee instead of the
-
 
242
 * usual consistency guarantee. It is one wmb cheaper, because we can
-
 
243
 * collapse the two back-to-back wmb()s.
-
 
244
 *
-
 
245
 *      seqcount_t seq;
-
 
246
 *      bool X = true, Y = false;
-
 
247
 *
-
 
248
 *      void read(void)
-
 
249
 *      {
-
 
250
 *              bool x, y;
-
 
251
 *
-
 
252
 *              do {
-
 
253
 *                      int s = read_seqcount_begin(&seq);
-
 
254
 *
-
 
255
 *                      x = X; y = Y;
-
 
256
 *
-
 
257
 *              } while (read_seqcount_retry(&seq, s));
-
 
258
 *
-
 
259
 *              BUG_ON(!x && !y);
-
 
260
 *      }
-
 
261
 *
-
 
262
 *      void write(void)
-
 
263
 *      {
-
 
264
 *              Y = true;
-
 
265
 *
-
 
266
 *              raw_write_seqcount_barrier(seq);
-
 
267
 *
-
 
268
 *              X = false;
-
 
269
 *      }
-
 
270
 */
-
 
271
static inline void raw_write_seqcount_barrier(seqcount_t *s)
-
 
272
{
-
 
273
	s->sequence++;
-
 
274
	smp_wmb();
-
 
275
	s->sequence++;
-
 
276
}
-
 
277
 
-
 
278
static inline int raw_read_seqcount_latch(seqcount_t *s)
-
 
279
{
-
 
280
	return lockless_dereference(s->sequence);
-
 
281
}
236
 
282
 
237
/*
283
/**
238
 * raw_write_seqcount_latch - redirect readers to even/odd copy
284
 * raw_write_seqcount_latch - redirect readers to even/odd copy
239
 * @s: pointer to seqcount_t
285
 * @s: pointer to seqcount_t
240
 *
286
 *
241
 * The latch technique is a multiversion concurrency control method that allows
287
 * The latch technique is a multiversion concurrency control method that allows
242
 * queries during non-atomic modifications. If you can guarantee queries never
288
 * queries during non-atomic modifications. If you can guarantee queries never
243
 * interrupt the modification -- e.g. the concurrency is strictly between CPUs
289
 * interrupt the modification -- e.g. the concurrency is strictly between CPUs
244
 * -- you most likely do not need this.
290
 * -- you most likely do not need this.
245
 *
291
 *
246
 * Where the traditional RCU/lockless data structures rely on atomic
292
 * Where the traditional RCU/lockless data structures rely on atomic
247
 * modifications to ensure queries observe either the old or the new state the
293
 * modifications to ensure queries observe either the old or the new state the
248
 * latch allows the same for non-atomic updates. The trade-off is doubling the
294
 * latch allows the same for non-atomic updates. The trade-off is doubling the
249
 * cost of storage; we have to maintain two copies of the entire data
295
 * cost of storage; we have to maintain two copies of the entire data
250
 * structure.
296
 * structure.
251
 *
297
 *
252
 * Very simply put: we first modify one copy and then the other. This ensures
298
 * Very simply put: we first modify one copy and then the other. This ensures
253
 * there is always one copy in a stable state, ready to give us an answer.
299
 * there is always one copy in a stable state, ready to give us an answer.
254
 *
300
 *
255
 * The basic form is a data structure like:
301
 * The basic form is a data structure like:
256
 *
302
 *
257
 * struct latch_struct {
303
 * struct latch_struct {
258
 *	seqcount_t		seq;
304
 *	seqcount_t		seq;
259
 *	struct data_struct	data[2];
305
 *	struct data_struct	data[2];
260
 * };
306
 * };
261
 *
307
 *
262
 * Where a modification, which is assumed to be externally serialized, does the
308
 * Where a modification, which is assumed to be externally serialized, does the
263
 * following:
309
 * following:
264
 *
310
 *
265
 * void latch_modify(struct latch_struct *latch, ...)
311
 * void latch_modify(struct latch_struct *latch, ...)
266
 * {
312
 * {
267
 *	smp_wmb();	<- Ensure that the last data[1] update is visible
313
 *	smp_wmb();	<- Ensure that the last data[1] update is visible
268
 *	latch->seq++;
314
 *	latch->seq++;
269
 *	smp_wmb();	<- Ensure that the seqcount update is visible
315
 *	smp_wmb();	<- Ensure that the seqcount update is visible
270
 *
316
 *
271
 *	modify(latch->data[0], ...);
317
 *	modify(latch->data[0], ...);
272
 *
318
 *
273
 *	smp_wmb();	<- Ensure that the data[0] update is visible
319
 *	smp_wmb();	<- Ensure that the data[0] update is visible
274
 *	latch->seq++;
320
 *	latch->seq++;
275
 *	smp_wmb();	<- Ensure that the seqcount update is visible
321
 *	smp_wmb();	<- Ensure that the seqcount update is visible
276
 *
322
 *
277
 *	modify(latch->data[1], ...);
323
 *	modify(latch->data[1], ...);
278
 * }
324
 * }
279
 *
325
 *
280
 * The query will have a form like:
326
 * The query will have a form like:
281
 *
327
 *
282
 * struct entry *latch_query(struct latch_struct *latch, ...)
328
 * struct entry *latch_query(struct latch_struct *latch, ...)
283
 * {
329
 * {
284
 *	struct entry *entry;
330
 *	struct entry *entry;
285
 *	unsigned seq, idx;
331
 *	unsigned seq, idx;
286
 *
332
 *
287
 *	do {
333
 *	do {
288
 *		seq = lockless_dereference(latch->seq);
334
 *		seq = lockless_dereference(latch->seq);
289
 *
335
 *
290
 *		idx = seq & 0x01;
336
 *		idx = seq & 0x01;
291
 *		entry = data_query(latch->data[idx], ...);
337
 *		entry = data_query(latch->data[idx], ...);
292
 *
338
 *
293
 *		smp_rmb();
339
 *		smp_rmb();
294
 *	} while (seq != latch->seq);
340
 *	} while (seq != latch->seq);
295
 *
341
 *
296
 *	return entry;
342
 *	return entry;
297
 * }
343
 * }
298
 *
344
 *
299
 * So during the modification, queries are first redirected to data[1]. Then we
345
 * So during the modification, queries are first redirected to data[1]. Then we
300
 * modify data[0]. When that is complete, we redirect queries back to data[0]
346
 * modify data[0]. When that is complete, we redirect queries back to data[0]
301
 * and we can modify data[1].
347
 * and we can modify data[1].
302
 *
348
 *
303
 * NOTE: The non-requirement for atomic modifications does _NOT_ include
349
 * NOTE: The non-requirement for atomic modifications does _NOT_ include
304
 *       the publishing of new entries in the case where data is a dynamic
350
 *       the publishing of new entries in the case where data is a dynamic
305
 *       data structure.
351
 *       data structure.
306
 *
352
 *
307
 *       An iteration might start in data[0] and get suspended long enough
353
 *       An iteration might start in data[0] and get suspended long enough
308
 *       to miss an entire modification sequence, once it resumes it might
354
 *       to miss an entire modification sequence, once it resumes it might
309
 *       observe the new entry.
355
 *       observe the new entry.
310
 *
356
 *
311
 * NOTE: When data is a dynamic data structure; one should use regular RCU
357
 * NOTE: When data is a dynamic data structure; one should use regular RCU
312
 *       patterns to manage the lifetimes of the objects within.
358
 *       patterns to manage the lifetimes of the objects within.
313
 */
359
 */
314
static inline void raw_write_seqcount_latch(seqcount_t *s)
360
static inline void raw_write_seqcount_latch(seqcount_t *s)
315
{
361
{
316
       smp_wmb();      /* prior stores before incrementing "sequence" */
362
       smp_wmb();      /* prior stores before incrementing "sequence" */
317
       s->sequence++;
363
       s->sequence++;
318
       smp_wmb();      /* increment "sequence" before following stores */
364
       smp_wmb();      /* increment "sequence" before following stores */
319
}
365
}
320
 
366
 
321
/*
367
/*
322
 * Sequence counter only version assumes that callers are using their
368
 * Sequence counter only version assumes that callers are using their
323
 * own mutexing.
369
 * own mutexing.
324
 */
370
 */
325
static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass)
371
static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass)
326
{
372
{
327
	raw_write_seqcount_begin(s);
373
	raw_write_seqcount_begin(s);
328
	seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
374
	seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
329
}
375
}
330
 
376
 
331
static inline void write_seqcount_begin(seqcount_t *s)
377
static inline void write_seqcount_begin(seqcount_t *s)
332
{
378
{
333
	write_seqcount_begin_nested(s, 0);
379
	write_seqcount_begin_nested(s, 0);
334
}
380
}
335
 
381
 
336
static inline void write_seqcount_end(seqcount_t *s)
382
static inline void write_seqcount_end(seqcount_t *s)
337
{
383
{
338
	seqcount_release(&s->dep_map, 1, _RET_IP_);
384
	seqcount_release(&s->dep_map, 1, _RET_IP_);
339
	raw_write_seqcount_end(s);
385
	raw_write_seqcount_end(s);
340
}
386
}
341
 
387
 
342
/**
388
/**
343
 * write_seqcount_invalidate - invalidate in-progress read-side seq operations
389
 * write_seqcount_invalidate - invalidate in-progress read-side seq operations
344
 * @s: pointer to seqcount_t
390
 * @s: pointer to seqcount_t
345
 *
391
 *
346
 * After write_seqcount_invalidate, no read-side seq operations will complete
392
 * After write_seqcount_invalidate, no read-side seq operations will complete
347
 * successfully and see data older than this.
393
 * successfully and see data older than this.
348
 */
394
 */
349
static inline void write_seqcount_invalidate(seqcount_t *s)
395
static inline void write_seqcount_invalidate(seqcount_t *s)
350
{
396
{
351
	smp_wmb();
397
	smp_wmb();
352
	s->sequence+=2;
398
	s->sequence+=2;
353
}
399
}
354
 
400
 
355
typedef struct {
401
typedef struct {
356
	struct seqcount seqcount;
402
	struct seqcount seqcount;
357
	spinlock_t lock;
403
	spinlock_t lock;
358
} seqlock_t;
404
} seqlock_t;
359
 
405
 
360
/*
406
/*
361
 * These macros triggered gcc-3.x compile-time problems.  We think these are
407
 * These macros triggered gcc-3.x compile-time problems.  We think these are
362
 * OK now.  Be cautious.
408
 * OK now.  Be cautious.
363
 */
409
 */
364
#define __SEQLOCK_UNLOCKED(lockname)			\
410
#define __SEQLOCK_UNLOCKED(lockname)			\
365
	{						\
411
	{						\
366
		.seqcount = SEQCNT_ZERO(lockname),	\
412
		.seqcount = SEQCNT_ZERO(lockname),	\
367
		.lock =	__SPIN_LOCK_UNLOCKED(lockname)	\
413
		.lock =	__SPIN_LOCK_UNLOCKED(lockname)	\
368
	}
414
	}
369
 
415
 
370
#define seqlock_init(x)					\
416
#define seqlock_init(x)					\
371
	do {						\
417
	do {						\
372
		seqcount_init(&(x)->seqcount);		\
418
		seqcount_init(&(x)->seqcount);		\
373
		spin_lock_init(&(x)->lock);		\
419
		spin_lock_init(&(x)->lock);		\
374
	} while (0)
420
	} while (0)
375
 
421
 
376
#define DEFINE_SEQLOCK(x) \
422
#define DEFINE_SEQLOCK(x) \
377
		seqlock_t x = __SEQLOCK_UNLOCKED(x)
423
		seqlock_t x = __SEQLOCK_UNLOCKED(x)
378
 
424
 
379
/*
425
/*
380
 * Read side functions for starting and finalizing a read side section.
426
 * Read side functions for starting and finalizing a read side section.
381
 */
427
 */
382
static inline unsigned read_seqbegin(const seqlock_t *sl)
428
static inline unsigned read_seqbegin(const seqlock_t *sl)
383
{
429
{
384
	return read_seqcount_begin(&sl->seqcount);
430
	return read_seqcount_begin(&sl->seqcount);
385
}
431
}
386
 
432
 
387
static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
433
static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
388
{
434
{
389
	return read_seqcount_retry(&sl->seqcount, start);
435
	return read_seqcount_retry(&sl->seqcount, start);
390
}
436
}
391
 
437
 
392
/*
438
/*
393
 * Lock out other writers and update the count.
439
 * Lock out other writers and update the count.
394
 * Acts like a normal spin_lock/unlock.
440
 * Acts like a normal spin_lock/unlock.
395
 * Don't need preempt_disable() because that is in the spin_lock already.
441
 * Don't need preempt_disable() because that is in the spin_lock already.
396
 */
442
 */
397
static inline void write_seqlock(seqlock_t *sl)
443
static inline void write_seqlock(seqlock_t *sl)
398
{
444
{
399
	spin_lock(&sl->lock);
445
	spin_lock(&sl->lock);
400
	write_seqcount_begin(&sl->seqcount);
446
	write_seqcount_begin(&sl->seqcount);
401
}
447
}
402
 
448
 
403
static inline void write_sequnlock(seqlock_t *sl)
449
static inline void write_sequnlock(seqlock_t *sl)
404
{
450
{
405
	write_seqcount_end(&sl->seqcount);
451
	write_seqcount_end(&sl->seqcount);
406
	spin_unlock(&sl->lock);
452
	spin_unlock(&sl->lock);
407
}
453
}
408
 
454
 
409
static inline void write_seqlock_bh(seqlock_t *sl)
455
static inline void write_seqlock_bh(seqlock_t *sl)
410
{
456
{
411
	spin_lock_bh(&sl->lock);
457
	spin_lock_bh(&sl->lock);
412
	write_seqcount_begin(&sl->seqcount);
458
	write_seqcount_begin(&sl->seqcount);
413
}
459
}
414
 
460
 
415
static inline void write_sequnlock_bh(seqlock_t *sl)
461
static inline void write_sequnlock_bh(seqlock_t *sl)
416
{
462
{
417
	write_seqcount_end(&sl->seqcount);
463
	write_seqcount_end(&sl->seqcount);
418
	spin_unlock_bh(&sl->lock);
464
	spin_unlock_bh(&sl->lock);
419
}
465
}
420
 
466
 
421
static inline void write_seqlock_irq(seqlock_t *sl)
467
static inline void write_seqlock_irq(seqlock_t *sl)
422
{
468
{
423
	spin_lock_irq(&sl->lock);
469
	spin_lock_irq(&sl->lock);
424
	write_seqcount_begin(&sl->seqcount);
470
	write_seqcount_begin(&sl->seqcount);
425
}
471
}
426
 
472
 
427
static inline void write_sequnlock_irq(seqlock_t *sl)
473
static inline void write_sequnlock_irq(seqlock_t *sl)
428
{
474
{
429
	write_seqcount_end(&sl->seqcount);
475
	write_seqcount_end(&sl->seqcount);
430
	spin_unlock_irq(&sl->lock);
476
	spin_unlock_irq(&sl->lock);
431
}
477
}
432
 
478
 
433
static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
479
static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
434
{
480
{
435
	unsigned long flags;
481
	unsigned long flags;
436
 
482
 
437
	spin_lock_irqsave(&sl->lock, flags);
483
	spin_lock_irqsave(&sl->lock, flags);
438
	write_seqcount_begin(&sl->seqcount);
484
	write_seqcount_begin(&sl->seqcount);
439
	return flags;
485
	return flags;
440
}
486
}
441
 
487
 
442
#define write_seqlock_irqsave(lock, flags)				\
488
#define write_seqlock_irqsave(lock, flags)				\
443
	do { flags = __write_seqlock_irqsave(lock); } while (0)
489
	do { flags = __write_seqlock_irqsave(lock); } while (0)
444
 
490
 
445
static inline void
491
static inline void
446
write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
492
write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
447
{
493
{
448
	write_seqcount_end(&sl->seqcount);
494
	write_seqcount_end(&sl->seqcount);
449
	spin_unlock_irqrestore(&sl->lock, flags);
495
	spin_unlock_irqrestore(&sl->lock, flags);
450
}
496
}
451
 
497
 
452
/*
498
/*
453
 * A locking reader exclusively locks out other writers and locking readers,
499
 * A locking reader exclusively locks out other writers and locking readers,
454
 * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
500
 * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
455
 * Don't need preempt_disable() because that is in the spin_lock already.
501
 * Don't need preempt_disable() because that is in the spin_lock already.
456
 */
502
 */
457
static inline void read_seqlock_excl(seqlock_t *sl)
503
static inline void read_seqlock_excl(seqlock_t *sl)
458
{
504
{
459
	spin_lock(&sl->lock);
505
	spin_lock(&sl->lock);
460
}
506
}
461
 
507
 
462
static inline void read_sequnlock_excl(seqlock_t *sl)
508
static inline void read_sequnlock_excl(seqlock_t *sl)
463
{
509
{
464
	spin_unlock(&sl->lock);
510
	spin_unlock(&sl->lock);
465
}
511
}
466
 
512
 
467
/**
513
/**
468
 * read_seqbegin_or_lock - begin a sequence number check or locking block
514
 * read_seqbegin_or_lock - begin a sequence number check or locking block
469
 * @lock: sequence lock
515
 * @lock: sequence lock
470
 * @seq : sequence number to be checked
516
 * @seq : sequence number to be checked
471
 *
517
 *
472
 * First try it once optimistically without taking the lock. If that fails,
518
 * First try it once optimistically without taking the lock. If that fails,
473
 * take the lock. The sequence number is also used as a marker for deciding
519
 * take the lock. The sequence number is also used as a marker for deciding
474
 * whether to be a reader (even) or writer (odd).
520
 * whether to be a reader (even) or writer (odd).
475
 * N.B. seq must be initialized to an even number to begin with.
521
 * N.B. seq must be initialized to an even number to begin with.
476
 */
522
 */
477
static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
523
static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
478
{
524
{
479
	if (!(*seq & 1))	/* Even */
525
	if (!(*seq & 1))	/* Even */
480
		*seq = read_seqbegin(lock);
526
		*seq = read_seqbegin(lock);
481
	else			/* Odd */
527
	else			/* Odd */
482
		read_seqlock_excl(lock);
528
		read_seqlock_excl(lock);
483
}
529
}
484
 
530
 
485
static inline int need_seqretry(seqlock_t *lock, int seq)
531
static inline int need_seqretry(seqlock_t *lock, int seq)
486
{
532
{
487
	return !(seq & 1) && read_seqretry(lock, seq);
533
	return !(seq & 1) && read_seqretry(lock, seq);
488
}
534
}
489
 
535
 
490
static inline void done_seqretry(seqlock_t *lock, int seq)
536
static inline void done_seqretry(seqlock_t *lock, int seq)
491
{
537
{
492
	if (seq & 1)
538
	if (seq & 1)
493
		read_sequnlock_excl(lock);
539
		read_sequnlock_excl(lock);
494
}
540
}
495
 
541
 
496
static inline void read_seqlock_excl_bh(seqlock_t *sl)
542
static inline void read_seqlock_excl_bh(seqlock_t *sl)
497
{
543
{
498
	spin_lock_bh(&sl->lock);
544
	spin_lock_bh(&sl->lock);
499
}
545
}
500
 
546
 
501
static inline void read_sequnlock_excl_bh(seqlock_t *sl)
547
static inline void read_sequnlock_excl_bh(seqlock_t *sl)
502
{
548
{
503
	spin_unlock_bh(&sl->lock);
549
	spin_unlock_bh(&sl->lock);
504
}
550
}
505
 
551
 
506
static inline void read_seqlock_excl_irq(seqlock_t *sl)
552
static inline void read_seqlock_excl_irq(seqlock_t *sl)
507
{
553
{
508
	spin_lock_irq(&sl->lock);
554
	spin_lock_irq(&sl->lock);
509
}
555
}
510
 
556
 
511
static inline void read_sequnlock_excl_irq(seqlock_t *sl)
557
static inline void read_sequnlock_excl_irq(seqlock_t *sl)
512
{
558
{
513
	spin_unlock_irq(&sl->lock);
559
	spin_unlock_irq(&sl->lock);
514
}
560
}
515
 
561
 
516
static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
562
static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
517
{
563
{
518
	unsigned long flags;
564
	unsigned long flags;
519
 
565
 
520
	spin_lock_irqsave(&sl->lock, flags);
566
	spin_lock_irqsave(&sl->lock, flags);
521
	return flags;
567
	return flags;
522
}
568
}
523
 
569
 
524
#define read_seqlock_excl_irqsave(lock, flags)				\
570
#define read_seqlock_excl_irqsave(lock, flags)				\
525
	do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
571
	do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
526
 
572
 
527
static inline void
573
static inline void
528
read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
574
read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
529
{
575
{
530
	spin_unlock_irqrestore(&sl->lock, flags);
576
	spin_unlock_irqrestore(&sl->lock, flags);
531
}
577
}
532
 
578
 
533
static inline unsigned long
579
static inline unsigned long
534
read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
580
read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
535
{
581
{
536
	unsigned long flags = 0;
582
	unsigned long flags = 0;
537
 
583
 
538
	if (!(*seq & 1))	/* Even */
584
	if (!(*seq & 1))	/* Even */
539
		*seq = read_seqbegin(lock);
585
		*seq = read_seqbegin(lock);
540
	else			/* Odd */
586
	else			/* Odd */
541
		read_seqlock_excl_irqsave(lock, flags);
587
		read_seqlock_excl_irqsave(lock, flags);
542
 
588
 
543
	return flags;
589
	return flags;
544
}
590
}
545
 
591
 
546
static inline void
592
static inline void
547
done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
593
done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
548
{
594
{
549
	if (seq & 1)
595
	if (seq & 1)
550
		read_sequnlock_excl_irqrestore(lock, flags);
596
		read_sequnlock_excl_irqrestore(lock, flags);
551
}
597
}
552
#endif /* __LINUX_SEQLOCK_H */
598
#endif /* __LINUX_SEQLOCK_H */