Subversion Repositories Kolibri OS

Rev

Rev 6934 | Go to most recent revision | Only display areas with differences | Regard whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 6934 Rev 6936
1
/*
1
/*
2
 * Copyright (C) 2003 Bernardo Innocenti 
2
 * Copyright (C) 2003 Bernardo Innocenti 
3
 *
3
 *
4
 * Based on former do_div() implementation from asm-parisc/div64.h:
4
 * Based on former do_div() implementation from asm-parisc/div64.h:
5
 *	Copyright (C) 1999 Hewlett-Packard Co
5
 *	Copyright (C) 1999 Hewlett-Packard Co
6
 *	Copyright (C) 1999 David Mosberger-Tang 
6
 *	Copyright (C) 1999 David Mosberger-Tang 
7
 *
7
 *
8
 *
8
 *
9
 * Generic C version of 64bit/32bit division and modulo, with
9
 * Generic C version of 64bit/32bit division and modulo, with
10
 * 64bit result and 32bit remainder.
10
 * 64bit result and 32bit remainder.
11
 *
11
 *
12
 * The fast case for (n>>32 == 0) is handled inline by do_div(). 
12
 * The fast case for (n>>32 == 0) is handled inline by do_div(). 
13
 *
13
 *
14
 * Code generated for this function might be very inefficient
14
 * Code generated for this function might be very inefficient
15
 * for some CPUs. __div64_32() can be overridden by linking arch-specific
15
 * for some CPUs. __div64_32() can be overridden by linking arch-specific
16
 * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S.
16
 * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
-
 
17
 * or by defining a preprocessor macro in arch/include/asm/div64.h.
17
 */
18
 */
18
 
19
 
19
#include 
20
#include 
20
#include 
21
#include 
21
#include 
22
#include 
22
 
23
 
23
/* Not needed on 64bit architectures */
24
/* Not needed on 64bit architectures */
24
#if BITS_PER_LONG == 32
25
#if BITS_PER_LONG == 32
-
 
26
 
25
 
27
#ifndef __div64_32
26
uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
28
uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
27
{
29
{
28
	uint64_t rem = *n;
30
	uint64_t rem = *n;
29
	uint64_t b = base;
31
	uint64_t b = base;
30
	uint64_t res, d = 1;
32
	uint64_t res, d = 1;
31
	uint32_t high = rem >> 32;
33
	uint32_t high = rem >> 32;
32
 
34
 
33
	/* Reduce the thing a bit first */
35
	/* Reduce the thing a bit first */
34
	res = 0;
36
	res = 0;
35
	if (high >= base) {
37
	if (high >= base) {
36
		high /= base;
38
		high /= base;
37
		res = (uint64_t) high << 32;
39
		res = (uint64_t) high << 32;
38
		rem -= (uint64_t) (high*base) << 32;
40
		rem -= (uint64_t) (high*base) << 32;
39
	}
41
	}
40
 
42
 
41
	while ((int64_t)b > 0 && b < rem) {
43
	while ((int64_t)b > 0 && b < rem) {
42
		b = b+b;
44
		b = b+b;
43
		d = d+d;
45
		d = d+d;
44
	}
46
	}
45
 
47
 
46
	do {
48
	do {
47
		if (rem >= b) {
49
		if (rem >= b) {
48
			rem -= b;
50
			rem -= b;
49
			res += d;
51
			res += d;
50
		}
52
		}
51
		b >>= 1;
53
		b >>= 1;
52
		d >>= 1;
54
		d >>= 1;
53
	} while (d);
55
	} while (d);
54
 
56
 
55
	*n = res;
57
	*n = res;
56
	return rem;
58
	return rem;
57
}
59
}
58
 
-
 
59
EXPORT_SYMBOL(__div64_32);
60
EXPORT_SYMBOL(__div64_32);
-
 
61
#endif
60
 
62
 
61
#ifndef div_s64_rem
63
#ifndef div_s64_rem
62
s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
64
s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
63
{
65
{
64
        u64 quotient;
66
        u64 quotient;
65
 
67
 
66
        if (dividend < 0) {
68
        if (dividend < 0) {
67
                quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
69
                quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
68
                *remainder = -*remainder;
70
                *remainder = -*remainder;
69
                if (divisor > 0)
71
                if (divisor > 0)
70
                        quotient = -quotient;
72
                        quotient = -quotient;
71
        } else {
73
        } else {
72
                quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
74
                quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
73
                if (divisor < 0)
75
                if (divisor < 0)
74
                        quotient = -quotient;
76
                        quotient = -quotient;
75
        }
77
        }
76
        return quotient;
78
        return quotient;
77
}
79
}
78
EXPORT_SYMBOL(div_s64_rem);
80
EXPORT_SYMBOL(div_s64_rem);
79
#endif
81
#endif
80
 
82
 
81
/**
83
/**
82
 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
84
 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
83
 * @dividend:	64bit dividend
85
 * @dividend:	64bit dividend
84
 * @divisor:	64bit divisor
86
 * @divisor:	64bit divisor
85
 * @remainder:  64bit remainder
87
 * @remainder:  64bit remainder
86
 *
88
 *
87
 * This implementation is a comparable to algorithm used by div64_u64.
89
 * This implementation is a comparable to algorithm used by div64_u64.
88
 * But this operation, which includes math for calculating the remainder,
90
 * But this operation, which includes math for calculating the remainder,
89
 * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
91
 * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
90
 * systems.
92
 * systems.
91
 */
93
 */
92
#ifndef div64_u64_rem
94
#ifndef div64_u64_rem
93
u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
95
u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
94
{
96
{
95
	u32 high = divisor >> 32;
97
	u32 high = divisor >> 32;
96
	u64 quot;
98
	u64 quot;
97
 
99
 
98
	if (high == 0) {
100
	if (high == 0) {
99
		u32 rem32;
101
		u32 rem32;
100
		quot = div_u64_rem(dividend, divisor, &rem32);
102
		quot = div_u64_rem(dividend, divisor, &rem32);
101
		*remainder = rem32;
103
		*remainder = rem32;
102
	} else {
104
	} else {
103
		int n = 1 + fls(high);
105
		int n = 1 + fls(high);
104
		quot = div_u64(dividend >> n, divisor >> n);
106
		quot = div_u64(dividend >> n, divisor >> n);
105
 
107
 
106
		if (quot != 0)
108
		if (quot != 0)
107
			quot--;
109
			quot--;
108
 
110
 
109
		*remainder = dividend - quot * divisor;
111
		*remainder = dividend - quot * divisor;
110
		if (*remainder >= divisor) {
112
		if (*remainder >= divisor) {
111
			quot++;
113
			quot++;
112
			*remainder -= divisor;
114
			*remainder -= divisor;
113
		}
115
		}
114
	}
116
	}
115
 
117
 
116
	return quot;
118
	return quot;
117
}
119
}
118
EXPORT_SYMBOL(div64_u64_rem);
120
EXPORT_SYMBOL(div64_u64_rem);
119
#endif
121
#endif
120
 
122
 
121
/**
123
/**
122
 * div64_u64 - unsigned 64bit divide with 64bit divisor
124
 * div64_u64 - unsigned 64bit divide with 64bit divisor
123
 * @dividend:	64bit dividend
125
 * @dividend:	64bit dividend
124
 * @divisor:	64bit divisor
126
 * @divisor:	64bit divisor
125
 *
127
 *
126
 * This implementation is a modified version of the algorithm proposed
128
 * This implementation is a modified version of the algorithm proposed
127
 * by the book 'Hacker's Delight'.  The original source and full proof
129
 * by the book 'Hacker's Delight'.  The original source and full proof
128
 * can be found here and is available for use without restriction.
130
 * can be found here and is available for use without restriction.
129
 *
131
 *
130
 * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
132
 * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
131
 */
133
 */
132
#ifndef div64_u64
134
#ifndef div64_u64
133
u64 div64_u64(u64 dividend, u64 divisor)
135
u64 div64_u64(u64 dividend, u64 divisor)
134
{
136
{
135
	u32 high = divisor >> 32;
137
	u32 high = divisor >> 32;
136
	u64 quot;
138
	u64 quot;
137
 
139
 
138
	if (high == 0) {
140
	if (high == 0) {
139
		quot = div_u64(dividend, divisor);
141
		quot = div_u64(dividend, divisor);
140
	} else {
142
	} else {
141
		int n = 1 + fls(high);
143
		int n = 1 + fls(high);
142
		quot = div_u64(dividend >> n, divisor >> n);
144
		quot = div_u64(dividend >> n, divisor >> n);
143
 
145
 
144
		if (quot != 0)
146
		if (quot != 0)
145
			quot--;
147
			quot--;
146
		if ((dividend - quot * divisor) >= divisor)
148
		if ((dividend - quot * divisor) >= divisor)
147
			quot++;
149
			quot++;
148
	}
150
	}
149
 
151
 
150
	return quot;
152
	return quot;
151
}
153
}
152
EXPORT_SYMBOL(div64_u64);
154
EXPORT_SYMBOL(div64_u64);
153
#endif
155
#endif
154
 
156
 
155
/**
157
/**
156
 * div64_s64 - signed 64bit divide with 64bit divisor
158
 * div64_s64 - signed 64bit divide with 64bit divisor
157
 * @dividend:	64bit dividend
159
 * @dividend:	64bit dividend
158
 * @divisor:	64bit divisor
160
 * @divisor:	64bit divisor
159
 */
161
 */
160
#ifndef div64_s64
162
#ifndef div64_s64
161
s64 div64_s64(s64 dividend, s64 divisor)
163
s64 div64_s64(s64 dividend, s64 divisor)
162
{
164
{
163
	s64 quot, t;
165
	s64 quot, t;
164
 
166
 
165
	quot = div64_u64(abs(dividend), abs(divisor));
167
	quot = div64_u64(abs(dividend), abs(divisor));
166
	t = (dividend ^ divisor) >> 63;
168
	t = (dividend ^ divisor) >> 63;
167
 
169
 
168
	return (quot ^ t) - t;
170
	return (quot ^ t) - t;
169
}
171
}
170
EXPORT_SYMBOL(div64_s64);
172
EXPORT_SYMBOL(div64_s64);
171
#endif
173
#endif
172
 
174
 
173
#endif /* BITS_PER_LONG == 32 */
175
#endif /* BITS_PER_LONG == 32 */
174
 
176
 
175
/*
177
/*
176
 * Iterative div/mod for use when dividend is not expected to be much
178
 * Iterative div/mod for use when dividend is not expected to be much
177
 * bigger than divisor.
179
 * bigger than divisor.
178
 */
180
 */
179
u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
181
u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
180
{
182
{
181
	return __iter_div_u64_rem(dividend, divisor, remainder);
183
	return __iter_div_u64_rem(dividend, divisor, remainder);
182
}
184
}
183
EXPORT_SYMBOL(iter_div_u64_rem);
185
EXPORT_SYMBOL(iter_div_u64_rem);