Subversion Repositories Kolibri OS

Compare Revisions

No changes between revisions

Regard whitespace Rev 8584 → Rev 8585

/programs/media/qr_tool/Makefile
0,0 → 1,32
CC = kos32-gcc
LD = kos32-ld
 
SDK_DIR:= /home/programist/KOS_SVN/contrib/sdk
CLAYER:= /home/programist/KOS_SVN/contrib/C_Layer
 
LDFLAGS = -static -S -nostdlib -T $(SDK_DIR)/sources/newlib/app-dynamic.lds \
--image-base 0 -lquirc -lgcc -ldll -lc.dll
 
# caution: without -mno-ms-bitfields below, pagefault occurs (why ? idk)
CFLAGS = -g -U_Win32 -U_WIN32 -U__MINGW32__ -std=c99 -mno-ms-bitfields
 
INCLUDES= -I. -Ilib -I$(SDK_DIR)/sources/newlib/libc/include -I$(CLAYER)/INCLUDE
LIBPATH:= -L $(SDK_DIR)/lib -L /home/autobuild/tools/win32/mingw32/lib -L.
 
OBJPATH = $(CLAYER)/OBJ
 
SOURCES = qr_tool.c
 
OBJECTS = $(patsubst %.c, %.o, $(SOURCES))
 
all: qr_tool
 
qr_tool: $(OBJECTS)
$(LD) $(LIBPATH) --subsystem windows -o $@ $^ $(OBJPATH)/loadboxlib.obj $(OBJPATH)/loadproclib.obj $(OBJPATH)/loadlibimg.obj $(LDFLAGS)
kos32-objcopy $@ -O binary
 
%.o : %.c Makefile
$(CC) -c $(INCLUDES) $(CFLAGS) -o $@ $<
 
clean:
rm -f *.o qr_tool
/programs/media/qr_tool/Makefile_lib
0,0 → 1,26
CC = kos32-gcc
AR = kos32-ar
 
SDK_DIR:= /home/programist/KOS_SVN/contrib/sdk
 
INCLUDES= -Ilib -I$(SDK_DIR)/sources/newlib/libc/include
 
CFLAGS = -O2 -std=c99 -Wall -W #-D_FILE_OFFSET_BITS=64
ARFLAGS = -rcs
 
SOURCES = lib/decode.c lib/identify.c lib/quirc.c lib/version_db.c
HEADERS = lib/quirc.h lib/quirc_internal.h
OBJECTS = $(patsubst %.c, %.o, $(SOURCES))
 
.PHONY: all clean
 
all: libquirc.a
 
libquirc.a: $(OBJECTS)
$(AR) $(ARFLAGS) $@ $(OBJECTS)
 
%.o : %.c $(HEADERS) Makefile
$(CC) -c $(INCLUDES) $(CFLAGS) -o $@ $<
 
clean:
rm -f *.o lib/*.o libquirc.a
/programs/media/qr_tool/lib/decode.c
0,0 → 1,933
/* quirc -- QR-code recognition library
* Copyright (C) 2010-2012 Daniel Beer <dlbeer@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
 
#include "quirc_internal.h"
 
#include <string.h>
#include <stdlib.h>
 
#define MAX_POLY 64
 
/************************************************************************
* Galois fields
*/
 
struct galois_field {
int p;
const uint8_t *log;
const uint8_t *exp;
};
 
static const uint8_t gf16_exp[16] = {
0x01, 0x02, 0x04, 0x08, 0x03, 0x06, 0x0c, 0x0b,
0x05, 0x0a, 0x07, 0x0e, 0x0f, 0x0d, 0x09, 0x01
};
 
static const uint8_t gf16_log[16] = {
0x00, 0x0f, 0x01, 0x04, 0x02, 0x08, 0x05, 0x0a,
0x03, 0x0e, 0x09, 0x07, 0x06, 0x0d, 0x0b, 0x0c
};
 
static const struct galois_field gf16 = {
.p = 15,
.log = gf16_log,
.exp = gf16_exp
};
 
static const uint8_t gf256_exp[256] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x1d, 0x3a, 0x74, 0xe8, 0xcd, 0x87, 0x13, 0x26,
0x4c, 0x98, 0x2d, 0x5a, 0xb4, 0x75, 0xea, 0xc9,
0x8f, 0x03, 0x06, 0x0c, 0x18, 0x30, 0x60, 0xc0,
0x9d, 0x27, 0x4e, 0x9c, 0x25, 0x4a, 0x94, 0x35,
0x6a, 0xd4, 0xb5, 0x77, 0xee, 0xc1, 0x9f, 0x23,
0x46, 0x8c, 0x05, 0x0a, 0x14, 0x28, 0x50, 0xa0,
0x5d, 0xba, 0x69, 0xd2, 0xb9, 0x6f, 0xde, 0xa1,
0x5f, 0xbe, 0x61, 0xc2, 0x99, 0x2f, 0x5e, 0xbc,
0x65, 0xca, 0x89, 0x0f, 0x1e, 0x3c, 0x78, 0xf0,
0xfd, 0xe7, 0xd3, 0xbb, 0x6b, 0xd6, 0xb1, 0x7f,
0xfe, 0xe1, 0xdf, 0xa3, 0x5b, 0xb6, 0x71, 0xe2,
0xd9, 0xaf, 0x43, 0x86, 0x11, 0x22, 0x44, 0x88,
0x0d, 0x1a, 0x34, 0x68, 0xd0, 0xbd, 0x67, 0xce,
0x81, 0x1f, 0x3e, 0x7c, 0xf8, 0xed, 0xc7, 0x93,
0x3b, 0x76, 0xec, 0xc5, 0x97, 0x33, 0x66, 0xcc,
0x85, 0x17, 0x2e, 0x5c, 0xb8, 0x6d, 0xda, 0xa9,
0x4f, 0x9e, 0x21, 0x42, 0x84, 0x15, 0x2a, 0x54,
0xa8, 0x4d, 0x9a, 0x29, 0x52, 0xa4, 0x55, 0xaa,
0x49, 0x92, 0x39, 0x72, 0xe4, 0xd5, 0xb7, 0x73,
0xe6, 0xd1, 0xbf, 0x63, 0xc6, 0x91, 0x3f, 0x7e,
0xfc, 0xe5, 0xd7, 0xb3, 0x7b, 0xf6, 0xf1, 0xff,
0xe3, 0xdb, 0xab, 0x4b, 0x96, 0x31, 0x62, 0xc4,
0x95, 0x37, 0x6e, 0xdc, 0xa5, 0x57, 0xae, 0x41,
0x82, 0x19, 0x32, 0x64, 0xc8, 0x8d, 0x07, 0x0e,
0x1c, 0x38, 0x70, 0xe0, 0xdd, 0xa7, 0x53, 0xa6,
0x51, 0xa2, 0x59, 0xb2, 0x79, 0xf2, 0xf9, 0xef,
0xc3, 0x9b, 0x2b, 0x56, 0xac, 0x45, 0x8a, 0x09,
0x12, 0x24, 0x48, 0x90, 0x3d, 0x7a, 0xf4, 0xf5,
0xf7, 0xf3, 0xfb, 0xeb, 0xcb, 0x8b, 0x0b, 0x16,
0x2c, 0x58, 0xb0, 0x7d, 0xfa, 0xe9, 0xcf, 0x83,
0x1b, 0x36, 0x6c, 0xd8, 0xad, 0x47, 0x8e, 0x01
};
 
static const uint8_t gf256_log[256] = {
0x00, 0xff, 0x01, 0x19, 0x02, 0x32, 0x1a, 0xc6,
0x03, 0xdf, 0x33, 0xee, 0x1b, 0x68, 0xc7, 0x4b,
0x04, 0x64, 0xe0, 0x0e, 0x34, 0x8d, 0xef, 0x81,
0x1c, 0xc1, 0x69, 0xf8, 0xc8, 0x08, 0x4c, 0x71,
0x05, 0x8a, 0x65, 0x2f, 0xe1, 0x24, 0x0f, 0x21,
0x35, 0x93, 0x8e, 0xda, 0xf0, 0x12, 0x82, 0x45,
0x1d, 0xb5, 0xc2, 0x7d, 0x6a, 0x27, 0xf9, 0xb9,
0xc9, 0x9a, 0x09, 0x78, 0x4d, 0xe4, 0x72, 0xa6,
0x06, 0xbf, 0x8b, 0x62, 0x66, 0xdd, 0x30, 0xfd,
0xe2, 0x98, 0x25, 0xb3, 0x10, 0x91, 0x22, 0x88,
0x36, 0xd0, 0x94, 0xce, 0x8f, 0x96, 0xdb, 0xbd,
0xf1, 0xd2, 0x13, 0x5c, 0x83, 0x38, 0x46, 0x40,
0x1e, 0x42, 0xb6, 0xa3, 0xc3, 0x48, 0x7e, 0x6e,
0x6b, 0x3a, 0x28, 0x54, 0xfa, 0x85, 0xba, 0x3d,
0xca, 0x5e, 0x9b, 0x9f, 0x0a, 0x15, 0x79, 0x2b,
0x4e, 0xd4, 0xe5, 0xac, 0x73, 0xf3, 0xa7, 0x57,
0x07, 0x70, 0xc0, 0xf7, 0x8c, 0x80, 0x63, 0x0d,
0x67, 0x4a, 0xde, 0xed, 0x31, 0xc5, 0xfe, 0x18,
0xe3, 0xa5, 0x99, 0x77, 0x26, 0xb8, 0xb4, 0x7c,
0x11, 0x44, 0x92, 0xd9, 0x23, 0x20, 0x89, 0x2e,
0x37, 0x3f, 0xd1, 0x5b, 0x95, 0xbc, 0xcf, 0xcd,
0x90, 0x87, 0x97, 0xb2, 0xdc, 0xfc, 0xbe, 0x61,
0xf2, 0x56, 0xd3, 0xab, 0x14, 0x2a, 0x5d, 0x9e,
0x84, 0x3c, 0x39, 0x53, 0x47, 0x6d, 0x41, 0xa2,
0x1f, 0x2d, 0x43, 0xd8, 0xb7, 0x7b, 0xa4, 0x76,
0xc4, 0x17, 0x49, 0xec, 0x7f, 0x0c, 0x6f, 0xf6,
0x6c, 0xa1, 0x3b, 0x52, 0x29, 0x9d, 0x55, 0xaa,
0xfb, 0x60, 0x86, 0xb1, 0xbb, 0xcc, 0x3e, 0x5a,
0xcb, 0x59, 0x5f, 0xb0, 0x9c, 0xa9, 0xa0, 0x51,
0x0b, 0xf5, 0x16, 0xeb, 0x7a, 0x75, 0x2c, 0xd7,
0x4f, 0xae, 0xd5, 0xe9, 0xe6, 0xe7, 0xad, 0xe8,
0x74, 0xd6, 0xf4, 0xea, 0xa8, 0x50, 0x58, 0xaf
};
 
static const struct galois_field gf256 = {
.p = 255,
.log = gf256_log,
.exp = gf256_exp
};
 
/************************************************************************
* Polynomial operations
*/
 
static void poly_add(uint8_t *dst, const uint8_t *src, uint8_t c,
int shift, const struct galois_field *gf)
{
int i;
int log_c = gf->log[c];
 
if (!c)
return;
 
for (i = 0; i < MAX_POLY; i++) {
int p = i + shift;
uint8_t v = src[i];
 
if (p < 0 || p >= MAX_POLY)
continue;
if (!v)
continue;
 
dst[p] ^= gf->exp[(gf->log[v] + log_c) % gf->p];
}
}
 
static uint8_t poly_eval(const uint8_t *s, uint8_t x,
const struct galois_field *gf)
{
int i;
uint8_t sum = 0;
uint8_t log_x = gf->log[x];
 
if (!x)
return s[0];
 
for (i = 0; i < MAX_POLY; i++) {
uint8_t c = s[i];
 
if (!c)
continue;
 
sum ^= gf->exp[(gf->log[c] + log_x * i) % gf->p];
}
 
return sum;
}
 
/************************************************************************
* Berlekamp-Massey algorithm for finding error locator polynomials.
*/
 
static void berlekamp_massey(const uint8_t *s, int N,
const struct galois_field *gf,
uint8_t *sigma)
{
uint8_t C[MAX_POLY];
uint8_t B[MAX_POLY];
int L = 0;
int m = 1;
uint8_t b = 1;
int n;
 
memset(B, 0, sizeof(B));
memset(C, 0, sizeof(C));
B[0] = 1;
C[0] = 1;
 
for (n = 0; n < N; n++) {
uint8_t d = s[n];
uint8_t mult;
int i;
 
for (i = 1; i <= L; i++) {
if (!(C[i] && s[n - i]))
continue;
 
d ^= gf->exp[(gf->log[C[i]] +
gf->log[s[n - i]]) %
gf->p];
}
 
mult = gf->exp[(gf->p - gf->log[b] + gf->log[d]) % gf->p];
 
if (!d) {
m++;
} else if (L * 2 <= n) {
uint8_t T[MAX_POLY];
 
memcpy(T, C, sizeof(T));
poly_add(C, B, mult, m, gf);
memcpy(B, T, sizeof(B));
L = n + 1 - L;
b = d;
m = 1;
} else {
poly_add(C, B, mult, m, gf);
m++;
}
}
 
memcpy(sigma, C, MAX_POLY);
}
 
/************************************************************************
* Code stream error correction
*
* Generator polynomial for GF(2^8) is x^8 + x^4 + x^3 + x^2 + 1
*/
 
static int block_syndromes(const uint8_t *data, int bs, int npar, uint8_t *s)
{
int nonzero = 0;
int i;
 
memset(s, 0, MAX_POLY);
 
for (i = 0; i < npar; i++) {
int j;
 
for (j = 0; j < bs; j++) {
uint8_t c = data[bs - j - 1];
 
if (!c)
continue;
 
s[i] ^= gf256_exp[((int)gf256_log[c] +
i * j) % 255];
}
 
if (s[i])
nonzero = 1;
}
 
return nonzero;
}
 
static void eloc_poly(uint8_t *omega,
const uint8_t *s, const uint8_t *sigma,
int npar)
{
int i;
 
memset(omega, 0, MAX_POLY);
 
for (i = 0; i < npar; i++) {
const uint8_t a = sigma[i];
const uint8_t log_a = gf256_log[a];
int j;
 
if (!a)
continue;
 
for (j = 0; j + 1 < MAX_POLY; j++) {
const uint8_t b = s[j + 1];
 
if (i + j >= npar)
break;
 
if (!b)
continue;
 
omega[i + j] ^=
gf256_exp[(log_a + gf256_log[b]) % 255];
}
}
}
 
static quirc_decode_error_t correct_block(uint8_t *data,
const struct quirc_rs_params *ecc)
{
int npar = ecc->bs - ecc->dw;
uint8_t s[MAX_POLY];
uint8_t sigma[MAX_POLY];
uint8_t sigma_deriv[MAX_POLY];
uint8_t omega[MAX_POLY];
int i;
 
/* Compute syndrome vector */
if (!block_syndromes(data, ecc->bs, npar, s))
return QUIRC_SUCCESS;
 
berlekamp_massey(s, npar, &gf256, sigma);
 
/* Compute derivative of sigma */
memset(sigma_deriv, 0, MAX_POLY);
for (i = 0; i + 1 < MAX_POLY; i += 2)
sigma_deriv[i] = sigma[i + 1];
 
/* Compute error evaluator polynomial */
eloc_poly(omega, s, sigma, npar - 1);
 
/* Find error locations and magnitudes */
for (i = 0; i < ecc->bs; i++) {
uint8_t xinv = gf256_exp[255 - i];
 
if (!poly_eval(sigma, xinv, &gf256)) {
uint8_t sd_x = poly_eval(sigma_deriv, xinv, &gf256);
uint8_t omega_x = poly_eval(omega, xinv, &gf256);
uint8_t error = gf256_exp[(255 - gf256_log[sd_x] +
gf256_log[omega_x]) % 255];
 
data[ecc->bs - i - 1] ^= error;
}
}
 
if (block_syndromes(data, ecc->bs, npar, s))
return QUIRC_ERROR_DATA_ECC;
 
return QUIRC_SUCCESS;
}
 
/************************************************************************
* Format value error correction
*
* Generator polynomial for GF(2^4) is x^4 + x + 1
*/
 
#define FORMAT_MAX_ERROR 3
#define FORMAT_SYNDROMES (FORMAT_MAX_ERROR * 2)
#define FORMAT_BITS 15
 
static int format_syndromes(uint16_t u, uint8_t *s)
{
int i;
int nonzero = 0;
 
memset(s, 0, MAX_POLY);
 
for (i = 0; i < FORMAT_SYNDROMES; i++) {
int j;
 
s[i] = 0;
for (j = 0; j < FORMAT_BITS; j++)
if (u & (1 << j))
s[i] ^= gf16_exp[((i + 1) * j) % 15];
 
if (s[i])
nonzero = 1;
}
 
return nonzero;
}
 
static quirc_decode_error_t correct_format(uint16_t *f_ret)
{
uint16_t u = *f_ret;
int i;
uint8_t s[MAX_POLY];
uint8_t sigma[MAX_POLY];
 
/* Evaluate U (received codeword) at each of alpha_1 .. alpha_6
* to get S_1 .. S_6 (but we index them from 0).
*/
if (!format_syndromes(u, s))
return QUIRC_SUCCESS;
 
berlekamp_massey(s, FORMAT_SYNDROMES, &gf16, sigma);
 
/* Now, find the roots of the polynomial */
for (i = 0; i < 15; i++)
if (!poly_eval(sigma, gf16_exp[15 - i], &gf16))
u ^= (1 << i);
 
if (format_syndromes(u, s))
return QUIRC_ERROR_FORMAT_ECC;
 
*f_ret = u;
return QUIRC_SUCCESS;
}
 
/************************************************************************
* Decoder algorithm
*/
 
struct datastream {
uint8_t raw[QUIRC_MAX_PAYLOAD];
int data_bits;
int ptr;
 
uint8_t data[QUIRC_MAX_PAYLOAD];
};
 
static inline int grid_bit(const struct quirc_code *code, int x, int y)
{
int p = y * code->size + x;
return (code->cell_bitmap[p >> 3] >> (p & 7)) & 1;
}
 
static quirc_decode_error_t read_format(const struct quirc_code *code,
struct quirc_data *data, int which)
{
int i;
uint16_t format = 0;
uint16_t fdata;
quirc_decode_error_t err;
 
if (which) {
for (i = 0; i < 7; i++)
format = (format << 1) |
grid_bit(code, 8, code->size - 1 - i);
for (i = 0; i < 8; i++)
format = (format << 1) |
grid_bit(code, code->size - 8 + i, 8);
} else {
static const int xs[15] = {
8, 8, 8, 8, 8, 8, 8, 8, 7, 5, 4, 3, 2, 1, 0
};
static const int ys[15] = {
0, 1, 2, 3, 4, 5, 7, 8, 8, 8, 8, 8, 8, 8, 8
};
 
for (i = 14; i >= 0; i--)
format = (format << 1) | grid_bit(code, xs[i], ys[i]);
}
 
format ^= 0x5412;
 
err = correct_format(&format);
if (err)
return err;
 
fdata = format >> 10;
data->ecc_level = fdata >> 3;
data->mask = fdata & 7;
 
return QUIRC_SUCCESS;
}
 
static int mask_bit(int mask, int i, int j)
{
switch (mask) {
case 0: return !((i + j) % 2);
case 1: return !(i % 2);
case 2: return !(j % 3);
case 3: return !((i + j) % 3);
case 4: return !(((i / 2) + (j / 3)) % 2);
case 5: return !((i * j) % 2 + (i * j) % 3);
case 6: return !(((i * j) % 2 + (i * j) % 3) % 2);
case 7: return !(((i * j) % 3 + (i + j) % 2) % 2);
}
 
return 0;
}
 
static int reserved_cell(int version, int i, int j)
{
const struct quirc_version_info *ver = &quirc_version_db[version];
int size = version * 4 + 17;
int ai = -1, aj = -1, a;
 
/* Finder + format: top left */
if (i < 9 && j < 9)
return 1;
 
/* Finder + format: bottom left */
if (i + 8 >= size && j < 9)
return 1;
 
/* Finder + format: top right */
if (i < 9 && j + 8 >= size)
return 1;
 
/* Exclude timing patterns */
if (i == 6 || j == 6)
return 1;
 
/* Exclude version info, if it exists. Version info sits adjacent to
* the top-right and bottom-left finders in three rows, bounded by
* the timing pattern.
*/
if (version >= 7) {
if (i < 6 && j + 11 >= size)
return 1;
if (i + 11 >= size && j < 6)
return 1;
}
 
/* Exclude alignment patterns */
for (a = 0; a < QUIRC_MAX_ALIGNMENT && ver->apat[a]; a++) {
int p = ver->apat[a];
 
if (abs(p - i) < 3)
ai = a;
if (abs(p - j) < 3)
aj = a;
}
 
if (ai >= 0 && aj >= 0) {
a--;
if (ai > 0 && ai < a)
return 1;
if (aj > 0 && aj < a)
return 1;
if (aj == a && ai == a)
return 1;
}
 
return 0;
}
 
static void read_bit(const struct quirc_code *code,
struct quirc_data *data,
struct datastream *ds, int i, int j)
{
int bitpos = ds->data_bits & 7;
int bytepos = ds->data_bits >> 3;
int v = grid_bit(code, j, i);
 
if (mask_bit(data->mask, i, j))
v ^= 1;
 
if (v)
ds->raw[bytepos] |= (0x80 >> bitpos);
 
ds->data_bits++;
}
 
static void read_data(const struct quirc_code *code,
struct quirc_data *data,
struct datastream *ds)
{
int y = code->size - 1;
int x = code->size - 1;
int dir = -1;
 
while (x > 0) {
if (x == 6)
x--;
 
if (!reserved_cell(data->version, y, x))
read_bit(code, data, ds, y, x);
 
if (!reserved_cell(data->version, y, x - 1))
read_bit(code, data, ds, y, x - 1);
 
y += dir;
if (y < 0 || y >= code->size) {
dir = -dir;
x -= 2;
y += dir;
}
}
}
 
static quirc_decode_error_t codestream_ecc(struct quirc_data *data,
struct datastream *ds)
{
const struct quirc_version_info *ver =
&quirc_version_db[data->version];
const struct quirc_rs_params *sb_ecc = &ver->ecc[data->ecc_level];
struct quirc_rs_params lb_ecc;
const int lb_count =
(ver->data_bytes - sb_ecc->bs * sb_ecc->ns) / (sb_ecc->bs + 1);
const int bc = lb_count + sb_ecc->ns;
const int ecc_offset = sb_ecc->dw * bc + lb_count;
int dst_offset = 0;
int i;
 
memcpy(&lb_ecc, sb_ecc, sizeof(lb_ecc));
lb_ecc.dw++;
lb_ecc.bs++;
 
for (i = 0; i < bc; i++) {
uint8_t *dst = ds->data + dst_offset;
const struct quirc_rs_params *ecc =
(i < sb_ecc->ns) ? sb_ecc : &lb_ecc;
const int num_ec = ecc->bs - ecc->dw;
quirc_decode_error_t err;
int j;
 
for (j = 0; j < ecc->dw; j++)
dst[j] = ds->raw[j * bc + i];
for (j = 0; j < num_ec; j++)
dst[ecc->dw + j] = ds->raw[ecc_offset + j * bc + i];
 
err = correct_block(dst, ecc);
if (err)
return err;
 
dst_offset += ecc->dw;
}
 
ds->data_bits = dst_offset * 8;
 
return QUIRC_SUCCESS;
}
 
static inline int bits_remaining(const struct datastream *ds)
{
return ds->data_bits - ds->ptr;
}
 
static int take_bits(struct datastream *ds, int len)
{
int ret = 0;
 
while (len && (ds->ptr < ds->data_bits)) {
uint8_t b = ds->data[ds->ptr >> 3];
int bitpos = ds->ptr & 7;
 
ret <<= 1;
if ((b << bitpos) & 0x80)
ret |= 1;
 
ds->ptr++;
len--;
}
 
return ret;
}
 
static int numeric_tuple(struct quirc_data *data,
struct datastream *ds,
int bits, int digits)
{
int tuple;
int i;
 
if (bits_remaining(ds) < bits)
return -1;
 
tuple = take_bits(ds, bits);
 
for (i = digits - 1; i >= 0; i--) {
data->payload[data->payload_len + i] = tuple % 10 + '0';
tuple /= 10;
}
 
data->payload_len += digits;
return 0;
}
 
static quirc_decode_error_t decode_numeric(struct quirc_data *data,
struct datastream *ds)
{
int bits = 14;
int count;
 
if (data->version < 10)
bits = 10;
else if (data->version < 27)
bits = 12;
 
count = take_bits(ds, bits);
if (data->payload_len + count + 1 > QUIRC_MAX_PAYLOAD)
return QUIRC_ERROR_DATA_OVERFLOW;
 
while (count >= 3) {
if (numeric_tuple(data, ds, 10, 3) < 0)
return QUIRC_ERROR_DATA_UNDERFLOW;
count -= 3;
}
 
if (count >= 2) {
if (numeric_tuple(data, ds, 7, 2) < 0)
return QUIRC_ERROR_DATA_UNDERFLOW;
count -= 2;
}
 
if (count) {
if (numeric_tuple(data, ds, 4, 1) < 0)
return QUIRC_ERROR_DATA_UNDERFLOW;
count--;
}
 
return QUIRC_SUCCESS;
}
 
static int alpha_tuple(struct quirc_data *data,
struct datastream *ds,
int bits, int digits)
{
int tuple;
int i;
 
if (bits_remaining(ds) < bits)
return -1;
 
tuple = take_bits(ds, bits);
 
for (i = 0; i < digits; i++) {
static const char *alpha_map =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:";
 
data->payload[data->payload_len + digits - i - 1] =
alpha_map[tuple % 45];
tuple /= 45;
}
 
data->payload_len += digits;
return 0;
}
 
static quirc_decode_error_t decode_alpha(struct quirc_data *data,
struct datastream *ds)
{
int bits = 13;
int count;
 
if (data->version < 10)
bits = 9;
else if (data->version < 27)
bits = 11;
 
count = take_bits(ds, bits);
if (data->payload_len + count + 1 > QUIRC_MAX_PAYLOAD)
return QUIRC_ERROR_DATA_OVERFLOW;
 
while (count >= 2) {
if (alpha_tuple(data, ds, 11, 2) < 0)
return QUIRC_ERROR_DATA_UNDERFLOW;
count -= 2;
}
 
if (count) {
if (alpha_tuple(data, ds, 6, 1) < 0)
return QUIRC_ERROR_DATA_UNDERFLOW;
count--;
}
 
return QUIRC_SUCCESS;
}
 
static quirc_decode_error_t decode_byte(struct quirc_data *data,
struct datastream *ds)
{
int bits = 16;
int count;
int i;
 
if (data->version < 10)
bits = 8;
 
count = take_bits(ds, bits);
if (data->payload_len + count + 1 > QUIRC_MAX_PAYLOAD)
return QUIRC_ERROR_DATA_OVERFLOW;
if (bits_remaining(ds) < count * 8)
return QUIRC_ERROR_DATA_UNDERFLOW;
 
for (i = 0; i < count; i++)
data->payload[data->payload_len++] = take_bits(ds, 8);
 
return QUIRC_SUCCESS;
}
 
static quirc_decode_error_t decode_kanji(struct quirc_data *data,
struct datastream *ds)
{
int bits = 12;
int count;
int i;
 
if (data->version < 10)
bits = 8;
else if (data->version < 27)
bits = 10;
 
count = take_bits(ds, bits);
if (data->payload_len + count * 2 + 1 > QUIRC_MAX_PAYLOAD)
return QUIRC_ERROR_DATA_OVERFLOW;
if (bits_remaining(ds) < count * 13)
return QUIRC_ERROR_DATA_UNDERFLOW;
 
for (i = 0; i < count; i++) {
int d = take_bits(ds, 13);
int msB = d / 0xc0;
int lsB = d % 0xc0;
int intermediate = (msB << 8) | lsB;
uint16_t sjw;
 
if (intermediate + 0x8140 <= 0x9ffc) {
/* bytes are in the range 0x8140 to 0x9FFC */
sjw = intermediate + 0x8140;
} else {
/* bytes are in the range 0xE040 to 0xEBBF */
sjw = intermediate + 0xc140;
}
 
data->payload[data->payload_len++] = sjw >> 8;
data->payload[data->payload_len++] = sjw & 0xff;
}
 
return QUIRC_SUCCESS;
}
 
static quirc_decode_error_t decode_eci(struct quirc_data *data,
struct datastream *ds)
{
if (bits_remaining(ds) < 8)
return QUIRC_ERROR_DATA_UNDERFLOW;
 
data->eci = take_bits(ds, 8);
 
if ((data->eci & 0xc0) == 0x80) {
if (bits_remaining(ds) < 8)
return QUIRC_ERROR_DATA_UNDERFLOW;
 
data->eci = (data->eci << 8) | take_bits(ds, 8);
} else if ((data->eci & 0xe0) == 0xc0) {
if (bits_remaining(ds) < 16)
return QUIRC_ERROR_DATA_UNDERFLOW;
 
data->eci = (data->eci << 16) | take_bits(ds, 16);
}
 
return QUIRC_SUCCESS;
}
 
static quirc_decode_error_t decode_payload(struct quirc_data *data,
struct datastream *ds)
{
while (bits_remaining(ds) >= 4) {
quirc_decode_error_t err = QUIRC_SUCCESS;
int type = take_bits(ds, 4);
 
switch (type) {
case QUIRC_DATA_TYPE_NUMERIC:
err = decode_numeric(data, ds);
break;
 
case QUIRC_DATA_TYPE_ALPHA:
err = decode_alpha(data, ds);
break;
 
case QUIRC_DATA_TYPE_BYTE:
err = decode_byte(data, ds);
break;
 
case QUIRC_DATA_TYPE_KANJI:
err = decode_kanji(data, ds);
break;
 
case 7:
err = decode_eci(data, ds);
break;
 
default:
goto done;
}
 
if (err)
return err;
 
if (!(type & (type - 1)) && (type > data->data_type))
data->data_type = type;
}
done:
 
/* Add nul terminator to all payloads */
if (data->payload_len >= (int) sizeof(data->payload))
data->payload_len--;
data->payload[data->payload_len] = 0;
 
return QUIRC_SUCCESS;
}
 
quirc_decode_error_t quirc_decode(const struct quirc_code *code,
struct quirc_data *data)
{
quirc_decode_error_t err;
struct datastream ds;
 
if ((code->size - 17) % 4)
return QUIRC_ERROR_INVALID_GRID_SIZE;
 
memset(data, 0, sizeof(*data));
memset(&ds, 0, sizeof(ds));
 
data->version = (code->size - 17) / 4;
 
if (data->version < 1 ||
data->version > QUIRC_MAX_VERSION)
return QUIRC_ERROR_INVALID_VERSION;
 
/* Read format information -- try both locations */
err = read_format(code, data, 0);
if (err)
err = read_format(code, data, 1);
if (err)
return err;
 
read_data(code, data, &ds);
err = codestream_ecc(data, &ds);
if (err)
return err;
 
err = decode_payload(data, &ds);
if (err)
return err;
 
return QUIRC_SUCCESS;
}
 
void quirc_flip(struct quirc_code *code)
{
struct quirc_code flipped = {0};
unsigned int offset = 0;
for (int y = 0; y < code->size; y++) {
for (int x = 0; x < code->size; x++) {
if (grid_bit(code, y, x)) {
flipped.cell_bitmap[offset >> 3u] |= (1u << (offset & 7u));
}
offset++;
}
}
memcpy(&code->cell_bitmap, &flipped.cell_bitmap, sizeof(flipped.cell_bitmap));
}
/programs/media/qr_tool/lib/identify.c
0,0 → 1,1153
/* quirc - QR-code recognition library
* Copyright (C) 2010-2012 Daniel Beer <dlbeer@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
 
/*#ifndef INT_MAX
#define INT_MAX 2147483647
#endif*/
#include <limits.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "quirc_internal.h"
 
/*----------------------------------------------------------------------------------------*/
 
/************************************************************************
* Linear algebra routines
*/
 
static int line_intersect(const struct quirc_point *p0,
const struct quirc_point *p1,
const struct quirc_point *q0,
const struct quirc_point *q1,
struct quirc_point *r)
{
/* (a, b) is perpendicular to line p */
int a = -(p1->y - p0->y);
int b = p1->x - p0->x;
 
/* (c, d) is perpendicular to line q */
int c = -(q1->y - q0->y);
int d = q1->x - q0->x;
 
/* e and f are dot products of the respective vectors with p and q */
int e = a * p1->x + b * p1->y;
int f = c * q1->x + d * q1->y;
 
/* Now we need to solve:
* [a b] [rx] [e]
* [c d] [ry] = [f]
*
* We do this by inverting the matrix and applying it to (e, f):
* [ d -b] [e] [rx]
* 1/det [-c a] [f] = [ry]
*/
int det = (a * d) - (b * c);
 
if (!det)
return 0;
 
r->x = (d * e - b * f) / det;
r->y = (-c * e + a * f) / det;
 
return 1;
}
 
static void perspective_setup(double *c,
const struct quirc_point *rect,
double w, double h)
{
double x0 = rect[0].x;
double y0 = rect[0].y;
double x1 = rect[1].x;
double y1 = rect[1].y;
double x2 = rect[2].x;
double y2 = rect[2].y;
double x3 = rect[3].x;
double y3 = rect[3].y;
 
double wden = w * (x2*y3 - x3*y2 + (x3-x2)*y1 + x1*(y2-y3));
double hden = h * (x2*y3 + x1*(y2-y3) - x3*y2 + (x3-x2)*y1);
 
c[0] = (x1*(x2*y3-x3*y2) + x0*(-x2*y3+x3*y2+(x2-x3)*y1) +
x1*(x3-x2)*y0) / wden;
c[1] = -(x0*(x2*y3+x1*(y2-y3)-x2*y1) - x1*x3*y2 + x2*x3*y1
+ (x1*x3-x2*x3)*y0) / hden;
c[2] = x0;
c[3] = (y0*(x1*(y3-y2)-x2*y3+x3*y2) + y1*(x2*y3-x3*y2) +
x0*y1*(y2-y3)) / wden;
c[4] = (x0*(y1*y3-y2*y3) + x1*y2*y3 - x2*y1*y3 +
y0*(x3*y2-x1*y2+(x2-x3)*y1)) / hden;
c[5] = y0;
c[6] = (x1*(y3-y2) + x0*(y2-y3) + (x2-x3)*y1 + (x3-x2)*y0) / wden;
c[7] = (-x2*y3 + x1*y3 + x3*y2 + x0*(y1-y2) - x3*y1 + (x2-x1)*y0) /
hden;
}
 
static void perspective_map(const double *c,
double u, double v, struct quirc_point *ret)
{
double den = c[6]*u + c[7]*v + 1.0;
double x = (c[0]*u + c[1]*v + c[2]) / den;
double y = (c[3]*u + c[4]*v + c[5]) / den;
 
ret->x = (int) rint(x);
ret->y = (int) rint(y);
}
 
static void perspective_unmap(const double *c,
const struct quirc_point *in,
double *u, double *v)
{
double x = in->x;
double y = in->y;
double den = -c[0]*c[7]*y + c[1]*c[6]*y + (c[3]*c[7]-c[4]*c[6])*x +
c[0]*c[4] - c[1]*c[3];
 
*u = -(c[1]*(y-c[5]) - c[2]*c[7]*y + (c[5]*c[7]-c[4])*x + c[2]*c[4]) /
den;
*v = (c[0]*(y-c[5]) - c[2]*c[6]*y + (c[5]*c[6]-c[3])*x + c[2]*c[3]) /
den;
}
 
/************************************************************************
* Span-based floodfill routine
*/
 
#define FLOOD_FILL_MAX_DEPTH 4096
 
typedef void (*span_func_t)(void *user_data, int y, int left, int right);
 
static void flood_fill_seed(struct quirc *q, int x, int y, int from, int to,
span_func_t func, void *user_data,
int depth)
{
int left = x;
int right = x;
int i;
quirc_pixel_t *row = q->pixels + y * q->w;
 
if (depth >= FLOOD_FILL_MAX_DEPTH)
return;
 
while (left > 0 && row[left - 1] == from)
left--;
 
while (right < q->w - 1 && row[right + 1] == from)
right++;
 
/* Fill the extent */
for (i = left; i <= right; i++)
row[i] = to;
 
if (func)
func(user_data, y, left, right);
 
/* Seed new flood-fills */
if (y > 0) {
row = q->pixels + (y - 1) * q->w;
 
for (i = left; i <= right; i++)
if (row[i] == from)
flood_fill_seed(q, i, y - 1, from, to,
func, user_data, depth + 1);
}
 
if (y < q->h - 1) {
row = q->pixels + (y + 1) * q->w;
 
for (i = left; i <= right; i++)
if (row[i] == from)
flood_fill_seed(q, i, y + 1, from, to,
func, user_data, depth + 1);
}
}
 
/************************************************************************
* Adaptive thresholding
*/
 
static uint8_t otsu(const struct quirc *q)
{
int numPixels = q->w * q->h;
 
// Calculate histogram
unsigned int histogram[UINT8_MAX + 1];
(void)memset(histogram, 0, sizeof(histogram));
uint8_t* ptr = q->image;
int length = numPixels;
while (length--) {
uint8_t value = *ptr++;
histogram[value]++;
}
 
// Calculate weighted sum of histogram values
unsigned int sum = 0;
unsigned int i = 0;
for (i = 0; i <= UINT8_MAX; ++i) {
sum += i * histogram[i];
}
 
// Compute threshold
int sumB = 0;
int q1 = 0;
double max = 0;
uint8_t threshold = 0;
for (i = 0; i <= UINT8_MAX; ++i) {
// Weighted background
q1 += histogram[i];
if (q1 == 0)
continue;
 
// Weighted foreground
const int q2 = numPixels - q1;
if (q2 == 0)
break;
 
sumB += i * histogram[i];
const double m1 = (double)sumB / q1;
const double m2 = ((double)sum - sumB) / q2;
const double m1m2 = m1 - m2;
const double variance = m1m2 * m1m2 * q1 * q2;
if (variance >= max) {
threshold = i;
max = variance;
}
}
 
return threshold;
}
 
static void area_count(void *user_data, int y, int left, int right)
{
((struct quirc_region *)user_data)->count += right - left + 1;
}
 
static int region_code(struct quirc *q, int x, int y)
{
int pixel;
struct quirc_region *box;
int region;
 
if (x < 0 || y < 0 || x >= q->w || y >= q->h)
return -1;
 
pixel = q->pixels[y * q->w + x];
 
if (pixel >= QUIRC_PIXEL_REGION)
return pixel;
 
if (pixel == QUIRC_PIXEL_WHITE)
return -1;
 
if (q->num_regions >= QUIRC_MAX_REGIONS)
return -1;
 
region = q->num_regions;
box = &q->regions[q->num_regions++];
 
memset(box, 0, sizeof(*box));
 
box->seed.x = x;
box->seed.y = y;
box->capstone = -1;
 
flood_fill_seed(q, x, y, pixel, region, area_count, box, 0);
 
return region;
}
 
struct polygon_score_data {
struct quirc_point ref;
 
int scores[4];
struct quirc_point *corners;
};
 
static void find_one_corner(void *user_data, int y, int left, int right)
{
struct polygon_score_data *psd =
(struct polygon_score_data *)user_data;
int xs[2] = {left, right};
int dy = y - psd->ref.y;
int i;
 
for (i = 0; i < 2; i++) {
int dx = xs[i] - psd->ref.x;
int d = dx * dx + dy * dy;
 
if (d > psd->scores[0]) {
psd->scores[0] = d;
psd->corners[0].x = xs[i];
psd->corners[0].y = y;
}
}
}
 
static void find_other_corners(void *user_data, int y, int left, int right)
{
struct polygon_score_data *psd =
(struct polygon_score_data *)user_data;
int xs[2] = {left, right};
int i;
 
for (i = 0; i < 2; i++) {
int up = xs[i] * psd->ref.x + y * psd->ref.y;
int right = xs[i] * -psd->ref.y + y * psd->ref.x;
int scores[4] = {up, right, -up, -right};
int j;
 
for (j = 0; j < 4; j++) {
if (scores[j] > psd->scores[j]) {
psd->scores[j] = scores[j];
psd->corners[j].x = xs[i];
psd->corners[j].y = y;
}
}
}
}
 
static void find_region_corners(struct quirc *q,
int rcode, const struct quirc_point *ref,
struct quirc_point *corners)
{
struct quirc_region *region = &q->regions[rcode];
struct polygon_score_data psd;
int i;
 
memset(&psd, 0, sizeof(psd));
psd.corners = corners;
 
memcpy(&psd.ref, ref, sizeof(psd.ref));
psd.scores[0] = -1;
flood_fill_seed(q, region->seed.x, region->seed.y,
rcode, QUIRC_PIXEL_BLACK,
find_one_corner, &psd, 0);
 
psd.ref.x = psd.corners[0].x - psd.ref.x;
psd.ref.y = psd.corners[0].y - psd.ref.y;
 
for (i = 0; i < 4; i++)
memcpy(&psd.corners[i], &region->seed,
sizeof(psd.corners[i]));
 
i = region->seed.x * psd.ref.x + region->seed.y * psd.ref.y;
psd.scores[0] = i;
psd.scores[2] = -i;
i = region->seed.x * -psd.ref.y + region->seed.y * psd.ref.x;
psd.scores[1] = i;
psd.scores[3] = -i;
 
flood_fill_seed(q, region->seed.x, region->seed.y,
QUIRC_PIXEL_BLACK, rcode,
find_other_corners, &psd, 0);
}
 
static void record_capstone(struct quirc *q, int ring, int stone)
{
struct quirc_region *stone_reg = &q->regions[stone];
struct quirc_region *ring_reg = &q->regions[ring];
struct quirc_capstone *capstone;
int cs_index;
 
if (q->num_capstones >= QUIRC_MAX_CAPSTONES)
return;
 
cs_index = q->num_capstones;
capstone = &q->capstones[q->num_capstones++];
 
memset(capstone, 0, sizeof(*capstone));
 
capstone->qr_grid = -1;
capstone->ring = ring;
capstone->stone = stone;
stone_reg->capstone = cs_index;
ring_reg->capstone = cs_index;
 
/* Find the corners of the ring */
find_region_corners(q, ring, &stone_reg->seed, capstone->corners);
 
/* Set up the perspective transform and find the center */
perspective_setup(capstone->c, capstone->corners, 7.0, 7.0);
perspective_map(capstone->c, 3.5, 3.5, &capstone->center);
}
 
static void test_capstone(struct quirc *q, int x, int y, int *pb)
{
int ring_right = region_code(q, x - pb[4], y);
int stone = region_code(q, x - pb[4] - pb[3] - pb[2], y);
int ring_left = region_code(q, x - pb[4] - pb[3] -
pb[2] - pb[1] - pb[0],
y);
struct quirc_region *stone_reg;
struct quirc_region *ring_reg;
int ratio;
 
if (ring_left < 0 || ring_right < 0 || stone < 0)
return;
 
/* Left and ring of ring should be connected */
if (ring_left != ring_right)
return;
 
/* Ring should be disconnected from stone */
if (ring_left == stone)
return;
 
stone_reg = &q->regions[stone];
ring_reg = &q->regions[ring_left];
 
/* Already detected */
if (stone_reg->capstone >= 0 || ring_reg->capstone >= 0)
return;
 
/* Ratio should ideally be 37.5 */
ratio = stone_reg->count * 100 / ring_reg->count;
if (ratio < 10 || ratio > 70)
return;
 
record_capstone(q, ring_left, stone);
}
 
static void finder_scan(struct quirc *q, int y)
{
quirc_pixel_t *row = q->pixels + y * q->w;
int x;
int last_color = 0;
int run_length = 0;
int run_count = 0;
int pb[5];
 
memset(pb, 0, sizeof(pb));
for (x = 0; x < q->w; x++) {
int color = row[x] ? 1 : 0;
 
if (x && color != last_color) {
memmove(pb, pb + 1, sizeof(pb[0]) * 4);
pb[4] = run_length;
run_length = 0;
run_count++;
 
if (!color && run_count >= 5) {
static int check[5] = {1, 1, 3, 1, 1};
int avg, err;
int i;
int ok = 1;
 
avg = (pb[0] + pb[1] + pb[3] + pb[4]) / 4;
err = avg * 3 / 4;
 
for (i = 0; i < 5; i++)
if (pb[i] < check[i] * avg - err ||
pb[i] > check[i] * avg + err)
ok = 0;
 
if (ok)
test_capstone(q, x, y, pb);
}
}
 
run_length++;
last_color = color;
}
}
 
static void find_alignment_pattern(struct quirc *q, int index)
{
struct quirc_grid *qr = &q->grids[index];
struct quirc_capstone *c0 = &q->capstones[qr->caps[0]];
struct quirc_capstone *c2 = &q->capstones[qr->caps[2]];
struct quirc_point a;
struct quirc_point b;
struct quirc_point c;
int size_estimate;
int step_size = 1;
int dir = 0;
double u, v;
 
/* Grab our previous estimate of the alignment pattern corner */
memcpy(&b, &qr->align, sizeof(b));
 
/* Guess another two corners of the alignment pattern so that we
* can estimate its size.
*/
perspective_unmap(c0->c, &b, &u, &v);
perspective_map(c0->c, u, v + 1.0, &a);
perspective_unmap(c2->c, &b, &u, &v);
perspective_map(c2->c, u + 1.0, v, &c);
 
size_estimate = abs((a.x - b.x) * -(c.y - b.y) +
(a.y - b.y) * (c.x - b.x));
 
/* Spiral outwards from the estimate point until we find something
* roughly the right size. Don't look too far from the estimate
* point.
*/
while (step_size * step_size < size_estimate * 100) {
static const int dx_map[] = {1, 0, -1, 0};
static const int dy_map[] = {0, -1, 0, 1};
int i;
 
for (i = 0; i < step_size; i++) {
int code = region_code(q, b.x, b.y);
 
if (code >= 0) {
struct quirc_region *reg = &q->regions[code];
 
if (reg->count >= size_estimate / 2 &&
reg->count <= size_estimate * 2) {
qr->align_region = code;
return;
}
}
 
b.x += dx_map[dir];
b.y += dy_map[dir];
}
 
dir = (dir + 1) % 4;
if (!(dir & 1))
step_size++;
}
}
 
static void find_leftmost_to_line(void *user_data, int y, int left, int right)
{
struct polygon_score_data *psd =
(struct polygon_score_data *)user_data;
int xs[2] = {left, right};
int i;
 
for (i = 0; i < 2; i++) {
int d = -psd->ref.y * xs[i] + psd->ref.x * y;
 
if (d < psd->scores[0]) {
psd->scores[0] = d;
psd->corners[0].x = xs[i];
psd->corners[0].y = y;
}
}
}
 
/* Do a Bresenham scan from one point to another and count the number
* of black/white transitions.
*/
static int timing_scan(const struct quirc *q,
const struct quirc_point *p0,
const struct quirc_point *p1)
{
int n = p1->x - p0->x;
int d = p1->y - p0->y;
int x = p0->x;
int y = p0->y;
int *dom, *nondom;
int dom_step;
int nondom_step;
int a = 0;
int i;
int run_length = 0;
int count = 0;
 
if (p0->x < 0 || p0->y < 0 || p0->x >= q->w || p0->y >= q->h)
return -1;
if (p1->x < 0 || p1->y < 0 || p1->x >= q->w || p1->y >= q->h)
return -1;
 
if (abs(n) > abs(d)) {
int swap = n;
 
n = d;
d = swap;
 
dom = &x;
nondom = &y;
} else {
dom = &y;
nondom = &x;
}
 
if (n < 0) {
n = -n;
nondom_step = -1;
} else {
nondom_step = 1;
}
 
if (d < 0) {
d = -d;
dom_step = -1;
} else {
dom_step = 1;
}
 
x = p0->x;
y = p0->y;
for (i = 0; i <= d; i++) {
int pixel;
 
if (y < 0 || y >= q->h || x < 0 || x >= q->w)
break;
 
pixel = q->pixels[y * q->w + x];
 
if (pixel) {
if (run_length >= 2)
count++;
run_length = 0;
} else {
run_length++;
}
 
a += n;
*dom += dom_step;
if (a >= d) {
*nondom += nondom_step;
a -= d;
}
}
 
return count;
}
 
/* Try the measure the timing pattern for a given QR code. This does
* not require the global perspective to have been set up, but it
* does require that the capstone corners have been set to their
* canonical rotation.
*
* For each capstone, we find a point in the middle of the ring band
* which is nearest the centre of the code. Using these points, we do
* a horizontal and a vertical timing scan.
*/
static int measure_timing_pattern(struct quirc *q, int index)
{
struct quirc_grid *qr = &q->grids[index];
int i;
int scan;
int ver;
int size;
 
for (i = 0; i < 3; i++) {
static const double us[] = {6.5, 6.5, 0.5};
static const double vs[] = {0.5, 6.5, 6.5};
struct quirc_capstone *cap = &q->capstones[qr->caps[i]];
 
perspective_map(cap->c, us[i], vs[i], &qr->tpep[i]);
}
 
qr->hscan = timing_scan(q, &qr->tpep[1], &qr->tpep[2]);
qr->vscan = timing_scan(q, &qr->tpep[1], &qr->tpep[0]);
 
scan = qr->hscan;
if (qr->vscan > scan)
scan = qr->vscan;
 
/* If neither scan worked, we can't go any further. */
if (scan < 0)
return -1;
 
/* Choose the nearest allowable grid size */
size = scan * 2 + 13;
ver = (size - 15) / 4;
if (ver > QUIRC_MAX_VERSION) {
return -1;
}
 
qr->grid_size = ver * 4 + 17;
return 0;
}
 
/* Read a cell from a grid using the currently set perspective
* transform. Returns +/- 1 for black/white, 0 for cells which are
* out of image bounds.
*/
static int read_cell(const struct quirc *q, int index, int x, int y)
{
const struct quirc_grid *qr = &q->grids[index];
struct quirc_point p;
 
perspective_map(qr->c, x + 0.5, y + 0.5, &p);
if (p.y < 0 || p.y >= q->h || p.x < 0 || p.x >= q->w)
return 0;
 
return q->pixels[p.y * q->w + p.x] ? 1 : -1;
}
 
static int fitness_cell(const struct quirc *q, int index, int x, int y)
{
const struct quirc_grid *qr = &q->grids[index];
int score = 0;
int u, v;
 
for (v = 0; v < 3; v++)
for (u = 0; u < 3; u++) {
static const double offsets[] = {0.3, 0.5, 0.7};
struct quirc_point p;
 
perspective_map(qr->c, x + offsets[u],
y + offsets[v], &p);
if (p.y < 0 || p.y >= q->h || p.x < 0 || p.x >= q->w)
continue;
 
if (q->pixels[p.y * q->w + p.x])
score++;
else
score--;
}
 
return score;
}
 
static int fitness_ring(const struct quirc *q, int index, int cx, int cy,
int radius)
{
int i;
int score = 0;
 
for (i = 0; i < radius * 2; i++) {
score += fitness_cell(q, index, cx - radius + i, cy - radius);
score += fitness_cell(q, index, cx - radius, cy + radius - i);
score += fitness_cell(q, index, cx + radius, cy - radius + i);
score += fitness_cell(q, index, cx + radius - i, cy + radius);
}
 
return score;
}
 
static int fitness_apat(const struct quirc *q, int index, int cx, int cy)
{
return fitness_cell(q, index, cx, cy) -
fitness_ring(q, index, cx, cy, 1) +
fitness_ring(q, index, cx, cy, 2);
}
 
static int fitness_capstone(const struct quirc *q, int index, int x, int y)
{
x += 3;
y += 3;
 
return fitness_cell(q, index, x, y) +
fitness_ring(q, index, x, y, 1) -
fitness_ring(q, index, x, y, 2) +
fitness_ring(q, index, x, y, 3);
}
 
/* Compute a fitness score for the currently configured perspective
* transform, using the features we expect to find by scanning the
* grid.
*/
static int fitness_all(const struct quirc *q, int index)
{
const struct quirc_grid *qr = &q->grids[index];
int version = (qr->grid_size - 17) / 4;
const struct quirc_version_info *info = &quirc_version_db[version];
int score = 0;
int i, j;
int ap_count;
 
/* Check the timing pattern */
for (i = 0; i < qr->grid_size - 14; i++) {
int expect = (i & 1) ? 1 : -1;
 
score += fitness_cell(q, index, i + 7, 6) * expect;
score += fitness_cell(q, index, 6, i + 7) * expect;
}
 
/* Check capstones */
score += fitness_capstone(q, index, 0, 0);
score += fitness_capstone(q, index, qr->grid_size - 7, 0);
score += fitness_capstone(q, index, 0, qr->grid_size - 7);
 
if (version < 0 || version > QUIRC_MAX_VERSION)
return score;
 
/* Check alignment patterns */
ap_count = 0;
while ((ap_count < QUIRC_MAX_ALIGNMENT) && info->apat[ap_count])
ap_count++;
 
for (i = 1; i + 1 < ap_count; i++) {
score += fitness_apat(q, index, 6, info->apat[i]);
score += fitness_apat(q, index, info->apat[i], 6);
}
 
for (i = 1; i < ap_count; i++)
for (j = 1; j < ap_count; j++)
score += fitness_apat(q, index,
info->apat[i], info->apat[j]);
 
return score;
}
 
static void jiggle_perspective(struct quirc *q, int index)
{
struct quirc_grid *qr = &q->grids[index];
int best = fitness_all(q, index);
int pass;
double adjustments[8];
int i;
 
for (i = 0; i < 8; i++)
adjustments[i] = qr->c[i] * 0.02;
 
for (pass = 0; pass < 5; pass++) {
for (i = 0; i < 16; i++) {
int j = i >> 1;
int test;
double old = qr->c[j];
double step = adjustments[j];
double new;
 
if (i & 1)
new = old + step;
else
new = old - step;
 
qr->c[j] = new;
test = fitness_all(q, index);
 
if (test > best)
best = test;
else
qr->c[j] = old;
}
 
for (i = 0; i < 8; i++)
adjustments[i] *= 0.5;
}
}
 
/* Once the capstones are in place and an alignment point has been
* chosen, we call this function to set up a grid-reading perspective
* transform.
*/
static void setup_qr_perspective(struct quirc *q, int index)
{
struct quirc_grid *qr = &q->grids[index];
struct quirc_point rect[4];
 
/* Set up the perspective map for reading the grid */
memcpy(&rect[0], &q->capstones[qr->caps[1]].corners[0],
sizeof(rect[0]));
memcpy(&rect[1], &q->capstones[qr->caps[2]].corners[0],
sizeof(rect[0]));
memcpy(&rect[2], &qr->align, sizeof(rect[0]));
memcpy(&rect[3], &q->capstones[qr->caps[0]].corners[0],
sizeof(rect[0]));
perspective_setup(qr->c, rect, qr->grid_size - 7, qr->grid_size - 7);
 
jiggle_perspective(q, index);
}
 
/* Rotate the capstone with so that corner 0 is the leftmost with respect
* to the given reference line.
*/
static void rotate_capstone(struct quirc_capstone *cap,
const struct quirc_point *h0,
const struct quirc_point *hd)
{
struct quirc_point copy[4];
int j;
int best = 0;
int best_score = INT_MAX;
 
for (j = 0; j < 4; j++) {
struct quirc_point *p = &cap->corners[j];
int score = (p->x - h0->x) * -hd->y +
(p->y - h0->y) * hd->x;
 
if (!j || score < best_score) {
best = j;
best_score = score;
}
}
 
/* Rotate the capstone */
for (j = 0; j < 4; j++)
memcpy(&copy[j], &cap->corners[(j + best) % 4],
sizeof(copy[j]));
memcpy(cap->corners, copy, sizeof(cap->corners));
perspective_setup(cap->c, cap->corners, 7.0, 7.0);
}
 
static void record_qr_grid(struct quirc *q, int a, int b, int c)
{
struct quirc_point h0, hd;
int i;
int qr_index;
struct quirc_grid *qr;
 
if (q->num_grids >= QUIRC_MAX_GRIDS)
return;
 
/* Construct the hypotenuse line from A to C. B should be to
* the left of this line.
*/
memcpy(&h0, &q->capstones[a].center, sizeof(h0));
hd.x = q->capstones[c].center.x - q->capstones[a].center.x;
hd.y = q->capstones[c].center.y - q->capstones[a].center.y;
 
/* Make sure A-B-C is clockwise */
if ((q->capstones[b].center.x - h0.x) * -hd.y +
(q->capstones[b].center.y - h0.y) * hd.x > 0) {
int swap = a;
 
a = c;
c = swap;
hd.x = -hd.x;
hd.y = -hd.y;
}
 
/* Record the grid and its components */
qr_index = q->num_grids;
qr = &q->grids[q->num_grids++];
 
memset(qr, 0, sizeof(*qr));
qr->caps[0] = a;
qr->caps[1] = b;
qr->caps[2] = c;
qr->align_region = -1;
 
/* Rotate each capstone so that corner 0 is top-left with respect
* to the grid.
*/
for (i = 0; i < 3; i++) {
struct quirc_capstone *cap = &q->capstones[qr->caps[i]];
 
rotate_capstone(cap, &h0, &hd);
cap->qr_grid = qr_index;
}
 
/* Check the timing pattern. This doesn't require a perspective
* transform.
*/
if (measure_timing_pattern(q, qr_index) < 0)
goto fail;
 
/* Make an estimate based for the alignment pattern based on extending
* lines from capstones A and C.
*/
if (!line_intersect(&q->capstones[a].corners[0],
&q->capstones[a].corners[1],
&q->capstones[c].corners[0],
&q->capstones[c].corners[3],
&qr->align))
goto fail;
 
/* On V2+ grids, we should use the alignment pattern. */
if (qr->grid_size > 21) {
/* Try to find the actual location of the alignment pattern. */
find_alignment_pattern(q, qr_index);
 
/* Find the point of the alignment pattern closest to the
* top-left of the QR grid.
*/
if (qr->align_region >= 0) {
struct polygon_score_data psd;
struct quirc_region *reg =
&q->regions[qr->align_region];
 
/* Start from some point inside the alignment pattern */
memcpy(&qr->align, &reg->seed, sizeof(qr->align));
 
memcpy(&psd.ref, &hd, sizeof(psd.ref));
psd.corners = &qr->align;
psd.scores[0] = -hd.y * qr->align.x +
hd.x * qr->align.y;
 
flood_fill_seed(q, reg->seed.x, reg->seed.y,
qr->align_region, QUIRC_PIXEL_BLACK,
NULL, NULL, 0);
flood_fill_seed(q, reg->seed.x, reg->seed.y,
QUIRC_PIXEL_BLACK, qr->align_region,
find_leftmost_to_line, &psd, 0);
}
}
 
setup_qr_perspective(q, qr_index);
return;
 
fail:
/* We've been unable to complete setup for this grid. Undo what we've
* recorded and pretend it never happened.
*/
for (i = 0; i < 3; i++)
q->capstones[qr->caps[i]].qr_grid = -1;
q->num_grids--;
}
 
struct neighbour {
int index;
double distance;
};
 
struct neighbour_list {
struct neighbour n[QUIRC_MAX_CAPSTONES];
int count;
};
 
static void test_neighbours(struct quirc *q, int i,
const struct neighbour_list *hlist,
const struct neighbour_list *vlist)
{
int j, k;
double best_score = 0.0;
int best_h = -1, best_v = -1;
 
/* Test each possible grouping */
for (j = 0; j < hlist->count; j++)
for (k = 0; k < vlist->count; k++) {
const struct neighbour *hn = &hlist->n[j];
const struct neighbour *vn = &vlist->n[k];
double score = fabs(1.0 - hn->distance / vn->distance);
 
if (score > 2.5)
continue;
 
if (best_h < 0 || score < best_score) {
best_h = hn->index;
best_v = vn->index;
best_score = score;
}
}
 
if (best_h < 0 || best_v < 0)
return;
 
record_qr_grid(q, best_h, i, best_v);
}
 
static void test_grouping(struct quirc *q, int i)
{
struct quirc_capstone *c1 = &q->capstones[i];
int j;
struct neighbour_list hlist;
struct neighbour_list vlist;
 
if (c1->qr_grid >= 0)
return;
 
hlist.count = 0;
vlist.count = 0;
 
/* Look for potential neighbours by examining the relative gradients
* from this capstone to others.
*/
for (j = 0; j < q->num_capstones; j++) {
struct quirc_capstone *c2 = &q->capstones[j];
double u, v;
 
if (i == j || c2->qr_grid >= 0)
continue;
 
perspective_unmap(c1->c, &c2->center, &u, &v);
 
u = fabs(u - 3.5);
v = fabs(v - 3.5);
 
if (u < 0.2 * v) {
struct neighbour *n = &hlist.n[hlist.count++];
 
n->index = j;
n->distance = v;
}
 
if (v < 0.2 * u) {
struct neighbour *n = &vlist.n[vlist.count++];
 
n->index = j;
n->distance = u;
}
}
 
if (!(hlist.count && vlist.count))
return;
 
test_neighbours(q, i, &hlist, &vlist);
}
 
static void pixels_setup(struct quirc *q, uint8_t threshold)
{
if (QUIRC_PIXEL_ALIAS_IMAGE) {
q->pixels = (quirc_pixel_t *)q->image;
}
 
uint8_t* source = q->image;
quirc_pixel_t* dest = q->pixels;
int length = q->w * q->h;
while (length--) {
uint8_t value = *source++;
*dest++ = (value < threshold) ? QUIRC_PIXEL_BLACK : QUIRC_PIXEL_WHITE;
}
}
 
uint8_t *quirc_begin(struct quirc *q, int *w, int *h)
{
q->num_regions = QUIRC_PIXEL_REGION;
q->num_capstones = 0;
q->num_grids = 0;
 
if (w)
*w = q->w;
if (h)
*h = q->h;
 
return q->image;
}
 
void quirc_end(struct quirc *q)
{
int i;
 
uint8_t threshold = otsu(q);
pixels_setup(q, threshold);
 
for (i = 0; i < q->h; i++)
finder_scan(q, i);
 
for (i = 0; i < q->num_capstones; i++)
test_grouping(q, i);
}
 
void quirc_extract(const struct quirc *q, int index,
struct quirc_code *code)
{
const struct quirc_grid *qr = &q->grids[index];
int y;
int i = 0;
 
if (index < 0 || index > q->num_grids)
return;
 
memset(code, 0, sizeof(*code));
 
perspective_map(qr->c, 0.0, 0.0, &code->corners[0]);
perspective_map(qr->c, qr->grid_size, 0.0, &code->corners[1]);
perspective_map(qr->c, qr->grid_size, qr->grid_size,
&code->corners[2]);
perspective_map(qr->c, 0.0, qr->grid_size, &code->corners[3]);
 
code->size = qr->grid_size;
 
for (y = 0; y < qr->grid_size; y++) {
int x;
for (x = 0; x < qr->grid_size; x++) {
if (read_cell(q, index, x, y) > 0) {
code->cell_bitmap[i >> 3] |= (1 << (i & 7));
}
i++;
}
}
}
/programs/media/qr_tool/lib/quirc.c
0,0 → 1,130
/* quirc -- QR-code recognition library
* Copyright (C) 2010-2012 Daniel Beer <dlbeer@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
 
#include <stdlib.h>
#include <string.h>
#include "quirc_internal.h"
 
const char *quirc_version(void)
{
return "1.0";
}
 
struct quirc *quirc_new(void)
{
struct quirc *q = malloc(sizeof(*q));
 
if (!q)
return NULL;
 
memset(q, 0, sizeof(*q));
return q;
}
 
void quirc_destroy(struct quirc *q)
{
free(q->image);
/* q->pixels may alias q->image when their type representation is of the
same size, so we need to be careful here to avoid a double free */
if (!QUIRC_PIXEL_ALIAS_IMAGE)
free(q->pixels);
free(q);
}
 
int quirc_resize(struct quirc *q, int w, int h)
{
uint8_t *image = NULL;
quirc_pixel_t *pixels = NULL;
 
/*
* XXX: w and h should be size_t (or at least unsigned) as negatives
* values would not make much sense. The downside is that it would break
* both the API and ABI. Thus, at the moment, let's just do a sanity
* check.
*/
if (w < 0 || h < 0)
goto fail;
 
/*
* alloc a new buffer for q->image. We avoid realloc(3) because we want
* on failure to be leave `q` in a consistant, unmodified state.
*/
image = calloc(w, h);
if (!image)
goto fail;
 
/* compute the "old" (i.e. currently allocated) and the "new"
(i.e. requested) image dimensions */
size_t olddim = q->w * q->h;
size_t newdim = w * h;
size_t min = (olddim < newdim ? olddim : newdim);
 
/*
* copy the data into the new buffer, avoiding (a) to read beyond the
* old buffer when the new size is greater and (b) to write beyond the
* new buffer when the new size is smaller, hence the min computation.
*/
(void)memcpy(image, q->image, min);
 
/* alloc a new buffer for q->pixels if needed */
if (!QUIRC_PIXEL_ALIAS_IMAGE) {
pixels = calloc(newdim, sizeof(quirc_pixel_t));
if (!pixels)
goto fail;
}
 
/* alloc succeeded, update `q` with the new size and buffers */
q->w = w;
q->h = h;
free(q->image);
q->image = image;
if (!QUIRC_PIXEL_ALIAS_IMAGE) {
free(q->pixels);
q->pixels = pixels;
}
 
return 0;
/* NOTREACHED */
fail:
free(image);
free(pixels);
 
return -1;
}
 
int quirc_count(const struct quirc *q)
{
return q->num_grids;
}
 
static const char *const error_table[] = {
[QUIRC_SUCCESS] = "Success",
[QUIRC_ERROR_INVALID_GRID_SIZE] = "Invalid grid size",
[QUIRC_ERROR_INVALID_VERSION] = "Invalid version",
[QUIRC_ERROR_FORMAT_ECC] = "Format data ECC failure",
[QUIRC_ERROR_DATA_ECC] = "ECC failure",
[QUIRC_ERROR_UNKNOWN_DATA_TYPE] = "Unknown data type",
[QUIRC_ERROR_DATA_OVERFLOW] = "Data overflow",
[QUIRC_ERROR_DATA_UNDERFLOW] = "Data underflow"
};
 
const char *quirc_strerror(quirc_decode_error_t err)
{
if (err >= 0 && err < sizeof(error_table) / sizeof(error_table[0]))
return error_table[err];
 
return "Unknown error";
}
/programs/media/qr_tool/lib/quirc.h
0,0 → 1,185
/* quirc -- QR-code recognition library
* Copyright (C) 2010-2012 Daniel Beer <dlbeer@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
 
#ifndef QUIRC_H_
#define QUIRC_H_
 
#include <stdint.h>
 
/*#ifndef UINT8_MAX
#define UINT8_MAX (255)
#endif
#ifndef UINT16_MAX
#define UINT16_MAX (65535)
#endif*/
 
#ifdef __cplusplus
extern "C" {
#endif
 
struct quirc;
 
/* Obtain the library version string. */
const char *quirc_version(void);
 
/* Construct a new QR-code recognizer. This function will return NULL
* if sufficient memory could not be allocated.
*/
struct quirc *quirc_new(void);
 
/* Destroy a QR-code recognizer. */
void quirc_destroy(struct quirc *q);
 
/* Resize the QR-code recognizer. The size of an image must be
* specified before codes can be analyzed.
*
* This function returns 0 on success, or -1 if sufficient memory could
* not be allocated.
*/
int quirc_resize(struct quirc *q, int w, int h);
 
/* These functions are used to process images for QR-code recognition.
* quirc_begin() must first be called to obtain access to a buffer into
* which the input image should be placed. Optionally, the current
* width and height may be returned.
*
* After filling the buffer, quirc_end() should be called to process
* the image for QR-code recognition. The locations and content of each
* code may be obtained using accessor functions described below.
*/
uint8_t *quirc_begin(struct quirc *q, int *w, int *h);
void quirc_end(struct quirc *q);
 
/* This structure describes a location in the input image buffer. */
struct quirc_point {
int x;
int y;
};
 
/* This enum describes the various decoder errors which may occur. */
typedef enum {
QUIRC_SUCCESS = 0,
QUIRC_ERROR_INVALID_GRID_SIZE,
QUIRC_ERROR_INVALID_VERSION,
QUIRC_ERROR_FORMAT_ECC,
QUIRC_ERROR_DATA_ECC,
QUIRC_ERROR_UNKNOWN_DATA_TYPE,
QUIRC_ERROR_DATA_OVERFLOW,
QUIRC_ERROR_DATA_UNDERFLOW
} quirc_decode_error_t;
 
/* Return a string error message for an error code. */
const char *quirc_strerror(quirc_decode_error_t err);
 
/* Limits on the maximum size of QR-codes and their content. */
#define QUIRC_MAX_VERSION 40
#define QUIRC_MAX_GRID_SIZE (QUIRC_MAX_VERSION * 4 + 17)
#define QUIRC_MAX_BITMAP (((QUIRC_MAX_GRID_SIZE * QUIRC_MAX_GRID_SIZE) + 7) / 8)
#define QUIRC_MAX_PAYLOAD 8896
 
/* QR-code ECC types. */
#define QUIRC_ECC_LEVEL_M 0
#define QUIRC_ECC_LEVEL_L 1
#define QUIRC_ECC_LEVEL_H 2
#define QUIRC_ECC_LEVEL_Q 3
 
/* QR-code data types. */
#define QUIRC_DATA_TYPE_NUMERIC 1
#define QUIRC_DATA_TYPE_ALPHA 2
#define QUIRC_DATA_TYPE_BYTE 4
#define QUIRC_DATA_TYPE_KANJI 8
 
/* Common character encodings */
#define QUIRC_ECI_ISO_8859_1 1
#define QUIRC_ECI_IBM437 2
#define QUIRC_ECI_ISO_8859_2 4
#define QUIRC_ECI_ISO_8859_3 5
#define QUIRC_ECI_ISO_8859_4 6
#define QUIRC_ECI_ISO_8859_5 7
#define QUIRC_ECI_ISO_8859_6 8
#define QUIRC_ECI_ISO_8859_7 9
#define QUIRC_ECI_ISO_8859_8 10
#define QUIRC_ECI_ISO_8859_9 11
#define QUIRC_ECI_WINDOWS_874 13
#define QUIRC_ECI_ISO_8859_13 15
#define QUIRC_ECI_ISO_8859_15 17
#define QUIRC_ECI_SHIFT_JIS 20
#define QUIRC_ECI_UTF_8 26
 
/* This structure is used to return information about detected QR codes
* in the input image.
*/
struct quirc_code {
/* The four corners of the QR-code, from top left, clockwise */
struct quirc_point corners[4];
 
/* The number of cells across in the QR-code. The cell bitmap
* is a bitmask giving the actual values of cells. If the cell
* at (x, y) is black, then the following bit is set:
*
* cell_bitmap[i >> 3] & (1 << (i & 7))
*
* where i = (y * size) + x.
*/
int size;
uint8_t cell_bitmap[QUIRC_MAX_BITMAP];
};
 
/* This structure holds the decoded QR-code data */
struct quirc_data {
/* Various parameters of the QR-code. These can mostly be
* ignored if you only care about the data.
*/
int version;
int ecc_level;
int mask;
 
/* This field is the highest-valued data type found in the QR
* code.
*/
int data_type;
 
/* Data payload. For the Kanji datatype, payload is encoded as
* Shift-JIS. For all other datatypes, payload is ASCII text.
*/
uint8_t payload[QUIRC_MAX_PAYLOAD];
int payload_len;
 
/* ECI assignment number */
uint32_t eci;
};
 
/* Return the number of QR-codes identified in the last processed
* image.
*/
int quirc_count(const struct quirc *q);
 
/* Extract the QR-code specified by the given index. */
void quirc_extract(const struct quirc *q, int index,
struct quirc_code *code);
 
/* Decode a QR-code, returning the payload data. */
quirc_decode_error_t quirc_decode(const struct quirc_code *code,
struct quirc_data *data);
 
/* Flip a QR-code according to optional mirror feature of ISO 18004:2015 */
void quirc_flip(struct quirc_code *code);
 
#ifdef __cplusplus
}
#endif
 
#endif
/programs/media/qr_tool/lib/quirc_internal.h
0,0 → 1,115
/* quirc -- QR-code recognition library
* Copyright (C) 2010-2012 Daniel Beer <dlbeer@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
 
#ifndef QUIRC_INTERNAL_H_
#define QUIRC_INTERNAL_H_
 
#include "quirc.h"
 
#define QUIRC_PIXEL_WHITE 0
#define QUIRC_PIXEL_BLACK 1
#define QUIRC_PIXEL_REGION 2
 
#ifndef QUIRC_MAX_REGIONS
#define QUIRC_MAX_REGIONS 254
#endif
#define QUIRC_MAX_CAPSTONES 32
#define QUIRC_MAX_GRIDS 8
#define QUIRC_PERSPECTIVE_PARAMS 8
 
#if QUIRC_MAX_REGIONS < UINT8_MAX
#define QUIRC_PIXEL_ALIAS_IMAGE 1
typedef uint8_t quirc_pixel_t;
#elif QUIRC_MAX_REGIONS < UINT16_MAX
#define QUIRC_PIXEL_ALIAS_IMAGE 0
typedef uint16_t quirc_pixel_t;
#else
#error "QUIRC_MAX_REGIONS > 65534 is not supported"
#endif
 
struct quirc_region {
struct quirc_point seed;
int count;
int capstone;
};
 
struct quirc_capstone {
int ring;
int stone;
 
struct quirc_point corners[4];
struct quirc_point center;
double c[QUIRC_PERSPECTIVE_PARAMS];
 
int qr_grid;
};
 
struct quirc_grid {
/* Capstone indices */
int caps[3];
 
/* Alignment pattern region and corner */
int align_region;
struct quirc_point align;
 
/* Timing pattern endpoints */
struct quirc_point tpep[3];
int hscan;
int vscan;
 
/* Grid size and perspective transform */
int grid_size;
double c[QUIRC_PERSPECTIVE_PARAMS];
};
 
struct quirc {
uint8_t *image;
quirc_pixel_t *pixels;
int w;
int h;
 
int num_regions;
struct quirc_region regions[QUIRC_MAX_REGIONS];
 
int num_capstones;
struct quirc_capstone capstones[QUIRC_MAX_CAPSTONES];
 
int num_grids;
struct quirc_grid grids[QUIRC_MAX_GRIDS];
};
 
/************************************************************************
* QR-code version information database
*/
 
#define QUIRC_MAX_VERSION 40
#define QUIRC_MAX_ALIGNMENT 7
 
struct quirc_rs_params {
int bs; /* Small block size */
int dw; /* Small data words */
int ns; /* Number of small blocks */
};
 
struct quirc_version_info {
int data_bytes;
int apat[QUIRC_MAX_ALIGNMENT];
struct quirc_rs_params ecc[4];
};
 
extern const struct quirc_version_info quirc_version_db[QUIRC_MAX_VERSION + 1];
 
#endif
/programs/media/qr_tool/lib/version_db.c
0,0 → 1,421
/* quirc -- QR-code recognition library
* Copyright (C) 2010-2012 Daniel Beer <dlbeer@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
 
#include "quirc_internal.h"
 
const struct quirc_version_info quirc_version_db[QUIRC_MAX_VERSION + 1] = {
{0},
{ /* Version 1 */
.data_bytes = 26,
.apat = {0},
.ecc = {
{.bs = 26, .dw = 16, .ns = 1},
{.bs = 26, .dw = 19, .ns = 1},
{.bs = 26, .dw = 9, .ns = 1},
{.bs = 26, .dw = 13, .ns = 1}
}
},
{ /* Version 2 */
.data_bytes = 44,
.apat = {6, 18, 0},
.ecc = {
{.bs = 44, .dw = 28, .ns = 1},
{.bs = 44, .dw = 34, .ns = 1},
{.bs = 44, .dw = 16, .ns = 1},
{.bs = 44, .dw = 22, .ns = 1}
}
},
{ /* Version 3 */
.data_bytes = 70,
.apat = {6, 22, 0},
.ecc = {
{.bs = 70, .dw = 44, .ns = 1},
{.bs = 70, .dw = 55, .ns = 1},
{.bs = 35, .dw = 13, .ns = 2},
{.bs = 35, .dw = 17, .ns = 2}
}
},
{ /* Version 4 */
.data_bytes = 100,
.apat = {6, 26, 0},
.ecc = {
{.bs = 50, .dw = 32, .ns = 2},
{.bs = 100, .dw = 80, .ns = 1},
{.bs = 25, .dw = 9, .ns = 4},
{.bs = 50, .dw = 24, .ns = 2}
}
},
{ /* Version 5 */
.data_bytes = 134,
.apat = {6, 30, 0},
.ecc = {
{.bs = 67, .dw = 43, .ns = 2},
{.bs = 134, .dw = 108, .ns = 1},
{.bs = 33, .dw = 11, .ns = 2},
{.bs = 33, .dw = 15, .ns = 2}
}
},
{ /* Version 6 */
.data_bytes = 172,
.apat = {6, 34, 0},
.ecc = {
{.bs = 43, .dw = 27, .ns = 4},
{.bs = 86, .dw = 68, .ns = 2},
{.bs = 43, .dw = 15, .ns = 4},
{.bs = 43, .dw = 19, .ns = 4}
}
},
{ /* Version 7 */
.data_bytes = 196,
.apat = {6, 22, 38, 0},
.ecc = {
{.bs = 49, .dw = 31, .ns = 4},
{.bs = 98, .dw = 78, .ns = 2},
{.bs = 39, .dw = 13, .ns = 4},
{.bs = 32, .dw = 14, .ns = 2}
}
},
{ /* Version 8 */
.data_bytes = 242,
.apat = {6, 24, 42, 0},
.ecc = {
{.bs = 60, .dw = 38, .ns = 2},
{.bs = 121, .dw = 97, .ns = 2},
{.bs = 40, .dw = 14, .ns = 4},
{.bs = 40, .dw = 18, .ns = 4}
}
},
{ /* Version 9 */
.data_bytes = 292,
.apat = {6, 26, 46, 0},
.ecc = {
{.bs = 58, .dw = 36, .ns = 3},
{.bs = 146, .dw = 116, .ns = 2},
{.bs = 36, .dw = 12, .ns = 4},
{.bs = 36, .dw = 16, .ns = 4}
}
},
{ /* Version 10 */
.data_bytes = 346,
.apat = {6, 28, 50, 0},
.ecc = {
{.bs = 69, .dw = 43, .ns = 4},
{.bs = 86, .dw = 68, .ns = 2},
{.bs = 43, .dw = 15, .ns = 6},
{.bs = 43, .dw = 19, .ns = 6}
}
},
{ /* Version 11 */
.data_bytes = 404,
.apat = {6, 30, 54, 0},
.ecc = {
{.bs = 80, .dw = 50, .ns = 1},
{.bs = 101, .dw = 81, .ns = 4},
{.bs = 36, .dw = 12, .ns = 3},
{.bs = 50, .dw = 22, .ns = 4}
}
},
{ /* Version 12 */
.data_bytes = 466,
.apat = {6, 32, 58, 0},
.ecc = {
{.bs = 58, .dw = 36, .ns = 6},
{.bs = 116, .dw = 92, .ns = 2},
{.bs = 42, .dw = 14, .ns = 7},
{.bs = 46, .dw = 20, .ns = 4}
}
},
{ /* Version 13 */
.data_bytes = 532,
.apat = {6, 34, 62, 0},
.ecc = {
{.bs = 59, .dw = 37, .ns = 8},
{.bs = 133, .dw = 107, .ns = 4},
{.bs = 33, .dw = 11, .ns = 12},
{.bs = 44, .dw = 20, .ns = 8}
}
},
{ /* Version 14 */
.data_bytes = 581,
.apat = {6, 26, 46, 66, 0},
.ecc = {
{.bs = 64, .dw = 40, .ns = 4},
{.bs = 145, .dw = 115, .ns = 3},
{.bs = 36, .dw = 12, .ns = 11},
{.bs = 36, .dw = 16, .ns = 11}
}
},
{ /* Version 15 */
.data_bytes = 655,
.apat = {6, 26, 48, 70, 0},
.ecc = {
{.bs = 65, .dw = 41, .ns = 5},
{.bs = 109, .dw = 87, .ns = 5},
{.bs = 36, .dw = 12, .ns = 11},
{.bs = 54, .dw = 24, .ns = 5}
}
},
{ /* Version 16 */
.data_bytes = 733,
.apat = {6, 26, 50, 74, 0},
.ecc = {
{.bs = 73, .dw = 45, .ns = 7},
{.bs = 122, .dw = 98, .ns = 5},
{.bs = 45, .dw = 15, .ns = 3},
{.bs = 43, .dw = 19, .ns = 15}
}
},
{ /* Version 17 */
.data_bytes = 815,
.apat = {6, 30, 54, 78, 0},
.ecc = {
{.bs = 74, .dw = 46, .ns = 10},
{.bs = 135, .dw = 107, .ns = 1},
{.bs = 42, .dw = 14, .ns = 2},
{.bs = 50, .dw = 22, .ns = 1}
}
},
{ /* Version 18 */
.data_bytes = 901,
.apat = {6, 30, 56, 82, 0},
.ecc = {
{.bs = 69, .dw = 43, .ns = 9},
{.bs = 150, .dw = 120, .ns = 5},
{.bs = 42, .dw = 14, .ns = 2},
{.bs = 50, .dw = 22, .ns = 17}
}
},
{ /* Version 19 */
.data_bytes = 991,
.apat = {6, 30, 58, 86, 0},
.ecc = {
{.bs = 70, .dw = 44, .ns = 3},
{.bs = 141, .dw = 113, .ns = 3},
{.bs = 39, .dw = 13, .ns = 9},
{.bs = 47, .dw = 21, .ns = 17}
}
},
{ /* Version 20 */
.data_bytes = 1085,
.apat = {6, 34, 62, 90, 0},
.ecc = {
{.bs = 67, .dw = 41, .ns = 3},
{.bs = 135, .dw = 107, .ns = 3},
{.bs = 43, .dw = 15, .ns = 15},
{.bs = 54, .dw = 24, .ns = 15}
}
},
{ /* Version 21 */
.data_bytes = 1156,
.apat = {6, 28, 50, 72, 92, 0},
.ecc = {
{.bs = 68, .dw = 42, .ns = 17},
{.bs = 144, .dw = 116, .ns = 4},
{.bs = 46, .dw = 16, .ns = 19},
{.bs = 50, .dw = 22, .ns = 17}
}
},
{ /* Version 22 */
.data_bytes = 1258,
.apat = {6, 26, 50, 74, 98, 0},
.ecc = {
{.bs = 74, .dw = 46, .ns = 17},
{.bs = 139, .dw = 111, .ns = 2},
{.bs = 37, .dw = 13, .ns = 34},
{.bs = 54, .dw = 24, .ns = 7}
}
},
{ /* Version 23 */
.data_bytes = 1364,
.apat = {6, 30, 54, 78, 102, 0},
.ecc = {
{.bs = 75, .dw = 47, .ns = 4},
{.bs = 151, .dw = 121, .ns = 4},
{.bs = 45, .dw = 15, .ns = 16},
{.bs = 54, .dw = 24, .ns = 11}
}
},
{ /* Version 24 */
.data_bytes = 1474,
.apat = {6, 28, 54, 80, 106, 0},
.ecc = {
{.bs = 73, .dw = 45, .ns = 6},
{.bs = 147, .dw = 117, .ns = 6},
{.bs = 46, .dw = 16, .ns = 30},
{.bs = 54, .dw = 24, .ns = 11}
}
},
{ /* Version 25 */
.data_bytes = 1588,
.apat = {6, 32, 58, 84, 110, 0},
.ecc = {
{.bs = 75, .dw = 47, .ns = 8},
{.bs = 132, .dw = 106, .ns = 8},
{.bs = 45, .dw = 15, .ns = 22},
{.bs = 54, .dw = 24, .ns = 7}
}
},
{ /* Version 26 */
.data_bytes = 1706,
.apat = {6, 30, 58, 86, 114, 0},
.ecc = {
{.bs = 74, .dw = 46, .ns = 19},
{.bs = 142, .dw = 114, .ns = 10},
{.bs = 46, .dw = 16, .ns = 33},
{.bs = 50, .dw = 22, .ns = 28}
}
},
{ /* Version 27 */
.data_bytes = 1828,
.apat = {6, 34, 62, 90, 118, 0},
.ecc = {
{.bs = 73, .dw = 45, .ns = 22},
{.bs = 152, .dw = 122, .ns = 8},
{.bs = 45, .dw = 15, .ns = 12},
{.bs = 53, .dw = 23, .ns = 8}
}
},
{ /* Version 28 */
.data_bytes = 1921,
.apat = {6, 26, 50, 74, 98, 122, 0},
.ecc = {
{.bs = 73, .dw = 45, .ns = 3},
{.bs = 147, .dw = 117, .ns = 3},
{.bs = 45, .dw = 15, .ns = 11},
{.bs = 54, .dw = 24, .ns = 4}
}
},
{ /* Version 29 */
.data_bytes = 2051,
.apat = {6, 30, 54, 78, 102, 126, 0},
.ecc = {
{.bs = 73, .dw = 45, .ns = 21},
{.bs = 146, .dw = 116, .ns = 7},
{.bs = 45, .dw = 15, .ns = 19},
{.bs = 53, .dw = 23, .ns = 1}
}
},
{ /* Version 30 */
.data_bytes = 2185,
.apat = {6, 26, 52, 78, 104, 130, 0},
.ecc = {
{.bs = 75, .dw = 47, .ns = 19},
{.bs = 145, .dw = 115, .ns = 5},
{.bs = 45, .dw = 15, .ns = 23},
{.bs = 54, .dw = 24, .ns = 15}
}
},
{ /* Version 31 */
.data_bytes = 2323,
.apat = {6, 30, 56, 82, 108, 134, 0},
.ecc = {
{.bs = 74, .dw = 46, .ns = 2},
{.bs = 145, .dw = 115, .ns = 13},
{.bs = 45, .dw = 15, .ns = 23},
{.bs = 54, .dw = 24, .ns = 42}
}
},
{ /* Version 32 */
.data_bytes = 2465,
.apat = {6, 34, 60, 86, 112, 138, 0},
.ecc = {
{.bs = 74, .dw = 46, .ns = 10},
{.bs = 145, .dw = 115, .ns = 17},
{.bs = 45, .dw = 15, .ns = 19},
{.bs = 54, .dw = 24, .ns = 10}
}
},
{ /* Version 33 */
.data_bytes = 2611,
.apat = {6, 30, 58, 86, 114, 142, 0},
.ecc = {
{.bs = 74, .dw = 46, .ns = 14},
{.bs = 145, .dw = 115, .ns = 17},
{.bs = 45, .dw = 15, .ns = 11},
{.bs = 54, .dw = 24, .ns = 29}
}
},
{ /* Version 34 */
.data_bytes = 2761,
.apat = {6, 34, 62, 90, 118, 146, 0},
.ecc = {
{.bs = 74, .dw = 46, .ns = 14},
{.bs = 145, .dw = 115, .ns = 13},
{.bs = 46, .dw = 16, .ns = 59},
{.bs = 54, .dw = 24, .ns = 44}
}
},
{ /* Version 35 */
.data_bytes = 2876,
.apat = {6, 30, 54, 78, 102, 126, 150},
.ecc = {
{.bs = 75, .dw = 47, .ns = 12},
{.bs = 151, .dw = 121, .ns = 12},
{.bs = 45, .dw = 15, .ns = 22},
{.bs = 54, .dw = 24, .ns = 39}
}
},
{ /* Version 36 */
.data_bytes = 3034,
.apat = {6, 24, 50, 76, 102, 128, 154},
.ecc = {
{.bs = 75, .dw = 47, .ns = 6},
{.bs = 151, .dw = 121, .ns = 6},
{.bs = 45, .dw = 15, .ns = 2},
{.bs = 54, .dw = 24, .ns = 46}
}
},
{ /* Version 37 */
.data_bytes = 3196,
.apat = {6, 28, 54, 80, 106, 132, 158},
.ecc = {
{.bs = 74, .dw = 46, .ns = 29},
{.bs = 152, .dw = 122, .ns = 17},
{.bs = 45, .dw = 15, .ns = 24},
{.bs = 54, .dw = 24, .ns = 49}
}
},
{ /* Version 38 */
.data_bytes = 3362,
.apat = {6, 32, 58, 84, 110, 136, 162},
.ecc = {
{.bs = 74, .dw = 46, .ns = 13},
{.bs = 152, .dw = 122, .ns = 4},
{.bs = 45, .dw = 15, .ns = 42},
{.bs = 54, .dw = 24, .ns = 48}
}
},
{ /* Version 39 */
.data_bytes = 3532,
.apat = {6, 26, 54, 82, 110, 138, 166},
.ecc = {
{.bs = 75, .dw = 47, .ns = 40},
{.bs = 147, .dw = 117, .ns = 20},
{.bs = 45, .dw = 15, .ns = 10},
{.bs = 54, .dw = 24, .ns = 43}
}
},
{ /* Version 40 */
.data_bytes = 3706,
.apat = {6, 30, 58, 86, 114, 142, 170},
.ecc = {
{.bs = 75, .dw = 47, .ns = 18},
{.bs = 148, .dw = 118, .ns = 19},
{.bs = 45, .dw = 15, .ns = 20},
{.bs = 54, .dw = 24, .ns = 34}
}
}
};
/programs/media/qr_tool/libquirc.a
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Property changes:
Added: svn:mime-type
+application/octet-stream
\ No newline at end of property
/programs/media/qr_tool/qr_tool
Cannot display: file marked as a binary type.
svn:mime-type = application/octet-stream
Property changes:
Added: svn:executable
+*
\ No newline at end of property
Added: svn:mime-type
+application/octet-stream
\ No newline at end of property
/programs/media/qr_tool/qr_tool.c
0,0 → 1,313
/* Copyright (C) 2021- Rustem Gimadutdinov (rgimad), GPLv2 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <kos32sys.h>
 
#include "kolibri_gui.h"
#include "kolibri_opendialog.h"
#include "kolibri_libimg.h"
 
#include "quirc.h"
 
/* ------------------------------------------------------- */
 
#define X_W(X, W) ((X<<16)+W)
#define Y_H X_W
 
#define WINDOW_WIDTH 650
#define WINDOW_HEIGHT 320
 
#define WINDOW_ROW1_Y 34
#define WINDOW_COL2_X 280
 
#define TEDIT1_MAXCHAR 2048
#define TEDIT1_W 340
#define TEDIT1_H 150
 
#define IMG1_DISPLAY_W 256
#define IMG1_DISPLAY_H 256
 
const char WINDOW_TITLE[] = "QR Tool 0.2b";
kolibri_system_colors sys_color_table;
const color_t DRAWTEXT_FLAG_DEFAULT = 0x90000000;
 
enum MYCOLORS {
COL_GREEN = 0x067D06,
COL_BLUE = 0x0000FF,
COL_RED = 0xFF0000,
COL_BLACK = 0x000000,
COL_WHITE = 0xFFFFFF,
COL_GREY = 0x919191
};
 
enum MYBUTTONS {
MYBTN_QUIT = 1,
MYBTN_OPEN = 10/*,
MYBTN_CLEAR = 20*/
//
};
 
editor *tedit1;
void *tedit1_lock;
 
open_dialog *op_dialog1;
 
Image *img1 = NULL;
Image *img1_grayscale = NULL;
char *img1_path;
 
char cur_dir_path[256];
 
 
char* load_img(char* fname, uint32_t* read_sz) {
FILE *f = fopen(fname, "rb");
if (!f) {
printf("Can't open file: %s\n", fname);
exit(0);
}
if (fseek(f, 0, SEEK_END)) {
printf("Can't SEEK_END file: %s\n", fname);
exit(0);
}
int filesize = ftell(f);
rewind(f);
char* fdata = malloc(filesize);
if(!fdata) {
printf("No memory for file %s\n", fname);
exit(0);
}
*read_sz = fread(fdata, 1, filesize, f);
if (ferror(f)) {
printf("Error reading file %s\n", fname);
exit(0);
}
fclose(f);
return fdata;
}
 
/* mode: 0 - ASCII, 1 - SCAN*/
void set_os_keyb_mode(int mode) { __asm__ __volatile__("int $0x40"::"a"(66), "b"(1), "c"(mode)); }
 
void redraw_window() {
pos_t win_pos = get_mouse_pos(0);
begin_draw();
sys_create_window(win_pos.x, win_pos.y, WINDOW_WIDTH, WINDOW_HEIGHT, WINDOW_TITLE, sys_color_table.color_work_area, 0x14);
//draw_text_sys("", /*x*/, /*y*/, 0, DRAWTEXT_FLAG_DEFAULT | sys_color_table.work_text);
define_button(X_W(WINDOW_COL2_X,100), Y_H(WINDOW_ROW1_Y,30), MYBTN_OPEN, sys_color_table.color_work_button);
draw_text_sys("Open image", WINDOW_COL2_X + 12, WINDOW_ROW1_Y + 7, 0, DRAWTEXT_FLAG_DEFAULT | sys_color_table.color_work_button_text);
 
//define_button(X_W(WINDOW_COL2_X + 120,100), Y_H(WINDOW_ROW1_Y,30), MYBTN_CLEAR, sys_color_table.color_work_button);
 
draw_text_sys("Recognition results below.", WINDOW_COL2_X, WINDOW_ROW1_Y + 40, 0, DRAWTEXT_FLAG_DEFAULT | sys_color_table.color_work_text);
draw_text_sys("Selection & Ctrl+C available.", WINDOW_COL2_X, WINDOW_ROW1_Y + 60, 0, DRAWTEXT_FLAG_DEFAULT | sys_color_table.color_work_text);
 
ted_draw(tedit1);
 
if (img1 != NULL) {
//printf("drawing...\n");
img_draw(img1, 10, WINDOW_ROW1_Y, IMG1_DISPLAY_W, IMG1_DISPLAY_H , 0, 0);
} else {
draw_bar(10, WINDOW_ROW1_Y, IMG1_DISPLAY_W, IMG1_DISPLAY_H, COL_GREY);
}
 
end_draw();
}
 
void tedit1_print(const char *text, int text_len, int do_newline) {
if (text_len == -1) { text_len = strlen(text); }
ted_text_add(tedit1, (char *)text, text_len, 1);
if (do_newline != 0 ) { ted_text_add(tedit1, "\r", 1, 1); }
}
 
void create_components() {
tedit1 = kolibri_new_editor(X_W(WINDOW_COL2_X, TEDIT1_W), Y_H(WINDOW_ROW1_Y + IMG1_DISPLAY_H - TEDIT1_H - 16, TEDIT1_H), 0/*0x11*/, TEDIT1_MAXCHAR, &tedit1_lock); // 0x11 font 8x16 sized x2, 0 - default (8x16)
tedit1_lock = tedit1;
tedit1->mode_invis = 0; /* dont show invisible characters */
 
op_dialog1 = kolibri_new_open_dialog(OPEN, 10, 10, 420, 320);
op_dialog1->dir_default_path = cur_dir_path;
op_dialog1->draw_window = redraw_window;
OpenDialog_init(op_dialog1);
}
 
void recognize_qr() {
puts("Starting QUIRC...\n");
struct quirc *qr;
 
qr = quirc_new();
if (!qr) {
puts("Failed to allocate memory");
exit(-1);
}
 
if (quirc_resize(qr, img1_grayscale->Width, img1_grayscale->Height) < 0) {
puts("Failed to allocate video memory");
exit(-1);
}
 
void *gsbuf = img1_grayscale->Data;
uint32_t gsbuf_size = img1_grayscale->Width*img1_grayscale->Height;
 
uint8_t *buffer;
int w, h;
puts("quirc_begin()...\n");
buffer = quirc_begin(qr, &w, &h);
//printf("buffer = %x qr = %x\n", buffer, qr);
//printf("w = %d h = %d\n", w, h);
memcpy(buffer, gsbuf, gsbuf_size);
puts("quirc_end()...\n");
quirc_end(qr);
 
ted_clear(tedit1, 1); /* cleaning output text area */
 
int num_codes, i;
puts("quirc_count()...\n");
num_codes = quirc_count(qr);
printf(" NUM_CODES = %d\n", num_codes);
if (num_codes == 0) {
tedit1_print("DECODE FAILED: NO CODES FOUND", -1, 1);
}
for (i = 0; i < num_codes; i++) {
struct quirc_code code;
struct quirc_data data;
quirc_decode_error_t err;
 
quirc_extract(qr, i, &code);
 
// decoding stage
err = quirc_decode(&code, &data);
if (err) {
//printf(" DECODE FAILED: %s\n", quirc_strerror(err));
tedit1_print("DECODE FAILED: ", -1, 0);
tedit1_print(quirc_strerror(err), -1, 1);
} else {
//printf("\n RECOGNIZED DATA: %s\n", data.payload);
tedit1_print("RECOGNIZED: ", -1, 0);
tedit1_print(data.payload, data.payload_len, 1);
}
}
puts("\nquirc_destroy()...\n");
quirc_destroy(qr);
}
 
void on_btn_open() {
//ted_text_add(tedit1, "Hello world!\r", strlen("Hello world!\r"), 1);
op_dialog1->mode = OPEN;
OpenDialog_start(op_dialog1);
if (op_dialog1->status != 2 && op_dialog1->status != 0) {// fail or cancel
img1_path = op_dialog1->openfile_path;
//ted_text_add(tedit1, img1_path, strlen(img1_path), 1);
//ted_text_add(tedit1, "\r", 1, 1); // newline
} else {
return;
}
Image *oldimg;
if (img1 != NULL) { img_destroy(img1); }
if (img1_grayscale != NULL) { img_destroy(img1_grayscale); }
uint32_t file_size;
void *file_data = load_img(img1_path, &file_size); // Get RAW data and size
img1 = img_decode(file_data, file_size, 0); // Decode RAW data to Image data
img1_grayscale = img_decode(file_data, file_size, 0); // Decode RAW data to Image data
free(file_data); //
printf("original: image->Width = %d, Image->Height = %d,\n original image type = %d\n\n", img1->Width, img1->Height, img1->Type);
if (img1->Type != IMAGE_BPP24) {
oldimg = img1; //
img1 = img_convert(img1, NULL, IMAGE_BPP24, 0, 0); // Convert image to RGB 24
img_destroy(oldimg); //
if (!img1) {
printf("Сonvert img1 to BPP24 error!: \n");
exit(-1);
}
}
if (img1_grayscale->Type != IMAGE_BPP24) {
oldimg = img1_grayscale; //
img1_grayscale = img_convert(img1_grayscale, NULL, IMAGE_BPP24, 0, 0); // Convert image to RGB
img_destroy(oldimg); //
if (!img1_grayscale) {
printf("Сonvert img1_grayscale to BPP24 error!: \n");
exit(-1);
}
}
if (img1_grayscale->Type != IMAGE_BPP8g) {
oldimg = img1_grayscale; //
img1_grayscale = img_convert(img1_grayscale, NULL, IMAGE_BPP8g, 0, 0); // Convert image to grayscale
img_destroy(oldimg); //
if (!img1_grayscale) {
printf("Сonvert img1_grayscale to BPP8g error!: \n");
exit(-1);
}
}
oldimg = img1; //
img1 = img_scale(img1, 0, 0, img1->Width, img1->Height, NULL, LIBIMG_SCALE_STRETCH , LIBIMG_INTER_BILINEAR, IMG1_DISPLAY_W, IMG1_DISPLAY_H);
img_destroy(oldimg); //
 
recognize_qr();
}
 
int main(int argc, char *argv[]) {
int gui_event; /* variable for storing event */
uint32_t pressed_button = 0; /* code of button pressed in window */
unsigned int keyval; /* for saving pressed key */
oskey_t key;
 
((void)argc);
strcpy(cur_dir_path, argv[0] + 2); char *pc = strrchr(cur_dir_path, '/'); if (pc) { *pc = '\0'; }
printf("cur_dir_path = %s\n", cur_dir_path);
kolibri_boxlib_init();
kolibri_proclib_init(); // opensave && color dialogs
kolibri_libimg_init();
 
set_wanted_events_mask(0xC0000027);
set_os_keyb_mode(1); // scan code mode needed for editor
kolibri_get_system_colors(&sys_color_table); // Get system colors theme
 
create_components();
 
do {
gui_event = get_os_event();
switch(gui_event) {
case KOLIBRI_EVENT_NONE:
break;
case KOLIBRI_EVENT_REDRAW:
redraw_window();
break;
case KOLIBRI_EVENT_MOUSE:
ted_mouse(tedit1);
break;
case KOLIBRI_EVENT_KEY:
key = get_key();
if (tedit1_lock == tedit1) { editor_key(tedit1, key); }
break;
case KOLIBRI_EVENT_BUTTON:
pressed_button = get_os_button();
switch (pressed_button)
{
case MYBTN_OPEN:
{
on_btn_open();
redraw_window();
break;
}
 
/*case MYBTN_CLEAR:
ted_clear(tedit1, 1);
redraw_window();
break; */
case MYBTN_QUIT:
exit(0);
break;
}
}
} while (1);
 
exit(0);
}