Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 6616 → Rev 6617

/programs/fs/kfar/trunk/zlib/adler32.asm
0,0 → 1,309
; adler32.asm -- compute the Adler-32 checksum of a data stream
; Copyright (C) 1995-2011 Mark Adler
; For conditions of distribution and use, see copyright notice in zlib.h
 
 
BASE equ 65521 ;largest prime smaller than 65536
NMAX equ 5552
; NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1
 
macro DO1 buf,i
{
mov eax,buf
add eax,i
movzx eax,byte[eax]
add [adler],eax
mov eax,[adler]
add [sum2],eax
}
macro DO2 buf,i
{
DO1 buf,i
DO1 buf,i+1
}
macro DO4 buf,i
{
DO2 buf,i
DO2 buf,i+2
}
macro DO8 buf,i
{
DO4 buf,i
DO4 buf,i+4
}
macro DO16 buf
{
DO8 buf,0
DO8 buf,8
}
 
; use NO_DIVIDE if your processor does not do division in hardware --
; try it both ways to see which is faster
; note that this assumes BASE is 65521, where 65536 % 65521 == 15
; (thank you to John Reiser for pointing this out)
macro CHOP a
{
if NO_DIVIDE eq 1
mov eax,a
shr eax,16
and a,0xffff
shl eax,4
add a,eax
shr eax,4
sub a,eax
end if
}
macro MOD28 a
{
if NO_DIVIDE eq 1
local .end0
CHOP a
cmp a,BASE
jl .end0 ;if (..>=..)
sub a,BASE
.end0:
else
push eax ecx edx
mov eax,a
xor edx,edx
mov ecx,BASE
div ecx
mov a,edx
pop edx ecx eax
end if
}
macro MOD a
{
if NO_DIVIDE eq 1
CHOP a
MOD28 a
else
push eax ecx edx
mov eax,a
xor edx,edx
mov ecx,BASE
div ecx
mov a,edx
pop edx ecx eax
end if
}
macro MOD63 a
{
if NO_DIVIDE eq 1
;this assumes a is not negative
; z_off64_t tmp = a >> 32;
; a &= 0xffffffff;
; a += (tmp << 8) - (tmp << 5) + tmp;
; tmp = a >> 16;
; a &= 0xffff;
; a += (tmp << 4) - tmp;
; tmp = a >> 16;
; a &= 0xffff;
; a += (tmp << 4) - tmp;
; if (a >= BASE) a -= BASE;
else
push eax ecx edx
mov eax,a
xor edx,edx
mov ecx,BASE
div ecx
mov a,edx
pop edx ecx eax
end if
}
 
; =========================================================================
;uLong (adler, buf, len)
; uLong adler
; const Bytef *buf
; uInt len
align 4
proc adler32 uses ebx edx, adler:dword, buf:dword, len:dword
locals
sum2 dd ? ;uLong
endl
;zlib_debug 'adler32 adler = %d',[adler]
; split Adler-32 into component sums
mov eax,[adler]
shr eax,16
mov [sum2],eax
and [adler],0xffff
mov ebx,[buf]
 
; in case user likes doing a byte at a time, keep it fast
cmp dword[len],1
jne .end0 ;if (..==..)
movzx eax,byte[ebx]
add [adler],eax
cmp dword[adler],BASE
jl @f ;if (..>=..)
sub dword[adler],BASE
@@:
mov eax,[adler]
add [sum2],eax
cmp dword[sum2],BASE
jl @f ;if (..>=..)
sub dword[sum2],BASE
@@:
jmp .combine
align 4
.end0:
 
; initial Adler-32 value (deferred check for len == 1 speed)
cmp ebx,Z_NULL
jne @f ;if (..==0)
xor eax,eax
inc eax
jmp .end_f
align 4
@@:
 
; in case short lengths are provided, keep it somewhat fast
cmp dword[len],16
jge .end1 ;if (..<..)
.cycle0:
cmp dword[len],0
jne @f ;while (..)
movzx eax,byte[ebx]
inc ebx
add [adler],eax
mov eax,[adler]
add [sum2],eax
dec dword[len]
jmp .cycle0
align 4
@@:
cmp dword[adler],BASE
jl @f ;if (..>=..)
sub dword[adler],BASE
@@:
MOD28 dword[sum2] ;only added so many BASE's
jmp .combine
align 4
.end1:
 
; do length NMAX blocks -- requires just one modulo operation
.cycle3:
cmp dword[len],NMAX
jl .cycle3end ;while (..>=..)
sub dword[len],NMAX
mov edx,NMAX/16 ;NMAX is divisible by 16
.cycle1: ;do
DO16 ebx ;16 sums unrolled
add ebx,16
dec edx
cmp edx,0
jg .cycle1 ;while (..)
MOD [adler]
MOD [sum2]
jmp .cycle3
align 4
.cycle3end:
 
; do remaining bytes (less than NMAX, still just one modulo)
cmp dword[len],0
jne .end2 ;if (..) ;avoid modulos if none remaining
@@:
cmp dword[len],16
jl .cycle2 ;while (..>=..)
sub dword[len],16
DO16 ebx
add ebx,16
jmp @b
align 4
.cycle2:
cmp dword[len],0
jne @f ;while (..)
movzx eax,byte[ebx]
inc ebx
add [adler],eax
mov eax,[adler]
add [sum2],eax
dec dword[len]
jmp .cycle2
align 4
@@:
MOD [adler]
MOD [sum2]
.end2:
 
; return recombined sums
.combine:
mov eax,[sum2]
shl eax,16
or eax,[adler]
.end_f:
;zlib_debug ' adler32.ret = %d',eax
ret
endp
 
; =========================================================================
;uLong (adler1, adler2, len2)
; uLong adler1
; uLong adler2
; z_off64_t len2
align 4
proc adler32_combine_, adler1:dword, adler2:dword, len2:dword
locals
sum1 dd ? ;uLong
sum2 dd ? ;uLong
; unsigned rem;
endl
; for negative len, return invalid adler32 as a clue for debugging
cmp dword[len2],0
jge @f ;if (..<0)
mov eax,0xffffffff
jmp .end_f
@@:
 
; the derivation of this formula is left as an exercise for the reader
; MOD63(len2) ;assumes len2 >= 0
; rem = (unsigned)len2;
; sum1 = adler1 & 0xffff;
; sum2 = rem * sum1;
; MOD(sum2);
; sum1 += (adler2 & 0xffff) + BASE - 1;
; sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
cmp dword[sum1],BASE
jl @f ;if (..>=..)
sub dword[sum1],BASE
@@:
cmp dword[sum1],BASE
jl @f ;if (..>=..)
sub dword[sum1],BASE
@@:
cmp dword[sum2],BASE shl 1
jl @f ;if (..>=..)
sub dword[sum2],BASE shl 1
@@:
cmp dword[sum2],BASE
jl @f ;if (..>=..)
sub dword[sum2],BASE
@@:
mov eax,[sum2]
shl eax,16
or eax,[sum1]
.end_f:
ret
endp
 
; =========================================================================
;uLong (adler1, adler2, len2)
; uLong adler1
; uLong adler2
; z_off_t len2
align 4
proc adler32_combine, adler1:dword, adler2:dword, len2:dword
stdcall adler32_combine_, [adler1], [adler2], [len2]
ret
endp
 
;uLong (adler1, adler2, len2)
; uLong adler1
; uLong adler2
; z_off64_t len2
align 4
proc adler32_combine64, adler1:dword, adler2:dword, len2:dword
stdcall adler32_combine_, [adler1], [adler2], [len2]
ret
endp
/programs/fs/kfar/trunk/zlib/build.bat
0,0 → 1,5
@fasm.exe -m 32768 zlib.asm zlib.obj
@kpack zlib.obj
@fasm.exe -m 32768 example1.asm example1.kex
@kpack example1.kex
pause
/programs/fs/kfar/trunk/zlib/crc32.asm
0,0 → 1,278
; crc32.asm -- compute the CRC-32 of a data stream
; Copyright (C) 1995-2006, 2010, 2011, 2012 Mark Adler
; For conditions of distribution and use, see copyright notice in zlib.inc
 
; Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
; CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
; tables for updating the shift register in one step with three exclusive-ors
; instead of four steps with four exclusive-ors. This results in about a
; factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
 
 
; Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
; protection on the static variables used to control the first-use generation
; of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should
; first call get_crc_table() to initialize the tables before allowing more than
; one thread to use crc32().
 
; Definitions for doing the crc four data bytes at a time.
 
TBLS equ 1
 
if DYNAMIC_CRC_TABLE eq 1
 
align 4
crc_table_empty dd 1
align 4
crc_table rd TBLS*256
 
; Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
; x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
 
; Polynomials over GF(2) are represented in binary, one bit per coefficient,
; with the lowest powers in the most significant bit. Then adding polynomials
; is just exclusive-or, and multiplying a polynomial by x is a right shift by
; one. If we call the above polynomial p, and represent a byte as the
; polynomial q, also with the lowest power in the most significant bit (so the
; byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
; where a mod b means the remainder after dividing a by b.
 
; This calculation is done using the shift-register method of multiplying and
; taking the remainder. The register is initialized to zero, and for each
; incoming bit, x^32 is added mod p to the register if the bit is a one (where
; x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
; x (which is shifting right by one and adding x^32 mod p if the bit shifted
; out is a one). We start with the highest power (least significant bit) of
; q and repeat for all eight bits of q.
 
; The first table is simply the CRC of all possible eight bit values. This is
; all the information needed to generate CRCs on data a byte at a time for all
; combinations of CRC register values and incoming bytes. The remaining tables
; allow for word-at-a-time CRC calculation for both big-endian and little-
; endian machines, where a word is four bytes.
 
;void ()
align 4
proc make_crc_table uses ecx edx edi
zlib_debug 'make_crc_table'
 
; generate a crc for every 8-bit value
xor edx, edx
mov edi, crc_table
.1:
mov ecx, 8
mov eax, edx
.2:
shr eax, 1
jnc @f
xor eax, 0xEDB88320
@@:
loop .2
stosd
inc dl
jnz .1
 
mov dword[crc_table_empty],0
ret
endp
 
else ;!DYNAMIC_CRC_TABLE
; ========================================================================
; Tables of CRC-32s of all single-byte values, made by make_crc_table().
 
;include 'crc32.inc'
end if ;DYNAMIC_CRC_TABLE
 
; =========================================================================
; This function can be used by asm versions of crc32()
 
;const z_crc_t* ()
align 4
proc get_crc_table
if DYNAMIC_CRC_TABLE eq 1
cmp dword[crc_table_empty],0
je @f ;if (..)
call make_crc_table
@@:
end if ;DYNAMIC_CRC_TABLE
mov eax,crc_table
ret
endp
 
; =========================================================================
macro DO1
{
xor al,byte[esi]
xor al,ah
mov eax,[crc_table+eax*4]
inc esi
}
macro DO8
{
DO1
DO1
DO1
DO1
DO1
DO1
DO1
DO1
}
 
; =========================================================================
;unsigned long (crc, buf, len)
; unsigned long crc
; unsigned char *buf
; uInt len
align 4
proc calc_crc32 uses ecx esi, p1crc:dword, buf:dword, len:dword
xor eax,eax
mov esi,[buf]
zlib_debug 'calc_crc32 buf = %d',esi
cmp esi,Z_NULL
je .end_f ;if (..==0) return 0
 
if DYNAMIC_CRC_TABLE eq 1
cmp dword[crc_table_empty],0
je @f ;if (..)
call make_crc_table
@@:
end if
 
mov eax,[p1crc]
xor eax,0xffffffff
mov [p1crc],eax
mov ecx,[len]
align 4
.cycle0:
cmp ecx,8
jl @f
DO8
sub ecx,8
jmp .cycle0
align 4
@@:
cmp ecx,1
jl @f
DO1
dec ecx
jmp @b
@@:
mov eax,[p1crc]
xor eax,0xffffffff
.end_f:
ret
endp
 
GF2_DIM equ 32 ;dimension of GF(2) vectors (length of CRC)
 
; =========================================================================
;unsigned long (mat, vec)
; unsigned long *mat
; unsigned long vec
align 4
proc gf2_matrix_times, mat:dword, vec:dword
; unsigned long sum;
 
; sum = 0;
; while (vec) {
; if (vec & 1)
; sum ^= *mat;
; vec >>= 1;
; mat++;
; }
; return sum;
ret
endp
 
; =========================================================================
;local void (square, mat)
; unsigned long *square
; unsigned long *mat
align 4
proc gf2_matrix_square, square:dword, mat:dword
; int n;
 
; for (n = 0; n < GF2_DIM; n++)
; square[n] = gf2_matrix_times(mat, mat[n]);
ret
endp
 
; =========================================================================
;uLong (crc1, crc2, len2)
; uLong crc1
; uLong crc2
; z_off64_t len2
align 4
proc crc32_combine_, crc1:dword, crc2:dword, len2:dword
; int n;
; unsigned long row;
; unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */
; unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */
 
; degenerate case (also disallow negative lengths)
; if (len2 <= 0)
; return crc1;
 
; put operator for one zero bit in odd
; odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
; row = 1;
; for (n = 1; n < GF2_DIM; n++) {
; odd[n] = row;
; row <<= 1;
; }
 
; put operator for two zero bits in even
; gf2_matrix_square(even, odd);
 
; put operator for four zero bits in odd
; gf2_matrix_square(odd, even);
 
; apply len2 zeros to crc1 (first square will put the operator for one
; zero byte, eight zero bits, in even)
; do {
; apply zeros operator for this bit of len2
; gf2_matrix_square(even, odd);
; if (len2 & 1)
; crc1 = gf2_matrix_times(even, crc1);
; len2 >>= 1;
 
; if no more bits set, then done
; if (len2 == 0)
; break;
 
; another iteration of the loop with odd and even swapped
; gf2_matrix_square(odd, even);
; if (len2 & 1)
; crc1 = gf2_matrix_times(odd, crc1);
; len2 >>= 1;
 
; if no more bits set, then done
; } while (len2 != 0);
 
; return combined crc
; crc1 ^= crc2;
; return crc1;
ret
endp
 
; =========================================================================
;uLong (crc1, crc2, len2)
; uLong crc1
; uLong crc2
; z_off_t len2
align 4
proc crc32_combine, crc1:dword, crc2:dword, len2:dword
stdcall crc32_combine_, [crc1], [crc2], [len2]
ret
endp
 
;uLong (crc1, crc2, len2)
; uLong crc1
; uLong crc2
; z_off64_t len2
align 4
proc crc32_combine64, crc1:dword, crc2:dword, len2:dword
stdcall crc32_combine_, [crc1], [crc2], [len2]
ret
endp
/programs/fs/kfar/trunk/zlib/debug.inc
0,0 → 1,440
 
txt_zv db '*',0
txt_sp db ' ',0
txt_buf db '1234',0
rd 1
 
buf_param rb 80
 
macro cStr dest,txt
{
local .end_t
local .m_txt
jmp .end_t
align 4
.m_txt db txt,0
align 4
.end_t:
if dest eq
mov eax,.m_txt
else
mov dest,.m_txt
end if
}
 
;for debug
tz1 db 'next_in',13,10,0
tz2 db 'avail_in',13,10,0
tz3 db 'total_in',13,10,0
tz4 db 'next_out',13,10,0
tz5 db 'avail_out',13,10,0
tz6 db 'total_out',13,10,0
tz7 db 'msg',13,10,0
tz8 db 'state',13,10,0
tz9 db 'zalloc',13,10,0
tz10 db 'zfree',13,10,0
tz11 db 'opaque',13,10,0
tz12 db 'data_type',13,10,0
tz13 db 'adler',13,10,0
tz14 db 'reserved',13,10,0
 
sv_2:
dd z_stream.next_in,4,tz1
dd z_stream.avail_in,2,tz2
dd z_stream.total_in,4,tz3
dd z_stream.next_out,4,tz4
dd z_stream.avail_out,2,tz5
dd z_stream.total_out,4,tz6
dd z_stream.msg,4,tz7
dd z_stream.state,4,tz8
dd z_stream.zalloc,4,tz9
dd z_stream.zfree,4,tz10
dd z_stream.opaque,4,tz11
dd z_stream.data_type,2,tz12
dd z_stream.adler,4,tz13
dd z_stream.reserved,4,tz14
dd 0,0
 
ta1 db 'strm',13,10,0
ta2 db 'status',13,10,0
ta3 db 'pending_buf',13,10,0
ta4 db 'pending_buf_size',13,10,0
ta5 db 'pending_out',13,10,0
ta6 db 'pending',13,10,0
ta7 db 'wrap',13,10,0
ta8 db 'gzhead',13,10,0
ta9 db 'gzindex',13,10,0
ta10 db 'method',13,10,0
ta11 db 'last_flush',13,10,0
ta12 db 'w_size',13,10,0
ta13 db 'w_bits',13,10,0
ta14 db 'w_mask',13,10,0
ta15 db 'window',13,10,0
ta16 db 'window_size',13,10,0
ta17 db 'prev',13,10,0
ta18 db 'head',13,10,0
ta19 db 'ins_h',13,10,0
ta20 db 'hash_size',13,10,0
ta21 db 'hash_bits',13,10,0
ta22 db 'hash_mask',13,10,0
ta23 db 'hash_shift',13,10,0
ta24 db 'block_start',13,10,0
ta25 db 'match_length',13,10,0
ta26 db 'prev_match',13,10,0
ta27 db 'match_available',13,10,0
ta28 db 'strstart',13,10,0
ta29 db 'match_start',13,10,0
ta30 db 'lookahead',13,10,0
ta31 db 'prev_length',13,10,0
ta32 db 'max_chain_length',13,10,0
ta33 db 'max_lazy_match',13,10,0
ta34 db 'level',13,10,0
ta35 db 'strategy',13,10,0
ta36 db 'good_match',13,10,0
ta37 db 'nice_match',13,10,0
ta38 db 'dyn_ltree',13,10,0
ta39 db 'dyn_dtree',13,10,0
ta40 db 'bl_tree',13,10,0
ta41 db 'l_desc',13,10,0
ta42 db 'd_desc',13,10,0
ta43 db 'bl_desc',13,10,0
ta44 db 'bl_count',13,10,0
ta45 db 'heap',13,10,0
ta46 db 'heap_len',13,10,0
ta47 db 'heap_max',13,10,0
ta48 db 'depth',13,10,0
ta49 db 'l_buf',13,10,0
ta50 db 'lit_bufsize',13,10,0
ta51 db 'last_lit',13,10,0
ta52 db 'd_buf',13,10,0
ta53 db 'opt_len',13,10,0
ta54 db 'static_len',13,10,0
ta55 db 'matches',13,10,0
ta56 db 'insert',13,10,0
; db 'compressed_len',13,10,0
; db 'bits_sent',13,10,0
ta59 db 'bi_buf',13,10,0
ta60 db 'bi_valid',13,10,0
ta61 db 'high_water',13,10,0
 
sv_3:
dd deflate_state.strm,4,ta1
dd deflate_state.status,4,ta2
dd deflate_state.pending_buf,4,ta3
dd deflate_state.pending_buf_size,4,ta4
dd deflate_state.pending_out,4,ta5
dd deflate_state.pending,2,ta6
dd deflate_state.wrap,4,ta7
dd deflate_state.gzhead,4,ta8
dd deflate_state.gzindex,4,ta9
dd deflate_state.method,1,ta10
dd deflate_state.last_flush,4,ta11
dd deflate_state.w_size,4,ta12
dd deflate_state.w_bits,4,ta13
dd deflate_state.w_mask,4,ta14
dd deflate_state.window,4,ta15
dd deflate_state.window_size,4,ta16
dd deflate_state.prev,4,ta17
dd deflate_state.head,4,ta18
dd deflate_state.ins_h,4,ta19
dd deflate_state.hash_size,4,ta20
dd deflate_state.hash_bits,4,ta21
dd deflate_state.hash_mask,4,ta22
dd deflate_state.hash_shift,4,ta23
dd deflate_state.block_start,4,ta24
dd deflate_state.match_length,4,ta25
dd deflate_state.prev_match,4,ta26
dd deflate_state.match_available,4,ta27
dd deflate_state.strstart,4,ta28
dd deflate_state.match_start,4,ta29
dd deflate_state.lookahead,4,ta30
dd deflate_state.prev_length,4,ta31
dd deflate_state.max_chain_length,4,ta32
dd deflate_state.max_lazy_match,4,ta33
dd deflate_state.level,2,ta34
dd deflate_state.strategy,2,ta35
dd deflate_state.good_match,4,ta36
dd deflate_state.nice_match,4,ta37
dd deflate_state.dyn_ltree,((2*HEAP_SIZE) shl 16)+2,ta38
dd deflate_state.dyn_dtree,((2*(2*D_CODES+1)) shl 16)+2,ta39
dd deflate_state.bl_tree,((2*(2*BL_CODES+1)) shl 16)+2,ta40
dd deflate_state.l_desc,(3 shl 16)+4,ta41
dd deflate_state.d_desc,(3 shl 16)+4,ta42
dd deflate_state.bl_desc,(3 shl 16)+4,ta43
dd deflate_state.bl_count,((MAX_BITS+1) shl 16)+2,ta44
dd deflate_state.heap,((2*L_CODES+1) shl 16)+2,ta45
dd deflate_state.heap_len,4,ta46
dd deflate_state.heap_max,4,ta47
dd deflate_state.depth,((2*L_CODES+1) shl 16)+1,ta48
dd deflate_state.l_buf,4,ta49
dd deflate_state.lit_bufsize,4,ta50
dd deflate_state.last_lit,4,ta51
dd deflate_state.d_buf,4,ta52
dd deflate_state.opt_len,4,ta53
dd deflate_state.static_len,4,ta54
dd deflate_state.matches,4,ta55
dd deflate_state.insert,4,ta56
;if DEBUG eq 1
;dd deflate_state.compressed_len
;dd deflate_state.bits_sent
;end if
dd deflate_state.bi_buf,2,ta59
dd deflate_state.bi_valid,4,ta60
dd deflate_state.high_water,4,ta61
dd 0,0
 
align 4
proc dbg_print, fun:dword, mes:dword
pushad
mov eax,SF_BOARD
mov ebx,SSF_DEBUG_WRITE
 
mov esi,[fun]
cmp esi,0
je .end0
@@:
mov cl,byte[esi]
int 0x40
inc esi
cmp byte[esi],0
jne @b
mov cl,':'
int 0x40
mov cl,' '
int 0x40
.end0:
mov esi,[mes]
cmp esi,0
je .end_f
@@:
mov cl,byte[esi]
cmp cl,0
je .end_f
int 0x40
inc esi
jmp @b
.end_f:
popad
ret
endp
 
;input:
; zif - 1...8
align 4
proc hex_in_str, buf:dword,val:dword,zif:dword
pushad
mov edi,dword[buf]
mov ecx,dword[zif]
add edi,ecx
dec edi
mov ebx,dword[val]
 
.cycle:
mov al,bl
and al,0xf
cmp al,10
jl @f
add al,'a'-'0'-10
@@:
add al,'0'
mov byte[edi],al
dec edi
shr ebx,4
loop .cycle
popad
ret
endp
 
;output:
; eax = strlen
align 4
proc strlen, str1:dword
mov eax,[str1]
@@:
cmp byte[eax],0
je @f
inc eax
jmp @b
@@:
sub eax,[str1]
ret
endp
 
align 4
proc str_format_dbg, buf:dword, fmt:dword, p1:dword
pushad
mov esi,[fmt]
mov edi,[buf]
mov ecx,80-1
.cycle0:
lodsb
cmp al,'%'
jne .no_param
lodsb
dec ecx
cmp al,0
je .cycle0end
cmp al,'d'
je @f
cmp al,'u'
je @f
cmp al,'l'
je .end1
jmp .end0
.end1: ;%lu %lx
lodsb
dec ecx
cmp al,'u'
jne .end0
@@:
mov eax,[p1]
stdcall convert_int_to_str,ecx
xor al,al
repne scasb
dec edi
.end0:
loop .cycle0
.no_param:
stosb
cmp al,0
je .cycle0end
loop .cycle0
.cycle0end:
xor al,al
stosb
stdcall dbg_print,txt_sp,[buf]
popad
ret
endp
 
align 4
proc debug_fields, saddr:dword, form:dword
locals
nl_array dd ?
endl
pushad
mov edi,[saddr]
cmp edi,0
je .end_f
mcall SF_BOARD,SSF_DEBUG_WRITE,13
mcall ,,10
mov eax,[form]
align 4
.cycle0:
mov ebx,[eax+4]
mov ecx,ebx
and ebx,0xffff
cmp ebx,0
je .end_f
mov esi,ebx
shl ebx,1
shr ecx,16
cmp ecx,0
je .end0
;if array
stdcall dbg_print,0,[eax+8]
mov edx,61 ;size text line
mov dword[nl_array],0
.cycle2:
inc dword[nl_array]
sub edx,ebx
sub edx,2 ;': '
cmp edx,3
jg .cycle2
mov edx,edi
add edx,[eax]
push eax
.nl_i:
mov eax,[nl_array]
mov byte[ebx+txt_buf],0 ;конец числа
.cycle1:
stdcall hex_in_str,txt_buf,[edx],ebx
add edx,esi ;move next value
push edi
mov edi,txt_buf
cmp byte[edi],'0'
jne @f
inc edi
cmp byte[edi],'0'
jne @f
inc edi
cmp byte[edi],'0'
jne @f
inc edi
cmp byte[edi],'0'
jne @f
inc edi
@@:
cmp byte[edi],0
jne @f
dec edi
@@:
stdcall dbg_print,edi,0
pop edi
;stdcall dbg_print,txt_buf,0
dec eax
jz .nl
loop .cycle1
.nl:
push ebx ecx
mcall SF_BOARD,SSF_DEBUG_WRITE,13
mcall ,,10
pop ecx ebx
dec ecx
cmp ecx,0
jg .nl_i
pop eax
add eax,12
jmp .cycle0
.end0:
mov edx,edi
add edx,[eax]
stdcall hex_in_str,txt_buf,[edx],ebx
mov byte[ebx+txt_buf],0 ;конец числа
stdcall dbg_print,txt_buf,[eax+8]
add eax,12
jmp .cycle0
.end_f:
mcall SF_BOARD,SSF_DEBUG_WRITE,13
mcall ,,10
popad
ret
endp
 
;input:
; eax - число
; edi - буфер для строки
; len - длинна буфера
;output:
align 4
proc convert_int_to_str, len:dword
pushad
mov esi,[len]
add esi,edi
dec esi
call .str
popad
ret
endp
 
align 4
.str:
mov ecx,0x0a
cmp eax,ecx
jb @f
xor edx,edx
div ecx
push edx
call .str
pop eax
@@:
cmp edi,esi
jge @f
or al,0x30
stosb
mov byte[edi],0
@@:
ret
 
/programs/fs/kfar/trunk/zlib/deflate.asm
0,0 → 1,2962
; deflate.asm -- compress data using the deflation algorithm
; Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
; For conditions of distribution and use, see copyright notice in zlib.inc
 
; ALGORITHM
 
; The "deflation" process depends on being able to identify portions
; of the input text which are identical to earlier input (within a
; sliding window trailing behind the input currently being processed).
 
; The most straightforward technique turns out to be the fastest for
; most input files: try all possible matches and select the longest.
; The key feature of this algorithm is that insertions into the string
; dictionary are very simple and thus fast, and deletions are avoided
; completely. Insertions are performed at each input character, whereas
; string matches are performed only when the previous match ends. So it
; is preferable to spend more time in matches to allow very fast string
; insertions and avoid deletions. The matching algorithm for small
; strings is inspired from that of Rabin & Karp. A brute force approach
; is used to find longer strings when a small match has been found.
; A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
; (by Leonid Broukhis).
; A previous version of this file used a more sophisticated algorithm
; (by Fiala and Greene) which is guaranteed to run in linear amortized
; time, but has a larger average cost, uses more memory and is patented.
; However the F&G algorithm may be faster for some highly redundant
; files if the parameter max_chain_length (described below) is too large.
 
; ACKNOWLEDGEMENTS
 
; The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
; I found it in 'freeze' written by Leonid Broukhis.
; Thanks to many people for bug reports and testing.
 
; REFERENCES
 
; Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
; Available in http://tools.ietf.org/html/rfc1951
 
; A description of the Rabin and Karp algorithm is given in the book
; "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
 
; Fiala,E.R., and Greene,D.H.
; Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
 
 
deflate_copyright db ' deflate 1.2.8 Copyright 1995-2013 Jean-loup Gailly and Mark Adler ',0
 
; If you use the zlib library in a product, an acknowledgment is welcome
; in the documentation of your product. If for some reason you cannot
; include such an acknowledgment, I would appreciate that you keep this
; copyright string in the executable of your product.
 
; ===========================================================================
; Function prototypes.
 
;enum block_state
need_more equ 1 ;block not completed, need more input or more output
block_done equ 2 ;block flush performed
finish_started equ 3 ;finish started, need only more output at next deflate
finish_done equ 4 ;finish done, accept no more input or output
 
; ===========================================================================
; Local data
 
NIL equ 0
; Tail of hash chains
 
TOO_FAR equ 4096
; Matches of length 3 are discarded if their distance exceeds TOO_FAR
 
; Values for max_lazy_match, good_match and max_chain_length, depending on
; the desired pack level (0..9). The values given below have been tuned to
; exclude worst case performance for pathological files. Better values may be
; found for specific files.
 
struct config_s ;config
good_length dw ? ;uint_16 ;reduce lazy search above this match length
max_lazy dw ? ;uint_16 ;do not perform lazy search above this match length
nice_length dw ? ;uint_16 ;quit search above this match length
max_chain dw ? ;uint_16
co_func dd ? ;compress_func
ends
 
align 16
configuration_table:
config_s 0, 0, 0, 0, deflate_stored ;store only
config_s 4, 4, 8, 4, deflate_fast ;max speed, no lazy matches
if FASTEST eq 0
config_s 4, 5, 16, 8, deflate_fast
config_s 4, 6, 32, 32, deflate_fast
config_s 4, 4, 16, 16, deflate_slow ;lazy matches
config_s 8, 16, 32, 32, deflate_slow
config_s 8, 16, 128, 128, deflate_slow
config_s 8, 32, 128, 256, deflate_slow
config_s 32, 128, 258, 1024, deflate_slow
config_s 32, 258, 258, 4096, deflate_slow ;max compression
end if
 
; Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
; For deflate_fast() (levels <= 3) good is ignored and lazy has a different
; meaning.
 
 
EQUAL equ 0
; result of memcmp for equal strings
 
; rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH
macro RANK f, reg
{
local .end0
xor reg,reg
cmp f,4
jle .end0
sub reg,9
.end0:
add reg,f
add reg,f
}
 
; ===========================================================================
; Update a hash value with the given input byte
; IN assertion: all calls to to UPDATE_HASH are made with consecutive
; input characters, so that a running hash key can be computed from the
; previous key instead of complete recalculation each time.
 
macro UPDATE_HASH s,h,c
{
push ebx ecx
mov ebx,h
mov ecx,[s+deflate_state.hash_shift]
shl ebx,cl
xor ebx,c
and ebx,[s+deflate_state.hash_mask]
mov h,ebx
pop ecx ebx
}
 
; ===========================================================================
; Insert string str in the dictionary and set match_head to the previous head
; of the hash chain (the most recent string with same hash key). Return
; the previous length of the hash chain.
; If this file is compiled with -DFASTEST, the compression level is forced
; to 1, and no hash chains are maintained.
; IN assertion: all calls to to INSERT_STRING are made with consecutive
; input characters and the first MIN_MATCH bytes of str are valid
; (except for the last MIN_MATCH-1 bytes of the input file).
 
macro INSERT_STRING s, str, match_head
{
mov eax,[s+deflate_state.window]
add eax,str
add eax,MIN_MATCH-1
movzx eax,byte[eax]
UPDATE_HASH s, [s+deflate_state.ins_h], eax
mov eax,[s+deflate_state.ins_h]
shl eax,2
add eax,[s+deflate_state.head]
mov eax,[eax]
mov match_head,eax
if FASTEST eq 0
push ebx
mov ebx,[s+deflate_state.w_mask]
and ebx,str
add ebx,[s+deflate_state.prev]
mov byte[ebx],al
pop ebx
end if
mov eax,[s+deflate_state.ins_h]
shl eax,2
add eax,[s+deflate_state.head]
push str
pop dword[eax]
}
 
; ===========================================================================
; Initialize the hash table (avoiding 64K overflow for 16 bit systems).
; prev[] will be initialized on the fly.
 
macro CLEAR_HASH s
{
mov eax,[s+deflate_state.hash_size]
dec eax
shl eax,2
add eax,[s+deflate_state.head]
mov dword[eax],NIL
mov eax,[s+deflate_state.hash_size]
dec eax
shl eax,2 ;sizeof(*s.head)
stdcall zmemzero, [s+deflate_state.head], eax
}
 
align 4
proc deflateInit, strm:dword, level:dword
stdcall deflateInit_, [strm], [level], ZLIB_VERSION, sizeof.z_stream
ret
endp
 
; =========================================================================
;int (strm, level, version, stream_size)
; z_streamp strm;
; int level;
; const char *version;
; int stream_size;
align 4
proc deflateInit_, strm:dword, level:dword, version:dword, stream_size:dword
stdcall deflateInit2_, [strm], [level], Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,\
Z_DEFAULT_STRATEGY, [version], [stream_size]
; To do: ignore strm->next_in if we use it as window
ret
endp
 
align 4
proc deflateInit2, strm:dword, level:dword, method:dword, windowBits:dword, memLevel:dword, strategy:dword
stdcall deflateInit2_, [strm],[level],[method],[windowBits],[memLevel],\
[strategy], ZLIB_VERSION, sizeof.z_stream
ret
endp
 
; =========================================================================
;int (strm, level, method, windowBits, memLevel, strategy,
; version, stream_size)
; z_streamp strm;
; int level;
; int method;
; int windowBits;
; int memLevel;
; int strategy;
; const char *version;
; int stream_size;
align 4
proc deflateInit2_ uses ebx ecx edx edi, strm:dword, level:dword, method:dword,\
windowBits:dword, memLevel:dword, strategy:dword, version:dword, stream_size:dword
locals
wrap dd 1 ;int
overlay dd ? ;uint_16p
endl
; We overlay pending_buf and d_buf+l_buf. This works since the average
; output size for (length,distance) codes is <= 24 bits.
 
mov eax,[version]
cmp eax,Z_NULL
je @f
mov ebx,dword[ZLIB_VERSION]
cmp dword[eax],ebx
jne @f
cmp dword[stream_size],sizeof.z_stream
je .end0
@@: ;if (..==0 || ..[0]!=..[0] || ..!=..)
mov eax,Z_VERSION_ERROR
jmp .end_f
.end0:
mov ebx,[strm]
cmp ebx,Z_NULL
jne @f ;if (..==0) return ..
mov eax,Z_STREAM_ERROR
jmp .end_f
@@:
 
mov dword[ebx+z_stream.msg],Z_NULL
cmp dword[ebx+z_stream.zalloc],0
jne @f ;if (..==0)
if Z_SOLO eq 1
mov eax,Z_STREAM_ERROR
jmp .end_f
else
mov dword[ebx+z_stream.zalloc],zcalloc
mov dword[ebx+z_stream.opaque],0
end if
@@:
cmp dword[ebx+z_stream.zfree],0
jne @f ;if (..==0)
if Z_SOLO eq 1
mov eax,Z_STREAM_ERROR
jmp .end_f
else
mov dword[ebx+z_stream.zfree],zcfree
end if
@@:
 
if FASTEST eq 1
cmp dword[level],0
je @f ;if (..!=0)
mov dword[level],1
@@:
else
cmp dword[level],Z_DEFAULT_COMPRESSION
jne @f ;if (..==0)
mov dword[level],6
@@:
end if
 
cmp dword[windowBits],0
jge @f ;if (..<0) ;suppress zlib wrapper
mov dword[wrap],0
neg dword[windowBits]
inc dword[windowBits]
jmp .end1
@@:
if GZIP eq 1
cmp dword[windowBits],15
jle .end1 ;else if (..>15)
mov dword[wrap],2 ;write gzip wrapper instead
sub dword[windowBits],16
end if
.end1:
cmp dword[memLevel],1
jl .end2
cmp dword[memLevel],MAX_MEM_LEVEL
jg .end2
cmp dword[method],Z_DEFLATED
jne .end2
cmp dword[windowBits],8
jl .end2
cmp dword[windowBits],15
jg .end2
cmp dword[level],0
jl .end2
cmp dword[level],9
jg .end2
cmp dword[strategy],0
jl .end2
cmp dword[strategy],Z_FIXED
jle @f
.end2: ;if (..<.. || ..>.. || ..!=.. || ..<.. || ..>.. || ..<0 || ..>.. || ..<0 || ..>..)
mov eax,Z_STREAM_ERROR
jmp .end_f
@@:
cmp dword[windowBits],8
jne @f ;if (..==..)
inc dword[windowBits] ;until 256-byte window bug fixed
@@:
ZALLOC ebx, 1, sizeof.deflate_state
;eax = s
cmp eax,Z_NULL
jne @f ;if (..==0)
mov eax,Z_MEM_ERROR
jmp .end_f
@@:
mov edi,eax ;edi = s
mov [ebx+z_stream.state],edi
mov [edi+deflate_state.strm],ebx
 
mov eax,[wrap]
mov [edi+deflate_state.wrap],eax
mov [edi+deflate_state.gzhead],Z_NULL
mov ecx,[windowBits]
mov [edi+deflate_state.w_bits],ecx
xor eax,eax
inc eax
shl eax,cl
mov [edi+deflate_state.w_size],eax
dec eax
mov [edi+deflate_state.w_mask],eax
 
mov ecx,[memLevel]
add ecx,7
mov [edi+deflate_state.hash_bits],ecx
xor eax,eax
inc eax
shl eax,cl
mov [edi+deflate_state.hash_size],eax
dec eax
mov [edi+deflate_state.hash_mask],eax
add ecx,MIN_MATCH-1
xor edx,edx
mov eax,ecx
mov ecx,MIN_MATCH
div ecx
mov [edi+deflate_state.hash_shift],eax
 
ZALLOC ebx, [edi+deflate_state.w_size], 2 ;2*sizeof(Byte)
mov [edi+deflate_state.window],eax
ZALLOC ebx, [edi+deflate_state.w_size], 4 ;sizeof(Pos)
mov [edi+deflate_state.prev],eax
ZALLOC ebx, [edi+deflate_state.hash_size], 4 ;sizeof(Pos)
mov [edi+deflate_state.head],eax
 
mov dword[edi+deflate_state.high_water],0 ;nothing written to s->window yet
 
mov ecx,[memLevel]
add ecx,6
xor eax,eax
inc eax
shl eax,cl
mov [edi+deflate_state.lit_bufsize],eax ;16K elements by default
 
ZALLOC ebx, eax, 4 ;sizeof(uint_16)+2
mov [overlay],eax
mov [edi+deflate_state.pending_buf],eax
mov eax,[edi+deflate_state.lit_bufsize]
imul eax,4 ;sizeof(uint_16)+2
mov [edi+deflate_state.pending_buf_size],eax
 
cmp dword[edi+deflate_state.window],Z_NULL
je .end3
cmp dword[edi+deflate_state.prev],Z_NULL
je .end3
cmp dword[edi+deflate_state.head],Z_NULL
je .end3
cmp dword[edi+deflate_state.pending_buf],Z_NULL
je .end3
jmp @f
.end3: ;if (..==0 || ..==0 || ..==0 || ..==0)
mov dword[edi+deflate_state.status],FINISH_STATE
ERR_MSG Z_MEM_ERROR
mov [ebx+z_stream.msg],eax
stdcall deflateEnd, ebx
mov eax,Z_MEM_ERROR
jmp .end_f
@@:
mov eax,[edi+deflate_state.lit_bufsize]
shr eax,1 ;/=sizeof(uint_16)
add eax,[overlay]
mov [edi+deflate_state.d_buf],eax
mov eax,[edi+deflate_state.lit_bufsize]
imul eax,3 ;1+sizeof(uint_16)
add eax,[edi+deflate_state.pending_buf]
mov [edi+deflate_state.l_buf],eax
 
mov eax,[level]
mov [edi+deflate_state.level],ax
mov eax,[strategy]
mov [edi+deflate_state.strategy],ax
mov eax,[method]
mov [edi+deflate_state.method],al
 
stdcall deflateReset, ebx
.end_f:
zlib_debug 'deflateInit2_ strategy = %d',[strategy]
ret
endp
 
; =========================================================================
;int (strm, dictionary, dictLength)
; z_streamp strm;
; const Bytef *dictionary;
; uInt dictLength;
align 4
proc deflateSetDictionary uses ebx edi, strm:dword, dictionary:dword, dictLength:dword
locals
; deflate_state *s;
; uInt str, n;
wrap dd ? ;int
avail dd ? ;unsigned
; z_const unsigned char *next;
endl
mov ebx,[strm]
cmp ebx,Z_NULL
je @f
mov edi,[ebx+z_stream.state]
cmp edi,Z_NULL
je @f
cmp dword[dictionary],Z_NULL
je @f ;if (..==0 || ..==0 || ..==0)
jmp .end0
@@:
mov eax,Z_STREAM_ERROR
jmp .end_f
.end0:
mov eax,[edi+deflate_state.wrap]
mov [wrap],eax
; if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
; return Z_STREAM_ERROR;
 
; when using zlib wrappers, compute Adler-32 for provided dictionary
; if (wrap == 1)
; strm->adler = adler32(strm->adler, dictionary, dictLength);
; s->wrap = 0; /* avoid computing Adler-32 in read_buf */
 
; if dictionary would fill window, just replace the history
; if (dictLength >= s->w_size) {
; if (wrap == 0) { /* already empty otherwise */
; CLEAR_HASH(s);
; s->strstart = 0;
; s->block_start = 0L;
; s->insert = 0;
; }
; dictionary += dictLength - s->w_size; /* use the tail */
; dictLength = s->w_size;
; }
 
; insert dictionary into window and hash
; avail = strm->avail_in;
; next = strm->next_in;
; strm->avail_in = dictLength;
; strm->next_in = (z_const Bytef *)dictionary;
; fill_window(s);
; while (s->lookahead >= MIN_MATCH) {
; str = s->strstart;
; n = s->lookahead - (MIN_MATCH-1);
; do {
; UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
if FASTEST eq 0
; s->prev[str & s->w_mask] = s->head[s->ins_h];
end if
; s->head[s->ins_h] = (Pos)str;
; str++;
; } while (--n);
; s->strstart = str;
; s->lookahead = MIN_MATCH-1;
; fill_window(s);
; }
; s->strstart += s->lookahead;
; s->block_start = (long)s->strstart;
; s->insert = s->lookahead;
; s->lookahead = 0;
; s->match_length = s->prev_length = MIN_MATCH-1;
; s->match_available = 0;
; strm->next_in = next;
; strm->avail_in = avail;
; s->wrap = wrap;
mov eax,Z_OK
.end_f:
ret
endp
 
; =========================================================================
;int (strm)
; z_streamp strm;
align 4
proc deflateResetKeep uses ebx edi, strm:dword
; deflate_state *s;
 
mov ebx,[strm]
cmp ebx,Z_NULL
je @f
mov edi,[ebx+z_stream.state]
cmp edi,Z_NULL
je @f
cmp dword[ebx+z_stream.zalloc],0
je @f
cmp dword[ebx+z_stream.zfree],0
je @f ;if (..==0 || ..==0 || ..==0 || ..==0)
jmp .end0
@@:
mov eax,Z_STREAM_ERROR
jmp .end_f
.end0:
 
mov dword[ebx+z_stream.total_out],0
mov dword[ebx+z_stream.total_in],0
mov dword[ebx+z_stream.msg],Z_NULL ;use zfree if we ever allocate msg dynamically
mov word[ebx+z_stream.data_type],Z_UNKNOWN
 
mov word[edi+deflate_state.pending],0
mov eax,[edi+deflate_state.pending_buf]
mov [edi+deflate_state.pending_out],eax
 
cmp dword[edi+deflate_state.wrap],0
jge @f ;if (..<0)
neg dword[edi+deflate_state.wrap]
inc dword[edi+deflate_state.wrap] ;was made negative by deflate(..., Z_FINISH)
@@:
mov eax,BUSY_STATE
cmp dword[edi+deflate_state.wrap],0
je @f
mov eax,INIT_STATE
@@:
mov dword[edi+deflate_state.status],eax
stdcall adler32, 0, Z_NULL, 0
if GZIP eq 1
cmp dword[edi+deflate_state.wrap],2
jne @f
stdcall calc_crc32, 0, Z_NULL, 0
@@:
end if
mov dword[ebx+z_stream.adler],eax
mov dword[edi+deflate_state.last_flush],Z_NO_FLUSH
 
stdcall _tr_init, edi
 
mov eax,Z_OK
.end_f:
ret
endp
 
; =========================================================================
;int (strm)
; z_streamp strm;
align 4
proc deflateReset uses ebx, strm:dword
mov ebx,[strm]
;zlib_debug 'deflateReset'
stdcall deflateResetKeep, ebx
cmp eax,0
jne @f ;if (..==Z_OK)
stdcall lm_init, [ebx+z_stream.state]
@@:
ret
endp
 
; =========================================================================
;int (strm, head)
; z_streamp strm;
; gz_headerp head;
align 4
proc deflateSetHeader uses ebx, strm:dword, head:dword
mov ebx,[strm]
cmp ebx,Z_NULL
je @f
mov ebx,[ebx+z_stream.state]
cmp ebx,Z_NULL
jne .end0
@@: ;if (..==0 || ..==0) return ..
mov eax,Z_STREAM_ERROR
jmp .end_f
.end0:
cmp dword[ebx+deflate_state.wrap],2
je @f ;if (..!=..) return ..
mov eax,Z_STREAM_ERROR
jmp .end_f
@@:
mov eax,[head]
mov [ebx+deflate_state.gzhead],eax
mov eax,Z_OK
.end_f:
ret
endp
 
; =========================================================================
;int (strm, pending, bits)
; unsigned *pending;
; int *bits;
; z_streamp strm;
align 4
proc deflatePending uses ebx edi, strm:dword, pending:dword, bits:dword
mov ebx,[strm]
cmp ebx,Z_NULL
je @f
mov edi,[ebx+z_stream.state]
cmp edi,Z_NULL
jne .end0
@@: ;if (..==0 || ..==0) return ..
mov eax,Z_STREAM_ERROR
jmp .end_f
.end0:
cmp dword[pending],Z_NULL
je @f ;if (..!=..)
mov eax,[pending]
movzx ebx,word[edi+deflate_state.pending]
mov [eax],ebx
@@:
cmp dword[bits],Z_NULL
je @f ;if (..!=..)
mov eax,[bits]
mov ebx,[edi+deflate_state.bi_valid]
mov [eax],ebx
@@:
mov eax,Z_OK
.end_f:
ret
endp
 
; =========================================================================
;int (strm, bits, value)
; z_streamp strm;
; int bits;
; int value;
align 4
proc deflatePrime uses ebx edi, strm:dword, bits:dword, value:dword
; int put;
 
mov ebx,[strm]
cmp ebx,Z_NULL
je @f
mov edi,[ebx+z_stream.state] ;s = strm.state
cmp edi,Z_NULL
jne .end0
@@: ;if (..==0 || ..==0) return ..
mov eax,Z_STREAM_ERROR
jmp .end_f
.end0:
; if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
; return Z_BUF_ERROR;
; do {
; put = Buf_size - s->bi_valid;
; if (put > bits)
; put = bits;
; s->bi_buf |= (uint_16)((value & ((1 << put) - 1)) << s->bi_valid);
; s->bi_valid += put;
; _tr_flush_bits(s);
; value >>= put;
; bits -= put;
; } while (bits);
mov eax,Z_OK
.end_f:
ret
endp
 
; =========================================================================
;int (strm, level, strategy)
; z_streamp strm;
; int level;
; int strategy;
align 4
proc deflateParams uses ebx edi, strm:dword, level:dword, strategy:dword
; compress_func func;
; int err = Z_OK;
 
mov ebx,[strm]
cmp ebx,Z_NULL
je @f
mov edi,[ebx+z_stream.state] ;s = strm.state
cmp edi,Z_NULL
jne .end0
@@: ;if (..==0 || ..==0) return ..
mov eax,Z_STREAM_ERROR
jmp .end_f
.end0:
 
if FASTEST eq 1
cmp dword[level],0
je @f ;if (..!=0)
mov dword[level],1
@@:
else
cmp dword[level],Z_DEFAULT_COMPRESSION
jne @f ;if (..==0)
mov dword[level],6
@@:
end if
; if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
; return Z_STREAM_ERROR;
; }
; func = configuration_table[s->level].func;
 
; if ((strategy != s->strategy || func != configuration_table[level].func) &&
; strm->total_in != 0) {
; Flush the last buffer:
; err = deflate(strm, Z_BLOCK);
; if (err == Z_BUF_ERROR && s->pending == 0)
; err = Z_OK;
; }
; if (s->level != level) {
; s->level = level;
; s->max_lazy_match = configuration_table[level].max_lazy;
; s->good_match = configuration_table[level].good_length;
; s->nice_match = configuration_table[level].nice_length;
; s->max_chain_length = configuration_table[level].max_chain;
; }
; s->strategy = strategy;
; return err;
.end_f:
ret
endp
 
; =========================================================================
;int (strm, good_length, max_lazy, nice_length, max_chain)
; z_streamp strm;
; int good_length;
; int max_lazy;
; int nice_length;
; int max_chain;
align 4
proc deflateTune uses ebx, strm:dword, good_length:dword, max_lazy:dword,\
nice_length:dword, max_chain:dword
mov ebx,[strm]
cmp ebx,Z_NULL
je @f
cmp dword[ebx+z_stream.state],Z_NULL
jne .end0
@@: ;if (..==0 || ..==0) return ..
mov eax,Z_STREAM_ERROR
jmp .end_f
.end0:
mov ebx,[ebx+z_stream.state] ;s = strm.state
mov eax,[good_length]
mov [ebx+deflate_state.good_match],eax
mov eax,[max_lazy]
mov [ebx+deflate_state.max_lazy_match],eax
mov eax,[nice_length]
mov [ebx+deflate_state.nice_match],eax
mov eax,[max_chain]
mov [ebx+deflate_state.max_chain_length],eax
mov eax,Z_OK
.end_f:
ret
endp
 
; =========================================================================
; For the default windowBits of 15 and memLevel of 8, this function returns
; a close to exact, as well as small, upper bound on the compressed size.
; They are coded as constants here for a reason--if the #define's are
; changed, then this function needs to be changed as well. The return
; value for 15 and 8 only works for those exact settings.
 
; For any setting other than those defaults for windowBits and memLevel,
; the value returned is a conservative worst case for the maximum expansion
; resulting from using fixed blocks instead of stored blocks, which deflate
; can emit on compressed data for some combinations of the parameters.
 
; This function could be more sophisticated to provide closer upper bounds for
; every combination of windowBits and memLevel. But even the conservative
; upper bound of about 14% expansion does not seem onerous for output buffer
; allocation.
 
;uLong (strm, sourceLen)
; z_streamp strm;
; uLong sourceLen;
align 4
proc deflateBound, strm:dword, sourceLen:dword
; deflate_state *s;
; uLong complen, wraplen;
; Bytef *str;
;zlib_debug 'deflateBound'
 
; conservative upper bound for compressed data
; complen = sourceLen +
; ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
 
; if can't get parameters, return conservative bound plus zlib wrapper
; if (strm == Z_NULL || strm->state == Z_NULL)
; return complen + 6;
 
; compute wrapper length
; s = strm->state;
; switch (s->wrap) {
; case 0: /* raw deflate */
; wraplen = 0;
; break;
; case 1: /* zlib wrapper */
; wraplen = 6 + (s->strstart ? 4 : 0);
; break;
; case 2: /* gzip wrapper */
; wraplen = 18;
; if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
; if (s->gzhead->extra != Z_NULL)
; wraplen += 2 + s->gzhead->extra_len;
; str = s->gzhead->name;
; if (str != Z_NULL)
; do {
; wraplen++;
; } while (*str++);
; str = s->gzhead->comment;
; if (str != Z_NULL)
; do {
; wraplen++;
; } while (*str++);
; if (s->gzhead->hcrc)
; wraplen += 2;
; }
; break;
; default: /* for compiler happiness */
; wraplen = 6;
; }
 
; if not default parameters, return conservative bound
; if (s->w_bits != 15 || s->hash_bits != 8 + 7)
; return complen + wraplen;
 
; default settings: return tight bound for that case
; return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
; (sourceLen >> 25) + 13 - 6 + wraplen;
.end_f:
ret
endp
 
; =========================================================================
; Put a short in the pending buffer. The 16-bit value is put in MSB order.
; IN assertion: the stream state is correct and there is enough room in
; pending_buf.
 
;void (s, b)
; deflate_state *s;
; uInt b;
align 4
proc putShortMSB uses ebx ecx, s:dword, b:dword
mov ebx,[s]
mov ecx,[b]
put_byte ebx, ch
put_byte ebx, cl
ret
endp
 
; =========================================================================
; Flush as much pending output as possible. All deflate() output goes
; through this function so some applications may wish to modify it
; to avoid allocating a large strm->next_out buffer and copying into it.
; (See also read_buf()).
 
;void (strm)
; z_streamp strm;
align 4
proc flush_pending uses eax ebx ecx edx, strm:dword
;ecx - len
;edx - deflate_state *s
;ebx - strm
;zlib_debug 'flush_pending'
mov ebx,[strm]
mov edx,[ebx+z_stream.state]
 
stdcall _tr_flush_bits, edx
movzx ecx,word[edx+deflate_state.pending]
cmp cx,[ebx+z_stream.avail_out]
jle @f ;if (..>..)
movzx ecx,word[ebx+z_stream.avail_out]
@@:
cmp ecx,0
je @f
 
stdcall zmemcpy, [ebx+z_stream.next_out], [edx+deflate_state.pending_out], ecx
add [ebx+z_stream.next_out],ecx
add [edx+deflate_state.pending_out],ecx
add [ebx+z_stream.total_out],ecx
sub [ebx+z_stream.avail_out],cx
sub [edx+deflate_state.pending],cx
cmp word[edx+deflate_state.pending],0
jne @f ;if (..==0)
mov eax,[edx+deflate_state.pending_buf]
mov [edx+deflate_state.pending_out],eax
@@:
ret
endp
 
; =========================================================================
;int (strm, flush)
; z_streamp strm;
; int flush;
align 4
proc deflate uses ebx ecx edx edi esi, strm:dword, flush:dword
locals
old_flush dd ? ;int ;value of flush param for previous deflate call
val dd ?
endl
mov ebx,[strm]
zlib_debug 'deflate strm = %d',ebx
cmp ebx,Z_NULL
je @f
mov edi,[ebx+z_stream.state] ;s = strm.state
cmp edi,Z_NULL
je @f
cmp dword[flush],Z_BLOCK
jg @f
cmp dword[flush],0
jl @f ;if (..==0 || ..==0 || ..>.. || ..<0)
jmp .end10
@@:
mov eax,Z_STREAM_ERROR
jmp .end_f
.end10:
cmp dword[ebx+z_stream.next_out],Z_NULL
je .beg0
cmp dword[ebx+z_stream.next_in],Z_NULL
jne @f
cmp word[ebx+z_stream.avail_in],0
jne .beg0
@@:
cmp dword[edi+deflate_state.status],FINISH_STATE
jne .end0
cmp dword[flush],Z_FINISH
je .end0
.beg0: ;if (..==0 || (..==0 && ..!=0) || (..=.. && ..!=..))
ERR_RETURN ebx, Z_STREAM_ERROR
jmp .end_f
.end0:
cmp word[ebx+z_stream.avail_out],0
jne @f ;if (..==0)
ERR_RETURN ebx, Z_BUF_ERROR
jmp .end_f
@@:
 
mov dword[edi+deflate_state.strm],ebx ;just in case
mov eax,[edi+deflate_state.last_flush]
mov [old_flush],eax
mov eax,[flush]
mov [edi+deflate_state.last_flush],eax
 
; Write the header
cmp dword[edi+deflate_state.status],INIT_STATE
jne .end2 ;if (..==..)
if GZIP eq 1
cmp dword[edi+deflate_state.wrap],2
jne .end1 ;if (..==..)
stdcall calc_crc32, 0, Z_NULL, 0
mov [ebx+z_stream.adler],eax
put_byte edi, 31
put_byte edi, 139
put_byte edi, 8
cmp dword[edi+deflate_state.gzhead],Z_NULL
jne .end3 ;if (..==0)
put_byte edi, 0
put_dword edi, 0
xor cl,cl
cmp word[edi+deflate_state.level],2
jge @f
mov cl,4
@@:
cmp word[edi+deflate_state.strategy],Z_HUFFMAN_ONLY
jl @f
mov cl,4
@@:
cmp word[edi+deflate_state.level],9
jne @f
mov cl,2
@@: ;..==.. ? 2 : (..>=.. || ..<.. ? 4 : 0)
put_byte edi, cl
put_byte edi, OS_CODE
mov dword[edi+deflate_state.status],BUSY_STATE
jmp .end2
.end3: ;else
mov edx,[edi+deflate_state.gzhead]
xor cl,cl
cmp [edx+gz_header.text],0
je @f
inc cl
@@:
cmp [edx+gz_header.hcrc],0
je @f
add cl,2
@@:
cmp [edx+gz_header.extra],Z_NULL
je @f
add cl,4
@@:
cmp [edx+gz_header.name],Z_NULL
je @f
add cl,8
@@:
cmp [edx+gz_header.comment],Z_NULL
je @f
add cl,16
@@:
put_byte edi, cl
mov ecx,[edx+gz_header.time]
put_dword edi, ecx
xor cl,cl
cmp word[edi+deflate_state.level],2
jge @f
mov cl,4
@@:
cmp word[edi+deflate_state.strategy],Z_HUFFMAN_ONLY
jl @f
mov cl,4
@@:
cmp word[edi+deflate_state.level],9
jne @f
mov cl,2
@@: ;..==.. ? 2 : (..>=.. || ..<.. ? 4 : 0)
put_byte edi, cl
mov ecx,[edx+gz_header.os]
put_byte edi, cl
cmp dword[edx+gz_header.extra],Z_NULL
je @f ;if (..!=0)
mov ecx,[edx+gz_header.extra_len]
put_byte edi, cl
put_byte edi, ch
@@:
cmp dword[edx+gz_header.hcrc],0
je @f ;if (..)
movzx eax,word[edi+deflate_state.pending]
stdcall calc_crc32, [ebx+z_stream.adler],\
[edi+deflate_state.pending_buf], eax
mov [ebx+z_stream.adler],eax
@@:
mov dword[edi+deflate_state.gzindex],0
mov dword[edi+deflate_state.status],EXTRA_STATE
jmp .end2
.end1: ;else
end if
mov edx,[edi+deflate_state.w_bits]
sub edx,8
shl edx,4
add edx,Z_DEFLATED
shl edx,8 ;edx = header
;esi = level_flags
 
mov esi,3
cmp word[edi+deflate_state.strategy],Z_HUFFMAN_ONLY
jl @f
cmp word[edi+deflate_state.level],2
jge @f ;if (..>=.. || ..<..)
xor esi,esi
jmp .end4
@@:
cmp word[edi+deflate_state.level],6
jge @f ;else if (..<..)
mov esi,1
jmp .end4
@@:
;;cmp word[edi+deflate_state.level],6
jne .end4 ;else if (..==..)
mov esi,2
.end4:
shl esi,6
or edx,esi
cmp dword[edi+deflate_state.strstart],0
je @f ;if (..!=0)
or edx,PRESET_DICT
@@:
mov esi,edx
mov eax,edx
xor edx,edx
mov ecx,31
div ecx
add esi,31
sub esi,edx ;esi = header
 
mov dword[edi+deflate_state.status],BUSY_STATE
stdcall putShortMSB, edi, esi
 
; Save the adler32 of the preset dictionary:
cmp dword[edi+deflate_state.strstart],0
je @f ;if (..!=0)
mov ecx,[ebx+z_stream.adler]
bswap ecx
put_dword edi, ecx
@@:
stdcall calc_crc32, 0, Z_NULL, 0
mov [ebx+z_stream.adler],eax
.end2:
if GZIP eq 1
mov edx,[edi+deflate_state.gzhead]
cmp dword[edi+deflate_state.status],EXTRA_STATE
jne .end5 ;if (..==..)
cmp dword[edx+gz_header.extra],Z_NULL
je .end21 ;if (..!=..)
movzx esi,word[edi+deflate_state.pending]
;esi = beg ;start of bytes to update crc
 
movzx ecx,word[edx+gz_header.extra_len]
.cycle0: ;while (..<..)
cmp dword[edi+deflate_state.gzindex],ecx
jge .cycle0end
movzx eax,word[edi+deflate_state.pending]
cmp eax,[edi+deflate_state.pending_buf_size]
jne .end24 ;if (..==..)
mov dword[edx+gz_header.hcrc],0
je @f
cmp [edi+deflate_state.pending],si
jle @f ;if (.. && ..>..)
movzx ecx,word[edi+deflate_state.pending]
sub ecx,esi
mov eax,[edi+deflate_state.pending_buf]
add eax,esi
stdcall calc_crc32, [ebx+z_stream.adler], eax, ecx
mov [ebx+z_stream.adler],eax
@@:
stdcall flush_pending, ebx
movzx esi,word[edi+deflate_state.pending]
cmp esi,[edi+deflate_state.pending_buf_size]
je .cycle0end ;if (..==..) break
.end24:
push ebx
mov ebx,[edi+deflate_state.gzindex]
add ebx,[edx+gz_header.extra]
mov bl,[ebx]
put_byte edi, bl
pop ebx
inc dword[edi+deflate_state.gzindex]
jmp .cycle0
.cycle0end:
mov dword[edx+gz_header.hcrc],0
je @f
cmp [edi+deflate_state.pending],si
jle @f ;if (.. && ..>..)
movzx ecx,word[edi+deflate_state.pending]
sub ecx,esi
mov eax,[edi+deflate_state.pending_buf]
add eax,esi
stdcall calc_crc32, [ebx+z_stream.adler], eax, ecx
mov [ebx+z_stream.adler],eax
@@:
mov eax,[edx+gz_header.extra_len]
cmp dword[edi+deflate_state.gzindex],eax
jne .end5 ;if (..==..)
mov dword[edi+deflate_state.gzindex],0
mov dword[edi+deflate_state.status],NAME_STATE
jmp .end5
.end21: ;else
mov dword[edi+deflate_state.status],NAME_STATE
.end5:
cmp dword[edi+deflate_state.status],NAME_STATE
jne .end6 ;if (..==..)
cmp dword[edx+gz_header.name],Z_NULL
je .end22 ;if (..!=..)
movzx esi,word[edi+deflate_state.pending]
;esi = beg ;start of bytes to update crc
 
.cycle1: ;do
movzx eax,word[edi+deflate_state.pending]
cmp eax,[edi+deflate_state.pending_buf_size]
jne .end25 ;if (..==..)
mov dword[edx+gz_header.hcrc],0
je @f
cmp [edi+deflate_state.pending],si
jle @f ;if (.. && ..>..)
movzx ecx,word[edi+deflate_state.pending]
sub ecx,esi
mov eax,[edi+deflate_state.pending_buf]
add eax,esi
stdcall calc_crc32, [ebx+z_stream.adler], eax, ecx
mov [ebx+z_stream.adler],eax
@@:
stdcall flush_pending, ebx
movzx esi,word[edi+deflate_state.pending]
movzx eax,word[edi+deflate_state.pending]
cmp eax,[edi+deflate_state.pending_buf_size]
jne .end25 ;if (..==..)
mov dword[val],1
jmp .cycle1end
.end25:
push ebx
mov ebx,[edi+deflate_state.gzindex]
add ebx,[edx+gz_header.name]
movzx ebx,byte[ebx]
mov [val],ebx
inc dword[edi+deflate_state.gzindex]
put_byte edi, bl
pop ebx
cmp dword[val],0
jne .cycle1 ;while (val != 0)
.cycle1end:
mov dword[edx+gz_header.hcrc],0
je @f
cmp [edi+deflate_state.pending],si
jle @f ;if (.. && ..>..)
movzx ecx,word[edi+deflate_state.pending]
sub ecx,esi
mov eax,[edi+deflate_state.pending_buf]
add eax,esi
stdcall calc_crc32, [ebx+z_stream.adler], eax, ecx
mov [ebx+z_stream.adler],eax
@@:
cmp dword[val],0
jne .end6 ;if (val == 0)
mov dword[edi+deflate_state.gzindex],0
mov dword[edi+deflate_state.status],COMMENT_STATE
jmp .end6
.end22: ;else
mov dword[edi+deflate_state.status],COMMENT_STATE;
.end6:
cmp dword[edi+deflate_state.status],COMMENT_STATE
jne .end7 ;if (..==..)
cmp dword[edx+gz_header.comment],Z_NULL
je .end23 ;if (..!=..)
movzx esi,word[edi+deflate_state.pending]
;esi = beg ;start of bytes to update crc
 
.cycle2: ;do
movzx eax,word[edi+deflate_state.pending]
cmp eax,[edi+deflate_state.pending_buf_size]
jne .end26 ;if (..==..)
mov dword[edx+gz_header.hcrc],0
je @f
cmp [edi+deflate_state.pending],si
jle @f ;if (.. && ..>..)
movzx ecx,word[edi+deflate_state.pending]
sub ecx,esi
mov eax,[edi+deflate_state.pending_buf]
add eax,esi
stdcall calc_crc32, [ebx+z_stream.adler], eax, ecx
mov [ebx+z_stream.adler],eax
@@:
stdcall flush_pending, ebx
movzx esi,word[edi+deflate_state.pending]
movzx eax,word[edi+deflate_state.pending]
cmp eax,[edi+deflate_state.pending_buf_size]
jne .end26 ;if (..==..)
mov dword[val],1
jmp .cycle2end
.end26:
push ebx
mov ebx,[edi+deflate_state.gzindex]
add ebx,[edx+gz_header.comment]
movzx ebx,byte[ebx]
mov [val],ebx
inc dword[edi+deflate_state.gzindex]
put_byte edi, bl
pop ebx
cmp dword[val],0
jne .cycle2 ;while (val != 0)
.cycle2end:
mov dword[edx+gz_header.hcrc],0
je @f
cmp [edi+deflate_state.pending],si
jle @f ;if (.. && ..>..)
movzx ecx,word[edi+deflate_state.pending]
sub ecx,esi
mov eax,[edi+deflate_state.pending_buf]
add eax,esi
stdcall calc_crc32, [ebx+z_stream.adler], eax, ecx
mov [ebx+z_stream.adler],eax
@@:
cmp dword[val],0
jne .end7 ;if (val == 0)
mov dword[edi+deflate_state.status],HCRC_STATE
jmp .end7
.end23: ;else
mov dword[edi+deflate_state.status],HCRC_STATE
.end7:
cmp dword[edi+deflate_state.status],HCRC_STATE
jne .end8 ;if (..==..)
cmp dword[edx+gz_header.hcrc],0
je .end9 ;if (..)
movzx ecx,word[edi+deflate_state.pending]
add ecx,2
cmp ecx,[edi+deflate_state.pending_buf_size]
jle @f ;if (..>..)
stdcall flush_pending, ebx
@@:
movzx ecx,word[edi+deflate_state.pending]
add ecx,2
cmp ecx,[edi+deflate_state.pending_buf_size]
jg @f ;if (..<=..)
mov ecx,[ebx+z_stream.adler]
put_byte edi, cl
put_byte edi, ch
stdcall calc_crc32, 0, Z_NULL, 0
mov [ebx+z_stream.adler],eax
mov dword[edi+deflate_state.status],BUSY_STATE
@@:
jmp .end8
.end9: ;else
mov dword[edi+deflate_state.status],BUSY_STATE
.end8:
end if
 
; Flush as much pending output as possible
cmp word[edi+deflate_state.pending],0
je .end13 ;if (..!=0)
stdcall flush_pending, ebx
cmp word[ebx+z_stream.avail_out],0
jne @f ;if (..==0)
; Since avail_out is 0, deflate will be called again with
; more output space, but possibly with both pending and
; avail_in equal to zero. There won't be anything to do,
; but this is not an error situation so make sure we
; return OK instead of BUF_ERROR at next call of deflate:
 
mov dword[edi+deflate_state.last_flush],-1
mov eax,Z_OK
jmp .end_f
@@:
; Make sure there is something to do and avoid duplicate consecutive
; flushes. For repeated and useless calls with Z_FINISH, we keep
; returning Z_STREAM_END instead of Z_BUF_ERROR.
jmp @f
.end13:
cmp word[ebx+z_stream.avail_in],0
jne @f
RANK dword[old_flush],esi
RANK dword[flush],eax
cmp eax,esi
jg @f
cmp dword[flush],Z_FINISH
je @f ;else if (..==0 && ..<=.. && ..!=..)
ERR_RETURN ebx, Z_BUF_ERROR
jmp .end_f
@@:
 
; User must not provide more input after the first FINISH:
cmp dword[edi+deflate_state.status],FINISH_STATE
jne @f
cmp word[ebx+z_stream.avail_in],0
je @f ;if (..==.. && ..!=0)
ERR_RETURN ebx, Z_BUF_ERROR
jmp .end_f
@@:
 
; Start a new block or continue the current one.
 
cmp word[ebx+z_stream.avail_in],0
jne @f
cmp dword[edi+deflate_state.lookahead],0
jne @f
cmp dword[flush],Z_NO_FLUSH
je .end11
cmp dword[edi+deflate_state.status],FINISH_STATE
je .end11
@@: ;if (..!=0 || ..!=0 || (..!=.. && ..!=..))
;edx = bstate
cmp word[edi+deflate_state.strategy],Z_HUFFMAN_ONLY
jne @f
stdcall deflate_huff, edi, [flush]
jmp .end20
@@:
cmp word[edi+deflate_state.strategy],Z_RLE
jne @f
stdcall deflate_rle, edi, [flush]
jmp .end20
@@:
movzx eax,word[edi+deflate_state.level]
imul eax,sizeof.config_s
add eax,configuration_table+config_s.co_func
stdcall dword[eax], edi, [flush]
.end20:
mov edx,eax
 
cmp edx,finish_started
je @f
cmp edx,finish_done
je @f
jmp .end18
@@: ;if (..==.. || ..==..)
mov dword[edi+deflate_state.status],FINISH_STATE
.end18:
cmp edx,need_more
je @f
cmp edx,finish_started
je @f
jmp .end19
@@: ;if (..==.. || ..==..)
cmp word[ebx+z_stream.avail_out],0
jne @f ;if (..==0)
mov dword[edi+deflate_state.last_flush],-1 ;avoid BUF_ERROR next call, see above
@@:
mov eax,Z_OK
jmp .end_f
; If flush != Z_NO_FLUSH && avail_out == 0, the next call
; of deflate should use the same flush parameter to make sure
; that the flush is complete. So we don't have to output an
; empty block here, this will be done at next call. This also
; ensures that for a very small output buffer, we emit at most
; one empty block.
 
.end19:
cmp edx,block_done
jne .end11 ;if (..==..)
cmp dword[flush],Z_PARTIAL_FLUSH
jne @f ;if (..==..)
stdcall _tr_align, edi
jmp .end16
@@:
cmp dword[flush],Z_BLOCK
je .end16 ;else if (..!=..) ;FULL_FLUSH or SYNC_FLUSH
stdcall _tr_stored_block, edi, 0, 0, 0
; For a full flush, this empty block will be recognized
; as a special marker by inflate_sync().
 
cmp dword[flush],Z_FULL_FLUSH
jne .end16 ;if (..==..)
CLEAR_HASH edi ;forget history
cmp dword[edi+deflate_state.lookahead],0
jne .end16 ;if (..==0)
mov dword[edi+deflate_state.strstart],0
mov dword[edi+deflate_state.block_start],0
mov dword[edi+deflate_state.insert],0
.end16:
stdcall flush_pending, ebx
cmp word[ebx+z_stream.avail_out],0
jne .end11 ;if (..==0)
mov dword[edi+deflate_state.last_flush],-1 ;avoid BUF_ERROR at next call, see above
mov eax,Z_OK
jmp .end_f
.end11:
cmp word[ebx+z_stream.avail_out],0
jg @f
zlib_debug 'bug2' ;Assert(..>0)
@@:
 
cmp dword[flush],Z_FINISH
je @f ;if (..!=0)
mov eax,Z_OK
jmp .end_f
@@:
cmp dword[edi+deflate_state.wrap],0
jg @f ;if (..<=0)
mov eax,Z_STREAM_END
jmp .end_f
@@:
 
; Write the trailer
if GZIP eq 1
cmp dword[edi+deflate_state.wrap],2
jne @f ;if (..==..)
mov ecx,[ebx+z_stream.adler]
put_dword edi, ecx
mov ecx,[ebx+z_stream.total_in]
put_dword edi, ecx
jmp .end17
@@: ;else
end if
mov ecx,[ebx+z_stream.adler]
bswap ecx
put_dword edi, ecx
.end17:
stdcall flush_pending, ebx
; If avail_out is zero, the application will call deflate again
; to flush the rest.
 
cmp word[edi+deflate_state.pending],0
jle @f ;if (..>0) ;write the trailer only once!
neg word[edi+deflate_state.pending]
inc word[edi+deflate_state.pending]
@@:
mov eax,Z_OK
cmp word[edi+deflate_state.pending],0
je .end_f
mov eax,Z_STREAM_END
.end_f:
zlib_debug ' deflate.ret = %d',eax
ret
endp
 
; =========================================================================
;int (strm)
; z_streamp strm;
align 4
proc deflateEnd uses ebx ecx edx, strm:dword
mov ebx,[strm]
zlib_debug 'deflateEnd'
cmp ebx,Z_NULL
je @f
mov edx,[ebx+z_stream.state]
cmp edx,Z_NULL
jne .end0
@@: ;if (..==0 || ..==0) return ..
mov eax,Z_STREAM_ERROR
jmp .end_f
.end0:
 
mov ecx,[edx+deflate_state.status]
cmp ecx,INIT_STATE
je @f
cmp ecx,EXTRA_STATE
je @f
cmp ecx,NAME_STATE
je @f
cmp ecx,COMMENT_STATE
je @f
cmp ecx,HCRC_STATE
je @f
cmp ecx,BUSY_STATE
je @f
cmp ecx,FINISH_STATE
je @f ;if (..!=.. && ..!=.. && ..!=.. && ..!=.. && ..!=.. && ..!=.. && ..!=..)
mov eax,Z_STREAM_ERROR
jmp .end_f
@@:
 
; Deallocate in reverse order of allocations:
TRY_FREE ebx, dword[edx+deflate_state.pending_buf]
TRY_FREE ebx, dword[edx+deflate_state.head]
TRY_FREE ebx, dword[edx+deflate_state.prev]
TRY_FREE ebx, dword[edx+deflate_state.window]
 
ZFREE ebx, dword[ebx+z_stream.state]
mov dword[ebx+z_stream.state],Z_NULL
 
mov eax,Z_DATA_ERROR
cmp ecx,BUSY_STATE
je .end_f
mov eax,Z_OK
.end_f:
ret
endp
 
; =========================================================================
; Copy the source state to the destination state.
; To simplify the source, this is not supported for 16-bit MSDOS (which
; doesn't have enough memory anyway to duplicate compression states).
 
;int (dest, source)
; z_streamp dest;
; z_streamp source;
align 4
proc deflateCopy uses edx edi esi, dest:dword, source:dword
locals
overlay dd ? ;uint_16p
endl
;edi = ds; deflate_state*
;esi = ss; deflate_state*
 
mov esi,[source]
cmp esi,Z_NULL
je @f
mov edx,[dest]
cmp edx,Z_NULL
je @f
mov esi,[esi+z_stream.state]
cmp esi,Z_NULL
jne .end0
@@: ;if (..==0 || ..==0 || ..==0)
mov eax,Z_STREAM_ERROR
jmp .end_f
.end0:
 
stdcall zmemcpy, edx, [source], sizeof.z_stream
 
ZALLOC edx, 1, sizeof.deflate_state
cmp eax,0
jne @f ;if (..==0) return ..
mov eax,Z_MEM_ERROR
jmp .end_f
@@:
mov edi,eax
mov [edx+z_stream.state],eax
stdcall zmemcpy, edi, esi, sizeof.deflate_state
mov dword[edi+deflate_state.strm],edx
 
ZALLOC edx, [edi+deflate_state.w_size], 2 ;2*sizeof.db
mov dword[edi+deflate_state.window],eax
ZALLOC edx, [edi+deflate_state.w_size], 4 ;sizeof.dd
mov dword[edi+deflate_state.prev],eax
ZALLOC edx, [edi+deflate_state.hash_size], 4 ;sizeof.dd
mov dword[edi+deflate_state.head],eax
ZALLOC edx, [edi+deflate_state.lit_bufsize], 4 ;sizeof.dw+2
mov [overlay],eax
mov dword[edi+deflate_state.pending_buf],eax
 
cmp dword[edi+deflate_state.window],Z_NULL
je @f
cmp dword[edi+deflate_state.prev],Z_NULL
je @f
cmp dword[edi+deflate_state.head],Z_NULL
je @f
cmp dword[edi+deflate_state.pending_buf],Z_NULL
jne .end1
@@: ;if (..==0 || ..==0 || ..==0 || ..==0)
stdcall deflateEnd, edx
mov eax,Z_MEM_ERROR
jmp .end_f
.end1:
 
; following zmemcpy do not work for 16-bit MSDOS
mov eax,[edi+deflate_state.w_size]
shl eax,1 ;*= 2*sizeof.db
stdcall zmemcpy, [edi+deflate_state.window], [esi+deflate_state.window], eax
; zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
; zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
; zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
 
; ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
; ds->d_buf = overlay + ds->lit_bufsize/sizeof(uint_16);
; ds->l_buf = ds->pending_buf + (1+sizeof(uint_16))*ds->lit_bufsize;
 
mov eax,edi
add eax,deflate_state.dyn_ltree
mov [edi+deflate_state.l_desc.dyn_tree],eax
add eax,deflate_state.dyn_dtree-deflate_state.dyn_ltree
mov [edi+deflate_state.d_desc.dyn_tree],eax
add eax,deflate_state.bl_tree-deflate_state.dyn_dtree
mov [edi+deflate_state.bl_desc.dyn_tree],eax
 
mov eax,Z_OK
.end_f:
ret
endp
 
; ===========================================================================
; Read a new buffer from the current input stream, update the adler32
; and total number of bytes read. All deflate() input goes through
; this function so some applications may wish to modify it to avoid
; allocating a large strm->next_in buffer and copying from it.
; (See also flush_pending()).
 
;int (strm, buf, size)
; z_streamp strm;
; Bytef *buf;
; unsigned size;
align 4
proc read_buf uses ebx ecx, strm:dword, buf:dword, size:dword
mov ebx,[strm]
movzx eax,word[ebx+z_stream.avail_in]
 
cmp eax,[size]
jle @f ;if (..>..)
mov eax,[size]
@@:
cmp eax,0
jg @f
xor eax,eax
jmp .end_f ;if (..==0) return 0
@@:
 
sub [ebx+z_stream.avail_in],ax
 
stdcall zmemcpy, [buf],[ebx+z_stream.next_in],eax
mov ecx,[ebx+z_stream.state]
cmp [ecx+deflate_state.wrap],1
jne @f ;if (..==..)
push eax
stdcall adler32, [ebx+z_stream.adler], [buf], eax
mov [ebx+z_stream.adler],eax
pop eax
jmp .end0
@@:
if GZIP eq 1
cmp [ecx+deflate_state.wrap],2
jne .end0 ;else if (..==..)
push eax
stdcall calc_crc32, [ebx+z_stream.adler], [buf], eax
mov [ebx+z_stream.adler],eax
pop eax
end if
.end0:
add [ebx+z_stream.next_in],eax
add [ebx+z_stream.total_in],eax
 
.end_f:
;zlib_debug ' read_buf.ret = %d',eax
ret
endp
 
; ===========================================================================
; Initialize the "longest match" routines for a new zlib stream
 
;void (s)
; deflate_state *s
align 4
proc lm_init uses eax ebx edi, s:dword
mov edi,[s]
mov eax,[edi+deflate_state.w_size]
shl eax,1
mov [edi+deflate_state.window_size],eax
 
CLEAR_HASH edi
 
; Set the default configuration parameters:
 
movzx eax,word[edi+deflate_state.level]
imul eax,sizeof.config_s
add eax,configuration_table
movzx ebx,word[eax+config_s.max_lazy]
mov [edi+deflate_state.max_lazy_match],ebx
movzx ebx,word[eax+config_s.good_length]
mov [edi+deflate_state.good_match],ebx
movzx ebx,word[eax+config_s.nice_length]
mov [edi+deflate_state.nice_match],ebx
movzx ebx,word[eax+config_s.max_chain]
mov [edi+deflate_state.max_chain_length],ebx
 
mov dword[edi+deflate_state.strstart],0
mov dword[edi+deflate_state.block_start],0
mov dword[edi+deflate_state.lookahead],0
mov dword[edi+deflate_state.insert],0
mov dword[edi+deflate_state.prev_length],MIN_MATCH-1
mov dword[edi+deflate_state.match_length],MIN_MATCH-1
mov dword[edi+deflate_state.match_available],0
mov dword[edi+deflate_state.ins_h],0
if FASTEST eq 0
;if ASMV
; call match_init ;initialize the asm code
;end if
end if
ret
endp
 
;uInt (s, cur_match)
; deflate_state *s;
; IPos cur_match; /* current match */
align 4
proc longest_match uses ebx ecx edx edi esi, s:dword, cur_match:dword
if FASTEST eq 0
; ===========================================================================
; Set match_start to the longest match starting at the given string and
; return its length. Matches shorter or equal to prev_length are discarded,
; in which case the result is equal to prev_length and match_start is
; garbage.
; IN assertions: cur_match is the head of the hash chain for the current
; string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
; OUT assertion: the match length is not greater than s->lookahead.
 
;#ifndef ASMV
; For 80x86 and 680x0, an optimized version will be provided in match.asm or
; match.S. The code will be functionally equivalent.
 
; unsigned chain_length = s->max_chain_length;/* max hash chain length */
; register Bytef *scan = s->window + s->strstart; /* current string */
; register Bytef *match; /* matched string */
; register int len; /* length of current match */
; int best_len = s->prev_length; /* best match length so far */
; int nice_match = s->nice_match; /* stop if match long enough */
; IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
; s->strstart - (IPos)MAX_DIST(s) : NIL;
; Stop when cur_match becomes <= limit. To simplify the code,
; we prevent matches with the string of window index 0.
 
; Posf *prev = s->prev;
; uInt wmask = s->w_mask;
 
if UNALIGNED_OK eq 1
; Compare two bytes at a time. Note: this is not always beneficial.
; Try with and without -DUNALIGNED_OK to check.
 
; register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
; register uint_16 scan_start = *(uint_16p*)scan;
; register uint_16 scan_end = *(uint_16p*)(scan+best_len-1);
else
; register Bytef *strend = s->window + s->strstart + MAX_MATCH;
; register Byte scan_end1 = scan[best_len-1];
; register Byte scan_end = scan[best_len];
end if
 
; The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
; It is easy to get rid of this optimization if necessary.
 
; Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
 
; Do not waste too much time if we already have a good match:
; if (s->prev_length >= s->good_match) {
; chain_length >>= 2;
; }
; Do not look for matches beyond the end of the input. This is necessary
; to make deflate deterministic.
 
; if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
 
; Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
 
; do {
; Assert(cur_match < s->strstart, "no future");
; match = s->window + cur_match;
 
; Skip to next match if the match length cannot increase
; or if the match length is less than 2. Note that the checks below
; for insufficient lookahead only occur occasionally for performance
; reasons. Therefore uninitialized memory will be accessed, and
; conditional jumps will be made that depend on those values.
; However the length of the match is limited to the lookahead, so
; the output of deflate is not affected by the uninitialized values.
 
if ((UNALIGNED_OK eq 1) & MAX_MATCH == 258)
; This code assumes sizeof(unsigned short) == 2. Do not use
; UNALIGNED_OK if your compiler uses a different size.
 
; if (*(uint_16p*)(match+best_len-1) != scan_end ||
; *(uint_16p*)match != scan_start) continue;
 
; It is not necessary to compare scan[2] and match[2] since they are
; always equal when the other bytes match, given that the hash keys
; are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
; strstart+3, +5, ... up to strstart+257. We check for insufficient
; lookahead only every 4th comparison; the 128th check will be made
; at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
; necessary to put more guard bytes at the end of the window, or
; to check more often for insufficient lookahead.
 
; Assert(scan[2] == match[2], "scan[2]?");
; scan++, match++;
; do {
; } while (*(uint_16p*)(scan+=2) == *(uint_16p*)(match+=2) &&
; *(uint_16p*)(scan+=2) == *(uint_16p*)(match+=2) &&
; *(uint_16p*)(scan+=2) == *(uint_16p*)(match+=2) &&
; *(uint_16p*)(scan+=2) == *(uint_16p*)(match+=2) &&
; scan < strend);
; The funny "do {}" generates better code on most compilers
 
; Here, scan <= window+strstart+257
; Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
; if (*scan == *match) scan++;
 
; len = (MAX_MATCH - 1) - (int)(strend-scan);
; scan = strend - (MAX_MATCH-1);
 
else ;UNALIGNED_OK
 
; if (match[best_len] != scan_end ||
; match[best_len-1] != scan_end1 ||
; *match != *scan ||
; *++match != scan[1]) continue;
 
; The check at best_len-1 can be removed because it will be made
; again later. (This heuristic is not always a win.)
; It is not necessary to compare scan[2] and match[2] since they
; are always equal when the other bytes match, given that
; the hash keys are equal and that HASH_BITS >= 8.
 
; scan += 2, match++;
; Assert(*scan == *match, "match[2]?");
 
; We check for insufficient lookahead only every 8th comparison;
; the 256th check will be made at strstart+258.
 
; do {
; } while (*++scan == *++match && *++scan == *++match &&
; *++scan == *++match && *++scan == *++match &&
; *++scan == *++match && *++scan == *++match &&
; *++scan == *++match && *++scan == *++match &&
; scan < strend);
 
; Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 
; len = MAX_MATCH - (int)(strend - scan);
; scan = strend - MAX_MATCH;
 
end if ;UNALIGNED_OK
 
; if (len > best_len) {
; s->match_start = cur_match;
; best_len = len;
; if (len >= nice_match) break;
if UNALIGNED_OK eq 1
; scan_end = *(uint_16p*)(scan+best_len-1);
else
; scan_end1 = scan[best_len-1];
; scan_end = scan[best_len];
end if
; }
; } while ((cur_match = prev[cur_match & wmask]) > limit
; && --chain_length != 0);
 
; if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
; return s->lookahead;
;end if /* ASMV */
 
else ;FASTEST
 
; ---------------------------------------------------------------------------
; Optimized version for FASTEST only
mov edx,[s]
;zlib_debug 'longest_match'
 
; The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
; It is easy to get rid of this optimization if necessary.
 
if MAX_MATCH <> 258
cmp dword[edx+deflate_state.hash_bits],8
jge @f
zlib_debug 'Code too clever' ;Assert(..>=.. && ..==..)
@@:
end if
mov eax,[edx+deflate_state.window_size]
sub eax,MIN_LOOKAHEAD
cmp [edx+deflate_state.strstart],eax
jle @f
zlib_debug 'need lookahead' ;Assert(..<=..)
@@:
mov eax,[edx+deflate_state.strstart]
cmp [cur_match],eax
jl @f
zlib_debug 'no future' ;Assert(..<..)
@@:
 
mov esi,[edx+deflate_state.window]
mov edi,esi
add esi,[cur_match]
add edi,[edx+deflate_state.strstart]
;edi = scan
;esi = match
 
; Return failure if the match length is less than 2:
 
lodsw
cmp ax,word[edi]
je @f ;if (word[edi] != word[esi]) return
mov eax,MIN_MATCH-1
jmp .end_f
@@:
 
; The check at best_len-1 can be removed because it will be made
; again later. (This heuristic is not always a win.)
; It is not necessary to compare scan[2] and match[2] since they
; are always equal when the other bytes match, given that
; the hash keys are equal and that HASH_BITS >= 8.
 
add edi,2
mov al,byte[edi]
cmp al,byte[esi]
je @f
zlib_debug 'match[2]?' ;Assert(..==..)
@@:
 
; We check for insufficient lookahead only every 8th comparison;
; the 256th check will be made at strstart+258.
 
mov ebx,edi
mov ecx,MAX_MATCH
align 4
@@:
lodsb
scasb
loope @b
 
mov eax,[edx+deflate_state.window_size]
dec eax
add eax,[edx+deflate_state.window]
cmp edi,eax
jle @f
zlib_debug 'wild scan' ;Assert(..<=..)
@@:
sub edi,ebx
;edi = len
 
cmp edi,MIN_MATCH
jge @f ;if (..<..)
mov eax,MIN_MATCH-1
jmp .end_f
@@:
mov eax,[cur_match]
mov [edx+deflate_state.match_start],eax
mov eax,[edx+deflate_state.lookahead]
cmp edi,eax
jg @f ;if (len <= s.lookahead) ? len : s.lookahead
mov eax,edi
@@:
end if ;FASTEST
.end_f:
;zlib_debug ' longest_match.ret = %d',eax
ret
endp
 
 
; ===========================================================================
; Check that the match at match_start is indeed a match.
 
;void (s, start, match, length)
; deflate_state *s;
; IPos start, match;
; int length;
align 4
proc check_match, s:dword, start:dword, p3match:dword, length:dword
if DEBUG eq 1
; check that the match is indeed a match
; if (zmemcmp(s->window + match,
; s->window + start, length) != EQUAL) {
; fprintf(stderr, " start %u, match %u, length %d\n",
; start, match, length);
; do {
; fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
; } while (--length != 0);
; z_error("invalid match");
; }
; if (z_verbose > 1) {
; fprintf(stderr,"\\[%d,%d]", start-match, length);
; do { putc(s->window[start++], stderr); } while (--length != 0);
; }
end if ;DEBUG
ret
endp
 
 
; ===========================================================================
; Fill the window when the lookahead becomes insufficient.
; Updates strstart and lookahead.
 
; IN assertion: lookahead < MIN_LOOKAHEAD
; OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
; At least one byte has been read, or avail_in == 0; reads are
; performed for at least two bytes (required for the zip translate_eol
; option -- not supported here).
 
;void (s)
; deflate_state *s
align 4
proc fill_window, s:dword
pushad
;esi = p, str, curr
;ebx = more ;Amount of free space at the end of the window.
;Объем свободного пространства в конце окна.
;ecx = wsize ;uInt
;edx = s.strm
;zlib_debug 'fill_window'
mov edi,[s]
cmp dword[edi+deflate_state.lookahead],MIN_LOOKAHEAD
jl @f
zlib_debug 'already enough lookahead' ;Assert(..<..)
@@:
 
mov ecx,[edi+deflate_state.w_size]
mov edx,[edi+deflate_state.strm]
.cycle0: ;do
;zlib_debug 'do'
mov ebx,[edi+deflate_state.window_size]
sub ebx,[edi+deflate_state.lookahead]
sub ebx,[edi+deflate_state.strstart]
 
; If the window is almost full and there is insufficient lookahead,
; move the upper half to the lower one to make room in the upper half.
 
MAX_DIST edi
add eax,ecx
cmp [edi+deflate_state.strstart],eax
jl .end0 ;if (..>=..)
push ecx
mov eax,[edi+deflate_state.window]
add eax,ecx
stdcall zmemcpy, [edi+deflate_state.window], eax
sub [edi+deflate_state.match_start],ecx
sub [edi+deflate_state.strstart],ecx ;we now have strstart >= MAX_DIST
sub [edi+deflate_state.block_start],ecx
 
; Slide the hash table (could be avoided with 32 bit values
; at the expense of memory usage). We slide even when level == 0
; to keep the hash table consistent if we switch back to level > 0
; later. (Using level 0 permanently is not an optimal usage of
; zlib, so we don't care about this pathological case.)
 
push ebx ecx
;ebx = wsize
;ecx = n
mov ebx,ecx
mov ecx,[edi+deflate_state.hash_size]
mov esi,ecx
shl esi,2
add esi,[edi+deflate_state.head]
.cycle1: ;do
sub esi,4
mov eax,[esi]
mov dword[esi],NIL
cmp eax,ebx
jl @f
sub eax,ebx
mov dword[esi],eax
@@:
loop .cycle1 ;while (..)
 
mov ecx,ebx
if FASTEST eq 0
mov esi,ecx
shl esi,2
add esi,[edi+deflate_state.prev]
.cycle2: ;do
sub esi,4
mov eax,[esi]
mov dword[esi],NIL
cmp eax,ebx
jl @f
sub eax,ebx
mov dword[esi],eax
@@:
; If n is not on any hash chain, prev[n] is garbage but
; its value will never be used.
 
loop .cycle2 ;while (..)
end if
pop ecx ebx
add ebx,ecx
.end0:
cmp word[edx+z_stream.avail_in],0
je .cycle0end ;if (..==0) break
 
; If there was no sliding:
; strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
; more == window_size - lookahead - strstart
; => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
; => more >= window_size - 2*WSIZE + 2
; In the BIG_MEM or MMAP case (not yet supported),
; window_size == input_size + MIN_LOOKAHEAD &&
; strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
; Otherwise, window_size == 2*WSIZE so more >= 2.
; If there was sliding, more >= WSIZE. So in all cases, more >= 2.
 
cmp ebx,2
jge @f
zlib_debug 'more < 2' ;Assert(..>=..)
@@:
mov eax,[edi+deflate_state.window]
add eax,[edi+deflate_state.strstart]
add eax,[edi+deflate_state.lookahead]
stdcall read_buf, edx, eax, ebx
add [edi+deflate_state.lookahead],eax
 
; Initialize the hash value now that we have some input:
mov eax,[edi+deflate_state.lookahead]
add eax,[edi+deflate_state.insert]
cmp eax,MIN_MATCH
jl .end1 ;if (..>=..)
mov esi,[edi+deflate_state.strstart]
sub esi,[edi+deflate_state.insert]
;esi = str
mov eax,[edi+deflate_state.window]
add eax,esi
mov [edi+deflate_state.ins_h],eax
inc eax
movzx eax,byte[eax]
UPDATE_HASH edi, [edi+deflate_state.ins_h], eax
if MIN_MATCH <> 3
; Call UPDATE_HASH() MIN_MATCH-3 more times
end if
.cycle3: ;while (..)
cmp dword[edi+deflate_state.insert],0
je .end1
mov eax,esi
add eax,MIN_MATCH-1
add eax,[edi+deflate_state.window]
movzx eax,byte[eax]
UPDATE_HASH edi, [edi+deflate_state.ins_h], eax
if FASTEST eq 0
mov eax,[edi+deflate_state.ins_h]
shl eax,2
add eax,[edi+deflate_state.head]
push ebx
mov ebx,[edi+deflate_state.w_mask]
and ebx,esi
shl ebx,2
add ebx,[edi+deflate_state.prev]
mov eax,[eax]
mov [ebx],eax
pop ebx
end if
mov eax,[edi+deflate_state.ins_h]
shl eax,2
add eax,[edi+deflate_state.head]
mov [eax],esi
inc esi
dec dword[edi+deflate_state.insert]
mov eax,[edi+deflate_state.lookahead]
add eax,[edi+deflate_state.insert]
cmp eax,MIN_MATCH
jl .end1 ;if (..<..) break
jmp .cycle3
.end1:
; If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
; but this is not important since only literal bytes will be emitted.
 
cmp dword[edi+deflate_state.lookahead],MIN_LOOKAHEAD
jge .cycle0end
cmp word[edx+z_stream.avail_in],0
jne .cycle0
.cycle0end: ;while (..<.. && ..!=..)
 
; If the WIN_INIT bytes after the end of the current data have never been
; written, then zero those bytes in order to avoid memory check reports of
; the use of uninitialized (or uninitialised as Julian writes) bytes by
; the longest match routines. Update the high water mark for the next
; time through here. WIN_INIT is set to MAX_MATCH since the longest match
; routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
 
mov eax,[edi+deflate_state.window_size]
cmp [edi+deflate_state.high_water],eax
jge .end2 ;if (..<..)
mov esi,[edi+deflate_state.lookahead]
add esi,[edi+deflate_state.strstart]
;esi = curr
 
cmp [edi+deflate_state.high_water],esi
jge .end3 ;if (..<..)
; Previous high water mark below current data -- zero WIN_INIT
; bytes or up to end of window, whichever is less.
 
mov eax,[edi+deflate_state.window_size]
sub eax,esi
cmp eax,WIN_INIT
jle @f ;if (..>..)
mov eax,WIN_INIT
@@:
mov edx,[edi+deflate_state.window]
add edx,esi
stdcall zmemzero, edx, eax
add eax,esi
mov [edi+deflate_state.high_water],eax
jmp .end2
.end3: ;else if (..<..)
mov eax,esi
add eax,WIN_INIT
cmp [edi+deflate_state.high_water],eax
jge .end2
; High water mark at or above current data, but below current data
; plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
; to end of window, whichever is less.
 
;eax = esi+WIN_INIT
sub eax,[edi+deflate_state.high_water]
mov edx,[edi+deflate_state.window_size]
sub edx,[edi+deflate_state.high_water]
cmp eax,edx ;if (..>..)
jle @f
mov eax,edx
@@:
mov edx,[edi+deflate_state.window]
add edx,[edi+deflate_state.high_water]
stdcall zmemzero, edx, eax
add [edi+deflate_state.high_water],eax
.end2:
 
mov eax,[edi+deflate_state.window_size]
sub eax,MIN_LOOKAHEAD
cmp [edi+deflate_state.strstart],eax
jle @f
zlib_debug 'not enough room for search' ;Assert(..<=..)
@@:
popad
ret
endp
 
; ===========================================================================
; Flush the current block, with given end-of-file flag.
; IN assertion: strstart is set to the end of the current match.
 
macro FLUSH_BLOCK_ONLY s, last
{
local .end0
push dword last
mov eax,[s+deflate_state.strstart]
sub eax,[s+deflate_state.block_start]
push eax
xor eax,eax
cmp dword[s+deflate_state.block_start],0
jl .end0
mov eax,[s+deflate_state.block_start]
add eax,[s+deflate_state.window]
.end0:
stdcall _tr_flush_block, s, eax
mov eax,[s+deflate_state.strstart]
mov [s+deflate_state.block_start],eax
stdcall flush_pending, [s+deflate_state.strm]
; Tracev((stderr,"[FLUSH]"));
}
 
; Same but force premature exit if necessary.
macro FLUSH_BLOCK s, last
{
local .end0
FLUSH_BLOCK_ONLY s, last
mov eax,[s+deflate_state.strm]
cmp word[eax+z_stream.avail_out],0
jne .end0 ;if (..==0)
if last eq 1
mov eax,finish_started
else
mov eax,need_more
end if
jmp .end_f
.end0:
}
 
; ===========================================================================
; Copy without compression as much as possible from the input stream, return
; the current block state.
; This function does not insert new strings in the dictionary since
; uncompressible data is probably not useful. This function is used
; only for the level=0 compression option.
; NOTE: this function should be optimized to avoid extra copying from
; window to pending_buf.
 
;block_state (s, flush)
; deflate_state *s;
; int flush;
align 4
proc deflate_stored uses ebx ecx edi, s:dword, flush:dword
; Stored blocks are limited to 0xffff bytes, pending_buf is limited
; to pending_buf_size, and each stored block has a 5 byte header:
mov edi,[s]
zlib_debug 'deflate_stored'
 
mov ecx,0xffff
mov eax,[edi+deflate_state.pending_buf_size]
sub eax,5
cmp ecx,eax
jle @f ;if (..>..)
mov ecx,eax
@@:
;ecx = max_block_size
 
; Copy as much as possible from input to output:
.cycle0: ;for (;;) {
; Fill the window as much as possible:
cmp dword[edi+deflate_state.lookahead],1
jg .end0 ;if (..<=..)
; Assert(s->strstart < s->w_size+MAX_DIST(s) ||
; s->block_start >= (long)s->w_size, "slide too late");
 
stdcall fill_window, edi
cmp dword[edi+deflate_state.lookahead],0
jne @f
cmp dword[flush],Z_NO_FLUSH
jne @f ;if (..==0 && ..==..)
mov eax,need_more
jmp .end_f
@@:
cmp dword[edi+deflate_state.lookahead],0
je .cycle0end ;if (..==0) break ;flush the current block
.end0:
; Assert(s->block_start >= 0, "block gone");
 
mov eax,[edi+deflate_state.lookahead]
add [edi+deflate_state.strstart],eax
mov dword[edi+deflate_state.lookahead],0
 
; Emit a stored block if pending_buf will be full:
mov ebx,[edi+deflate_state.block_start]
add ebx,ecx
cmp dword[edi+deflate_state.strstart],0
je @f
cmp [edi+deflate_state.strstart],ebx
jl .end1
@@: ;if (..==0 || ..>=..)
; strstart == 0 is possible when wraparound on 16-bit machine
mov eax,[edi+deflate_state.strstart]
sub eax,ebx
mov [edi+deflate_state.lookahead],eax
mov [edi+deflate_state.strstart],ebx
FLUSH_BLOCK edi, 0
.end1:
; Flush if we may have to slide, otherwise block_start may become
; negative and the data will be gone:
 
MAX_DIST edi
mov ebx,[edi+deflate_state.strstart]
sub ebx,[edi+deflate_state.block_start]
cmp ebx,eax
jl .cycle0 ;if (..>=..)
FLUSH_BLOCK edi, 0
jmp .cycle0
align 4
.cycle0end:
mov dword[edi+deflate_state.insert],0
cmp dword[flush],Z_FINISH
jne @f ;if (..==..)
FLUSH_BLOCK edi, 1
mov eax,finish_done
jmp .end_f
@@:
mov eax,[edi+deflate_state.block_start]
cmp [edi+deflate_state.strstart],eax
jle @f ;if (..>..)
FLUSH_BLOCK edi, 0
@@:
mov eax,block_done
.end_f:
ret
endp
 
; ===========================================================================
; Compress as much as possible from the input stream, return the current
; block state.
; This function does not perform lazy evaluation of matches and inserts
; new strings in the dictionary only for unmatched strings or for short
; matches. It is used only for the fast compression options.
 
;block_state (s, flush)
; deflate_state *s
; int flush
align 4
proc deflate_fast uses ebx ecx edi, s:dword, flush:dword
locals
bflush dd ? ;int ;set if current block must be flushed
endl
;ecx = hash_head ;IPos ;head of the hash chain
mov edi,[s]
zlib_debug 'deflate_fast'
 
.cycle0: ;for (..)
; Make sure that we always have enough lookahead, except
; at the end of the input file. We need MAX_MATCH bytes
; for the next match, plus MIN_MATCH bytes to insert the
; string following the next match.
 
cmp dword[edi+deflate_state.lookahead],MIN_LOOKAHEAD
jge .end0 ;if (..<..)
stdcall fill_window, edi
cmp dword[edi+deflate_state.lookahead],MIN_LOOKAHEAD
jge @f ;if (..<.. && ..==..)
cmp dword[flush],Z_NO_FLUSH
jne @f
mov eax,need_more
jmp .end_f
align 4
@@:
cmp dword[edi+deflate_state.lookahead],0
je .cycle0end ;if (..==0) break ;flush the current block
align 4
.end0:
 
; Insert the string window[strstart .. strstart+2] in the
; dictionary, and set hash_head to the head of the hash chain:
 
mov ecx,NIL
cmp dword[edi+deflate_state.lookahead],MIN_MATCH
jl @f ;if (..>=..)
INSERT_STRING edi, [edi+deflate_state.strstart], ecx
@@:
 
; Find the longest match, discarding those <= prev_length.
; At this point we have always match_length < MIN_MATCH
 
cmp ecx,NIL
je @f
MAX_DIST edi
mov ebx,[edi+deflate_state.strstart]
sub ebx,ecx
cmp ebx,eax
jg @f ;if (..!=0 && ..<=..)
; To simplify the code, we prevent matches with the string
; of window index 0 (in particular we have to avoid a match
; of the string with itself at the start of the input file).
 
stdcall longest_match, edi, ecx
mov [edi+deflate_state.match_length],eax
; longest_match() sets match_start
@@:
cmp dword[edi+deflate_state.match_length],MIN_MATCH
jl .end1 ;if (..>=..)
stdcall check_match, edi, [edi+deflate_state.strstart], [edi+deflate_state.match_start], [edi+deflate_state.match_length]
 
mov eax,[edi+deflate_state.strstart]
sub eax,[edi+deflate_state.match_start]
mov ebx,[edi+deflate_state.match_length]
sub ebx,MIN_MATCH
_tr_tally_dist edi, eax, ebx, [bflush]
 
mov eax,[edi+deflate_state.match_length]
sub [edi+deflate_state.lookahead],eax
 
; Insert new strings in the hash table only if the match length
; is not too large. This saves time but degrades compression.
 
if FASTEST eq 0
;;mov eax,[edi+deflate_state.match_length]
cmp eax,[edi+deflate_state.max_insert_length]
jg .end3
cmp dword[edi+deflate_state.lookahead],MIN_MATCH
jl .end3 ;if (..<=.. && ..>=..)
dec dword[edi+deflate_state.match_length] ;string at strstart already in table
.cycle1: ;do {
inc dword[edi+deflate_state.strstart]
INSERT_STRING edi, [edi+deflate_state.strstart], ecx
; strstart never exceeds WSIZE-MAX_MATCH, so there are
; always MIN_MATCH bytes ahead.
 
dec dword[edi+deflate_state.match_length]
cmp dword[edi+deflate_state.match_length],0
jne .cycle1 ;while (..!=0)
inc dword[edi+deflate_state.strstart]
jmp .end2
.end3: ;else
end if
 
mov eax,[edi+deflate_state.match_length]
add [edi+deflate_state.strstart],eax
mov dword[edi+deflate_state.match_length],0
mov eax,[edi+deflate_state.window]
add eax,[edi+deflate_state.strstart]
mov [edi+deflate_state.ins_h],eax
inc eax
movzx eax,byte[eax]
UPDATE_HASH edi, [edi+deflate_state.ins_h], eax
if MIN_MATCH <> 3
; Call UPDATE_HASH() MIN_MATCH-3 more times
end if
; If lookahead < MIN_MATCH, ins_h is garbage, but it does not
; matter since it will be recomputed at next deflate call.
jmp .end2
.end1: ;else
; No match, output a literal byte
mov eax,[edi+deflate_state.window]
add eax,[edi+deflate_state.strstart]
movzx eax,byte[eax]
Tracevv eax,
_tr_tally_lit edi, eax, [bflush]
dec dword[edi+deflate_state.lookahead]
inc dword[edi+deflate_state.strstart]
.end2:
cmp dword[bflush],0
je .cycle0 ;if (..)
FLUSH_BLOCK edi, 0
jmp .cycle0
align 4
.cycle0end:
mov eax,[edi+deflate_state.strstart]
cmp eax,MIN_MATCH-1
jl @f
mov eax,MIN_MATCH-1
@@:
mov [edi+deflate_state.insert],eax
cmp dword[flush],Z_FINISH
jne @f ;if (..==..)
FLUSH_BLOCK edi, 1
mov eax,finish_done
jmp .end_f
@@:
cmp dword[edi+deflate_state.last_lit],0
je @f ;if (..)
FLUSH_BLOCK edi, 0
@@:
mov eax,block_done
.end_f:
ret
endp
 
; ===========================================================================
; Same as above, but achieves better compression. We use a lazy
; evaluation for matches: a match is finally adopted only if there is
; no better match at the next window position.
 
;block_state (s, flush)
; deflate_state *s
; int flush
align 4
proc deflate_slow uses ebx ecx edx edi, s:dword, flush:dword
locals
bflush dd ? ;int ;set if current block must be flushed
endl
;ecx = hash_head ;IPos ;head of the hash chain
mov edi,[s]
zlib_debug 'deflate_slow'
 
; Process the input block.
.cycle0: ;for (;;)
; Make sure that we always have enough lookahead, except
; at the end of the input file. We need MAX_MATCH bytes
; for the next match, plus MIN_MATCH bytes to insert the
; string following the next match.
 
cmp dword[edi+deflate_state.lookahead],MIN_LOOKAHEAD
jge .end0 ;if (..<..)
stdcall fill_window, edi
cmp dword[edi+deflate_state.lookahead],MIN_LOOKAHEAD
jge @f ;if (..<.. && ..==..)
cmp dword[flush],Z_NO_FLUSH
jne @f
mov eax,need_more
jmp .end_f
align 4
@@:
cmp dword[edi+deflate_state.lookahead],0
je .cycle0end ;if (..==0) break ;flush the current block
align 4
.end0:
 
; Insert the string window[strstart .. strstart+2] in the
; dictionary, and set hash_head to the head of the hash chain:
 
mov ecx,NIL
cmp dword[edi+deflate_state.lookahead],MIN_MATCH
jl @f ;if (..>=..)
INSERT_STRING edi, [edi+deflate_state.strstart], ecx
@@:
 
; Find the longest match, discarding those <= prev_length.
 
mov eax,[edi+deflate_state.match_length]
mov [edi+deflate_state.prev_length],eax
mov eax,[edi+deflate_state.match_start]
mov [edi+deflate_state.prev_match],eax
mov dword[edi+deflate_state.match_length],MIN_MATCH-1
 
cmp ecx,NIL
je @f
mov eax,[edi+deflate_state.prev_length]
cmp eax,[edi+deflate_state.max_lazy_match]
jge @f
MAX_DIST edi
mov ebx,[edi+deflate_state.strstart]
sub ebx,ecx
cmp ebx,eax
jg .end1 ;if (..!=0 && ..<.. && ..<=..)
; To simplify the code, we prevent matches with the string
; of window index 0 (in particular we have to avoid a match
; of the string with itself at the start of the input file).
 
stdcall longest_match, edi, ecx
mov [edi+deflate_state.match_length],eax
; longest_match() sets match_start
 
cmp dword[edi+deflate_state.match_length],5
jg .end1
cmp word[edi+deflate_state.strategy],Z_FILTERED
jne .end1
; if (..<=.. && (..==..
;#if TOO_FAR <= 32767
; || (s->match_length == MIN_MATCH &&
; s->strstart - s->match_start > TOO_FAR)
;end if
; ))
 
; If prev_match is also MIN_MATCH, match_start is garbage
; but we will ignore the current match anyway.
 
mov dword[edi+deflate_state.match_length],MIN_MATCH-1
.end1:
; If there was a match at the previous step and the current
; match is not better, output the previous match:
 
 
mov eax,[edi+deflate_state.prev_length]
cmp eax,MIN_MATCH
jl .end2:
cmp [edi+deflate_state.match_length],eax
jg .end2: ;if (..>=.. && ..<=..)
mov edx,[edi+deflate_state.strstart]
add edx,[edi+deflate_state.lookahead]
sub edx,MIN_MATCH
;edx = max_insert
; Do not insert strings in hash table beyond this.
 
mov eax,[edi+deflate_state.strstart]
dec eax
stdcall check_match, edi, eax, [edi+deflate_state.prev_match], [edi+deflate_state.prev_length]
 
mov eax,[edi+deflate_state.strstart]
dec eax
sub eax,[edi+deflate_state.prev_match]
mov ebx,[edi+deflate_state.prev_length]
sub ebx,MIN_MATCH
_tr_tally_dist edi, eax, ebx, [bflush]
 
; Insert in hash table all strings up to the end of the match.
; strstart-1 and strstart are already inserted. If there is not
; enough lookahead, the last two strings are not inserted in
; the hash table.
 
mov eax,[edi+deflate_state.prev_length]
dec eax
sub [edi+deflate_state.lookahead],eax
sub dword[edi+deflate_state.prev_length],2
.cycle1: ;do
inc dword[edi+deflate_state.strstart]
cmp [edi+deflate_state.strstart],edx
jg @f ;if (..<=..)
INSERT_STRING edi, [edi+deflate_state.strstart], ecx
@@:
dec dword[edi+deflate_state.prev_length]
cmp dword[edi+deflate_state.prev_length],0
jne .cycle1 ;while (..!=0)
mov dword[edi+deflate_state.match_available],0
mov dword[edi+deflate_state.match_length],MIN_MATCH-1
inc dword[edi+deflate_state.strstart]
 
cmp dword[bflush],0
je .cycle0 ;if (..)
FLUSH_BLOCK edi, 0
jmp .cycle0
.end2: ;else if (..)
cmp dword[edi+deflate_state.match_available],0
je .end3
; If there was no match at the previous position, output a
; single literal. If there was a match but the current match
; is longer, truncate the previous match to a single literal.
 
mov eax,[edi+deflate_state.strstart]
dec eax
add eax,[edi+deflate_state.window]
movzx eax,byte[eax]
Tracevv eax,
_tr_tally_lit edi, eax, [bflush]
cmp dword[bflush],0
je @f ;if (..)
FLUSH_BLOCK_ONLY edi, 0
@@:
inc dword[edi+deflate_state.strstart]
dec dword[edi+deflate_state.lookahead]
mov eax,[edi+deflate_state.strm]
cmp word[eax+z_stream.avail_out],0
jne .cycle0 ;if (..==0) return ..
mov eax,need_more
jmp .end_f
jmp .cycle0 ;.end4
.end3: ;else
; There is no previous match to compare with, wait for
; the next step to decide.
 
mov dword[edi+deflate_state.match_available],1
inc dword[edi+deflate_state.strstart]
dec dword[edi+deflate_state.lookahead]
;.end4:
jmp .cycle0
.cycle0end:
cmp dword[flush],Z_NO_FLUSH
jne @f
zlib_debug 'no flush?' ;Assert (..!=..)
@@:
cmp dword[edi+deflate_state.match_available],0
je @f ;if (..)
mov eax,[edi+deflate_state.strstart]
dec eax
add eax,[edi+deflate_state.window]
movzx eax,byte[eax]
Tracevv eax,
_tr_tally_lit edi, eax, [bflush]
mov dword[edi+deflate_state.match_available],0
@@:
mov eax,[edi+deflate_state.strstart]
cmp eax,MIN_MATCH-1
jl @f
mov eax,MIN_MATCH-1
@@:
mov [edi+deflate_state.insert],eax
cmp dword[flush],Z_FINISH
jne @f ;if (..==..)
FLUSH_BLOCK edi, 1
mov eax,finish_done
jmp .end_f
@@:
cmp dword[edi+deflate_state.last_lit],0
je @f ;if (..)
FLUSH_BLOCK edi, 0
@@:
mov eax,block_done
.end_f:
ret
endp
 
; ===========================================================================
; For Z_RLE, simply look for runs of bytes, generate matches only of distance
; one. Do not maintain a hash table. (It will be regenerated if this run of
; deflate switches away from Z_RLE.)
 
;block_state (s, flush)
; deflate_state *s;
; int flush;
align 4
proc deflate_rle uses ecx edx edi esi, s:dword, flush:dword
locals
bflush dd ? ;int ;set if current block must be flushed
; uInt prev; /* byte at distance one to match */
; Bytef *scan, *strend; /* scan goes up to strend for length of run */
endl
mov edx,[s]
zlib_debug 'deflate_rle'
.cycle0: ;for (;;)
; Make sure that we always have enough lookahead, except
; at the end of the input file. We need MAX_MATCH bytes
; for the longest run, plus one for the unrolled loop.
cmp dword[edx+deflate_state.lookahead],MAX_MATCH
jg .end0 ;if (..<=..)
stdcall fill_window, edx
cmp dword[edx+deflate_state.lookahead],MAX_MATCH
jg @f
cmp dword[flush],Z_NO_FLUSH
jne @f ;if (..<=.. && ..==..)
mov eax,need_more
jmp .end_f
align 4
@@:
cmp dword[edx+deflate_state.lookahead],0
je .cycle0end ;flush the current block
align 4
.end0:
 
; See how many times the previous byte repeats
mov dword[edx+deflate_state.match_length],0
cmp dword[edx+deflate_state.lookahead],MIN_MATCH
jl .end1
cmp dword[edx+deflate_state.strstart],0
jle .end1 ;if (..>=.. && ..>..)
mov esi,[edx+deflate_state.window]
add esi,[edx+deflate_state.strstart]
dec esi
lodsb
mov edi,esi
scasb
jnz .end2
scasb
jnz .end2
scasb
jnz .end2 ;if (..==.. && ..==.. && ..==..)
;edi = scan
; al = prev
;ecx = strend-scan
mov ecx,MAX_MATCH-2
repz scasb
sub edi,[edx+deflate_state.window]
sub edi,[edx+deflate_state.strstart]
mov [edx+deflate_state.match_length],edi
mov eax,[edx+deflate_state.lookahead]
cmp [edx+deflate_state.match_length],eax
jle .end2
mov [edx+deflate_state.match_length],eax
.end2:
mov eax,[edx+deflate_state.window_size]
dec eax
add eax,[edx+deflate_state.window]
cmp edi,eax
jle .end1
zlib_debug 'wild scan' ;Assert(..<=..)
.end1:
 
; Emit match if have run of MIN_MATCH or longer, else emit literal
cmp dword[edx+deflate_state.match_length],MIN_MATCH
jl @f ;if (..>=..)
push dword[edx+deflate_state.match_length]
mov eax,[edx+deflate_state.strstart]
dec eax
stdcall check_match, edx, [edx+deflate_state.strstart], eax
 
mov eax,[edx+deflate_state.match_length]
sub eax,MIN_MATCH
_tr_tally_dist edx, 1, eax, [bflush]
 
mov eax,[edx+deflate_state.match_length]
sub [edx+deflate_state.lookahead],eax
add [edx+deflate_state.strstart],eax
mov dword[edx+deflate_state.match_length],0
jmp .end3
@@: ;else
; No match, output a literal byte
mov eax,[edx+deflate_state.strstart]
add eax,[edx+deflate_state.window]
movzx eax,byte[eax]
Tracevv eax,
_tr_tally_lit edx, eax, [bflush]
dec dword[edx+deflate_state.lookahead]
inc dword[edx+deflate_state.strstart]
.end3:
cmp dword[bflush],0
je .cycle0 ;if (..)
FLUSH_BLOCK edx, 0
jmp .cycle0
align 4
.cycle0end:
mov dword[edx+deflate_state.insert],0
cmp dword[flush],Z_FINISH
jne @f ;if (..==..)
FLUSH_BLOCK edx, 1
mov eax,finish_done
jmp .end_f
@@:
cmp dword[edx+deflate_state.last_lit],0
je @f ;if (..)
FLUSH_BLOCK edx, 0
@@:
mov eax,block_done
.end_f:
ret
endp
 
; ===========================================================================
; For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
; (It will be regenerated if this run of deflate switches away from Huffman.)
 
;block_state (s, flush)
; deflate_state *s;
; int flush;
align 4
proc deflate_huff uses ebx edi, s:dword, flush:dword
locals
bflush dd ? ;int ;set if current block must be flushed
endl
mov edi,[s]
zlib_debug 'deflate_huff'
.cycle0: ;for (;;)
; Make sure that we have a literal to write.
cmp dword[edi+deflate_state.lookahead],0
jne .end0 ;if (..==0)
stdcall fill_window, edi
cmp dword[edi+deflate_state.lookahead],0
jne .end0 ;if (..==0)
cmp dword[flush],Z_NO_FLUSH
jne @f ;if (..==..)
mov eax,need_more
jmp .end_f
align 4
@@:
jmp .cycle0end ;flush the current block
align 4
.end0:
 
; Output a literal byte
mov dword[edi+deflate_state.match_length],0
mov eax,[edi+deflate_state.strstart]
add eax,[edi+deflate_state.window]
movzx eax,byte[eax]
Tracevv eax,
_tr_tally_lit edi, eax, [bflush]
dec dword[edi+deflate_state.lookahead]
inc dword[edi+deflate_state.strstart]
cmp dword[bflush],0
je @f ;if (..)
FLUSH_BLOCK edi, 0
@@:
jmp .cycle0
align 4
.cycle0end:
mov dword[edi+deflate_state.insert],0
cmp dword[flush],Z_FINISH
jne @f ;if (..==..)
FLUSH_BLOCK edi, 1
mov eax,finish_done
jmp .end_f
@@:
cmp dword[edi+deflate_state.last_lit],0
je @f ;if (..)
FLUSH_BLOCK edi, 0
@@:
mov eax,block_done
.end_f:
ret
endp
/programs/fs/kfar/trunk/zlib/deflate.inc
0,0 → 1,353
; deflate.inc -- internal compression state
; Copyright (C) 1995-2012 Jean-loup Gailly
; For conditions of distribution and use, see copyright notice in zlib.inc
 
; WARNING: this file should *not* be used by applications. It is
; part of the implementation of the compression library and is
; subject to change. Applications should only use zlib.inc.
 
include 'zutil.inc'
 
; ===========================================================================
; Internal compression state.
 
 
LENGTH_CODES equ 29
; number of length codes, not counting the special END_BLOCK code
 
LITERALS equ 256
; number of literal bytes 0..255
 
L_CODES equ (LITERALS+1+LENGTH_CODES)
; number of Literal or Length codes, including the END_BLOCK code
 
D_CODES equ 30
; number of distance codes
 
BL_CODES equ 19
; number of codes used to transfer the bit lengths
 
HEAP_SIZE equ (2*L_CODES+1)
; maximum heap size
 
MAX_BITS equ 15
; All codes must not exceed MAX_BITS bits
 
Buf_size equ 16
; size of bit buffer in bi_buf
 
INIT_STATE equ 42
EXTRA_STATE equ 69
NAME_STATE equ 73
COMMENT_STATE equ 91
HCRC_STATE equ 103
BUSY_STATE equ 113
FINISH_STATE equ 800
; Stream status
 
; Data structure describing a single value and its code string.
struct ct_data ;ct_data_s
fc dw ? ;union
;uint_16 freq ;frequency count
;uint_16 code ;bit string
dale dw ? ;union
;uint_16 dad ;father node in Huffman tree
;uint_16 len ;length of bit string
ends
 
Freq equ ct_data.fc ;.freq
Code equ ct_data.fc ;.code
Dad equ ct_data.dale ;.dad
Len equ ct_data.dale ;.len
 
struct tree_desc ;tree_desc_s
dyn_tree dd ? ;ct_data * ;the dynamic tree
max_code dd ? ;int ;largest code with non zero frequency
stat_desc dd ? ;static_tree_desc * ;the corresponding static tree
ends
 
; A Pos is an index in the character window. We use short instead of int to
; save space in the various tables. IPos is used only for parameter passing.
 
struct deflate_state ;internal_state
strm dd ? ;z_streamp ;pointer back to this zlib stream
status dd ? ;int ;as the name implies
pending_buf dd ? ;Bytef *;output still pending
pending_buf_size dd ? ;ulg ;size of pending_buf
pending_out dd ? ;Bytef * ;next pending byte to output to the stream
pending dw ? ;uInt ;nb of bytes in the pending buffer
wrap dd ? ;int ;bit 0 true for zlib, bit 1 true for gzip
gzhead dd ? ;gz_headerp ;gzip header information to write
gzindex dd ? ;uInt ;where in extra, name, or comment
method db ? ;Byte ;can only be DEFLATED
last_flush dd ? ;int ;value of flush param for previous deflate call
 
; used by deflate.asm:
 
w_size dd ? ;uInt ;LZ77 window size (32K by default)
w_bits dd ? ;uInt ;log2(w_size) (8..16)
w_mask dd ? ;uInt ;w_size - 1
 
window dd ? ;Bytef *
; Sliding window. Input bytes are read into the second half of the window,
; and move to the first half later to keep a dictionary of at least wSize
; bytes. With this organization, matches are limited to a distance of
; wSize-MAX_MATCH bytes, but this ensures that IO is always
; performed with a length multiple of the block size. Also, it limits
; the window size to 64K, which is quite useful on MSDOS.
; To do: use the user input buffer as sliding window.
 
window_size dd ? ;ulg
; Actual size of window: 2*wSize, except when the user input buffer
; is directly used as sliding window.
 
prev dd ? ;Posf *
; Link to older string with same hash index. To limit the size of this
; array to 64K, this link is maintained only for the last 32K strings.
; An index in this array is thus a window index modulo 32K.
 
head dd ? ;Posf * ;Heads of the hash chains or NIL.
 
ins_h dd ? ;uInt ;hash index of string to be inserted
hash_size dd ? ;uInt ;number of elements in hash table
hash_bits dd ? ;uInt ;log2(hash_size)
hash_mask dd ? ;uInt ;hash_size-1
 
hash_shift dd ? ;uInt
; Number of bits by which ins_h must be shifted at each input
; step. It must be such that after MIN_MATCH steps, the oldest
; byte no longer takes part in the hash key, that is:
; hash_shift * MIN_MATCH >= hash_bits
 
block_start dd ? ;long
; Window position at the beginning of the current output block. Gets
; negative when the window is moved backwards.
 
match_length dd ? ;uInt ;length of best match
prev_match dd ? ;IPos ;previous match
match_available dd ? ;int ;set if previous match exists
strstart dd ? ;uInt ;start of string to insert
match_start dd ? ;uInt ;start of matching string
lookahead dd ? ;uInt ;number of valid bytes ahead in window
 
prev_length dd ? ;uInt
; Length of the best match at previous step. Matches not greater than this
; are discarded. This is used in the lazy match evaluation.
 
max_chain_length dd ? ;uInt
; To speed up deflation, hash chains are never searched beyond this
; length. A higher limit improves compression ratio but degrades the
; speed.
 
max_lazy_match dd ? ;uInt
; Attempt to find a better match only when the current match is strictly
; smaller than this value. This mechanism is used only for compression
; levels >= 4.
 
;# define max_insert_length max_lazy_match
; Insert new strings in the hash table only if the match length is not
; greater than this length. This saves time but degrades compression.
; max_insert_length is used only for compression levels <= 3.
 
level dw ? ;int ;compression level (1..9)
strategy dw ? ;int ;favor or force Huffman coding
 
good_match dd ? ;uInt
; Use a faster search when the previous match is longer than this
 
nice_match dd ? ;int ;Stop searching when current match exceeds this
 
; used by trees.asm:
; Didn't use ct_data typedef below to suppress compiler warning
dyn_ltree rb sizeof.ct_data * HEAP_SIZE ;literal and length tree
dyn_dtree rb sizeof.ct_data * (2*D_CODES+1) ;distance tree
bl_tree rb sizeof.ct_data * (2*BL_CODES+1) ;Huffman tree for bit lengths
 
l_desc tree_desc ;desc. for literal tree
d_desc tree_desc ;desc. for distance tree
bl_desc tree_desc ;desc. for bit length tree
 
bl_count rw MAX_BITS+1 ;uint_16[]
; number of codes at each bit length for an optimal tree
 
heap rw 2*L_CODES+1 ;int[] ;heap used to build the Huffman trees
heap_len dd ? ;int ;number of elements in the heap
heap_max dd ? ;int ;element of largest frequency
; The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
; The same heap array is used to build all trees.
 
depth rb 2*L_CODES+1 ;uch[]
; Depth of each subtree used as tie breaker for trees of equal frequency
 
l_buf dd ? ;uchf * ;buffer for literals or lengths
 
lit_bufsize dd ? ;uInt
; Size of match buffer for literals/lengths. There are 4 reasons for
; limiting lit_bufsize to 64K:
; - frequencies can be kept in 16 bit counters
; - if compression is not successful for the first block, all input
; data is still in the window so we can still emit a stored block even
; when input comes from standard input. (This can also be done for
; all blocks if lit_bufsize is not greater than 32K.)
; - if compression is not successful for a file smaller than 64K, we can
; even emit a stored file instead of a stored block (saving 5 bytes).
; This is applicable only for zip (not gzip or zlib).
; - creating new Huffman trees less frequently may not provide fast
; adaptation to changes in the input data statistics. (Take for
; example a binary file with poorly compressible code followed by
; a highly compressible string table.) Smaller buffer sizes give
; fast adaptation but have of course the overhead of transmitting
; trees more frequently.
; - I can't count above 4
 
last_lit dd ? ;uInt ;running index in l_buf
 
d_buf dd ? ;uint_16p
; Buffer for distances. To simplify the code, d_buf and l_buf have
; the same number of elements. To use different lengths, an extra flag
; array would be necessary.
 
opt_len dd ? ;ulg ;bit length of current block with optimal trees
static_len dd ? ;ulg ;bit length of current block with static trees
matches dd ? ;uInt ;number of string matches in current block
insert dd ? ;uInt ;bytes at end of window left to insert
 
if DEBUG eq 1
compressed_len dd ? ;ulg ;total bit length of compressed file mod 2^32
bits_sent dd ? ;ulg ;bit length of compressed data sent mod 2^32
end if
 
bi_buf dw ? ;uint_16
; Output buffer. bits are inserted starting at the bottom (least
; significant bits).
 
bi_valid dd ? ;int
; Number of valid bits in bi_buf. All bits above the last valid bit
; are always zero.
 
high_water dd ? ;ulg
; High water mark offset in window for initialized bytes -- bytes above
; this are set to zero in order to avoid memory check warnings when
; longest match routines access bytes past the input. This is then
; updated to the new high water mark.
ends
 
; Output a byte on the stream.
; IN assertion: there is enough room in pending_buf.
 
macro put_byte s, c
{
;xor eax,eax
;mov al,c
;zlib_debug '(%d)',eax
movzx eax,word[s+deflate_state.pending]
add eax,[s+deflate_state.pending_buf]
mov byte[eax],c
inc word[s+deflate_state.pending]
}
macro put_dword s, d
{
;mov eax,d
;zlib_debug '(%d)',eax
movzx eax,word[s+deflate_state.pending]
add eax,[s+deflate_state.pending_buf]
mov dword[eax],d
add word[s+deflate_state.pending],4
}
 
MIN_LOOKAHEAD equ (MAX_MATCH+MIN_MATCH+1)
; Minimum amount of lookahead, except at the end of the input file.
; See deflate.asm for comments about the MIN_MATCH+1.
 
macro MAX_DIST s
{
mov eax,[s+deflate_state.w_size]
sub eax,MIN_LOOKAHEAD
}
; In order to simplify the code, particularly on 16 bit machines, match
; distances are limited to MAX_DIST instead of WSIZE.
 
WIN_INIT equ MAX_MATCH
; Number of bytes after end of data in window to initialize in order to avoid
; memory checker errors from longest match routines
 
macro d_code dist
{
;if (dist < 256) _dist_code[dist]
;else _dist_code[ 256+(dist>>7) ]
local .end0
mov eax,dist
cmp eax,256
jl .end0
shr eax,7
add eax,256
.end0:
movzx eax,byte[eax+_dist_code]
}
; Mapping from a distance to a distance code. dist is the distance - 1 and
; must not have side effects. _dist_code[256] and _dist_code[257] are never
; used.
 
macro _tr_tally_lit s, c, flush
{
local .end0
if DEBUG eq 0
; Inline versions of _tr_tally for speed:
if c eq eax
else
mov eax,c
end if
push ecx
mov ecx,[s+deflate_state.last_lit]
shl ecx,1
add ecx,[s+deflate_state.d_buf]
mov word[ecx],0
mov ecx,[s+deflate_state.last_lit]
add ecx,[s+deflate_state.l_buf]
mov byte[ecx],al
inc dword[s+deflate_state.last_lit]
and eax,0xff
imul eax,sizeof.ct_data
add eax,s
inc word[eax+deflate_state.dyn_ltree+Freq]
xor eax,eax
mov ecx,[s+deflate_state.lit_bufsize]
dec ecx
cmp [s+deflate_state.last_lit],ecx
jne .end0
inc eax ;flush = (..==..)
.end0:
mov flush, eax
pop ecx
else
stdcall _tr_tally, s, 0, c
mov flush, eax
end if
}
macro _tr_tally_dist s, distance, length, flush
{
if 0 ;;;DEBUG eq 0
push ecx
; uch len = (length)
if distance eq eax
else
mov eax,distance
end if
mov ecx,[s+deflate_state.last_lit]
shl ecx,1
add ecx,[s+deflate_state.d_buf]
mov word[ecx],ax
mov ecx,[s+deflate_state.last_lit]
add ecx,[s+deflate_state.l_buf]
mov byte[ecx],length
inc dword[s+deflate_state.last_lit]
dec eax
; s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++;
; s->dyn_dtree[d_code(dist)].Freq++;
; flush = (s->last_lit == s->lit_bufsize-1);
pop ecx
else
stdcall _tr_tally, s, distance, length
mov flush, eax
end if
}
/programs/fs/kfar/trunk/zlib/example1.asm
0,0 → 1,287
use32 ; ¢ª«îç¨âì 32-¡¨â­ë© ०¨¬  áᥬ¡«¥à 
org 0x0 ;  ¤à¥á æ¨ï á ­ã«ï
db 'MENUET01'
dd 1,START,I_END,MEM,STACKTOP,0,cur_dir_path
 
include '../../../../proc32.inc'
include '../../../../macros.inc'
include '../../../../KOSfuncs.inc'
include '../../../../develop/libraries/box_lib/load_lib.mac'
 
include 'deflate.inc'
include 'debug.inc'
include 'zlib.inc'
 
@use_library
 
align 4
m0size dd 90 ;à §¬¥à ¤ ­­ëå ¤«ï 㯠ª®¢ª¨
m1size dd 1024 ;à §¬¥à ¡ãä¥à  ¤ ­­ëå ¤«ï 㯠ª®¢ª¨
m2size dd 0 ;à §¬¥à à á¯ ª®¢ ­­ëå ¤ ­­ëå
 
align 4
m0: ;¤ ­­ë¥ ¤«ï 㯠ª®¢ª¨
file 'zlib.txt'
 
align 4
m1 rb 1024 ;¡ãä¥à ¤«ï 㯠ª®¢ ­­ëå ¤ ­­ëå
m2 dd 0 ;㪠§ â¥«ì ­  à á¯ ª®¢ ­­ë¥ ¤ ­­ë¥
 
buf rb 1024 ;¡ãä¥à ¤«ï ¢ë¢®¤  ᦠâëå ¤ ­­ëå ¢ ®ª­®
strategy dd Z_DEFAULT_STRATEGY ;áâà â¥£¨ï ᦠâ¨ï
 
align 4
START:
load_libraries l_libs_start,load_lib_end
mov ebp,lib0
.test_lib_open:
cmp dword [ebp+ll_struc_size-4],0
jz @f
mcall SF_TERMINATE_PROCESS ;exit not correct
@@:
add ebp,ll_struc_size
cmp ebp,load_lib_end
jl .test_lib_open
 
; mcall SF_SYS_MISC, SSF_HEAP_INIT
 
call test_code
 
align 4
red: ; ¯¥à¥à¨á®¢ âì ®ª­®
call draw_window ; ¢ë§ë¢ ¥¬ ¯à®æ¥¤ãàã ®âà¨á®¢ª¨ ®ª­ 
 
align 4
still:
mcall SF_WAIT_EVENT
cmp eax,1 ; ¯¥à¥à¨á®¢ âì ®ª­® ?
je red
cmp eax,2 ; ­ ¦ â  ª« ¢¨è  ?
je key
cmp eax,3 ; ­ ¦ â  ª­®¯ª  ?
je button
jmp still
 
align 4
key:
mcall SF_GET_KEY
 
cmp ah,178 ;Up
jne @f
cmp dword[strategy],0
jle @f
dec dword[strategy]
call test_code
call draw_window
@@:
cmp ah,177 ;Down
jne @f
cmp dword[strategy],4
jge @f
inc dword[strategy]
call test_code
call draw_window
@@:
cmp ah,176 ;Left
jne @f
cmp dword[m0size],8
jl @f
dec dword[m0size]
call test_code
call draw_window
@@:
cmp ah,179 ;Right
jne @f
inc dword[m0size]
call test_code
call draw_window
@@:
jmp still ; ¢¥à­ãâìáï ª ­ ç «ã 横« 
 
;---------------------------------------------------------------------
align 4
button:
mcall SF_GET_BUTTON
 
cmp ah,1
jne still
 
.exit:
mcall SF_SYS_MISC,SSF_MEM_FREE,[m2]
mcall SF_TERMINATE_PROCESS ; ¨­ ç¥ ª®­¥æ ¯à®£à ¬¬ë
 
align 4
draw_window:
mcall SF_REDRAW, SSF_BEGIN_DRAW ; äã­ªæ¨ï 12: á®®¡é¨âì Ž‘ ® ­ ç «¥ ®âà¨á®¢ª¨
mcall SF_STYLE_SETTINGS, SSF_GET_COLORS, sc,sizeof.system_colors
mov edx, [sc.work] ; 梥â ä®­ 
or edx, 0x33000000 ; ¨ ⨯ ®ª­  3
mcall SF_CREATE_WINDOW, <50,600>, <50,180>, , ,title
 
cStr edx,'Strategy:'
mcall SF_DRAW_TEXT, <10,10>,0x40f0,,9
cStr edx,'Input size:'
mcall , <10,20>,,,11
cStr edx,'Compr. size:'
mcall , <10,30>,,,12
cStr edx,'Outp. size:'
mcall , <10,120>,,,11
 
mcall SF_DRAW_NUMBER, (1 shl 16)+1, strategy, <90,10>, 0
mcall , (5 shl 16)+1, m0size, <90,20>
mcall , (5 shl 16)+1, m1size, <90,30>
mcall , (5 shl 16)+1, m2size, <90,120>
;mov ecx,(1 shl 31)
mov esi,[m2size]
cmp esi,95
jle @f
mov esi,95
@@:
mcall SF_DRAW_TEXT, <10,130>, 0, [m2]
 
mov esi,7
mov ebx,(10 shl 16)+45 ;(x shl 16)+y
mov edx,buf
.cycle1: ;rows
mcall SF_DRAW_TEXT,, (1 shl 31)
add ebx,10
add edx,32*3
dec esi
jnz .cycle1
 
mcall SF_REDRAW, SSF_END_DRAW ; äã­ªæ¨ï 12.2, § ª®­ç¨«¨ à¨á®¢ âì
ret
 
align 4
test_code:
stdcall [deflateInit2], my_strm,\
-1, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, [strategy]
;‘âà â¥£¨ï:
; Z_DEFAULT_STRATEGY, Z_FILTERED, Z_HUFFMAN_ONLY, Z_RLE, Z_FIXED
 
mov eax,my_strm
mov [eax+z_stream.next_in],m0 ;ãáâ ­ ¢«¨¢ ¥¬ ¯ ¬ïâì ¤«ï ᦠâ¨ï
mov ecx,[m0size]
mov word[eax+z_stream.avail_in],cx ;à §¬¥à ᦨ¬ ¥¬ë¦ ¤ ­­ëå
mov [eax+z_stream.next_out],m1 ;ãáâ ­ ¢«¨¢ ¥¬ ¡ãä¥à ¤«ï ᦠâ¨ï
mov word[eax+z_stream.avail_out],1024 ;à §¬¥à ¡ãä¥à  ¤«ï ᦠâ¨ï
 
;call print_z_struct
 
stdcall [deflate], my_strm, Z_FINISH ;Z_NO_FLUSH
 
;call print_z_struct
 
;à §¬¥à ᦠâëå ¤ ­­ëå: 1024-word[eax+z_stream.avail_out]
mov eax,my_strm
mov ecx,1024
sub cx,word[eax+z_stream.avail_out]
mov [m1size],ecx
 
;assert(ret != Z_STREAM_ERROR)
;while (strm.avail_out == 0)
 
mov ebx,[m1size]
mov esi,m1
mov edi,buf
mov edx,7
.cycle1: ;rows
mov ecx,32
.cycle0: ;cols
stdcall hex_in_str, edi,[esi],2
add edi,2
inc esi
mov byte[edi],' ' ;format space
dec ebx
jz .cycle1end ;if end file
inc edi
loop .cycle0
mov byte[edi-1],0
dec edx
jnz .cycle1
 
.cycle1end:
mov byte[edi],0
 
mcall SF_SYS_MISC,SSF_MEM_FREE,[m2]
mov eax,[m1size]
sub eax,2 ;;; 2? or 6?
mov [m2size],eax
mov eax,m1
add eax,2
stdcall [deflate_unpack],eax,m2size
mov [m2],eax
mov ecx,[m0size] ;;; ???
mov [m2size],ecx
ret
 
align 4
proc print_z_struct uses eax ebx
mov eax,my_strm
mov ebx,[eax+z_stream.state]
stdcall debug_fields,eax,sv_2
stdcall debug_fields,ebx,sv_3
ret
endp
 
sc system_colors
 
title db 'Zlib test, press on [Up], [Down], [Left], [Right]',0
 
align 4
import_archiver:
deflate_unpack dd sz_deflate_unpack
dd 0,0
sz_deflate_unpack db 'deflate_unpack',0
 
align 4
import_zlib:
; dd sz_lib_init
deflateInit dd sz_deflateInit
deflateInit2 dd sz_deflateInit2
deflateReset dd sz_deflateReset
deflate dd sz_deflate
deflateEnd dd sz_deflateEnd
 
dd 0,0
 
; sz_lib_init db 'lib_init',0
sz_deflateInit db 'deflateInit',0
sz_deflateInit2 db 'deflateInit2',0
sz_deflateReset db 'deflateReset',0
sz_deflate db 'deflate',0
sz_deflateEnd db 'deflateEnd',0
;--------------------------------------------------
system_dir_0 db '/sys/lib/'
lib_name_0 db 'archiver.obj',0
 
system_dir_1 db '/sys/lib/'
lib_name_1 db 'zlib.obj',0
 
err_message_found_lib0 db 'Sorry I cannot load library archiver.obj',0
err_message_found_lib1 db 'Sorry I cannot load library zlib.obj',0
head_f_i:
head_f_l db 'System error',0
err_message_import0 db 'Error on load import library archiver.obj',0
err_message_import1 db 'Error on load import library zlib.obj',0
 
l_libs_start:
lib0 l_libs lib_name_0, cur_dir_path, library_path, system_dir_0,\
err_message_found_lib0, head_f_l, import_archiver,err_message_import0, head_f_i
lib1 l_libs lib_name_1, cur_dir_path, library_path, system_dir_1,\
err_message_found_lib1, head_f_l, import_zlib, err_message_import1, head_f_i
load_lib_end:
;---------------------------------------------------------------------
 
align 16
I_END:
my_strm z_stream
rd 4096
align 16
STACKTOP:
cur_dir_path:
rb 4096
library_path:
rb 4096
MEM:
/programs/fs/kfar/trunk/zlib/trees.asm
0,0 → 1,2096
; trees.asm -- output deflated data using Huffman coding
; Copyright (C) 1995-2012 Jean-loup Gailly
; detect_data_type() function provided freely by Cosmin Truta, 2006
; For conditions of distribution and use, see copyright notice in zlib.h
 
; ALGORITHM
 
; The "deflation" process uses several Huffman trees. The more
; common source values are represented by shorter bit sequences.
 
; Each code tree is stored in a compressed form which is itself
; a Huffman encoding of the lengths of all the code strings (in
; ascending order by source values). The actual code strings are
; reconstructed from the lengths in the inflate process, as described
; in the deflate specification.
 
; REFERENCES
 
; Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
; Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
 
; Storer, James A.
; Data Compression: Methods and Theory, pp. 49-50.
; Computer Science Press, 1988. ISBN 0-7167-8156-5.
 
; Sedgewick, R.
; Algorithms, p290.
; Addison-Wesley, 1983. ISBN 0-201-06672-6.
 
; ===========================================================================
; Constants
 
 
MAX_BL_BITS equ 7
; Bit length codes must not exceed MAX_BL_BITS bits
 
END_BLOCK equ 256
; end of block literal code
 
REP_3_6 equ 16
; repeat previous bit length 3-6 times (2 bits of repeat count)
 
REPZ_3_10 equ 17
; repeat a zero length 3-10 times (3 bits of repeat count)
 
REPZ_11_138 equ 18
; repeat a zero length 11-138 times (7 bits of repeat count)
 
align 4
extra_lbits dd \ ;int [LENGTH_CODES] ;extra bits for each length code
0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0
 
align 4
extra_dbits dd \ ;int [D_CODES] ;extra bits for each distance code
0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13
 
align 4
extra_blbits dd \ ;int [BL_CODES] ;extra bits for each bit length code
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7
 
align 4
bl_order db 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15
; The lengths of the bit length codes are sent in order of decreasing
; probability, to avoid transmitting the lengths for unused bit length codes.
 
 
; ===========================================================================
; Local data. These are initialized only once.
 
 
DIST_CODE_LEN equ 512 ;see definition of array dist_code below
 
if GEN_TREES_H eq 1 ;| !(STDC)
; non ANSI compilers may not accept trees.inc
 
align 4
static_ltree rb sizeof.ct_data * (L_CODES+2)
; The static literal tree. Since the bit lengths are imposed, there is no
; need for the L_CODES extra codes used during heap construction. However
; The codes 286 and 287 are needed to build a canonical tree (see _tr_init
; below).
 
align 4
static_dtree rb sizeof.ct_data * D_CODES
; The static distance tree. (Actually a trivial tree since all codes use
; 5 bits.)
 
align 4
_dist_code rb DIST_CODE_LEN ;uch[]
; Distance codes. The first 256 values correspond to the distances
; 3 .. 258, the last 256 values correspond to the top 8 bits of
; the 15 bit distances.
 
align 4
_length_code rb MAX_MATCH-MIN_MATCH+1 ;uch[]
; length code for each normalized match length (0 == MIN_MATCH)
 
align 4
base_length rd LENGTH_CODES ;int[]
; First normalized length for each code (0 = MIN_MATCH)
 
align 4
base_dist rd D_CODES ;int[]
; First normalized distance for each code (0 = distance of 1)
 
else
include 'trees.inc'
end if ;GEN_TREES_H
 
struct static_tree_desc ;_s
static_tree dd ? ;const ct_data * ;static tree or NULL
extra_bits dd ? ;const intf * ;extra bits for each code or NULL
extra_base dd ? ;int ;base index for extra_bits
elems dd ? ;int ;max number of elements in the tree
max_length dd ? ;int ;max bit length for the codes
ends
 
align 4
static_l_desc static_tree_desc static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS
 
align 4
static_d_desc static_tree_desc static_dtree, extra_dbits, 0, D_CODES, MAX_BITS
 
align 4
static_bl_desc static_tree_desc 0, extra_blbits, 0, BL_CODES, MAX_BL_BITS
 
; ===========================================================================
; Local (static) routines in this file.
 
 
macro send_code s, c, tree
{
if DEBUG eq 1
; if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c))
end if
push eax ebx
if c eq eax
else
mov eax,c
end if
imul eax,sizeof.ct_data
add eax,tree
movzx ebx,word[eax+Len]
push ebx
movzx ebx,word[eax+Code]
push ebx
stdcall send_bits, s ;tree[c].Code, tree[c].Len
pop ebx eax
}
; Send a code of the given tree[c] and tree must not have side effects
 
; ===========================================================================
; Output a short LSB first on the stream.
; IN assertion: there is enough room in pendingBuf.
 
macro put_short s, w
{
movzx eax,word[s+deflate_state.pending]
add eax,[s+deflate_state.pending_buf]
mov word[eax],w
add word[s+deflate_state.pending],2
}
 
; ===========================================================================
; Send a value on a given number of bits.
; IN assertion: length <= 16 and value fits in length bits.
 
;void (s, value, length)
; deflate_state* s
; int value ;value to send
; int length ;number of bits
align 4
proc send_bits uses eax ecx edi, s:dword, value:dword, length:dword
; Tracevv((stderr," l %2d v %4x ", length, value));
;zlib_debug 'send_bits value = %d',[value]
;if DEBUG eq 1
mov eax,[length]
cmp eax,0
jle @f
cmp eax,15
jle .end1
@@:
zlib_debug 'invalid length' ;Assert(..>0 && ..<=15)
.end1:
mov edi,[s]
add [edi+deflate_state.bits_sent],eax
 
; If not enough room in bi_buf, use (valid) bits from bi_buf and
; (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
; unused bits in value.
 
mov ecx,Buf_size
sub ecx,eax
cmp [edi+deflate_state.bi_valid],ecx
jle @f ;if (..>..)
mov eax,[value]
mov ecx,[edi+deflate_state.bi_valid]
shl eax,cl
or [edi+deflate_state.bi_buf],ax
mov cx,[edi+deflate_state.bi_buf]
put_short edi, cx
mov eax,[value]
mov ecx,Buf_size
sub ecx,[edi+deflate_state.bi_valid]
shr eax,cl
mov [edi+deflate_state.bi_buf],ax
mov eax,[length]
sub eax,Buf_size
jmp .end0
@@: ;else
mov eax,[value]
mov ecx,[edi+deflate_state.bi_valid]
shl eax,cl
or [edi+deflate_state.bi_buf],ax
mov eax,[length]
.end0:
add [edi+deflate_state.bi_valid],eax
;else ;!DEBUG
 
;{ int len = length;
; if (s->bi_valid > (int)Buf_size - len) {
; int val = value;
; s->bi_buf |= (uint_16)val << s->bi_valid;
; put_short(s, s->bi_buf);
; s->bi_buf = (uint_16)val >> (Buf_size - s->bi_valid);
; s->bi_valid += len - Buf_size;
; } else {
; s->bi_buf |= (uint_16)(value) << s->bi_valid;
; s->bi_valid += len;
; }
;}
;end if ;DEBUG
ret
endp
 
; the arguments must not have side effects
 
; ===========================================================================
; Initialize the various 'constant' tables.
 
;int static_init_done = 0
 
;void ()
align 4
proc tr_static_init
if GEN_TREES_H eq 1
 
; int n ;iterates over tree elements
; int bits ;bit counter
; int length ;length value
; int code ;code value
; int dist ;distance index
; uint_16 bl_count[MAX_BITS+1];
; number of codes at each bit length for an optimal tree
 
; if (static_init_done) return;
 
; For some embedded targets, global variables are not initialized:
;if NO_INIT_GLOBAL_POINTERS
; static_l_desc.static_tree = static_ltree;
; static_l_desc.extra_bits = extra_lbits;
; static_d_desc.static_tree = static_dtree;
; static_d_desc.extra_bits = extra_dbits;
; static_bl_desc.extra_bits = extra_blbits;
;end if
 
; Initialize the mapping length (0..255) -> length code (0..28)
; length = 0;
; for (code = 0; code < LENGTH_CODES-1; code++) {
; base_length[code] = length;
; for (n = 0; n < (1<<extra_lbits[code]); n++) {
; _length_code[length++] = (uch)code;
; }
; }
; Assert (length == 256, "tr_static_init: length != 256");
; Note that the length 255 (match length 258) can be represented
; in two different ways: code 284 + 5 bits or code 285, so we
; overwrite length_code[255] to use the best encoding:
 
; _length_code[length-1] = (uch)code;
 
; Initialize the mapping dist (0..32K) -> dist code (0..29)
; dist = 0;
; for (code = 0 ; code < 16; code++) {
; base_dist[code] = dist;
; for (n = 0; n < (1<<extra_dbits[code]); n++) {
; _dist_code[dist++] = (uch)code;
; }
; }
; Assert (dist == 256, "tr_static_init: dist != 256");
; dist >>= 7; /* from now on, all distances are divided by 128 */
; for ( ; code < D_CODES; code++) {
; base_dist[code] = dist << 7;
; for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
; _dist_code[256 + dist++] = (uch)code;
; }
; }
; Assert (dist == 256, "tr_static_init: 256+dist != 512");
 
; Construct the codes of the static literal tree
; for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
; n = 0;
; while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
; while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
; while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
; while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
; Codes 286 and 287 do not exist, but we must include them in the
; tree construction to get a canonical Huffman tree (longest code
; all ones)
 
; gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
 
; The static distance tree is trivial:
; for (n = 0; n < D_CODES; n++) {
; static_dtree[n].Len = 5;
; static_dtree[n].Code = bi_reverse((unsigned)n, 5);
; }
; static_init_done = 1;
 
if GEN_TREES_H eq 1
call gen_trees_header
end if
end if ;(GEN_TREES_H) | !(STDC)
ret
endp
 
; ===========================================================================
; Genererate the file trees.h describing the static trees.
 
;# define SEPARATOR(i, last, width) \
; ((i) == (last)? "\n};\n\n" : \
; ((i) % (width) == (width)-1 ? ",\n" : ", "))
 
;void ()
align 4
proc gen_trees_header
; FILE *header = fopen("trees.inc", "w");
; int i;
 
; Assert (header != NULL, "Can't open trees.inc");
; fprintf(header,
; "/* header created automatically with -DGEN_TREES_H */\n\n");
 
; fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
; for (i = 0; i < L_CODES+2; i++) {
; fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
; static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
; }
 
; fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
; for (i = 0; i < D_CODES; i++) {
; fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
; static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
; }
 
; fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
; for (i = 0; i < DIST_CODE_LEN; i++) {
; fprintf(header, "%2u%s", _dist_code[i],
; SEPARATOR(i, DIST_CODE_LEN-1, 20));
; }
 
; fprintf(header,
; "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
; for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
; fprintf(header, "%2u%s", _length_code[i],
; SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
; }
 
; fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
; for (i = 0; i < LENGTH_CODES; i++) {
; fprintf(header, "%1u%s", base_length[i],
; SEPARATOR(i, LENGTH_CODES-1, 20));
; }
 
; fprintf(header, "local const int base_dist[D_CODES] = {\n");
; for (i = 0; i < D_CODES; i++) {
; fprintf(header, "%5u%s", base_dist[i],
; SEPARATOR(i, D_CODES-1, 10));
; }
 
; fclose(header);
ret
endp
 
; ===========================================================================
; Initialize the tree data structures for a new zlib stream.
 
;void (s)
; deflate_state* s;
align 4
proc _tr_init uses eax edi, s:dword
mov edi,[s]
;zlib_debug '_tr_init'
call tr_static_init
 
mov eax,edi
add eax,deflate_state.dyn_ltree
mov [edi+deflate_state.l_desc.dyn_tree],eax
mov [edi+deflate_state.l_desc.stat_desc],static_l_desc
 
add eax,deflate_state.dyn_dtree-deflate_state.dyn_ltree
mov [edi+deflate_state.d_desc.dyn_tree],eax
mov [edi+deflate_state.d_desc.stat_desc],static_d_desc
 
add eax,deflate_state.bl_tree-deflate_state.dyn_dtree
mov [edi+deflate_state.bl_desc.dyn_tree],eax
mov [edi+deflate_state.bl_desc.stat_desc],static_bl_desc;
 
mov word[edi+deflate_state.bi_buf],0
mov dword[edi+deflate_state.bi_valid],0
if DEBUG eq 1
mov dword[edi+deflate_state.compressed_len],0
mov dword[edi+deflate_state.bits_sent],0
end if
 
; Initialize the first block of the first file:
stdcall init_block,edi
ret
endp
 
; ===========================================================================
; Initialize a new block.
 
;void (s)
; deflate_state* s
align 4
proc init_block uses eax ecx edi, s:dword
; int n ;iterates over tree elements
mov edi,[s]
 
; Initialize the trees.
mov eax,edi
add eax,deflate_state.dyn_ltree+Freq
mov ecx,L_CODES
@@:
mov word[eax],0
add eax,sizeof.ct_data
loop @b
mov eax,edi
add eax,deflate_state.dyn_dtree+Freq
mov ecx,D_CODES
@@:
mov word[eax],0
add eax,sizeof.ct_data
loop @b
mov eax,edi
add eax,deflate_state.bl_tree+Freq
mov ecx,BL_CODES
@@:
mov word[eax],0
add eax,sizeof.ct_data
loop @b
 
mov ecx,sizeof.ct_data*END_BLOCK+deflate_state.dyn_ltree+Freq
mov word[ecx+edi],1
mov dword[edi+deflate_state.static_len],0
mov dword[edi+deflate_state.opt_len],0
mov dword[edi+deflate_state.matches],0
mov dword[edi+deflate_state.last_lit],0
ret
endp
 
SMALLEST equ 1
; Index within the heap array of least frequent node in the Huffman tree
 
 
; ===========================================================================
; Remove the smallest element from the heap and recreate the heap with
; one less element. Updates heap and heap_len.
 
macro pqremove s, tree, top
{
mov eax,s
add eax,deflate_state.heap+2*SMALLEST
movzx top,word[eax]
push ebx
mov ebx,[s+deflate_state.heap_len]
mov bx,[s+deflate_state.heap+2*ebx]
mov word[eax],bx
dec dword[s+deflate_state.heap_len]
pop ebx
stdcall pqdownheap, s, tree, SMALLEST
}
 
; ===========================================================================
; Compares to subtrees, using the tree depth as tie breaker when
; the subtrees have equal frequency. This minimizes the worst case length.
 
macro smaller tree, n, m, depth, m_end
{
;if (..<.. || (..==.. && depth[n] <= depth[m]))
local .end0
movzx eax,n
imul eax,sizeof.ct_data
add eax,tree
mov ax,word[eax+Freq]
movzx ebx,m
imul ebx,sizeof.ct_data
add ebx,tree
mov bx,word[ebx+Freq]
cmp ax,bx
jl .end0
jne m_end
movzx eax,n
add eax,depth
mov al,byte[eax]
movzx ebx,m
add ebx,depth
mov bl,byte[ebx]
cmp al,bl
jg m_end
.end0:
}
 
; ===========================================================================
; Restore the heap property by moving down the tree starting at node k,
; exchanging a node with the smallest of its two sons if necessary, stopping
; when the heap property is re-established (each father smaller than its
; two sons).
 
;void (s, tree, k)
; deflate_state* s
; ct_data* tree ;the tree to restore
; int k ;node to move down
align 4
proc pqdownheap, s:dword, tree:dword, k:dword
locals
v dw ?
endl
pushad
mov edi,[s]
mov eax,[k]
;zlib_debug 'pqdownheap k = %d',eax
mov esi,eax
shl esi,1
mov ax,[edi+deflate_state.heap+2*eax]
mov [v],ax
;esi = j ;left son of k
.cycle0: ;while (..<=..)
cmp esi,[edi+deflate_state.heap_len]
jg .cycle0end
; Set j to the smallest of the two sons:
;;cmp esi,[edi+deflate_state.heap_len]
jge .end1 ;if (..<.. &&
mov ecx,edi
add ecx,deflate_state.depth
mov edx,esi
shl edx,1
add edx,edi
add edx,deflate_state.heap
smaller [tree], word[edx+2], word[edx], ecx, .end1
inc esi
.end1:
; Exit if v is smaller than both sons
mov ecx,edi
add ecx,deflate_state.depth
mov dx,[edi+deflate_state.heap+2*esi]
smaller [tree], [v], dx, ecx, .end2
jmp .cycle0end ;break
.end2:
; Exchange v with the smallest son
mov dx,[edi+deflate_state.heap+2*esi]
mov eax,[k]
mov [edi+deflate_state.heap+2*eax],dx
mov [k],esi
; And continue down the tree, setting j to the left son of k
shl esi,1
jmp .cycle0
.cycle0end:
mov eax,[k]
mov bx,[v]
mov [edi+deflate_state.heap+2*eax],bx
popad
ret
endp
 
; ===========================================================================
; Compute the optimal bit lengths for a tree and update the total bit length
; for the current block.
; IN assertion: the fields freq and dad are set, heap[heap_max] and
; above are the tree nodes sorted by increasing frequency.
; OUT assertions: the field len is set to the optimal bit length, the
; array bl_count contains the frequencies for each bit length.
; The length opt_len is updated; static_len is also updated if stree is
; not null.
 
;void (s, desc)
; deflate_state* s
; tree_desc* desc ;the tree descriptor
align 4
proc gen_bitlen, s:dword, desc:dword
locals
tree dd ? ;ct_data* ;= desc.dyn_tree
max_code dd ? ;int ;= desc.max_code
stree dd ? ;ct_data* ;= desc.stat_desc.static_tree
extra dd ? ;intf* ;= desc.stat_desc.extra_bits
base dd ? ;int ;= desc.stat_desc.extra_base
max_length dd ? ;int ;= desc.stat_desc.max_length
h dd ? ;int ;heap index
m dd ? ;int ;iterate over the tree elements
bits dd ? ;int ;bit length
xbits dd ? ;int ;extra bits
f dw ? ;uint_16 ;frequency
overflow dd 0 ;int ;number of elements with bit length too large
endl
pushad
;zlib_debug 'gen_bitlen'
mov edi,[s]
mov edx,[desc]
mov eax,[edx+tree_desc.dyn_tree]
mov [tree],eax
mov eax,[edx+tree_desc.max_code]
mov [max_code],eax
mov ebx,[edx+tree_desc.stat_desc]
mov eax,[ebx+static_tree_desc.static_tree]
mov [stree],eax
mov eax,[ebx+static_tree_desc.extra_bits]
mov [extra],eax
mov eax,[ebx+static_tree_desc.extra_base]
mov [base],eax
mov eax,[ebx+static_tree_desc.max_length]
mov [max_length],eax
 
xor ecx,ecx
.cycle0:
cmp ecx,MAX_BITS
jg .cycle0end ;for (..;..<=..;..)
mov word[edi+deflate_state.bl_count+2*ecx],0
inc ecx
jmp .cycle0
align 4
.cycle0end:
 
; In a first pass, compute the optimal bit lengths (which may
; overflow in the case of the bit length tree).
 
mov eax,[edi+deflate_state.heap_max]
movzx eax,word[edi+deflate_state.heap+2*eax]
imul eax,sizeof.ct_data
add eax,[tree]
mov word[eax+Len],0 ;root of the heap
 
mov eax,[edi+deflate_state.heap_max]
inc eax
mov [h],eax
.cycle1:
cmp dword[h],HEAP_SIZE
jge .cycle1end ;for (..;..<..;..)
mov eax,[h]
movzx ecx,word[edi+deflate_state.heap+2*eax]
;ecx = n
mov eax,sizeof.ct_data
imul eax,ecx
add eax,[tree]
movzx eax,word[eax+Dad]
imul eax,sizeof.ct_data
add eax,[tree]
movzx eax,word[eax+Len]
inc eax
mov [bits],eax ;bits = tree[tree[n].Dad].Len + 1
mov eax,[max_length]
cmp [bits],eax
jle @f ;if (..>..)
mov [bits],eax
inc dword[overflow]
@@:
mov esi,[bits]
mov eax,sizeof.ct_data
imul eax,ecx
add eax,[tree]
mov word[eax+Len],si
; We overwrite tree[n].Dad which is no longer needed
 
cmp ecx,[max_code]
jle @f
inc dword[h]
jmp .cycle1 ;if (..>..) continue ;not a leaf node
@@:
 
mov eax,[bits]
shl eax,1 ;*= sizeof.uint_16
inc word[eax+edi+deflate_state.bl_count]
mov dword[xbits],0
cmp ecx,[base]
jl @f ;if (..>=..)
mov eax,ecx
sub eax,[base]
shl eax,2 ;*= sizeof.dd
add eax,[extra]
mov eax,[eax]
mov [xbits],eax
@@:
mov eax,sizeof.ct_data
imul eax,ecx
add eax,[tree]
movzx eax,word[eax+Freq]
mov [f],ax
mov esi,[bits]
add esi,[xbits]
imul eax,esi
add [edi+deflate_state.opt_len],eax
cmp dword[stree],0
je @f ;if (..)
movzx eax,word[f]
mov esi,sizeof.ct_data
imul esi,ecx
add esi,[tree]
movzx esi,word[esi+Len]
add esi,[xbits]
imul eax,esi
add [edi+deflate_state.static_len],eax
@@:
inc dword[h]
jmp .cycle1
align 4
.cycle1end:
cmp dword[overflow],0
je .end_f ;if (..==0) return
 
; Trace((stderr,"\nbit length overflow\n"));
; This happens for example on obj2 and pic of the Calgary corpus
 
; Find the first bit length which could increase:
.cycle2: ;do
mov eax,[max_length]
dec eax
mov [bits],eax
shl eax,1 ;*= sizeof.dw
add eax,edi
add eax,deflate_state.bl_count
@@:
cmp word[eax],0
jne @f ;while (..==0) bits--
dec dword[bits]
sub eax,2
jmp @b
@@:
dec word[eax] ;move one leaf down the tree
add word[eax+2],2 ;move one overflow item as its brother
mov eax,[max_length]
dec word[edi+deflate_state.bl_count+2*eax]
; The brother of the overflow item also moves one step up,
; but this does not affect bl_count[max_length]
 
sub dword[overflow],2
cmp dword[overflow],0
jg .cycle2 ;while (..>0)
 
; Now recompute all bit lengths, scanning in increasing frequency.
; h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
; lengths instead of fixing only the wrong ones. This idea is taken
; from 'ar' written by Haruhiko Okumura.)
 
mov eax,[max_length]
mov [bits],eax
.cycle3:
cmp dword[bits],0
je .end_f ;for (..;..!=0;..)
mov eax,[bits]
shl eax,1 ;*= sizeof.dw
movzx ecx,word[eax+edi+deflate_state.bl_count]
.cycle4: ;while (..!=0)
cmp ecx,0
je .cycle4end
dec dword[h]
mov eax,[h]
movzx eax,word[edi+deflate_state.heap+2*eax]
mov [m],eax ;m = s.heap[--h]
cmp eax,[max_code]
jle @f ;if (..>..) continue
dec ecx
jmp .cycle4
@@:
mov esi,[m]
imul esi,sizeof.ct_data
add esi,[tree] ;esi = &tree[m]
mov eax,[bits]
cmp word[esi+Len],ax
je @f ;if (..!=..)
; Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
movzx ebx,word[esi+Len]
sub eax,ebx
movzx ebx,word[esi+Freq]
imul eax,ebx ;eax = (bits - tree[m].Len) * tree[m].Freq
add [edi+deflate_state.opt_len],eax
mov eax,[bits]
mov word[esi+Len],ax
@@:
dec ecx
jmp .cycle4
.cycle4end:
dec dword[bits]
jmp .cycle3
.end_f:
popad
ret
endp
 
; ===========================================================================
; Generate the codes for a given tree and bit counts (which need not be
; optimal).
; IN assertion: the array bl_count contains the bit length statistics for
; the given tree and the field len is set for all tree elements.
; OUT assertion: the field code is set for all tree elements of non
; zero code length.
 
;void (tree, max_code, bl_count)
; ct_data *tree ;the tree to decorate
; int max_code ;largest code with non zero frequency
; uint_16p bl_count ;number of codes at each bit length
align 4
proc gen_codes uses eax ebx ecx edx edi, tree:dword, max_code:dword, bl_count:dword
locals
u_code dw 0 ;uint_16 ;running code value
bits dd 1 ;int ;bit index
next_code rw MAX_BITS+1 ;uint_16[] ;next code value for each bit length
endl
; The distribution counts are first used to generate the code values
; without bit reversal.
;zlib_debug 'gen_codes'
mov ebx,ebp
sub ebx,2*(MAX_BITS+1)
 
.cycle0: ;for (..;..<=..;..)
cmp dword[bits],MAX_BITS
jg .cycle0end
mov eax,[bits]
dec eax
shl eax,1
add eax,[bl_count]
mov ax,word[eax]
add ax,[u_code]
shl ax,1 ;ax = (u_code + bl_count[bits-1]) << 1
mov [u_code],ax
mov ecx,[bits]
mov word[ebx+2*ecx],ax ;next_code[bits] = u_code
inc dword[bits]
jmp .cycle0
.cycle0end:
; Check that the bit counts in bl_count are consistent. The last code
; must be all ones.
 
mov eax,[bl_count]
mov ax,word[eax+2*MAX_BITS]
add ax,[u_code]
dec ax
cmp ax,(1 shl MAX_BITS)-1
je @f
zlib_debug 'inconsistent bit counts' ;Assert(..==..)
@@:
; Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 
xor ecx,ecx ;n = 0
.cycle1: ;for (..;..<=..;..)
cmp ecx,[max_code]
jg .cycle1end
mov edx,sizeof.ct_data
imul edx,ecx
add edx,[tree] ;edx = &tree[n]
movzx edi,word[edx+Len]
cmp edi,0
jne @f ;if (..==0) continue
inc ecx
jmp .cycle1
@@:
; Now reverse the bits
movzx eax,word[ebx+2*edi]
stdcall bi_reverse, eax, edi
mov word[edx+Code],ax
inc word[ebx+2*edi]
 
; Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
; n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
inc ecx
jmp .cycle1
.cycle1end:
ret
endp
 
; ===========================================================================
; Construct one Huffman tree and assigns the code bit strings and lengths.
; Update the total bit length for the current block.
; IN assertion: the field freq is set for all tree elements.
; OUT assertions: the fields len and code are set to the optimal bit length
; and corresponding code. The length opt_len is updated; static_len is
; also updated if stree is not null. The field max_code is set.
 
;void (s, desc)
; deflate_state* s
; tree_desc *desc ;the tree descriptor
align 4
proc build_tree uses eax ebx ecx edx edi, s:dword, desc:dword
locals
tree dd ? ;ct_data* ;= desc.dyn_tree
stree dd ? ;ct_data* ;= desc.stat_desc.static_tree
elems dd ? ;int ;= desc.stat_desc.elems
m dd ? ;int ;iterate over heap elements
max_code dd -1 ;int ;largest code with non zero frequency
node dd ? ;int ;new node being created
endl
; Construct the initial heap, with least frequent element in
; heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
; heap[0] is not used.
mov ebx,[desc]
mov eax,[ebx+tree_desc.dyn_tree]
mov [tree],eax
mov ecx,[ebx+tree_desc.stat_desc]
mov eax,[ecx+static_tree_desc.static_tree]
mov [stree],eax
mov ecx,[ecx+static_tree_desc.elems]
mov [elems],ecx
mov edi,[s]
;zlib_debug 'build_tree cycle0 ecx = %d',ecx
 
mov dword[edi+deflate_state.heap_len],0
mov dword[edi+deflate_state.heap_max],HEAP_SIZE
 
cmp ecx,0
jle .cycle0end
xor edx,edx
.cycle0: ;for (..;..<..;..)
mov eax,edx
imul eax,sizeof.ct_data
add eax,[tree]
cmp word[eax+Freq],0
je @f ;if (..!=0)
inc dword[edi+deflate_state.heap_len]
mov eax,[edi+deflate_state.heap_len]
mov [max_code],edx
mov [edi+deflate_state.heap+2*eax],dx
mov eax,edx
add eax,edi
add eax,deflate_state.depth
mov byte[eax],0
jmp .end0
align 4
@@: ;else
mov word[eax+Len],0
.end0:
inc edx
loop .cycle0
align 4
.cycle0end:
 
; The pkzip format requires that at least one distance code exists,
; and that at least one bit should be sent even if there is only one
; possible code. So to avoid special checks later on we force at least
; two codes of non zero frequency.
 
.cycle1: ;while (..<..)
cmp dword[edi+deflate_state.heap_len],2
jge .cycle1end
inc dword[edi+deflate_state.heap_len]
xor eax,eax
cmp dword[max_code],2
jge @f
inc dword[max_code]
mov eax,[max_code]
@@:
mov ecx,[edi+deflate_state.heap_len]
mov [edi+deflate_state.heap+2*ecx],ax
mov [node],eax
imul eax,sizeof.ct_data
add eax,[tree]
mov word[eax+Freq],1
mov eax,[node]
mov byte[edi+deflate_state.depth+eax],0
dec dword[edi+deflate_state.opt_len]
cmp dword[stree],0
je .cycle1 ;if (..)
mov eax,[node]
imul eax,sizeof.ct_data
add eax,[stree]
movzx eax,word[eax+Len]
sub [edi+deflate_state.static_len],eax
; node is 0 or 1 so it does not have extra bits
jmp .cycle1
align 4
.cycle1end:
mov eax,[max_code]
mov [ebx+tree_desc.max_code],eax
 
; The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
; establish sub-heaps of increasing lengths:
 
mov ecx,[edi+deflate_state.heap_len]
shr ecx,1
.cycle2: ;for (..;..>=..;..)
cmp ecx,1
jl .cycle2end
stdcall pqdownheap, edi, [tree], ecx
dec ecx
jmp .cycle2
align 4
.cycle2end:
 
; Construct the Huffman tree by repeatedly combining the least two
; frequent nodes.
 
mov eax,[elems]
mov [node],eax ;next internal node of the tree
.cycle3: ;do
pqremove edi, [tree], ecx ;n = node of least frequency
movzx edx,word[eax]
mov [m],edx ;m = node of next least frequency
 
mov eax,[edi+deflate_state.heap_max]
dec eax
mov [edi+deflate_state.heap+2*eax],cx ;keep the nodes sorted by frequency
dec eax
mov [edi+deflate_state.heap_max],eax
mov [edi+deflate_state.heap+2*eax],dx
 
; Create a new node father of n and m
;;mov edx,[m]
imul edx,sizeof.ct_data
add edx,[tree]
mov ax,word[edx+Freq]
mov edx,ecx
imul edx,sizeof.ct_data
add edx,[tree]
add ax,word[edx+Freq]
mov edx,[node]
imul edx,sizeof.ct_data
add edx,[tree]
mov word[edx+Freq],ax
 
mov eax,ecx
add eax,edi
add eax,deflate_state.depth
mov al,byte[eax]
mov edx,[m]
add edx,edi
add edx,deflate_state.depth
mov ah,byte[edx]
cmp al,ah
jl @f ;if (al>=ah) al=al : al=ah
mov al,ah
@@:
inc al
mov edx,[node]
add edx,edi
add edx,deflate_state.depth
mov byte[edx],al
 
mov eax,[node]
mov edx,[m]
imul edx,sizeof.ct_data
add edx,[tree]
mov [edx+Dad],ax
mov edx,ecx
imul edx,sizeof.ct_data
add edx,[tree]
mov [edx+Dad],ax
;if DUMP_BL_TREE eq 1
; if (tree == s->bl_tree) {
; fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
; node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
; }
;end if
; and insert the new node in the heap
mov ecx,[node]
mov [edi+deflate_state.heap+2*SMALLEST],cx
inc dword[node]
stdcall pqdownheap, edi, [tree], SMALLEST
cmp dword[edi+deflate_state.heap_len],2
jge .cycle3 ;while (..>=..)
 
mov cx,[edi+deflate_state.heap+2*SMALLEST]
dec dword[edi+deflate_state.heap_max]
mov eax,[edi+deflate_state.heap_max]
mov [edi+deflate_state.heap+2*eax],cx
 
; At this point, the fields freq and dad are set. We can now
; generate the bit lengths.
 
stdcall gen_bitlen, edi, [desc]
 
; The field len is now set, we can generate the bit codes
mov eax,edi
add eax,deflate_state.bl_count
stdcall gen_codes, [tree], [max_code], eax
ret
endp
 
; ===========================================================================
; Scan a literal or distance tree to determine the frequencies of the codes
; in the bit length tree.
 
;void (s, tree, max_code)
; deflate_state* s
; ct_data *tree ;the tree to be scanned
; int max_code ;and its largest code of non zero frequency
align 4
proc scan_tree uses eax ebx ecx edi, s:dword, tree:dword, max_code:dword
locals
n dd ? ;int ;iterates over all tree elements
prevlen dd -1 ;int ;last emitted length
curlen dd ? ;int ;length of current code
nextlen dd ? ;int ;= tree[0].Len ;length of next code
count dd 0 ;int ;repeat count of the current code
max_count dd 7 ;int ;max repeat count
min_count dd 4 ;int ;min repeat count
endl
mov edi,[s]
;zlib_debug 'scan_tree'
mov eax,[tree]
movzx eax,word[eax+Len]
mov [nextlen],eax
cmp eax,0
jne @f ;if (..==0)
mov dword[max_count],138
mov dword[min_count],3
@@:
mov eax,[max_code]
inc eax
imul eax,sizeof.ct_data
add eax,[tree]
mov word[eax+Len],0xffff ;guard
 
xor ecx,ecx
.cycle0:
cmp ecx,[max_code]
jg .cycle0end ;for (..;..<=..;..)
mov eax,[nextlen]
mov [curlen],eax
mov eax,ecx
inc eax
imul eax,sizeof.ct_data
add eax,[tree]
movzx eax,word[eax+Len]
mov [nextlen],eax
inc dword[count]
mov ebx,[count]
cmp ebx,[max_count]
jge .end0
mov eax,[nextlen]
cmp [curlen],eax
jne .end0 ;if (..<.. && ..==..)
inc ecx
jmp .cycle0 ;continue
.end0:
cmp ebx,[min_count]
jge .end1 ;else if (..<..)
mov eax,[curlen]
imul eax,sizeof.ct_data
add eax,edi
add eax,deflate_state.bl_tree+Freq
add word[eax],bx
jmp .end4
.end1:
cmp dword[curlen],0
je .end2 ;else if (..!=0)
mov eax,[curlen]
cmp eax,[prevlen]
je @f ;if (..!=..)
imul eax,sizeof.ct_data
add eax,edi
add eax,deflate_state.bl_tree+Freq
inc word[eax]
@@:
mov eax,REP_3_6
imul eax,sizeof.ct_data
add eax,edi
add eax,deflate_state.bl_tree+Freq
inc word[eax]
jmp .end4
.end2:
cmp ebx,10
jg .end3 ;else if (..<=..)
mov eax,REPZ_3_10
imul eax,sizeof.ct_data
add eax,edi
add eax,deflate_state.bl_tree+Freq
inc word[eax]
jmp .end4
.end3: ;else
mov eax,REPZ_11_138
imul eax,sizeof.ct_data
add eax,edi
add eax,deflate_state.bl_tree+Freq
inc word[eax]
.end4:
mov dword[curlen],0
mov eax,[curlen]
mov [prevlen],eax
mov [nextlen],eax
cmp eax,0
jne .end5 ;if (..==0)
mov dword[max_count],138
mov dword[min_count],3
jmp .end7
.end5:
mov eax,[curlen]
cmp eax,[nextlen]
jne .end6 ;else if (..==..)
mov dword[max_count],6
mov dword[min_count],3
jmp .end7
.end6: ;else
mov dword[max_count],7
mov dword[min_count],4
.end7:
inc ecx
jmp .cycle0
.cycle0end:
ret
endp
 
; ===========================================================================
; Send a literal or distance tree in compressed form, using the codes in
; bl_tree.
 
;void (s, tree, max_code)
; deflate_state* s
; ct_data *tree ;the tree to be scanned
; int max_code ;and its largest code of non zero frequency
align 4
proc send_tree uses eax ebx ecx edi, s:dword, tree:dword, max_code:dword
locals
n dd ? ;int ;iterates over all tree elements
prevlen dd -1 ;int ;last emitted length
curlen dd ? ;int ;length of current code
nextlen dd ? ;int ;= tree[0].Len ;length of next code
count dd 0 ;int ;repeat count of the current code
max_count dd 7 ;int ;max repeat count
min_count dd 4 ;int ;min repeat count
endl
mov edi,[s]
;zlib_debug 'send_tree'
; *** tree[max_code+1].Len = -1 ;guard already set
mov eax,[tree]
movzx eax,word[eax+Len]
mov [nextlen],eax
cmp eax,0
jne @f ;if (..==0)
mov dword[max_count],138
mov dword[min_count],3
@@:
 
xor ecx,ecx
.cycle0: ;for (..;..<=..;..)
cmp ecx,[max_code]
jg .cycle0end
mov eax,[nextlen]
mov [curlen],eax
mov eax,ecx
inc eax
imul eax,sizeof.ct_data
add eax,[tree]
movzx eax,word[eax+Len]
mov [nextlen],eax
inc dword[count]
mov ebx,[count]
cmp ebx,[max_count]
jge .end0
mov eax,[nextlen]
cmp [curlen],eax
jne .end0 ;if (..<.. && ..==..)
inc ecx
jmp .cycle0 ;continue
.end0:
cmp ebx,[min_count]
jge .end1 ;else if (..<..)
@@: ;do
mov ebx,edi
add ebx,deflate_state.bl_tree
send_code edi, [curlen], ebx
dec dword[count]
cmp dword[count],0
jne @b ;while (..!=0)
jmp .end4
align 4
.end1:
cmp dword[curlen],0
je .end2 ;else if (..!=0)
mov eax,[curlen]
cmp eax,[prevlen]
je @f ;if (..!=..)
mov ebx,edi
add ebx,deflate_state.bl_tree
send_code edi, eax, ebx
dec dword[count]
@@:
cmp dword[count],3
jl @f
cmp dword[count],6
jle .end8
@@:
zlib_debug ' 3_6?' ;Assert(..>=.. && ..<=..)
.end8:
mov ebx,edi
add ebx,deflate_state.bl_tree
send_code edi, REP_3_6, ebx
mov ebx,[count]
sub ebx,3
stdcall send_bits, edi, ebx, 2
jmp .end4
.end2:
cmp ebx,10
jg .end3 ;else if (..<=..)
mov ebx,edi
add ebx,deflate_state.bl_tree
send_code edi, REPZ_3_10, ebx
mov ebx,[count]
sub ebx,3
stdcall send_bits, edi, ebx, 3
jmp .end4
.end3: ;else
mov ebx,edi
add ebx,deflate_state.bl_tree
send_code edi, REPZ_11_138, ebx
mov ebx,[count]
sub ebx,11
stdcall send_bits, edi, ebx, 7
.end4:
mov dword[curlen],0
mov eax,[curlen]
mov [prevlen],eax
mov [nextlen],eax
cmp eax,0
jne .end5 ;if (..==0)
mov dword[max_count],138
mov dword[min_count],3
jmp .end7
.end5:
mov eax,[curlen]
cmp eax,[nextlen]
jne .end6 ;else if (..==..)
mov dword[max_count],6
mov dword[min_count],3
jmp .end7
.end6: ;else
mov dword[max_count],7
mov dword[min_count],4
.end7:
inc ecx
jmp .cycle0
align 4
.cycle0end:
ret
endp
 
; ===========================================================================
; Construct the Huffman tree for the bit lengths and return the index in
; bl_order of the last bit length code to send.
 
;int (s)
; deflate_state* s
align 4
proc build_bl_tree uses edi, s:dword
locals
max_blindex dd ? ;int ;index of last bit length code of non zero freq
endl
mov edi,[s]
; Determine the bit length frequencies for literal and distance trees
mov eax,edi
add eax,deflate_state.dyn_ltree
stdcall scan_tree, edi, eax, [edi+deflate_state.l_desc.max_code]
mov eax,edi
add eax,deflate_state.dyn_dtree
stdcall scan_tree, edi, eax, [edi+deflate_state.d_desc.max_code]
 
; Build the bit length tree:
mov eax,edi
add eax,deflate_state.bl_desc
stdcall build_tree, edi, eax
; opt_len now includes the length of the tree representations, except
; the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 
; Determine the number of bit length codes to send. The pkzip format
; requires that at least 4 bit length codes be sent. (appnote.txt says
; 3 but the actual value used is 4.)
 
mov dword[max_blindex],BL_CODES-1
.cycle0: ;for (..;..>=..;..)
cmp dword[max_blindex],3
jl .cycle0end
dec dword[max_blindex]
mov eax,[max_blindex]
add eax,bl_order
movzx eax,byte[eax]
imul eax,sizeof.ct_data
add eax,edi
add eax,deflate_state.bl_tree+Len
cmp word[eax],0
jne .cycle0end ;if (..!=0) break
jmp .cycle0
.cycle0end:
; Update opt_len to include the bit length tree and counts
mov eax,[max_blindex]
inc eax
imul eax,3
add eax,5+5+4
add [edi+deflate_state.opt_len],eax
; Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", s->opt_len, s->static_len));
 
mov eax,[max_blindex]
ret
endp
 
; ===========================================================================
; Send the header for a block using dynamic Huffman trees: the counts, the
; lengths of the bit length codes, the literal tree and the distance tree.
; IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 
;void (s, lcodes, dcodes, blcodes)
; deflate_state* s
; int lcodes, dcodes, blcodes ;number of codes for each tree
align 4
proc send_all_trees uses eax ebx ecx edi, s:dword, lcodes:dword, dcodes:dword, blcodes:dword
;ecx = index in bl_order
;zlib_debug 'send_all_trees'
cmp dword[lcodes],257
jl @f
cmp dword[dcodes],1
jl @f
cmp dword[blcodes],4
jge .end0
@@:
zlib_debug 'not enough codes' ;Assert(..>=.. && ..>=.. && ..>=..)
.end0:
cmp dword[lcodes],L_CODES
jg @f
cmp dword[dcodes],D_CODES
jg @f
cmp dword[blcodes],BL_CODES
jle .end1
@@:
zlib_debug 'too many codes' ;Assert(..<=.. && ..<=.. && ..<=..)
.end1:
; Tracev((stderr, "\nbl counts: "));
mov edi,[s]
mov eax,[lcodes]
sub eax,257
stdcall send_bits, edi, eax, 5 ;not +255 as stated in appnote.txt
mov eax,[dcodes]
dec eax
stdcall send_bits, edi, eax, 5
mov eax,[blcodes]
sub eax,4
stdcall send_bits, edi, eax, 4 ;not -3 as stated in appnote.txt
xor ecx,ecx
.cycle0:
cmp ecx,[blcodes]
jge .cycle0end ;for (..;..<..;..)
; Tracev((stderr, "\nbl code %2d ", bl_order[ecx]));
mov eax,ecx
add eax,bl_order
movzx eax,byte[eax]
imul eax,sizeof.ct_data
mov ebx,edi
add ebx,deflate_state.bl_tree+Len
add ebx,eax
stdcall send_bits, edi, ebx, 3
inc ecx
jmp .cycle0
align 4
.cycle0end:
; Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
 
mov ebx,[lcodes]
dec ebx
mov eax,edi
add eax,deflate_state.dyn_ltree
stdcall send_tree, edi, eax, ebx ;literal tree
; Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
 
mov ebx,[dcodes]
dec ebx
add eax,deflate_state.dyn_dtree-deflate_state.dyn_ltree
stdcall send_tree, edi, eax, ebx ;distance tree
; Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
ret
endp
 
; ===========================================================================
; Send a stored block
 
;void (s, buf, stored_len, last)
; deflate_state* s
; charf *buf ;input block
; ulg stored_len ;length of input block
; int last ;one if this is the last block for a file
align 4
proc _tr_stored_block uses eax edi, s:dword, buf:dword, stored_len:dword, last:dword
mov edi,[s]
mov eax,[last]
add eax,STORED_BLOCK shl 1
stdcall send_bits, edi, eax, 3 ;send block type
if DEBUG eq 1
mov eax,[edi+deflate_state.compressed_len]
add eax,3+7
and eax,not 7
mov [edi+deflate_state.compressed_len],eax
mov eax,[stored_len]
add eax,4
shl eax,3
add [edi+deflate_state.compressed_len],eax
end if
stdcall copy_block, edi, [buf], [stored_len], 1 ;with header
ret
endp
 
; ===========================================================================
; Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
 
;void (s)
; deflate_state* s;
align 4
proc _tr_flush_bits, s:dword
stdcall bi_flush, [s]
ret
endp
 
; ===========================================================================
; Send one empty static block to give enough lookahead for inflate.
; This takes 10 bits, of which 7 may remain in the bit buffer.
 
;void (s)
; deflate_state* s
align 4
proc _tr_align uses edi, s:dword
mov edi,[s]
stdcall send_bits, edi, STATIC_TREES shl 1, 3
send_code edi, END_BLOCK, static_ltree
if DEBUG eq 1
add [edi+deflate_state.compressed_len],10 ;3 for block type, 7 for EOB
end if
stdcall bi_flush, edi
ret
endp
 
; ===========================================================================
; Determine the best encoding for the current block: dynamic trees, static
; trees or store, and output the encoded block to the zip file.
 
;void (s, buf, stored_len, last)
; deflate_state* s
; charf *buf ;input block, or NULL if too old
; ulg stored_len ;length of input block
; int last ;one if this is the last block for a file
align 4
proc _tr_flush_block uses eax ebx edi, s:dword, buf:dword, stored_len:dword, last:dword
locals
opt_lenb dd ? ;ulg
static_lenb dd ? ;opt_len and static_len in bytes
max_blindex dd 0 ;int ;index of last bit length code of non zero freq
endl
; Build the Huffman trees unless a stored block is forced
mov edi,[s]
;zlib_debug '_tr_flush_block'
cmp word[edi+deflate_state.level],0
jle .end0 ;if (..>0)
 
; Check if the file is binary or text
mov ebx,[edi+deflate_state.strm]
cmp word[ebx+z_stream.data_type],Z_UNKNOWN
jne @f ;if (..==..)
stdcall detect_data_type, edi
mov [ebx+z_stream.data_type],ax
@@:
 
; Construct the literal and distance trees
mov eax,edi
add eax,deflate_state.l_desc
stdcall build_tree, edi, eax
; Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, s->static_len));
 
mov eax,edi
add eax,deflate_state.d_desc
stdcall build_tree, edi, eax
; Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, s->static_len));
; At this point, opt_len and static_len are the total bit lengths of
; the compressed block data, excluding the tree representations.
 
; Build the bit length tree for the above two trees, and get the index
; in bl_order of the last bit length code to send.
 
stdcall build_bl_tree, edi
mov [max_blindex],eax
 
; Determine the best encoding. Compute the block lengths in bytes.
mov eax,[edi+deflate_state.opt_len]
add eax,3+7
shr eax,3
mov [opt_lenb],eax
mov eax,[edi+deflate_state.static_len]
add eax,3+7
shr eax,3
mov [static_lenb],eax
 
; Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
; opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
; s->last_lit));
 
cmp eax,[opt_lenb]
jg .end1 ;if (..<=..)
mov [opt_lenb],eax
jmp .end1
.end0: ;else
cmp dword[buf],0
jne @f
zlib_debug 'lost buf' ;Assert(..!=0)
@@:
mov eax,[stored_len]
add eax,5
mov [static_lenb],eax
mov [opt_lenb],eax ;force a stored block
.end1:
 
if FORCE_STORED eq 1
cmp dword[buf],0
je .end2 ;if (..!=0) ;force stored block
else
mov eax,[stored_len]
add eax,4
cmp eax,[opt_lenb]
jg .end2
cmp dword[buf],0
je .end2 ;if (..<=.. && ..!=0)
;4: two words for the lengths
end if
; The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
; Otherwise we can't have processed more than WSIZE input bytes since
; the last block flush, because compression would have been
; successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
; transform a block into a stored block.
 
stdcall _tr_stored_block, edi, [buf], [stored_len], [last]
jmp .end4
.end2:
if FORCE_STATIC eq 1
cmp dword[static_lenb],0
jl .end3 ;else if (..>=0) ;force static trees
else
cmp word[edi+deflate_state.strategy],Z_FIXED
je @f
mov eax,[opt_lenb]
cmp [static_lenb],eax
je @f ;else if (..==.. || ..==..)
jmp .end3
@@:
end if
mov eax,STATIC_TREES shl 1
add eax,[last]
stdcall send_bits, edi, eax, 3
stdcall compress_block, edi, static_ltree, static_dtree
if DEBUG eq 1
mov eax,[edi+deflate_state.static_len]
add eax,3
add [edi+deflate_state.compressed_len],eax
end if
jmp .end4
.end3: ;else
mov eax,DYN_TREES shl 1
add eax,[last]
stdcall send_bits, edi, eax, 3
mov eax,[max_blindex]
inc eax
push eax
mov eax,[edi+deflate_state.d_desc.max_code]
inc eax
push eax
mov eax,[edi+deflate_state.l_desc.max_code]
inc eax
stdcall send_all_trees, edi, eax ;, ..., ...
mov eax,edi
add eax,deflate_state.dyn_dtree
push eax
add eax,deflate_state.dyn_ltree-deflate_state.dyn_dtree
stdcall compress_block, edi, eax ;, ...
if DEBUG eq 1
mov eax,[edi+deflate_state.opt_len]
add eax,3
add [edi+deflate_state.compressed_len],eax
end if
.end4:
; Assert (s->compressed_len == s->bits_sent, "bad compressed size");
; The above check is made mod 2^32, for files larger than 512 MB
; and uLong implemented on 32 bits.
 
stdcall init_block,edi
 
cmp dword[last],0
je @f ;if (..)
stdcall bi_windup,edi
if DEBUG eq 1
add [edi+deflate_state.compressed_len],7 ;align on byte boundary
end if
@@:
; Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
; s->compressed_len-7*last));
ret
endp
 
; ===========================================================================
; Save the match info and tally the frequency counts. Return true if
; the current block must be flushed.
 
;int (s, dist, lc)
; deflate_state* s
; unsigned dist ;distance of matched string
; unsigned lc ;match length-MIN_MATCH or unmatched char (if dist==0)
align 4
proc _tr_tally uses ebx edi, s:dword, dist:dword, lc:dword
mov edi,[s]
;zlib_debug '_tr_tally'
mov eax,[edi+deflate_state.last_lit]
shl eax,1
add eax,[edi+deflate_state.d_buf]
mov ebx,[dist]
mov word[eax],bx
mov eax,[edi+deflate_state.last_lit]
add eax,[edi+deflate_state.l_buf]
mov ebx,[lc]
mov byte[eax],bl
inc dword[edi+deflate_state.last_lit]
cmp dword[dist],0
jne @f ;if (..==0)
; lc is the unmatched char
mov eax,[lc]
imul eax,sizeof.ct_data
add eax,edi
inc word[eax+deflate_state.dyn_ltree+Freq]
jmp .end0
@@: ;else
inc dword[edi+deflate_state.matches]
; Here, lc is the match length - MIN_MATCH
dec dword[dist] ;dist = match distance - 1
MAX_DIST edi
cmp word[dist],ax
jge @f
cmp word[lc],MAX_MATCH-MIN_MATCH
jg @f
d_code [dist]
cmp ax,D_CODES
jl .end2
@@:
zlib_debug '_tr_tally: bad match' ;Assert(..<.. && ..<=.. && ..<..)
.end2:
mov eax,[lc]
add eax,_length_code
movzx eax,byte[eax]
add eax,LITERALS+1
imul eax,sizeof.ct_data
add eax,edi
add eax,deflate_state.dyn_ltree+Freq
inc word[eax]
d_code [dist]
imul eax,sizeof.ct_data
add eax,edi
add eax,deflate_state.dyn_dtree+Freq
inc word[eax]
.end0:
 
if TRUNCATE_BLOCK eq 1
; Try to guess if it is profitable to stop the current block here
mov eax,[edi+deflate_state.last_lit]
and eax,0x1fff
cmp eax,0
jne .end1
cmp word[edi+deflate_state.level],2
jle .end1 ;if (..==.. && ..>..)
; Compute an upper bound for the compressed length
; ulg out_length = (ulg)s->last_lit*8L;
; ulg in_length = (ulg)((long)s->strstart - s->block_start);
; int dcode;
; for (dcode = 0; dcode < D_CODES; dcode++) {
; out_length += (ulg)s->dyn_dtree[dcode].Freq *
; (5L+extra_dbits[dcode]);
; }
; out_length >>= 3;
; Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
; s->last_lit, in_length, out_length,
; 100L - out_length*100L/in_length));
; if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
.end1:
end if
mov ebx,[edi+deflate_state.last_lit]
mov edi,[edi+deflate_state.lit_bufsize]
dec edi
xor eax,eax
cmp ebx,edi
jne @f
inc eax ;return (..==..)
@@:
; We avoid equality with lit_bufsize because of wraparound at 64K
; on 16 bit machines and because stored blocks are restricted to
; 64K-1 bytes.
ret
endp
 
; ===========================================================================
; Send the block data compressed using the given Huffman trees
 
;void (s, ltree, dtree)
; deflate_state* s;
; ct_data *ltree ;literal tree
; ct_data *dtree ;distance tree
align 4
proc compress_block uses eax edi, s:dword, ltree:dword, dtree:dword
locals
dist dd ? ;unsigned ;distance of matched string
lc dd ? ;int ;match length or unmatched char (if dist == 0)
lx dd 0 ;unsigned ;running index in l_buf
u_code dd ? ;unsigned ;the code to send
extra dd ? ;int ;number of extra bits to send
endl
mov edi,[s]
cmp dword[edi+deflate_state.last_lit],0
je .end0 ;if (..!=0)
.cycle0: ; do
mov eax,[lx]
shl eax,1
add eax,[edi+deflate_state.d_buf]
movzx eax,word[eax]
mov [dist],eax
mov eax,[lx]
add eax,[edi+deflate_state.l_buf]
movzx eax,byte[eax]
mov [lc],eax
inc dword[lx]
cmp dword[dist],0
jne @f ;if (..==0)
send_code edi, [lc], [ltree] ;send a literal byte
; Tracecv(isgraph(lc), (stderr," '%c' ", lc));
jmp .end1
@@: ;else
; Here, lc is the match length - MIN_MATCH
mov eax,[lc]
add eax,_length_code
movzx eax,byte[eax]
mov [u_code],eax
add eax,LITERALS+1
send_code edi, eax, [ltree] ;send the length code
mov eax,[u_code]
shl eax,2
add eax,extra_lbits
mov eax,[eax]
mov [extra],eax
cmp eax,0
je @f ;if (..!=0)
mov eax,[u_code]
shl eax,2
add eax,base_length
mov eax,[eax]
sub [lc],eax
stdcall send_bits, edi, [lc], [extra] ;send the extra length bits
@@:
dec dword[dist] ;dist is now the match distance - 1
d_code [dist]
mov [u_code],eax
cmp eax,D_CODES
jl @f
zlib_debug 'bad d_code' ;Assert(..<..)
@@:
send_code edi, [u_code], [dtree] ;send the distance code
mov eax,[u_code]
shl eax,2
add eax,extra_dbits
mov eax,[eax]
mov [extra],eax
cmp eax,0
je .end1 ;if (..!=0)
mov eax,[u_code]
shl eax,2
add eax,base_dist
mov eax,[eax]
sub [dist],eax
stdcall send_bits, edi, [dist], [extra] ;send the extra distance bits
.end1: ;literal or match pair ?
 
; Check that the overlay between pending_buf and d_buf+l_buf is ok:
mov eax,[lx]
shl eax,1
add eax,[edi+deflate_state.lit_bufsize]
cmp word[edi+deflate_state.pending],ax
jl @f
zlib_debug 'pendingBuf overflow' ;Assert(..<..)
@@:
mov eax,[edi+deflate_state.last_lit]
cmp [lx],eax
jl .cycle0 ;while (..<..)
align 4
.end0:
 
send_code edi, END_BLOCK, [ltree]
ret
endp
 
; ===========================================================================
; Check if the data type is TEXT or BINARY, using the following algorithm:
; - TEXT if the two conditions below are satisfied:
; a) There are no non-portable control characters belonging to the
; "black list" (0..6, 14..25, 28..31).
; b) There is at least one printable character belonging to the
; "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
; - BINARY otherwise.
; - The following partially-portable control characters form a
; "gray list" that is ignored in this detection algorithm:
; (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
; IN assertion: the fields Freq of dyn_ltree are set.
 
;int (s)
; deflate_state* s
align 4
proc detect_data_type uses ebx ecx edi, s:dword
; black_mask is the bit mask of black-listed bytes
; set bits 0..6, 14..25, and 28..31
; 0xf3ffc07f = binary 11110011111111111100000001111111
locals
black_mask dd 0xf3ffc07f
; int n;
endl
mov edi,[s]
;zlib_debug 'detect_data_type'
 
; Check for non-textual ("black-listed") bytes.
xor ecx,ecx
mov ebx,edi
add ebx,deflate_state.dyn_ltree+Freq
.cycle0:
cmp ecx,31
jg .cycle0end ;for (..;..<=..;..,..)
bt dword[black_mask],0
jnc @f
cmp word[ebx],0
je @f ;if (..&.. && ..!=0)
mov eax,Z_BINARY
jmp .end_f
@@:
shr dword[black_mask],1
add ebx,sizeof.ct_data
inc ecx
jmp .cycle0
.cycle0end:
 
; Check for textual ("white-listed") bytes.
mov ebx,edi
add ebx,deflate_state.dyn_ltree+Freq+9*sizeof.ct_data
cmp word[ebx],0
jne @f
add ebx,sizeof.ct_data
cmp word[ebx],0
jne @f
add ebx,3*sizeof.ct_data
cmp word[ebx],0
je .end0
@@: ;if (..!=0 || ..!=0 || ..!= 0)
mov eax,Z_TEXT
jmp .end_f
.end0:
mov ecx,32
mov ebx,edi
add ebx,deflate_state.dyn_ltree+Freq
.cycle1:
cmp ecx,LITERALS
jge .cycle1end ;for (..;..<..;..,..)
cmp word[ebx],0
je @f ;if (..!=0)
mov eax,Z_TEXT
jmp .end_f
@@:
add ebx,sizeof.ct_data
inc ecx
jmp .cycle1
.cycle1end:
 
; There are no "black-listed" or "white-listed" bytes:
; this stream either is empty or has tolerated ("gray-listed") bytes only.
 
mov eax,Z_BINARY
.end_f:
ret
endp
 
; ===========================================================================
; Reverse the first len bits of a code, using straightforward code (a faster
; method would use a table)
; IN assertion: 1 <= len <= 15
 
;unsigned (code, len)
; unsigned code ;the value to invert
; int len ;its bit length
align 4
proc bi_reverse uses ebx, p1code:dword, len:dword
;zlib_debug 'bi_reverse'
xor eax,eax
@@: ;do
mov ebx,[p1code]
and ebx,1
or eax,ebx
shr dword[p1code],1
shl eax,1
dec dword[len]
cmp dword[len],0
jg @b ;while (..>..)
shl eax,1
ret
endp
 
; ===========================================================================
; Flush the bit buffer, keeping at most 7 bits in it.
 
;void (s)
; deflate_state* s
align 4
proc bi_flush uses eax ecx edi, s:dword
mov edi,[s]
cmp dword[edi+deflate_state.bi_valid],16
jne @f ;if (..==..)
mov cx,[edi+deflate_state.bi_buf]
put_short edi,cx
mov word[edi+deflate_state.bi_buf],0
mov dword[edi+deflate_state.bi_valid],0
jmp .end0
@@: ;else if (..>=..)
cmp dword[edi+deflate_state.bi_valid],8
jl .end0
mov cl,byte[edi+deflate_state.bi_buf]
put_byte edi,cl
shr word[edi+deflate_state.bi_buf],8
sub dword[edi+deflate_state.bi_valid],8
.end0:
ret
endp
 
; ===========================================================================
; Flush the bit buffer and align the output on a byte boundary
 
;void (s)
; deflate_state* s
align 4
proc bi_windup uses eax ecx edi, s:dword
mov edi,[s]
cmp dword[edi+deflate_state.bi_valid],8
jle @f ;if (..>..)
mov cx,[edi+deflate_state.bi_buf]
put_short edi, cx
jmp .end0
@@: ;else if (..>0)
cmp dword[edi+deflate_state.bi_valid],0
jle .end0
mov cl,byte[edi+deflate_state.bi_buf]
put_byte edi, cl
.end0:
mov word[edi+deflate_state.bi_buf],0
mov dword[edi+deflate_state.bi_valid],0
if DEBUG eq 1
mov eax,[edi+deflate_state.bits_sent]
add eax,7
and eax,not 7
mov [edi+deflate_state.bits_sent],eax
end if
ret
endp
 
; ===========================================================================
; Copy a stored block, storing first the length and its
; one's complement if requested.
 
;void (s, buf, len, header)
; deflate_state* s
; charf *buf ;the input data
; unsigned len ;its length
; int header ;true if block header must be written
align 4
proc copy_block uses eax ebx ecx edi esi, s:dword, buf:dword, len:dword, p4header:dword
mov edi,[s]
stdcall bi_windup,edi ;align on byte boundary
 
cmp dword[p4header],0
je @f ;if (..)
mov ecx,[len]
put_short edi, cx
not cx
put_short edi, cx
if DEBUG eq 1
add dword[edi+deflate_state.bits_sent],2*16
end if
@@:
if DEBUG eq 1
mov ecx,[len]
shl ecx,3
add [edi+deflate_state.bits_sent],ecx
end if
mov ecx,[len]
mov esi,[buf]
@@: ;while (len--)
lodsb
mov bl,al
put_byte edi, bl
loop @b
ret
endp
/programs/fs/kfar/trunk/zlib/trees.inc
0,0 → 1,139
 
 
;ct_data[L_CODES+2]
align 4
static_ltree dw \
12, 8, 140, 8, 76, 8, 204, 8, 44, 8,\
172, 8, 108, 8, 236, 8, 28, 8, 156, 8,\
92, 8, 220, 8, 60, 8, 188, 8, 124, 8,\
252, 8, 2, 8, 130, 8, 66, 8, 194, 8,\
34, 8, 162, 8, 98, 8, 226, 8, 18, 8,\
146, 8, 82, 8, 210, 8, 50, 8, 178, 8,\
114, 8, 242, 8, 10, 8, 138, 8, 74, 8,\
202, 8, 42, 8, 170, 8, 106, 8, 234, 8,\
26, 8, 154, 8, 90, 8, 218, 8, 58, 8,\
186, 8, 122, 8, 250, 8, 6, 8, 134, 8,\
70, 8, 198, 8, 38, 8, 166, 8, 102, 8,\
230, 8, 22, 8, 150, 8, 86, 8, 214, 8,\
54, 8, 182, 8, 118, 8, 246, 8, 14, 8,\
142, 8, 78, 8, 206, 8, 46, 8, 174, 8,\
110, 8, 238, 8, 30, 8, 158, 8, 94, 8,\
222, 8, 62, 8, 190, 8, 126, 8, 254, 8,\
1, 8, 129, 8, 65, 8, 193, 8, 33, 8,\
161, 8, 97, 8, 225, 8, 17, 8, 145, 8,\
81, 8, 209, 8, 49, 8, 177, 8, 113, 8,\
241, 8, 9, 8, 137, 8, 73, 8, 201, 8,\
41, 8, 169, 8, 105, 8, 233, 8, 25, 8,\
153, 8, 89, 8, 217, 8, 57, 8, 185, 8,\
121, 8, 249, 8, 5, 8, 133, 8, 69, 8,\
197, 8, 37, 8, 165, 8, 101, 8, 229, 8,\
21, 8, 149, 8, 85, 8, 213, 8, 53, 8,\
181, 8, 117, 8, 245, 8, 13, 8, 141, 8,\
77, 8, 205, 8, 45, 8, 173, 8, 109, 8,\
237, 8, 29, 8, 157, 8, 93, 8, 221, 8,\
61, 8, 189, 8, 125, 8, 253, 8, 19, 9,\
275, 9, 147, 9, 403, 9, 83, 9, 339, 9,\
211, 9, 467, 9, 51, 9, 307, 9, 179, 9,\
435, 9, 115, 9, 371, 9, 243, 9, 499, 9,\
11, 9, 267, 9, 139, 9, 395, 9, 75, 9,\
331, 9, 203, 9, 459, 9, 43, 9, 299, 9,\
171, 9, 427, 9, 107, 9, 363, 9, 235, 9,\
491, 9, 27, 9, 283, 9, 155, 9, 411, 9,\
91, 9, 347, 9, 219, 9, 475, 9, 59, 9,\
315, 9, 187, 9, 443, 9, 123, 9, 379, 9,\
251, 9, 507, 9, 7, 9, 263, 9, 135, 9,\
391, 9, 71, 9, 327, 9, 199, 9, 455, 9,\
39, 9, 295, 9, 167, 9, 423, 9, 103, 9,\
359, 9, 231, 9, 487, 9, 23, 9, 279, 9,\
151, 9, 407, 9, 87, 9, 343, 9, 215, 9,\
471, 9, 55, 9, 311, 9, 183, 9, 439, 9,\
119, 9, 375, 9, 247, 9, 503, 9, 15, 9,\
271, 9, 143, 9, 399, 9, 79, 9, 335, 9,\
207, 9, 463, 9, 47, 9, 303, 9, 175, 9,\
431, 9, 111, 9, 367, 9, 239, 9, 495, 9,\
31, 9, 287, 9, 159, 9, 415, 9, 95, 9,\
351, 9, 223, 9, 479, 9, 63, 9, 319, 9,\
191, 9, 447, 9, 127, 9, 383, 9, 255, 9,\
511, 9, 0, 7, 64, 7, 32, 7, 96, 7,\
16, 7, 80, 7, 48, 7, 112, 7, 8, 7,\
72, 7, 40, 7, 104, 7, 24, 7, 88, 7,\
56, 7, 120, 7, 4, 7, 68, 7, 36, 7,\
100, 7, 20, 7, 84, 7, 52, 7, 116, 7,\
3, 8, 131, 8, 67, 8, 195, 8, 35, 8,\
163, 8, 99, 8, 227, 8
 
 
;ct_data[D_CODES]
align 4
static_dtree dw \
0, 5, 16, 5, 8, 5, 24, 5, 4, 5,\
20, 5, 12, 5, 28, 5, 2, 5, 18, 5,\
10, 5, 26, 5, 6, 5, 22, 5, 14, 5,\
30, 5, 1, 5, 17, 5, 9, 5, 25, 5,\
5, 5, 21, 5, 13, 5, 29, 5, 3, 5,\
19, 5, 11, 5, 27, 5, 7, 5, 23, 5
 
 
;uch[DIST_CODE_LEN]
align 4
_dist_code db \
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,\
8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10,\
10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,\
11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,\
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,\
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,\
13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,\
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,\
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,\
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,\
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,\
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,\
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 16, 17,\
18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,\
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,\
24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,\
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,\
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,\
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,\
27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,\
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,\
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,\
28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,\
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,\
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,\
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
 
 
;uch[MAX_MATCH-MIN_MATCH+1]
align 4
_length_code db \
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12,\
13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,\
17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,\
19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,\
21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,\
22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,\
23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,\
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,\
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,\
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,\
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,\
26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,\
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
 
 
;int[LENGTH_CODES]
align 4
base_length dd \
0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,\
64, 80, 96, 112, 128, 160, 192, 224, 0
 
 
;int[D_CODES]
align 4
base_dist dd \
0, 1, 2, 3, 4, 6, 8, 12, 16, 24,\
32, 48, 64, 96, 128, 192, 256, 384, 512, 768,\
1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576
 
/programs/fs/kfar/trunk/zlib/zconf.inc
0,0 → 1,165
; zconf.inc -- configuration of the zlib compression library
; Copyright (C) 1995-2013 Jean-loup Gailly.
; For conditions of distribution and use, see copyright notice in zlib.inc
 
; Compile with -DMAXSEG_64K if the alloc function cannot allocate more
; than 64k bytes at a time (needed on systems with 16-bit int).
 
;if MSDOS
;# define UNALIGNED_OK
;end if
 
; Maximum value for memLevel in deflateInit2
MAX_MEM_LEVEL equ 9
 
; Maximum value for windowBits in deflateInit2 and inflateInit2.
; WARNING: reducing MAX_WBITS makes minigzip unable to extract .gz files
; created by gzip. (Files created by minigzip can still be extracted by
; gzip.)
 
MAX_WBITS equ 15 ;32K LZ77 window
 
; The memory requirements for deflate are (in bytes):
; (1 << (windowBits+2)) + (1 << (memLevel+9))
; that is: 128K for windowBits=15 + 128K for memLevel = 8 (default values)
; plus a few kilobytes for small objects. For example, if you want to reduce
; the default memory requirements from 256K to 128K, compile with
; make CFLAGS="-O -DMAX_WBITS=14 -DMAX_MEM_LEVEL=7"
; Of course this will generally degrade compression (there's no free lunch).
 
; The memory requirements for inflate are (in bytes) 1 << windowBits
; that is, 32K for windowBits=15 (default value) plus a few kilobytes
; for small objects.
 
; /* Type declarations */
 
;#ifndef OF /* function prototypes */
;# ifdef STDC
;# define OF(args) args
;# else
;# define OF(args) ()
;# endif
;end if
 
;#ifndef Z_ARG /* function prototypes for stdarg */
;# if defined(STDC) || defined(Z_HAVE_STDARG_H)
;# define Z_ARG(args) args
;# else
;# define Z_ARG(args) ()
;# endif
;end if
 
; The following definitions for FAR are needed only for MSDOS mixed
; model programming (small or medium model with some far allocations).
; This was tested only with MSC; for other MSDOS compilers you may have
; to define NO_MEMCPY in zutil.h. If you don't need the mixed model,
; just define FAR to be empty.
 
;#if defined(WINDOWS) || defined(WIN32)
; If building or using zlib as a DLL, define ZLIB_DLL.
; This is not mandatory, but it offers a little performance increase.
 
;# ifdef ZLIB_DLL
;# if defined(WIN32) && (!defined(__BORLANDC__) || (__BORLANDC__ >= 0x500))
;# ifdef ZLIB_INTERNAL
;# define ZEXTERN extern __declspec(dllexport)
;# else
;# define ZEXTERN extern __declspec(dllimport)
;# endif
;# endif
;# endif /* ZLIB_DLL */
; If building or using zlib with the WINAPI/WINAPIV calling convention,
; define ZLIB_WINAPI.
; Caution: the standard ZLIB1.DLL is NOT compiled using ZLIB_WINAPI.
 
;#if !defined(Z_U4) && !defined(Z_SOLO) && defined(STDC)
;# include <limits.h>
;# if (UINT_MAX == 0xffffffffUL)
;# define Z_U4 unsigned
;# elif (ULONG_MAX == 0xffffffffUL)
;# define Z_U4 unsigned long
;# elif (USHRT_MAX == 0xffffffffUL)
;# define Z_U4 unsigned short
;# endif
;end if
 
;if Z_U4
; typedef Z_U4 z_crc_t;
;else
; typedef unsigned long z_crc_t;
;end if
 
;if HAVE_UNISTD_H /* may be set to #if 1 by ./configure */
;# define Z_HAVE_UNISTD_H
;end if
 
;if HAVE_STDARG_H /* may be set to #if 1 by ./configure */
;# define Z_HAVE_STDARG_H
;end if
 
;if STDC
;# ifndef Z_SOLO
;# include <sys/types.h> /* for off_t */
;# endif
;end if
 
;#if defined(STDC) || defined(Z_HAVE_STDARG_H)
;# ifndef Z_SOLO
;# include <stdarg.h> /* for va_list */
;# endif
;end if
 
; a little trick to accommodate both "#define _LARGEFILE64_SOURCE" and
; "#define _LARGEFILE64_SOURCE 1" as requesting 64-bit operations, (even
; though the former does not conform to the LFS document), but considering
; both "#undef _LARGEFILE64_SOURCE" and "#define _LARGEFILE64_SOURCE 0" as
; equivalently requesting no 64-bit operations
 
;#if defined(_LARGEFILE64_SOURCE) && -_LARGEFILE64_SOURCE - -1 == 1
;# undef _LARGEFILE64_SOURCE
;end if
 
;#if defined(__WATCOMC__) && !defined(Z_HAVE_UNISTD_H)
;# define Z_HAVE_UNISTD_H
;end if
;#ifndef Z_SOLO
;# if defined(Z_HAVE_UNISTD_H) || defined(_LARGEFILE64_SOURCE)
;# include <unistd.h> /* for SEEK_*, off_t, and _LFS64_LARGEFILE */
;# ifdef VMS
;# include <unixio.h> /* for off_t */
;# endif
;# ifndef z_off_t
;# define z_off_t off_t
;# endif
;# endif
;end if
 
;#if defined(_LFS64_LARGEFILE) && _LFS64_LARGEFILE-0
;# define Z_LFS64
;end if
 
;#if defined(_LARGEFILE64_SOURCE) && defined(Z_LFS64)
;# define Z_LARGE64
;end if
 
;#if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS-0 == 64 && defined(Z_LFS64)
;# define Z_WANT64
;end if
 
;#if !defined(SEEK_SET) && !defined(Z_SOLO)
;# define SEEK_SET 0 /* Seek from beginning of file. */
;# define SEEK_CUR 1 /* Seek from current position. */
;# define SEEK_END 2 /* Set file pointer to EOF plus "offset" */
;end if
 
;# define z_off_t long
 
;#if !defined(_WIN32) && defined(Z_LARGE64)
;# define z_off64_t off64_t
;else
;# if defined(_WIN32) && !defined(__GNUC__) && !defined(Z_SOLO)
;# define z_off64_t __int64
;# else
;# define z_off64_t z_off_t
;# endif
;end if
/programs/fs/kfar/trunk/zlib/zlib.asm
0,0 → 1,179
format MS COFF
public EXPORTS
 
section '.flat' code readable align 16
 
include '../../../../proc32.inc'
include '../../../../macros.inc'
include '../../../../KOSfuncs.inc'
 
FASTEST equ 1
GEN_TREES_H equ 0
DEBUG equ 0
DYNAMIC_CRC_TABLE equ 1
 
; define NO_GZIP when compiling if you want to disable gzip header and
; trailer creation by deflate(). NO_GZIP would be used to avoid linking in
; the crc code when it is not needed. For shared libraries, gzip encoding
; should be left enabled.
GZIP equ 1
 
macro zlib_debug fmt,p1
{
local .end_t
local .m_fmt
jmp .end_t
.m_fmt db fmt,13,10,0
align 4
.end_t:
if p1 eq
stdcall dbg_print,0,.m_fmt
else
stdcall str_format_dbg, buf_param,.m_fmt,p1
end if
}
 
include 'zlib.inc'
include 'deflate.inc'
include 'zutil.asm'
include 'crc32.asm'
include 'adler32.asm'
include 'trees.asm'
include 'deflate.asm'
 
align 4
buf_param rb 80
 
align 4
proc dbg_print, fun:dword, mes:dword
pushad
mov eax,SF_BOARD
mov ebx,SSF_DEBUG_WRITE
 
mov esi,[fun]
cmp esi,0
je .end0
@@:
mov cl,byte[esi]
int 0x40
inc esi
cmp byte[esi],0
jne @b
mov cl,':'
int 0x40
mov cl,' '
int 0x40
.end0:
mov esi,[mes]
cmp esi,0
je .end_f
@@:
mov cl,byte[esi]
cmp cl,0
je .end_f
int 0x40
inc esi
jmp @b
.end_f:
popad
ret
endp
 
align 4
proc str_format_dbg, buf:dword, fmt:dword, p1:dword
pushad
mov esi,[fmt]
mov edi,[buf]
mov ecx,80-1
.cycle0:
lodsb
cmp al,'%'
jne .no_param
lodsb
dec ecx
cmp al,0
je .cycle0end
cmp al,'d'
je @f
cmp al,'u'
je @f
cmp al,'l'
je .end1
jmp .end0
.end1: ;%lu %lx
lodsb
dec ecx
cmp al,'u'
jne .end0
@@:
mov eax,[p1]
stdcall convert_int_to_str,ecx
xor al,al
repne scasb
dec edi
.end0:
loop .cycle0
.no_param:
stosb
cmp al,0
je .cycle0end
loop .cycle0
.cycle0end:
xor al,al
stosb
stdcall dbg_print,0,[buf]
popad
ret
endp
 
;input:
; eax - число
; edi - буфер для строки
; len - длинна буфера
;output:
align 4
proc convert_int_to_str, len:dword
pushad
mov esi,[len]
add esi,edi
dec esi
call .str
popad
ret
endp
 
align 4
.str:
mov ecx,0x0a
cmp eax,ecx
jb @f
xor edx,edx
div ecx
push edx
call .str
pop eax
@@:
cmp edi,esi
jge @f
or al,0x30
stosb
mov byte[edi],0
@@:
ret
 
; export table
align 4
EXPORTS:
dd adeflateInit, deflateInit
dd adeflateInit2, deflateInit2
dd adeflateReset, deflateReset
dd adeflate, deflate
dd adeflateEnd, deflateEnd
dd 0
 
; exported names
adeflateInit db 'deflateInit',0
adeflateInit2 db 'deflateInit2',0
adeflateReset db 'deflateReset',0
adeflate db 'deflate',0
adeflateEnd db 'deflateEnd',0
/programs/fs/kfar/trunk/zlib/zlib.inc
0,0 → 1,262
; zlib.inc -- interface of the 'zlib' general purpose compression library
; version 1.2.8, April 28th, 2013
 
; Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
 
; This software is provided 'as-is', without any express or implied
; warranty. In no event will the authors be held liable for any damages
; arising from the use of this software.
 
; Permission is granted to anyone to use this software for any purpose,
; including commercial applications, and to alter it and redistribute it
; freely, subject to the following restrictions:
 
; 1. The origin of this software must not be misrepresented; you must not
; claim that you wrote the original software. If you use this software
; in a product, an acknowledgment in the product documentation would be
; appreciated but is not required.
; 2. Altered source versions must be plainly marked as such, and must not be
; misrepresented as being the original software.
; 3. This notice may not be removed or altered from any source distribution.
 
; Jean-loup Gailly Mark Adler
; jloup@gzip.org madler@alumni.caltech.edu
 
 
; The data format used by the zlib library is described by RFCs (Request for
; Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950
; (zlib format), rfc1951 (deflate format) and rfc1952 (gzip format).
 
 
include 'zconf.inc'
 
align 4
ZLIB_VERSION db '1.2.8',0
ZLIB_VERNUM equ 0x1280
ZLIB_VER_MAJOR equ 1
ZLIB_VER_MINOR equ 2
ZLIB_VER_REVISION equ 8
ZLIB_VER_SUBREVISION equ 0
 
 
; The 'zlib' compression library provides in-memory compression and
; decompression functions, including integrity checks of the uncompressed data.
; This version of the library supports only one compression method (deflation)
; but other algorithms will be added later and will have the same stream
; interface.
 
; Compression can be done in a single step if the buffers are large enough,
; or can be done by repeated calls of the compression function. In the latter
; case, the application must provide more input and/or consume the output
; (providing more output space) before each call.
 
; The compressed data format used by default by the in-memory functions is
; the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped
; around a deflate stream, which is itself documented in RFC 1951.
 
; The library also supports reading and writing files in gzip (.gz) format
; with an interface similar to that of stdio using the functions that start
; with "gz". The gzip format is different from the zlib format. gzip is a
; gzip wrapper, documented in RFC 1952, wrapped around a deflate stream.
 
; This library can optionally read and write gzip streams in memory as well.
 
; The zlib format was designed to be compact and fast for use in memory
; and on communications channels. The gzip format was designed for single-
; file compression on file systems, has a larger header than zlib to maintain
; directory information, and uses a different, slower check method than zlib.
 
; The library does not install any signal handler. The decoder checks
; the consistency of the compressed data, so the library should never crash
; even in case of corrupted input.
 
struct z_stream ;z_stream_s
next_in dd ? ;z_const Bytef * ;next input byte
avail_in dw ? ;uInt ;number of bytes available at next_in
total_in dd ? ;uLong ;total number of input bytes read so far
 
next_out dd ? ;Bytef * ;next output byte should be put there
avail_out dw ? ;uInt ;remaining free space at next_out
total_out dd ? ;uLong ;total number of bytes output so far
 
msg dd ? ;z_const char * ;last error message, NULL if no error
state dd ? ;deflate_state* ;not visible by applications
 
zalloc dd ? ;alloc_func ;used to allocate the internal state
zfree dd ? ;free_func ;used to free the internal state
opaque dd ? ;voidpf ;private data object passed to zalloc and zfree
 
data_type dw ? ;int ;best guess about the data type: binary or text
adler dd ? ;uLong ;adler32 value of the uncompressed data
reserved dd ? ;uLong ;reserved for future use
ends
 
; gzip header information passed to and from zlib routines. See RFC 1952
; for more details on the meanings of these fields.
 
struct gz_header ;_s
text dd ? ;int ;true if compressed data believed to be text
time dd ? ;uLong ;modification time
xflags dd ? ;int ;extra flags (not used when writing a gzip file)
os dd ? ;int ;operating system
extra dd ? ;Bytef* ;pointer to extra field or Z_NULL if none
extra_len dd ? ;uInt ;extra field length (valid if extra != Z_NULL)
extra_max dd ? ;uInt ;space at extra (only when reading header)
name dd ? ;Bytef* ;pointer to zero-terminated file name or Z_NULL
name_max dd ? ;uInt ;space at name (only when reading header)
comment dd ? ;Bytef* ;pointer to zero-terminated comment or Z_NULL
comm_max dd ? ;uInt ;space at comment (only when reading header)
hcrc dd ? ;int ;true if there was or will be a header crc
done dd ? ;int ;true when done reading gzip header (not used
;when writing a gzip file)
ends
 
 
; The application must update next_in and avail_in when avail_in has dropped
; to zero. It must update next_out and avail_out when avail_out has dropped
; to zero. The application must initialize zalloc, zfree and opaque before
; calling the init function. All other fields are set by the compression
; library and must not be updated by the application.
 
; The opaque value provided by the application will be passed as the first
; parameter for calls of zalloc and zfree. This can be useful for custom
; memory management. The compression library attaches no meaning to the
; opaque value.
 
; zalloc must return Z_NULL if there is not enough memory for the object.
; If zlib is used in a multi-threaded application, zalloc and zfree must be
; thread safe.
 
; On 16-bit systems, the functions zalloc and zfree must be able to allocate
; exactly 65536 bytes, but will not be required to allocate more than this if
; the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers
; returned by zalloc for objects of exactly 65536 bytes *must* have their
; offset normalized to zero. The default allocation function provided by this
; library ensures this (see zutil.c). To reduce memory requirements and avoid
; any allocation of 64K objects, at the expense of compression ratio, compile
; the library with -DMAX_WBITS=14 (see zconf.h).
 
; The fields total_in and total_out can be used for statistics or progress
; reports. After compression, total_in holds the total size of the
; uncompressed data and may be saved for use in the decompressor (particularly
; if the decompressor wants to decompress everything in a single step).
 
 
; constants
 
Z_NO_FLUSH equ 0
Z_PARTIAL_FLUSH equ 1
Z_SYNC_FLUSH equ 2
Z_FULL_FLUSH equ 3
Z_FINISH equ 4
Z_BLOCK equ 5
Z_TREES equ 6
; Allowed flush values; see deflate() and inflate() below for details
 
Z_OK equ 0
Z_STREAM_END equ 1
Z_NEED_DICT equ 2
Z_ERRNO equ (-1)
Z_STREAM_ERROR equ (-2)
Z_DATA_ERROR equ (-3)
Z_MEM_ERROR equ (-4)
Z_BUF_ERROR equ (-5)
Z_VERSION_ERROR equ (-6)
; Return codes for the compression/decompression functions. Negative values
; are errors, positive values are used for special but normal events.
 
 
Z_NO_COMPRESSION equ 0
Z_BEST_SPEED equ 1
Z_BEST_COMPRESSION equ 9
Z_DEFAULT_COMPRESSION equ (-1)
; compression levels
 
Z_FILTERED equ 1
Z_HUFFMAN_ONLY equ 2
Z_RLE equ 3
Z_FIXED equ 4
Z_DEFAULT_STRATEGY equ 0
; compression strategy; see deflateInit2() below for details
 
Z_BINARY equ 0
Z_TEXT equ 1
Z_ASCII equ Z_TEXT ;for compatibility with 1.2.2 and earlier
Z_UNKNOWN equ 2
; Possible values of the data_type field (though see inflate())
 
Z_DEFLATED equ 8
; The deflate compression method (the only one supported in this version)
 
Z_NULL equ 0 ;for initializing zalloc, zfree, opaque
 
zlib_version equ zlibVersion
; for compatibility with versions < 1.0.2
 
; various hacks, don't look :)
 
; deflateInit and inflateInit are macros to allow checking the zlib version
; and the compiler's view of z_stream:
 
;int inflateBackInit_ OF((z_streamp strm, int windowBits,
; unsigned char FAR *window,
; const char *version,
; int stream_size));
;#define inflateInit(strm) \
; inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream))
 
;#define inflateInit2(strm, windowBits) \
; inflateInit2_((strm), (windowBits), ZLIB_VERSION, \
; (int)sizeof(z_stream))
;#define inflateBackInit(strm, windowBits, window) \
; inflateBackInit_((strm), (windowBits), (window), \
; ZLIB_VERSION, (int)sizeof(z_stream))
 
;#ifndef Z_SOLO
 
; gzgetc() macro and its supporting function and exposed data structure. Note
; that the real internal state is much larger than the exposed structure.
; This abbreviated structure exposes just enough for the gzgetc() macro. The
; user should not mess with these exposed elements, since their names or
; behavior could change in the future, perhaps even capriciously. They can
; only be used by the gzgetc() macro. You have been warned.
 
;struct gzFile_s {
; unsigned have;
; unsigned char *next;
; z_off64_t pos;
;};
;int gzgetc_ OF((gzFile file)); /* backward compatibility */
;if Z_PREFIX_SET
;# undef z_gzgetc
;# define z_gzgetc(g) \
; ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g))
;#else
;# define gzgetc(g) \
; ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g))
;end if
 
; provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or
; change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if
; both are true, the application gets the *64 functions, and the regular
; functions are changed to 64 bits) -- in case these are set on systems
; without large file support, _LFS64_LARGEFILE must also be true
 
; undocumented functions
;const char * zError OF((int));
;int inflateSyncPoint OF((z_streamp));
;const z_crc_t FAR * get_crc_table OF((void));
;int inflateUndermine OF((z_streamp, int));
;int inflateResetKeep OF((z_streamp));
;#if defined(_WIN32) && !defined(Z_SOLO)
;gzFile gzopen_w OF((const wchar_t *path,
; const char *mode));
;end if
;#if defined(STDC) || defined(Z_HAVE_STDARG_H)
;# ifndef Z_SOLO
;int ZEXPORTVA gzvprintf Z_ARG((gzFile file,
; const char *format,
; va_list va));
;# endif
;end if
 
/programs/fs/kfar/trunk/zlib/zlib.txt
0,0 → 1,1405
zlib.inc -- interface of the 'zlib' general purpose compression library
version 1.2.8, April 28th, 2013
 
Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
 
 
basic functions
 
 
const char * zlibVersion OF((void));
 
The application can compare zlibVersion and ZLIB_VERSION for consistency.
If the first character differs, the library code actually used is not
compatible with the zlib.h header file used by the application. This check
is automatically made by deflateInit and inflateInit.
 
 
int deflateInit OF((z_streamp strm, int level));
 
Initializes the internal stream state for compression. The fields
zalloc, zfree and opaque must be initialized before by the caller. If
zalloc and zfree are set to Z_NULL, deflateInit updates them to use default
allocation functions.
 
The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
1 gives best speed, 9 gives best compression, 0 gives no compression at all
(the input data is simply copied a block at a time). Z_DEFAULT_COMPRESSION
requests a default compromise between speed and compression (currently
equivalent to level 6).
 
deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_STREAM_ERROR if level is not a valid compression level, or
Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
with the version assumed by the caller (ZLIB_VERSION). msg is set to null
if there is no error message. deflateInit does not perform any compression:
this will be done by deflate().
 
 
int deflate OF((z_streamp strm, int flush));
 
deflate compresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full. It may introduce
some output latency (reading input without producing any output) except when
forced to flush.
 
The detailed semantics are as follows. deflate performs one or both of the
following actions:
 
- Compress more input starting at next_in and update next_in and avail_in
accordingly. If not all input can be processed (because there is not
enough room in the output buffer), next_in and avail_in are updated and
processing will resume at this point for the next call of deflate().
 
- Provide more output starting at next_out and update next_out and avail_out
accordingly. This action is forced if the parameter flush is non zero.
Forcing flush frequently degrades the compression ratio, so this parameter
should be set only when necessary (in interactive applications). Some
output may be provided even if flush is not set.
 
Before the call of deflate(), the application should ensure that at least
one of the actions is possible, by providing more input and/or consuming more
output, and updating avail_in or avail_out accordingly; avail_out should
never be zero before the call. The application can consume the compressed
output when it wants, for example when the output buffer is full (avail_out
== 0), or after each call of deflate(). If deflate returns Z_OK and with
zero avail_out, it must be called again after making room in the output
buffer because there might be more output pending.
 
Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to
decide how much data to accumulate before producing output, in order to
maximize compression.
 
If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
flushed to the output buffer and the output is aligned on a byte boundary, so
that the decompressor can get all input data available so far. (In
particular avail_in is zero after the call if enough output space has been
provided before the call.) Flushing may degrade compression for some
compression algorithms and so it should be used only when necessary. This
completes the current deflate block and follows it with an empty stored block
that is three bits plus filler bits to the next byte, followed by four bytes
(00 00 ff ff).
 
If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the
output buffer, but the output is not aligned to a byte boundary. All of the
input data so far will be available to the decompressor, as for Z_SYNC_FLUSH.
This completes the current deflate block and follows it with an empty fixed
codes block that is 10 bits long. This assures that enough bytes are output
in order for the decompressor to finish the block before the empty fixed code
block.
 
If flush is set to Z_BLOCK, a deflate block is completed and emitted, as
for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to
seven bits of the current block are held to be written as the next byte after
the next deflate block is completed. In this case, the decompressor may not
be provided enough bits at this point in order to complete decompression of
the data provided so far to the compressor. It may need to wait for the next
block to be emitted. This is for advanced applications that need to control
the emission of deflate blocks.
 
If flush is set to Z_FULL_FLUSH, all output is flushed as with
Z_SYNC_FLUSH, and the compression state is reset so that decompression can
restart from this point if previous compressed data has been damaged or if
random access is desired. Using Z_FULL_FLUSH too often can seriously degrade
compression.
 
If deflate returns with avail_out == 0, this function must be called again
with the same value of the flush parameter and more output space (updated
avail_out), until the flush is complete (deflate returns with non-zero
avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
avail_out is greater than six to avoid repeated flush markers due to
avail_out == 0 on return.
 
If the parameter flush is set to Z_FINISH, pending input is processed,
pending output is flushed and deflate returns with Z_STREAM_END if there was
enough output space; if deflate returns with Z_OK, this function must be
called again with Z_FINISH and more output space (updated avail_out) but no
more input data, until it returns with Z_STREAM_END or an error. After
deflate has returned Z_STREAM_END, the only possible operations on the stream
are deflateReset or deflateEnd.
 
Z_FINISH can be used immediately after deflateInit if all the compression
is to be done in a single step. In this case, avail_out must be at least the
value returned by deflateBound (see below). Then deflate is guaranteed to
return Z_STREAM_END. If not enough output space is provided, deflate will
not return Z_STREAM_END, and it must be called again as described above.
 
deflate() sets strm->adler to the adler32 checksum of all input read
so far (that is, total_in bytes).
 
deflate() may update strm->data_type if it can make a good guess about
the input data type (Z_BINARY or Z_TEXT). In doubt, the data is considered
binary. This field is only for information purposes and does not affect the
compression algorithm in any manner.
 
deflate() returns Z_OK if some progress has been made (more input
processed or more output produced), Z_STREAM_END if all input has been
consumed and all output has been produced (only when flush is set to
Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
if next_in or next_out was Z_NULL), Z_BUF_ERROR if no progress is possible
(for example avail_in or avail_out was zero). Note that Z_BUF_ERROR is not
fatal, and deflate() can be called again with more input and more output
space to continue compressing.
 
 
int deflateEnd OF((z_streamp strm));
 
All dynamically allocated data structures for this stream are freed.
This function discards any unprocessed input and does not flush any pending
output.
 
deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
stream state was inconsistent, Z_DATA_ERROR if the stream was freed
prematurely (some input or output was discarded). In the error case, msg
may be set but then points to a static string (which must not be
deallocated).
 
 
int inflateInit OF((z_streamp strm));
 
Initializes the internal stream state for decompression. The fields
next_in, avail_in, zalloc, zfree and opaque must be initialized before by
the caller. If next_in is not Z_NULL and avail_in is large enough (the
exact value depends on the compression method), inflateInit determines the
compression method from the zlib header and allocates all data structures
accordingly; otherwise the allocation will be deferred to the first call of
inflate. If zalloc and zfree are set to Z_NULL, inflateInit updates them to
use default allocation functions.
 
inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
version assumed by the caller, or Z_STREAM_ERROR if the parameters are
invalid, such as a null pointer to the structure. msg is set to null if
there is no error message. inflateInit does not perform any decompression
apart from possibly reading the zlib header if present: actual decompression
will be done by inflate(). (So next_in and avail_in may be modified, but
next_out and avail_out are unused and unchanged.) The current implementation
of inflateInit() does not process any header information -- that is deferred
until inflate() is called.
 
 
int inflate OF((z_streamp strm, int flush));
 
inflate decompresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full. It may introduce
some output latency (reading input without producing any output) except when
forced to flush.
 
The detailed semantics are as follows. inflate performs one or both of the
following actions:
 
- Decompress more input starting at next_in and update next_in and avail_in
accordingly. If not all input can be processed (because there is not
enough room in the output buffer), next_in is updated and processing will
resume at this point for the next call of inflate().
 
- Provide more output starting at next_out and update next_out and avail_out
accordingly. inflate() provides as much output as possible, until there is
no more input data or no more space in the output buffer (see below about
the flush parameter).
 
Before the call of inflate(), the application should ensure that at least
one of the actions is possible, by providing more input and/or consuming more
output, and updating the next_* and avail_* values accordingly. The
application can consume the uncompressed output when it wants, for example
when the output buffer is full (avail_out == 0), or after each call of
inflate(). If inflate returns Z_OK and with zero avail_out, it must be
called again after making room in the output buffer because there might be
more output pending.
 
The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH,
Z_BLOCK, or Z_TREES. Z_SYNC_FLUSH requests that inflate() flush as much
output as possible to the output buffer. Z_BLOCK requests that inflate()
stop if and when it gets to the next deflate block boundary. When decoding
the zlib or gzip format, this will cause inflate() to return immediately
after the header and before the first block. When doing a raw inflate,
inflate() will go ahead and process the first block, and will return when it
gets to the end of that block, or when it runs out of data.
 
The Z_BLOCK option assists in appending to or combining deflate streams.
Also to assist in this, on return inflate() will set strm->data_type to the
number of unused bits in the last byte taken from strm->next_in, plus 64 if
inflate() is currently decoding the last block in the deflate stream, plus
128 if inflate() returned immediately after decoding an end-of-block code or
decoding the complete header up to just before the first byte of the deflate
stream. The end-of-block will not be indicated until all of the uncompressed
data from that block has been written to strm->next_out. The number of
unused bits may in general be greater than seven, except when bit 7 of
data_type is set, in which case the number of unused bits will be less than
eight. data_type is set as noted here every time inflate() returns for all
flush options, and so can be used to determine the amount of currently
consumed input in bits.
 
The Z_TREES option behaves as Z_BLOCK does, but it also returns when the
end of each deflate block header is reached, before any actual data in that
block is decoded. This allows the caller to determine the length of the
deflate block header for later use in random access within a deflate block.
256 is added to the value of strm->data_type when inflate() returns
immediately after reaching the end of the deflate block header.
 
inflate() should normally be called until it returns Z_STREAM_END or an
error. However if all decompression is to be performed in a single step (a
single call of inflate), the parameter flush should be set to Z_FINISH. In
this case all pending input is processed and all pending output is flushed;
avail_out must be large enough to hold all of the uncompressed data for the
operation to complete. (The size of the uncompressed data may have been
saved by the compressor for this purpose.) The use of Z_FINISH is not
required to perform an inflation in one step. However it may be used to
inform inflate that a faster approach can be used for the single inflate()
call. Z_FINISH also informs inflate to not maintain a sliding window if the
stream completes, which reduces inflate's memory footprint. If the stream
does not complete, either because not all of the stream is provided or not
enough output space is provided, then a sliding window will be allocated and
inflate() can be called again to continue the operation as if Z_NO_FLUSH had
been used.
 
In this implementation, inflate() always flushes as much output as
possible to the output buffer, and always uses the faster approach on the
first call. So the effects of the flush parameter in this implementation are
on the return value of inflate() as noted below, when inflate() returns early
when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of
memory for a sliding window when Z_FINISH is used.
 
If a preset dictionary is needed after this call (see inflateSetDictionary
below), inflate sets strm->adler to the Adler-32 checksum of the dictionary
chosen by the compressor and returns Z_NEED_DICT; otherwise it sets
strm->adler to the Adler-32 checksum of all output produced so far (that is,
total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described
below. At the end of the stream, inflate() checks that its computed adler32
checksum is equal to that saved by the compressor and returns Z_STREAM_END
only if the checksum is correct.
 
inflate() can decompress and check either zlib-wrapped or gzip-wrapped
deflate data. The header type is detected automatically, if requested when
initializing with inflateInit2(). Any information contained in the gzip
header is not retained, so applications that need that information should
instead use raw inflate, see inflateInit2() below, or inflateBack() and
perform their own processing of the gzip header and trailer. When processing
gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output
producted so far. The CRC-32 is checked against the gzip trailer.
 
inflate() returns Z_OK if some progress has been made (more input processed
or more output produced), Z_STREAM_END if the end of the compressed data has
been reached and all uncompressed output has been produced, Z_NEED_DICT if a
preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
corrupted (input stream not conforming to the zlib format or incorrect check
value), Z_STREAM_ERROR if the stream structure was inconsistent (for example
next_in or next_out was Z_NULL), Z_MEM_ERROR if there was not enough memory,
Z_BUF_ERROR if no progress is possible or if there was not enough room in the
output buffer when Z_FINISH is used. Note that Z_BUF_ERROR is not fatal, and
inflate() can be called again with more input and more output space to
continue decompressing. If Z_DATA_ERROR is returned, the application may
then call inflateSync() to look for a good compression block if a partial
recovery of the data is desired.
 
 
int inflateEnd OF((z_streamp strm));
 
All dynamically allocated data structures for this stream are freed.
This function discards any unprocessed input and does not flush any pending
output.
 
inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
was inconsistent. In the error case, msg may be set but then points to a
static string (which must not be deallocated).
 
 
Advanced functions
 
The following functions are needed only in some special applications.
 
 
int deflateInit2 OF((z_streamp strm,
int level,
int method,
int windowBits,
int memLevel,
int strategy));
 
This is another version of deflateInit with more compression options. The
fields next_in, zalloc, zfree and opaque must be initialized before by the
caller.
 
The method parameter is the compression method. It must be Z_DEFLATED in
this version of the library.
 
The windowBits parameter is the base two logarithm of the window size
(the size of the history buffer). It should be in the range 8..15 for this
version of the library. Larger values of this parameter result in better
compression at the expense of memory usage. The default value is 15 if
deflateInit is used instead.
 
windowBits can also be -8..-15 for raw deflate. In this case, -windowBits
determines the window size. deflate() will then generate raw deflate data
with no zlib header or trailer, and will not compute an adler32 check value.
 
windowBits can also be greater than 15 for optional gzip encoding. Add
16 to windowBits to write a simple gzip header and trailer around the
compressed data instead of a zlib wrapper. The gzip header will have no
file name, no extra data, no comment, no modification time (set to zero), no
header crc, and the operating system will be set to 255 (unknown). If a
gzip stream is being written, strm->adler is a crc32 instead of an adler32.
 
The memLevel parameter specifies how much memory should be allocated
for the internal compression state. memLevel=1 uses minimum memory but is
slow and reduces compression ratio; memLevel=9 uses maximum memory for
optimal speed. The default value is 8. See zconf.h for total memory usage
as a function of windowBits and memLevel.
 
The strategy parameter is used to tune the compression algorithm. Use the
value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no
string match), or Z_RLE to limit match distances to one (run-length
encoding). Filtered data consists mostly of small values with a somewhat
random distribution. In this case, the compression algorithm is tuned to
compress them better. The effect of Z_FILTERED is to force more Huffman
coding and less string matching; it is somewhat intermediate between
Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY. Z_RLE is designed to be almost as
fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data. The
strategy parameter only affects the compression ratio but not the
correctness of the compressed output even if it is not set appropriately.
Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler
decoder for special applications.
 
deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid
method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is
incompatible with the version assumed by the caller (ZLIB_VERSION). msg is
set to null if there is no error message. deflateInit2 does not perform any
compression: this will be done by deflate().
 
 
int deflateSetDictionary OF((z_streamp strm,
const Bytef *dictionary,
uInt dictLength));
 
Initializes the compression dictionary from the given byte sequence
without producing any compressed output. When using the zlib format, this
function must be called immediately after deflateInit, deflateInit2 or
deflateReset, and before any call of deflate. When doing raw deflate, this
function must be called either before any call of deflate, or immediately
after the completion of a deflate block, i.e. after all input has been
consumed and all output has been delivered when using any of the flush
options Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, or Z_FULL_FLUSH. The
compressor and decompressor must use exactly the same dictionary (see
inflateSetDictionary).
 
The dictionary should consist of strings (byte sequences) that are likely
to be encountered later in the data to be compressed, with the most commonly
used strings preferably put towards the end of the dictionary. Using a
dictionary is most useful when the data to be compressed is short and can be
predicted with good accuracy; the data can then be compressed better than
with the default empty dictionary.
 
Depending on the size of the compression data structures selected by
deflateInit or deflateInit2, a part of the dictionary may in effect be
discarded, for example if the dictionary is larger than the window size
provided in deflateInit or deflateInit2. Thus the strings most likely to be
useful should be put at the end of the dictionary, not at the front. In
addition, the current implementation of deflate will use at most the window
size minus 262 bytes of the provided dictionary.
 
Upon return of this function, strm->adler is set to the adler32 value
of the dictionary; the decompressor may later use this value to determine
which dictionary has been used by the compressor. (The adler32 value
applies to the whole dictionary even if only a subset of the dictionary is
actually used by the compressor.) If a raw deflate was requested, then the
adler32 value is not computed and strm->adler is not set.
 
deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is
inconsistent (for example if deflate has already been called for this stream
or if not at a block boundary for raw deflate). deflateSetDictionary does
not perform any compression: this will be done by deflate().
 
 
int deflateCopy OF((z_streamp dest,
z_streamp source));
 
Sets the destination stream as a complete copy of the source stream.
 
This function can be useful when several compression strategies will be
tried, for example when there are several ways of pre-processing the input
data with a filter. The streams that will be discarded should then be freed
by calling deflateEnd. Note that deflateCopy duplicates the internal
compression state which can be quite large, so this strategy is slow and can
consume lots of memory.
 
deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
(such as zalloc being Z_NULL). msg is left unchanged in both source and
destination.
 
 
int deflateReset OF((z_streamp strm));
 
This function is equivalent to deflateEnd followed by deflateInit,
but does not free and reallocate all the internal compression state. The
stream will keep the same compression level and any other attributes that
may have been set by deflateInit2.
 
deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent (such as zalloc or state being Z_NULL).
 
 
int deflateParams OF((z_streamp strm,
int level,
int strategy));
 
Dynamically update the compression level and compression strategy. The
interpretation of level and strategy is as in deflateInit2. This can be
used to switch between compression and straight copy of the input data, or
to switch to a different kind of input data requiring a different strategy.
If the compression level is changed, the input available so far is
compressed with the old level (and may be flushed); the new level will take
effect only at the next call of deflate().
 
Before the call of deflateParams, the stream state must be set as for
a call of deflate(), since the currently available input may have to be
compressed and flushed. In particular, strm->avail_out must be non-zero.
 
deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source
stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if
strm->avail_out was zero.
 
 
int deflateTune OF((z_streamp strm,
int good_length,
int max_lazy,
int nice_length,
int max_chain));
 
Fine tune deflate's internal compression parameters. This should only be
used by someone who understands the algorithm used by zlib's deflate for
searching for the best matching string, and even then only by the most
fanatic optimizer trying to squeeze out the last compressed bit for their
specific input data. Read the deflate.c source code for the meaning of the
max_lazy, good_length, nice_length, and max_chain parameters.
 
deflateTune() can be called after deflateInit() or deflateInit2(), and
returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream.
 
 
uLong deflateBound OF((z_streamp strm,
uLong sourceLen));
 
deflateBound() returns an upper bound on the compressed size after
deflation of sourceLen bytes. It must be called after deflateInit() or
deflateInit2(), and after deflateSetHeader(), if used. This would be used
to allocate an output buffer for deflation in a single pass, and so would be
called before deflate(). If that first deflate() call is provided the
sourceLen input bytes, an output buffer allocated to the size returned by
deflateBound(), and the flush value Z_FINISH, then deflate() is guaranteed
to return Z_STREAM_END. Note that it is possible for the compressed size to
be larger than the value returned by deflateBound() if flush options other
than Z_FINISH or Z_NO_FLUSH are used.
 
 
int deflatePending OF((z_streamp strm,
unsigned *pending,
int *bits));
 
deflatePending() returns the number of bytes and bits of output that have
been generated, but not yet provided in the available output. The bytes not
provided would be due to the available output space having being consumed.
The number of bits of output not provided are between 0 and 7, where they
await more bits to join them in order to fill out a full byte. If pending
or bits are Z_NULL, then those values are not set.
 
deflatePending returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent.
 
 
int deflatePrime OF((z_streamp strm,
int bits,
int value));
 
deflatePrime() inserts bits in the deflate output stream. The intent
is that this function is used to start off the deflate output with the bits
leftover from a previous deflate stream when appending to it. As such, this
function can only be used for raw deflate, and must be used before the first
deflate() call after a deflateInit2() or deflateReset(). bits must be less
than or equal to 16, and that many of the least significant bits of value
will be inserted in the output.
 
deflatePrime returns Z_OK if success, Z_BUF_ERROR if there was not enough
room in the internal buffer to insert the bits, or Z_STREAM_ERROR if the
source stream state was inconsistent.
 
 
int deflateSetHeader OF((z_streamp strm,
gz_headerp head));
 
deflateSetHeader() provides gzip header information for when a gzip
stream is requested by deflateInit2(). deflateSetHeader() may be called
after deflateInit2() or deflateReset() and before the first call of
deflate(). The text, time, os, extra field, name, and comment information
in the provided gz_header structure are written to the gzip header (xflag is
ignored -- the extra flags are set according to the compression level). The
caller must assure that, if not Z_NULL, name and comment are terminated with
a zero byte, and that if extra is not Z_NULL, that extra_len bytes are
available there. If hcrc is true, a gzip header crc is included. Note that
the current versions of the command-line version of gzip (up through version
1.3.x) do not support header crc's, and will report that it is a "multi-part
gzip file" and give up.
 
If deflateSetHeader is not used, the default gzip header has text false,
the time set to zero, and os set to 255, with no extra, name, or comment
fields. The gzip header is returned to the default state by deflateReset().
 
deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent.
 
 
int inflateInit2 OF((z_streamp strm,
int windowBits));
 
This is another version of inflateInit with an extra parameter. The
fields next_in, avail_in, zalloc, zfree and opaque must be initialized
before by the caller.
 
The windowBits parameter is the base two logarithm of the maximum window
size (the size of the history buffer). It should be in the range 8..15 for
this version of the library. The default value is 15 if inflateInit is used
instead. windowBits must be greater than or equal to the windowBits value
provided to deflateInit2() while compressing, or it must be equal to 15 if
deflateInit2() was not used. If a compressed stream with a larger window
size is given as input, inflate() will return with the error code
Z_DATA_ERROR instead of trying to allocate a larger window.
 
windowBits can also be zero to request that inflate use the window size in
the zlib header of the compressed stream.
 
windowBits can also be -8..-15 for raw inflate. In this case, -windowBits
determines the window size. inflate() will then process raw deflate data,
not looking for a zlib or gzip header, not generating a check value, and not
looking for any check values for comparison at the end of the stream. This
is for use with other formats that use the deflate compressed data format
such as zip. Those formats provide their own check values. If a custom
format is developed using the raw deflate format for compressed data, it is
recommended that a check value such as an adler32 or a crc32 be applied to
the uncompressed data as is done in the zlib, gzip, and zip formats. For
most applications, the zlib format should be used as is. Note that comments
above on the use in deflateInit2() applies to the magnitude of windowBits.
 
windowBits can also be greater than 15 for optional gzip decoding. Add
32 to windowBits to enable zlib and gzip decoding with automatic header
detection, or add 16 to decode only the gzip format (the zlib format will
return a Z_DATA_ERROR). If a gzip stream is being decoded, strm->adler is a
crc32 instead of an adler32.
 
inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
version assumed by the caller, or Z_STREAM_ERROR if the parameters are
invalid, such as a null pointer to the structure. msg is set to null if
there is no error message. inflateInit2 does not perform any decompression
apart from possibly reading the zlib header if present: actual decompression
will be done by inflate(). (So next_in and avail_in may be modified, but
next_out and avail_out are unused and unchanged.) The current implementation
of inflateInit2() does not process any header information -- that is
deferred until inflate() is called.
 
 
int inflateSetDictionary OF((z_streamp strm,
const Bytef *dictionary,
uInt dictLength));
 
Initializes the decompression dictionary from the given uncompressed byte
sequence. This function must be called immediately after a call of inflate,
if that call returned Z_NEED_DICT. The dictionary chosen by the compressor
can be determined from the adler32 value returned by that call of inflate.
The compressor and decompressor must use exactly the same dictionary (see
deflateSetDictionary). For raw inflate, this function can be called at any
time to set the dictionary. If the provided dictionary is smaller than the
window and there is already data in the window, then the provided dictionary
will amend what's there. The application must insure that the dictionary
that was used for compression is provided.
 
inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
parameter is invalid (e.g. dictionary being Z_NULL) or the stream state is
inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
expected one (incorrect adler32 value). inflateSetDictionary does not
perform any decompression: this will be done by subsequent calls of
inflate().
 
 
int inflateGetDictionary OF((z_streamp strm,
Bytef *dictionary,
uInt *dictLength));
 
Returns the sliding dictionary being maintained by inflate. dictLength is
set to the number of bytes in the dictionary, and that many bytes are copied
to dictionary. dictionary must have enough space, where 32768 bytes is
always enough. If inflateGetDictionary() is called with dictionary equal to
Z_NULL, then only the dictionary length is returned, and nothing is copied.
Similary, if dictLength is Z_NULL, then it is not set.
 
inflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the
stream state is inconsistent.
 
 
int inflateSync OF((z_streamp strm));
 
Skips invalid compressed data until a possible full flush point (see above
for the description of deflate with Z_FULL_FLUSH) can be found, or until all
available input is skipped. No output is provided.
 
inflateSync searches for a 00 00 FF FF pattern in the compressed data.
All full flush points have this pattern, but not all occurrences of this
pattern are full flush points.
 
inflateSync returns Z_OK if a possible full flush point has been found,
Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point
has been found, or Z_STREAM_ERROR if the stream structure was inconsistent.
In the success case, the application may save the current current value of
total_in which indicates where valid compressed data was found. In the
error case, the application may repeatedly call inflateSync, providing more
input each time, until success or end of the input data.
 
 
int inflateCopy OF((z_streamp dest,
z_streamp source));
 
Sets the destination stream as a complete copy of the source stream.
 
This function can be useful when randomly accessing a large stream. The
first pass through the stream can periodically record the inflate state,
allowing restarting inflate at those points when randomly accessing the
stream.
 
inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
(such as zalloc being Z_NULL). msg is left unchanged in both source and
destination.
 
 
int inflateReset OF((z_streamp strm));
 
This function is equivalent to inflateEnd followed by inflateInit,
but does not free and reallocate all the internal decompression state. The
stream will keep attributes that may have been set by inflateInit2.
 
inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent (such as zalloc or state being Z_NULL).
 
 
int inflateReset2 OF((z_streamp strm,
int windowBits));
 
This function is the same as inflateReset, but it also permits changing
the wrap and window size requests. The windowBits parameter is interpreted
the same as it is for inflateInit2.
 
inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent (such as zalloc or state being Z_NULL), or if
the windowBits parameter is invalid.
 
 
int inflatePrime OF((z_streamp strm,
int bits,
int value));
 
This function inserts bits in the inflate input stream. The intent is
that this function is used to start inflating at a bit position in the
middle of a byte. The provided bits will be used before any bytes are used
from next_in. This function should only be used with raw inflate, and
should be used before the first inflate() call after inflateInit2() or
inflateReset(). bits must be less than or equal to 16, and that many of the
least significant bits of value will be inserted in the input.
 
If bits is negative, then the input stream bit buffer is emptied. Then
inflatePrime() can be called again to put bits in the buffer. This is used
to clear out bits leftover after feeding inflate a block description prior
to feeding inflate codes.
 
inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent.
 
 
long inflateMark OF((z_streamp strm));
 
This function returns two values, one in the lower 16 bits of the return
value, and the other in the remaining upper bits, obtained by shifting the
return value down 16 bits. If the upper value is -1 and the lower value is
zero, then inflate() is currently decoding information outside of a block.
If the upper value is -1 and the lower value is non-zero, then inflate is in
the middle of a stored block, with the lower value equaling the number of
bytes from the input remaining to copy. If the upper value is not -1, then
it is the number of bits back from the current bit position in the input of
the code (literal or length/distance pair) currently being processed. In
that case the lower value is the number of bytes already emitted for that
code.
 
A code is being processed if inflate is waiting for more input to complete
decoding of the code, or if it has completed decoding but is waiting for
more output space to write the literal or match data.
 
inflateMark() is used to mark locations in the input data for random
access, which may be at bit positions, and to note those cases where the
output of a code may span boundaries of random access blocks. The current
location in the input stream can be determined from avail_in and data_type
as noted in the description for the Z_BLOCK flush parameter for inflate.
 
inflateMark returns the value noted above or -1 << 16 if the provided
source stream state was inconsistent.
 
 
int inflateGetHeader OF((z_streamp strm,
gz_headerp head));
 
inflateGetHeader() requests that gzip header information be stored in the
provided gz_header structure. inflateGetHeader() may be called after
inflateInit2() or inflateReset(), and before the first call of inflate().
As inflate() processes the gzip stream, head->done is zero until the header
is completed, at which time head->done is set to one. If a zlib stream is
being decoded, then head->done is set to -1 to indicate that there will be
no gzip header information forthcoming. Note that Z_BLOCK or Z_TREES can be
used to force inflate() to return immediately after header processing is
complete and before any actual data is decompressed.
 
The text, time, xflags, and os fields are filled in with the gzip header
contents. hcrc is set to true if there is a header CRC. (The header CRC
was valid if done is set to one.) If extra is not Z_NULL, then extra_max
contains the maximum number of bytes to write to extra. Once done is true,
extra_len contains the actual extra field length, and extra contains the
extra field, or that field truncated if extra_max is less than extra_len.
If name is not Z_NULL, then up to name_max characters are written there,
terminated with a zero unless the length is greater than name_max. If
comment is not Z_NULL, then up to comm_max characters are written there,
terminated with a zero unless the length is greater than comm_max. When any
of extra, name, or comment are not Z_NULL and the respective field is not
present in the header, then that field is set to Z_NULL to signal its
absence. This allows the use of deflateSetHeader() with the returned
structure to duplicate the header. However if those fields are set to
allocated memory, then the application will need to save those pointers
elsewhere so that they can be eventually freed.
 
If inflateGetHeader is not used, then the header information is simply
discarded. The header is always checked for validity, including the header
CRC if present. inflateReset() will reset the process to discard the header
information. The application would need to call inflateGetHeader() again to
retrieve the header from the next gzip stream.
 
inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
stream state was inconsistent.
 
 
int inflateBackInit OF((z_streamp strm, int windowBits,
unsigned char FAR *window));
 
Initialize the internal stream state for decompression using inflateBack()
calls. The fields zalloc, zfree and opaque in strm must be initialized
before the call. If zalloc and zfree are Z_NULL, then the default library-
derived memory allocation routines are used. windowBits is the base two
logarithm of the window size, in the range 8..15. window is a caller
supplied buffer of that size. Except for special applications where it is
assured that deflate was used with small window sizes, windowBits must be 15
and a 32K byte window must be supplied to be able to decompress general
deflate streams.
 
See inflateBack() for the usage of these routines.
 
inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of
the parameters are invalid, Z_MEM_ERROR if the internal state could not be
allocated, or Z_VERSION_ERROR if the version of the library does not match
the version of the header file.
 
 
typedef unsigned (*in_func) OF((void FAR *,
z_const unsigned char FAR * FAR *));
typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned));
 
int inflateBack OF((z_streamp strm,
in_func in, void FAR *in_desc,
out_func out, void FAR *out_desc));
 
inflateBack() does a raw inflate with a single call using a call-back
interface for input and output. This is potentially more efficient than
inflate() for file i/o applications, in that it avoids copying between the
output and the sliding window by simply making the window itself the output
buffer. inflate() can be faster on modern CPUs when used with large
buffers. inflateBack() trusts the application to not change the output
buffer passed by the output function, at least until inflateBack() returns.
 
inflateBackInit() must be called first to allocate the internal state
and to initialize the state with the user-provided window buffer.
inflateBack() may then be used multiple times to inflate a complete, raw
deflate stream with each call. inflateBackEnd() is then called to free the
allocated state.
 
A raw deflate stream is one with no zlib or gzip header or trailer.
This routine would normally be used in a utility that reads zip or gzip
files and writes out uncompressed files. The utility would decode the
header and process the trailer on its own, hence this routine expects only
the raw deflate stream to decompress. This is different from the normal
behavior of inflate(), which expects either a zlib or gzip header and
trailer around the deflate stream.
 
inflateBack() uses two subroutines supplied by the caller that are then
called by inflateBack() for input and output. inflateBack() calls those
routines until it reads a complete deflate stream and writes out all of the
uncompressed data, or until it encounters an error. The function's
parameters and return types are defined above in the in_func and out_func
typedefs. inflateBack() will call in(in_desc, &buf) which should return the
number of bytes of provided input, and a pointer to that input in buf. If
there is no input available, in() must return zero--buf is ignored in that
case--and inflateBack() will return a buffer error. inflateBack() will call
out(out_desc, buf, len) to write the uncompressed data buf[0..len-1]. out()
should return zero on success, or non-zero on failure. If out() returns
non-zero, inflateBack() will return with an error. Neither in() nor out()
are permitted to change the contents of the window provided to
inflateBackInit(), which is also the buffer that out() uses to write from.
The length written by out() will be at most the window size. Any non-zero
amount of input may be provided by in().
 
For convenience, inflateBack() can be provided input on the first call by
setting strm->next_in and strm->avail_in. If that input is exhausted, then
in() will be called. Therefore strm->next_in must be initialized before
calling inflateBack(). If strm->next_in is Z_NULL, then in() will be called
immediately for input. If strm->next_in is not Z_NULL, then strm->avail_in
must also be initialized, and then if strm->avail_in is not zero, input will
initially be taken from strm->next_in[0 .. strm->avail_in - 1].
 
The in_desc and out_desc parameters of inflateBack() is passed as the
first parameter of in() and out() respectively when they are called. These
descriptors can be optionally used to pass any information that the caller-
supplied in() and out() functions need to do their job.
 
On return, inflateBack() will set strm->next_in and strm->avail_in to
pass back any unused input that was provided by the last in() call. The
return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR
if in() or out() returned an error, Z_DATA_ERROR if there was a format error
in the deflate stream (in which case strm->msg is set to indicate the nature
of the error), or Z_STREAM_ERROR if the stream was not properly initialized.
In the case of Z_BUF_ERROR, an input or output error can be distinguished
using strm->next_in which will be Z_NULL only if in() returned an error. If
strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning
non-zero. (in() will always be called before out(), so strm->next_in is
assured to be defined if out() returns non-zero.) Note that inflateBack()
cannot return Z_OK.
 
 
int inflateBackEnd OF((z_streamp strm));
 
All memory allocated by inflateBackInit() is freed.
 
inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream
state was inconsistent.
 
 
uLong zlibCompileFlags OF((void));
Return flags indicating compile-time options.
 
Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other:
1.0: size of uInt
3.2: size of uLong
5.4: size of voidpf (pointer)
7.6: size of z_off_t
 
Compiler, assembler, and debug options:
8: DEBUG
9: ASMV or ASMINF -- use ASM code
10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention
11: 0 (reserved)
 
One-time table building (smaller code, but not thread-safe if true):
12: BUILDFIXED -- build static block decoding tables when needed
13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed
14,15: 0 (reserved)
 
Library content (indicates missing functionality):
16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking
deflate code when not needed)
17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect
and decode gzip streams (to avoid linking crc code)
18-19: 0 (reserved)
 
Operation variations (changes in library functionality):
20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate
21: FASTEST -- deflate algorithm with only one, lowest compression level
22,23: 0 (reserved)
 
The sprintf variant used by gzprintf (zero is best):
24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format
25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure!
26: 0 = returns value, 1 = void -- 1 means inferred string length returned
 
Remainder:
27-31: 0 (reserved)
 
 
#ifndef Z_SOLO
 
utility functions
 
 
The following utility functions are implemented on top of the basic
stream-oriented functions. To simplify the interface, some default options
are assumed (compression level and memory usage, standard memory allocation
functions). The source code of these utility functions can be modified if
you need special options.
 
 
int compress OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen));
 
Compresses the source buffer into the destination buffer. sourceLen is
the byte length of the source buffer. Upon entry, destLen is the total size
of the destination buffer, which must be at least the value returned by
compressBound(sourceLen). Upon exit, destLen is the actual size of the
compressed buffer.
 
compress returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_BUF_ERROR if there was not enough room in the output
buffer.
 
 
int compress2 OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen,
int level));
 
Compresses the source buffer into the destination buffer. The level
parameter has the same meaning as in deflateInit. sourceLen is the byte
length of the source buffer. Upon entry, destLen is the total size of the
destination buffer, which must be at least the value returned by
compressBound(sourceLen). Upon exit, destLen is the actual size of the
compressed buffer.
 
compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_BUF_ERROR if there was not enough room in the output buffer,
Z_STREAM_ERROR if the level parameter is invalid.
 
 
uLong compressBound OF((uLong sourceLen));
 
compressBound() returns an upper bound on the compressed size after
compress() or compress2() on sourceLen bytes. It would be used before a
compress() or compress2() call to allocate the destination buffer.
 
 
int uncompress OF((Bytef *dest, uLongf *destLen,
const Bytef *source, uLong sourceLen));
 
Decompresses the source buffer into the destination buffer. sourceLen is
the byte length of the source buffer. Upon entry, destLen is the total size
of the destination buffer, which must be large enough to hold the entire
uncompressed data. (The size of the uncompressed data must have been saved
previously by the compressor and transmitted to the decompressor by some
mechanism outside the scope of this compression library.) Upon exit, destLen
is the actual size of the uncompressed buffer.
 
uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
enough memory, Z_BUF_ERROR if there was not enough room in the output
buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete. In
the case where there is not enough room, uncompress() will fill the output
buffer with the uncompressed data up to that point.
 
 
gzip file access functions
 
 
This library supports reading and writing files in gzip (.gz) format with
an interface similar to that of stdio, using the functions that start with
"gz". The gzip format is different from the zlib format. gzip is a gzip
wrapper, documented in RFC 1952, wrapped around a deflate stream.
 
 
typedef struct gzFile_s *gzFile; ;semi-opaque gzip file descriptor
 
 
gzFile gzopen OF((const char *path, const char *mode));
 
Opens a gzip (.gz) file for reading or writing. The mode parameter is as
in fopen ("rb" or "wb") but can also include a compression level ("wb9") or
a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman-only
compression as in "wb1h", 'R' for run-length encoding as in "wb1R", or 'F'
for fixed code compression as in "wb9F". (See the description of
deflateInit2 for more information about the strategy parameter.) 'T' will
request transparent writing or appending with no compression and not using
the gzip format.
 
"a" can be used instead of "w" to request that the gzip stream that will
be written be appended to the file. "+" will result in an error, since
reading and writing to the same gzip file is not supported. The addition of
"x" when writing will create the file exclusively, which fails if the file
already exists. On systems that support it, the addition of "e" when
reading or writing will set the flag to close the file on an execve() call.
 
These functions, as well as gzip, will read and decode a sequence of gzip
streams in a file. The append function of gzopen() can be used to create
such a file. (Also see gzflush() for another way to do this.) When
appending, gzopen does not test whether the file begins with a gzip stream,
nor does it look for the end of the gzip streams to begin appending. gzopen
will simply append a gzip stream to the existing file.
 
gzopen can be used to read a file which is not in gzip format; in this
case gzread will directly read from the file without decompression. When
reading, this will be detected automatically by looking for the magic two-
byte gzip header.
 
gzopen returns NULL if the file could not be opened, if there was
insufficient memory to allocate the gzFile state, or if an invalid mode was
specified (an 'r', 'w', or 'a' was not provided, or '+' was provided).
errno can be checked to determine if the reason gzopen failed was that the
file could not be opened.
 
 
gzFile gzdopen OF((int fd, const char *mode));
 
gzdopen associates a gzFile with the file descriptor fd. File descriptors
are obtained from calls like open, dup, creat, pipe or fileno (if the file
has been previously opened with fopen). The mode parameter is as in gzopen.
 
The next call of gzclose on the returned gzFile will also close the file
descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor
fd. If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd,
mode);. The duplicated descriptor should be saved to avoid a leak, since
gzdopen does not close fd if it fails. If you are using fileno() to get the
file descriptor from a FILE *, then you will have to use dup() to avoid
double-close()ing the file descriptor. Both gzclose() and fclose() will
close the associated file descriptor, so they need to have different file
descriptors.
 
gzdopen returns NULL if there was insufficient memory to allocate the
gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not
provided, or '+' was provided), or if fd is -1. The file descriptor is not
used until the next gz* read, write, seek, or close operation, so gzdopen
will not detect if fd is invalid (unless fd is -1).
 
 
int gzbuffer OF((gzFile file, unsigned size));
 
Set the internal buffer size used by this library's functions. The
default buffer size is 8192 bytes. This function must be called after
gzopen() or gzdopen(), and before any other calls that read or write the
file. The buffer memory allocation is always deferred to the first read or
write. Two buffers are allocated, either both of the specified size when
writing, or one of the specified size and the other twice that size when
reading. A larger buffer size of, for example, 64K or 128K bytes will
noticeably increase the speed of decompression (reading).
 
The new buffer size also affects the maximum length for gzprintf().
 
gzbuffer() returns 0 on success, or -1 on failure, such as being called
too late.
 
 
int gzsetparams OF((gzFile file, int level, int strategy));
 
Dynamically update the compression level or strategy. See the description
of deflateInit2 for the meaning of these parameters.
 
gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not
opened for writing.
 
 
int gzread OF((gzFile file, voidp buf, unsigned len));
 
Reads the given number of uncompressed bytes from the compressed file. If
the input file is not in gzip format, gzread copies the given number of
bytes into the buffer directly from the file.
 
After reaching the end of a gzip stream in the input, gzread will continue
to read, looking for another gzip stream. Any number of gzip streams may be
concatenated in the input file, and will all be decompressed by gzread().
If something other than a gzip stream is encountered after a gzip stream,
that remaining trailing garbage is ignored (and no error is returned).
 
gzread can be used to read a gzip file that is being concurrently written.
Upon reaching the end of the input, gzread will return with the available
data. If the error code returned by gzerror is Z_OK or Z_BUF_ERROR, then
gzclearerr can be used to clear the end of file indicator in order to permit
gzread to be tried again. Z_OK indicates that a gzip stream was completed
on the last gzread. Z_BUF_ERROR indicates that the input file ended in the
middle of a gzip stream. Note that gzread does not return -1 in the event
of an incomplete gzip stream. This error is deferred until gzclose(), which
will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip
stream. Alternatively, gzerror can be used before gzclose to detect this
case.
 
gzread returns the number of uncompressed bytes actually read, less than
len for end of file, or -1 for error.
 
 
int gzwrite OF((gzFile file,
voidpc buf, unsigned len));
 
Writes the given number of uncompressed bytes into the compressed file.
gzwrite returns the number of uncompressed bytes written or 0 in case of
error.
 
 
int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...));
 
Converts, formats, and writes the arguments to the compressed file under
control of the format string, as in fprintf. gzprintf returns the number of
uncompressed bytes actually written, or 0 in case of error. The number of
uncompressed bytes written is limited to 8191, or one less than the buffer
size given to gzbuffer(). The caller should assure that this limit is not
exceeded. If it is exceeded, then gzprintf() will return an error (0) with
nothing written. In this case, there may also be a buffer overflow with
unpredictable consequences, which is possible only if zlib was compiled with
the insecure functions sprintf() or vsprintf() because the secure snprintf()
or vsnprintf() functions were not available. This can be determined using
zlibCompileFlags().
 
 
int gzputs OF((gzFile file, const char *s));
 
Writes the given null-terminated string to the compressed file, excluding
the terminating null character.
 
gzputs returns the number of characters written, or -1 in case of error.
 
 
char * gzgets OF((gzFile file, char *buf, int len));
 
Reads bytes from the compressed file until len-1 characters are read, or a
newline character is read and transferred to buf, or an end-of-file
condition is encountered. If any characters are read or if len == 1, the
string is terminated with a null character. If no characters are read due
to an end-of-file or len < 1, then the buffer is left untouched.
 
gzgets returns buf which is a null-terminated string, or it returns NULL
for end-of-file or in case of error. If there was an error, the contents at
buf are indeterminate.
 
 
int gzputc OF((gzFile file, int c));
 
Writes c, converted to an unsigned char, into the compressed file. gzputc
returns the value that was written, or -1 in case of error.
 
 
int gzgetc OF((gzFile file));
 
Reads one byte from the compressed file. gzgetc returns this byte or -1
in case of end of file or error. This is implemented as a macro for speed.
As such, it does not do all of the checking the other functions do. I.e.
it does not check to see if file is NULL, nor whether the structure file
points to has been clobbered or not.
 
 
int gzungetc OF((int c, gzFile file));
 
Push one character back onto the stream to be read as the first character
on the next read. At least one character of push-back is allowed.
gzungetc() returns the character pushed, or -1 on failure. gzungetc() will
fail if c is -1, and may fail if a character has been pushed but not read
yet. If gzungetc is used immediately after gzopen or gzdopen, at least the
output buffer size of pushed characters is allowed. (See gzbuffer above.)
The pushed character will be discarded if the stream is repositioned with
gzseek() or gzrewind().
 
 
int gzflush OF((gzFile file, int flush));
 
Flushes all pending output into the compressed file. The parameter flush
is as in the deflate() function. The return value is the zlib error number
(see function gzerror below). gzflush is only permitted when writing.
 
If the flush parameter is Z_FINISH, the remaining data is written and the
gzip stream is completed in the output. If gzwrite() is called again, a new
gzip stream will be started in the output. gzread() is able to read such
concatented gzip streams.
 
gzflush should be called only when strictly necessary because it will
degrade compression if called too often.
 
 
 
z_off_t gzseek OF((gzFile file,
z_off_t offset, int whence));
 
Sets the starting position for the next gzread or gzwrite on the given
compressed file. The offset represents a number of bytes in the
uncompressed data stream. The whence parameter is defined as in lseek(2);
the value SEEK_END is not supported.
 
If the file is opened for reading, this function is emulated but can be
extremely slow. If the file is opened for writing, only forward seeks are
supported; gzseek then compresses a sequence of zeroes up to the new
starting position.
 
gzseek returns the resulting offset location as measured in bytes from
the beginning of the uncompressed stream, or -1 in case of error, in
particular if the file is opened for writing and the new starting position
would be before the current position.
 
 
int gzrewind OF((gzFile file));
 
Rewinds the given file. This function is supported only for reading.
 
gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET)
 
 
 
z_off_t gztell OF((gzFile file));
 
Returns the starting position for the next gzread or gzwrite on the given
compressed file. This position represents a number of bytes in the
uncompressed data stream, and is zero when starting, even if appending or
reading a gzip stream from the middle of a file using gzdopen().
 
gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR)
 
 
 
z_off_t gzoffset OF((gzFile file));
 
Returns the current offset in the file being read or written. This offset
includes the count of bytes that precede the gzip stream, for example when
appending or when using gzdopen() for reading. When reading, the offset
does not include as yet unused buffered input. This information can be used
for a progress indicator. On error, gzoffset() returns -1.
 
 
int gzeof OF((gzFile file));
 
Returns true (1) if the end-of-file indicator has been set while reading,
false (0) otherwise. Note that the end-of-file indicator is set only if the
read tried to go past the end of the input, but came up short. Therefore,
just like feof(), gzeof() may return false even if there is no more data to
read, in the event that the last read request was for the exact number of
bytes remaining in the input file. This will happen if the input file size
is an exact multiple of the buffer size.
 
If gzeof() returns true, then the read functions will return no more data,
unless the end-of-file indicator is reset by gzclearerr() and the input file
has grown since the previous end of file was detected.
 
 
int gzdirect OF((gzFile file));
 
Returns true (1) if file is being copied directly while reading, or false
(0) if file is a gzip stream being decompressed.
 
If the input file is empty, gzdirect() will return true, since the input
does not contain a gzip stream.
 
If gzdirect() is used immediately after gzopen() or gzdopen() it will
cause buffers to be allocated to allow reading the file to determine if it
is a gzip file. Therefore if gzbuffer() is used, it should be called before
gzdirect().
 
When writing, gzdirect() returns true (1) if transparent writing was
requested ("wT" for the gzopen() mode), or false (0) otherwise. (Note:
gzdirect() is not needed when writing. Transparent writing must be
explicitly requested, so the application already knows the answer. When
linking statically, using gzdirect() will include all of the zlib code for
gzip file reading and decompression, which may not be desired.)
 
 
int gzclose OF((gzFile file));
 
Flushes all pending output if necessary, closes the compressed file and
deallocates the (de)compression state. Note that once file is closed, you
cannot call gzerror with file, since its structures have been deallocated.
gzclose must not be called more than once on the same file, just as free
must not be called more than once on the same allocation.
 
gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a
file operation error, Z_MEM_ERROR if out of memory, Z_BUF_ERROR if the
last read ended in the middle of a gzip stream, or Z_OK on success.
 
 
int gzclose_r OF((gzFile file));
int gzclose_w OF((gzFile file));
 
Same as gzclose(), but gzclose_r() is only for use when reading, and
gzclose_w() is only for use when writing or appending. The advantage to
using these instead of gzclose() is that they avoid linking in zlib
compression or decompression code that is not used when only reading or only
writing respectively. If gzclose() is used, then both compression and
decompression code will be included the application when linking to a static
zlib library.
 
 
const char * gzerror OF((gzFile file, int *errnum));
 
Returns the error message for the last error which occurred on the given
compressed file. errnum is set to zlib error number. If an error occurred
in the file system and not in the compression library, errnum is set to
Z_ERRNO and the application may consult errno to get the exact error code.
 
The application must not modify the returned string. Future calls to
this function may invalidate the previously returned string. If file is
closed, then the string previously returned by gzerror will no longer be
available.
 
gzerror() should be used to distinguish errors from end-of-file for those
functions above that do not distinguish those cases in their return values.
 
 
void gzclearerr OF((gzFile file));
 
Clears the error and end-of-file flags for file. This is analogous to the
clearerr() function in stdio. This is useful for continuing to read a gzip
file that is being written concurrently.
 
 
end if ;!Z_SOLO
 
checksum functions
 
 
These functions are not related to compression but are exported
anyway because they might be useful in applications using the compression
library.
 
 
uLong adler32 OF((uLong adler, const Bytef *buf, uInt len));
 
Update a running Adler-32 checksum with the bytes buf[0..len-1] and
return the updated checksum. If buf is Z_NULL, this function returns the
required initial value for the checksum.
 
An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
much faster.
 
Usage example:
 
uLong adler = adler32(0L, Z_NULL, 0);
 
while (read_buffer(buffer, length) != EOF) {
adler = adler32(adler, buffer, length);
}
if (adler != original_adler) error();
 
 
uLong adler32_combine OF((uLong adler1, uLong adler2,
z_off_t len2));
 
Combine two Adler-32 checksums into one. For two sequences of bytes, seq1
and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for
each, adler1 and adler2. adler32_combine() returns the Adler-32 checksum of
seq1 and seq2 concatenated, requiring only adler1, adler2, and len2. Note
that the z_off_t type (like off_t) is a signed integer. If len2 is
negative, the result has no meaning or utility.
 
 
uLong crc32 OF((uLong crc, const Bytef *buf, uInt len));
 
Update a running CRC-32 with the bytes buf[0..len-1] and return the
updated CRC-32. If buf is Z_NULL, this function returns the required
initial value for the crc. Pre- and post-conditioning (one's complement) is
performed within this function so it shouldn't be done by the application.
 
Usage example:
 
uLong crc = crc32(0L, Z_NULL, 0);
 
while (read_buffer(buffer, length) != EOF) {
crc = crc32(crc, buffer, length);
}
if (crc != original_crc) error();
 
 
uLong crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2));
 
Combine two CRC-32 check values into one. For two sequences of bytes,
seq1 and seq2 with lengths len1 and len2, CRC-32 check values were
calculated for each, crc1 and crc2. crc32_combine() returns the CRC-32
check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and
len2.
/programs/fs/kfar/trunk/zlib/zutil.asm
0,0 → 1,203
; zutil.asm -- target dependent utility functions for the compression library
; Copyright (C) 1995-2005, 2010, 2011, 2012 Jean-loup Gailly.
; For conditions of distribution and use, see copyright notice in zlib.inc
 
align 4
z_errmsg dd ze0,ze1,ze2,ze3,ze4,ze5,ze6,ze7,ze8,ze9
ze0 db 'need dictionary',0 ;Z_NEED_DICT 2
ze1 db 'stream end',0 ;Z_STREAM_END 1
ze2 db '',0 ;Z_OK 0
ze3 db 'file error',0 ;Z_ERRNO (-1)
ze4 db 'stream error',0 ;Z_STREAM_ERROR (-2)
ze5 db 'data error',0 ;Z_DATA_ERROR (-3)
ze6 db 'insufficient memory',0 ;Z_MEM_ERROR (-4)
ze7 db 'buffer error',0 ;Z_BUF_ERROR (-5)
ze8 db 'incompatible version',0 ;Z_VERSION_ERROR (-6)
ze9 db '',0
 
;const char * ()
align 4
proc zlibVersion
mov eax,ZLIB_VERSION;
ret
endp
 
;uLong ()
align 4
proc zlibCompileFlags
; uLong flags;
 
; flags = 0;
; switch ((int)(sizeof(uInt))) {
; case 2: break;
; case 4: flags += 1; break;
; case 8: flags += 2; break;
; default: flags += 3;
; }
; switch ((int)(sizeof(uLong))) {
; case 2: break;
; case 4: flags += 1 << 2; break;
; case 8: flags += 2 << 2; break;
; default: flags += 3 << 2;
; }
; switch ((int)(sizeof(voidpf))) {
; case 2: break;
; case 4: flags += 1 << 4; break;
; case 8: flags += 2 << 4; break;
; default: flags += 3 << 4;
; }
; switch ((int)(sizeof(z_off_t))) {
; case 2: break;
; case 4: flags += 1 << 6; break;
; case 8: flags += 2 << 6; break;
; default: flags += 3 << 6;
; }
;if DEBUG
; flags += 1 << 8;
;end if
;#if defined(ASMV) || defined(ASMINF)
; flags += 1 << 9;
;end if
if ZLIB_WINAPI eq 1
; flags += 1 << 10;
end if
if BUILDFIXED eq 1
; flags += 1 << 12;
end if
if DYNAMIC_CRC_TABLE eq 1
; flags += 1 << 13;
end if
if NO_GZCOMPRESS eq 1
; flags += 1L << 16;
end if
if NO_GZIP eq 1
; flags += 1L << 17;
end if
if PKZIP_BUG_WORKAROUND eq 1
; flags += 1L << 20;
end if
if FASTEST eq 1
; flags += 1L << 21;
end if
;#if defined(STDC) || defined(Z_HAVE_STDARG_H)
;# ifdef NO_vsnprintf
; flags += 1L << 25;
;# ifdef HAS_vsprintf_void
; flags += 1L << 26;
;# endif
;# else
;# ifdef HAS_vsnprintf_void
; flags += 1L << 26;
;# endif
;# endif
;#else
; flags += 1L << 24;
;# ifdef NO_snprintf
; flags += 1L << 25;
;# ifdef HAS_sprintf_void
; flags += 1L << 26;
;# endif
;# else
;# ifdef HAS_snprintf_void
; flags += 1L << 26;
;# endif
;# endif
;end if
; return flags;
ret
endp
 
;if DEBUG
 
;# define verbose 0
;int z_verbose = verbose;
 
;void (m)
; char *m;
align 4
proc z_error, m:dword
; fprintf(stderr, "%s\n", m);
; exit(1);
ret
endp
;end if
 
; exported to allow conversion of error code to string for compress() and
; uncompress()
 
;const char * (err)
; int err;
align 4
proc zError, err:dword
; return ERR_MSG(err);
ret
endp
 
;#ifndef HAVE_MEMCPY
 
;void (dest, source, len)
; Bytef* dest;
; const Bytef* source;
; uInt len;
align 4
proc zmemcpy uses ecx edi esi, dest:dword, source:dword, len:dword
mov ecx,[len]
cmp ecx,0
jle @f
mov edi,[dest]
mov esi,[source]
rep movsb
jmp .end0
@@:
zlib_debug 'zmemcpy size = %d',ecx
.end0:
ret
endp
 
;int (s1, s2, len)
; const Bytef* s1;
; const Bytef* s2;
; uInt len;
align 4
proc zmemcmp, s1:dword, s2:dword, len:dword
; uInt j;
 
; for (j = 0; j < len; j++) {
; if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
; }
; return 0;
ret
endp
 
;void (dest, len)
; Bytef* dest;
; uInt len;
align 4
proc zmemzero, dest:dword, len:dword
; if (len == 0) return;
; do {
; *dest++ = 0; /* ??? to be unrolled */
; } while (--len != 0);
ret
endp
;end if
 
;#ifndef Z_SOLO
 
;voidpf (voidpf opaque, unsigned items, unsigned size)
align 4
proc zcalloc uses ebx ecx, opaque:dword, items:dword, size:dword
mov ecx,[size]
imul ecx,[items]
mcall SF_SYS_MISC, SSF_MEM_ALLOC
ret
endp
 
;void (voidpf opaque, voidpf ptr)
align 4
proc zcfree uses eax ebx ecx, opaque:dword, p2ptr:dword
mcall SF_SYS_MISC, SSF_MEM_FREE, [p2ptr]
ret
endp
 
;end if /* !Z_SOLO */
/programs/fs/kfar/trunk/zlib/zutil.inc
0,0 → 1,88
; zutil.inc -- internal interface and configuration of the compression library
; Copyright (C) 1995-2013 Jean-loup Gailly.
; For conditions of distribution and use, see copyright notice in zlib.inc
 
; WARNING: this file should *not* be used by applications. It is
; part of the implementation of the compression library and is
; subject to change. Applications should only use zlib.inc.
 
 
macro ERR_MSG err
{
mov ecx,Z_NEED_DICT-err
mov ecx,[4*ecx+z_errmsg]
}
 
macro ERR_RETURN strm,err
{
ERR_MSG err
mov [strm+z_stream.msg],ecx
mov eax,err
}
; To be used only when the state is known to be valid
 
; /* common constants */
 
;#ifndef DEF_WBITS
;# define DEF_WBITS MAX_WBITS
;end if
; default windowBits for decompression. MAX_WBITS is for compression only
 
;#if MAX_MEM_LEVEL >= 8
DEF_MEM_LEVEL equ 8
;#else
;# define DEF_MEM_LEVEL MAX_MEM_LEVEL
;end if
; default memLevel
 
STORED_BLOCK equ 0
STATIC_TREES equ 1
DYN_TREES equ 2
; The three kinds of block type
 
MIN_MATCH equ 3
MAX_MATCH equ 258
; The minimum and maximum match lengths
 
PRESET_DICT equ 0x20 ;preset dictionary flag in zlib header
 
; /* common defaults */
 
OS_CODE equ 0x03 ;assume Unix
 
; /* functions */
 
; Diagnostic functions
;if DEBUG eq 1
;# define Trace(x) {if (z_verbose>=0) fprintf x ;}
;# define Tracev(x) {if (z_verbose>0) fprintf x ;}
macro Tracevv mes1, mes2
{
;zlib_debug 'Tracevv = %d', mes1
}
;# define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
;# define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
;end if
 
macro ZALLOC strm, items, size
{
stdcall dword[strm+z_stream.zalloc], [strm+z_stream.opaque], items, size
}
macro ZFREE strm, p2addr
{
stdcall dword[strm+z_stream.zfree], dword[strm+z_stream.opaque], p2addr
}
macro TRY_FREE s, p
{
local .end0
cmp p,0
je .end0
ZFREE s, p
.end0:
}
 
; Reverse the bytes in a 32-bit value
macro ZSWAP32 q
{
bswap q
}