Subversion Repositories Kolibri OS

Compare Revisions

No changes between revisions

Regard whitespace Rev 1175 → Rev 1176

/programs/develop/libraries/libGUI/SRC/compilation/MinGW/build.bat
0,0 → 1,3
gcc -c -O2 -nostdinc -nostdlib -march=pentium -fomit-frame-pointer -fno-builtin -o libGUI.obj libGUI.c
strip -X --strip-unneeded libGUI.obj
@pause
/programs/develop/libraries/libGUI/SRC/compilation/MinGW
Property changes:
Added: tsvn:logminsize
+5
\ No newline at end of property
/programs/develop/libraries/libGUI/SRC/compilation/cygwin/Makefile
0,0 → 1,11
SRC = libGUI.c
TARGET = libGUI.obj
CFLAGS = -O2 -nostdinc -nostdlib -march=pentium -fomit-frame-pointer -fno-builtin -fno-builtin-printf
CC = gcc
 
all:
$(CC) -c $(SRC) $(CFLAGS) -o $(TARGET)
strip -x -S $(TARGET)
$(CC) -S $(SRC) $(CFLAGS)
clean:
rm $(TARGET)
/programs/develop/libraries/libGUI/SRC/compilation/cygwin
Property changes:
Added: tsvn:logminsize
+5
\ No newline at end of property
/programs/develop/libraries/libGUI/SRC/compilation
Property changes:
Added: tsvn:logminsize
+5
\ No newline at end of property
/programs/develop/libraries/libGUI/SRC/control_button.h
0,0 → 1,11
/*
control button data
*/
 
#define FLAG_INSERT_BUTTON_ON 0x1;
#define FLAG_INSERT_BUTTON_OFF 0xfe;
#define FLAG_PRESSED_BUTTON_ON 0x2
#define FLAG_PRESSED_BUTTON_OFF 0xfd
#define FLAG_RELEASED_BUTTON_ON 0x4
#define FLAG_RELEASED_BUTTON_OFF 0xfb
 
/programs/develop/libraries/libGUI/SRC/control_button.inc
0,0 → 1,414
/*
control Button
*/
 
void DrawFocuseForButton(struct ControlButton *Button)
{
int x;
int y;
int sizex;
int sizey;
struct FINITION *fin;
 
x=Button->ctrl_x;
y=Button->ctrl_y;
sizex=Button->ctrl_sizex;
sizey=Button->ctrl_sizey;
fin=(struct FINITION*)Button->finition;
 
Draw(fin,TOOL_RECTANGLE,x,y,sizex,sizey,0xbfff);
}
 
void DrawPressedButton(struct ControlButton *Button)
{
int x;
int y;
int sizex;
int sizey;
struct FINITION *fin;
gui_message_t message;
x=Button->ctrl_x;
y=Button->ctrl_y;
sizex=Button->ctrl_sizex;
sizey=Button->ctrl_sizey;
fin=(struct FINITION*)Button->finition;
 
Draw(fin,TOOL_GRADIENT_DOWN_FILLED_RECTANGLE,x,y,sizex,sizey/2,COLOR_FON,COLOR_MIDDLE_LIGHT);
Draw(fin,TOOL_GRADIENT_DOWN_FILLED_RECTANGLE,x,y+sizey/2,sizex,sizey/2,COLOR_MIDDLE_LIGHT,COLOR_FON);
 
Draw(fin,TOOL_HORIZONTAL_LINE,x,x+sizex-1,y,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_VERTICAL_LINE,x,y,y+sizey-1,COLOR_LIGHT);
Draw(fin,TOOL_HORIZONTAL_LINE,x,x+sizex-1,y+sizey-1,COLOR_LIGHT);
Draw(fin,TOOL_VERTICAL_LINE,x,y,y+sizey-1,COLOR_ABSOLUTE_DARK);
 
if (fin->flags & FINITION_ON)
{
message.type=MESSAGE_FULL_REDRAW_ALL_WITH_FINITION;
message.arg1=fin->x;
message.arg2=fin->y;
message.arg3=fin->sizex;
message.arg4=fin->sizey;
}
else
{
message.type=MESSAGE_FULL_REDRAW_ALL;
}
 
SendMessage((struct HEADER*)Button,&message);
if (Button->flags & FLAG_FOCUSE_INPUT_ON) DrawFocuseForButton(Button);
}
 
void DrawInsertButton(struct ControlButton *Button)
{
int x;
int y;
int sizex;
int sizey;
struct FINITION *fin;
 
x=Button->ctrl_x;
y=Button->ctrl_y;
sizex=Button->ctrl_sizex;
sizey=Button->ctrl_sizey;
fin=(struct FINITION*)Button->finition;
Draw(fin,TOOL_RECTANGLE,x,y,sizex,sizey,COLOR_INSERT);
}
 
void DrawButton(struct ControlButton *Button)
{
int x;
int y;
int sizex;
int sizey;
struct FINITION *fin;
gui_message_t message;
x=Button->ctrl_x;
y=Button->ctrl_y;
sizex=Button->ctrl_sizex;
sizey=Button->ctrl_sizey;
fin=(struct FINITION*)Button->finition;
 
Draw(fin,TOOL_GRADIENT_UP_FILLED_RECTANGLE,x,y,sizex,sizey,COLOR_FON,COLOR_MIDDLE_LIGHT);
//Draw(fin,TOOL_GRADIENT_DOWN_FILLED_RECTANGLE,x,y+sizey/2,sizex,sizey/2,COLOR_FON,COLOR_MIDDLE_LIGHT);
 
Draw(fin,TOOL_RECTANGLE,x,y,sizex,sizey,COLOR_ABSOLUTE_DARK);
 
Draw(fin,TOOL_HORIZONTAL_LINE,x+1,x+sizex-2,y+1,COLOR_LIGHT);
Draw(fin,TOOL_VERTICAL_LINE,x+sizex-2,y+1,y+sizey-2,COLOR_MIDDLE_LIGHT);
Draw(fin,TOOL_HORIZONTAL_LINE,x+1,x+sizex-2,y+sizey-2,COLOR_MIDDLE_LIGHT);
Draw(fin,TOOL_VERTICAL_LINE,x+1,y+1,y+sizey-2,COLOR_LIGHT);
 
if (Button->child_bk!=NULL)
{
if (fin->flags & FINITION_ON)
{
message.type=MESSAGE_FULL_REDRAW_ALL_WITH_FINITION;
message.arg1=fin->x;
message.arg2=fin->y;
message.arg3=fin->sizex;
message.arg4=fin->sizey;
}
else
{
message.type=MESSAGE_FULL_REDRAW_ALL;
}
SendMessage((struct HEADER*)Button,&message);
}
if (Button->flags & FLAG_FOCUSE_INPUT_ON) DrawFocuseForButton(Button);
}
 
//---------------------------------------------------------------------------------
// control Button
//---------------------------------------------------------------------------------
void ButtonProc(struct ControlButton *button,struct MESSAGE *message)
{
int x,y,btn_state;
char v;
struct TIMER *timer;
struct FINITION *fin;
parent_t *main_parent;
 
switch(message->type)
{
case MESSAGE_FULL_REDRAW_ALL:
{
//draw button
if (button->flags & FLAG_SHOW_CONTROL) DrawButton(button);
break;
}
case MESSAGE_FULL_REDRAW_ALL_WITH_FINITION:
{
fin=(struct FINITION*)button->finition;
fin->flags=fin->flags | FINITION_ON;
fin->x=message->arg1;
fin->y=message->arg2;
fin->sizex=message->arg3;
fin->sizey=message->arg4;
DrawButton(button);
break;
}
case MESSAGE_KEYS_EVENT:
{
main_parent=(parent_t*)button->main_parent;
//not relazed yet
if (button->flags & FLAG_FOCUSE_INPUT_ON)
{
if (message->arg1==KEY_DOWN)
{
if (message->arg2==SC_SPACE)
{
button->btn_flags=button->btn_flags | FLAG_PRESSED_BUTTON_ON;
 
if (ControlCheckCallbackEvent(button,(DWORD)BUTTON_PRESSED_EVENT)!=NULL)
{
button->flags=button->flags | FLAG_CONNECT_EVENT_ON;
main_parent->control_for_callback_function[main_parent->number_callbacks]=
(DWORD*)button;
main_parent->callback_for_control_callback[main_parent->number_callbacks]=
(DWORD*)ControlCheckCallbackEvent(button,(DWORD)BUTTON_PRESSED_EVENT);
main_parent->number_callbacks++;
}
if (button->flags & FLAG_SHOW_CONTROL) DrawPressedButton(button);
}
}
else
{
if (message->arg2==SC_SPACE)
{
button->btn_flags=button->btn_flags | FLAG_RELEASED_BUTTON_ON;
button->btn_flags=button->btn_flags & FLAG_PRESSED_BUTTON_OFF;
 
if (ControlCheckCallbackEvent(button,(DWORD)BUTTON_RELEASED_EVENT)!=NULL)
{
button->flags=button->flags | FLAG_CONNECT_EVENT_ON;
main_parent->control_for_callback_function[main_parent->number_callbacks]=
(DWORD*)button;
main_parent->callback_for_control_callback[main_parent->number_callbacks]=
(DWORD*)ControlCheckCallbackEvent(button,(DWORD)BUTTON_RELEASED_EVENT);
main_parent->number_callbacks++;
}
if (button->flags & FLAG_SHOW_CONTROL) DrawButton(button);
}
}
}
break;
}
case MESSAGE_SPECIALIZED:
{
if (button->flags & FLAG_GET_SPECIALIZED_MESSAGE_ON)
{
if (button->flags & FLAG_SHOW_CONTROL) DrawButton(button);
button->flags=button->flags & FLAG_GET_SPECIALIZED_MESSAGE_OFF;
}
break;
}
case MESSAGE_MOUSE_EVENT:
{ //check press of mouse buttons
x=message->arg1;
y=message->arg2;
main_parent=(parent_t*)button->main_parent;
 
if (message->arg3==MOUSE_LEFT_BUTTON_UP)
{
//insert of button
if (CheckCrossBox((struct HEADER*)button,x,y)==TRUE)
{
v=button->btn_flags & FLAG_INSERT_BUTTON_ON;
if ((ControlCheckCallbackEvent(button,(DWORD)BUTTON_ENTER_EVENT)!=NULL) && (v==FALSE))
{
button->flags=button->flags | FLAG_CONNECT_EVENT_ON;
main_parent->control_for_callback_function[main_parent->number_callbacks]=
(DWORD*)button;
main_parent->callback_for_control_callback[main_parent->number_callbacks]=
(DWORD*)ControlCheckCallbackEvent(button,(DWORD)BUTTON_ENTER_EVENT);
main_parent->number_callbacks++;
}
button->btn_flags=button->btn_flags | FLAG_INSERT_BUTTON_ON;
 
if (button->flags & FLAG_SHOW_CONTROL) DrawInsertButton(button);
}
else
{
v=button->btn_flags & FLAG_INSERT_BUTTON_ON;
if (v==TRUE)
{
if (ControlCheckCallbackEvent(button,(DWORD)BUTTON_LEAVE_EVENT)!=NULL)
{
button->flags=button->flags | FLAG_CONNECT_EVENT_ON;
main_parent->control_for_callback_function[main_parent->number_callbacks]=
(DWORD*)button;
main_parent->callback_for_control_callback[main_parent->number_callbacks]=
(DWORD*)ControlCheckCallbackEvent(button,(DWORD)BUTTON_LEAVE_EVENT);
main_parent->number_callbacks++;
}
button->btn_flags=button->btn_flags & FLAG_INSERT_BUTTON_OFF;
if (button->flags & FLAG_SHOW_CONTROL) DrawButton(button);
}
}
 
if (button->btn_flags & FLAG_PRESSED_BUTTON_ON)
{
button->btn_flags=button->btn_flags & FLAG_PRESSED_BUTTON_OFF;
button->btn_flags=button->btn_flags | FLAG_RELEASED_BUTTON_ON;
 
if (ControlCheckCallbackEvent(button,(DWORD)BUTTON_RELEASED_EVENT)!=NULL)
{
button->flags=button->flags | FLAG_CONNECT_EVENT_ON;
main_parent->control_for_callback_function[main_parent->number_callbacks]=
(DWORD*)button;
main_parent->callback_for_control_callback[main_parent->number_callbacks]=
(DWORD*)ControlCheckCallbackEvent(button,(DWORD)BUTTON_RELEASED_EVENT);
main_parent->number_callbacks++;
}
if (button->flags & FLAG_SHOW_CONTROL) DrawButton(button);
}
}
else
{
if (CheckCrossBox((struct HEADER*)button,x,y)==TRUE)
{
if (message->arg3==MOUSE_LEFT_BUTTON_DOWN)
{
if ((button->btn_flags & FLAG_PRESSED_BUTTON_ON)==FALSE)
{if (button->flags & FLAG_SHOW_CONTROL)
DrawPressedButton(button);}
button->btn_flags=button->btn_flags | FLAG_PRESSED_BUTTON_ON;
}
}
 
if ((message->arg3==MOUSE_LEFT_BUTTON_DOWN) && (button->btn_flags & FLAG_PRESSED_BUTTON_ON))
{
if (ControlCheckCallbackEvent(button,(DWORD)BUTTON_PRESSED_EVENT)!=NULL)
{
button->flags=button->flags | FLAG_CONNECT_EVENT_ON;
main_parent->control_for_callback_function[main_parent->number_callbacks]=
(DWORD*)button;
main_parent->callback_for_control_callback[main_parent->number_callbacks]=
(DWORD*)ControlCheckCallbackEvent(button,(DWORD)BUTTON_PRESSED_EVENT);
main_parent->number_callbacks++;
}
}
}
break;
}
case MESSAGE_CHANGE_POSITION_EVENT:
{
button->ctrl_x=button->ctrl_x+message->arg1;
button->ctrl_y=button->ctrl_y+message->arg2;
break;
}
case MESSAGE_CALL_TIMER_EVENT:
{
if (button->timer!=(DWORD*)NULL)
{
timer=(struct TIMER*)button->timer;
if (timer->flags & FLAG_TIMER_ON) Timer(timer);
}
break;
}
case MESSAGE_SET_FOCUSE:
{
button->flags=button->flags | FLAG_FOCUSE_INPUT_ON;
if (button->flags & FLAG_SHOW_CONTROL) DrawButton(button);
break;
}
case MESSAGE_CHANGE_FOCUSE:
{
button->flags=button->flags & FLAG_FOCUSE_INPUT_OFF;
if (button->flags & FLAG_SHOW_CONTROL) DrawButton(button);
break;
}
case MESSAGE_DESTROY_CONTROL:
{
if (button->timer!=(DWORD*)NULL) free(button->timer);
free(button->finition);
break;
}
case MESSAGE_SET_MAIN_PARENT:
{
SendMessage((struct HEADER*)button,message);
button->main_parent=(DWORD*)message->arg1;
break;
}
default: break;
}
//send message to child controls(if there is)
SendMessage((struct HEADER*)button,message);
}
 
//---------------------------------------------------------------------------------
// create control Button
//---------------------------------------------------------------------------------
void* CreateButton(struct ButtonData *info_for_control)
{
struct ControlButton *Button;
struct FINITION *fin;
 
Button=malloc(sizeof(struct ControlButton));
Button->finition=malloc(sizeof(struct FINITION));
fin=(struct FINITION*)Button->finition;
fin->flags=0;
ID++;
#ifdef DEBUG
printf("\ncreated button with ID=%d",(int)ID);
#endif
Button->child_bk=(DWORD*)NULL;
Button->child_fd=(DWORD*)NULL;
Button->active_control_for_keys=(DWORD*)NULL;
Button->active_control_for_mouse=(DWORD*)NULL;
Button->callback=(DWORD*)NULL;
Button->timer=(DWORD*)NULL;
 
Button->ctrl_proc=(DWORD*)&ButtonProc;
Button->ctrl_x=info_for_control->x;
Button->ctrl_y=info_for_control->y;
Button->ctrl_sizex=info_for_control->width;
Button->ctrl_sizey=info_for_control->height;
Button->ctrl_ID=ID;
Button->flags=0;
Button->flags=Button->flags | FLAG_SHOW_CONTROL;
Button->flags=Button->flags | FLAG_FOCUSE_INPUT_SUPPOROTE;
 
Button->btn_flags=0;
 
return(Button);
}
 
void* CreateButtonWithText(gui_button_data_t *info,char *txt)
{
gui_button_t *Button;
gui_text_t *text;
gui_text_data_t txtdata;
int len;
Button=CreateButton(info);
len=strlen(txt)+1;//one byte for simbol end of string
txtdata.x=0;
txtdata.y=0;
txtdata.font=NULL;
txtdata.background=FALSE;
txtdata.color=0;
txtdata.text=malloc(len);
memmove(txtdata.text,txt,len);
txtdata.text[len]='\0';
text=CreateText(&txtdata);
 
if (text->ctrl_sizex>Button->ctrl_sizex) Button->ctrl_sizex=text->ctrl_sizex+10;
if (text->ctrl_sizey>Button->ctrl_sizey) Button->ctrl_sizey=text->ctrl_sizey+6;
text->ctrl_x=(Button->ctrl_sizex/2)-(text->ctrl_sizex/2);
text->ctrl_y=(Button->ctrl_sizey/2)-(text->ctrl_sizey/2);
PackControls(Button,text);
return(Button);
}
 
/programs/develop/libraries/libGUI/SRC/control_image.h
--- SRC/control_image.inc (nonexistent)
+++ SRC/control_image.inc (revision 1176)
@@ -0,0 +1,162 @@
+/*
+ control Image
+*/
+
+void DisplayImage(gui_image_t *Image)
+{
+ int x;
+ int y;
+ int sizex;
+ int sizey;
+ struct FINITION *fin;
+
+ x=Image->ctrl_x;
+ y=Image->ctrl_y;
+ sizex=Image->ctrl_sizex;
+ sizey=Image->ctrl_sizey;
+ fin=(struct FINITION*)Image->finition;
+
+ Draw(fin,TOOL_IMAGE,x,y,sizex,sizey,Image->bits_per_pixel,Image->img);
+}
+
+//---------------------------------------------------------------------------------
+// control Image
+//---------------------------------------------------------------------------------
+void ImageProc(gui_image_t *Image,gui_message_t *message)
+{
+ finition_t *fin;
+
+ switch(message->type)
+ {
+ case MESSAGE_FULL_REDRAW_ALL:
+ {
+ //draw Image
+ if (Image->flags & FLAG_SHOW_CONTROL) DisplayImage(Image);
+ break;
+ }
+ case MESSAGE_FULL_REDRAW_ALL_WITH_FINITION:
+ {
+ fin=(struct FINITION*)Image->finition;
+ fin->flags=fin->flags | FINITION_ON;
+ fin->x=message->arg1;
+ fin->y=message->arg2;
+ fin->sizex=message->arg3;
+ fin->sizey=message->arg4;
+ DisplayImage(Image);
+ break;
+ }
+ case MESSAGE_SPECIALIZED:
+ {
+ if (Image->flags & FLAG_GET_SPECIALIZED_MESSAGE_ON)
+ {
+ if (Image->flags & FLAG_SHOW_CONTROL) DisplayImage(Image);
+ Image->flags=Image->flags & FLAG_GET_SPECIALIZED_MESSAGE_OFF;
+ }
+ break;
+ }
+ case MESSAGE_CHANGE_POSITION_EVENT:
+ {
+ Image->ctrl_x=Image->ctrl_x+message->arg1;
+ Image->ctrl_y=Image->ctrl_y+message->arg2;
+ break;
+ }
+ case MESSAGE_DESTROY_CONTROL:
+ {
+ free(Image->finition);
+ free(Image->img);
+ break;
+ }
+ case MESSAGE_SET_MAIN_PARENT:
+ {
+ SendMessage((struct HEADER*)Image,message);
+ Image->main_parent=(DWORD*)message->arg1;
+ break;
+ }
+
+ default: break;
+ }
+ //send message to child controls(if there is)
+ SendMessage((struct HEADER*)Image,message);
+}
+
+//---------------------------------------------------------------------------------
+// create control Image
+//---------------------------------------------------------------------------------
+void* CreateImage(struct ImageData *info_for_control)
+{
+ gui_image_t *Image;
+ finition_t *fin;
+ DWORD sizemem;
+
+ Image=malloc(sizeof(struct ControlImage));
+ Image->finition=malloc(sizeof(struct FINITION));
+ fin=(struct FINITION*)Image->finition;
+ fin->flags=0;
+
+ ID++;
+#ifdef DEBUG
+ printf("\ncreated image with ID=%d",(int)ID);
+#endif
+ Image->child_bk=(DWORD*)NULL;
+ Image->child_fd=(DWORD*)NULL;
+ Image->active_control_for_keys=(DWORD*)NULL;
+ Image->active_control_for_mouse=(DWORD*)NULL;
+ Image->callback=(DWORD*)NULL;
+ Image->timer=(DWORD*)NULL;
+
+ Image->ctrl_proc=(DWORD*)&ImageProc;
+ Image->ctrl_x=(DWORD)info_for_control->x;
+ Image->ctrl_y=(DWORD)info_for_control->y;
+ Image->ctrl_sizex=(DWORD)info_for_control->width;
+ Image->ctrl_sizey=(DWORD)info_for_control->height;
+ Image->bits_per_pixel=info_for_control->bits_per_pixel;
+ Image->ctrl_ID=ID;
+ Image->flags=0;
+ Image->flags=Image->flags | FLAG_SHOW_CONTROL;
+
+ switch(Image->bits_per_pixel)
+ {
+ case 32:
+ {
+ sizemem=(Image->ctrl_sizex*Image->ctrl_sizey)*4;
+ Image->bytes_per_pixel=4;
+ break;
+ }
+ case 24:
+ {
+ sizemem=(Image->ctrl_sizex*Image->ctrl_sizey)*3;
+ Image->bytes_per_pixel=3;
+ break;
+ }
+ case 16:
+ {
+ sizemem=(Image->ctrl_sizex*Image->ctrl_sizey)*2;
+ Image->bytes_per_pixel=2;
+ break;
+ }
+ case 15:
+ {
+ sizemem=(Image->ctrl_sizex*Image->ctrl_sizey)*2;
+ Image->bytes_per_pixel=2;
+ break;
+ }
+ case 8:
+ {
+ sizemem=Image->ctrl_sizex*Image->ctrl_sizey;
+ Image->bytes_per_pixel=1;
+ break;
+ }
+ case 4:
+ {
+ sizemem=((Image->ctrl_sizex*Image->ctrl_sizey)>>1)+1;
+ Image->bytes_per_pixel=0;
+ break;
+ }
+ default: return(NULL);
+ }
+
+ Image->img=malloc(sizemem);
+
+ return(Image);
+}
+
/programs/develop/libraries/libGUI/SRC/control_progress_bar.h
0,0 → 1,16
#define FLAG_PB_VERTICAL_ORIENTATION_ON 0x1
#define FLAG_PB_HORIZONTAL_ORIENTATION_ON 0x2
#define FLAG_PB_FROM_LEFT_TO_RIGHT_ON 0x4
#define FLAG_PB_FROM_RIGHT_TO_LEFT_ON 0x8
#define FLAG_PB_FROM_DOWN_TO_UP_ON 0x10
#define FLAG_PB_FROM_UP_TO_DOWN_ON 0x20
#define FLAG_PB_TEXT_ON 0x40
 
#define FLAG_PB_VERTICAL_ORIENTATION_OFF 0xfe
#define FLAG_PB_HORIZONTAL_ORIENTATION_OFF 0xfd
#define FLAG_PB_FROM_LEFT_TO_RIGHT_OFF 0xfb
#define FLAG_PB_FROM_RIGHT_TO_LEFT_OFF 0xf7
#define FLAG_PB_FROM_DOWN_TO_UP_OFF 0xef
#define FLAG_PB_FROM_UP_TO_DOWN_OFF 0xdf
#define FLAG_PB_TEXT_OFF 0xbf
 
/programs/develop/libraries/libGUI/SRC/control_progress_bar.inc
0,0 → 1,320
/*
control ProgressBar
*/
 
void ProgressBarDrawProgress(struct ControlProgressBar *ProgressBar)
{
int x;
int y;
int pos_progress;
int sizex;
int sizey;
char v;
struct FINITION *fin;
gui_message_t message;
gui_text_size_t size;
gui_text_t *Text;
if ((ProgressBar->flags & FLAG_SHOW_CONTROL)==FALSE) return;
 
x=ProgressBar->ctrl_x;
y=ProgressBar->ctrl_y;
sizex=ProgressBar->ctrl_sizex;
sizey=ProgressBar->ctrl_sizey;
fin=(struct FINITION*)ProgressBar->finition;
 
if (ProgressBar->progress<0.0) ProgressBar->progress=0.0;
if (ProgressBar->progress>1.0) ProgressBar->progress=1.0;
 
v=ProgressBar->prb_flags & FLAG_PB_HORIZONTAL_ORIENTATION_ON;
if (v!=FALSE)
{
pos_progress=(int)(ProgressBar->progress*(sizex-2));
 
if (ProgressBar->prb_flags & FLAG_PB_FROM_LEFT_TO_RIGHT_ON)
{
Draw(fin,TOOL_GRADIENT_UP_FILLED_RECTANGLE,x+1,y+1,pos_progress,sizey-2,COLOR_FON,COLOR_MIDDLE_LIGHT);
Draw(fin,TOOL_GRADIENT_UP_FILLED_RECTANGLE,x+1+pos_progress,y+1,sizex-2-pos_progress,
sizey-2,COLOR_MIDDLE_LIGHT,COLOR_LIGHT);
if (ProgressBar->prb_flags & FLAG_PB_TEXT_ON)
{
if (fin->flags & FINITION_ON)
{
message.type=MESSAGE_FULL_REDRAW_ALL_WITH_FINITION;
message.arg1=fin->x;
message.arg2=fin->y;
message.arg3=fin->sizex;
message.arg4=fin->sizey;
}
else
{
message.type=MESSAGE_FULL_REDRAW_ALL;
}
Text=(gui_text_t*)ProgressBar->child_bk;
size=GetStringSize((font_t*)Text->font,Text->text);
Text->ctrl_sizex=(DWORD)size.sizex;
Text->ctrl_sizey=(DWORD)size.sizey;
Text->ctrl_x=x+(sizex/2)-(Text->ctrl_sizex/2);
Text->ctrl_y=y+(sizey/2)-(Text->ctrl_sizey/2);
SendMessage((struct HEADER*)ProgressBar,&message);
}
}
 
if (ProgressBar->prb_flags & FLAG_PB_FROM_RIGHT_TO_LEFT_ON)
{
//Draw(fin,"filled_rectangle",x+sizex-pos_progress-1,y+1,x+sizex-1,sizey-2,0xff0000);
}
}
}
 
void DrawProgressBar(struct ControlProgressBar *ProgressBar)
{
int x,y,sizex,sizey;
char c;
char *save_buf,*buf;
int save_size_x,save_size_y;
DWORD draw_output,flags;
finition_t *fin;
 
x=ProgressBar->ctrl_x;
y=ProgressBar->ctrl_y;
sizex=ProgressBar->ctrl_sizex;
sizey=ProgressBar->ctrl_sizey;
fin=(struct FINITION*)ProgressBar->finition;
 
//alocate a buffer for draw text
c=screen.bits_per_pixel >> 3;
buf=malloc(sizex*sizey*c);
 
//save current screen parameters
save_buf=screen.buffer;
save_size_x=screen.size_x;
save_size_y=screen.size_y;
draw_output=screen.draw_output;
 
//load parameters of local buffer
screen.buffer=buf;
screen.size_x=sizex;
screen.size_y=sizey;
screen.draw_output=DRAW_OUTPUT_BUFFER;
 
//move control
SetControlNewPosition(ProgressBar,0,0);
//save finition parameters
flags=fin->flags;
fin->flags &=FINITION_OFF;
 
//draw progress bar in buffer
Draw(fin,TOOL_RECTANGLE,0,0,sizex,sizey,COLOR_ABSOLUTE_DARK);
ProgressBarDrawProgress(ProgressBar);
 
//restore last position of control
SetControlNewPosition(ProgressBar,x,y);
//restore finition
fin->flags=flags;
 
//restore screen parameters
screen.buffer=save_buf;
screen.size_x=save_size_x;
screen.size_y=save_size_y;
screen.draw_output=draw_output;
 
//move rendered objects from local buffer to screen
if (fin->flags & FINITION_ON)
DrawImageFinit(fin,x,y,sizex,sizey,screen.bits_per_pixel,buf);
else
DrawImage(x,y,sizex,sizey,screen.bits_per_pixel,buf);
 
//free local buffer
free(buf);
}
 
void SetProgressBarPulse(struct ControlProgressBar *ProgressBar,int time_tick)
{
struct TIMER *timer;
struct HEADERPARENT *main_parent;
 
main_parent=(struct HEADERPARENT*)ProgressBar->main_parent;
if (main_parent!=(struct HEADERPARENT*)NULL)
{
main_parent->number_timers_for_controls++;
 
ProgressBar->timer=(DWORD*)SetTimerCallbackForControl(time_tick,&DrawProgressBar,ProgressBar);
timer=(struct TIMER*)ProgressBar->timer;
timer->flags=timer->flags | FLAG_TIMER_ON;
}
}
 
//---------------------------------------------------------------------------------
// control ProgressBar
//---------------------------------------------------------------------------------
void ProgressBarProc(struct ControlProgressBar *ProgressBar,struct MESSAGE *message)
{
int btn_state;
char v;
struct TIMER *timer;
struct FINITION *fin;
 
switch(message->type)
{
case MESSAGE_FULL_REDRAW_ALL:
{
//draw ProgressBar
if (ProgressBar->flags & FLAG_SHOW_CONTROL) DrawProgressBar(ProgressBar);
break;
}
case MESSAGE_FULL_REDRAW_ALL_WITH_FINITION:
{
fin=(struct FINITION*)ProgressBar->finition;
fin->flags=fin->flags | FINITION_ON;
fin->x=message->arg1;
fin->y=message->arg2;
fin->sizex=message->arg3;
fin->sizey=message->arg4;
DrawProgressBar(ProgressBar);
break;
}
case MESSAGE_SPECIALIZED:
{ //redraw bar of progress
if (ProgressBar->flags & FLAG_GET_SPECIALIZED_MESSAGE_ON)
{
if (ProgressBar->flags & FLAG_SHOW_CONTROL) ProgressBarDrawProgress(ProgressBar);
ProgressBar->flags=ProgressBar->flags & FLAG_GET_SPECIALIZED_MESSAGE_OFF;
}
break;
}
case MESSAGE_CHANGE_POSITION_EVENT:
{
ProgressBar->ctrl_x=ProgressBar->ctrl_x+message->arg1;
ProgressBar->ctrl_y=ProgressBar->ctrl_y+message->arg2;
SendMessage((struct HEADER*)ProgressBar,message);
break;
}
case MESSAGE_CALL_TIMER_EVENT:
{
if (ProgressBar->timer!=(DWORD*)NULL)
{
timer=(struct TIMER*)ProgressBar->timer;
if (timer->flags & FLAG_TIMER_ON) Timer(timer);
}
SendMessage((struct HEADER*)ProgressBar,message);
break;
}
case MESSAGE_DESTROY_CONTROL:
{
if (ProgressBar->timer!=(DWORD*)NULL) free(ProgressBar->timer);
free(ProgressBar->finition);
SendMessage((struct HEADER*)ProgressBar,message);
break;
}
case MESSAGE_SET_MAIN_PARENT:
{
SendMessage((struct HEADER*)ProgressBar,message);
ProgressBar->main_parent=(DWORD*)message->arg1;
SendMessage((struct HEADER*)ProgressBar,message);
break;
}
 
default: break;
}
}
 
//---------------------------------------------------------------------------------
// create control ProgressBar
//---------------------------------------------------------------------------------
void* CreateProgressBarEmpty(struct ProgressBarData *info_for_control)
{
struct ControlProgressBar *ProgressBar;
struct FINITION *fin;
 
ProgressBar=malloc(sizeof(struct ControlProgressBar));
ProgressBar->finition=malloc(sizeof(struct FINITION));
fin=(struct FINITION*)ProgressBar->finition;
fin->flags=0;
 
ID++;
#ifdef DEBUG
printf("\ncreated progress bar with ID=%d",(int)ID);
#endif
ProgressBar->child_bk=(DWORD*)NULL;
ProgressBar->child_fd=(DWORD*)NULL;
ProgressBar->active_control_for_keys=(DWORD*)NULL;
ProgressBar->active_control_for_mouse=(DWORD*)NULL;
ProgressBar->callback=(DWORD*)NULL;
ProgressBar->timer=(DWORD*)NULL;
ProgressBar->ctrl_proc=(DWORD*)&ProgressBarProc;
ProgressBar->ctrl_x=(DWORD)info_for_control->x;
ProgressBar->ctrl_y=(DWORD)info_for_control->y;
ProgressBar->ctrl_sizex=(DWORD)info_for_control->width;
ProgressBar->ctrl_sizey=(DWORD)info_for_control->height;
ProgressBar->ctrl_ID=ID;
ProgressBar->progress=info_for_control->progress;
ProgressBar->flags=0;
ProgressBar->flags=ProgressBar->flags | FLAG_SHOW_CONTROL;
 
ProgressBar->prb_flags=0;
ProgressBar->prb_flags=ProgressBar->prb_flags | FLAG_PB_HORIZONTAL_ORIENTATION_ON;
ProgressBar->prb_flags=ProgressBar->prb_flags | FLAG_PB_FROM_LEFT_TO_RIGHT_ON;
 
return(ProgressBar);
}
 
void* CreateProgressBar(gui_progress_bar_data_t *info)
{
gui_text_t *text;
gui_text_data_t txtdata;
gui_progress_bar_t *pbar;
pbar=CreateProgressBarEmpty(info);
txtdata.x=0;
txtdata.y=0;
txtdata.font=NULL;
txtdata.background=FALSE;
txtdata.color=0;
txtdata.text=malloc(16);
txtdata.text[0]='\0';
text=CreateText(&txtdata);
text->ctrl_x=pbar->ctrl_sizex/2;
text->ctrl_y=pbar->ctrl_sizey/2;
PackControls(pbar,text);
text->flags &=FLAG_HIDE_CONTROL;
 
return(pbar);
}
 
void ProgressBarSetText(gui_progress_bar_t *pbar,char *txt)
{
gui_text_t *text;
long len1,len2;
text=(gui_text_t*)pbar->child_bk;
if (*txt!='\0')
{
len1=strlen(text->text);
len2=strlen(txt);
if (len1<len2)
{
free(text->text);
text->text=malloc(len2+1);//one byte for simbol end of string
}
memmove(text->text,txt,len2);
text->text[len2]='\0';
pbar->prb_flags|=FLAG_PB_TEXT_ON;
text->flags |=FLAG_SHOW_CONTROL;
}
}
 
char *ProgressBarGetText(gui_progress_bar_t *pbar)
{
gui_text_t *text;
 
text=(gui_text_t*)pbar->child_bk;
return(text->text);
}
/programs/develop/libraries/libGUI/SRC/control_scroll_bar.h
0,0 → 1,6
#define FLAG_SCROLL_BAR_ORIENTATION_HORIZONTAL_ON 0x1
#define FLAG_SCROLL_BAR_ORIENTATION_HORIZONTAL_OFF 0xfe
#define FLAG_SCROLL_BAR_ORIENTATION_VERTICAL_ON 0x2
#define FLAG_SCROLL_BAR_ORIENTATION_VERTICAL_OFF 0xfd
#define FLAG_SCROLL_RULLER_PRESSED 0x4
#define FLAG_SCROLL_RULLER_RELEASED 0xfb
/programs/develop/libraries/libGUI/SRC/control_scroll_bar.inc
0,0 → 1,801
/*
control ScrollBar
*/
 
////////////////////////////////////////////////////////////////////////////////
// Draw Ruller
////////////////////////////////////////////////////////////////////////////////
void DrawRuller(struct ControlScrollBar *ScrollBar)
{
int x,y,sizex,sizey;
int scrollbar_size,ruller_size,ruller_pos;
struct FINITION *fin;
 
x=ScrollBar->ctrl_x;
y=ScrollBar->ctrl_y;
sizex=ScrollBar->ctrl_sizex;
sizey=ScrollBar->ctrl_sizey;
fin=(struct FINITION*)ScrollBar->finition;
 
if (ScrollBar->scb_flags & FLAG_SCROLL_BAR_ORIENTATION_HORIZONTAL_ON)
{
scrollbar_size=sizex-sizey*2;
ruller_size=(int)(scrollbar_size*ScrollBar->ruller_size);
if (ruller_size<5) ruller_size=5;
if (ruller_size>sizex) ruller_size=sizex-2*sizey;
 
ruller_pos=x+sizey+(int)((scrollbar_size-ruller_size)*ScrollBar->ruller_pos);
//left bar
Draw(fin,TOOL_FILLED_RECTANGLE,x+sizey,y+1,ruller_pos-x-sizey,sizey-2,COLOR_FON);
//right bar
Draw(fin,TOOL_FILLED_RECTANGLE,ruller_pos+ruller_size,y+1,x+sizex-sizey-ruller_pos-ruller_size,sizey-2,COLOR_FON);
//roller
Draw(fin,TOOL_RECTANGLE,ruller_pos,y,ruller_size,sizey,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_FILLED_RECTANGLE,ruller_pos+1,y+1,ruller_size-2,sizey-2,COLOR_MIDDLE_LIGHT);
Draw(fin,TOOL_VERTICAL_LINE,ruller_pos+(ruller_size/2)-2,y+sizey/4,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_VERTICAL_LINE,ruller_pos+(ruller_size/2),y+sizey/4,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_VERTICAL_LINE,ruller_pos+(ruller_size/2)+2,y+sizey/4,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
}
 
if (ScrollBar->scb_flags & FLAG_SCROLL_BAR_ORIENTATION_VERTICAL_ON)
{
scrollbar_size=sizey-sizex*2;
ruller_size=(int)(scrollbar_size*ScrollBar->ruller_size);
if (ruller_size<5) ruller_size=5;
if (ruller_size>sizey) ruller_size=sizey-2*sizex;
 
ruller_pos=y+sizex+(int)((scrollbar_size-ruller_size)*ScrollBar->ruller_pos);
//up bar
Draw(fin,TOOL_FILLED_RECTANGLE,x+1,y+sizex,sizex-2,ruller_pos-y-sizex,COLOR_FON);
//down bar
Draw(fin,TOOL_FILLED_RECTANGLE,x+1,ruller_pos+ruller_size,sizex-2,y+sizey-sizex-ruller_pos-ruller_size,COLOR_FON);
//roller
Draw(fin,TOOL_RECTANGLE,x,ruller_pos,sizex,ruller_size,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_FILLED_RECTANGLE,x+1,ruller_pos+1,sizex-2,ruller_size-2,COLOR_MIDDLE_LIGHT);
Draw(fin,TOOL_HORIZONTAL_LINE,x+sizex/4,x+(3*sizex)/4,ruller_pos+(ruller_size/2)-2,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_HORIZONTAL_LINE,x+sizex/4,x+(3*sizex)/4,ruller_pos+(ruller_size/2),COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_HORIZONTAL_LINE,x+sizex/4,x+(3*sizex)/4,ruller_pos+(ruller_size/2)+2,COLOR_ABSOLUTE_DARK);
}
 
}
 
////////////////////////////////////////////////////////////////////////////////
// Draw full Scroll Bar
////////////////////////////////////////////////////////////////////////////////
void DrawScrollBar(struct ControlScrollBar *ScrollBar)
{
int x,y,sizex,sizey;
struct FINITION *fin;
 
x=ScrollBar->ctrl_x;
y=ScrollBar->ctrl_y;
sizex=ScrollBar->ctrl_sizex;
sizey=ScrollBar->ctrl_sizey;
fin=(struct FINITION*)ScrollBar->finition;
 
if (ScrollBar->scb_flags & FLAG_SCROLL_BAR_ORIENTATION_HORIZONTAL_ON)
{
 
//draw child buttons and roller
Draw(fin,TOOL_RECTANGLE,x,y,sizex,sizey,COLOR_ABSOLUTE_DARK);
//left button
Draw(fin,TOOL_RECTANGLE,x,y,sizey,sizey,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_FILLED_RECTANGLE,x+1,y+1,sizey-2,sizey-2,COLOR_MIDDLE_LIGHT);
//left arrow of left button
Draw(fin,TOOL_LINE,x+sizey/3,y+sizey/2,x+(2*sizey)/3,y+sizey/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizey/3,y+sizey/2,x+(2*sizey)/3,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+1+(sizey/3),y+sizey/2,x+1+(2*sizey)/3,y+sizey/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+1+(sizey/3),y+sizey/2,x+1+(2*sizey)/3,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
//right button
Draw(fin,TOOL_RECTANGLE,x+sizex-sizey,y,sizey,sizey,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_FILLED_RECTANGLE,x+sizex-sizey+1,y+1,sizey-2,sizey-2,COLOR_MIDDLE_LIGHT);
//right arrow of right button
Draw(fin,TOOL_LINE,x+sizex-sizey/3,y+sizey/2,x+sizex-(2*sizey)/3,y+sizey/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex-sizey/3,y+sizey/2,x+sizex-(2*sizey)/3,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex-1-(sizey/3),y+sizey/2,x+sizex-1-(2*sizey)/3,y+sizey/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex-1-(sizey/3),y+sizey/2,x+sizex-1-(2*sizey)/3,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
//roller
DrawRuller(ScrollBar);
}
 
if (ScrollBar->scb_flags & FLAG_SCROLL_BAR_ORIENTATION_VERTICAL_ON)
{
//draw child buttons and roller
Draw(fin,TOOL_RECTANGLE,x,y,sizex,sizey,COLOR_ABSOLUTE_DARK);
//up button
Draw(fin,TOOL_RECTANGLE,x,y,sizex,sizex,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_FILLED_RECTANGLE,x+1,y+1,sizex-2,sizex-2,COLOR_MIDDLE_LIGHT);
//up arrow of up button
Draw(fin,TOOL_LINE,x+sizex/2,y+sizex/3,x+sizex/4,y+(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+sizex/3,x+(3*sizex)/4,y+(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+1+(sizex/3),x+sizex/4,y+1+(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+1+(sizex/3),x+(3*sizex)/4,y+1+(2*sizex)/3,COLOR_ABSOLUTE_DARK);
//down button
Draw(fin,TOOL_RECTANGLE,x,y+sizey-sizex,sizex,sizex,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_FILLED_RECTANGLE,x+1,y+sizey-sizex+1,sizex-2,sizex-2,COLOR_MIDDLE_LIGHT);
//down arrow of down button
Draw(fin,TOOL_LINE,x+sizex/2,y+sizey-sizex/3,x+sizex/4,y+sizey-(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+sizey-sizex/3,x+(3*sizex)/4,y+sizey-(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+sizey-1-(sizex/3),x+sizex/4,y+sizey-1-(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+sizey-1-(sizex/3),x+(3*sizex)/4,y+sizey-1-(2*sizex)/3,COLOR_ABSOLUTE_DARK);
//roller
DrawRuller(ScrollBar);
}
}
 
////////////////////////////////////////////////////////////////////////////////
// Vertical Scroll Bar
////////////////////////////////////////////////////////////////////////////////
 
////////////////////////////////////////////////////////////////////////////////
// animation of up button of Scroll Bar
////////////////////////////////////////////////////////////////////////////////
void ScrollBar_DrawPressedUpButton(struct ControlScrollBar *ScrollBar)
{
int x,y,sizex,sizey;
struct FINITION *fin;
 
x=ScrollBar->ctrl_x;
y=ScrollBar->ctrl_y;
sizex=ScrollBar->ctrl_sizex;
sizey=ScrollBar->ctrl_sizey;
fin=(struct FINITION*)ScrollBar->finition;
 
//up button
Draw(fin,TOOL_RECTANGLE,x,y,sizex,sizex,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_FILLED_RECTANGLE,x+1,y+1,sizex-2,sizex-2,COLOR_FON);
//up arrow of up button
Draw(fin,TOOL_LINE,x+sizex/2,y+sizex/3,x+sizex/4,y+(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+sizex/3,x+(3*sizex)/4,y+(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+1+(sizex/3),x+sizex/4,y+1+(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+1+(sizex/3),x+(3*sizex)/4,y+1+(2*sizex)/3,COLOR_ABSOLUTE_DARK);
}
 
void ScrollBar_DrawReleasedUpButton(struct ControlScrollBar *ScrollBar)
{
int x,y,sizex,sizey;
struct FINITION *fin;
 
x=ScrollBar->ctrl_x;
y=ScrollBar->ctrl_y;
sizex=ScrollBar->ctrl_sizex;
sizey=ScrollBar->ctrl_sizey;
fin=(struct FINITION*)ScrollBar->finition;
 
//up button
Draw(fin,TOOL_RECTANGLE,x,y,sizex,sizex,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_FILLED_RECTANGLE,x+1,y+1,sizex-2,sizex-2,COLOR_MIDDLE_LIGHT);
//up arrow of up button
Draw(fin,TOOL_LINE,x+sizex/2,y+sizex/3,x+sizex/4,y+(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+sizex/3,x+(3*sizex)/4,y+(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+1+(sizex/3),x+sizex/4,y+1+(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+1+(sizex/3),x+(3*sizex)/4,y+1+(2*sizex)/3,COLOR_ABSOLUTE_DARK);
}
 
////////////////////////////////////////////////////////////////////////////////
// animation of down button of Scroll Bar
////////////////////////////////////////////////////////////////////////////////
void ScrollBar_DrawPressedDownButton(struct ControlScrollBar *ScrollBar)
{
int x,y,sizex,sizey;
struct FINITION *fin;
 
x=ScrollBar->ctrl_x;
y=ScrollBar->ctrl_y;
sizex=ScrollBar->ctrl_sizex;
sizey=ScrollBar->ctrl_sizey;
fin=(struct FINITION*)ScrollBar->finition;
 
//down button
Draw(fin,TOOL_RECTANGLE,x,y+sizey-sizex,sizex,sizex,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_FILLED_RECTANGLE,x+1,y+sizey-sizex+1,sizex-2,sizex-2,COLOR_FON);
//down arrow of down button
Draw(fin,TOOL_LINE,x+sizex/2,y+sizey-sizex/3,x+sizex/4,y+sizey-(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+sizey-sizex/3,x+(3*sizex)/4,y+sizey-(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+sizey-1-(sizex/3),x+sizex/4,y+sizey-1-(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+sizey-1-(sizex/3),x+(3*sizex)/4,y+sizey-1-(2*sizex)/3,COLOR_ABSOLUTE_DARK);
}
 
void ScrollBar_DrawReleasedDownButton(struct ControlScrollBar *ScrollBar)
{
int x,y,sizex,sizey;
struct FINITION *fin;
 
x=ScrollBar->ctrl_x;
y=ScrollBar->ctrl_y;
sizex=ScrollBar->ctrl_sizex;
sizey=ScrollBar->ctrl_sizey;
fin=(struct FINITION*)ScrollBar->finition;
 
//down button
Draw(fin,TOOL_RECTANGLE,x,y+sizey-sizex,sizex,sizex,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_FILLED_RECTANGLE,x+1,y+sizey-sizex+1,sizex-2,sizex-2,COLOR_MIDDLE_LIGHT);
//down arrow of down button
Draw(fin,TOOL_LINE,x+sizex/2,y+sizey-sizex/3,x+sizex/4,y+sizey-(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+sizey-sizex/3,x+(3*sizex)/4,y+sizey-(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+sizey-1-(sizex/3),x+sizex/4,y+sizey-1-(2*sizex)/3,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex/2,y+sizey-1-(sizex/3),x+(3*sizex)/4,y+sizey-1-(2*sizex)/3,COLOR_ABSOLUTE_DARK);
}
 
////////////////////////////////////////////////////////////////////////////////
// callback function for up button of Scroll Bar
////////////////////////////////////////////////////////////////////////////////
void ScrollBar_FuncCallbackForUpButton_Pressed(struct HEADER *control,void *data)
{
struct ControlScrollBar *ScrollBar;
struct HEADERPARENT *main_parent;
 
ScrollBar=(struct ControlScrollBar*)data;
if (ScrollBar->ruller_size!=1.0)
{
ScrollBar->ruller_pos=ScrollBar->ruller_pos-ScrollBar->ruller_step;
}
if (ScrollBar->ruller_pos<0.0) ScrollBar->ruller_pos=0.0;
ScrollBar_DrawPressedUpButton(ScrollBar);
 
if (ControlCheckCallbackEvent(ScrollBar,SCROLLBAR_CHANGED_EVENT)!=NULL)
{
main_parent=(struct HEADERPARENT*)ScrollBar->main_parent;
ScrollBar->flags=ScrollBar->flags | FLAG_CONNECT_EVENT_ON;
main_parent->control_for_callback_function[main_parent->number_callbacks]=
(DWORD*)ScrollBar;
main_parent->callback_for_control_callback[main_parent->number_callbacks]=
(DWORD*)ControlCheckCallbackEvent(ScrollBar,SCROLLBAR_CHANGED_EVENT);
main_parent->number_callbacks++;
}
DrawRuller(ScrollBar);
}
 
void ScrollBar_FuncCallbackForUpButton_Released(struct HEADER *control,void *data)
{
struct ControlScrollBar *ScrollBar;
 
ScrollBar=(struct ControlScrollBar*)data;
ScrollBar_DrawReleasedUpButton(ScrollBar);
}
 
////////////////////////////////////////////////////////////////////////////////
// callback function for down button of Scroll Bar
////////////////////////////////////////////////////////////////////////////////
void ScrollBar_FuncCallbackForDownButton_Pressed(struct HEADER *control,void *data)
{
struct ControlScrollBar *ScrollBar;
struct HEADERPARENT *main_parent;
 
ScrollBar=(struct ControlScrollBar*)data;
if (ScrollBar->ruller_size!=1.0)
{
ScrollBar->ruller_pos=ScrollBar->ruller_pos+ScrollBar->ruller_step;
}
if (ScrollBar->ruller_pos>1.0) ScrollBar->ruller_pos=1.0;
ScrollBar_DrawPressedDownButton(ScrollBar);
 
if (ControlCheckCallbackEvent(ScrollBar,SCROLLBAR_CHANGED_EVENT)!=NULL)
{
main_parent=(struct HEADERPARENT*)ScrollBar->main_parent;
ScrollBar->flags=ScrollBar->flags | FLAG_CONNECT_EVENT_ON;
main_parent->control_for_callback_function[main_parent->number_callbacks]=
(DWORD*)ScrollBar;
main_parent->callback_for_control_callback[main_parent->number_callbacks]=
(DWORD*)ControlCheckCallbackEvent(ScrollBar,SCROLLBAR_CHANGED_EVENT);
main_parent->number_callbacks++;
}
DrawRuller(ScrollBar);
}
 
void ScrollBar_FuncCallbackForDownButton_Released(struct HEADER *control,void *data)
{
struct ControlScrollBar *ScrollBar;
 
ScrollBar=(struct ControlScrollBar*)data;
ScrollBar_DrawReleasedDownButton(ScrollBar);
DrawRuller(ScrollBar);
}
 
////////////////////////////////////////////////////////////////////////////////
// Horizontal Scroll Bar
////////////////////////////////////////////////////////////////////////////////
 
////////////////////////////////////////////////////////////////////////////////
// animation of left button of Scroll Bar
////////////////////////////////////////////////////////////////////////////////
void ScrollBar_DrawPressedLeftButton(struct ControlScrollBar *ScrollBar)
{
int x,y,sizex,sizey;
struct FINITION *fin;
 
x=ScrollBar->ctrl_x;
y=ScrollBar->ctrl_y;
sizex=ScrollBar->ctrl_sizex;
sizey=ScrollBar->ctrl_sizey;
fin=(struct FINITION*)ScrollBar->finition;
 
//left button
Draw(fin,TOOL_FILLED_RECTANGLE,x+1,y+1,sizey-2,sizey-2,COLOR_FON);
//left arrow of left button
Draw(fin,TOOL_LINE,x+sizey/3,y+sizey/2,x+(2*sizey)/3,y+sizey/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizey/3,y+sizey/2,x+(2*sizey)/3,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+1+(sizey/3),y+sizey/2,x+1+(2*sizey)/3,y+sizey/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+1+(sizey/3),y+sizey/2,x+1+(2*sizey)/3,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
}
 
void ScrollBar_DrawReleasedLeftButton(struct ControlScrollBar *ScrollBar)
{
int x,y,sizex,sizey;
struct FINITION *fin;
 
x=ScrollBar->ctrl_x;
y=ScrollBar->ctrl_y;
sizex=ScrollBar->ctrl_sizex;
sizey=ScrollBar->ctrl_sizey;
fin=(struct FINITION*)ScrollBar->finition;
 
//left button
Draw(fin,TOOL_FILLED_RECTANGLE,x+1,y+1,sizey-2,sizey-2,COLOR_MIDDLE_LIGHT);
//left arrow of left button
Draw(fin,TOOL_LINE,x+sizey/3,y+sizey/2,x+(2*sizey)/3,y+sizey/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizey/3,y+sizey/2,x+(2*sizey)/3,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+1+(sizey/3),y+sizey/2,x+1+(2*sizey)/3,y+sizey/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+1+(sizey/3),y+sizey/2,x+1+(2*sizey)/3,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
}
 
////////////////////////////////////////////////////////////////////////////////
// animation of right button of Scroll Bar
////////////////////////////////////////////////////////////////////////////////
void ScrollBar_DrawPressedRightButton(struct ControlScrollBar *ScrollBar)
{
int x,y,sizex,sizey;
struct FINITION *fin;
 
x=ScrollBar->ctrl_x;
y=ScrollBar->ctrl_y;
sizex=ScrollBar->ctrl_sizex;
sizey=ScrollBar->ctrl_sizey;
fin=(struct FINITION*)ScrollBar->finition;
 
//right button
Draw(fin,TOOL_FILLED_RECTANGLE,x+sizex-sizey+1,y+1,sizey-2,sizey-2,COLOR_FON);
//right arrow of right button
Draw(fin,TOOL_LINE,x+sizex-sizey/3,y+sizey/2,x+sizex-(2*sizey)/3,y+sizey/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex-sizey/3,y+sizey/2,x+sizex-(2*sizey)/3,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex-1-(sizey/3),y+sizey/2,x+sizex-1-(2*sizey)/3,y+sizey/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex-1-(sizey/3),y+sizey/2,x+sizex-1-(2*sizey)/3,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
}
 
void ScrollBar_DrawReleasedRightButton(struct ControlScrollBar *ScrollBar)
{
int x,y,sizex,sizey;
struct FINITION *fin;
 
x=ScrollBar->ctrl_x;
y=ScrollBar->ctrl_y;
sizex=ScrollBar->ctrl_sizex;
sizey=ScrollBar->ctrl_sizey;
fin=(struct FINITION*)ScrollBar->finition;
 
//right button
Draw(fin,TOOL_FILLED_RECTANGLE,x+sizex-sizey+1,y+1,sizey-2,sizey-2,COLOR_MIDDLE_LIGHT);
//right arrow of right button
Draw(fin,TOOL_LINE,x+sizex-sizey/3,y+sizey/2,x+sizex-(2*sizey)/3,y+sizey/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex-sizey/3,y+sizey/2,x+sizex-(2*sizey)/3,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex-1-(sizey/3),y+sizey/2,x+sizex-1-(2*sizey)/3,y+sizey/4,COLOR_ABSOLUTE_DARK);
Draw(fin,TOOL_LINE,x+sizex-1-(sizey/3),y+sizey/2,x+sizex-1-(2*sizey)/3,y+(3*sizey)/4,COLOR_ABSOLUTE_DARK);
}
////////////////////////////////////////////////////////////////////////////////
// callback function for left button of Scroll Bar
////////////////////////////////////////////////////////////////////////////////
void ScrollBar_FuncCallbackForLeftButton_Pressed(struct HEADER *control,void *data)
{
struct ControlScrollBar *ScrollBar;
struct HEADERPARENT *main_parent;
 
ScrollBar=(struct ControlScrollBar*)data;
if (ScrollBar->ruller_size!=1.0)
{
ScrollBar->ruller_pos=ScrollBar->ruller_pos-ScrollBar->ruller_step;
}
if (ScrollBar->ruller_pos<0.0) ScrollBar->ruller_pos=0.0;
ScrollBar_DrawPressedLeftButton(ScrollBar);
 
if (ControlCheckCallbackEvent(ScrollBar,SCROLLBAR_CHANGED_EVENT)!=NULL)
{
main_parent=(struct HEADERPARENT*)ScrollBar->main_parent;
ScrollBar->flags=ScrollBar->flags | FLAG_CONNECT_EVENT_ON;
main_parent->control_for_callback_function[main_parent->number_callbacks]=
(DWORD*)ScrollBar;
main_parent->callback_for_control_callback[main_parent->number_callbacks]=
(DWORD*)ControlCheckCallbackEvent(ScrollBar,SCROLLBAR_CHANGED_EVENT);
main_parent->number_callbacks++;
}
DrawRuller(ScrollBar);
}
 
void ScrollBar_FuncCallbackForLeftButton_Released(struct HEADER *control,void *data)
{
struct ControlScrollBar *ScrollBar;
 
ScrollBar=(struct ControlScrollBar*)data;
ScrollBar_DrawReleasedLeftButton(ScrollBar);
}
 
////////////////////////////////////////////////////////////////////////////////
// callback function for right button of Scroll Bar
////////////////////////////////////////////////////////////////////////////////
void ScrollBar_FuncCallbackForRightButton_Pressed(struct HEADER *control,void *data)
{
struct ControlScrollBar *ScrollBar;
struct HEADERPARENT *main_parent;
 
ScrollBar=(struct ControlScrollBar*)data;
if (ScrollBar->ruller_size!=1.0)
{
ScrollBar->ruller_pos=ScrollBar->ruller_pos+ScrollBar->ruller_step;
}
if (ScrollBar->ruller_pos>1.0) ScrollBar->ruller_pos=1.0;
ScrollBar_DrawPressedRightButton(ScrollBar);
 
if (ControlCheckCallbackEvent(ScrollBar,SCROLLBAR_CHANGED_EVENT)!=NULL)
{
main_parent=(struct HEADERPARENT*)ScrollBar->main_parent;
ScrollBar->flags=ScrollBar->flags | FLAG_CONNECT_EVENT_ON;
main_parent->control_for_callback_function[main_parent->number_callbacks]=
(DWORD*)ScrollBar;
main_parent->callback_for_control_callback[main_parent->number_callbacks]=
(DWORD*)ControlCheckCallbackEvent(ScrollBar,SCROLLBAR_CHANGED_EVENT);
main_parent->number_callbacks++;
}
DrawRuller(ScrollBar);
}
 
void ScrollBar_FuncCallbackForRightButton_Released(struct HEADER *control,void *data)
{
struct ControlScrollBar *ScrollBar;
 
ScrollBar=(struct ControlScrollBar*)data;
ScrollBar_DrawReleasedRightButton(ScrollBar);
DrawRuller(ScrollBar);
}
 
////////////////////////////////////////////////////////////////////////////////
// callback function for ruller bar button of Scroll Bar
////////////////////////////////////////////////////////////////////////////////
void ScrollBar_FuncCallbackForScrollRullerPressed(struct HEADER *control,void *data)
{
struct ControlScrollBar *ScrollBar;
 
ScrollBar=(struct ControlScrollBar*)data;
ScrollBar->scb_flags=ScrollBar->scb_flags | FLAG_SCROLL_RULLER_PRESSED;
}
 
void ScrollBar_FuncCallbackForScrollRullerReleased(struct HEADER *control,void *data)
{
struct ControlScrollBar *ScrollBar;
 
ScrollBar=(struct ControlScrollBar*)data;
ScrollBar->scb_flags=ScrollBar->scb_flags & FLAG_SCROLL_RULLER_RELEASED;
}
 
//---------------------------------------------------------------------------------
// control ScrollBar
//---------------------------------------------------------------------------------
void ScrollBarProc(struct ControlScrollBar *ScrollBar,struct MESSAGE *message)
{
int mx,my;
char mouse_buttons_state;
int x,y,sizex,sizey;
int scrollbar_size,ruller_size,ruller_pos;
int ruller_min,ruller_max;
float max_pos,current_pos,last_ruller_pos;
struct FINITION *fin;
struct TIMER *timer;
struct HEADERPARENT *main_parent;
 
x=ScrollBar->ctrl_x;
y=ScrollBar->ctrl_y;
sizex=ScrollBar->ctrl_sizex;
sizey=ScrollBar->ctrl_sizey;
 
switch(message->type)
{
case MESSAGE_FULL_REDRAW_ALL:
{
//draw ScrollBar
if (ScrollBar->flags & FLAG_SHOW_CONTROL) DrawScrollBar(ScrollBar);
break;
}
case MESSAGE_FULL_REDRAW_ALL_WITH_FINITION:
{
fin=(struct FINITION*)ScrollBar->finition;
fin->flags=fin->flags | FINITION_ON;
fin->x=message->arg1;
fin->y=message->arg2;
fin->sizex=message->arg3;
fin->sizey=message->arg4;
DrawScrollBar(ScrollBar);
break;
}
case MESSAGE_SPECIALIZED:
{
if (ScrollBar->flags & FLAG_GET_SPECIALIZED_MESSAGE_ON)
{
if (ScrollBar->flags & FLAG_SHOW_CONTROL) DrawScrollBar(ScrollBar);
ScrollBar->flags=ScrollBar->flags & FLAG_GET_SPECIALIZED_MESSAGE_OFF;
}
break;
}
case MESSAGE_MOUSE_EVENT:
{
mx=message->arg1;
my=message->arg2;
mouse_buttons_state=message->arg3;
main_parent=(struct HEADERPARENT*)ScrollBar->main_parent;
 
//check ruller state
if (ScrollBar->scb_flags & FLAG_SCROLL_RULLER_PRESSED)
{ // horizontal ScrollBar
if (ScrollBar->scb_flags & FLAG_SCROLL_BAR_ORIENTATION_HORIZONTAL_ON)
{
scrollbar_size=sizex-sizey*2;
ruller_size=scrollbar_size*ScrollBar->ruller_size;
if (ruller_size<5) ruller_size=5;
 
ruller_min=x+sizey; //minimum x
ruller_max=ruller_min+scrollbar_size-ruller_size;
ruller_pos=mx-(ruller_size/2);//ruller centred under mouse pointer
 
if (ruller_pos<ruller_min) ruller_pos=ruller_min;
if (ruller_pos>ruller_max) ruller_pos=ruller_max;
 
if (ruller_max!=ruller_min)
{
max_pos=(float)(ruller_max-ruller_min);
current_pos=(float)(ruller_pos-ruller_min);
last_ruller_pos=ScrollBar->ruller_pos;
ScrollBar->ruller_pos=current_pos/max_pos;
}
else {ScrollBar->ruller_pos=0.0;}
 
if (ControlCheckCallbackEvent(ScrollBar,SCROLLBAR_CHANGED_EVENT)!=NULL)
{
if (ScrollBar->ruller_pos!=last_ruller_pos)
{
ScrollBar->flags=ScrollBar->flags | FLAG_CONNECT_EVENT_ON;
main_parent->control_for_callback_function[main_parent->number_callbacks]=
(DWORD*)ScrollBar;
main_parent->callback_for_control_callback[main_parent->number_callbacks]=
(DWORD*)ControlCheckCallbackEvent(ScrollBar,SCROLLBAR_CHANGED_EVENT);
main_parent->number_callbacks++;
}
}
if (ScrollBar->ruller_pos!=last_ruller_pos) DrawRuller(ScrollBar);
break;
}
// vertical ScrollBar
if (ScrollBar->scb_flags & FLAG_SCROLL_BAR_ORIENTATION_VERTICAL_ON)
{
scrollbar_size=sizey-sizex*2;
ruller_size=scrollbar_size*ScrollBar->ruller_size;
if (ruller_size<5) ruller_size=5;
 
ruller_min=y+sizex; //minimum x
ruller_max=ruller_min+scrollbar_size-ruller_size;
ruller_pos=my-(ruller_size/2);//ruller centred under mouse pointer
 
if (ruller_pos<ruller_min) ruller_pos=ruller_min;
if (ruller_pos>ruller_max) ruller_pos=ruller_max;
 
if (ruller_max!=ruller_min)
{
max_pos=(float)(ruller_max-ruller_min);
current_pos=(float)(ruller_pos-ruller_min);
last_ruller_pos=ScrollBar->ruller_pos;
ScrollBar->ruller_pos=current_pos/max_pos;
}
else {ScrollBar->ruller_pos=0.0;}
 
if (ControlCheckCallbackEvent(ScrollBar,SCROLLBAR_CHANGED_EVENT)!=NULL)
{
if (ScrollBar->ruller_pos!=last_ruller_pos)
{
ScrollBar->flags=ScrollBar->flags | FLAG_CONNECT_EVENT_ON;
main_parent->control_for_callback_function[main_parent->number_callbacks]=
(DWORD*)ScrollBar;
main_parent->callback_for_control_callback[main_parent->number_callbacks]=
(DWORD*)ControlCheckCallbackEvent(ScrollBar,SCROLLBAR_CHANGED_EVENT);
main_parent->number_callbacks++;
}
}
if (ScrollBar->ruller_pos!=last_ruller_pos) DrawRuller(ScrollBar);
}
}
break;
}
case MESSAGE_CHANGE_POSITION_EVENT:
{
ScrollBar->ctrl_x=ScrollBar->ctrl_x+message->arg1;
ScrollBar->ctrl_y=ScrollBar->ctrl_y+message->arg2;
break;
}
case MESSAGE_CALL_TIMER_EVENT:
{
if (ScrollBar->timer!=(DWORD*)NULL)
{
timer=(struct TIMER*)ScrollBar->timer;
if (timer->flags & FLAG_TIMER_ON) Timer(timer);
}
break;
}
case MESSAGE_DESTROY_CONTROL:
{
if (ScrollBar->timer!=(DWORD*)NULL) free(ScrollBar->timer);
free(ScrollBar->finition);
break;
}
case MESSAGE_SET_MAIN_PARENT:
{
SendMessage((struct HEADER*)ScrollBar,message);
ScrollBar->main_parent=(DWORD*)message->arg1;
break;
}
 
default: break;
}
//send message to child controls(if there is)
SendMessage((struct HEADER*)ScrollBar,message);
}
 
//---------------------------------------------------------------------------------
// create control ScrollBar
//---------------------------------------------------------------------------------
void* CreateScrollBar(struct ScrollBarData *info_for_control)
{
struct ControlScrollBar *ScrollBar;
struct FINITION *fin;
 
ScrollBar=malloc(sizeof(struct ControlScrollBar));
ScrollBar->finition=malloc(sizeof(struct FINITION));
fin=(struct FINITION*)ScrollBar->finition;
fin->flags=0;
 
ID++;
#ifdef DEBUG
printf("\ncreated scroll bar with ID=%d",(int)ID);
#endif
ScrollBar->child_bk=(DWORD*)NULL;
ScrollBar->child_fd=(DWORD*)NULL;
ScrollBar->active_control_for_keys=(DWORD*)NULL;
ScrollBar->active_control_for_mouse=(DWORD*)NULL;
ScrollBar->callback=(DWORD*)NULL;
ScrollBar->timer=(DWORD*)NULL;
 
ScrollBar->ctrl_proc=(DWORD*)&ScrollBarProc;
ScrollBar->ctrl_x=(DWORD)info_for_control->x;
ScrollBar->ctrl_y=(DWORD)info_for_control->y;
ScrollBar->ctrl_sizex=(DWORD)info_for_control->width;
ScrollBar->ctrl_sizey=(DWORD)info_for_control->height;
ScrollBar->ctrl_ID=ID;
ScrollBar->ruller_size=info_for_control->ruller_size;
ScrollBar->ruller_pos=info_for_control->ruller_pos;
ScrollBar->ruller_step=info_for_control->ruller_step;
ScrollBar->flags=0;
ScrollBar->flags=ScrollBar->flags | FLAG_SHOW_CONTROL;
 
return(ScrollBar);
}
 
void* CreateHorizontalScrollBar(struct ScrollBarData *info_for_control)
{
struct ControlScrollBar *ScrollBar;
struct ControlButton *ChildButton1;
struct ControlButton *ChildButton2;
struct ControlButton *ScrollRuller;
struct ButtonData ChildButton1Data;
struct ButtonData ChildButton2Data;
struct ButtonData ScrollRullerData;
 
ScrollBar=CreateScrollBar(info_for_control);
//set horizontal orientation
ScrollBar->scb_flags=0;
ScrollBar->scb_flags=ScrollBar->scb_flags | FLAG_SCROLL_BAR_ORIENTATION_HORIZONTAL_ON;
 
//fill data for first child button of scroller
ChildButton1Data.x=0;
ChildButton1Data.y=0;
ChildButton1Data.width=ScrollBar->ctrl_sizey;
ChildButton1Data.height=ChildButton1Data.width;
 
//fill data for second child button of scroller
ChildButton2Data.x=ScrollBar->ctrl_sizex-ScrollBar->ctrl_sizey;
ChildButton2Data.y=0;
ChildButton2Data.width=ScrollBar->ctrl_sizey;
ChildButton2Data.height=ChildButton2Data.width;
 
//fill data for scroll ruller button of scroller
ScrollRullerData.x=ScrollBar->ctrl_sizey;
ScrollRullerData.y=0;
ScrollRullerData.width=ScrollBar->ctrl_sizex-2*ScrollBar->ctrl_sizey;
ScrollRullerData.height=ScrollBar->ctrl_sizey;
 
ChildButton1=CreateButton(&ChildButton1Data);
ChildButton2=CreateButton(&ChildButton2Data);
ScrollRuller=CreateButton(&ScrollRullerData);
 
ChildButton1->flags=ChildButton1->flags & FLAG_HIDE_CONTROL;
ChildButton2->flags=ChildButton2->flags & FLAG_HIDE_CONTROL;
ScrollRuller->flags=ScrollRuller->flags & FLAG_HIDE_CONTROL;
 
SetCallbackFunction(ChildButton1,BUTTON_PRESSED_EVENT,&ScrollBar_FuncCallbackForLeftButton_Pressed,ScrollBar);
SetCallbackFunction(ChildButton1,BUTTON_RELEASED_EVENT,&ScrollBar_FuncCallbackForLeftButton_Released,ScrollBar);
 
SetCallbackFunction(ChildButton2,BUTTON_PRESSED_EVENT,&ScrollBar_FuncCallbackForRightButton_Pressed,ScrollBar);
SetCallbackFunction(ChildButton2,BUTTON_RELEASED_EVENT,&ScrollBar_FuncCallbackForRightButton_Released,ScrollBar);
 
SetCallbackFunction(ScrollRuller,BUTTON_PRESSED_EVENT,&ScrollBar_FuncCallbackForScrollRullerPressed,ScrollBar);
SetCallbackFunction(ScrollRuller,BUTTON_RELEASED_EVENT,&ScrollBar_FuncCallbackForScrollRullerReleased,ScrollBar);
 
//pack button in control ScrollBar
PackControls(ScrollBar,ChildButton1);
PackControls(ScrollBar,ChildButton2);
PackControls(ScrollBar,ScrollRuller);
 
return(ScrollBar);
}
 
void* CreateVerticalScrollBar(struct ScrollBarData *info_for_control)
{
struct ControlScrollBar *ScrollBar;
struct ControlButton *ChildButton1;
struct ControlButton *ChildButton2;
struct ControlButton *ScrollRuller;
struct ButtonData ChildButton1Data;
struct ButtonData ChildButton2Data;
struct ButtonData ScrollRullerData;
 
ScrollBar=CreateScrollBar(info_for_control);
//set vertical orientation
ScrollBar->scb_flags=0;
ScrollBar->scb_flags=ScrollBar->scb_flags | FLAG_SCROLL_BAR_ORIENTATION_VERTICAL_ON;
 
//fill data for first child button of scroller
ChildButton1Data.x=0;
ChildButton1Data.y=0;
ChildButton1Data.width=ScrollBar->ctrl_sizex;
ChildButton1Data.height=ChildButton1Data.width;
 
//fill data for second child button of scroller
ChildButton2Data.x=0;
ChildButton2Data.y=ScrollBar->ctrl_sizey-ScrollBar->ctrl_sizex;
ChildButton2Data.width=ScrollBar->ctrl_sizex;
ChildButton2Data.height=ChildButton2Data.width;
 
//fill data for scroll ruller button of scroller
ScrollRullerData.x=0;
ScrollRullerData.y=ScrollBar->ctrl_sizex;
ScrollRullerData.width=ScrollBar->ctrl_sizex;
ScrollRullerData.height=ScrollBar->ctrl_sizey-2*ScrollBar->ctrl_sizex;
 
ChildButton1=CreateButton(&ChildButton1Data);
ChildButton2=CreateButton(&ChildButton2Data);
ScrollRuller=CreateButton(&ScrollRullerData);
 
ChildButton1->flags=ChildButton1->flags & FLAG_HIDE_CONTROL;
ChildButton2->flags=ChildButton2->flags & FLAG_HIDE_CONTROL;
ScrollRuller->flags=ScrollRuller->flags & FLAG_HIDE_CONTROL;
 
SetCallbackFunction(ChildButton1,BUTTON_PRESSED_EVENT,&ScrollBar_FuncCallbackForUpButton_Pressed,ScrollBar);
SetCallbackFunction(ChildButton1,BUTTON_RELEASED_EVENT,&ScrollBar_FuncCallbackForUpButton_Released,ScrollBar);
 
SetCallbackFunction(ChildButton2,BUTTON_PRESSED_EVENT,&ScrollBar_FuncCallbackForDownButton_Pressed,ScrollBar);
SetCallbackFunction(ChildButton2,BUTTON_RELEASED_EVENT,&ScrollBar_FuncCallbackForDownButton_Released,ScrollBar);
 
SetCallbackFunction(ScrollRuller,BUTTON_PRESSED_EVENT,&ScrollBar_FuncCallbackForScrollRullerPressed,ScrollBar);
SetCallbackFunction(ScrollRuller,BUTTON_RELEASED_EVENT,&ScrollBar_FuncCallbackForScrollRullerReleased,ScrollBar);
 
//pack button in control ScrollBar
PackControls(ScrollBar,ChildButton1);
PackControls(ScrollBar,ChildButton2);
PackControls(ScrollBar,ScrollRuller);
 
return(ScrollBar);
}
 
/programs/develop/libraries/libGUI/SRC/control_scrolled_window.h
0,0 → 1,6
#define FLAG_SCROLL_WIN_HORIZONTAL_SCROLL_ON 0x1
#define FLAG_SCROLL_WIN_VERTICAL_SCROLL_ON 0x2
 
#define FLAG_SCROLL_WIN_HORIZONTAL_SCROLL_OFF 0xfe
#define FLAG_SCROLL_WIN_VERTICAL_SCROLL_OFF 0xfd
 
/programs/develop/libraries/libGUI/SRC/control_scrolled_window.inc
0,0 → 1,530
/*
control ScrolledWindow
*/
 
 
////////////////////////////////////////////////////////////////////////
// pack controls in ScrolledWindow
////////////////////////////////////////////////////////////////////////
void ScrolledWindowPackControls(void *parent,void *Control)
{
struct HEADER *control;
struct ControlScrolledWindow *ScrolledWindow;
struct ControlScrollBar *HorizontalScrollBar;
struct ControlScrollBar *VerticalScrollBar;
struct FINITION *fin;
int x,y;
 
ScrolledWindow=(struct ControlScrolledWindow*)parent;
control=(struct HEADER *)Control;
 
if (control->ctrl_x+control->ctrl_sizex>ScrolledWindow->virtual_sizex)
{
ScrolledWindow->virtual_sizex=control->ctrl_x+control->ctrl_sizex;
}
if (control->ctrl_y+control->ctrl_sizey>ScrolledWindow->virtual_sizey)
{
ScrolledWindow->virtual_sizey=control->ctrl_y+control->ctrl_sizey;
}
 
PackControls(ScrolledWindow,control);
 
//calculate new control coordinates
x=control->ctrl_x+1;//add border width
y=control->ctrl_y+1;//add border heght
SetControlNewPosition(control,x,y);
 
//save coordinates of control in arrea
ScrolledWindow->virtual_controls_x[ScrolledWindow->number_virtual_controls]=x;
ScrolledWindow->virtual_controls_y[ScrolledWindow->number_virtual_controls]=y;
ScrolledWindow->number_virtual_controls++;
 
x=ScrolledWindow->ctrl_x+1;
y=ScrolledWindow->ctrl_y+1;
 
//check cross control with scroll arrea
if (CheckCrossRectangles(x,y,ScrolledWindow->scroll_arrea_sizex,ScrolledWindow->scroll_arrea_sizey,
control->ctrl_x,control->ctrl_y,control->ctrl_sizex,control->ctrl_sizey)==TRUE)
{
control->flags=control->flags | FLAG_SHOW_CONTROL;
control->flags=control->flags & FLAG_MOUSE_BLOCKED_OFF;
}
else
{
control->flags=control->flags & FLAG_HIDE_CONTROL;
control->flags=control->flags | FLAG_MOUSE_BLOCKED_ON;
}
 
if (ScrolledWindow->virtual_sizex>ScrolledWindow->scroll_arrea_sizex)
{
HorizontalScrollBar=(struct ControlScrollBar*)ScrolledWindow->horizontal_scroll;
 
if ((ScrolledWindow->scw_flags & FLAG_SCROLL_WIN_HORIZONTAL_SCROLL_ON)==FALSE)
{
ScrolledWindow->scroll_arrea_sizey=ScrolledWindow->ctrl_sizey-16-2;
ScrolledWindow->scw_flags=ScrolledWindow->scw_flags | FLAG_SCROLL_WIN_HORIZONTAL_SCROLL_ON;
HorizontalScrollBar->flags=HorizontalScrollBar->flags | FLAG_SHOW_CONTROL;
HorizontalScrollBar->flags=HorizontalScrollBar->flags & FLAG_MOUSE_BLOCKED_OFF;
}
}
 
if (ScrolledWindow->virtual_sizey>ScrolledWindow->scroll_arrea_sizey)
{
VerticalScrollBar=(struct ControlScrollBar*)ScrolledWindow->vertical_scroll;
 
if ((ScrolledWindow->scw_flags & FLAG_SCROLL_WIN_VERTICAL_SCROLL_ON)==FALSE)
{
ScrolledWindow->scroll_arrea_sizex=ScrolledWindow->ctrl_sizex-16-2;
ScrolledWindow->scw_flags=ScrolledWindow->scw_flags | FLAG_SCROLL_WIN_VERTICAL_SCROLL_ON;
VerticalScrollBar->flags=VerticalScrollBar->flags | FLAG_SHOW_CONTROL;
VerticalScrollBar->flags=VerticalScrollBar->flags & FLAG_MOUSE_BLOCKED_OFF;
}
}
 
if (ScrolledWindow->scw_flags & FLAG_SCROLL_WIN_HORIZONTAL_SCROLL_ON)
{
HorizontalScrollBar->ruller_size=(float)ScrolledWindow->scroll_arrea_sizex;
HorizontalScrollBar->ruller_size=HorizontalScrollBar->ruller_size/((float)ScrolledWindow->virtual_sizex);
}
 
if (ScrolledWindow->scw_flags & FLAG_SCROLL_WIN_VERTICAL_SCROLL_ON)
{
VerticalScrollBar->ruller_size=(float)ScrolledWindow->scroll_arrea_sizey;
VerticalScrollBar->ruller_size=VerticalScrollBar->ruller_size/((float)ScrolledWindow->virtual_sizey);
}
 
//finit draw arrea for control
fin=(struct FINITION*)control->finition;
fin->x=ScrolledWindow->ctrl_x+1;
fin->y=ScrolledWindow->ctrl_y+1;
fin->sizex=ScrolledWindow->scroll_arrea_sizex;
fin->sizey=ScrolledWindow->scroll_arrea_sizey;
fin->flags=fin->flags | FINITION_ON;
 
}
////////////////////////////////////////////////////////////////////////////////
// Draw full Scrolled Window
////////////////////////////////////////////////////////////////////////////////
void ScrollWin_FuncCallback_HVScroll(struct HEADER* control,void *data)
{
struct ControlScrollBar *Hscrollbar,*Vscrollbar;
struct ControlScrolledWindow *ScrolledWindow;
struct HEADER *seek_control,*exchange_control;
struct MESSAGE local_message;
struct FINITION *fin;
int i,new_x,new_y,x,y,sizex,sizey;
char c;
char *save_buf,*buf;
int save_size_x,save_size_y;
DWORD draw_output;
 
ScrolledWindow=(gui_scrolled_window_t*)data;
Hscrollbar=(gui_scroll_bar_t*)ScrolledWindow->horizontal_scroll;
Vscrollbar=(gui_scroll_bar_t*)ScrolledWindow->vertical_scroll;
ScrolledWindow->virtual_x=(ScrolledWindow->virtual_sizex-ScrolledWindow->scroll_arrea_sizex)*Hscrollbar->ruller_pos;
ScrolledWindow->virtual_y=(ScrolledWindow->virtual_sizey-ScrolledWindow->scroll_arrea_sizey)*Vscrollbar->ruller_pos;
 
x=ScrolledWindow->ctrl_x+1;
y=ScrolledWindow->ctrl_y+1;
sizex=ScrolledWindow->scroll_arrea_sizex;
sizey=ScrolledWindow->scroll_arrea_sizey;
 
//alocate a buffer for draw text
c=screen.bits_per_pixel >> 3;
i=sizex*sizey*c;
buf=malloc(i);
 
//save current screen parameters
save_buf=screen.buffer;
save_size_x=screen.size_x;
save_size_y=screen.size_y;
draw_output=screen.draw_output;
 
//load parameters of local buffer
screen.buffer=buf;
screen.size_x=sizex;
screen.size_y=sizey;
screen.draw_output=DRAW_OUTPUT_BUFFER;
 
//fill buffer by background color
FillArrea(buf,i,screen.bits_per_pixel,COLOR_LIGHT);
 
local_message.type=MESSAGE_FULL_REDRAW_ALL_WITH_FINITION;
local_message.arg1=0;
local_message.arg2=0;
local_message.arg3=sizex;
local_message.arg4=sizey;
 
seek_control=(struct HEADER*)Vscrollbar->ctrl_fd;
//move controls in new position
for(i=0;i<ScrolledWindow->number_virtual_controls;i++)
{
new_x=ScrolledWindow->virtual_controls_x[i]-ScrolledWindow->virtual_x;
new_y=ScrolledWindow->virtual_controls_y[i]-ScrolledWindow->virtual_y;
 
SetControlNewPosition(seek_control,new_x,new_y);
 
if (CheckCrossRectangles(x,y,sizex,sizey,new_x,new_y,
seek_control->ctrl_sizex,
seek_control->ctrl_sizey)==TRUE)
{
seek_control->flags=seek_control->flags | FLAG_SHOW_CONTROL;
seek_control->flags=seek_control->flags & FLAG_MOUSE_BLOCKED_OFF;
 
//move control
SetControlNewPosition(seek_control,new_x-x,new_y-y);
//call draw control in buffer
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
ControlProc(seek_control,&local_message);
//restore last position of control
SetControlNewPosition(seek_control,new_x,new_y);
//restore coordinates of last finition of control
fin=(finition_t*)seek_control->finition;
fin->x=x;
fin->y=y;
}
else
{
seek_control->flags=seek_control->flags & FLAG_HIDE_CONTROL;
seek_control->flags=seek_control->flags | FLAG_MOUSE_BLOCKED_ON;
}
 
exchange_control=(struct HEADER*)seek_control->ctrl_fd;
seek_control=exchange_control;
}
//restore screen parameters
screen.buffer=save_buf;
screen.size_x=save_size_x;
screen.size_y=save_size_y;
screen.draw_output=draw_output;
 
//move rendered objects from local buffer to screen
fin=(finition_t*)ScrolledWindow->finition;
if (fin->flags & FINITION_ON)
DrawImageFinit(fin,x,y,sizex,sizey,screen.bits_per_pixel,buf);
else
DrawImage(x,y,sizex,sizey,screen.bits_per_pixel,buf);
 
//free local buffer
free(buf);
}
 
void DrawScrolledWindow(struct ControlScrolledWindow *ScrolledWindow)
{
int x,y,sizex,sizey;
struct FINITION *fin;
 
x=ScrolledWindow->ctrl_x;
y=ScrolledWindow->ctrl_y;
sizex=ScrolledWindow->ctrl_sizex;
sizey=ScrolledWindow->ctrl_sizey;
fin=(struct FINITION*)ScrolledWindow->finition;
 
if ((ScrolledWindow->scw_flags & FLAG_SCROLL_WIN_HORIZONTAL_SCROLL_ON) ||
(ScrolledWindow->scw_flags & FLAG_SCROLL_WIN_VERTICAL_SCROLL_ON))
{
Draw(fin,TOOL_RECTANGLE,x,y,ScrolledWindow->scroll_arrea_sizex+2,
ScrolledWindow->scroll_arrea_sizey+2,COLOR_ABSOLUTE_DARK);
}
else
Draw(fin,TOOL_RECTANGLE,x,y,sizex,sizey,COLOR_ABSOLUTE_DARK);
 
ScrollWin_FuncCallback_HVScroll(NULL,ScrolledWindow);
}
 
void ScrlWinCheckActivatedForKeysControl(struct ControlScrolledWindow *ScrolledWindow)
{
struct HEADER *control,*seek_control,*exchange_control;
struct MESSAGE local_message;
struct FINITION *fin;
struct ControlScrollBar *Vscrollbar,*Hscrollbar;
int i,x,y,sizex,sizey;
int sx,sy;
 
control=(struct HEADER*)ScrolledWindow->active_control_for_keys;
 
x=ScrolledWindow->ctrl_x+1;
y=ScrolledWindow->ctrl_y+1;
sizex=ScrolledWindow->scroll_arrea_sizex;
sizey=ScrolledWindow->scroll_arrea_sizey;
 
if (CheckFullCrossRectangles(x,y,sizex,sizey,
control->ctrl_x,control->ctrl_y,control->ctrl_sizex,control->ctrl_sizey)==TRUE) return;
 
//calculate new x and y coordinates
if (ScrolledWindow->scw_flags & FLAG_SCROLL_WIN_HORIZONTAL_SCROLL_ON)
{
sx=(control->ctrl_x-x);
 
if (sx<0) sx=x;
else
{
if (control->ctrl_sizex<sizex) sx=x+sizex-control->ctrl_sizex;
else sx=x;
}
}
 
if (ScrolledWindow->scw_flags & FLAG_SCROLL_WIN_VERTICAL_SCROLL_ON)
{
sy=(control->ctrl_y-y);
 
if (sy<0) sy=y;
else
{
if (control->ctrl_sizey<sizey) sy=y+sizey-control->ctrl_sizey;
else sy=y;
}
}
Vscrollbar=(struct ControlScrollBar*)ScrolledWindow->vertical_scroll;
Hscrollbar=(struct ControlScrollBar*)ScrolledWindow->horizontal_scroll;
//find active control and virtual control coordinates
seek_control=(struct HEADER*)Vscrollbar->ctrl_fd;
 
for(i=0;i<ScrolledWindow->number_virtual_controls;i++)
{
if (seek_control==control)
{
if (ScrolledWindow->scw_flags & FLAG_SCROLL_WIN_HORIZONTAL_SCROLL_ON)
ScrolledWindow->virtual_x=ScrolledWindow->virtual_controls_x[i]-sx;
if (ScrolledWindow->scw_flags & FLAG_SCROLL_WIN_VERTICAL_SCROLL_ON)
ScrolledWindow->virtual_y=ScrolledWindow->virtual_controls_y[i]-sy;
break;
}
 
exchange_control=(struct HEADER*)seek_control->ctrl_fd;
seek_control=exchange_control;
}
 
if (ScrolledWindow->scw_flags & FLAG_SCROLL_WIN_HORIZONTAL_SCROLL_ON)
{
Hscrollbar->ruller_pos=(float)ScrolledWindow->virtual_x;
Hscrollbar->ruller_pos=Hscrollbar->ruller_pos/((float)(ScrolledWindow->virtual_sizex-ScrolledWindow->scroll_arrea_sizex));
SpecialRedrawControl(Hscrollbar);
}
if (ScrolledWindow->scw_flags & FLAG_SCROLL_WIN_VERTICAL_SCROLL_ON)
{
Vscrollbar->ruller_pos=(float)ScrolledWindow->virtual_y;
Vscrollbar->ruller_pos=Vscrollbar->ruller_pos/((float)(ScrolledWindow->virtual_sizey-ScrolledWindow->scroll_arrea_sizey));
SpecialRedrawControl(Vscrollbar);
}
ScrollWin_FuncCallback_HVScroll(NULL,ScrolledWindow);
}
 
//---------------------------------------------------------------------------------
// control ScrolledWindowScrolledWindow->virtual_sizex
//---------------------------------------------------------------------------------
void ScrolledWindowProc(struct ControlScrolledWindow *ScrolledWindow,struct MESSAGE *message)
{
int i,x,y,sizex,sizey;
struct HEADER *seek_control,*exchange_control;
struct ControlScrollBar *Hscrollbar,*Vscrollbar;
struct MESSAGE local_message;
struct FINITION *fin;
struct TIMER *timer;
 
x=ScrolledWindow->ctrl_x;
y=ScrolledWindow->ctrl_y;
sizex=ScrolledWindow->ctrl_sizex;
sizey=ScrolledWindow->ctrl_sizey;
 
switch(message->type)
{
case MESSAGE_FULL_REDRAW_ALL:
{
//draw ScrolledWindow
if (ScrolledWindow->flags & FLAG_SHOW_CONTROL)
{
DrawScrolledWindow(ScrolledWindow);
Hscrollbar=(gui_scroll_bar_t*)ScrolledWindow->horizontal_scroll;
Vscrollbar=(gui_scroll_bar_t*)ScrolledWindow->vertical_scroll;
//draw scroll bars
ControlProc=(void (*)(void *Control,gui_message_t *message))Hscrollbar->ctrl_proc;
ControlProc(Hscrollbar,message);
ControlProc=(void (*)(void *Control,gui_message_t *message))Vscrollbar->ctrl_proc;
ControlProc(Vscrollbar,message);
}
break;
}
case MESSAGE_FULL_REDRAW_ALL_WITH_FINITION:
{
fin=(struct FINITION*)ScrolledWindow->finition;
fin->flags=fin->flags | FINITION_ON;
fin->x=message->arg1;
fin->y=message->arg2;
fin->sizex=message->arg3;
fin->sizey=message->arg4;
DrawScrolledWindow(ScrolledWindow);
SendMessage((struct HEADER*)ScrolledWindow,message);//<<<<<<----------------------------------
break;
}
case MESSAGE_SPECIALIZED:
{
if (ScrolledWindow->flags & FLAG_SHOW_CONTROL) SendMessage((struct HEADER*)ScrolledWindow,message);
ScrolledWindow->flags=ScrolledWindow->flags & FLAG_GET_SPECIALIZED_MESSAGE_OFF;
break;
}
 
case MESSAGE_KEYS_EVENT:
{
if (ScrolledWindow->active_control_for_keys!=NULL) ScrlWinCheckActivatedForKeysControl(ScrolledWindow);
SendMessage((struct HEADER*)ScrolledWindow,message);
break;
}
case MESSAGE_MOUSE_EVENT:
{
SendMessage((struct HEADER*)ScrolledWindow,message);
break;
}
case MESSAGE_CHANGE_POSITION_EVENT:
{
ScrolledWindow->ctrl_x=ScrolledWindow->ctrl_x+message->arg1;
ScrolledWindow->ctrl_y=ScrolledWindow->ctrl_y+message->arg2;
 
//change virtual coordinates of controls
Vscrollbar=(struct ControlScrollBar*)ScrolledWindow->vertical_scroll;
seek_control=(struct HEADER *)Vscrollbar->ctrl_fd;
for(i=0;i<ScrolledWindow->number_virtual_controls;i++)
{
ScrolledWindow->virtual_controls_x[i]+=message->arg1;
ScrolledWindow->virtual_controls_y[i]+=message->arg2;
 
fin=(struct FINITION*)seek_control->finition;
fin->x=ScrolledWindow->ctrl_x+1;
fin->y=ScrolledWindow->ctrl_y+1;
fin->sizex=ScrolledWindow->scroll_arrea_sizex;
fin->sizey=ScrolledWindow->scroll_arrea_sizey;
 
exchange_control=(struct HEADER*)seek_control->ctrl_fd;
seek_control=exchange_control;
}
 
SendMessage((struct HEADER*)ScrolledWindow,message);
break;
}
case MESSAGE_CALL_TIMER_EVENT:
{
if (ScrolledWindow->timer!=(DWORD*)NULL)
{
timer=(struct TIMER*)ScrolledWindow->timer;
if (timer->flags & FLAG_TIMER_ON) Timer(timer);
}
SendMessage((struct HEADER*)ScrolledWindow,message);
break;
}
case MESSAGE_SET_FOCUSE:
{
//SendMessage((struct HEADER*)ScrolledWindow,message);
break;
}
case MESSAGE_CHANGE_FOCUSE:
{
//SendMessage((struct HEADER*)ScrolledWindow,message);
break;
}
case MESSAGE_DESTROY_CONTROL:
{
if (ScrolledWindow->timer!=(DWORD*)NULL) free(ScrolledWindow->timer);
free(ScrolledWindow->finition);
SendMessage((struct HEADER*)ScrolledWindow,message);
break;
}
case MESSAGE_SET_MAIN_PARENT:
{
SendMessage((struct HEADER*)ScrolledWindow,message);
ScrolledWindow->main_parent=(DWORD*)message->arg1;
break;
}
 
default: break;
}
}
 
//---------------------------------------------------------------------------------
// create control ScrolledWindow
//---------------------------------------------------------------------------------
void* CreateScrolledWindow(struct ScrolledWindowData *info_for_control)
{
struct ControlScrolledWindow *ScrolledWindow;
struct FINITION *fin;
struct ControlScrollBar *HorizontalScrollBar;
struct ControlScrollBar *VerticalScrollBar;
struct ScrollBarData HorizontalScrollData;
struct ScrollBarData VerticalScrollData;
 
 
ScrolledWindow=malloc(sizeof(struct ControlScrolledWindow));
ScrolledWindow->finition=malloc(sizeof(struct FINITION));
fin=(struct FINITION*)ScrolledWindow->finition;
fin->flags=0;
ScrolledWindow->scw_flags=0;
 
ID++;
#ifdef DEBUG
printf("\ncreated scrollet window with ID=%d",(int)ID);
#endif
ScrolledWindow->child_bk=(DWORD*)NULL;
ScrolledWindow->child_fd=(DWORD*)NULL;
ScrolledWindow->active_control_for_keys=(DWORD*)NULL;
ScrolledWindow->active_control_for_mouse=(DWORD*)NULL;
ScrolledWindow->callback=(DWORD*)NULL;
ScrolledWindow->timer=(DWORD*)NULL;
 
ScrolledWindow->ctrl_proc=(DWORD*)&ScrolledWindowProc;
ScrolledWindow->ctrl_x=(DWORD)info_for_control->x;
ScrolledWindow->ctrl_y=(DWORD)info_for_control->y;
ScrolledWindow->ctrl_sizex=(DWORD)info_for_control->width;
ScrolledWindow->ctrl_sizey=(DWORD)info_for_control->height;
ScrolledWindow->ctrl_ID=ID;
ScrolledWindow->virtual_x=0;
ScrolledWindow->virtual_y=0;
ScrolledWindow->virtual_controls_x=malloc(1024*sizeof(DWORD));
ScrolledWindow->virtual_controls_y=malloc(1024*sizeof(DWORD));
ScrolledWindow->virtual_sizex=0;
ScrolledWindow->virtual_sizey=0;
ScrolledWindow->number_virtual_controls=0;
ScrolledWindow->flags=0;
ScrolledWindow->flags=ScrolledWindow->flags | FLAG_SHOW_CONTROL;
ScrolledWindow->flags=ScrolledWindow->flags | FLAG_FOCUSE_INPUT_SUPPOROTE;
 
//calculate default scroll arrea size
ScrolledWindow->scroll_arrea_sizex=ScrolledWindow->ctrl_sizex-2;
ScrolledWindow->scroll_arrea_sizey=ScrolledWindow->ctrl_sizey-2;
 
//create child scroll bars
HorizontalScrollData.x=0;
HorizontalScrollData.y=ScrolledWindow->ctrl_sizey-16;
HorizontalScrollData.width=ScrolledWindow->ctrl_sizex-16;
HorizontalScrollData.height=16;
HorizontalScrollData.ruller_size=1.0;
HorizontalScrollData.ruller_pos=0.0;
HorizontalScrollData.ruller_step=0.05;
 
VerticalScrollData.x=ScrolledWindow->ctrl_sizex-16;
VerticalScrollData.y=0;
VerticalScrollData.width=16;
VerticalScrollData.height=ScrolledWindow->ctrl_sizey-16;
VerticalScrollData.ruller_size=1.0;
VerticalScrollData.ruller_pos=0.0;
VerticalScrollData.ruller_step=0.05;
 
HorizontalScrollBar=CreateHorizontalScrollBar(&HorizontalScrollData);
VerticalScrollBar=CreateVerticalScrollBar(&VerticalScrollData);
 
SetCallbackFunction(HorizontalScrollBar,SCROLLBAR_CHANGED_EVENT,&ScrollWin_FuncCallback_HVScroll,ScrolledWindow);
SetCallbackFunction(VerticalScrollBar,SCROLLBAR_CHANGED_EVENT,&ScrollWin_FuncCallback_HVScroll,ScrolledWindow);
 
PackControls(ScrolledWindow,HorizontalScrollBar);
PackControls(ScrolledWindow,VerticalScrollBar);
 
ScrolledWindow->horizontal_scroll=(DWORD*)HorizontalScrollBar;
ScrolledWindow->vertical_scroll=(DWORD*)VerticalScrollBar;
//disable show scrollers and block mouse for them
HorizontalScrollBar->flags=HorizontalScrollBar->flags & FLAG_HIDE_CONTROL;
HorizontalScrollBar->flags=HorizontalScrollBar->flags | FLAG_MOUSE_BLOCKED_ON;
VerticalScrollBar->flags=VerticalScrollBar->flags & FLAG_HIDE_CONTROL;
VerticalScrollBar->flags=VerticalScrollBar->flags | FLAG_MOUSE_BLOCKED_ON;
 
return(ScrolledWindow);
}
 
/programs/develop/libraries/libGUI/SRC/control_text.h
0,0 → 1,16
 
#define TEXT_ORIENTATION_FROM_LEFT_TO_RIGHT_ON 0x1
#define TEXT_ORIENTATION_FROM_LEFT_TO_RIGHT_OFF 0xfe
 
#define TEXT_BACKGROUND_ON 0x2;
#define TEXT_BACKGROUND_OFF 0xfd;
 
struct TextSize
{
int sizex;
int sizey;
};
 
typedef struct TextSize gui_text_size_t;
 
 
/programs/develop/libraries/libGUI/SRC/control_text.inc
0,0 → 1,182
/*
control Text
*/
 
 
gui_text_size_t GetStringSize(font_t *font,char *s)
{
long len;
gui_text_size_t size;
 
len=strlen(s);
if (font->size==FONT_CONSTANT_SIZE)
{
if (font->flags & FONT_FLAG_ORIENTATION_HORIZONTAL_FROM_LEFT_TO_RIGHT_ON)
{
size.sizex=len*font->sizex;
size.sizey=font->sizey;
}
}
 
return(size);
}
 
void TextBackgroundOn(gui_text_t *Text)
{
Text->txt_flags |=TEXT_BACKGROUND_ON;
}
 
void TextBackgroundOff(gui_text_t *Text)
{
Text->txt_flags &=TEXT_BACKGROUND_ON;
}
 
void DisplayText(gui_text_t *Text)
{
int x;
int y;
int sizex;
int sizey;
char v;
font_t *font;
gui_text_size_t size;
struct FINITION *fin;
x=Text->ctrl_x;
y=Text->ctrl_y;
fin=(struct FINITION*)Text->finition;
font=(font_t*)Text->font;
 
v=Text->txt_flags & TEXT_BACKGROUND_ON;
if (v) font->flags|=FONT_FLAG_DRAW_BACKGROUND_ON;
else font->flags&=FONT_FLAG_DRAW_BACKGROUND_OFF;
 
v=Text->txt_flags & TEXT_ORIENTATION_FROM_LEFT_TO_RIGHT_ON;
if (v) font->flags|=FONT_FLAG_ORIENTATION_HORIZONTAL_FROM_LEFT_TO_RIGHT_ON;
else font->flags&=FONT_FLAG_ORIENTATION_HORIZONTAL_FROM_LEFT_TO_RIGHT_OFF;
 
//recalculate size of control text befor draw
size=GetStringSize((font_t*)Text->font,Text->text);
Text->ctrl_sizex=(DWORD)size.sizex;
Text->ctrl_sizey=(DWORD)size.sizey;
 
DrawFont=(void(*)(finition_t *fin,int fx,int fy,DWORD color,
DWORD background_color,font_t *font,BYTE *s))font->fnt_draw;
DrawFont(fin,x,y,Text->color,Text->background_color,font,Text->text);
}
 
//---------------------------------------------------------------------------------
// control Text
//---------------------------------------------------------------------------------
void TextProc(gui_text_t *Text,gui_message_t *message)
{
finition_t *fin;
 
switch(message->type)
{
case MESSAGE_FULL_REDRAW_ALL:
{
//draw Text
if (Text->flags & FLAG_SHOW_CONTROL) DisplayText(Text);
break;
}
case MESSAGE_FULL_REDRAW_ALL_WITH_FINITION:
{
fin=(struct FINITION*)Text->finition;
fin->flags=fin->flags | FINITION_ON;
fin->x=message->arg1;
fin->y=message->arg2;
fin->sizex=message->arg3;
fin->sizey=message->arg4;
DisplayText(Text);
break;
}
case MESSAGE_SPECIALIZED:
{
if (Text->flags & FLAG_GET_SPECIALIZED_MESSAGE_ON)
{
if (Text->flags & FLAG_SHOW_CONTROL) DisplayText(Text);
Text->flags=Text->flags & FLAG_GET_SPECIALIZED_MESSAGE_OFF;
}
break;
}
case MESSAGE_CHANGE_POSITION_EVENT:
{
Text->ctrl_x=Text->ctrl_x+message->arg1;
Text->ctrl_y=Text->ctrl_y+message->arg2;
break;
}
case MESSAGE_DESTROY_CONTROL:
{
free(Text->finition);
break;
}
case MESSAGE_SET_MAIN_PARENT:
{
SendMessage((struct HEADER*)Text,message);
Text->main_parent=(DWORD*)message->arg1;
break;
}
 
default: break;
}
//send message to child controls(if there is)
SendMessage((struct HEADER*)Text,message);
}
 
//---------------------------------------------------------------------------------
// create control Text
//---------------------------------------------------------------------------------
void* CreateText(gui_text_data_t *info_for_control)
{
gui_text_t *Text;
finition_t *fin;
gui_text_size_t size;
 
Text=malloc(sizeof(struct ControlText));
Text->finition=malloc(sizeof(struct FINITION));
fin=(struct FINITION*)Text->finition;
fin->flags=0;
 
if (info_for_control->font==(DWORD*)NULL) Text->font=FontsMeneger.default_font;
else Text->font=info_for_control->font;
 
size=GetStringSize((font_t*)Text->font,info_for_control->text);
 
ID++;
#ifdef DEBUG
printf("\ncreated text with ID=%d",(int)ID);
#endif
Text->child_bk=(DWORD*)NULL;
Text->child_fd=(DWORD*)NULL;
Text->active_control_for_keys=(DWORD*)NULL;
Text->active_control_for_mouse=(DWORD*)NULL;
Text->callback=(DWORD*)NULL;
Text->timer=(DWORD*)NULL;
 
Text->ctrl_proc=(DWORD*)&TextProc;
Text->ctrl_x=(DWORD)info_for_control->x;
Text->ctrl_y=(DWORD)info_for_control->y;
Text->ctrl_sizex=(DWORD)size.sizex;
Text->ctrl_sizey=(DWORD)size.sizey;
Text->ctrl_ID=ID;
Text->color=info_for_control->color;
Text->background_color=info_for_control->background_color;
Text->text=info_for_control->text;
Text->txt_flags=0;
Text->txt_flags|=TEXT_ORIENTATION_FROM_LEFT_TO_RIGHT_ON;
 
if (info_for_control->background)
{
Text->txt_flags|=TEXT_BACKGROUND_ON;
}
else
{
Text->txt_flags&=TEXT_BACKGROUND_OFF;
}
 
Text->flags=0;
Text->flags=Text->flags | FLAG_SHOW_CONTROL;
 
return(Text);
}
/programs/develop/libraries/libGUI/SRC/draw_controls.h
0,0 → 1,31
 
#define FINITION_ON 0x1
#define FINITION_OFF 0xfe
 
#define COLOR_FON 0x924900
#define COLOR_DARK 0x5a5a5a
#define COLOR_ABSOLUTE_DARK 0x0
#define COLOR_MIDDLE_LIGHT 0xffff00
#define COLOR_LIGHT 0xffffff
 
#define COLOR_INSERT 0x71ff30//0xffff10
 
/////////////////////////////////////////////////////////////////////////////////////////
// tool's names
/////////////////////////////////////////////////////////////////////////////////////////
#define TOOL_PIXEL 128
#define TOOL_LINE 129
#define TOOL_VERTICAL_LINE 130
#define TOOL_HORIZONTAL_LINE 131
#define TOOL_RECTANGLE 132
#define TOOL_FILLED_RECTANGLE 133
#define TOOL_GRADIENT_UP_FILLED_RECTANGLE 134
#define TOOL_GRADIENT_DOWN_FILLED_RECTANGLE 135
#define TOOL_GRADIENT_LEFT_FILLED_RECTANGLE 136
#define TOOL_GRADIENT_RIGHT_FILLED_RECTANGLE 137
#define TOOL_CIRCLE 138
#define TOOL_FILLED_CIRCLE 139
#define TOOL_ELLIPSE 140
#define TOOL_FILLED_ELLIPSE 141
#define TOOL_IMAGE 142
 
/programs/develop/libraries/libGUI/SRC/draw_controls.inc
0,0 → 1,2149
/*
functions for draw controls
*/
 
//---------------------------------------------------------------------------------
// fill buffer by value
//---------------------------------------------------------------------------------
void FillArrea(void *buf,DWORD size,BYTE bits_per_pixel,DWORD value)
{
DWORD i,j;
char r,g,b;
 
switch(bits_per_pixel)
{
case 32:
{
j=(size >> 2);
for(i=0;i<j;i++)
{
*(DWORD*)buf=(DWORD)value;
buf=(DWORD*)buf+1;
}
break;
}
case 24:
{
b=value & 0xff;
value=value >> 8;
g=value & 0xff;
value=value >> 8;
r=value & 0xff;
 
j=(size/3);
for(i=0;i<j;i++)
{
*(char*)buf=(char)b;
*((char*)buf+1)=(char)g;
*((char*)buf+2)=(char)r;
buf=(char*)buf+3;
}
break;
}
case 16:
{
break;
}
case 8:
{
break;
}
case 4:
{
break;
}
default: break;
}
}
 
//---------------------------------------------------------------------------------
// draw pixel on screen
//---------------------------------------------------------------------------------
void DrawPixel(int x,int y,DWORD color)
{
char r,g,b;
char *ptr;
DWORD *ptr2;
 
if (x>screen.size_x-1) {x=screen.size_x-1;}
if (y>screen.size_y-1) {y=screen.size_y-1;}
if (x<0) {x=0;}
if (y<0) {y=0;}
 
switch(screen.draw_output)
{
case DRAW_OUTPUT_SCREEN:
{
x+=screen.x;
y+=screen.y;
gui_ksys_put_pixel_window(x,y,color);
break;
}
case DRAW_OUTPUT_BUFFER:
{
ptr=screen.buffer;
switch(screen.bits_per_pixel)
{
case 24:
{
ptr=ptr+(y*screen.size_x+x)*3;
b=color & 0xff;
color=color >>8;
g=color & 0xff;
color=color >>8;
r=color & 0xff;
 
ptr[0]=b;
ptr[1]=g;
ptr[2]=r;
break;
}
case 32:
{
ptr2=(DWORD*)ptr+y*screen.size_x+x;
*ptr2=color;
break;
}
default: break;
}
break;
}
}
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing pixels on screen with finition
//---------------------------------------------------------------------------------
void DrawPixelFinit(struct FINITION *fin,int x,int y,DWORD color)
{
if (x>=fin->x && x<=fin->x+fin->sizex-1 &&
y>=fin->y && y<=fin->y+fin->sizey-1) DrawPixel(x,y,color);
}
 
 
//---------------------------------------------------------------------------------
// get color of pixel inc coordinates x,y
//---------------------------------------------------------------------------------
DWORD GetColorPixel(int x,int y)
{
char r,g,b;
char *ptr;
DWORD color,coordinates;
DWORD *ptr2;
 
if (x>screen.size_x-1) {x=screen.size_x-1;}
if (y>screen.size_y-1) {y=screen.size_y-1;}
if (x<0) {x=0;}
if (y<0) {y=0;}
 
switch(screen.draw_output)
{
case DRAW_OUTPUT_SCREEN:
{
x+=screen.x;
y+=screen.y;
coordinates=x;
coordinates=coordinates << 16;
coordinates +=y;
color=gui_ksys_get_color_pixel_window(coordinates);
break;
}
case DRAW_OUTPUT_BUFFER:
{
ptr=screen.buffer;
switch(screen.bits_per_pixel)
{
case 24:
{
ptr=ptr+(y*screen.size_x+x)*3;
color=*ptr;
color=color & 0xffffff;
break;
}
case 32:
{
ptr2=(DWORD*)ptr+y*screen.size_x+x;
color=*ptr2;
break;
}
default: break;
}
}
}
return(color);
}
 
//---------------------------------------------------------------------------------
// draw vertical line on screen
//---------------------------------------------------------------------------------
void DrawVerticalLine(int x,int y1,int y2,DWORD color)
{
char r,g,b;
char *ptr;
DWORD *ptr2;
int a,i,count;
 
if (x>screen.size_x-1) {x=screen.size_x-1;}
if (y1>screen.size_y-1) {y1=screen.size_y-1;}
if (y2>screen.size_y-1) {y2=screen.size_y-1;}
if (x<0) {x=0;}
if (y1<0) {y1=0;}
if (y2<0) {y2=0;}
 
switch(screen.draw_output)
{
case DRAW_OUTPUT_SCREEN:
{
x+=screen.x;
y1+=screen.y;
y2+=screen.y;
gui_ksys_draw_line_window(x,y1,x,y2,color);
break;
}
case DRAW_OUTPUT_BUFFER:
{
if (y1<y2) {a=y1;count=y2-y1;}
else
{a=y2;count=y1-y2;}
 
ptr=screen.buffer;
switch(screen.bits_per_pixel)
{
case 24:
{
ptr=ptr+(a*screen.size_x+x)*3;
b=color & 0xff;
color=color >>8;
g=color & 0xff;
color=color >>8;
r=color & 0xff;
 
a=screen.size_x*3;
for(i=0;i<=count;i++)
{
ptr[0]=b;
ptr[1]=g;
ptr[2]=r;
ptr+=a;
}
break;
}
case 32:
{
ptr2=(DWORD*)ptr+a*screen.size_x+x;
a=screen.size_x;
for(i=0;i<=count;i++)
{
*ptr2=color;
ptr2+=a;
}
break;
}
default: break;
}
}
}
}
 
//---------------------------------------------------------------------------------
// draw finited vertical line on screen
//---------------------------------------------------------------------------------
void DrawVerticalLineFinit(struct FINITION *fin,int x,int y1,int y2,DWORD color)
{
int xmin,xmax,ymin,ymax,v,sy;
 
xmin=fin->x;
xmax=fin->x+fin->sizex-1;
ymin=fin->y;
ymax=fin->y+fin->sizey-1;
 
if (y2<y1)
{
v=y1;
y1=y2;
y2=v;
}
 
if (x<xmin) return;
if (x>xmax) return;
if (y2<ymin) return;
if (y1>ymax) return;
 
//finit x coordinates and sizex
sy=y1-ymin;
 
if (sy>=0)
{
if (y2>ymax) y2=ymax;
}
else
{
y1=ymin;
if (y2>ymax) y2=ymax;
}
DrawVerticalLine(x,y1,y2,color);
}
 
//---------------------------------------------------------------------------------
// draw horizontal line on screen
//---------------------------------------------------------------------------------
void DrawHorizontalLine(int x1,int x2,int y,DWORD color)
{
char r,g,b;
char *ptr;
int a,i,count;
DWORD *ptr2;
 
if (y>screen.size_y-1) {y=screen.size_y-1;}
if (x1>screen.size_x-1) {x1=screen.size_x-1;}
if (x2>screen.size_x-1) {x2=screen.size_x-1;}
if (y<0) {y=0;}
if (x1<0) {x1=0;}
if (x2<0) {x2=0;}
 
switch(screen.draw_output)
{
case DRAW_OUTPUT_SCREEN:
{
x1+=screen.x;
x2+=screen.x;
y+=screen.y;
gui_ksys_draw_line_window(x1,y,x2,y,color);
break;
}
case DRAW_OUTPUT_BUFFER:
{
if (x1<x2) {a=x1;count=x2-x1;}
else
{a=x2;count=x1-x2;}
 
ptr=screen.buffer;
switch(screen.bits_per_pixel)
{
case 24:
{
ptr=ptr+(y*screen.size_x+a)*3;
b=color & 0xff;
color=color >>8;
g=color & 0xff;
color=color >>8;
r=color & 0xff;
 
for(i=0;i<=count;i++)
{
ptr[0]=b;
ptr[1]=g;
ptr[2]=r;
ptr=ptr+3;
}
break;
}
case 32:
{
ptr2=(DWORD*)ptr+y*screen.size_x+a;
 
for(i=0;i<=count;i++)
{
*ptr2=color;ptr2++;
}
break;
}
default:break;
}
}
}
}
 
//---------------------------------------------------------------------------------
// draw finited vertical line on screen
//---------------------------------------------------------------------------------
void DrawHorizontalLineFinit(struct FINITION *fin,int x1,int x2,int y,DWORD color)
{
int xmin,xmax,ymin,ymax,v,sx;
 
xmin=fin->x;
xmax=fin->x+fin->sizex-1;
ymin=fin->y;
ymax=fin->y+fin->sizey-1;
 
if (x2<x1)
{
v=x1;
x1=x2;
x2=v;
}
 
if (y<ymin) return;
if (y>ymax) return;
if (x2<xmin) return;
if (x1>xmax) return;
 
//finit x coordinates and sizex
sx=x1-xmin;
 
if (sx>=0)
{
if (x2>xmax) x2=xmax;
}
else
{
x1=xmin;
if (x2>xmax) x2=xmax;
}
DrawHorizontalLine(x1,x2,y,color);
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing line on screen
//---------------------------------------------------------------------------------
int sign(int value)
{
if (value==0) return(0);
if (value<0) {return(-1);}
else {return(1);}
}
 
int abs(int value)
{
if (value<0) {value=-value;}
 
return(value);
}
 
void DrawLine(int x1, int y1, int x2, int y2,DWORD color)
{
int x;
int y;
int dx;
int dy;
int sx;
int sy;
int z;
int e;
int i;
char ch;
 
switch(screen.draw_output)
{
case DRAW_OUTPUT_SCREEN:
{
if (y1>screen.size_y-1) {y1=screen.size_y-1;}
if (y2>screen.size_y-1) {y2=screen.size_y-1;}
if (x1>screen.size_x-1) {x1=screen.size_x-1;}
if (x2>screen.size_x-1) {x2=screen.size_x-1;}
if (y1<0) {y1=0;}
if (y2<0) {y2=0;}
if (x1<0) {x1=0;}
if (x2<0) {x2=0;}
 
x1+=screen.x;
x2+=screen.x;
y1+=screen.y;
y2+=screen.y;
gui_ksys_draw_line_window(x1,y1,x2,y2,color);
break;
}
case DRAW_OUTPUT_BUFFER:
{
 
x = x1;
y = y1;
dx = abs(x2-x1);
dy = abs(y2-y1);
sx = sign(x2-x1);
sy = sign(y2-y1);
 
if( dx==0 && dy==0 )
{
DrawPixel(x1, y1,color);
return;
}
if( dy>dx )
{
z = dx;
dx = dy;
dy = z;
ch = 1;
}
else
{
ch = 0;
}
e = 2*dy-dx;
i = 1;
 
do
{
DrawPixel(x,y,color);
while(e>=0)
{
if( ch==1 ) x = x+sx;
else y = y+sy;
 
if( ch==1 ) y = y+sy;
else x = x+sx;
 
e = e-2*dx;
}
if( ch==1 ) y = y+sy;
else x = x+sx;
 
e = e+2*dy;
i++;
}
while(i<=dx);
DrawPixel(x, y,color);
break;
}
}
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing rectangle on screen
//---------------------------------------------------------------------------------
void DrawRectangle(int x,int y,int size_x,int size_y,DWORD color)
{
 
if (size_x==0 || size_y==0) return;
 
DrawHorizontalLine(x,x+size_x-1,y,color);
DrawVerticalLine(x+size_x-1,y,y+size_y-1,color);
DrawHorizontalLine(x,x+size_x-1,y+size_y-1,color);
DrawVerticalLine(x,y,y+size_y-1,color);
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing finited rectangle on screen
//---------------------------------------------------------------------------------
void DrawRectangleFinit(struct FINITION *fin,int x,int y,int size_x,int size_y,DWORD color)
{
 
if (size_x==0 || size_y==0) return;
 
DrawHorizontalLineFinit(fin,x,x+size_x-1,y,color);
DrawVerticalLineFinit(fin,x+size_x-1,y,y+size_y-1,color);
DrawHorizontalLineFinit(fin,x,x+size_x-1,y+size_y-1,color);
DrawVerticalLineFinit(fin,x,y,y+size_y-1,color);
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing filled rectangle on screen
//---------------------------------------------------------------------------------
void DrawFilledRectangle(int x,int y,int size_x,int size_y,DWORD color)
{
int i,j;
int x1,y1,x2,y2;
 
if (size_x==0 || size_y==0) return;
 
switch(screen.draw_output)
{
case DRAW_OUTPUT_SCREEN:
{
x1=x;
y1=y;
x2=x+size_x-1;
y2=y+size_y-1;
if (y1>screen.size_y-1) {y1=screen.size_y-1;}
if (y2>screen.size_y-1) {y2=screen.size_y-1;}
if (x1>screen.size_x-1) {x1=screen.size_x-1;}
if (x2>screen.size_x-1) {x2=screen.size_x-1;}
if (y1<0) {y1=0;}
if (y2<0) {y2=0;}
if (x1<0) {x1=0;}
if (x2<0) {x2=0;}
 
size_x=x2-x1+1;
size_y=y2-y1+1;
x1+=screen.x;
y1+=screen.y;
 
gui_ksys_draw_filled_rectangle_window(x1,y1,size_x,size_y,color);
break;
}
case DRAW_OUTPUT_BUFFER:
{
j=y;
for(i=0;i<size_y;i++)
{
DrawHorizontalLine(x,x+size_x-1,j,color);
j++;
}
break;
}
}
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing filled gradient up and down rectangles on screen
//---------------------------------------------------------------------------------
void DrawGradientUpDownFilledRectangle(char flag_up,int x,int y,int sizex,int sizey,DWORD color_from,DWORD color_to)
{
unsigned char r_f,g_f,b_f;
unsigned char r_t,g_t,b_t;
unsigned char r,g,b;
float f_r,f_g,f_b;
float d_r,d_g,d_b;
float div;
DWORD color;
int i,j,dj;
 
if (sizex==0 || sizey==0) return;
 
color=color_from;
b_f=color & 0xff;
color=color >> 8;
g_f=color & 0xff;
color=color >> 8;
r_f=color & 0xff;
 
color=color_to;
b_t=color & 0xff;
color=color >> 8;
g_t=color & 0xff;
color=color >> 8;
r_t=color & 0xff;
 
div=sizey-1;
d_r=(float)(r_t-r_f);
d_r=d_r/div;
d_g=(float)(g_t-g_f);
d_g=d_g/div;
d_b=(float)(b_t-b_f);
d_b=d_b/div;
 
f_r=r_f;
f_g=g_f;
f_b=b_f;
 
r=r_f;
g=g_f;
b=b_f;
 
if (flag_up==TRUE)
{
j=y+sizey-1;
dj=-1;
}
else
{
j=y;
dj=1;
}
 
 
for(i=0;i<sizey;i++)
{
color=0;
color=color | r;
color=color << 8;
color=color | g;
color=color << 8;
color=color | b;
 
DrawHorizontalLine(x,x+sizex-1,j,color);
 
f_r=f_r+d_r;
f_g=f_g+d_g;
f_b=f_b+d_b;
 
r=(char)f_r;
g=(char)f_g;
b=(char)f_b;
 
j=j+dj;
}
 
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing filled gradient left and right rectangles on screen
//---------------------------------------------------------------------------------
void DrawGradientLeftRightFilledRectangle(char flag_left,int x,int y,int sizex,int sizey,DWORD color_from,DWORD color_to)
{
unsigned char r_f,g_f,b_f;
unsigned char r_t,g_t,b_t;
unsigned char r,g,b;
float f_r,f_g,f_b;
float d_r,d_g,d_b;
float div;
DWORD color;
int i,j,dj;
 
if (sizex==0 || sizey==0) return;
 
color=color_from;
b_f=color & 0xff;
color=color >> 8;
g_f=color & 0xff;
color=color >> 8;
r_f=color & 0xff;
 
color=color_to;
b_t=color & 0xff;
color=color >> 8;
g_t=color & 0xff;
color=color >> 8;
r_t=color & 0xff;
 
div=sizex-1;
d_r=(float)(r_t-r_f);
d_r=d_r/div;
d_g=(float)(g_t-g_f);
d_g=d_g/div;
d_b=(float)(b_t-b_f);
d_b=d_b/div;
 
f_r=r_f;
f_g=g_f;
f_b=b_f;
 
r=r_f;
g=g_f;
b=b_f;
 
if (flag_left==TRUE)
{
j=x;
dj=1;
}
else
{
j=x+sizex-1;
dj=-1;
}
 
for(i=0;i<sizex;i++)
{
color=0;
color=color | r;
color=color << 8;
color=color | g;
color=color << 8;
color=color | b;
 
DrawVerticalLine(j,y,y+sizey-1,color);
 
f_r=f_r+d_r;
f_g=f_g+d_g;
f_b=f_b+d_b;
 
r=(char)f_r;
g=(char)f_g;
b=(char)f_b;
 
j=j+dj;
}
 
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing circle on screen
//---------------------------------------------------------------------------------
void DrawCircle(int xc, int yc, int r,DWORD color)
{
int x;
int y;
int d;
 
x = 0;
y = r;
d = 3-2*r;
while(y>=x)
{
DrawPixel(x+xc,y+yc,color);
DrawPixel(x+xc,-y+yc,color);
DrawPixel(-x+xc,y+yc,color);
DrawPixel(-x+xc,-y+yc,color);
DrawPixel(y+xc,x+yc,color);
DrawPixel(y+xc,-x+yc,color);
DrawPixel(-y+xc,x+yc,color);
DrawPixel(-y+xc,-x+yc,color);
if( d<0 )
{
d = d+4*x+6;
}
else
{
d = d+4*(x-y)+10;
y--;
}
x++;
}
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing circle on screen with finition
//---------------------------------------------------------------------------------
void DrawCircleFinit(struct FINITION *fin,int xc, int yc, int r,DWORD color)
{
int x;
int y;
int d;
 
x = 0;
y = r;
d = 3-2*r;
while(y>=x)
{
DrawPixelFinit(fin,x+xc,y+yc,color);
DrawPixelFinit(fin,x+xc,-y+yc,color);
DrawPixelFinit(fin,-x+xc,y+yc,color);
DrawPixelFinit(fin,-x+xc,-y+yc,color);
DrawPixelFinit(fin,y+xc,x+yc,color);
DrawPixelFinit(fin,y+xc,-x+yc,color);
DrawPixelFinit(fin,-y+xc,x+yc,color);
DrawPixelFinit(fin,-y+xc,-x+yc,color);
if( d<0 )
{
d = d+4*x+6;
}
else
{
d = d+4*(x-y)+10;
y--;
}
x++;
}
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing filled circle on screen
//---------------------------------------------------------------------------------
void DrawFilledCircle(int xc, int yc, int r,DWORD color)
{
int xl,yu,xr,yd;
int i,j;
DWORD pixcolor;
 
DrawCircle(xc,yc,r,color);
 
yu=yc;
yd=yc;
for(i=0;i<r;i++)
{
xl=xc;
xr=xc+1;
j=0;
//fill left up
while((pixcolor=GetColorPixel(xl,yu))!=color)
{
DrawPixel(xl,yu,color);
xl--;
j++;
if (j>r) break;
}
j=0;
//fill right up
while((pixcolor=GetColorPixel(xr,yu))!=color)
{
DrawPixel(xr,yu,color);
xr++;
j++;
if (j>r) break;
}
 
xl=xc;
xr=xc+1;
j=0;
//fill left down
while((pixcolor=GetColorPixel(xl,yd))!=color)
{
DrawPixel(xl,yd,color);
xl--;
j++;
if (j>r) break;
}
j=0;
//fill right down
while((pixcolor=GetColorPixel(xr,yd))!=color)
{
DrawPixel(xr,yd,color);
xr++;
j++;
if (j>r) break;
}
yu--;
yd++;
}
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing filled circle on screen with finition
//---------------------------------------------------------------------------------
void DrawFilledCircleFinit(struct FINITION *fin,int xc, int yc, int r,DWORD color)
{
int xl,yu,xr,yd;
int i,j;
DWORD pixcolor;
 
DrawCircleFinit(fin,xc,yc,r,color);
 
yu=yc;
yd=yc;
for(i=0;i<r;i++)
{
xl=xc;
xr=xc+1;
//fill left up
for(j=0;j<r;j++)
{
if (xl>=fin->x && xl<=fin->x+fin->sizex &&
yu>=fin->y && yu<=fin->y+fin->sizey)
{
pixcolor=GetColorPixel(xl,yu);
if (pixcolor!=color) DrawPixel(xl,yu,color);
else break;
}
xl--;
}
//fill right up
for(j=0;j<r;j++)
{
if (xr>=fin->x && xr<=fin->x+fin->sizex &&
yu>=fin->y && yu<=fin->y+fin->sizey)
{
pixcolor=GetColorPixel(xr,yu);
if (pixcolor!=color) DrawPixel(xr,yu,color);
else break;
}
xr++;
}
 
xl=xc;
xr=xc+1;
//fill left down
for(j=0;j<r;j++)
{
if (xl>=fin->x && xl<=fin->x+fin->sizex &&
yd>=fin->y && yd<=fin->y+fin->sizey)
{
pixcolor=GetColorPixel(xl,yd);
if (pixcolor!=color) DrawPixel(xl,yd,color);
else break;
}
xl--;
}
//fill right down
for(j=0;j<r;j++)
{
if (xr>=fin->x && xr<=fin->x+fin->sizex &&
yd>=fin->y && yd<=fin->y+fin->sizey)
{
pixcolor=GetColorPixel(xr,yd);
if (pixcolor!=color) DrawPixel(xr,yd,color);
else break;
}
xr++;
}
yu--;
yd++;
}
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing ellipse on screen
//---------------------------------------------------------------------------------
void DrawEllipse(int x,int y,int a,int b,DWORD color)
{
int col,i,row,bnew;
long a_square,b_square,two_a_square,two_b_square,four_a_square,four_b_square,d;
 
b_square=b*b;
a_square=a*a;
row=b;
col=0;
two_a_square=a_square<<1;
four_a_square=a_square<<2;
four_b_square=b_square<<2;
two_b_square=b_square<<1;
d=two_a_square*((row-1)*(row))+a_square+two_b_square*(1-a_square);
while(a_square*(row)>b_square*(col))
{
DrawPixel(col+x,row+y,color);
DrawPixel(col+x,y-row,color);
DrawPixel(x-col,row+y,color);
DrawPixel(x-col,y-row,color);
 
if (d>=0)
{
row--;
d-=four_a_square*(row);
}
d+=two_b_square*(3+(col<<1));
col++;
}
 
d=two_b_square*(col+1)*col+two_a_square*(row*(row-2)+1)+(1-two_a_square)*b_square;
while ((row) + 1)
{
DrawPixel(col+x, row+y, color);
DrawPixel(col+x, y-row, color);
DrawPixel(x-col, row+y, color);
DrawPixel(x-col, y-row, color);
 
if (d<=0)
{
col++;
d+=four_b_square*col;
}
row--;
d+=two_a_square*(3-(row <<1));
}
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing ellipse on screen with finition
//---------------------------------------------------------------------------------
void DrawEllipseFinit(struct FINITION *fin,int x,int y,int a,int b,DWORD color)
{
int col,i,row,bnew;
long a_square,b_square,two_a_square,two_b_square,four_a_square,four_b_square,d;
 
b_square=b*b;
a_square=a*a;
row=b;
col=0;
two_a_square=a_square<<1;
four_a_square=a_square<<2;
four_b_square=b_square<<2;
two_b_square=b_square<<1;
d=two_a_square*((row-1)*(row))+a_square+two_b_square*(1-a_square);
 
while(a_square*(row)>b_square*(col))
{
DrawPixelFinit(fin,col+x,row+y,color);
DrawPixelFinit(fin,col+x,y-row,color);
DrawPixelFinit(fin,x-col,row+y,color);
DrawPixelFinit(fin,x-col,y-row,color);
 
if (d>=0)
{
row--;
d-=four_a_square*(row);
}
d+=two_b_square*(3+(col<<1));
col++;
}
 
d=two_b_square*(col+1)*col+two_a_square*(row*(row-2)+1)+(1-two_a_square)*b_square;
while ((row) + 1)
{
DrawPixelFinit(fin,col+x, row+y, color);
DrawPixelFinit(fin,col+x, y-row, color);
DrawPixelFinit(fin,x-col, row+y, color);
DrawPixelFinit(fin,x-col, y-row, color);
 
if (d<=0)
{
col++;
d+=four_b_square*col;
}
row--;
d+=two_a_square*(3-(row <<1));
}
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing filled ellips on screen
//---------------------------------------------------------------------------------
void DrawFilledEllipse(int xc, int yc, int a,int b,DWORD color)
{
int xl,yu,xr,yd;
int i,j;
DWORD pixcolor;
 
DrawEllipse(xc,yc,a,b,color);
 
yu=yc;
yd=yc;
for(i=0;i<b;i++)
{
xl=xc;
xr=xc+1;
j=0;
//fill left up
while((pixcolor=GetColorPixel(xl,yu))!=color)
{
DrawPixel(xl,yu,color);
xl--;
j++;
if (j>a) break;
}
j=0;
//fill right up
while((pixcolor=GetColorPixel(xr,yu))!=color)
{
DrawPixel(xr,yu,color);
xr++;
j++;
if (j>a) break;
}
 
xl=xc;
xr=xc+1;
j=0;
//fill left down
while((pixcolor=GetColorPixel(xl,yd))!=color)
{
DrawPixel(xl,yd,color);
xl--;
j++;
if (j>a) break;
}
j=0;
//fill right down
while((pixcolor=GetColorPixel(xr,yd))!=color)
{
DrawPixel(xr,yd,color);
xr++;
j++;
if (j>a) break;
}
yu--;
yd++;
}
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing filled circle on screen with finition
//---------------------------------------------------------------------------------
void DrawFilledEllipseFinit(struct FINITION *fin,int xc, int yc, int a,int b,DWORD color)
{
int xl,yu,xr,yd;
int i,j;
DWORD pixcolor;
 
DrawEllipseFinit(fin,xc,yc,a,b,color);
 
yu=yc;
yd=yc;
for(i=0;i<b;i++)
{
xl=xc;
xr=xc+1;
//fill left up
for(j=0;j<a;j++)
{
if (xl>=fin->x && xl<=fin->x+fin->sizex &&
yu>=fin->y && yu<=fin->y+fin->sizey)
{
pixcolor=GetColorPixel(xl,yu);
if (pixcolor!=color) DrawPixel(xl,yu,color);
else break;
}
xl--;
}
//fill right up
for(j=0;j<a;j++)
{
if (xr>=fin->x && xr<=fin->x+fin->sizex &&
yu>=fin->y && yu<=fin->y+fin->sizey)
{
pixcolor=GetColorPixel(xr,yu);
if (pixcolor!=color) DrawPixel(xr,yu,color);
else break;
}
xr++;
}
 
xl=xc;
xr=xc+1;
//fill left down
for(j=0;j<a;j++)
{
if (xl>=fin->x && xl<=fin->x+fin->sizex &&
yd>=fin->y && yd<=fin->y+fin->sizey)
{
pixcolor=GetColorPixel(xl,yd);
if (pixcolor!=color) DrawPixel(xl,yd,color);
else break;
}
xl--;
}
//fill right down
for(j=0;j<a;j++)
{
if (xr>=fin->x && xr<=fin->x+fin->sizex &&
yd>=fin->y && yd<=fin->y+fin->sizey)
{
pixcolor=GetColorPixel(xr,yd);
if (pixcolor!=color) DrawPixel(xr,yd,color);
else break;
}
xr++;
}
yu--;
yd++;
}
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing image on screen
//---------------------------------------------------------------------------------
void DrawImage(int x,int y,int sizex,int sizey,char bits_per_pixel,char *img)
{
char r,g,b;
int i,j,countx,county;
int x2,y2;
DWORD pitch_src,pitch_screen,add_src,add_screen;
char *ptr_src,*ptr_screen,ptr_max;
char *ptr_src2,*ptr_screen2;
DWORD *ptr_src3;
 
if (img==NULL) return;
if (x>screen.size_x-1) return;
if (y>screen.size_y-1) return;
 
x2=x+sizex-1;
y2=y+sizey-1;
 
 
if (y2>screen.size_y-1) {y2=screen.size_y-1;}
if (x2>screen.size_x-1) {x2=screen.size_x-1;}
if (y<0) y=0;
if (y2<0) y2=0;
if (x<0) x=0;
if (x2<0) x2=0;
 
countx=x2-x+1;
county=y2-y+1;
 
switch(screen.draw_output)
{
case DRAW_OUTPUT_SCREEN:
{
x+=screen.x;
y+=screen.y;
 
switch(screen.bits_per_pixel)
{
case 32:
case 24:
{
switch(bits_per_pixel)
{//check bits per pixel in picture
case 32:
{//convert 32 bit image to 24 bit image
j=sizex*sizey;
ptr_src=img;
ptr_screen=malloc(j*3);
ptr_screen2=ptr_screen;
for(i=0;i<j;i++)
{
*(char*)ptr_screen=*(char*)ptr_src;
*((char*)ptr_screen+1)=*((char*)ptr_src+1);
*((char*)ptr_screen+2)=*((char*)ptr_src+2);
 
ptr_src+=4;
ptr_screen+=3;
}
gui_ksys_put_image_window(ptr_screen2,x,y,countx,county);
free(ptr_screen2);
break;
}
case 24:
{
gui_ksys_put_image_window(img,x,y,countx,county);
break;
}
}
break;
}
default: break;
}
break;
}
case DRAW_OUTPUT_BUFFER:
{
switch(screen.bits_per_pixel)
{
case 24:
{//check source image resolution
switch(bits_per_pixel)
{
case 32://display 32 bit image in 24 bit mode
{//convert and draw 32 bit image in 24 bit buffer
ptr_screen=screen.buffer+(screen.size_x*y+x)*3;
add_screen=(screen.size_x-countx)*3;
ptr_src=img;
//copy line of byte with size x
for(i=0;i<county;i++)
{
for(j=0;j<countx;j++)
{
*(char*)ptr_screen=*(char*)ptr_src;
*((char*)ptr_screen+1)=*((char*)ptr_src+1);
*((char*)ptr_screen+2)=*((char*)ptr_src+2);
ptr_src+=4;
ptr_screen+=3;
}
ptr_screen+=add_screen;
}
break;
}
case 24:
{//display 24 bit image in 24 bit buffer
ptr_screen=screen.buffer+(screen.size_x*y+x)*3;
add_screen=screen.size_x*3;
add_src=countx*3;
 
//copy line of byte with size x
for(i=0;i<county;i++)
{
memmove(ptr_screen,img,add_src);
ptr_screen+=add_screen;
img+=add_src;
}
break;
}
default: break;
}
break;
}
case 32:
{ //check source image resolution
switch(bits_per_pixel)
{
case 32:
{//display 32 bit image in 32 bit mode
ptr_screen=screen.buffer+(screen.size_x*y+x)*4;
add_screen=screen.size_x*4;
add_src=countx*4;
 
//copy line of byte with size x
for(i=0;i<county;i++)
{
memmove(ptr_screen,img,add_src);
ptr_screen+=add_screen;
img+=add_src;
}
 
break;
}
case 24://display 24 bit image in 32 bit mode
{
ptr_screen=screen.buffer+(screen.size_x*y+x)*4;
add_screen=(screen.size_x-countx)*4;
ptr_src=img;
//copy line of byte with size x
for(i=0;i<county;i++)
{
for(j=0;j<countx;j++)
{
*(char*)ptr_screen=*(char*)ptr_src;
*((char*)ptr_screen+1)=*((char*)ptr_src+1);
*((char*)ptr_screen+2)=*((char*)ptr_src+2);
ptr_src+=3;
ptr_screen+=4;
}
ptr_screen+=add_screen;
}
break;
}
default: break;
}
default: break;
}
}
}
}
}
 
//---------------------------------------------------------------------------------
// libGUI function drawing image on screen with finition
//---------------------------------------------------------------------------------
void DrawImageFinit(finition_t *fin,int x,int y,int sizex,int sizey,char bits_per_pixel,char *img)
{
int x1,y1,x2,y2,sx,sy;
int xmin,xmax,ymin,ymax;
int countline,countx,county,i,j;
DWORD pitch_src,add_src;
char *ptr_dest,*ptr_src;
char bytes_per_pixel;
char *buf;
 
xmin=fin->x;
xmax=fin->x+fin->sizex-1;
ymin=fin->y;
ymax=fin->y+fin->sizey-1;
 
x1=x;
y1=y;
x2=x1+sizex-1;
y2=y1+sizey-1;
 
if (x2<xmin) return;
if (x1>xmax) return;
if (y2<ymin) return;
if (y1>ymax) return;
 
if (x1>=xmin && x2<=xmax && y1>=ymin && y2<=ymax)
{
DrawImage(x,y,sizex,sizey,bits_per_pixel,img);
return;
}
 
//finit x coordinates and sizex
sx=x1-xmin;
 
if (sx>=0)
{
if (x2>xmax) x2=xmax;
}
else
{
x1=xmin;
if (x2>xmax) x2=xmax;
}
 
//finit y coordinates and sizey
sy=y1-ymin;
 
if (sy>=0)
{
if (y2>ymax) y2=ymax;
}
else
{
y1=ymin;
if (y2>ymax) y2=ymax;
}
countx=x2-x1+1;
county=y2-y1+1;
 
//cut finited rectangle from image and move them into buffer
 
bytes_per_pixel=bits_per_pixel >> 3;
buf=malloc(countx*county*bytes_per_pixel);
ptr_dest=buf;
 
pitch_src=sizex*bytes_per_pixel;
ptr_src=img+pitch_src*(y1-y)+(x1-x)*bytes_per_pixel;
add_src=sizex*bytes_per_pixel;
countline=countx*bytes_per_pixel;
 
switch(bits_per_pixel)
{
case 32:
case 24:
case 16:
case 8:
{
for(i=0;i<county;i++)
{
memmove(ptr_dest,ptr_src,countline);
ptr_src+=add_src;
ptr_dest+=countline;
}
break;
}
default: break;
}
//draw cutted by finition image
DrawImage(x1,y1,countx,county,bits_per_pixel,buf);
free(buf);
}
 
//---------------------------------------------------------------------------------
// libGUI function draw
//---------------------------------------------------------------------------------
void Draw(struct FINITION *finition,int tool_name,...)
{
va_list arguments;
char *img;
char first,second,bits_per_pixel;
int xmin,xmax,ymin,ymax;
int radius;
int x,y,x2,y2,x_i,y_i;
int sizex,sizey,sx,sy;
float x_l1,y_l1,x_l2,y_l2,k,b;
DWORD color,color_from,color_to;
 
arguments=(va_list)&tool_name+sizeof(int);
 
xmin=finition->x;
xmax=finition->x+finition->sizex-1;
ymin=finition->y;
ymax=finition->y+finition->sizey-1;
 
switch(tool_name)
{
//tool Pixel
case TOOL_PIXEL:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
color=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
if (x>=finition->x && x<=finition->x+finition->sizex
&& y>=finition->y && y<=finition->y+finition->sizey)
{ //pixel inside finition arrea
DrawPixel(x,y,color);
}
}
else
{ //no finition
DrawPixel(x,y,color);
}
break;
}
//tool Line
case TOOL_LINE:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
x2=va_arg(arguments,int);
y2=va_arg(arguments,int);
color=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
sizex=abs(x2-x);
sizey=abs(y2-y);
 
if (CheckCrossRectangles(finition->x,finition->y,finition->sizex,
finition->sizey,x,y,sizex,sizey)==FALSE) break;
 
if (x>=finition->x && x<=finition->x+finition->sizex &&
y>=finition->y && y<=finition->y+finition->sizey &&
x2>=finition->x && x2<=finition->x+finition->sizex &&
y2>=finition->y && y2<=finition->y+finition->sizey)
{
//line inside finition arrea
DrawLine(x,y,x2,y2,color);
break;
}
 
 
if (x==x2) break;
 
//find coefficients of line
x_l1=x;
y_l1=y;
x_l2=x2;
y_l2=y2;
k=(y_l1-y_l2)/(x_l1-x_l2);
b=(y_l2*x_l1-y_l1*x_l2)/(x_l1-x_l2);
 
sx=x2-x;//vectore x
sy=y2-y;//vectore y
 
if (x>=finition->x && x<=finition->x+finition->sizex &&
y>=finition->y && y<=finition->y+finition->sizey)
{ //point x,y inside finition arrea
//check cross with left vertical line of finition
y_l1=k*finition->x+b;
y_i=(int)y_l1;
if (y_i>=finition->y && y_i<=finition->y+finition->sizey && sx<0)
{ //first point for finited line
x2=finition->x;
y2=y_i;
DrawLine(x,y,x2,y2,color);
break;
}
//check cross with up horizontal line of finition
x_l1=(finition->y-b)/k;
x_i=(int)x_l1;
if (x_i>=finition->x && x_i<=finition->x+finition->sizex && sy<0)
{
x2=x_i;
y2=finition->y;
DrawLine(x,y,x2,y2,color);
break;
}
//check cross with right vertical line of finition
y_l1=k*(finition->x+finition->sizex)+b;
y_i=(int)y_l1;
if (y_i>=finition->y && y_i<=finition->y+finition->sizey && sx>0)
{
x2=finition->x+finition->sizex;
y2=y_i;
DrawLine(x,y,x2,y2,color);
break;
}
//check cross with down horizontal line of finition
x_l1=((finition->y+finition->sizey)-b)/k;
x_i=(int)x_l1;
if (x_i>=finition->x && x_i<=finition->x+finition->sizex && sy>0)
{
x2=x_i;
y2=finition->y+finition->sizey;
DrawLine(x,y,x2,y2,color);
break;
}
}
 
if (x2>=finition->x && x2<=finition->x+finition->sizex &&
y2>=finition->y && y2<=finition->y+finition->sizey)
{ //point x,y inside finition arrea
//check cross with left vertical line of finition
y_l1=k*finition->x+b;
y_i=(int)y_l1;
if (y_i>=finition->y && y_i<=finition->y+finition->sizey && sx>0)
{ //first point for finited line
x=finition->x;
y=y_i;
DrawLine(x,y,x2,y2,color);
break;
}
//check cross with up horizontal line of finition
x_l1=(finition->y-b)/k;
x_i=(int)x_l1;
if (x_i>=finition->x && x_i<=finition->x+finition->sizex && sy>0)
{
x=x_i;
y=finition->y;
DrawLine(x,y,x2,y2,color);
break;
}
//check cross with right vertical line of finition
y_l1=k*(finition->x+finition->sizex)+b;
y_i=(int)y_l1;
if (y_i>=finition->y && y_i<=finition->y+finition->sizey && sx<0)
{
x=finition->x+finition->sizex;
y=y_i;
DrawLine(x,y,x2,y2,color);
break;
}
//check cross with down horizontal line of finition
x_l1=((finition->y+finition->sizey)-b)/k;
x_i=(int)x_l1;
if (x_i>=finition->x && x_i<=finition->x+finition->sizex && sy<0)
{
x=x_i;
y=finition->y+finition->sizey;
DrawLine(x,y,x2,y2,color);
break;
}
}
 
first=FALSE;
second=FALSE;
//check cross with left vertical line of finition
y_l1=k*finition->x+b;
y_i=(int)y_l1;
if (y_i>=finition->y && y_i<=finition->y+finition->sizey)
{ //first point for finited line
x=finition->x;
y=y_i;
first=TRUE;
}
//check cross with up horizontal line of finition
x_l1=(finition->y-b)/k;
x_i=(int)x_l1;
if (x_i>=finition->x && x_i<=finition->x+finition->sizex)
{
if (first==FALSE)
{
x=x_i;
y=finition->y;
}
else
{
x2=x_i;
y2=finition->y;
second=TRUE;
}
}
//check cross with right vertical line of finition
y_l1=k*(finition->x+finition->sizex)+b;
y_i=(int)y_l1;
if (y_i>=finition->y && y_i<=finition->y+finition->sizey)
{
if (first==FALSE)
{
x=finition->x+finition->sizex;
y=y_i;
}
else
{
x2=finition->x+finition->sizex;
y2=y_i;
second=TRUE;
}
}
//check cross with down horizontal line of finition
x_l1=((finition->y+finition->sizey)-b)/k;
x_i=(int)x_l1;
if (x_i>=finition->x && x_i<=finition->x+finition->sizex)
{
if (first==FALSE)
{
x=x_i;
y=finition->y+finition->sizey;
}
else
{
x2=x_i;
y2=finition->y+finition->sizey;
second=TRUE;
}
}
 
if (first==TRUE && second==TRUE)
{
//draw finited line
DrawLine(x,y,x2,y2,color);
}
break;
 
}
else
{ //no finition
DrawLine(x,y,x2,y2,color);
}
break;
}
//tool VerticalLine
case TOOL_VERTICAL_LINE:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
y2=va_arg(arguments,int);
color=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
DrawVerticalLineFinit(finition,x,y,y2,color);
}
else
{
DrawVerticalLine(x,y,y2,color);
}
break;
}
//tool HorizontalLine
case TOOL_HORIZONTAL_LINE:
{
x=va_arg(arguments,int);
x2=va_arg(arguments,int);
y=va_arg(arguments,int);
color=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
DrawHorizontalLineFinit(finition,x,x2,y,color);
}
else
{
DrawHorizontalLine(x,x2,y,color);
}
break;
}
 
//tool Rectangle
case TOOL_RECTANGLE:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
sizex=va_arg(arguments,int);
sizey=va_arg(arguments,int);
color=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
x2=x+sizex-1;
y2=y+sizey-1;
 
if (x2<xmin) return;
if (x>xmax) return;
if (y2<ymin) return;
if (y>ymax) return;
 
DrawRectangleFinit(finition,x,y,sizex,sizey,color);
}
else
{
DrawRectangle(x,y,sizex,sizey,color);
}
break;
}
//tool FilledRectangle
case TOOL_FILLED_RECTANGLE:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
sizex=va_arg(arguments,int);
sizey=va_arg(arguments,int);
color=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
x2=x+sizex-1;
y2=y+sizey-1;
 
if (x2<xmin) return;
if (x>xmax) return;
if (y2<ymin) return;
if (y>ymax) return;
 
//finit x coordinates and sizex
sx=x-xmin;
 
if (sx>=0)
{
if (x2>xmax) x2=xmax;
}
else
{
x=xmin;
if (x2>xmax) x2=xmax;
}
 
//finit y coordinates and sizey
sy=y-ymin;
 
if (sy>=0)
{
if (y2>ymax) y2=ymax;
}
else
{
y=ymin;
if (y2>ymax) y2=ymax;
}
 
sizex=x2-x+1;
sizey=y2-y+1;
 
DrawFilledRectangle(x,y,sizex,sizey,color);
}
else
{
DrawFilledRectangle(x,y,sizex,sizey,color);
}
break;
}
//tool GradientUpFilledRectangle
case TOOL_GRADIENT_UP_FILLED_RECTANGLE:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
sizex=va_arg(arguments,int);
sizey=va_arg(arguments,int);
color_from=va_arg(arguments,DWORD);
color_to=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
x2=x+sizex-1;
y2=y+sizey-1;
 
if (x2<xmin) return;
if (x>xmax) return;
if (y2<ymin) return;
if (y>ymax) return;
 
//finit x coordinates and sizex
sx=x-xmin;
 
if (sx>=0)
{
if (x2>xmax) x2=xmax;
}
else
{
x=xmin;
if (x2>xmax) x2=xmax;
}
 
//finit y coordinates and sizey
sy=y-ymin;
 
if (sy>=0)
{
if (y2>ymax) y2=ymax;
}
else
{
y=ymin;
if (y2>ymax) y2=ymax;
}
 
sizex=x2-x+1;
sizey=y2-y+1;
 
DrawGradientUpDownFilledRectangle(TRUE,x,y,sizex,sizey,color_from,color_to);
}
else
{
DrawGradientUpDownFilledRectangle(TRUE,x,y,sizex,sizey,color_from,color_to);
}
break;
}
//tool GradientDownFilledRectangle
case TOOL_GRADIENT_DOWN_FILLED_RECTANGLE:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
sizex=va_arg(arguments,int);
sizey=va_arg(arguments,int);
color_from=va_arg(arguments,DWORD);
color_to=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
x2=x+sizex-1;
y2=y+sizey-1;
 
if (x2<xmin) return;
if (x>xmax) return;
if (y2<ymin) return;
if (y>ymax) return;
 
//finit x coordinates and sizex
sx=x-xmin;
 
if (sx>=0)
{
if (x2>xmax) x2=xmax;
}
else
{
x=xmin;
if (x2>xmax) x2=xmax;
}
 
//finit y coordinates and sizey
sy=y-ymin;
 
if (sy>=0)
{
if (y2>ymax) y2=ymax;
}
else
{
y=ymin;
if (y2>ymax) y2=ymax;
}
 
sizex=x2-x+1;
sizey=y2-y+1;
 
DrawGradientUpDownFilledRectangle(FALSE,x,y,sizex,sizey,color_from,color_to);
}
else
{
DrawGradientUpDownFilledRectangle(FALSE,x,y,sizex,sizey,color_from,color_to);
}
break;
}
//tool GradientLeftFilledRectangle
case TOOL_GRADIENT_LEFT_FILLED_RECTANGLE:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
sizex=va_arg(arguments,int);
sizey=va_arg(arguments,int);
color_from=va_arg(arguments,DWORD);
color_to=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
x2=x+sizex-1;
y2=y+sizey-1;
 
if (x2<xmin) return;
if (x>xmax) return;
if (y2<ymin) return;
if (y>ymax) return;
 
//finit x coordinates and sizex
sx=x-xmin;
 
if (sx>=0)
{
if (x2>xmax) x2=xmax;
}
else
{
x=xmin;
if (x2>xmax) x2=xmax;
}
 
//finit y coordinates and sizey
sy=y-ymin;
 
if (sy>=0)
{
if (y2>ymax) y2=ymax;
}
else
{
y=ymin;
if (y2>ymax) y2=ymax;
}
 
sizex=x2-x+1;
sizey=y2-y+1;
 
DrawGradientLeftRightFilledRectangle(TRUE,x,y,sizex,sizey,color_from,color_to);
}
else
{
DrawGradientLeftRightFilledRectangle(TRUE,x,y,sizex,sizey,color_from,color_to);
}
break;
}
//tool GradientRightFilledRectangle
case TOOL_GRADIENT_RIGHT_FILLED_RECTANGLE:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
sizex=va_arg(arguments,int);
sizey=va_arg(arguments,int);
color_from=va_arg(arguments,DWORD);
color_to=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
x2=x+sizex-1;
y2=y+sizey-1;
 
if (x2<xmin) return;
if (x>xmax) return;
if (y2<ymin) return;
if (y>ymax) return;
 
//finit x coordinates and sizex
sx=x-xmin;
 
if (sx>=0)
{
if (x2>xmax) x2=xmax;
}
else
{
x=xmin;
if (x2>xmax) x2=xmax;
}
 
//finit y coordinates and sizey
sy=y-ymin;
 
if (sy>=0)
{
if (y2>ymax) y2=ymax;
}
else
{
y=ymin;
if (y2>ymax) y2=ymax;
}
 
sizex=x2-x+1;
sizey=y2-y+1;
 
DrawGradientLeftRightFilledRectangle(FALSE,x,y,sizex,sizey,color_from,color_to);
}
else
{
DrawGradientLeftRightFilledRectangle(FALSE,x,y,sizex,sizey,color_from,color_to);
}
break;
}
//tool Circle
case TOOL_CIRCLE:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
radius=va_arg(arguments,int);
color=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
DrawCircleFinit(finition,x,y,radius,color);
}
else
{
DrawCircle(x,y,radius,color);
}
break;
}
//tool FilledCircle
case TOOL_FILLED_CIRCLE:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
radius=va_arg(arguments,int);
color=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
DrawFilledCircleFinit(finition,x,y,radius,color);
}
else
{
DrawFilledCircle(x,y,radius,color);
}
break;
}
//tool Ellipse
case TOOL_ELLIPSE:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
sizex=va_arg(arguments,int);
sizey=va_arg(arguments,int);
color=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
DrawEllipseFinit(finition,x,y,sizex,sizey,color);
}
else
{
DrawEllipse(x,y,sizex,sizey,color);
}
break;
}
//tool FilledEllipse
case TOOL_FILLED_ELLIPSE:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
sizex=va_arg(arguments,int);
sizey=va_arg(arguments,int);
color=va_arg(arguments,DWORD);
 
if (finition->flags & FINITION_ON)
{
DrawFilledEllipseFinit(finition,x,y,sizex,sizey,color);
}
else
{
DrawFilledEllipse(x,y,sizex,sizey,color);
}
break;
}
//tool Image
case TOOL_IMAGE:
{
x=va_arg(arguments,int);
y=va_arg(arguments,int);
sizex=va_arg(arguments,int);
sizey=va_arg(arguments,int);
bits_per_pixel=(char)va_arg(arguments,int);
img=va_arg(arguments,char*);
 
if (finition->flags & FINITION_ON)
{
DrawImageFinit(finition,x,y,sizex,sizey,bits_per_pixel,img);
}
else
{
DrawImage(x,y,sizex,sizey,bits_per_pixel,img);
}
break;
}
}
va_end(arguments);
}
 
 
/programs/develop/libraries/libGUI/SRC/fonts_meneger.h
0,0 → 1,63
/*
font meneger header structure
*/
 
#define FONT_FLAG_DEFAULT_FONT_ON 0x1
#define FONT_FLAG_DEFAULT_FONT_OFF 0xfe
#define FONT_FLAG_DRAW_BACKGROUND_ON 0x2
#define FONT_FLAG_DRAW_BACKGROUND_OFF 0xfd
#define FONT_FLAG_ORIENTATION_HORIZONTAL_FROM_LEFT_TO_RIGHT_ON 0x4
#define FONT_FLAG_ORIENTATION_HORIZONTAL_FROM_LEFT_TO_RIGHT_OFF 0xfb
 
#define FONT_CONSTANT_SIZE -1
 
//some types encoding characters
#define FONT_TYPE_ASCII 0x1
#define FONT_TYPE_UNICODE 0x2
 
///////////////////////////////////////////////////////////
// some ASCII encodings
///////////////////////////////////////////////////////////
 
//cyrillic encodings
#define FONT_ENCODING_CYRILLIC_IBM866 0x1
#define FONT_ENCODING_CYRILLIC_IBM437 0x2
#define FONT_ENCODING_CYRILLIC_KOI8R 0x4
#define FONT_ENCODING_CYRILLIC_ISO8859_5 0x8
#define FONT_ENCODING_CYRILLIC_CP1251 0x10
 
#pragma pack(push,1)
static struct
{
DWORD *fnt_fd;
DWORD *fnt_bk;
DWORD *default_font;
DWORD number_fonts;
}FontsMeneger;
#pragma pack(pop)
 
#pragma pack(push,1)
struct FONT
{
DWORD *fnt_draw;
DWORD *fnt_unpacker;
DWORD *fnt_fd;
DWORD *fnt_bk;
int sizex;
int sizey;
int size;
int encoding_type;
char *font;
char *fnt_name;
DWORD type;
DWORD flags;
};
#pragma pack(pop)
 
typedef struct FONT font_t;
 
static char *default_fonts_path="/sys/fonts/";
 
void (*DrawFont)(finition_t *fin,int fx,int fy,DWORD color,DWORD background_color,font_t *font,BYTE *s);
 
 
/programs/develop/libraries/libGUI/SRC/fonts_meneger.inc
0,0 → 1,373
/*
menegement of fonts
*/
 
//---------------------------------------------------------------------------------
// destroy font
//---------------------------------------------------------------------------------
void DestroyFont(font_t *font)
{
font_t *seek_font;
font_t *exchange_font;
font_t *last_font;
font_t *next_font;
 
if (font==(font_t*)NULL) return;
 
if (FontsMeneger.fnt_bk==FontsMeneger.fnt_fd)
{
//parent have got alone font
if (FontsMeneger.fnt_bk==(DWORD*)font)
{
#ifdef DEBUG
printf("\ndestroyed font %d font name=%s",(int)font,(char*)font->fnt_name);
#endif
free(font);
FontsMeneger.fnt_bk=(DWORD*)NULL;
FontsMeneger.fnt_fd=(DWORD*)NULL;
}
return;
}
 
seek_font=(font_t*)FontsMeneger.fnt_bk;
while(seek_font!=(font_t*)NULL)
{
if (seek_font==font)
{
//delete font from fonts's cash
last_font=(font_t*)seek_font->fnt_bk;
next_font=(font_t*)seek_font->fnt_fd;
 
if ((last_font!=(font_t*)NULL) && (next_font!=(font_t*)NULL))
{//deliting font isn't first font and isn't endest
next_font->fnt_bk=(DWORD*)last_font;
last_font->fnt_fd=(DWORD*)next_font;
}
else
{
if (last_font==(font_t*)NULL)
{//deliting font is first font of Parend
FontsMeneger.fnt_bk=(DWORD*)next_font;
next_font->fnt_bk=(DWORD*)NULL;
if (next_font->fnt_fd==(DWORD*)NULL)
{
FontsMeneger.fnt_fd=(DWORD*)next_font;
FontsMeneger.fnt_bk=(DWORD*)next_font;
}
}
 
if (next_font==(font_t*)NULL)
{
//there isn't next fonts
last_font->fnt_fd=(DWORD*)NULL;
FontsMeneger.fnt_fd=(DWORD*)last_font;
}
}
#ifdef DEBUG
printf("\ndestroyed font %d font name=%s",(int)font,(char*)font->fnt_name);
#endif
free(font);
break;
}
exchange_font=(font_t*)seek_font->fnt_fd;
seek_font=exchange_font;
}
}
 
void *CreateFont(void)
{
font_t *font;
font_t *backward_font;
 
font=malloc(sizeof(struct FONT));
 
if (FontsMeneger.fnt_bk==(DWORD*)NULL)
{//not yet fonts
FontsMeneger.fnt_bk=(DWORD*)font;
FontsMeneger.fnt_fd=(DWORD*)font;
font->fnt_bk=(DWORD*)NULL;
font->fnt_fd=(DWORD*)NULL;
}
else
{
backward_font=(font_t*)FontsMeneger.fnt_fd;
FontsMeneger.fnt_fd=(DWORD*)font;
backward_font->fnt_fd=(DWORD*)font;
font->fnt_bk=(DWORD*)backward_font;
font->fnt_fd=(DWORD*)NULL;
}
return(font);
}
////////////////////////////////////////////////////////////////////////////////
// CHAR.MT and CHAR2.MT fonts unpacker
////////////////////////////////////////////////////////////////////////////////
void CHAR_MT_FontsUnpacker(unsigned char *loaded_font,font_t *font,char font_type)
{
int i,j,k;
unsigned char c;
unsigned char *p;
 
if (font_type==FALSE)
{//CHAR.MT
font->font=malloc(6*9*256);
p=(unsigned char*)font->font;
 
for(j=0;j<256;j++)
{
for(i=0;i<9;i++)
{
c=(unsigned char)(*loaded_font);
p[5]=(unsigned char)(c & 0x20);
p[4]=(unsigned char)(c & 0x10);
p[3]=(unsigned char)(c & 0x8);
p[2]=(unsigned char)(c & 0x4);
p[1]=(unsigned char)(c & 0x2);
p[0]=(unsigned char)(c & 0x1);
 
p+=6;
loaded_font++;
}
}
font->sizex=6;
font->sizey=9;
}
else
{//CHAR2.MT
font->font=malloc(8*10*256);
p=(unsigned char*)font->font;
 
for(j=0;j<256;j++)
{
for(i=0;i<10;i++)
{
c=(unsigned char)(*loaded_font);
p[7]=(unsigned char)(c & 0x80);
p[6]=(unsigned char)(c & 0x40);
p[5]=(unsigned char)(c & 0x20);
p[4]=(unsigned char)(c & 0x10);
p[3]=(unsigned char)(c & 0x8);
p[2]=(unsigned char)(c & 0x4);
p[1]=(unsigned char)(c & 0x2);
p[0]=(unsigned char)(c & 0x1);
 
p+=8;
loaded_font++;
}
}
font->sizex=8;
font->sizey=10;
}
 
font->size=FONT_CONSTANT_SIZE;
font->type=FONT_TYPE_ASCII;
font->encoding_type=FONT_ENCODING_CYRILLIC_IBM866;
}
 
////////////////////////////////////////////////////////////////////////////////
// CHAR.MT and CHAR2.MT fonts draw
////////////////////////////////////////////////////////////////////////////////
void MonofontDraw(finition_t *fin,int fx,int fy,
DWORD color,DWORD background_color,
font_t *font,unsigned char *s)
{
unsigned int i,j,k,step,len;
int x,y,size_x,save_size_x,save_size_y;
unsigned char *p,*buf,*save_buf;
unsigned char c;
DWORD draw_output;
 
step=font->sizex*font->sizey;
len=strlen(s);
 
if (font->flags & FONT_FLAG_ORIENTATION_HORIZONTAL_FROM_LEFT_TO_RIGHT_ON)
{
if (font->flags & FONT_FLAG_DRAW_BACKGROUND_ON)
{//there is a fon and not finition for draw
//alocate a buffer for draw text
size_x=font->sizex*len;
 
c=screen.bits_per_pixel >> 3;
i=step*c*len;
buf=malloc(i);
 
//save current screen parameters
save_buf=screen.buffer;
save_size_x=screen.size_x;
save_size_y=screen.size_y;
draw_output=screen.draw_output;
 
//load parameters of local buffer
screen.buffer=buf;
screen.size_x=size_x;
screen.size_y=font->sizey;
screen.draw_output=DRAW_OUTPUT_BUFFER;
 
//fill buffer by background color
FillArrea(buf,i,screen.bits_per_pixel,background_color);
 
//draw text
x=0;
for(k=0;k<len;k++)
{
c=s[k];
p=font->font+step*c;
for(j=0;j<font->sizey;j++)
{
 
for(i=0;i<font->sizex;i++)
{
if (*p) DrawPixel(x+i,j,color);
p++;
}
}
x=x+font->sizex;
}
 
//restore screen parameters
screen.buffer=save_buf;
screen.size_x=save_size_x;
screen.size_y=save_size_y;
screen.draw_output=draw_output;
 
//move text from local buffer to screen
if (fin->flags & FINITION_ON)
DrawImageFinit(fin,fx,fy,size_x,font->sizey,screen.bits_per_pixel,buf);
else
DrawImage(fx,fy,size_x,font->sizey,screen.bits_per_pixel,buf);
 
//free local buffer
free(buf);
}
else
{
if (fin->flags & FINITION_ON)
{//not background and finition for draw
x=fx;
y=fy;
for(k=0;k<len;k++)
{
c=s[k];
p=font->font+step*c;
for(j=0;j<font->sizey;j++)
{
 
for(i=0;i<font->sizex;i++)
{
if (*p) DrawPixelFinit(fin,x+i,y+j,color);
p++;
}
}
x=x+font->sizex;
}
}
else
{//not background and not finition for draw
x=fx;
y=fy;
for(k=0;k<len;k++)
{
c=s[k];
p=font->font+step*c;
for(j=0;j<font->sizey;j++)
{
 
for(i=0;i<font->sizex;i++)
{
if (*p) DrawPixel(x+i,y+j,color);
p++;
}
}
x=x+font->sizex;
}
}
 
}
}
}
 
////////////////////////////////////////////////////////////////////////////////
// fonts loader
////////////////////////////////////////////////////////////////////////////////
font_t *LoadFont(char *fullfontname)
{
char *path;
char *c;
BYTE *buf;
long filesize;
int len1,len2,i;
font_t *font;
static DWORD buf_for_size[2];
static DWORD buf_for_pos[2];
 
path=malloc(263);
if (strchr(fullfontname,'/')==NULL)
{
len1=strlen(default_fonts_path);
len2=strlen(fullfontname);
memmove(path,default_fonts_path,len1);
memmove(path+len1,fullfontname,len2);
*(path+len1+len2)='\0';
}
else
memmove(path,fullfontname,strlen(fullfontname));
 
if (gui_get_file_size(path,buf_for_size)==KOLIBRIOS_SYS_FILE_ACCESS_SUCCESSFULLY)
{
filesize=buf_for_size[0];
buf=malloc(filesize);
//load fonts in buffer
gui_read_file(path,buf_for_pos,filesize,buf);
 
free(path);
//register font
font=CreateFont();
c=strrchr(fullfontname,'/');
if(c==NULL) font->fnt_name=fullfontname;
else
font->fnt_name=(char*)(c+1);
 
//check font type
c=strstr(font->fnt_name,"CHAR.MT");//check standart type of fonts
if (c!=NULL)
{
font->fnt_unpacker=(DWORD*)&CHAR_MT_FontsUnpacker;
font->fnt_draw=(DWORD*)&MonofontDraw;
CHAR_MT_FontsUnpacker(buf,font,FALSE);//CHAR.MT
free(buf);
font->flags=0;
font->flags|=FONT_FLAG_ORIENTATION_HORIZONTAL_FROM_LEFT_TO_RIGHT_ON;
}
 
c=strstr(font->fnt_name,"CHAR2.MT");//check standart type of fonts
if (c!=NULL)
{
font->fnt_unpacker=(DWORD*)&CHAR_MT_FontsUnpacker;
font->fnt_draw=(DWORD*)&MonofontDraw;
CHAR_MT_FontsUnpacker(buf,font,TRUE);//CHAR2.MT
free(buf);
font->flags=0;
font->flags|=FONT_FLAG_ORIENTATION_HORIZONTAL_FROM_LEFT_TO_RIGHT_ON;
}
//not other fonts yet
 
}
else
{
#ifdef DEBUG
printf("\ncannot load font %s",path);
#endif
free(path);
return(NULL);
}
 
FontsMeneger.number_fonts++;
return(font);
}
 
void FreeFont(font_t *font)
{
if (font==(font_t*)FontsMeneger.default_font) return;
 
free(font->font);
DestroyFont(font);
}
/programs/develop/libraries/libGUI/SRC/keys.h
0,0 → 1,8
/*
scan codes of keys
*/
//Scan Codes of some keys in pressed state
#define SC_TAB 15
#define SC_ENTER 28
#define SC_SPACE 57
/programs/develop/libraries/libGUI/SRC/kolibri_system.h
0,0 → 1,658
/*
some system function of KolibriOS
*/
 
#define KOLIBRIOS_SYS_EVENT_REDRAW 1
#define KOLIBRIOS_SYS_EVENT_KEYS 2
#define KOLIBRIOS_SYS_EVENT_BUTTON_PRESSED 3
#define KOLIBRIOS_SYS_EVENT_REDRAW_BACKGROUND 5
#define KOLIBRIOS_SYS_EVENT_MOUSE 6
#define KOLIBRIOS_SYS_EVENT_IPC 7
#define KOLIBRIOS_SYS_EVENT_NET 8
#define KOLIBRIOS_SYS_EVENT_DEBUG 9
 
#define KOLIBRIOS_SYS_MOUSE_BUTTON_LEFT_DOWN 0x1
#define KOLIBRIOS_SYS_MOUSE_BUTTON_RIGHT_DOWN (0x1<<1)
#define KOLIBRIOS_SYS_MOUSE_BUTTON_MIDDLE_DOWN (0x1 <<2)
#define KOLIBRIOS_SYS_MOUSE_BUTTON_4_DOWN (0x1 <<3)
#define KOLIBRIOS_SYS_MOUSE_BUTTON_5_DOWN (0x1 <<4)
 
#define KOLIBRIOS_SYS_FILE_ACCESS_SUCCESSFULLY 0
#define KOLIBRIOS_SYS_FILE_UNDEFINED_PARTITION_OR_HARDDRIVE_BASE 1
#define KOLIBRIOS_SYS_FILE_FUNCTION_DONT_SUPPOROTE_FOR_CURRENT_FILE_SYSTEM 2
#define KOLIBRIOS_SYS_FILE_UNKNOWN_FILE_SYSTEM 3
#define KOLIBRIOS_SYS_FILE_NOT_FOUND 5
#define KOLIBRIOS_SYS_FILE_FINISHED 6
#define KOLIBRIOS_SYS_FILE_POINTER_OUTOFMEMORY_APPLICATION 7
#define KOLIBRIOS_SYS_FILE_MEMORY_OF_DEVICE_FILLED 8
#define KOLIBRIOS_SYS_FILE_TABLE_DESTROYED 9
#define KOLIBRIOS_SYS_FILE_ACCESS_DENITED 10
#define KOLIBRIOS_SYS_FILE_DEVICE_ERROR 11
 
#pragma pack(push,1)
struct KOLIBRIOS_FILEIO
{
DWORD number_subfunction;
DWORD offset_in_file_low;
DWORD offset_in_file_hight;
DWORD size;
DWORD *data;
BYTE null;
char *full_file_path;
};
#pragma pack(pop)
 
typedef struct KOLIBRIOS_FILEIO fileio_t;
 
#pragma pack(push,1)
struct BLOCK_DATA_ENTRY_DIRECTORY
{
DWORD attributes;
DWORD types_data_of_name;
DWORD time_created_file;
DWORD date_created_file;
DWORD time_last_access;
DWORD date_last_access;
DWORD time_last_modification;
DWORD date_last_modification;
DWORD file_size_low;
DWORD file_size_hight;
DWORD *filename;
};
#pragma pack(pop)
 
typedef struct BLOCK_DATA_ENTRY_DIRECTORY bded_t;
 
#pragma pack(push,1)
struct PROCESS_TABLE
{
int cpu_usage; //+0
int window_pos_info; //+4
short int reserved1; //+8
char name[12]; //+10
int memstart; //+22
int memused; //+26
int pid; //+30
int winx_start; //+34
int winy_start; //+38
int winx_size; //+42
int winy_size; //+46
short int slot_info; //+50
short int reserved2; //+52
int clientx; //+54
int clienty; //+58
int clientwidth; //+62
int clientheight; //+66
unsigned char window_state; //+70
char reserved3[1024-71]; //+71
};
#pragma pack(pop)
 
typedef struct PROCESS_TABLE process_table_t;
 
#pragma pack(push,1)
struct IMPORT
{
char *name;
void *data;
};
#pragma pack(pop)
 
typedef struct IMPORT import_t;
 
static DWORD gui_get_file_size(char *filename,DWORD *buf_for_size);
static DWORD gui_read_file(char *filename,DWORD *buf_pos_size,DWORD size_read,char *buf);
static DWORD gui_create_rewrite_file(char *filename,DWORD *buf_pos_size,DWORD size_write,char *buf);
static DWORD gui_append_to_file(char *filename,DWORD *buf_pos_size,DWORD size_write,char *buf);
static void gui_debug_out_str(char *s);
static void* gui_cofflib_getproc(import_t *lib, char *name);
 
#define alwinline __attribute__((always_inline))
//------------------------------------------------------------------------------------------
// draw window
//------------------------------------------------------------------------------------------
extern inline void __attribute__((always_inline)) gui_ksys_draw_window(DWORD x,DWORD y,DWORD sizex,DWORD sizey,DWORD flags)
{
__asm__ __volatile__(
"xorl %%eax,%%eax\n\t"
"movl %0,%%ebx\n\t"
"movl %1,%%ecx\n\t"
"movl %4,%%edx\n\t"
"shll $16,%%ebx\n\t"
"shll $16,%%ecx\n\t"
"addl %2,%%ebx\n\t"
"addl %3,%%ecx\n\t"
"int $0x40"
:/*no output*/
:"g"(x),"g"(y),"g"(sizex),"g"(sizey),"g"(flags)
:"eax","ebx","ecx","edx");
}
 
//------------------------------------------------------------------------------------------
// begin redraw window
//------------------------------------------------------------------------------------------
extern inline void __attribute__((always_inline)) gui_ksys_begin_draw_window(void)
{
__asm__ __volatile__(
"int $0x40"
:/*no output*/
:"a"(12),"b"(1));
}
 
//------------------------------------------------------------------------------------------
// finish redraw window
//------------------------------------------------------------------------------------------
extern inline void __attribute__((always_inline)) gui_ksys_finish_draw_window(void)
{
__asm__ __volatile__(
"int $0x40"
:/*no output*/
:"a"(12),"b"(2));
}
 
//------------------------------------------------------------------------------------------
// set new position and new size of window
//------------------------------------------------------------------------------------------
extern inline void alwinline gui_ksys_set_position_and_size_window(DWORD new_x,
DWORD new_y,DWORD new_sizex,DWORD new_sizey)
{
__asm__ __volatile__(
"int $0x40"
:/*no output*/
:"a"(67),"b"(new_x),"c"(new_y),"d"(new_sizex),"S"(new_sizey));
}
 
//------------------------------------------------------------------------------------------
// set title of window
//------------------------------------------------------------------------------------------
extern inline void gui_ksys_set_title_window(char *title)
{
__asm__ __volatile__(
"int $0x40"
:/*no output*/
:"a"(71),"b"(1),"c"(title));
}
 
//------------------------------------------------------------------------------------------
// delete title of window
//------------------------------------------------------------------------------------------
extern inline void gui_ksys_delete_title_window(void)
{
__asm__ __volatile__(
"int $0x40"
:/*no output*/
:"a"(71),"b"(1),"c"(0));
}
 
//------------------------------------------------------------------------------------------
// get information about current process
//------------------------------------------------------------------------------------------
extern inline int gui_ksys_get_current_process_information(void *mem)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(9),"b"(mem),"c"(-1));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// delete title of window
//------------------------------------------------------------------------------------------
extern inline int __attribute__((always_inline)) gui_ksys_get_skin_height(void)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(48),"b"(4));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// get pressed key
//------------------------------------------------------------------------------------------
extern inline int __attribute__((always_inline)) gui_ksys_get_key(void)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(2));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// set keyboard input mode
//------------------------------------------------------------------------------------------
extern inline void gui_ksys_set_keyboard_input_mode(int mode)
{
__asm__ __volatile__(
"int $0x40"
:/*no output*/
:"a"(66),"b"(1),"c"(mode));
 
}
 
//------------------------------------------------------------------------------------------
// get keyboard input mode
//------------------------------------------------------------------------------------------
extern inline int gui_ksys_get_keyboard_input_mode(void)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(66),"b"(2));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// get state of menegers keys
//------------------------------------------------------------------------------------------
extern inline int gui_ksys_get_state_menegers_keys(void)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(66),"b"(3));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// set events mask
//------------------------------------------------------------------------------------------
extern inline void gui_ksys_set_events_mask(DWORD mask)
{
__asm__ __volatile__(
"int $0x40"
:/*no output*/
:"a"(40),"b"(mask));
}
 
//------------------------------------------------------------------------------------------
// wait event
//------------------------------------------------------------------------------------------
extern inline int __attribute__((always_inline)) gui_ksys_wait_event(void)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(10));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// check for event
//------------------------------------------------------------------------------------------
extern inline int gui_ksys_check_event(void)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(11));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// wait event while not timeout
//------------------------------------------------------------------------------------------
extern inline int gui_ksys_wait_event_with_timeout(DWORD timeout)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(23),"b"(timeout));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// get code of pressed button
//------------------------------------------------------------------------------------------
extern inline int gui_ksys_get_code_pressed_button(void)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(17));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// get window mouse coordinates
//------------------------------------------------------------------------------------------
extern inline int gui_ksys_get_window_mouse_coordinates(void)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(37),"b"(1));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// get screen mouse coordinates
//------------------------------------------------------------------------------------------
extern inline int gui_ksys_get_screen_mouse_coordinates(void)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(37),"b"(0));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// get mouse buttons state
//------------------------------------------------------------------------------------------
extern inline int gui_ksys_get_mouse_buttons_state(void)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(37),"b"(2));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// get mouse ruler state
//------------------------------------------------------------------------------------------
extern inline int gui_ksys_get_mouse_ruler_state(void)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(37),"b"(7));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// put pixel in window
//------------------------------------------------------------------------------------------
extern inline void gui_ksys_put_pixel_window(int x,int y,DWORD color)
{
__asm__ __volatile__(
"int $0x40"
:/*no output*/
:"a"(1),"b"(x),"c"(y),"d"(color));
}
 
//------------------------------------------------------------------------------------------
// put image in window
//------------------------------------------------------------------------------------------
extern inline void gui_ksys_put_image_window(char *p,int x,int y,int sizex,int sizey)
{
__asm__ __volatile__(
"shll $16,%%ecx\n\t"
"shll $16,%%edx\n\t"
"addl %%esi,%%ecx\n\t"
"addl %%edi,%%edx\n\t"
"int $0x40"
:/*no output*/
:"a"(7),"b"(p),"c"(sizex),"d"(x),"S"(sizey),"D"(y));
}
 
//------------------------------------------------------------------------------------------
// draw filled rectangle in window
//------------------------------------------------------------------------------------------
extern inline void gui_ksys_draw_filled_rectangle_window(int x,int y,int sizex,int sizey,DWORD color)
{
__asm__ __volatile__(
"shll $16,%%ebx\n\t"
"shll $16,%%ecx\n\t"
"addl %%esi,%%ebx\n\t"
"addl %%edi,%%ecx\n\t"
"int $0x40"
:/*no output*/
:"a"(13),"b"(x),"c"(y),"d"(color),"S"(sizex),"D"(sizey));
}
 
//------------------------------------------------------------------------------------------
// get screen size
//------------------------------------------------------------------------------------------
extern inline DWORD gui_ksys_get_screen_size(void)
{
DWORD value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(14));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// get color of pixel in coordinates (x,y)
//------------------------------------------------------------------------------------------
extern inline DWORD gui_ksys_get_color_pixel_window(DWORD coordinates)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(35),"b"(coordinates));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// get bits per pixel on the screen
//------------------------------------------------------------------------------------------
extern inline DWORD gui_ksys_get_screen_bits_per_pixel(void)
{
int value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(61),"b"(2));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// draw line in window
//------------------------------------------------------------------------------------------
extern inline void gui_ksys_draw_line_window(int x1,int y1,int x2,int y2,DWORD color)
{
__asm__ __volatile__(
"shll $16,%%ebx\n\t"
"shll $16,%%ecx\n\t"
"addl %%esi,%%ebx\n\t"
"addl %%edi,%%ecx\n\t"
"int $0x40"
:/*no output*/
:"a"(38),"b"(x1),"c"(y1),"d"(color),"S"(x2),"D"(y2));
}
 
//------------------------------------------------------------------------------------------
// get standart colors table
//------------------------------------------------------------------------------------------
extern inline void gui_ksys_get_standart_colors_table(char *buf)
{
__asm__ __volatile__(
"int $0x40"
:/*no output*/
:"a"(48),"b"(3),"c"(buf),"d"(40));
}
 
//------------------------------------------------------------------------------------------
// get time from start system to current in 1/100 sec.
//------------------------------------------------------------------------------------------
extern inline DWORD gui_ksys_get_ticks(void)
{
DWORD value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(26),"b"(9));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// initialize heap of memory
//------------------------------------------------------------------------------------------
extern inline DWORD gui_ksys_init_user_heap(void)
{
DWORD value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(68),"b"(11));
 
return(value);
}
 
//------------------------------------------------------------------------------------------
// alloctae size bytes of user memory
//------------------------------------------------------------------------------------------
extern inline void* gui_ksys_malloc(DWORD size)
{
void *value;
 
__asm__ __volatile__(
+ :"=a"(value)
+ :"a"(68),"b"(12),"c"(size)
+ :"memory");
+
+ return(value);
+}
+
+//------------------------------------------------------------------------------------------
+// free pointer of memory
+//------------------------------------------------------------------------------------------
+extern inline void gui_ksys_free(void *mem)
+{
+ __asm__ __volatile__(
+ "int $0x40"
+ :
+ :"a"(68),"b"(13),"c"(mem)
+ :"memory");
+}
+
+//------------------------------------------------------------------------------------------
+// reallocate of memory
+//------------------------------------------------------------------------------------------
+extern inline void* gui_ksys_realloc(DWORD new_size,void *old_mem)
+{
+ void *new_mem;
+ __asm__ __volatile__(
+ "int $0x40"
+ :"=a"(new_mem)
+ :"a"(68),"b"(20),"c"(new_size),"d"(old_mem)
+ :"memory");
+
+ return(new_mem);
+}
+
+
+//------------------------------------------------------------------------------------------
+// load user mode DLL
+//------------------------------------------------------------------------------------------
+extern inline void* gui_ksys_load_dll(char *path)
+{
+ void *dll_export;
+
+ __asm__ __volatile__(
+ "int $0x40"
+ :"=a"(dll_export)
+ :"a"(68),"b"(19),"c"(path));
+
+ return(dll_export);
+}
+
+//------------------------------------------------------------------------------------------
+// create thred
+//------------------------------------------------------------------------------------------
+extern inline void* gui_ksys_create_thread(DWORD *thread_eip,DWORD *thread_esp)
+{
+ void *thread_TID;
+
+ __asm__ __volatile__(
+ "int $0x40"
+ :"=a"(thread_TID)
+ :"a"(51),"b"(1),"c"(thread_eip),"d"(thread_esp)
+ :"memory");
+
+ return(thread_TID);
+}
+
+//------------------------------------------------------------------------------------------
+// acces to files input output
+//------------------------------------------------------------------------------------------
+extern inline DWORD gui_ksys_files_io(fileio_t *f,DWORD value)
+{
+ DWORD err_status;
+
+ __asm__ __volatile__(
+ "int $0x40"
+ :"=a"(err_status),"=b"(value)
+ :"a"(70),"b"(f));
+
+ return(err_status);
+}
+
+//------------------------------------------------------------------------------------------
+// debug board output
+//------------------------------------------------------------------------------------------
+extern inline void gui_ksys_debug_out(int c)
+{
+ __asm__ __volatile__(
+ "int $0x40"
+ :
+ :"a"(63),"b"(1),"c"(c));
+}
+
+//------------------------------------------------------------------------------------------
+// KolibriOS system exit program
+//------------------------------------------------------------------------------------------
+extern inline void gui_ksys_exit(int value)
+{
+ __asm__ __volatile__(
+ "int $0x40"
+ :
+ :"a"(-1),"b"(value));
+}
+
/programs/develop/libraries/libGUI/SRC/kolibri_system.inc
0,0 → 1,67
/*
some system function of KolibriOS and founded of them functions
*/
 
static DWORD gui_get_file_size(char *filename,DWORD *buf_for_size)
{
static char buf[44];
static fileio_t f;
bded_t *bded;
DWORD status,value;
 
f.number_subfunction=5;
f.data=(DWORD*)buf;
f.full_file_path=filename;
 
status=gui_ksys_files_io(&f,value);
 
if (status==KOLIBRIOS_SYS_FILE_ACCESS_SUCCESSFULLY)
{
bded=(bded_t*)buf;
*buf_for_size=bded->file_size_low;
buf_for_size++;
*buf_for_size=bded->file_size_hight;
}
 
return(status);
}
 
static DWORD gui_read_file(char *filename,DWORD *buf_pos_size,DWORD size_read,char *buf)
{
static fileio_t f;
DWORD status,value;
 
f.number_subfunction=0;
f.offset_in_file_low=(DWORD)*buf_pos_size;buf_pos_size++;
f.offset_in_file_hight=(DWORD)*buf_pos_size;
f.size=size_read;
f.data=(DWORD*)buf;
f.full_file_path=filename;
 
status=gui_ksys_files_io(&f,value);
 
return(status);
}
 
static void gui_debug_out_str(char *s)
{
 
while(*s)
{
if (*s=='\n') gui_ksys_debug_out(13);
 
gui_ksys_debug_out(*s);
s++;
}
}
 
static void* gui_cofflib_getproc(import_t *lib, char *name)
{
int i;
 
for(i = 0; lib[i].name && strcmp(name, lib[i].name); i++);
 
if(lib[i].name) return lib[i].data;
else return NULL;
}
 
/programs/develop/libraries/libGUI/SRC/libGUI.c
0,0 → 1,168
/*
libGUI dinamic library
(c) andrew_programmer 2009
*/
 
//service libGUI types of data,functions and constants
#include "types.h"
#include "libGUI.h"
#include "kolibri_system.h"
#include "draw_controls.h"
#include "fonts_meneger.h"
#include "keys.h"
 
//controls
#include "control_button.h"
#include "control_image.h"
#include "control_progress_bar.h"
#include "control_scroll_bar.h"
#include "control_scrolled_window.h"
#include "control_text.h"
 
//some libC functions
#include "stdarg.h"
#include "stdio.h"
#include "string.h"
#include "stdlib.h"
 
#include "stdio.inc"
#include "string.inc"
#include "malloc.inc"
#include "stdlib.inc"
#include "kolibri_system.inc"
#include "draw_controls.inc"
#include "fonts_meneger.inc"
#include "libGUI_menegement.inc"
#include "parent_window.inc"
#include "main_libGUI.inc"
#include "control_text.inc"
#include "control_image.inc"
#include "control_button.inc"
#include "control_progress_bar.inc"
#include "control_scroll_bar.inc"
#include "control_scrolled_window.inc"
 
 
typedef struct
{
char *name;
void *function;
}export_t;
 
//char szSTART[] = "START";
char szLibGUIversion[] = "LibGUIversion";
char szInitLibGUI[] = "InitLibGUI";
char szLibGUImain[] = "LibGUImain";
char szQuitLibGUI[] = "QuitLibGUI";
 
char szCreateWindow[] = "CreateWindow";
char szSetWindowSizeRequest[] = "SetWindowSizeRequest";
 
char szPackControls[] = "PackControls";
char szDestroyControl[] = "DestroyControl";
char szSetControlSizeRequest[] = "SetControlSizeRequest";
char szGetControlSizeX[] = "GetControlSizeX";
char szGetControlSizeY[] = "GetControlSizeY";
char szSetControlNewPosition[] = "SetControlNewPosition";
char szGetControlPositionX[] = "GetControlPositionX";
char szGetControlPositionY[] = "GetControlPositionY";
char szSetFocuse[] = "SetFocuse";
char szRedrawControl[] = "RedrawControl";
char szSpecialRedrawControl[] = "SpecialRedrawControl";
 
char szSetCallbackFunction[] = "SetCallbackFunction";
char szBlockCallbackFunction[] = "BlockCallbackFunction";
char szUnblockCallbackFunction[] = "UnblockCallbackFunction";
 
char szSetIDL_Function[] = "SetIDL_Function";
char szDestroyIDL_Function[] = "DestroyIDL_Function";
 
char szSetTimerCallbackForFunction[] = "SetTimerCallbackForFunction";
char szDestroyTimerCallbackForFunction[] = "DestroyTimerCallbackForFunction";
 
char szSetCallbackFunctionForEvent[] = "SetCallbackFunctionForEvent";
char szDestroyCallbackFunctionForEvent[] = "DestroyCallbackFunctionForEvent";
 
char szCreateButton[] = "CreateButton";
char szCreateButtonWithText[] = "CreateButtonWithText";
 
char szCreateProgressBar[] = "CreateProgressBar";
char szSetProgressBarPulse[] = "SetProgressBarPulse";
char szProgressBarSetText[] = "ProgressBarSetText";
char szProgressBarGetText[] = "ProgressBarGetText";
 
char szCreateHorizontalScrollBar[] = "CreateHorizontalScrollBar";
char szCreateVerticalScrollBar[] = "CreateVerticalScrollBar";
 
char szCreateScrolledWindow[] = "CreateScrolledWindow";
char szScrolledWindowPackControls[] = "ScrolledWindowPackControls";
 
char szCreateImage[] = "CreateImage";
 
char szCreateText[] = "CreateText";
char szTextBackgroundOn[] = "TextBackgroundOn";
char szTextBackgroundOff[] = "TextBackgroundOff";
 
char szLoadFont[] = "LoadFont";
char szFreeFont[] = "FreeFont";
 
export_t EXPORTS[]__asm__("EXPORTS") =
{
{szLibGUIversion, LibGUIversion },
{szInitLibGUI, InitLibGUI },
{szLibGUImain, LibGUImain },
{szQuitLibGUI, QuitLibGUI },
{szCreateWindow, CreateWindow },
{szSetWindowSizeRequest, SetWindowSizeRequest },
{szPackControls, PackControls },
{szDestroyControl, DestroyControl },
{szSetControlSizeRequest, SetControlSizeRequest },
{szGetControlSizeX, GetControlSizeX },
{szGetControlSizeY, GetControlSizeY },
{szSetControlNewPosition, SetControlNewPosition },
{szGetControlPositionX, GetControlPositionX },
{szGetControlPositionY, GetControlPositionY },
{szSetFocuse, SetFocuse },
{szRedrawControl, RedrawControl },
{szSpecialRedrawControl, SpecialRedrawControl },
{szSetCallbackFunction, SetCallbackFunction },
{szBlockCallbackFunction, BlockCallbackFunction },
{szUnblockCallbackFunction, UnblockCallbackFunction },
{szSetIDL_Function, SetIDL_Function },
{szDestroyIDL_Function, DestroyIDL_Function },
{szSetTimerCallbackForFunction, SetTimerCallbackForFunction },
{szDestroyTimerCallbackForFunction, DestroyTimerCallbackForFunction },
{szSetCallbackFunctionForEvent, SetCallbackFunctionForEvent },
{szDestroyCallbackFunctionForEvent, DestroyCallbackFunctionForEvent },
{szCreateButton, CreateButton },
{szCreateButtonWithText, CreateButtonWithText },
{szCreateProgressBar, CreateProgressBar },
{szSetProgressBarPulse, SetProgressBarPulse },
{szProgressBarSetText, ProgressBarSetText },
{szProgressBarGetText, ProgressBarGetText },
{szCreateHorizontalScrollBar, CreateHorizontalScrollBar },
{szCreateVerticalScrollBar, CreateVerticalScrollBar },
{szCreateScrolledWindow, CreateScrolledWindow },
{szScrolledWindowPackControls, ScrolledWindowPackControls },
{szCreateImage, CreateImage },
{szCreateText, CreateText },
{szTextBackgroundOn, TextBackgroundOn },
{szTextBackgroundOff, TextBackgroundOff },
{szLoadFont, LoadFont },
{szFreeFont, FreeFont },
{NULL,NULL},
};
/programs/develop/libraries/libGUI/SRC/libGUI.h
0,0 → 1,580
/*
service structures of libGUI
*/
 
static DWORD ID;
 
//screen's parameters
#define BYTES_PER_PIXEL 4
 
//platform parameters
#define KOLIBRIOS 1
//#define DEBUG
 
//boolean constants
#define TRUE 0x1
#define FALSE 0x0
 
//maximum callbacks for one check of callback
#define MAX_CALLBACKS 255
 
/////////////////////////////////////////////////////////////////////////
// libGUI sysyem messages types
/////////////////////////////////////////////////////////////////////////
#define MESSAGE_FULL_REDRAW_ALL 1
#define MESSAGE_KEYS_EVENT 2
#define MESSAGE_SPECIALIZED 3
#define MESSAGE_SET_FOCUSE 4
#define MESSAGE_CHANGE_FOCUSE 5
#define MESSAGE_MOUSE_EVENT 6
#define MESSAGE_CHANGE_POSITION_EVENT 7
#define MESSAGE_CHANGESIZE_EVENT 8
#define MESSAGE_CALL_TIMER_EVENT 9
#define MESSAGE_FULL_REDRAW_ALL_WITH_FINITION 10
#define MESSAGE_SET_MAIN_PARENT 11
#define MESSAGE_DESTROY_CONTROL -1
 
/////////////////////////////////////////////////////////////////////////
// system flags of controls
/////////////////////////////////////////////////////////////////////////
#define FLAG_SHOW_CONTROL 0x1
#define FLAG_HIDE_CONTROL 0xfffe
#define FLAG_FOCUSE_INPUT_SUPPOROTE 0x2
#define FLAG_FOCUSE_INPUT_NOTSUPPOROTE 0xfffd
#define FLAG_FOCUSE_INPUT_ON 0x4
#define FLAG_FOCUSE_INPUT_OFF 0xfffb
#define FLAG_CONNECT_EVENT_ON 0x8
#define FLAG_CONNECT_EVENT_OFF 0xfff7
#define FLAG_MOUSE_BLOCKED_ON 0x10
#define FLAG_MOUSE_BLOCKED_OFF 0xffef
#define FLAG_GET_SPECIALIZED_MESSAGE_ON 0x20
#define FLAG_GET_SPECIALIZED_MESSAGE_OFF 0xffdf
 
/////////////////////////////////////////////////////////////////////////
// system flags of callback functions
/////////////////////////////////////////////////////////////////////////
#define FLAG_BLOCK_CALLBACK_ON 0x1
#define FLAG_BLOCK_CALLBACK_OFF 0xfe
 
/////////////////////////////////////////////////////////////////////////
// system flags of main wondow for timers
/////////////////////////////////////////////////////////////////////////
#define FLAG_TIMER_ON 0x1
#define FLAG_TIMER_OFF 0xfe
 
/////////////////////////////////////////////////////////////////////////
// system keys states
/////////////////////////////////////////////////////////////////////////
#define KEY_DOWN 16
#define KEY_UP 17
#define KEY_HOTKEY 18
/////////////////////////////////////////////////////////////////////////
// system mouse buttons states
/////////////////////////////////////////////////////////////////////////
#define MOUSE_LEFT_BUTTON_DOWN 19
#define MOUSE_LEFT_BUTTON_UP 20
#define MOUSE_RIGHT_BUTTON_DOWN 21
#define MOUSE_RIGHT_BUTTON_UP 22
#define MOUSE_MIDDLE_BUTTON_DOWN 23
#define MOUSE_MIDDLE_BUTTON_UP 24
#define MOUSE_4_BUTTON_DOWN 25
#define MOUSE_4_BUTTON_UP 26
#define MOUSE_5_BUTTON_DOWN 27
#define MOUSE_5_BUTTON_UP 28
 
 
/////////////////////////////////////////////////////////////////
// CONNECT EVENTS FOR CALLBACKs
/////////////////////////////////////////////////////////////////
 
////////////////////////////////////////////////////////////////
// connect events for button
////////////////////////////////////////////////////////////////
#define BUTTON_ENTER_EVENT 29
#define BUTTON_LEAVE_EVENT 30
#define BUTTON_PRESSED_EVENT 31
#define BUTTON_RELEASED_EVENT 32
 
////////////////////////////////////////////////////////////////
// connect events for button
////////////////////////////////////////////////////////////////
#define SCROLLBAR_CHANGED_EVENT 33
 
////////////////////////////////////////////////////////////////
// connect events for main parent window
////////////////////////////////////////////////////////////////
#define DELETE_EVENT 36
 
////////////////////////////////////////////////////////////////////
//screen buffer parameters
////////////////////////////////////////////////////////////////////
#define DRAW_OUTPUT_SCREEN 0
#define DRAW_OUTPUT_BUFFER 1
 
 
static struct SCREEN
{
DWORD bits_per_pixel;
DWORD bytes_per_pixel;
DWORD draw_output;
int x;
int y;
int size_x;
int size_y;
int skin_height;
int display_size_x;
int display_size_y;
char *buffer;
}screen;
 
////////////////////////////////////////////////////////////////
// header of parent of control
////////////////////////////////////////////////////////////////
#pragma pack(push,1)
struct HEADERPARENT
{
DWORD *ctrl_proc;
DWORD *ctrl_fd;
DWORD *ctrl_bk;
DWORD *child_fd;
DWORD *child_bk;
DWORD *parent;
DWORD *main_parent;
DWORD ctrl_x;
DWORD ctrl_y;
DWORD ctrl_sizex;
DWORD ctrl_sizey;
DWORD ctrl_ID;
DWORD *active_control_for_keys;
DWORD *active_control_for_mouse;
DWORD *callback;
DWORD *finition;
DWORD *timer;
DWORD flags;
 
DWORD **control_for_callback_function;
DWORD **callback_for_control_callback;
DWORD number_callbacks;
DWORD *global_active_control_for_keys;
DWORD *message;
DWORD *timer_bk;
DWORD *timer_fd;
DWORD number_timers_for_controls;
DWORD *calev_bk;
DWORD *calev_fd;
DWORD *IDL_func;
DWORD *IDL_func_data;
};
#pragma pack(pop)
 
typedef struct HEADERPARENT parent_t;
 
////////////////////////////////////////////////////////////////
// header of control
////////////////////////////////////////////////////////////////
#pragma pack(push,1)
struct HEADER
{
DWORD *ctrl_proc;
DWORD *ctrl_fd;
DWORD *ctrl_bk;
DWORD *child_fd;
DWORD *child_bk;
DWORD *parent;
DWORD *main_parent;
DWORD ctrl_x;
DWORD ctrl_y;
DWORD ctrl_sizex;
DWORD ctrl_sizey;
DWORD ctrl_ID;
DWORD *active_control_for_keys;
DWORD *active_control_for_mouse;
DWORD *callback;
DWORD *finition;
DWORD *timer;
DWORD flags;
};
#pragma pack(pop)
 
typedef struct HEADER header_t;
////////////////////////////////////////////////////////////////
// callback structure for callback function of control
////////////////////////////////////////////////////////////////
#pragma pack(push,1)
struct CALLBACK
{
DWORD *clb_bk;
DWORD *clb_fd;
DWORD *clb_control;
DWORD *func;
DWORD *func_data;
DWORD connect_event;
DWORD flags;
};
#pragma pack(pop)
 
typedef struct CALLBACK gui_callback_t;
////////////////////////////////////////////////////////////////
// timer
////////////////////////////////////////////////////////////////
#pragma pack(push,1)
struct TIMER
{
DWORD *tmr_bk;
DWORD *tmr_fd;
DWORD *tmr_parent;
DWORD *func;
DWORD *func_data;
DWORD last_time;
DWORD time_tick;
DWORD flags;
};
#pragma pack(pop)
 
typedef struct TIMER gui_timer_t;
////////////////////////////////////////////////////////////////
// structure for callback events
////////////////////////////////////////////////////////////////
#pragma pack(push,1)
struct CALLBACKEVENT
{
DWORD *calev_bk;
DWORD *calev_fd;
DWORD *calev_parent;
DWORD *func;
DWORD *func_data;
DWORD event_type;
};
#pragma pack(pop)
 
typedef struct CALLBACKEVENT gui_callbackevent_t;
////////////////////////////////////////////////////////////////
// structure for callback events
////////////////////////////////////////////////////////////////
#pragma pack(push,1)
struct FINITION
{
DWORD x;
DWORD y;
DWORD sizex;
DWORD sizey;
char flags;
};
#pragma pack(pop)
 
typedef struct FINITION finition_t;
////////////////////////////////////////////////////////////////
// type of data - structure message
////////////////////////////////////////////////////////////////
#pragma pack(push,1)
struct MESSAGE
{
DWORD type;
DWORD arg1;
DWORD arg2;
DWORD arg3;
DWORD arg4;
};
#pragma pack(pop)
 
typedef struct MESSAGE gui_message_t;
////////////////////////////////////////////////////////////////
// prototype of functions
////////////////////////////////////////////////////////////////
void (*ControlProc)(void *Control,gui_message_t *message);
void (*CallbackFunction)(header_t *Control,void *data);
void (*TimerCallbackFunction)(void *data);
void (*CallbackFunctionForEvent)(gui_message_t *message,void *data);
void (*IDL_Function)(void *data);
 
////////////////////////////////////////////////////////////////
// button
////////////////////////////////////////////////////////////////
#pragma pack(push,1)
struct ControlButton
{
DWORD *ctrl_proc;
DWORD *ctrl_fd;
DWORD *ctrl_bk;
DWORD *child_fd;
DWORD *child_bk;
DWORD *parent;
DWORD *main_parent;
DWORD ctrl_x;
DWORD ctrl_y;
DWORD ctrl_sizex;
DWORD ctrl_sizey;
DWORD ctrl_ID;
DWORD *active_control_for_keys;
DWORD *active_control_for_mouse;
DWORD *callback;
DWORD *finition;
DWORD *timer;
DWORD flags;
 
//button's data
unsigned char btn_flags; };
#pragma pack(pop)
 
typedef struct ControlButton gui_button_t;
// information for creating control Button
#pragma pack(push,1)
struct ButtonData
{
int x;
int y;
int width;
int height;
};
#pragma pack(pop)
 
typedef struct ButtonData gui_button_data_t;
////////////////////////////////////////////////////////////////
// scroller
////////////////////////////////////////////////////////////////
#pragma pack(push,1)
struct ControlScrollBar
{
DWORD *ctrl_proc;
DWORD *ctrl_fd;
DWORD *ctrl_bk;
DWORD *child_fd;
DWORD *child_bk;
DWORD *parent;
DWORD *main_parent;
DWORD ctrl_x;
DWORD ctrl_y;
DWORD ctrl_sizex;
DWORD ctrl_sizey;
DWORD ctrl_ID;
DWORD *active_control_for_keys;
DWORD *active_control_for_mouse;
DWORD *callback;
DWORD *finition;
DWORD *timer;
DWORD flags;
 
//scroll bar's data
float ruller_size;
float ruller_pos;
float ruller_step;
unsigned char scb_flags;
};
#pragma pack(pop)
 
typedef struct ControlScrollBar gui_scroll_bar_t;
 
#pragma pack(push,1)
struct ScrollBarData
{
int x;
int y;
int width;
int height;
float ruller_size;
float ruller_pos;
float ruller_step;
};
#pragma pack(pop)
 
typedef struct ScrollBarData gui_scroll_bar_data_t;
////////////////////////////////////////////////////////////////
// progressbar
////////////////////////////////////////////////////////////////
#pragma pack(push,1)
struct ControlProgressBar
{
DWORD *ctrl_proc;
DWORD *ctrl_fd;
DWORD *ctrl_bk;
DWORD *child_fd;
DWORD *child_bk;
DWORD *parent;
DWORD *main_parent;
DWORD ctrl_x;
DWORD ctrl_y;
DWORD ctrl_sizex;
DWORD ctrl_sizey;
DWORD ctrl_ID;
DWORD *active_control_for_keys;
DWORD *active_control_for_mouse;
DWORD *callback;
DWORD *finition;
DWORD *timer;
DWORD flags;
 
//progress bar's data
float progress;
unsigned char prb_flags;
};
#pragma pack(pop)
 
typedef struct ControlProgressBar gui_progress_bar_t;
 
#pragma pack(push,1)
struct ProgressBarData
{
int x;
int y;
int width;
int height;
float progress;
};
#pragma pack(pop)
 
typedef struct ProgressBarData gui_progress_bar_data_t;
////////////////////////////////////////////////////////////////
// scrolled window
////////////////////////////////////////////////////////////////
#pragma pack(push,1)
struct ControlScrolledWindow
{
DWORD *ctrl_proc;
DWORD *ctrl_fd;
DWORD *ctrl_bk;
DWORD *child_fd;
DWORD *child_bk;
DWORD *parent;
DWORD *main_parent;
DWORD ctrl_x;
DWORD ctrl_y;
DWORD ctrl_sizex;
DWORD ctrl_sizey;
DWORD ctrl_ID;
DWORD *active_control_for_keys;
DWORD *active_control_for_mouse;
DWORD *callback;
DWORD *finition;
DWORD *timer;
DWORD flags;
 
//scrolled windows's data
DWORD virtual_x;
DWORD virtual_y;
DWORD virtual_sizex;
DWORD virtual_sizey;
DWORD *virtual_controls_x;
DWORD *virtual_controls_y;
DWORD number_virtual_controls;
DWORD scroll_arrea_sizex;
DWORD scroll_arrea_sizey;
DWORD *horizontal_scroll;
DWORD *vertical_scroll;
unsigned char scw_flags;
};
#pragma pack(pop)
 
typedef struct ControlScrolledWindow gui_scrolled_window_t;
 
#pragma pack(push,1)
struct ScrolledWindowData
{
int x;
int y;
int width;
int height;
};
#pragma pack(pop)
 
typedef struct ScrolledWindowData gui_scrolled_window_data_t;
 
////////////////////////////////////////////////////////////////
// image
////////////////////////////////////////////////////////////////
#pragma pack(push,1)
struct ControlImage
{
DWORD *ctrl_proc;
DWORD *ctrl_fd;
DWORD *ctrl_bk;
DWORD *child_fd;
DWORD *child_bk;
DWORD *parent;
DWORD *main_parent;
DWORD ctrl_x;
DWORD ctrl_y;
DWORD ctrl_sizex;
DWORD ctrl_sizey;
DWORD ctrl_ID;
DWORD *active_control_for_keys;
DWORD *active_control_for_mouse;
DWORD *callback;
DWORD *finition;
DWORD *timer;
DWORD flags;
 
char bits_per_pixel;
char bytes_per_pixel;
char *img;
};
#pragma pack(pop)
 
typedef struct ControlImage gui_image_t;
 
#pragma pack(push,1)
struct ImageData
{
int x;
int y;
int width;
int height;
char bits_per_pixel;
};
#pragma pack(pop)
 
typedef struct ImageData gui_image_data_t;
 
////////////////////////////////////////////////////////////////
// text
////////////////////////////////////////////////////////////////
#pragma pack(push,1)
struct ControlText
{
DWORD *ctrl_proc;
DWORD *ctrl_fd;
DWORD *ctrl_bk;
DWORD *child_fd;
DWORD *child_bk;
DWORD *parent;
DWORD *main_parent;
DWORD ctrl_x;
DWORD ctrl_y;
DWORD ctrl_sizex;
DWORD ctrl_sizey;
DWORD ctrl_ID;
DWORD *active_control_for_keys;
DWORD *active_control_for_mouse;
DWORD *callback;
DWORD *finition;
DWORD *timer;
DWORD flags;
 
DWORD *font;
DWORD color;
DWORD background_color;
char *text;
BYTE txt_flags;
};
#pragma pack(pop)
 
typedef struct ControlText gui_text_t;
 
#pragma pack(push,1)
struct TextData
{
int x;
int y;
DWORD *font;
DWORD color;
DWORD background_color;
char background;
char *text;
};
#pragma pack(pop)
 
typedef struct TextData gui_text_data_t;
/////////////////////////////////////////////////////////////////////////////
// prototips of some service functions
/////////////////////////////////////////////////////////////////////////////
 
char CheckCrossRectangles(int x1,int y1,int sizex1,int sizey1,int x2,int y2,int sizex2,int sizey2);
/programs/develop/libraries/libGUI/SRC/libGUI_menegement.inc
0,0 → 1,1657
/*
libGUI main part of code
*/
 
//---------------------------------------------------------------------------------
// destroy_control for libGUI
//---------------------------------------------------------------------------------
void DestroyControl(void *control_ptr)
{
struct HEADER *Parent;
struct HEADER *control;
struct HEADER *seek_control;
struct HEADER *exchange_control;
struct HEADER *last_control;
struct HEADER *next_control;
 
if (control_ptr==NULL) return;
 
control=control_ptr;
Parent=(struct HEADER *)control->parent;
 
if (Parent->child_bk==Parent->child_fd)
{
//parent have got alone child control
if (Parent->child_bk==(DWORD*)control)
{
//current control is child control of parent
#ifdef DEBUG
printf("\ndestroyed control=%d parent=%d ID=%d",(int)control,(int)Parent,(int)control->ctrl_ID);
#endif
free(control);
Parent->child_bk=(DWORD*)NULL;
Parent->child_fd=(DWORD*)NULL;
}
return;
}
 
seek_control=(struct HEADER*)Parent->child_bk;
while(seek_control!=(struct HEADER*)NULL)
{
if (seek_control==control)
{
//delete control from control's stack
last_control=(struct HEADER*)seek_control->ctrl_bk;
next_control=(struct HEADER*)seek_control->ctrl_fd;
 
if ((last_control!=Parent) && (next_control!=NULL))
{//deliting control isn't first control and isn't endest of parent
next_control->ctrl_bk=(DWORD*)last_control;
last_control->ctrl_fd=(DWORD*)next_control;
}
else
{
if (last_control==Parent)
{//deliting control is first control of Parend
Parent->child_bk=(DWORD*)next_control;
next_control->ctrl_bk=(DWORD*)Parent;
if (next_control->ctrl_fd==(DWORD*)NULL)
{
Parent->child_fd=(DWORD*)next_control;
Parent->child_bk=(DWORD*)next_control;
}
}
 
if (next_control==(struct HEADER*)NULL)
{
//there isn't next controls
last_control->ctrl_fd=(DWORD*)NULL;
Parent->ctrl_fd=(DWORD*)last_control;
}
}
#ifdef DEBUG
printf("\ndestroyed control=%d parent=%d ID=%d",(int)control,(int)Parent,(int)control->ctrl_ID);
#endif
free(control);
break;
}
exchange_control=(struct HEADER*)seek_control->ctrl_fd;
seek_control=exchange_control;
}
}
 
//---------------------------------------------------------------------------------
// create new timer for parent window
//---------------------------------------------------------------------------------
void *CreateTimerForParentWindow(parent_t *parent)
{
struct TIMER *timer;
struct TIMER *backward_timer;
 
timer=malloc(sizeof(struct TIMER));
timer->tmr_parent=(DWORD*)parent;
 
if (parent->timer_bk==(DWORD*)NULL)
{//not yet timers
parent->timer_bk=(DWORD*)timer;
parent->timer_fd=(DWORD*)timer;
timer->tmr_bk=(DWORD*)parent;
timer->tmr_fd=(DWORD*)NULL;
}
else
{
backward_timer=(struct TIMER*)parent->timer_fd;
parent->timer_fd=(DWORD*)timer;
backward_timer->tmr_fd=(DWORD*)timer;
timer->tmr_bk=(DWORD*)backward_timer;
timer->tmr_fd=(DWORD*)NULL;
}
return(timer);
}
 
//---------------------------------------------------------------------------------
// destroy timer for parent window
//---------------------------------------------------------------------------------
void DestroyTimerCallbackForFunction(struct TIMER *timer)
{
struct HEADERPARENT *Parent;
struct TIMER *seek_timer;
struct TIMER *exchange_timer;
struct TIMER *last_timer;
struct TIMER *next_timer;
 
if (timer==(struct TIMER*)NULL) return;
 
Parent=(struct HEADERPARENT *)timer->tmr_parent;
 
if (Parent->timer_bk==Parent->timer_fd)
{
//parent have got alone timer
if (Parent->timer_bk==(DWORD*)timer)
{
Parent->timer_bk=(DWORD*)NULL;
Parent->timer_fd=(DWORD*)NULL;
#ifdef DEBUG
printf("\ndestroyed timer %d parent window %d",(int)timer,(int)timer->tmr_parent);
#endif
free(timer);
return;
}
return;
}
 
seek_timer=(struct TIMER*)Parent->timer_bk;
while(seek_timer!=(struct TIMER*)NULL)
{
if (seek_timer==timer)
{
//delete timer from timers's stack
last_timer=(struct TIMER*)seek_timer->tmr_bk;
next_timer=(struct TIMER*)seek_timer->tmr_fd;
 
if ((last_timer!=(struct TIMER*)Parent) && (next_timer!=(struct TIMER*)NULL))
{//deliting timer isn't first timer and isn't endest
next_timer->tmr_bk=(DWORD*)last_timer;
last_timer->tmr_fd=(DWORD*)next_timer;
}
else
{
if (last_timer==(struct TIMER*)Parent)
{//deliting timer is first timer of Parend
Parent->timer_bk=(DWORD*)next_timer;
next_timer->tmr_bk=(DWORD*)Parent;
if (next_timer->tmr_fd==(DWORD*)NULL)
{
Parent->timer_fd=(DWORD*)next_timer;
Parent->timer_bk=(DWORD*)next_timer;
}
}
 
if (next_timer==(struct TIMER*)NULL)
{
//there isn't next controls
last_timer->tmr_fd=(DWORD*)NULL;
Parent->timer_fd=(DWORD*)last_timer;
}
}
#ifdef DEBUG
printf("\ndestroyed timer %d parent window %d",(int)timer,(int)timer->tmr_parent);
#endif
free(timer);
break;
}
exchange_timer=(struct TIMER*)seek_timer->tmr_fd;
seek_timer=exchange_timer;
}
}
 
//---------------------------------------------------------------------------------
// create timer for function of parent window
//---------------------------------------------------------------------------------
void *SetTimerCallbackForFunction(parent_t *parent_window,int time_tick,void *func,void *func_data)
{
struct TIMER *timer;
 
timer=CreateTimerForParentWindow(parent_window);
timer->func=(DWORD*)func;
timer->func_data=(DWORD*)func_data;
timer->time_tick=(DWORD)time_tick;
timer->last_time=gui_ksys_get_ticks();
timer->flags=timer->flags | FLAG_TIMER_ON;
 
return(timer);
}
 
//---------------------------------------------------------------------------------
// create timer for control
//---------------------------------------------------------------------------------
void *SetTimerCallbackForControl(int time_tick,void *func,void *func_data)
{
struct TIMER *timer;
 
timer=malloc(sizeof(struct TIMER));
timer->func=(DWORD*)func;
timer->func_data=(DWORD*)func_data;
timer->time_tick=(DWORD)time_tick;
timer->last_time=gui_ksys_get_ticks();
timer->flags=timer->flags & FLAG_TIMER_OFF;
 
return(timer);
}
 
//---------------------------------------------------------------------------------
// call timer
//---------------------------------------------------------------------------------
void Timer(struct TIMER *timer)
{
DWORD time,delta_time;
 
time=gui_ksys_get_ticks();
delta_time=time-timer->last_time;
if (delta_time>=timer->time_tick)
{
TimerCallbackFunction=(void(*)(void *data))timer->func;
TimerCallbackFunction(timer->func_data);
timer->last_time=gui_ksys_get_ticks();
}
}
 
//---------------------------------------------------------------------------------
// create new callback for event
//---------------------------------------------------------------------------------
void *CreateCallbackForEvent(parent_t *parent)
{
gui_callbackevent_t *calev;
gui_callbackevent_t *backward_calev;
 
calev=malloc(sizeof(gui_callbackevent_t));
calev->calev_parent=(DWORD*)parent;
 
if (parent->calev_bk==(DWORD*)NULL)
{//not yet timers
parent->calev_bk=(DWORD*)calev;
parent->calev_fd=(DWORD*)calev;
calev->calev_bk=(DWORD*)parent;
calev->calev_fd=(DWORD*)NULL;
}
else
{
backward_calev=(gui_callbackevent_t*)parent->calev_fd;
parent->calev_fd=(DWORD*)calev;
backward_calev->calev_fd=(DWORD*)calev;
calev->calev_bk=(DWORD*)backward_calev;
calev->calev_fd=(DWORD*)NULL;
}
return(calev);
}
 
//---------------------------------------------------------------------------------
// destroy callback function for eventcalev
//---------------------------------------------------------------------------------
void DestroyCallbackFunctionForEvent(gui_callbackevent_t *calev)
{
struct HEADERPARENT *Parent;
struct CALLBACKEVENT *seek_calev;
struct CALLBACKEVENT *exchange_calev;
struct CALLBACKEVENT *last_calev;
struct CALLBACKEVENT *next_calev;
 
if (calev==(gui_callbackevent_t*)NULL) return;
 
Parent=(parent_t*)calev->calev_parent;
 
if (Parent->calev_bk==Parent->calev_fd)
{
//parent have got alone timer
if (Parent->calev_bk==(DWORD*)calev)
{
free(calev);
Parent->calev_bk=(DWORD*)NULL;
Parent->calev_fd=(DWORD*)NULL;
}
return;
}
 
seek_calev=(struct CALLBACKEVENT*)Parent->calev_bk;
while(seek_calev!=(struct CALLBACKEVENT*)NULL)
{
if (seek_calev==calev)
{
//delete timer from timers's stack
last_calev=(struct CALLBACKEVENT*)seek_calev->calev_bk;
next_calev=(struct CALLBACKEVENT*)seek_calev->calev_fd;
 
if ((last_calev!=(struct CALLBACKEVENT*)Parent) && (next_calev!=(struct CALLBACKEVENT*)NULL))
{//deliting timer isn't first timer and isn't endest
next_calev->calev_bk=(DWORD*)last_calev;
last_calev->calev_fd=(DWORD*)next_calev;
}
else
{
if (last_calev==(struct CALLBACKEVENT*)Parent)
{//deliting timer is first timer of Parend
Parent->calev_bk=(DWORD*)next_calev;
next_calev->calev_bk=(DWORD*)Parent;
if (next_calev->calev_fd==(DWORD*)NULL)
{
Parent->calev_fd=(DWORD*)next_calev;
Parent->calev_bk=(DWORD*)next_calev;
}
}
 
if (next_calev==(struct CALLBACKEVENT*)NULL)
{
//there isn't next controls
last_calev->calev_fd=(DWORD*)NULL;
Parent->calev_fd=(DWORD*)last_calev;
}
}
free(calev);
break;
}
exchange_calev=(struct CALLBACKEVENT*)seek_calev->calev_fd;
seek_calev=exchange_calev;
}
}
 
//---------------------------------------------------------------------------------
// create callback for messenger of events
//---------------------------------------------------------------------------------
void *SetCallbackFunctionForEvent(parent_t *parent_window,int event_type,void *func,void *func_data)
{
gui_callbackevent_t *calev;
 
calev=CreateCallbackForEvent(parent_window);
calev->func=(DWORD*)func;
calev->func_data=(DWORD*)func_data;
calev->event_type=(DWORD)event_type;
 
return(calev);
}
 
//---------------------------------------------------------------------------------
// check cross control and mouse
//---------------------------------------------------------------------------------
char CheckCrossBox(struct HEADER *control,int mouse_x,int mouse_y)
{
struct FINITION *fin;
int x,y,x2,y2;
int xmin,xmax,ymin,ymax,sx,sy;
 
fin=(struct FINITION*)control->finition;
 
if (fin->flags & FINITION_ON)
{
xmin=fin->x;
xmax=fin->x+fin->sizex-1;
ymin=fin->y;
ymax=fin->y+fin->sizey-1;
 
x=control->ctrl_x;
y=control->ctrl_y;
x2=x+control->ctrl_sizex-1;
y2=y+control->ctrl_sizey-1;
 
if (x2<xmin) return(FALSE);
if (x>xmax) return(FALSE);
if (y2<ymin) return(FALSE);
if (y>ymax) return(FALSE);
 
//finit x coordinates and sizex
sx=x-xmin;
 
if (sx>=0)
{
if (x2>xmax) x2=xmax;
}
else
{
x=xmin;
if (x2>xmax) x2=xmax;
}
 
//finit y coordinates and sizey
sy=y-ymin;
 
if (sy>=0)
{
if (y2>ymax) y2=ymax;
}
else
{
y=ymin;
if (y2>ymax) y2=ymax;
}
//check cross finited control with mouse
if ((mouse_x>=x) && (mouse_x<=x2) && (mouse_y>=y) && (mouse_y<=y2))
return(TRUE);
else
return(FALSE);
}
else
{
if ((mouse_x>=control->ctrl_x) && (mouse_x<=control->ctrl_x+control->ctrl_sizex) &&
(mouse_y>=control->ctrl_y) && (mouse_y<=control->ctrl_y+control->ctrl_sizey))
return(TRUE);
else
return(FALSE);
}
}
 
//---------------------------------------------------------------------------------
// check cross two rectaangles
//---------------------------------------------------------------------------------
char CheckCrossRectangles(int x1,int y1,int sizex1,int sizey1,int x2,int y2,int sizex2,int sizey2)
{
int s;
int xmax,ymax;
 
xmax=x1+sizex1-1;
ymax=y1+sizey1-1;
 
//check x cross
s=x2-x1;
if (s>0)
{//second rectangle have right position
if (x2>xmax) return(FALSE);
}
if (s<0)
{//second rectangle have left position
s=-s;
if (s>=sizex2) return(FALSE);
}
 
//check y cross
s=y2-y1;
if (s>0)
{//second rectangle have down position
if (y2>ymax) return(FALSE);
}
if (s<0)
{//second rectangle have up position
s=-s;
if (s>=sizey2) return(FALSE);
}
return(TRUE);
}
 
//---------------------------------------------------------------------------------
// check full cross two rectaangles
//---------------------------------------------------------------------------------
char CheckFullCrossRectangles(int x1,int y1,int sizex1,int sizey1,int x2,int y2,int sizex2,int sizey2)
{
int s;
int xmax,ymax;
 
xmax=x1+sizex1-1;
ymax=y1+sizey1-1;
 
if (x2>=x1 && x2+sizex2-1<=xmax && y2>=y1 && y2+sizey2-1<=ymax) return(TRUE);
else return(FALSE);
}
 
//---------------------------------------------------------------------------------
// send message to controls
//---------------------------------------------------------------------------------
void SendMessage(struct HEADER *Parent,struct MESSAGE *message)
{
struct HEADER *seek_control;
struct HEADER *exchange_control;
struct HEADER *parent;
struct HEADERPARENT *main_parent;
struct MESSAGE local_service_message;
struct HEADER *active_control_for_keys;
struct HEADER *active_control_for_mouse;
char cross;
 
//Parent haven't got child controls
if ((Parent->child_bk==NULL) && (Parent->child_fd==NULL)) return;
 
//load main parent
main_parent=(struct HEADERPARENT*)Parent->main_parent;
 
//load active controls from Parent
active_control_for_keys=(struct HEADER*)Parent->active_control_for_keys;
active_control_for_mouse=(struct HEADER*)Parent->active_control_for_mouse;
 
//Parent have got alon child control
if (Parent->child_bk==Parent->child_fd)
{
seek_control=(struct HEADER *)Parent->child_bk;
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
 
switch(message->type)
{
case MESSAGE_FULL_REDRAW_ALL:
{
//send message redraw to all child controls
if (seek_control->flags & FLAG_SHOW_CONTROL) ControlProc(seek_control,message);
break;
}
case MESSAGE_FULL_REDRAW_ALL_WITH_FINITION:
{
//send message finited redraw to all child controls
if (seek_control->flags & FLAG_SHOW_CONTROL) ControlProc(seek_control,message);
break;
}
case MESSAGE_KEYS_EVENT:
{ //change active control for keyboard by TAB press
if ((message->arg1==KEY_DOWN) && (message->arg2==SC_TAB))
{
if (seek_control->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)
{
if (active_control_for_keys==seek_control)
{//focuse of input set for current control
ControlProc=(void (*)(void *Control,struct MESSAGE *message))active_control_for_keys->ctrl_proc;
local_service_message.type=MESSAGE_CHANGE_FOCUSE;
local_service_message.arg1=FALSE;
active_control_for_keys->flags=active_control_for_keys->flags & FLAG_FOCUSE_INPUT_OFF;
ControlProc(active_control_for_keys,&local_service_message);
 
parent=(struct HEADER*)active_control_for_keys->parent;
seek_control=parent;
do
{
if (parent==(struct HEADER*)main_parent) break;
//if next control NULL go to parent
if (seek_control==(struct HEADER*)NULL) seek_control=parent;
 
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
if (seek_control==(struct HEADER*)NULL)
parent=(struct HEADER*)parent->parent;
}
while((seek_control==(struct HEADER*)NULL) ||
((seek_control->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)==FALSE));
 
if (parent==(struct HEADER*)main_parent)
{
//find first control of main parent with focuse of input supporote
seek_control=(struct HEADER *)main_parent->child_bk;
while(seek_control!=(struct HEADER*)NULL)
{
if (seek_control->flags & FLAG_FOCUSE_INPUT_SUPPOROTE) break;
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
}
main_parent->active_control_for_keys=(DWORD*)seek_control;
main_parent->global_active_control_for_keys=(DWORD*)seek_control;
 
//send message enable focuse of input to control
ControlProc=(void (*)(void *Control,struct MESSAGE *message))
seek_control->ctrl_proc;
local_service_message.type=MESSAGE_SET_FOCUSE;
local_service_message.arg1=FALSE;
seek_control->flags=seek_control->flags | FLAG_FOCUSE_INPUT_ON;
ControlProc(seek_control,&local_service_message);
 
active_control_for_keys=(struct HEADER*)NULL;
break;
}
if (seek_control!=(struct HEADER*)NULL)
{
parent=(struct HEADER*)seek_control->parent;
parent->active_control_for_keys=(DWORD*)seek_control;
main_parent->global_active_control_for_keys=(DWORD*)seek_control;
 
//send message enable focuse of input to control
ControlProc=(void (*)(void *Control,struct MESSAGE *message))
seek_control->ctrl_proc;
local_service_message.type=MESSAGE_SET_FOCUSE;
local_service_message.arg1=FALSE;
seek_control->flags=seek_control->flags | FLAG_FOCUSE_INPUT_ON;
ControlProc(seek_control,&local_service_message);
 
active_control_for_keys=(struct HEADER*)NULL;
Parent->active_control_for_keys=(DWORD*)active_control_for_keys;
break;
}
}
else
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
local_service_message.type=MESSAGE_SET_FOCUSE;
local_service_message.arg1=FALSE;
seek_control->flags=seek_control->flags | FLAG_FOCUSE_INPUT_ON;
ControlProc(seek_control,&local_service_message);
 
active_control_for_keys=seek_control;
Parent->active_control_for_keys=(DWORD*)active_control_for_keys;
main_parent->global_active_control_for_keys=(DWORD*)seek_control;
}
}
}
 
//send message of keys only to active control
if (active_control_for_keys!=NULL)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))active_control_for_keys->ctrl_proc;
ControlProc(active_control_for_keys,message);
}
break;
}
case MESSAGE_SPECIALIZED:
{
//send specialized message to all child controls
ControlProc(seek_control,message);
break;
}
case MESSAGE_MOUSE_EVENT:
{
if (seek_control->flags & FLAG_MOUSE_BLOCKED_ON) break;
 
if (message->arg3==MOUSE_LEFT_BUTTON_DOWN)
{
if (active_control_for_mouse!=NULL)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))active_control_for_mouse->ctrl_proc;
ControlProc(active_control_for_mouse,message);
break;
}
}
else
{
if (active_control_for_mouse!=NULL) {active_control_for_mouse=NULL;}
}
 
cross=FALSE;
if (CheckCrossBox(seek_control,message->arg1,message->arg2)==TRUE)
{
if (message->arg3==MOUSE_LEFT_BUTTON_DOWN)
{
cross=TRUE;
active_control_for_mouse=seek_control;
 
if (seek_control->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)
{
parent=(struct HEADER*)seek_control->parent;
if (parent->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)
{
active_control_for_keys=(struct HEADER*)main_parent->global_active_control_for_keys;
if (active_control_for_keys!=(struct HEADER*)NULL)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))
active_control_for_keys->ctrl_proc;
 
local_service_message.type=MESSAGE_CHANGE_FOCUSE;
active_control_for_keys->flags=
active_control_for_keys->flags & FLAG_FOCUSE_INPUT_OFF;
ControlProc(active_control_for_keys,&local_service_message);
}
 
ControlProc=(void (*)(void *Control,struct MESSAGE *message))
seek_control->ctrl_proc;
local_service_message.type=MESSAGE_SET_FOCUSE;
seek_control->flags=seek_control->flags | FLAG_FOCUSE_INPUT_ON;
ControlProc(seek_control,&local_service_message);
 
main_parent->global_active_control_for_keys=(DWORD*)seek_control;
Parent->active_control_for_keys=(DWORD*)seek_control;
}
}
}
}
 
if ((cross==FALSE) && (message->arg3==MOUSE_LEFT_BUTTON_DOWN))
{
if (active_control_for_keys!=NULL)
{//disable focuse of input for active control of keys
ControlProc=(void (*)(void *Control,struct MESSAGE *message))active_control_for_keys->ctrl_proc;
 
local_service_message.type=MESSAGE_CHANGE_FOCUSE;
active_control_for_keys->flags=active_control_for_keys->flags & FLAG_FOCUSE_INPUT_OFF;
ControlProc(active_control_for_keys,&local_service_message);
}
}
 
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
ControlProc(seek_control,message);
break;
}
case MESSAGE_CHANGE_POSITION_EVENT:
{
ControlProc(seek_control,message);
break;
}
case MESSAGE_CALL_TIMER_EVENT:
{
ControlProc(seek_control,message);
break;
}
case MESSAGE_DESTROY_CONTROL:
{
//send message to control for destroing child controls
ControlProc(seek_control,message);
DestroyControl(seek_control);
break;
}
case MESSAGE_SET_MAIN_PARENT:
{
ControlProc(seek_control,message);
break;
}
default:break;
}
}
else
{
switch(message->type)
{
case MESSAGE_FULL_REDRAW_ALL:
{
//send message redraw to all child controls of Parent
seek_control=(struct HEADER *)Parent->child_bk;
while(seek_control!=(struct HEADER*)NULL)
{
if (seek_control->flags & FLAG_SHOW_CONTROL)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
ControlProc(seek_control,message);
}
 
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
}
break;
}
case MESSAGE_FULL_REDRAW_ALL_WITH_FINITION:
{
//send message redraw to all child controls of Parent
seek_control=(struct HEADER *)Parent->child_bk;
while(seek_control!=(struct HEADER*)NULL)
{
if (seek_control->flags & FLAG_SHOW_CONTROL)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
ControlProc(seek_control,message);
}
 
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
}
break;
}
case MESSAGE_KEYS_EVENT:
{
if ((message->arg1==KEY_DOWN) && (message->arg2==SC_TAB))
{ //change active control for keyboard by TAB press
if (active_control_for_keys==NULL)
{
seek_control=(struct HEADER *)Parent->child_bk;
 
if ((seek_control->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)==FALSE)
{ //find first control of parend with supporote of input
while(seek_control->ctrl_fd!=(DWORD*)NULL)
{
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
if (seek_control->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)
{
active_control_for_keys=seek_control;
main_parent->global_active_control_for_keys=
(DWORD*)active_control_for_keys;
Parent->active_control_for_keys=(DWORD*)active_control_for_keys;
break;
}
}
if (active_control_for_keys!=NULL)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
local_service_message.type=MESSAGE_SET_FOCUSE;
seek_control->flags=seek_control->flags | FLAG_FOCUSE_INPUT_ON;
ControlProc(seek_control,&local_service_message);
}
}
else
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
local_service_message.type=MESSAGE_SET_FOCUSE;
seek_control->flags=seek_control->flags | FLAG_FOCUSE_INPUT_ON;
ControlProc(seek_control,&local_service_message);
 
active_control_for_keys=seek_control;
main_parent->global_active_control_for_keys=(DWORD*)active_control_for_keys;
Parent->active_control_for_keys=(DWORD*)active_control_for_keys;
}
}
else
{
if (active_control_for_keys==(struct HEADER*)main_parent->global_active_control_for_keys)
{
seek_control=active_control_for_keys;
while(seek_control!=(struct HEADER*)NULL)
{
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
 
if (seek_control==(struct HEADER*)NULL)
{ //send message disable focuse of input to current control
ControlProc=(void (*)(void *Control,struct MESSAGE *message))
active_control_for_keys->ctrl_proc;
local_service_message.type=MESSAGE_CHANGE_FOCUSE;
active_control_for_keys->flags=
active_control_for_keys->flags & FLAG_FOCUSE_INPUT_OFF;
ControlProc(active_control_for_keys,&local_service_message);
 
//back into main parent of tree and find next not NULL control
parent=(struct HEADER*)active_control_for_keys->parent;
do
{
if (parent==(struct HEADER*)main_parent) break;
 
//if next control NULL go to parent
if (seek_control==(struct HEADER*)NULL) seek_control=parent;
 
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
if (seek_control==(struct HEADER*)NULL)
parent=(struct HEADER*)parent->parent;
 
}
while((seek_control==(struct HEADER*)NULL) ||
((seek_control->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)==FALSE));
 
if (parent==(struct HEADER*)main_parent)
{
//find first control of main parent with focuse of input supporote
seek_control=(struct HEADER *)main_parent->child_bk;
while(seek_control!=(struct HEADER*)NULL)
{
if (seek_control->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)
break;
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
}
 
main_parent->active_control_for_keys=(DWORD*)seek_control;
main_parent->global_active_control_for_keys=(DWORD*)seek_control;
 
//send message enable focuse of input to control
ControlProc=(void (*)(void *Control,struct MESSAGE *message))
seek_control->ctrl_proc;
local_service_message.type=MESSAGE_SET_FOCUSE;
seek_control->flags=seek_control->flags | FLAG_FOCUSE_INPUT_ON;
ControlProc(seek_control,&local_service_message);
 
active_control_for_keys=(struct HEADER*)NULL;
break;
 
}
if (seek_control!=(struct HEADER*)NULL)
{
parent=(struct HEADER*)seek_control->parent;
parent->active_control_for_keys=(DWORD*)seek_control;
main_parent->global_active_control_for_keys=(DWORD*)seek_control;
 
//send message enable focuse of input to control
ControlProc=(void (*)(void *Control,struct MESSAGE *message))
seek_control->ctrl_proc;
local_service_message.type=MESSAGE_SET_FOCUSE;
seek_control->flags=seek_control->flags | FLAG_FOCUSE_INPUT_ON;
ControlProc(seek_control,&local_service_message);
 
active_control_for_keys=(struct HEADER*)NULL;
Parent->active_control_for_keys=(DWORD*)active_control_for_keys;
break;
}
}
if (seek_control->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))
active_control_for_keys->ctrl_proc;
local_service_message.type=MESSAGE_CHANGE_FOCUSE;
active_control_for_keys->flags=
active_control_for_keys->flags & FLAG_FOCUSE_INPUT_OFF;
ControlProc(active_control_for_keys,&local_service_message);
 
ControlProc=(void (*)(void *Control,struct MESSAGE *message))
seek_control->ctrl_proc;
local_service_message.type=MESSAGE_SET_FOCUSE;
seek_control->flags=seek_control->flags | FLAG_FOCUSE_INPUT_ON;
ControlProc(seek_control,&local_service_message);
 
active_control_for_keys=seek_control;
main_parent->global_active_control_for_keys=
(DWORD*)active_control_for_keys;
Parent->active_control_for_keys=(DWORD*)active_control_for_keys;
break;
}
}
}
}
}
 
//send message of keys only to active control
if (active_control_for_keys!=NULL)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))active_control_for_keys->ctrl_proc;
ControlProc(active_control_for_keys,message);
}
break;
}
case MESSAGE_SPECIALIZED:
{
//send specialized message to all child controls
seek_control=(struct HEADER *)Parent->child_bk;
while(seek_control!=(struct HEADER*)NULL)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
ControlProc(seek_control,message);
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
}
break;
}
case MESSAGE_MOUSE_EVENT:
{
if (message->arg3==MOUSE_LEFT_BUTTON_DOWN)
{
if (active_control_for_mouse!=NULL)
{
if (active_control_for_mouse->flags & FLAG_MOUSE_BLOCKED_ON) break;
 
ControlProc=(void (*)(void *Control,struct MESSAGE *message))active_control_for_mouse->ctrl_proc;
ControlProc(active_control_for_mouse,message);
break;
}
}
else
{
if (active_control_for_mouse!=NULL) {active_control_for_mouse=NULL;}
}
 
cross=FALSE;
seek_control=(struct HEADER*)Parent->child_bk;
while(seek_control!=(struct HEADER*)NULL)
{
if (CheckCrossBox(seek_control,message->arg1,message->arg2)==TRUE &&
(seek_control->flags & FLAG_MOUSE_BLOCKED_ON)==FALSE)
{
if (message->arg3==MOUSE_LEFT_BUTTON_DOWN)
{
cross=TRUE;
active_control_for_mouse=seek_control;
 
if (active_control_for_mouse->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)
{
//set focuse of input for new active control
active_control_for_mouse->flags=active_control_for_mouse->flags | FLAG_FOCUSE_INPUT_ON;
 
if (active_control_for_keys!=NULL)
{
if (active_control_for_keys!=seek_control)
{
//check seek control for supporote focuse of input
if (seek_control->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)
{
//check parent for supporote focuse of input
parent=(struct HEADER*)seek_control->parent;
if (parent->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)
{
 
ControlProc=(void (*)(void *Control,struct MESSAGE *message))
active_control_for_keys->ctrl_proc;
 
local_service_message.type=MESSAGE_CHANGE_FOCUSE;
local_service_message.arg1=FALSE;
active_control_for_keys->flags=
active_control_for_keys->flags &
FLAG_FOCUSE_INPUT_OFF;
ControlProc(active_control_for_keys,&local_service_message);
 
ControlProc=(void (*)(void *Control,struct MESSAGE *message))
seek_control->ctrl_proc;
local_service_message.type=MESSAGE_SET_FOCUSE;
local_service_message.arg1=FALSE;
seek_control->flags=seek_control->flags | FLAG_FOCUSE_INPUT_ON;
ControlProc(seek_control,&local_service_message);
 
active_control_for_keys=seek_control;
main_parent->global_active_control_for_keys=
(DWORD*)active_control_for_keys;
Parent->active_control_for_keys=
(DWORD*)active_control_for_keys;
}
}
}
}
else
{
//check seek control for supporote focuse of input
if (seek_control->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)
{
//check parent for supporote focuse of input
parent=(struct HEADER*)seek_control->parent;
if (parent->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)
{
active_control_for_keys=(struct HEADER*)main_parent->global_active_control_for_keys;
if (active_control_for_keys!=NULL)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))
active_control_for_keys->ctrl_proc;
 
local_service_message.type=MESSAGE_CHANGE_FOCUSE;
active_control_for_keys->flags=
active_control_for_keys->flags & FLAG_FOCUSE_INPUT_OFF;
ControlProc(active_control_for_keys,&local_service_message);
}
 
ControlProc=(void (*)(void *Control,struct MESSAGE *message))
seek_control->ctrl_proc;
local_service_message.type=MESSAGE_SET_FOCUSE;
seek_control->flags=seek_control->flags | FLAG_FOCUSE_INPUT_ON;
ControlProc(seek_control,&local_service_message);
 
main_parent->global_active_control_for_keys=(DWORD*)seek_control;
Parent->active_control_for_keys=(DWORD*)seek_control;
}
}
}
}
}
}
 
if ((seek_control->flags & FLAG_MOUSE_BLOCKED_ON)==FALSE)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
ControlProc(seek_control,message);
}
 
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
}
 
if ((cross==FALSE) && (message->arg3==MOUSE_LEFT_BUTTON_DOWN))
{
if (active_control_for_keys!=NULL)
{//disable focuse of input for active control of keys
ControlProc=(void (*)(void *Control,struct MESSAGE *message))active_control_for_keys->ctrl_proc;
 
local_service_message.type=MESSAGE_CHANGE_FOCUSE;
active_control_for_keys->flags=active_control_for_keys->flags & FLAG_FOCUSE_INPUT_OFF;
ControlProc(active_control_for_keys,&local_service_message);
 
main_parent->global_active_control_for_keys=(DWORD*)NULL;
Parent->active_control_for_keys=(DWORD*)NULL;
}
}
 
break;
}
case MESSAGE_CHANGE_POSITION_EVENT:
{
seek_control=(struct HEADER *)Parent->child_bk;
while(seek_control!=(struct HEADER*)NULL)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
ControlProc(seek_control,message);
 
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
}
break;
}
case MESSAGE_CALL_TIMER_EVENT:
{
seek_control=(struct HEADER *)Parent->child_bk;
while(seek_control!=(struct HEADER*)NULL)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
ControlProc(seek_control,message);
 
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
}
break;
}
case MESSAGE_SET_FOCUSE:
{
seek_control=(struct HEADER *)Parent->child_bk;
while(seek_control!=(struct HEADER*)NULL)
{
if (seek_control->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
ControlProc(seek_control,message);
break;
}
 
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
}
break;
}
case MESSAGE_CHANGE_FOCUSE:
{
seek_control=(struct HEADER *)Parent->child_bk;
while(seek_control!=(struct HEADER*)NULL)
{
if (seek_control->flags & FLAG_FOCUSE_INPUT_SUPPOROTE)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
ControlProc(seek_control,message);
break;
}
 
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
}
break;
}
case MESSAGE_DESTROY_CONTROL:
{
seek_control=(struct HEADER *)Parent->child_bk;
while(seek_control!=(struct HEADER*)NULL)
{ //befor delet control get next control of parent
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
 
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
//send message to control for destroyng child controls
ControlProc(seek_control,message);
DestroyControl(seek_control);
 
seek_control=exchange_control;
}
break;
}
case MESSAGE_SET_MAIN_PARENT:
{
seek_control=(struct HEADER *)Parent->child_bk;
while(seek_control!=(struct HEADER*)NULL)
{
ControlProc=(void (*)(void *Control,struct MESSAGE *message))seek_control->ctrl_proc;
//send message to control for destroyng child controls
ControlProc(seek_control,message);
 
seek_control->main_parent=(DWORD*)message->arg1;
 
exchange_control=(struct HEADER *)seek_control->ctrl_fd;
seek_control=exchange_control;
}
break;
}
default:break;
}
}
Parent->active_control_for_mouse=(DWORD*)active_control_for_mouse;
}
 
//---------------------------------------------------------------------------------
// pack control_child in control_parent for libGUI
//---------------------------------------------------------------------------------
//add new control for Parent
void PackControls(void *parent,void *Control)
{
struct HEADER *Parent;
struct HEADER *last_control;
struct HEADER *control;
struct MESSAGE message;
 
Parent=(struct HEADER *)parent;
control=(struct HEADER *)Control;
//set control's dependeces
 
if (Parent->child_bk==NULL)
{
//create first child control for parent
Parent->child_bk=(DWORD*)control;
Parent->child_fd=(DWORD*)control;
 
//init control
control->parent=(DWORD*)Parent;
control->ctrl_bk=(DWORD*)Parent;//last control is parent
control->ctrl_fd=(DWORD*)NULL;//haven't next control
}
else
{
//set new control as endest child control of parent
last_control=(struct HEADER*)Parent->child_fd;
Parent->child_fd=(DWORD*)control;
 
last_control->ctrl_fd=(DWORD*)control;
control->ctrl_bk=(DWORD*)last_control;
control->ctrl_fd=(DWORD*)NULL;
control->parent=(DWORD*)Parent;
}
 
//finite control's coordinates and size
control->ctrl_x=control->ctrl_x+Parent->ctrl_x;
control->ctrl_y=control->ctrl_y+Parent->ctrl_y;
 
if (control->ctrl_sizex<=1) {control->ctrl_sizex=1;}
if (control->ctrl_sizey<=1) {control->ctrl_sizey=1;}
 
message.type=(DWORD)MESSAGE_CHANGE_POSITION_EVENT;
message.arg1=Parent->ctrl_x;
message.arg2=Parent->ctrl_y;
//send message change position to child controls
SendMessage(control,&message);
 
if (Parent->main_parent!=(DWORD*)NULL)
{
//tell all child controls of main parent who is main parent
message.type=MESSAGE_SET_MAIN_PARENT;
message.arg1=(DWORD)Parent->main_parent;
SendMessage((struct HEADER *)Parent,&message);
}
}
 
//---------------------------------------------------------------------------------
// show/hide controls
//---------------------------------------------------------------------------------
void ShowControl(void *Control)
{
struct HEADER *control;
control=(struct HEADER *)Control;
control->flags=control->flags | FLAG_SHOW_CONTROL;
}
 
void HideControl(void *Control)
{
struct HEADER *control;
control=(struct HEADER *)Control;
control->flags=control->flags & FLAG_HIDE_CONTROL;
}
 
//---------------------------------------------------------------------------------
// redraw control
//---------------------------------------------------------------------------------
void RedrawControl(void *Control)
{
struct HEADER *control;
struct MESSAGE message;
 
control=(struct HEADER*)Control;
ControlProc=(void (*)(void *Control,struct MESSAGE *message))control->ctrl_proc;
message.type=MESSAGE_FULL_REDRAW_ALL;
ControlProc(control,&message);
}
 
//---------------------------------------------------------------------------------
// special redraw of control
//---------------------------------------------------------------------------------
void SpecialRedrawControl(void *Control)
{
struct HEADER *control;
struct MESSAGE message;
struct HEADERPARENT *main_parent;
 
control=(struct HEADER*)Control;
main_parent=(struct HEADERPARENT*)control->main_parent;
control->flags=control->flags | FLAG_GET_SPECIALIZED_MESSAGE_ON;
 
ControlProc=(void (*)(void *Control,struct MESSAGE *message))control->ctrl_proc;
 
message.type=MESSAGE_SPECIALIZED;
ControlProc((struct HEADER*)main_parent,&message);
}
 
//---------------------------------------------------------------------------------
// set new size for control
//---------------------------------------------------------------------------------
void SetControlSizeRequest(void *Control,int new_size_x,int new_size_y)
{
struct HEADER *control;
struct HEADER *Parent;
 
control=(struct HEADER*)Control;
Parent=(struct HEADER*)control->parent;
 
control->ctrl_sizex=(DWORD)new_size_x;
control->ctrl_sizey=(DWORD)new_size_y;
 
if ((control->ctrl_x+control->ctrl_sizex)>Parent->ctrl_sizex)
{control->ctrl_sizex=Parent->ctrl_sizex-control->ctrl_x;}
 
if ((control->ctrl_y+control->ctrl_sizey)>Parent->ctrl_sizey)
{control->ctrl_sizey=Parent->ctrl_sizey-control->ctrl_y;}
 
if (control->ctrl_sizex<=1) {control->ctrl_sizex=1;}
if (control->ctrl_sizey<=1) {control->ctrl_sizey=1;}
 
}
 
//---------------------------------------------------------------------------------
// get size x of control
//---------------------------------------------------------------------------------
int GetControlSizeX(void *Control)
{
struct HEADER *control;
 
control=(struct HEADER *)Control;
 
return ((int)control->ctrl_sizex);
}
 
//---------------------------------------------------------------------------------
// get size y of control
//---------------------------------------------------------------------------------
int GetControlSizeY(void *Control)
{
struct HEADER *control;
 
control=(struct HEADER *)Control;
 
return ((int)control->ctrl_sizey);
}
 
//---------------------------------------------------------------------------------
// set new size for control
//---------------------------------------------------------------------------------
void SetControlNewPosition(void *Control,int new_x,int new_y)
{
struct HEADER *control;
struct HEADER *Parent;
struct MESSAGE message;
parent_t *main_parent;
int old_x;
int old_y;
 
control=(struct HEADER*)Control;
/*
main_parent=(parent_t*)control->main_parent;
if (control->parent==(DWORD*)main_parent)
{//check position of child control of main parent
if (new_x+control->ctrl_sizex-1>screen.size_x) return;
if (new_y+control->ctrl_sizey-1>screen.size_y) return;
}*/
 
message.type=(DWORD)MESSAGE_CHANGE_POSITION_EVENT;
message.arg1=(DWORD)(new_x-control->ctrl_x);
message.arg2=(DWORD)(new_y-control->ctrl_y);
 
ControlProc=(void (*)(void *Control,struct MESSAGE *message))control->ctrl_proc;
ControlProc(control,&message);
}
 
//---------------------------------------------------------------------------------
// get x position of control
//---------------------------------------------------------------------------------
int GetControlPositionX(void *Control)
{
struct HEADER *control;
 
control=(struct HEADER *)Control;
 
return ((int)control->ctrl_x);
}
 
//---------------------------------------------------------------------------------
// get y position of control
//---------------------------------------------------------------------------------
int GetControlPositionY(void *Control)
{
struct HEADER *control;
 
control=(struct HEADER *)Control;
 
return ((int)control->ctrl_y);
}
 
//---------------------------------------------------------------------------------
// set focuse of input for control
//---------------------------------------------------------------------------------
void *SetFocuse(void *Control)
{
struct HEADER *control;
struct HEADERPARENT *main_parent;
struct HEADER *old_control;
struct MESSAGE *message;
 
//new active control with focuse
control=(struct HEADER*)Control;
main_parent=(struct HEADERPARENT*)control->main_parent;
 
if (main_parent==(struct HEADERPARENT*)NULL) return;
 
//old control with focuse
old_control=(struct HEADER*)main_parent->global_active_control_for_keys;
 
if (old_control!=(struct HEADER*)NULL)
{
message->type=MESSAGE_CHANGE_FOCUSE;
message->arg1=FALSE;
message->arg2=FALSE;
message->arg3=FALSE;
ControlProc=(void (*)(void *Control,struct MESSAGE *message))old_control->ctrl_proc;
ControlProc(old_control,message);
}
 
message->type=MESSAGE_SET_FOCUSE;
message->arg1=FALSE;
message->arg2=FALSE;
message->arg3=FALSE;;
ControlProc=(void (*)(void *Control,struct MESSAGE *message))control->ctrl_proc;
ControlProc(control,message);
 
return(old_control);
}
 
//---------------------------------------------------------------------------------
// set callback function for control
//---------------------------------------------------------------------------------
void *SetCallbackFunction(void *Control,int event_name,void *callback_func,void *callback_func_data)
{
struct HEADER *control;
struct CALLBACK *seek_callback;
struct CALLBACK *exchange_callback;
struct CALLBACK *new_callback;
 
control=(struct HEADER *)Control;
seek_callback=(struct CALLBACK*)control->callback;
 
if (seek_callback==(struct CALLBACK *)NULL)
{ //callback function creating at first
new_callback=malloc(sizeof(struct CALLBACK));
control->callback=(DWORD*)new_callback;
new_callback->clb_bk=(DWORD*)control;
new_callback->clb_fd=(DWORD*)NULL;
new_callback->clb_control=(DWORD*)control;
new_callback->connect_event=(DWORD)event_name;
new_callback->func=(DWORD*)callback_func;
new_callback->func_data=(DWORD*)callback_func_data;
new_callback->flags=0x0;
}
else
{
while(seek_callback!=(struct CALLBACK*)NULL)
{
if (seek_callback->clb_fd==(DWORD*)NULL)
{//create new callback control for callback function
new_callback=malloc(sizeof(struct CALLBACK));
seek_callback->clb_fd=(DWORD*)new_callback;
new_callback->clb_bk=(DWORD*)seek_callback;
new_callback->clb_fd=(DWORD*)NULL;
new_callback->clb_control=(DWORD*)control;
new_callback->connect_event=(DWORD)event_name;
new_callback->func=(DWORD*)callback_func;
new_callback->func_data=(DWORD*)callback_func_data;
new_callback->flags=0x0;
break;
}
exchange_callback=(struct CALLBACK*)seek_callback->clb_fd;
seek_callback=exchange_callback;
}
}
#ifdef DEBUG
printf("\ncreated callback %d for function %d data %d",
(DWORD)new_callback,
(DWORD)callback_func,
(DWORD)callback_func_data);
#endif
 
return(new_callback);
}
 
//---------------------------------------------------------------------------------
// block current callback function for control
//---------------------------------------------------------------------------------
void BlockCallbackFunction(void *Control,void *callback_ID)
{
struct HEADER *control;
struct CALLBACK *seek_callback;
struct CALLBACK *exchange_callback;
struct CALLBACK *unknown_callback;
 
control=(struct HEADER *)Control;
 
seek_callback=(struct CALLBACK *)control->callback;
unknown_callback=(struct CALLBACK*)callback_ID;
 
while(seek_callback!=(struct CALLBACK*)NULL)
{
if (seek_callback==unknown_callback)
{
unknown_callback->flags=unknown_callback->flags | FLAG_BLOCK_CALLBACK_ON;
break;
}
exchange_callback=(struct CALLBACK*)seek_callback->clb_fd;
seek_callback=exchange_callback;
}
 
}
 
//---------------------------------------------------------------------------------
// unblock current callback function for control
//---------------------------------------------------------------------------------
void UnblockCallbackFunction(void *Control,void *callback_ID)
{
struct HEADER *control;
struct CALLBACK *seek_callback;
struct CALLBACK *exchange_callback;
struct CALLBACK *unknown_callback;
 
control=(struct HEADER *)Control;
 
seek_callback=(struct CALLBACK *)control->callback;
unknown_callback=(struct CALLBACK*)callback_ID;
 
while(seek_callback!=(struct CALLBACK*)NULL)
{
if (seek_callback==unknown_callback)
{
unknown_callback->flags=unknown_callback->flags & FLAG_BLOCK_CALLBACK_OFF;
break;
}
exchange_callback=(struct CALLBACK*)seek_callback->clb_fd;
seek_callback=exchange_callback;
}
}
 
//---------------------------------------------------------------------------------
// check callback event for control
//---------------------------------------------------------------------------------
void *ControlCheckCallbackEvent(void *Control,DWORD event)
{
struct HEADER *control;
struct CALLBACK *seek_callback;
struct CALLBACK *exchange_callback;
 
control=(struct HEADER *)Control;
seek_callback=(struct CALLBACK *)control->callback;
 
while(seek_callback!=(struct CALLBACK*)NULL)
{
if ((seek_callback->flags & FLAG_BLOCK_CALLBACK_ON)==FALSE)
{
if (seek_callback->connect_event==event) return (seek_callback);
}
exchange_callback=(struct CALLBACK*)seek_callback->clb_fd;
seek_callback=exchange_callback;
}
return(NULL);
}
 
//---------------------------------------------------------------------------------
// set IDL function for libGUI
//---------------------------------------------------------------------------------
void SetIDL_Function(parent_t *parent,void *function,void *function_data)
{
parent->IDL_func=(DWORD*)function;
parent->IDL_func_data=(DWORD*)function_data;
}
 
//---------------------------------------------------------------------------------
// destroy IDL function for libGUI
//---------------------------------------------------------------------------------
void DestroyIDL_Function(parent_t *parent)
{
parent->IDL_func=(DWORD*)NULL;
}
 
//---------------------------------------------------------------------------------
// initialize libGUI
//---------------------------------------------------------------------------------
char InitLibGUI()
{
font_t *font;
//---------------------------------------------------------------------------------
//---------------------------platform depended part of code------------------------
//---------------------------------------------------------------------------------
//set new events mask
gui_ksys_set_events_mask(119);
//set scan codes input mode for keyboard
gui_ksys_set_keyboard_input_mode(1);
//------------------------------------------------------------------------------------
FontsMeneger.fnt_fd=(DWORD*)NULL;
FontsMeneger.fnt_bk=(DWORD*)NULL;
FontsMeneger.number_fonts=0;
//load default fonts
font=LoadFont("CHAR.MT");
 
if (font==NULL) return (TRUE);
else FontsMeneger.default_font=(DWORD*)font;
 
font->flags=font->flags | FONT_FLAG_DEFAULT_FONT_ON;
 
return(FALSE);
}
 
//---------------------------------------------------------------------------------
// quit from libGUI loop and destroy all GUI objects
//---------------------------------------------------------------------------------
void QuitLibGUI(parent_t *window)
{
font_t *font,*seek_font,*exchange_font;
gui_timer_t *seek_timer,*exchange_timer;
gui_message_t message;
 
#ifdef DEBUG
printf("\nbegin free libGUI...");
#endif
 
//destroy controls of parent window
message.type=MESSAGE_DESTROY_CONTROL;
SendMessage((header_t*)window,&message);
#ifdef DEBUG
printf("\ncontrols destroyed");
#endif
//destroy timers for callback functions
seek_timer=(gui_timer_t*)window->timer_bk;
while(seek_timer!=(gui_timer_t*)NULL)
{
exchange_timer=(gui_timer_t*)seek_timer->tmr_fd;
 
DestroyTimerCallbackForFunction(seek_timer);
 
seek_timer=exchange_timer;
}
#ifdef DEBUG
printf("\ntimers destroyed");
#endif
//free arrays of parent window
free(window->message);
free(window->control_for_callback_function);
free(window->callback_for_control_callback);
#ifdef DEBUG
printf("\narrays destroyed");
#endif
//destroy parent window
free(window);
#ifdef DEBUG
printf("\nparent window destroyed");
#endif
//destroy fonts cash
 
seek_font=(font_t*)FontsMeneger.fnt_bk;
while(seek_font!=(font_t*)NULL)
{
exchange_font=(font_t*)seek_font->fnt_fd;
 
free(seek_font->font);
DestroyFont(seek_font);
 
seek_font=exchange_font;
}
#ifdef DEBUG
printf("\nfonts destroyed");
printf("\nexit program...");
#endif
exit(0);
}
 
DWORD LibGUIversion(void)
{ //25.10.09
return(91025);
}
/programs/develop/libraries/libGUI/SRC/main_libGUI.inc
0,0 → 1,233
/*
main meneger loop libGUI library
*/
 
void LibGUImain(parent_t *WindowParent)
{
DWORD event,key,value;
header_t *control;
gui_message_t *events_message;
gui_timer_t *seek_timer,*exchange_timer;
gui_callbackevent_t *seek_calev,*calev,*exchange_calev;
int i;
char quit;
 
 
events_message=(struct MESSAGE*)WindowParent->message;
//tell all child controls of main parent who is main parent
events_message->type=MESSAGE_SET_MAIN_PARENT;
events_message->arg1=(DWORD)WindowParent;
SendMessage((struct HEADER *)WindowParent,events_message);
 
//display all created controls in window
gui_draw_window(WindowParent);
events_message->type=MESSAGE_FULL_REDRAW_ALL;
SendMessage((struct HEADER *)WindowParent,events_message);
 
events_message->type=0;
 
quit=FALSE;
WindowParent->number_callbacks=0;
 
while (quit==FALSE)
{
//check for timers
if ((WindowParent->timer_bk!=(DWORD*)NULL) ||
(WindowParent->number_timers_for_controls!=0)) {event=gui_ksys_wait_event_with_timeout(1);}
else {event=gui_ksys_wait_event();}
 
//get and chack system events
switch(event)
{
case KOLIBRIOS_SYS_EVENT_BUTTON_PRESSED:
{
if (ControlCheckCallbackEvent(WindowParent,DELETE_EVENT)!=NULL)
{
WindowParent->flags |= FLAG_CONNECT_EVENT_ON;
WindowParent->control_for_callback_function[WindowParent->number_callbacks]=
(DWORD*)WindowParent;
WindowParent->callback_for_control_callback[WindowParent->number_callbacks]=
(DWORD*)ControlCheckCallbackEvent(WindowParent,(DWORD)DELETE_EVENT);
WindowParent->number_callbacks++;
}
 
quit=TRUE;
break;
}
 
case KOLIBRIOS_SYS_EVENT_REDRAW:
{
GetNewWindowSizePos(WindowParent);
SetWindowSizeRequest(WindowParent,WindowParent->ctrl_sizex,WindowParent->ctrl_sizey);
gui_draw_window(WindowParent);
events_message->type=MESSAGE_FULL_REDRAW_ALL;
SendMessage((struct HEADER *)WindowParent,events_message);
break;
}
 
case KOLIBRIOS_SYS_EVENT_KEYS:
{
key=gui_ksys_get_key();
 
key=key>>8;
 
if (key & 128)
{
events_message->arg1=KEY_UP;
events_message->arg2=key & 127;
}
else
{
events_message->arg1=KEY_DOWN;
events_message->arg2=key;
}
events_message->type=MESSAGE_KEYS_EVENT;
SendMessage((struct HEADER *)WindowParent,events_message);
break;
}
 
case KOLIBRIOS_SYS_EVENT_MOUSE:
{
value=gui_ksys_get_window_mouse_coordinates();
events_message->type=MESSAGE_MOUSE_EVENT;
events_message->arg2=(value & 0xffff)-screen.y;//y
value=value >>16;
events_message->arg1=value-screen.x;//x
 
value=gui_ksys_get_mouse_buttons_state();
switch(value)
{
case KOLIBRIOS_SYS_MOUSE_BUTTON_LEFT_DOWN:
{
events_message->arg3=MOUSE_LEFT_BUTTON_DOWN;
break;
}
case KOLIBRIOS_SYS_MOUSE_BUTTON_RIGHT_DOWN:
{
events_message->arg3=MOUSE_RIGHT_BUTTON_DOWN;
break;
}
case KOLIBRIOS_SYS_MOUSE_BUTTON_MIDDLE_DOWN:
{
events_message->arg3=MOUSE_MIDDLE_BUTTON_DOWN;
break;
}
case KOLIBRIOS_SYS_MOUSE_BUTTON_4_DOWN:
{
events_message->arg3=MOUSE_4_BUTTON_DOWN;
break;
}
case KOLIBRIOS_SYS_MOUSE_BUTTON_5_DOWN:
{
events_message->arg3=MOUSE_5_BUTTON_DOWN;
break;
}
default:
{
if (events_message->arg3==MOUSE_LEFT_BUTTON_DOWN)
{
events_message->arg3=MOUSE_LEFT_BUTTON_UP;
break;
}
if (events_message->arg3==MOUSE_RIGHT_BUTTON_DOWN)
{
events_message->arg3=MOUSE_RIGHT_BUTTON_UP;
break;
}
if (events_message->arg3==MOUSE_MIDDLE_BUTTON_DOWN)
{
events_message->arg3=MOUSE_MIDDLE_BUTTON_UP;
break;
}
if (events_message->arg3==MOUSE_4_BUTTON_DOWN)
{
events_message->arg3=MOUSE_4_BUTTON_UP;
break;
}
if (events_message->arg3==MOUSE_5_BUTTON_DOWN)
{
events_message->arg3=MOUSE_5_BUTTON_UP;
break;
}
 
break;
}
}
SendMessage((struct HEADER *)WindowParent,events_message);
break;
}
}
 
//call functions for events
seek_calev=(struct CALLBACKEVENT*)WindowParent->calev_bk;
while(seek_calev!=(struct CALLBACKEVENT*)NULL)
{
if (seek_calev->event_type==events_message->type)
{
CallbackFunctionForEvent=(void(*)(struct MESSAGE *message,void *data))seek_calev->func;
CallbackFunctionForEvent(events_message,seek_calev->func_data);
}
exchange_calev=(struct CALLBACKEVENT*)seek_calev->calev_fd;
seek_calev=exchange_calev;
}
 
//call timers of controls
if (WindowParent->number_timers_for_controls!=0)
{
events_message->type=(char)MESSAGE_CALL_TIMER_EVENT;
SendMessage((struct HEADER *)WindowParent,events_message);
}
 
//call callback functions
for(i=0;i<WindowParent->number_callbacks;i++)
{
control=(struct HEADER*)WindowParent->control_for_callback_function[i];
//check callback control
if (control!=(header_t*)NULL)
{
if (control->flags & FLAG_CONNECT_EVENT_ON)
{
calev=(struct CALLBACKEVENT*)
WindowParent->callback_for_control_callback[i];
#ifdef DEBUG
printf("\ntry to call callback %d for function %d data %d",
(DWORD)calev,
(DWORD)calev->func,
(DWORD)calev->func_data);
#endif
 
CallbackFunction=(void (*)(header_t *Control,void *data))calev->func;
CallbackFunction(control,calev->func_data);
 
control->flags=control->flags & FLAG_CONNECT_EVENT_OFF;
}
}
}
WindowParent->number_callbacks=0;
 
//call timers of parent window
seek_timer=(struct TIMER*)WindowParent->timer_bk;
while(seek_timer!=(struct TIMER*)NULL)
{
if (seek_timer->flags & FLAG_TIMER_ON) Timer(seek_timer);
 
exchange_timer=(struct TIMER*)seek_timer->tmr_fd;
seek_timer=exchange_timer;
}
 
//check for IDL function and call it if enabled
if (WindowParent->IDL_func!=(DWORD*)NULL)
{
IDL_Function=(void(*)(void *data))WindowParent->IDL_func;
IDL_Function(WindowParent->IDL_func_data);
}
 
}
}
/programs/develop/libraries/libGUI/SRC/malloc.inc
0,0 → 1,3994
/*
This is a version (aka dlmalloc) of malloc/free/realloc written by
Doug Lea and released to the public domain, as explained at
http://creativecommons.org/licenses/publicdomain. Send questions,
comments, complaints, performance data, etc to dl@cs.oswego.edu
 
* Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee)
 
Note: There may be an updated version of this malloc obtainable at
ftp://gee.cs.oswego.edu/pub/misc/malloc.c
Check before installing!
 
* Quickstart
 
This library is all in one file to simplify the most common usage:
ftp it, compile it (-O3), and link it into another program. All of
the compile-time options default to reasonable values for use on
most platforms. You might later want to step through various
compile-time and dynamic tuning options.
 
For convenience, an include file for code using this malloc is at:
ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h
You don't really need this .h file unless you call functions not
defined in your system include files. The .h file contains only the
excerpts from this file needed for using this malloc on ANSI C/C++
systems, so long as you haven't changed compile-time options about
naming and tuning parameters. If you do, then you can create your
own malloc.h that does include all settings by cutting at the point
indicated below. Note that you may already by default be using a C
library containing a malloc that is based on some version of this
malloc (for example in linux). You might still want to use the one
in this file to customize settings or to avoid overheads associated
with library versions.
 
* Vital statistics:
 
Supported pointer/size_t representation: 4 or 8 bytes
size_t MUST be an unsigned type of the same width as
pointers. (If you are using an ancient system that declares
size_t as a signed type, or need it to be a different width
than pointers, you can use a previous release of this malloc
(e.g. 2.7.2) supporting these.)
 
Alignment: 8 bytes (default)
This suffices for nearly all current machines and C compilers.
However, you can define MALLOC_ALIGNMENT to be wider than this
if necessary (up to 128bytes), at the expense of using more space.
 
Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
8 or 16 bytes (if 8byte sizes)
Each malloced chunk has a hidden word of overhead holding size
and status information, and additional cross-check word
if FOOTERS is defined.
 
Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
8-byte ptrs: 32 bytes (including overhead)
 
Even a request for zero bytes (i.e., malloc(0)) returns a
pointer to something of the minimum allocatable size.
The maximum overhead wastage (i.e., number of extra bytes
allocated than were requested in malloc) is less than or equal
to the minimum size, except for requests >= mmap_threshold that
are serviced via mmap(), where the worst case wastage is about
32 bytes plus the remainder from a system page (the minimal
mmap unit); typically 4096 or 8192 bytes.
 
Security: static-safe; optionally more or less
The "security" of malloc refers to the ability of malicious
code to accentuate the effects of errors (for example, freeing
space that is not currently malloc'ed or overwriting past the
ends of chunks) in code that calls malloc. This malloc
guarantees not to modify any memory locations below the base of
heap, i.e., static variables, even in the presence of usage
errors. The routines additionally detect most improper frees
and reallocs. All this holds as long as the static bookkeeping
for malloc itself is not corrupted by some other means. This
is only one aspect of security -- these checks do not, and
cannot, detect all possible programming errors.
 
If FOOTERS is defined nonzero, then each allocated chunk
carries an additional check word to verify that it was malloced
from its space. These check words are the same within each
execution of a program using malloc, but differ across
executions, so externally crafted fake chunks cannot be
freed. This improves security by rejecting frees/reallocs that
could corrupt heap memory, in addition to the checks preventing
writes to statics that are always on. This may further improve
security at the expense of time and space overhead. (Note that
FOOTERS may also be worth using with MSPACES.)
 
By default detected errors cause the program to abort (calling
"abort()"). You can override this to instead proceed past
errors by defining PROCEED_ON_ERROR. In this case, a bad free
has no effect, and a malloc that encounters a bad address
caused by user overwrites will ignore the bad address by
dropping pointers and indices to all known memory. This may
be appropriate for programs that should continue if at all
possible in the face of programming errors, although they may
run out of memory because dropped memory is never reclaimed.
 
If you don't like either of these options, you can define
CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
else. And if if you are sure that your program using malloc has
no errors or vulnerabilities, you can define INSECURE to 1,
which might (or might not) provide a small performance improvement.
 
Thread-safety: NOT thread-safe unless USE_LOCKS defined
When USE_LOCKS is defined, each public call to malloc, free,
etc is surrounded with either a pthread mutex or a win32
spinlock (depending on WIN32). This is not especially fast, and
can be a major bottleneck. It is designed only to provide
minimal protection in concurrent environments, and to provide a
basis for extensions. If you are using malloc in a concurrent
program, consider instead using ptmalloc, which is derived from
a version of this malloc. (See http://www.malloc.de).
 
System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
This malloc can use unix sbrk or any emulation (invoked using
the CALL_MORECORE macro) and/or mmap/munmap or any emulation
(invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
memory. On most unix systems, it tends to work best if both
MORECORE and MMAP are enabled. On Win32, it uses emulations
based on VirtualAlloc. It also uses common C library functions
like memset.
 
Compliance: I believe it is compliant with the Single Unix Specification
(See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
others as well.
 
* Overview of algorithms
 
This is not the fastest, most space-conserving, most portable, or
most tunable malloc ever written. However it is among the fastest
while also being among the most space-conserving, portable and
tunable. Consistent balance across these factors results in a good
general-purpose allocator for malloc-intensive programs.
 
In most ways, this malloc is a best-fit allocator. Generally, it
chooses the best-fitting existing chunk for a request, with ties
broken in approximately least-recently-used order. (This strategy
normally maintains low fragmentation.) However, for requests less
than 256bytes, it deviates from best-fit when there is not an
exactly fitting available chunk by preferring to use space adjacent
to that used for the previous small request, as well as by breaking
ties in approximately most-recently-used order. (These enhance
locality of series of small allocations.) And for very large requests
(>= 256Kb by default), it relies on system memory mapping
facilities, if supported. (This helps avoid carrying around and
possibly fragmenting memory used only for large chunks.)
 
All operations (except malloc_stats and mallinfo) have execution
times that are bounded by a constant factor of the number of bits in
a size_t, not counting any clearing in calloc or copying in realloc,
or actions surrounding MORECORE and MMAP that have times
proportional to the number of non-contiguous regions returned by
system allocation routines, which is often just 1.
 
The implementation is not very modular and seriously overuses
macros. Perhaps someday all C compilers will do as good a job
inlining modular code as can now be done by brute-force expansion,
but now, enough of them seem not to.
 
Some compilers issue a lot of warnings about code that is
dead/unreachable only on some platforms, and also about intentional
uses of negation on unsigned types. All known cases of each can be
ignored.
 
For a longer but out of date high-level description, see
http://gee.cs.oswego.edu/dl/html/malloc.html
 
* MSPACES
If MSPACES is defined, then in addition to malloc, free, etc.,
this file also defines mspace_malloc, mspace_free, etc. These
are versions of malloc routines that take an "mspace" argument
obtained using create_mspace, to control all internal bookkeeping.
If ONLY_MSPACES is defined, only these versions are compiled.
So if you would like to use this allocator for only some allocations,
and your system malloc for others, you can compile with
ONLY_MSPACES and then do something like...
static mspace mymspace = create_mspace(0,0); // for example
#define mymalloc(bytes) mspace_malloc(mymspace, bytes)
 
(Note: If you only need one instance of an mspace, you can instead
use "USE_DL_PREFIX" to relabel the global malloc.)
 
You can similarly create thread-local allocators by storing
mspaces as thread-locals. For example:
static __thread mspace tlms = 0;
void* tlmalloc(size_t bytes) {
if (tlms == 0) tlms = create_mspace(0, 0);
return mspace_malloc(tlms, bytes);
}
void tlfree(void* mem) { mspace_free(tlms, mem); }
 
Unless FOOTERS is defined, each mspace is completely independent.
You cannot allocate from one and free to another (although
conformance is only weakly checked, so usage errors are not always
caught). If FOOTERS is defined, then each chunk carries around a tag
indicating its originating mspace, and frees are directed to their
originating spaces.
 
------------------------- Compile-time options ---------------------------
 
Be careful in setting #define values for numerical constants of type
size_t. On some systems, literal values are not automatically extended
to size_t precision unless they are explicitly casted.
 
WIN32 default: defined if _WIN32 defined
Defining WIN32 sets up defaults for MS environment and compilers.
Otherwise defaults are for unix.
 
MALLOC_ALIGNMENT default: (size_t)8
Controls the minimum alignment for malloc'ed chunks. It must be a
power of two and at least 8, even on machines for which smaller
alignments would suffice. It may be defined as larger than this
though. Note however that code and data structures are optimized for
the case of 8-byte alignment.
 
MSPACES default: 0 (false)
If true, compile in support for independent allocation spaces.
This is only supported if HAVE_MMAP is true.
 
ONLY_MSPACES default: 0 (false)
If true, only compile in mspace versions, not regular versions.
 
USE_LOCKS default: 0 (false)
Causes each call to each public routine to be surrounded with
pthread or WIN32 mutex lock/unlock. (If set true, this can be
overridden on a per-mspace basis for mspace versions.)
 
FOOTERS default: 0
If true, provide extra checking and dispatching by placing
information in the footers of allocated chunks. This adds
space and time overhead.
 
INSECURE default: 0
If true, omit checks for usage errors and heap space overwrites.
 
USE_DL_PREFIX default: NOT defined
Causes compiler to prefix all public routines with the string 'dl'.
This can be useful when you only want to use this malloc in one part
of a program, using your regular system malloc elsewhere.
 
ABORT default: defined as abort()
Defines how to abort on failed checks. On most systems, a failed
check cannot die with an "assert" or even print an informative
message, because the underlying print routines in turn call malloc,
which will fail again. Generally, the best policy is to simply call
abort(). It's not very useful to do more than this because many
errors due to overwriting will show up as address faults (null, odd
addresses etc) rather than malloc-triggered checks, so will also
abort. Also, most compilers know that abort() does not return, so
can better optimize code conditionally calling it.
 
PROCEED_ON_ERROR default: defined as 0 (false)
Controls whether detected bad addresses cause them to bypassed
rather than aborting. If set, detected bad arguments to free and
realloc are ignored. And all bookkeeping information is zeroed out
upon a detected overwrite of freed heap space, thus losing the
ability to ever return it from malloc again, but enabling the
application to proceed. If PROCEED_ON_ERROR is defined, the
static variable malloc_corruption_error_count is compiled in
and can be examined to see if errors have occurred. This option
generates slower code than the default abort policy.
 
DEBUG default: NOT defined
The DEBUG setting is mainly intended for people trying to modify
this code or diagnose problems when porting to new platforms.
However, it may also be able to better isolate user errors than just
using runtime checks. The assertions in the check routines spell
out in more detail the assumptions and invariants underlying the
algorithms. The checking is fairly extensive, and will slow down
execution noticeably. Calling malloc_stats or mallinfo with DEBUG
set will attempt to check every non-mmapped allocated and free chunk
in the course of computing the summaries.
 
ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
Debugging assertion failures can be nearly impossible if your
version of the assert macro causes malloc to be called, which will
lead to a cascade of further failures, blowing the runtime stack.
ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
which will usually make debugging easier.
 
MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
The action to take before "return 0" when malloc fails to be able to
return memory because there is none available.
 
HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
True if this system supports sbrk or an emulation of it.
 
MORECORE default: sbrk
The name of the sbrk-style system routine to call to obtain more
memory. See below for guidance on writing custom MORECORE
functions. The type of the argument to sbrk/MORECORE varies across
systems. It cannot be size_t, because it supports negative
arguments, so it is normally the signed type of the same width as
size_t (sometimes declared as "intptr_t"). It doesn't much matter
though. Internally, we only call it with arguments less than half
the max value of a size_t, which should work across all reasonable
possibilities, although sometimes generating compiler warnings. See
near the end of this file for guidelines for creating a custom
version of MORECORE.
 
MORECORE_CONTIGUOUS default: 1 (true)
If true, take advantage of fact that consecutive calls to MORECORE
with positive arguments always return contiguous increasing
addresses. This is true of unix sbrk. It does not hurt too much to
set it true anyway, since malloc copes with non-contiguities.
Setting it false when definitely non-contiguous saves time
and possibly wasted space it would take to discover this though.
 
MORECORE_CANNOT_TRIM default: NOT defined
True if MORECORE cannot release space back to the system when given
negative arguments. This is generally necessary only if you are
using a hand-crafted MORECORE function that cannot handle negative
arguments.
 
HAVE_MMAP default: 1 (true)
True if this system supports mmap or an emulation of it. If so, and
HAVE_MORECORE is not true, MMAP is used for all system
allocation. If set and HAVE_MORECORE is true as well, MMAP is
primarily used to directly allocate very large blocks. It is also
used as a backup strategy in cases where MORECORE fails to provide
space from system. Note: A single call to MUNMAP is assumed to be
able to unmap memory that may have be allocated using multiple calls
to MMAP, so long as they are adjacent.
 
HAVE_MREMAP default: 1 on linux, else 0
If true realloc() uses mremap() to re-allocate large blocks and
extend or shrink allocation spaces.
 
MMAP_CLEARS default: 1 on unix
True if mmap clears memory so calloc doesn't need to. This is true
for standard unix mmap using /dev/zero.
 
USE_BUILTIN_FFS default: 0 (i.e., not used)
Causes malloc to use the builtin ffs() function to compute indices.
Some compilers may recognize and intrinsify ffs to be faster than the
supplied C version. Also, the case of x86 using gcc is special-cased
to an asm instruction, so is already as fast as it can be, and so
this setting has no effect. (On most x86s, the asm version is only
slightly faster than the C version.)
 
malloc_getpagesize default: derive from system includes, or 4096.
The system page size. To the extent possible, this malloc manages
memory from the system in page-size units. This may be (and
usually is) a function rather than a constant. This is ignored
if WIN32, where page size is determined using getSystemInfo during
initialization.
 
USE_DEV_RANDOM default: 0 (i.e., not used)
Causes malloc to use /dev/random to initialize secure magic seed for
stamping footers. Otherwise, the current time is used.
 
NO_MALLINFO default: 0
If defined, don't compile "mallinfo". This can be a simple way
of dealing with mismatches between system declarations and
those in this file.
 
MALLINFO_FIELD_TYPE default: size_t
The type of the fields in the mallinfo struct. This was originally
defined as "int" in SVID etc, but is more usefully defined as
size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
 
REALLOC_ZERO_BYTES_FREES default: not defined
This should be set if a call to realloc with zero bytes should
be the same as a call to free. Some people think it should. Otherwise,
since this malloc returns a unique pointer for malloc(0), so does
realloc(p, 0).
 
LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
LACKS_STDLIB_H default: NOT defined unless on WIN32
Define these if your system does not have these header files.
You might need to manually insert some of the declarations they provide.
 
DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
system_info.dwAllocationGranularity in WIN32,
otherwise 64K.
Also settable using mallopt(M_GRANULARITY, x)
The unit for allocating and deallocating memory from the system. On
most systems with contiguous MORECORE, there is no reason to
make this more than a page. However, systems with MMAP tend to
either require or encourage larger granularities. You can increase
this value to prevent system allocation functions to be called so
often, especially if they are slow. The value must be at least one
page and must be a power of two. Setting to 0 causes initialization
to either page size or win32 region size. (Note: In previous
versions of malloc, the equivalent of this option was called
"TOP_PAD")
 
DEFAULT_TRIM_THRESHOLD default: 2MB
Also settable using mallopt(M_TRIM_THRESHOLD, x)
The maximum amount of unused top-most memory to keep before
releasing via malloc_trim in free(). Automatic trimming is mainly
useful in long-lived programs using contiguous MORECORE. Because
trimming via sbrk can be slow on some systems, and can sometimes be
wasteful (in cases where programs immediately afterward allocate
more large chunks) the value should be high enough so that your
overall system performance would improve by releasing this much
memory. As a rough guide, you might set to a value close to the
average size of a process (program) running on your system.
Releasing this much memory would allow such a process to run in
memory. Generally, it is worth tuning trim thresholds when a
program undergoes phases where several large chunks are allocated
and released in ways that can reuse each other's storage, perhaps
mixed with phases where there are no such chunks at all. The trim
value must be greater than page size to have any useful effect. To
disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
some people use of mallocing a huge space and then freeing it at
program startup, in an attempt to reserve system memory, doesn't
have the intended effect under automatic trimming, since that memory
will immediately be returned to the system.
 
DEFAULT_MMAP_THRESHOLD default: 256K
Also settable using mallopt(M_MMAP_THRESHOLD, x)
The request size threshold for using MMAP to directly service a
request. Requests of at least this size that cannot be allocated
using already-existing space will be serviced via mmap. (If enough
normal freed space already exists it is used instead.) Using mmap
segregates relatively large chunks of memory so that they can be
individually obtained and released from the host system. A request
serviced through mmap is never reused by any other request (at least
not directly; the system may just so happen to remap successive
requests to the same locations). Segregating space in this way has
the benefits that: Mmapped space can always be individually released
back to the system, which helps keep the system level memory demands
of a long-lived program low. Also, mapped memory doesn't become
`locked' between other chunks, as can happen with normally allocated
chunks, which means that even trimming via malloc_trim would not
release them. However, it has the disadvantage that the space
cannot be reclaimed, consolidated, and then used to service later
requests, as happens with normal chunks. The advantages of mmap
nearly always outweigh disadvantages for "large" chunks, but the
value of "large" may vary across systems. The default is an
empirically derived value that works well in most systems. You can
disable mmap by setting to MAX_SIZE_T.
 
*/
 
//typedef unsigned int size_t;
 
#define MALLOC_ALIGNMENT ((size_t)8U)
#define DEFAULT_MMAP_THRESHOLD ((size_t)32U * (size_t)1024U)
#define NO_MALLINFO 1
#define HAVE_MMAP 1
#define MORECORE_CANNOT_TRIM
#define FOOTERS 0
#define ABORT
 
 
//#ifndef WIN32
//#ifdef _WIN32
//#define WIN32 1
//#endif /* _WIN32 */
//#endif /* WIN32 */
//#ifdef WIN32
//#define WIN32_LEAN_AND_MEAN
//#include <windows.h>
//#endif /* WIN32 */
//default settings for compilation for KolibriOS
#define HAVE_MMAP 1
#define HAVE_MORECORE 0
#define LACKS_UNISTD_H
#define LACKS_SYS_PARAM_H
#define LACKS_SYS_MMAN_H
#define LACKS_STRING_H
#define LACKS_STRINGS_H
#define LACKS_SYS_TYPES_H
#define LACKS_STDLIB_H
#define LACKS_ERRNO_H
#define LACKS_FCNTL_H
#define MALLOC_FAILURE_ACTION
#define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */
//#endif /* WIN32 */
 
//#if defined(DARWIN) || defined(_DARWIN)
/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
//#ifndef HAVE_MORECORE
//#define HAVE_MORECORE 0
//#define HAVE_MMAP 1
//#endif /* HAVE_MORECORE */
//#endif /* DARWIN */
 
#ifndef LACKS_SYS_TYPES_H
#include <sys/types.h> /* For size_t */
#endif /* LACKS_SYS_TYPES_H */
 
/* The maximum possible size_t value has all bits set */
#define MAX_SIZE_T (~(size_t)0)
 
#ifndef ONLY_MSPACES
#define ONLY_MSPACES 0
#endif /* ONLY_MSPACES */
#ifndef MSPACES
#if ONLY_MSPACES
#define MSPACES 1
#else /* ONLY_MSPACES */
#define MSPACES 0
#endif /* ONLY_MSPACES */
#endif /* MSPACES */
#ifndef MALLOC_ALIGNMENT
#define MALLOC_ALIGNMENT ((size_t)8U)
#endif /* MALLOC_ALIGNMENT */
#ifndef FOOTERS
#define FOOTERS 0
#endif /* FOOTERS */
#ifndef ABORT
#define ABORT abort()
#endif /* ABORT */
#ifndef ABORT_ON_ASSERT_FAILURE
#define ABORT_ON_ASSERT_FAILURE 1
#endif /* ABORT_ON_ASSERT_FAILURE */
#ifndef PROCEED_ON_ERROR
#define PROCEED_ON_ERROR 0
#endif /* PROCEED_ON_ERROR */
#ifndef USE_LOCKS
#define USE_LOCKS 0
#endif /* USE_LOCKS */
#ifndef INSECURE
#define INSECURE 0
#endif /* INSECURE */
#ifndef HAVE_MMAP
#define HAVE_MMAP 1
#endif /* HAVE_MMAP */
#ifndef MMAP_CLEARS
#define MMAP_CLEARS 1
#endif /* MMAP_CLEARS */
 
//#ifndef HAVE_MREMAP
//#ifdef linux
//#define HAVE_MREMAP 1
//#else /* linux */
//#define HAVE_MREMAP 0
//#endif /* linux */
//#endif /* HAVE_MREMAP */
 
#ifndef MALLOC_FAILURE_ACTION
#define MALLOC_FAILURE_ACTION errno = ENOMEM;
#endif /* MALLOC_FAILURE_ACTION */
#ifndef HAVE_MORECORE
#if ONLY_MSPACES
#define HAVE_MORECORE 0
#else /* ONLY_MSPACES */
#define HAVE_MORECORE 1
#endif /* ONLY_MSPACES */
#endif /* HAVE_MORECORE */
#if !HAVE_MORECORE
#define MORECORE_CONTIGUOUS 0
#else /* !HAVE_MORECORE */
#ifndef MORECORE
#define MORECORE sbrk
#endif /* MORECORE */
#ifndef MORECORE_CONTIGUOUS
#define MORECORE_CONTIGUOUS 1
#endif /* MORECORE_CONTIGUOUS */
#endif /* HAVE_MORECORE */
#ifndef DEFAULT_GRANULARITY
#if MORECORE_CONTIGUOUS
#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
#else /* MORECORE_CONTIGUOUS */
#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
#endif /* MORECORE_CONTIGUOUS */
#endif /* DEFAULT_GRANULARITY */
#ifndef DEFAULT_TRIM_THRESHOLD
#ifndef MORECORE_CANNOT_TRIM
#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
#else /* MORECORE_CANNOT_TRIM */
#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
#endif /* MORECORE_CANNOT_TRIM */
#endif /* DEFAULT_TRIM_THRESHOLD */
#ifndef DEFAULT_MMAP_THRESHOLD
#if HAVE_MMAP
#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
#else /* HAVE_MMAP */
#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
#endif /* HAVE_MMAP */
#endif /* DEFAULT_MMAP_THRESHOLD */
#ifndef USE_BUILTIN_FFS
#define USE_BUILTIN_FFS 0
#endif /* USE_BUILTIN_FFS */
#ifndef USE_DEV_RANDOM
#define USE_DEV_RANDOM 0
#endif /* USE_DEV_RANDOM */
#ifndef NO_MALLINFO
#define NO_MALLINFO 0
#endif /* NO_MALLINFO */
#ifndef MALLINFO_FIELD_TYPE
#define MALLINFO_FIELD_TYPE size_t
#endif /* MALLINFO_FIELD_TYPE */
 
 
/*
mallopt tuning options. SVID/XPG defines four standard parameter
numbers for mallopt, normally defined in malloc.h. None of these
are used in this malloc, so setting them has no effect. But this
malloc does support the following options.
*/
 
#define M_TRIM_THRESHOLD (-1)
#define M_GRANULARITY (-2)
#define M_MMAP_THRESHOLD (-3)
 
/* ------------------------ Mallinfo declarations ------------------------ */
 
#if !NO_MALLINFO
#endif /* NO_MALLINFO */
 
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
 
#if !ONLY_MSPACES
 
/* ------------------- Declarations of public routines ------------------- */
 
#ifndef USE_DL_PREFIX
#define dlcalloc calloc
//#define dlfree free
//#define dlmalloc malloc
#define dlmemalign memalign
#define dlrealloc realloc
#define dlvalloc valloc
#define dlpvalloc pvalloc
#define dlmallinfo mallinfo
#define dlmallopt mallopt
#define dlmalloc_trim malloc_trim
#define dlmalloc_stats malloc_stats
#define dlmalloc_usable_size malloc_usable_size
#define dlmalloc_footprint malloc_footprint
#define dlmalloc_max_footprint malloc_max_footprint
#define dlindependent_calloc independent_calloc
#define dlindependent_comalloc independent_comalloc
#endif /* USE_DL_PREFIX */
 
 
/*
malloc(size_t n)
Returns a pointer to a newly allocated chunk of at least n bytes, or
null if no space is available, in which case errno is set to ENOMEM
on ANSI C systems.
 
If n is zero, malloc returns a minimum-sized chunk. (The minimum
size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
systems.) Note that size_t is an unsigned type, so calls with
arguments that would be negative if signed are interpreted as
requests for huge amounts of space, which will often fail. The
maximum supported value of n differs across systems, but is in all
cases less than the maximum representable value of a size_t.
*/
static void* dlmalloc(size_t);
 
/*
free(void* p)
Releases the chunk of memory pointed to by p, that had been previously
allocated using malloc or a related routine such as realloc.
It has no effect if p is null. If p was not malloced or already
freed, free(p) will by default cause the current program to abort.
*/
static void dlfree(void*);
 
/*
calloc(size_t n_elements, size_t element_size);
Returns a pointer to n_elements * element_size bytes, with all locations
set to zero.
*/
static void* dlcalloc(size_t, size_t);
 
/*
realloc(void* p, size_t n)
Returns a pointer to a chunk of size n that contains the same data
as does chunk p up to the minimum of (n, p's size) bytes, or null
if no space is available.
 
The returned pointer may or may not be the same as p. The algorithm
prefers extending p in most cases when possible, otherwise it
employs the equivalent of a malloc-copy-free sequence.
 
If p is null, realloc is equivalent to malloc.
 
If space is not available, realloc returns null, errno is set (if on
ANSI) and p is NOT freed.
 
if n is for fewer bytes than already held by p, the newly unused
space is lopped off and freed if possible. realloc with a size
argument of zero (re)allocates a minimum-sized chunk.
 
The old unix realloc convention of allowing the last-free'd chunk
to be used as an argument to realloc is not supported.
*/
 
static void* dlrealloc(void*, size_t);
 
/*
memalign(size_t alignment, size_t n);
Returns a pointer to a newly allocated chunk of n bytes, aligned
in accord with the alignment argument.
 
The alignment argument should be a power of two. If the argument is
not a power of two, the nearest greater power is used.
8-byte alignment is guaranteed by normal malloc calls, so don't
bother calling memalign with an argument of 8 or less.
 
Overreliance on memalign is a sure way to fragment space.
*/
static void* dlmemalign(size_t, size_t);
 
/*
valloc(size_t n);
Equivalent to memalign(pagesize, n), where pagesize is the page
size of the system. If the pagesize is unknown, 4096 is used.
*/
static void* dlvalloc(size_t);
 
/*
mallopt(int parameter_number, int parameter_value)
Sets tunable parameters The format is to provide a
(parameter-number, parameter-value) pair. mallopt then sets the
corresponding parameter to the argument value if it can (i.e., so
long as the value is meaningful), and returns 1 if successful else
0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
normally defined in malloc.h. None of these are use in this malloc,
so setting them has no effect. But this malloc also supports other
options in mallopt. See below for details. Briefly, supported
parameters are as follows (listed defaults are for "typical"
configurations).
 
Symbol param # default allowed param values
M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables)
M_GRANULARITY -2 page size any power of 2 >= page size
M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
*/
static int dlmallopt(int, int);
 
/*
malloc_footprint();
Returns the number of bytes obtained from the system. The total
number of bytes allocated by malloc, realloc etc., is less than this
value. Unlike mallinfo, this function returns only a precomputed
result, so can be called frequently to monitor memory consumption.
Even if locks are otherwise defined, this function does not use them,
so results might not be up to date.
*/
static size_t dlmalloc_footprint(void);
 
/*
malloc_max_footprint();
Returns the maximum number of bytes obtained from the system. This
value will be greater than current footprint if deallocated space
has been reclaimed by the system. The peak number of bytes allocated
by malloc, realloc etc., is less than this value. Unlike mallinfo,
this function returns only a precomputed result, so can be called
frequently to monitor memory consumption. Even if locks are
otherwise defined, this function does not use them, so results might
not be up to date.
*/
static size_t dlmalloc_max_footprint(void);
 
#if !NO_MALLINFO
#endif /* NO_MALLINFO */
 
/*
independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
 
independent_calloc is similar to calloc, but instead of returning a
single cleared space, it returns an array of pointers to n_elements
independent elements that can hold contents of size elem_size, each
of which starts out cleared, and can be independently freed,
realloc'ed etc. The elements are guaranteed to be adjacently
allocated (this is not guaranteed to occur with multiple callocs or
mallocs), which may also improve cache locality in some
applications.
 
The "chunks" argument is optional (i.e., may be null, which is
probably the most typical usage). If it is null, the returned array
is itself dynamically allocated and should also be freed when it is
no longer needed. Otherwise, the chunks array must be of at least
n_elements in length. It is filled in with the pointers to the
chunks.
 
In either case, independent_calloc returns this pointer array, or
null if the allocation failed. If n_elements is zero and "chunks"
is null, it returns a chunk representing an array with zero elements
(which should be freed if not wanted).
 
Each element must be individually freed when it is no longer
needed. If you'd like to instead be able to free all at once, you
should instead use regular calloc and assign pointers into this
space to represent elements. (In this case though, you cannot
independently free elements.)
 
independent_calloc simplifies and speeds up implementations of many
kinds of pools. It may also be useful when constructing large data
structures that initially have a fixed number of fixed-sized nodes,
but the number is not known at compile time, and some of the nodes
may later need to be freed. For example:
 
struct Node { int item; struct Node* next; };
 
struct Node* build_list() {
struct Node** pool;
int n = read_number_of_nodes_needed();
if (n <= 0) return 0;
pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
if (pool == 0) die();
// organize into a linked list...
struct Node* first = pool[0];
for (i = 0; i < n-1; ++i)
pool[i]->next = pool[i+1];
free(pool); // Can now free the array (or not, if it is needed later)
return first;
}
*/
static void** dlindependent_calloc(size_t, size_t, void**);
 
/*
independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
 
independent_comalloc allocates, all at once, a set of n_elements
chunks with sizes indicated in the "sizes" array. It returns
an array of pointers to these elements, each of which can be
independently freed, realloc'ed etc. The elements are guaranteed to
be adjacently allocated (this is not guaranteed to occur with
multiple callocs or mallocs), which may also improve cache locality
in some applications.
 
The "chunks" argument is optional (i.e., may be null). If it is null
the returned array is itself dynamically allocated and should also
be freed when it is no longer needed. Otherwise, the chunks array
must be of at least n_elements in length. It is filled in with the
pointers to the chunks.
 
In either case, independent_comalloc returns this pointer array, or
null if the allocation failed. If n_elements is zero and chunks is
null, it returns a chunk representing an array with zero elements
(which should be freed if not wanted).
 
Each element must be individually freed when it is no longer
needed. If you'd like to instead be able to free all at once, you
should instead use a single regular malloc, and assign pointers at
particular offsets in the aggregate space. (In this case though, you
cannot independently free elements.)
 
independent_comallac differs from independent_calloc in that each
element may have a different size, and also that it does not
automatically clear elements.
 
independent_comalloc can be used to speed up allocation in cases
where several structs or objects must always be allocated at the
same time. For example:
 
struct Head { ... }
struct Foot { ... }
 
void send_message(char* msg) {
int msglen = strlen(msg);
size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
void* chunks[3];
if (independent_comalloc(3, sizes, chunks) == 0)
die();
struct Head* head = (struct Head*)(chunks[0]);
char* body = (char*)(chunks[1]);
struct Foot* foot = (struct Foot*)(chunks[2]);
// ...
}
 
In general though, independent_comalloc is worth using only for
larger values of n_elements. For small values, you probably won't
detect enough difference from series of malloc calls to bother.
 
Overuse of independent_comalloc can increase overall memory usage,
since it cannot reuse existing noncontiguous small chunks that
might be available for some of the elements.
*/
static void** dlindependent_comalloc(size_t, size_t*, void**);
 
 
/*
pvalloc(size_t n);
Equivalent to valloc(minimum-page-that-holds(n)), that is,
round up n to nearest pagesize.
*/
static void* dlpvalloc(size_t);
 
/*
malloc_trim(size_t pad);
 
If possible, gives memory back to the system (via negative arguments
to sbrk) if there is unused memory at the `high' end of the malloc
pool or in unused MMAP segments. You can call this after freeing
large blocks of memory to potentially reduce the system-level memory
requirements of a program. However, it cannot guarantee to reduce
memory. Under some allocation patterns, some large free blocks of
memory will be locked between two used chunks, so they cannot be
given back to the system.
 
The `pad' argument to malloc_trim represents the amount of free
trailing space to leave untrimmed. If this argument is zero, only
the minimum amount of memory to maintain internal data structures
will be left. Non-zero arguments can be supplied to maintain enough
trailing space to service future expected allocations without having
to re-obtain memory from the system.
 
Malloc_trim returns 1 if it actually released any memory, else 0.
*/
static int dlmalloc_trim(size_t);
 
/*
malloc_usable_size(void* p);
 
Returns the number of bytes you can actually use in
an allocated chunk, which may be more than you requested (although
often not) due to alignment and minimum size constraints.
You can use this many bytes without worrying about
overwriting other allocated objects. This is not a particularly great
programming practice. malloc_usable_size can be more useful in
debugging and assertions, for example:
 
p = malloc(n);
assert(malloc_usable_size(p) >= 256);
*/
static size_t dlmalloc_usable_size(void*);
 
/*
malloc_stats();
Prints on stderr the amount of space obtained from the system (both
via sbrk and mmap), the maximum amount (which may be more than
current if malloc_trim and/or munmap got called), and the current
number of bytes allocated via malloc (or realloc, etc) but not yet
freed. Note that this is the number of bytes allocated, not the
number requested. It will be larger than the number requested
because of alignment and bookkeeping overhead. Because it includes
alignment wastage as being in use, this figure may be greater than
zero even when no user-level chunks are allocated.
 
The reported current and maximum system memory can be inaccurate if
a program makes other calls to system memory allocation functions
(normally sbrk) outside of malloc.
 
malloc_stats prints only the most commonly interesting statistics.
More information can be obtained by calling mallinfo.
*/
static void dlmalloc_stats(void);
 
#endif /* ONLY_MSPACES */
 
//////////////////////////////////////////////////////////////////////////
// declaration of melloc,free,realloc
//////////////////////////////////////////////////////////////////////////
void* malloc(size_t size)
{
void *mem;
mem=dlmalloc(size);
if (mem!=0) memset(mem,0,size);//cleare befor use
return(mem);
}
 
void free(void *mem)
{
dlfree(mem);
}
 
#if MSPACES
#endif /* MSPACES */
 
#ifdef __cplusplus
}; /* end of extern "C" */
#endif /* __cplusplus */
 
/*
========================================================================
To make a fully customizable malloc.h header file, cut everything
above this line, put into file malloc.h, edit to suit, and #include it
on the next line, as well as in programs that use this malloc.
========================================================================
*/
 
/* #include "malloc.h" */
 
/*------------------------------ internal #includes ---------------------- */
 
#ifdef WIN32
#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
#endif /* WIN32 */
 
//#include <stdio.h> /* for printing in malloc_stats */
 
#ifndef LACKS_ERRNO_H
#include <errno.h> /* for MALLOC_FAILURE_ACTION */
#endif /* LACKS_ERRNO_H */
#if FOOTERS
#include <time.h> /* for magic initialization */
#endif /* FOOTERS */
#ifndef LACKS_STDLIB_H
#include <stdlib.h> /* for abort() */
#endif /* LACKS_STDLIB_H */
 
//#ifdef DEBUG
//#if ABORT_ON_ASSERT_FAILURE
//#define assert(x) if(!(x)) ABORT
//#else /* ABORT_ON_ASSERT_FAILURE */
//#include <assert.h>
//#endif /* ABORT_ON_ASSERT_FAILURE */
//#else /* DEBUG */
#define assert(x)
//#endif /* DEBUG */
 
#ifndef LACKS_STRING_H
#include <string.h> /* for memset etc */
#endif /* LACKS_STRING_H */
#if USE_BUILTIN_FFS
#ifndef LACKS_STRINGS_H
#include <strings.h> /* for ffs */
#endif /* LACKS_STRINGS_H */
#endif /* USE_BUILTIN_FFS */
#if HAVE_MMAP
#ifndef LACKS_SYS_MMAN_H
#include <sys/mman.h> /* for mmap */
#endif /* LACKS_SYS_MMAN_H */
#ifndef LACKS_FCNTL_H
#include <fcntl.h>
#endif /* LACKS_FCNTL_H */
#endif /* HAVE_MMAP */
#if HAVE_MORECORE
#endif /* HAVE_MMAP */
 
#ifndef WIN32
#endif
 
/* ------------------- size_t and alignment properties -------------------- */
 
/* The byte and bit size of a size_t */
#define SIZE_T_SIZE (sizeof(size_t))
#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
 
/* Some constants coerced to size_t */
/* Annoying but necessary to avoid errors on some plaftorms */
#define SIZE_T_ZERO ((size_t)0)
#define SIZE_T_ONE ((size_t)1)
#define SIZE_T_TWO ((size_t)2)
#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
 
/* The bit mask value corresponding to MALLOC_ALIGNMENT */
#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
 
/* True if address a has acceptable alignment */
#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
 
/* the number of bytes to offset an address to align it */
#define align_offset(A)\
((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
 
/* -------------------------- MMAP preliminaries ------------------------- */
 
/*
If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
checks to fail so compiler optimizer can delete code rather than
using so many "#if"s.
*/
 
 
/* MORECORE and MMAP must return MFAIL on failure */
#define MFAIL ((void*)(MAX_SIZE_T))
#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
 
/* HAVE_MMAP */
#define IS_MMAPPED_BIT (SIZE_T_ONE)
#define USE_MMAP_BIT (SIZE_T_ONE)
 
 
////////////////////////////////////////////////////////////////
// KolibriOS specifik
////////////////////////////////////////////////////////////////
void* gui_ksys_mem_alloc(size_t size)
{
void *value;
 
__asm__ __volatile__(
"int $0x40"
:"=a"(value)
:"a"(68),"b"(12),"c"(size)
:"memory");
 
return (value != 0)? value: MFAIL;
}
 
int gui_ksys_mem_free(void *mem,size_t size)
{
__asm__ __volatile__(
"int $0x40"
:
:"a"(68),"b"(13),"c"(mem)
:"memory");
 
return(0);
}
 
//#define gui_ksys_mem_alloc(s) win32mmap(s)
//#define CALL_MUNMAP(a, s) win32munmap((a), (s))
//#define DIRECT_MMAP(s) win32direct_mmap(s)
 
 
#if HAVE_MMAP && HAVE_MREMAP
#else /* HAVE_MMAP && HAVE_MREMAP */
#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
#endif /* HAVE_MMAP && HAVE_MREMAP */
 
#if HAVE_MORECORE
#else /* HAVE_MORECORE */
#define CALL_MORECORE(S) MFAIL
#endif /* HAVE_MORECORE */
 
/* mstate bit set if continguous morecore disabled or failed */
#define USE_NONCONTIGUOUS_BIT (4U)
 
/* segment bit set in create_mspace_with_base */
#define EXTERN_BIT (8U)
 
 
/* --------------------------- Lock preliminaries ------------------------ */
 
#if USE_LOCKS
#else /* USE_LOCKS */
#define USE_LOCK_BIT (0U)
#define INITIAL_LOCK(l)
#endif /* USE_LOCKS */
 
#if USE_LOCKS && HAVE_MORECORE
#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex);
#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex);
#else /* USE_LOCKS && HAVE_MORECORE */
#define ACQUIRE_MORECORE_LOCK()
#define RELEASE_MORECORE_LOCK()
#endif /* USE_LOCKS && HAVE_MORECORE */
 
#if USE_LOCKS
#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex);
#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex);
#else /* USE_LOCKS */
#define ACQUIRE_MAGIC_INIT_LOCK()
#define RELEASE_MAGIC_INIT_LOCK()
#endif /* USE_LOCKS */
 
 
/* ----------------------- Chunk representations ------------------------ */
 
/*
(The following includes lightly edited explanations by Colin Plumb.)
 
The malloc_chunk declaration below is misleading (but accurate and
necessary). It declares a "view" into memory allowing access to
necessary fields at known offsets from a given base.
 
Chunks of memory are maintained using a `boundary tag' method as
originally described by Knuth. (See the paper by Paul Wilson
ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
techniques.) Sizes of free chunks are stored both in the front of
each chunk and at the end. This makes consolidating fragmented
chunks into bigger chunks fast. The head fields also hold bits
representing whether chunks are free or in use.
 
Here are some pictures to make it clearer. They are "exploded" to
show that the state of a chunk can be thought of as extending from
the high 31 bits of the head field of its header through the
prev_foot and PINUSE_BIT bit of the following chunk header.
 
A chunk that's in use looks like:
 
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Size of previous chunk (if P = 1) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
| Size of this chunk 1| +-+
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+- -+
| |
+- -+
| :
+- size - sizeof(size_t) available payload bytes -+
: |
chunk-> +- -+
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
| Size of next chunk (may or may not be in use) | +-+
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
And if it's free, it looks like this:
 
chunk-> +- -+
| User payload (must be in use, or we would have merged!) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
| Size of this chunk 0| +-+
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next pointer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Prev pointer |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :
+- size - sizeof(struct chunk) unused bytes -+
: |
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Size of this chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
| Size of next chunk (must be in use, or we would have merged)| +-+
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :
+- User payload -+
: |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0|
+-+
Note that since we always merge adjacent free chunks, the chunks
adjacent to a free chunk must be in use.
 
Given a pointer to a chunk (which can be derived trivially from the
payload pointer) we can, in O(1) time, find out whether the adjacent
chunks are free, and if so, unlink them from the lists that they
are on and merge them with the current chunk.
 
Chunks always begin on even word boundaries, so the mem portion
(which is returned to the user) is also on an even word boundary, and
thus at least double-word aligned.
 
The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
chunk size (which is always a multiple of two words), is an in-use
bit for the *previous* chunk. If that bit is *clear*, then the
word before the current chunk size contains the previous chunk
size, and can be used to find the front of the previous chunk.
The very first chunk allocated always has this bit set, preventing
access to non-existent (or non-owned) memory. If pinuse is set for
any given chunk, then you CANNOT determine the size of the
previous chunk, and might even get a memory addressing fault when
trying to do so.
 
The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
the chunk size redundantly records whether the current chunk is
inuse. This redundancy enables usage checks within free and realloc,
and reduces indirection when freeing and consolidating chunks.
 
Each freshly allocated chunk must have both cinuse and pinuse set.
That is, each allocated chunk borders either a previously allocated
and still in-use chunk, or the base of its memory arena. This is
ensured by making all allocations from the the `lowest' part of any
found chunk. Further, no free chunk physically borders another one,
so each free chunk is known to be preceded and followed by either
inuse chunks or the ends of memory.
 
Note that the `foot' of the current chunk is actually represented
as the prev_foot of the NEXT chunk. This makes it easier to
deal with alignments etc but can be very confusing when trying
to extend or adapt this code.
 
The exceptions to all this are
 
1. The special chunk `top' is the top-most available chunk (i.e.,
the one bordering the end of available memory). It is treated
specially. Top is never included in any bin, is used only if
no other chunk is available, and is released back to the
system if it is very large (see M_TRIM_THRESHOLD). In effect,
the top chunk is treated as larger (and thus less well
fitting) than any other available chunk. The top chunk
doesn't update its trailing size field since there is no next
contiguous chunk that would have to index off it. However,
space is still allocated for it (TOP_FOOT_SIZE) to enable
separation or merging when space is extended.
 
3. Chunks allocated via mmap, which have the lowest-order bit
(IS_MMAPPED_BIT) set in their prev_foot fields, and do not set
PINUSE_BIT in their head fields. Because they are allocated
one-by-one, each must carry its own prev_foot field, which is
also used to hold the offset this chunk has within its mmapped
region, which is needed to preserve alignment. Each mmapped
chunk is trailed by the first two fields of a fake next-chunk
for sake of usage checks.
 
*/
 
struct malloc_chunk {
size_t prev_foot; /* Size of previous chunk (if free). */
size_t head; /* Size and inuse bits. */
struct malloc_chunk* fd; /* double links -- used only if free. */
struct malloc_chunk* bk;
};
 
typedef struct malloc_chunk mchunk;
typedef struct malloc_chunk* mchunkptr;
typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
typedef unsigned int bindex_t; /* Described below */
typedef unsigned int binmap_t; /* Described below */
typedef unsigned int flag_t; /* The type of various bit flag sets */
 
/* ------------------- Chunks sizes and alignments ----------------------- */
 
#define MCHUNK_SIZE (sizeof(mchunk))
 
#if FOOTERS
#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
#else /* FOOTERS */
#define CHUNK_OVERHEAD (SIZE_T_SIZE)
#endif /* FOOTERS */
 
/* MMapped chunks need a second word of overhead ... */
#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
/* ... and additional padding for fake next-chunk at foot */
#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
 
/* The smallest size we can malloc is an aligned minimal chunk */
#define MIN_CHUNK_SIZE\
((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
 
/* conversion from malloc headers to user pointers, and back */
#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
/* chunk associated with aligned address A */
#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
 
/* Bounds on request (not chunk) sizes. */
#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
 
/* pad request bytes into a usable size */
#define pad_request(req) \
(((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
 
/* pad request, checking for minimum (but not maximum) */
#define request2size(req) \
(((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
 
 
/* ------------------ Operations on head and foot fields ----------------- */
 
/*
The head field of a chunk is or'ed with PINUSE_BIT when previous
adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
use. If the chunk was obtained with mmap, the prev_foot field has
IS_MMAPPED_BIT set, otherwise holding the offset of the base of the
mmapped region to the base of the chunk.
*/
 
#define PINUSE_BIT (SIZE_T_ONE)
#define CINUSE_BIT (SIZE_T_TWO)
#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
 
/* Head value for fenceposts */
#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
 
/* extraction of fields from head words */
#define cinuse(p) ((p)->head & CINUSE_BIT)
#define pinuse(p) ((p)->head & PINUSE_BIT)
#define chunksize(p) ((p)->head & ~(INUSE_BITS))
 
#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT)
 
/* Treat space at ptr +/- offset as a chunk */
#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
 
/* Ptr to next or previous physical malloc_chunk. */
#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS)))
#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
 
/* extract next chunk's pinuse bit */
#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
 
/* Get/set size at footer */
#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
 
/* Set size, pinuse bit, and foot */
#define set_size_and_pinuse_of_free_chunk(p, s)\
((p)->head = (s|PINUSE_BIT), set_foot(p, s))
 
/* Set size, pinuse bit, foot, and clear next pinuse */
#define set_free_with_pinuse(p, s, n)\
(clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
 
#define is_mmapped(p)\
(!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT))
 
/* Get the internal overhead associated with chunk p */
#define overhead_for(p)\
(is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
 
/* Return true if malloced space is not necessarily cleared */
#if MMAP_CLEARS
#define calloc_must_clear(p) (!is_mmapped(p))
#else /* MMAP_CLEARS */
#define calloc_must_clear(p) (1)
#endif /* MMAP_CLEARS */
 
/* ---------------------- Overlaid data structures ----------------------- */
 
/*
When chunks are not in use, they are treated as nodes of either
lists or trees.
 
"Small" chunks are stored in circular doubly-linked lists, and look
like this:
 
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Size of previous chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`head:' | Size of chunk, in bytes |P|
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Forward pointer to next chunk in list |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Back pointer to previous chunk in list |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unused space (may be 0 bytes long) .
. .
. |
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`foot:' | Size of chunk, in bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
Larger chunks are kept in a form of bitwise digital trees (aka
tries) keyed on chunksizes. Because malloc_tree_chunks are only for
free chunks greater than 256 bytes, their size doesn't impose any
constraints on user chunk sizes. Each node looks like:
 
chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Size of previous chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`head:' | Size of chunk, in bytes |P|
mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Forward pointer to next chunk of same size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Back pointer to previous chunk of same size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer to left child (child[0]) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer to right child (child[1]) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pointer to parent |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| bin index of this chunk |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Unused space .
. |
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
`foot:' | Size of chunk, in bytes |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 
Each tree holding treenodes is a tree of unique chunk sizes. Chunks
of the same size are arranged in a circularly-linked list, with only
the oldest chunk (the next to be used, in our FIFO ordering)
actually in the tree. (Tree members are distinguished by a non-null
parent pointer.) If a chunk with the same size an an existing node
is inserted, it is linked off the existing node using pointers that
work in the same way as fd/bk pointers of small chunks.
 
Each tree contains a power of 2 sized range of chunk sizes (the
smallest is 0x100 <= x < 0x180), which is is divided in half at each
tree level, with the chunks in the smaller half of the range (0x100
<= x < 0x140 for the top nose) in the left subtree and the larger
half (0x140 <= x < 0x180) in the right subtree. This is, of course,
done by inspecting individual bits.
 
Using these rules, each node's left subtree contains all smaller
sizes than its right subtree. However, the node at the root of each
subtree has no particular ordering relationship to either. (The
dividing line between the subtree sizes is based on trie relation.)
If we remove the last chunk of a given size from the interior of the
tree, we need to replace it with a leaf node. The tree ordering
rules permit a node to be replaced by any leaf below it.
 
The smallest chunk in a tree (a common operation in a best-fit
allocator) can be found by walking a path to the leftmost leaf in
the tree. Unlike a usual binary tree, where we follow left child
pointers until we reach a null, here we follow the right child
pointer any time the left one is null, until we reach a leaf with
both child pointers null. The smallest chunk in the tree will be
somewhere along that path.
 
The worst case number of steps to add, find, or remove a node is
bounded by the number of bits differentiating chunks within
bins. Under current bin calculations, this ranges from 6 up to 21
(for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
is of course much better.
*/
 
struct malloc_tree_chunk {
/* The first four fields must be compatible with malloc_chunk */
size_t prev_foot;
size_t head;
struct malloc_tree_chunk* fd;
struct malloc_tree_chunk* bk;
 
struct malloc_tree_chunk* child[2];
struct malloc_tree_chunk* parent;
bindex_t index;
};
 
typedef struct malloc_tree_chunk tchunk;
typedef struct malloc_tree_chunk* tchunkptr;
typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
 
/* A little helper macro for trees */
#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
 
/* ----------------------------- Segments -------------------------------- */
 
/*
Each malloc space may include non-contiguous segments, held in a
list headed by an embedded malloc_segment record representing the
top-most space. Segments also include flags holding properties of
the space. Large chunks that are directly allocated by mmap are not
included in this list. They are instead independently created and
destroyed without otherwise keeping track of them.
 
Segment management mainly comes into play for spaces allocated by
MMAP. Any call to MMAP might or might not return memory that is
adjacent to an existing segment. MORECORE normally contiguously
extends the current space, so this space is almost always adjacent,
which is simpler and faster to deal with. (This is why MORECORE is
used preferentially to MMAP when both are available -- see
sys_alloc.) When allocating using MMAP, we don't use any of the
hinting mechanisms (inconsistently) supported in various
implementations of unix mmap, or distinguish reserving from
committing memory. Instead, we just ask for space, and exploit
contiguity when we get it. It is probably possible to do
better than this on some systems, but no general scheme seems
to be significantly better.
 
Management entails a simpler variant of the consolidation scheme
used for chunks to reduce fragmentation -- new adjacent memory is
normally prepended or appended to an existing segment. However,
there are limitations compared to chunk consolidation that mostly
reflect the fact that segment processing is relatively infrequent
(occurring only when getting memory from system) and that we
don't expect to have huge numbers of segments:
 
* Segments are not indexed, so traversal requires linear scans. (It
would be possible to index these, but is not worth the extra
overhead and complexity for most programs on most platforms.)
* New segments are only appended to old ones when holding top-most
memory; if they cannot be prepended to others, they are held in
different segments.
 
Except for the top-most segment of an mstate, each segment record
is kept at the tail of its segment. Segments are added by pushing
segment records onto the list headed by &mstate.seg for the
containing mstate.
 
Segment flags control allocation/merge/deallocation policies:
* If EXTERN_BIT set, then we did not allocate this segment,
and so should not try to deallocate or merge with others.
(This currently holds only for the initial segment passed
into create_mspace_with_base.)
* If IS_MMAPPED_BIT set, the segment may be merged with
other surrounding mmapped segments and trimmed/de-allocated
using munmap.
* If neither bit is set, then the segment was obtained using
MORECORE so can be merged with surrounding MORECORE'd segments
and deallocated/trimmed using MORECORE with negative arguments.
*/
 
struct malloc_segment {
char* base; /* base address */
size_t size; /* allocated size */
struct malloc_segment* next; /* ptr to next segment */
flag_t sflags; /* mmap and extern flag */
};
 
#define is_mmapped_segment(S) ((S)->sflags & IS_MMAPPED_BIT)
#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
 
typedef struct malloc_segment msegment;
typedef struct malloc_segment* msegmentptr;
 
/* ---------------------------- malloc_state ----------------------------- */
 
/*
A malloc_state holds all of the bookkeeping for a space.
The main fields are:
 
Top
The topmost chunk of the currently active segment. Its size is
cached in topsize. The actual size of topmost space is
topsize+TOP_FOOT_SIZE, which includes space reserved for adding
fenceposts and segment records if necessary when getting more
space from the system. The size at which to autotrim top is
cached from mparams in trim_check, except that it is disabled if
an autotrim fails.
 
Designated victim (dv)
This is the preferred chunk for servicing small requests that
don't have exact fits. It is normally the chunk split off most
recently to service another small request. Its size is cached in
dvsize. The link fields of this chunk are not maintained since it
is not kept in a bin.
 
SmallBins
An array of bin headers for free chunks. These bins hold chunks
with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
chunks of all the same size, spaced 8 bytes apart. To simplify
use in double-linked lists, each bin header acts as a malloc_chunk
pointing to the real first node, if it exists (else pointing to
itself). This avoids special-casing for headers. But to avoid
waste, we allocate only the fd/bk pointers of bins, and then use
repositioning tricks to treat these as the fields of a chunk.
 
TreeBins
Treebins are pointers to the roots of trees holding a range of
sizes. There are 2 equally spaced treebins for each power of two
from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
larger.
 
Bin maps
There is one bit map for small bins ("smallmap") and one for
treebins ("treemap). Each bin sets its bit when non-empty, and
clears the bit when empty. Bit operations are then used to avoid
bin-by-bin searching -- nearly all "search" is done without ever
looking at bins that won't be selected. The bit maps
conservatively use 32 bits per map word, even if on 64bit system.
For a good description of some of the bit-based techniques used
here, see Henry S. Warren Jr's book "Hacker's Delight" (and
supplement at http://hackersdelight.org/). Many of these are
intended to reduce the branchiness of paths through malloc etc, as
well as to reduce the number of memory locations read or written.
 
Segments
A list of segments headed by an embedded malloc_segment record
representing the initial space.
 
Address check support
The least_addr field is the least address ever obtained from
MORECORE or MMAP. Attempted frees and reallocs of any address less
than this are trapped (unless INSECURE is defined).
 
Magic tag
A cross-check field that should always hold same value as mparams.magic.
 
Flags
Bits recording whether to use MMAP, locks, or contiguous MORECORE
 
Statistics
Each space keeps track of current and maximum system memory
obtained via MORECORE or MMAP.
 
Locking
If USE_LOCKS is defined, the "mutex" lock is acquired and released
around every public call using this mspace.
*/
 
/* Bin types, widths and sizes */
#define NSMALLBINS (32U)
#define NTREEBINS (32U)
#define SMALLBIN_SHIFT (3U)
#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
#define TREEBIN_SHIFT (8U)
#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
 
struct malloc_state {
binmap_t smallmap;
binmap_t treemap;
size_t dvsize;
size_t topsize;
char* least_addr;
mchunkptr dv;
mchunkptr top;
size_t trim_check;
size_t magic;
mchunkptr smallbins[(NSMALLBINS+1)*2];
tbinptr treebins[NTREEBINS];
size_t footprint;
size_t max_footprint;
flag_t mflags;
#if USE_LOCKS
MLOCK_T mutex; /* locate lock among fields that rarely change */
#endif /* USE_LOCKS */
msegment seg;
};
 
typedef struct malloc_state* mstate;
 
/* ------------- Global malloc_state and malloc_params ------------------- */
 
/*
malloc_params holds global properties, including those that can be
dynamically set using mallopt. There is a single instance, mparams,
initialized in init_mparams.
*/
 
struct malloc_params {
size_t magic;
size_t page_size;
size_t granularity;
size_t mmap_threshold;
size_t trim_threshold;
flag_t default_mflags;
};
 
static struct malloc_params mparams;
 
/* The global malloc_state used for all non-"mspace" calls */
static struct malloc_state _gm_;
#define gm (&_gm_)
#define is_global(M) ((M) == &_gm_)
#define is_initialized(M) ((M)->top != 0)
 
/* -------------------------- system alloc setup ------------------------- */
 
/* Operations on mflags */
 
#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
 
#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
 
#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
 
#define set_lock(M,L)\
((M)->mflags = (L)?\
((M)->mflags | USE_LOCK_BIT) :\
((M)->mflags & ~USE_LOCK_BIT))
 
/* page-align a size */
#define page_align(S)\
(((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE))
 
/* granularity-align a size */
#define granularity_align(S)\
(((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE))
 
#define is_page_aligned(S)\
(((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
#define is_granularity_aligned(S)\
(((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
 
/* True if segment S holds address A */
#define segment_holds(S, A)\
((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
 
/* Return segment holding given address */
static msegmentptr segment_holding(mstate m, char* addr) {
msegmentptr sp = &m->seg;
for (;;) {
if (addr >= sp->base && addr < sp->base + sp->size)
return sp;
if ((sp = sp->next) == 0)
return 0;
}
}
 
/* Return true if segment contains a segment link */
static int has_segment_link(mstate m, msegmentptr ss) {
msegmentptr sp = &m->seg;
for (;;) {
if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
return 1;
if ((sp = sp->next) == 0)
return 0;
}
}
 
#ifndef MORECORE_CANNOT_TRIM
#define should_trim(M,s) ((s) > (M)->trim_check)
#else /* MORECORE_CANNOT_TRIM */
#define should_trim(M,s) (0)
#endif /* MORECORE_CANNOT_TRIM */
 
/*
TOP_FOOT_SIZE is padding at the end of a segment, including space
that may be needed to place segment records and fenceposts when new
noncontiguous segments are added.
*/
#define TOP_FOOT_SIZE\
(align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
 
 
/* ------------------------------- Hooks -------------------------------- */
 
/*
PREACTION should be defined to return 0 on success, and nonzero on
failure. If you are not using locking, you can redefine these to do
anything you like.
*/
 
#if USE_LOCKS
 
/* Ensure locks are initialized */
#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams())
 
#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
#else /* USE_LOCKS */
 
#ifndef PREACTION
#define PREACTION(M) (0)
#endif /* PREACTION */
 
#ifndef POSTACTION
#define POSTACTION(M)
#endif /* POSTACTION */
 
#endif /* USE_LOCKS */
 
/*
CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
USAGE_ERROR_ACTION is triggered on detected bad frees and
reallocs. The argument p is an address that might have triggered the
fault. It is ignored by the two predefined actions, but might be
useful in custom actions that try to help diagnose errors.
*/
 
#if PROCEED_ON_ERROR
 
/* A count of the number of corruption errors causing resets */
int malloc_corruption_error_count;
 
/* default corruption action */
static void reset_on_error(mstate m);
 
#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
#define USAGE_ERROR_ACTION(m, p)
 
#else /* PROCEED_ON_ERROR */
 
#ifndef CORRUPTION_ERROR_ACTION
#define CORRUPTION_ERROR_ACTION(m) ABORT
#endif /* CORRUPTION_ERROR_ACTION */
 
#ifndef USAGE_ERROR_ACTION
#define USAGE_ERROR_ACTION(m,p) ABORT
#endif /* USAGE_ERROR_ACTION */
 
#endif /* PROCEED_ON_ERROR */
 
/* -------------------------- Debugging setup ---------------------------- */
 
//#ifdef !DEBUG
#define check_free_chunk(M,P)
#define check_inuse_chunk(M,P)
#define check_malloced_chunk(M,P,N)
#define check_mmapped_chunk(M,P)
#define check_malloc_state(M)
#define check_top_chunk(M,P)
 
//#else /* DEBUG */
//#define check_free_chunk(M,P) do_check_free_chunk(M,P)
//#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
//#define check_top_chunk(M,P) do_check_top_chunk(M,P)
//#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
//#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
//#define check_malloc_state(M) do_check_malloc_state(M)
 
//static void do_check_any_chunk(mstate m, mchunkptr p);
//static void do_check_top_chunk(mstate m, mchunkptr p);
//static void do_check_mmapped_chunk(mstate m, mchunkptr p);
//static void do_check_inuse_chunk(mstate m, mchunkptr p);
//static void do_check_free_chunk(mstate m, mchunkptr p);
//static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
//static void do_check_tree(mstate m, tchunkptr t);
//static void do_check_treebin(mstate m, bindex_t i);
//static void do_check_smallbin(mstate m, bindex_t i);
//static void do_check_malloc_state(mstate m);
//static int bin_find(mstate m, mchunkptr x);
//static size_t traverse_and_check(mstate m);
//#endif /* DEBUG */
 
 
/* ---------------------------- Indexing Bins ---------------------------- */
 
#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
#define small_index(s) ((s) >> SMALLBIN_SHIFT)
#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
 
/* addressing by index. See above about smallbin repositioning */
#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1])))
#define treebin_at(M,i) (&((M)->treebins[i]))
 
/* assign tree index for size S to variable I */
#if defined(__GNUC__) && defined(i386)
#define compute_tree_index(S, I)\
{\
size_t X = S >> TREEBIN_SHIFT;\
if (X == 0)\
I = 0;\
else if (X > 0xFFFF)\
I = NTREEBINS-1;\
else {\
unsigned int K;\
__asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\
I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
}\
}
#else /* GNUC */
#define compute_tree_index(S, I)\
{\
size_t X = S >> TREEBIN_SHIFT;\
if (X == 0)\
I = 0;\
else if (X > 0xFFFF)\
I = NTREEBINS-1;\
else {\
unsigned int Y = (unsigned int)X;\
unsigned int N = ((Y - 0x100) >> 16) & 8;\
unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
N += K;\
N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
K = 14 - N + ((Y <<= K) >> 15);\
I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
}\
}
#endif /* GNUC */
 
/* Bit representing maximum resolved size in a treebin at i */
#define bit_for_tree_index(i) \
(i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
 
/* Shift placing maximum resolved bit in a treebin at i as sign bit */
#define leftshift_for_tree_index(i) \
((i == NTREEBINS-1)? 0 : \
((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
 
/* The size of the smallest chunk held in bin with index i */
#define minsize_for_tree_index(i) \
((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
(((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
 
 
/* ------------------------ Operations on bin maps ----------------------- */
 
/* bit corresponding to given index */
#define idx2bit(i) ((binmap_t)(1) << (i))
 
/* Mark/Clear bits with given index */
#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
 
#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
 
/* index corresponding to given bit */
 
#if defined(__GNUC__) && defined(i386)
#define compute_bit2idx(X, I)\
{\
unsigned int J;\
__asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\
I = (bindex_t)J;\
}
 
#else /* GNUC */
#if USE_BUILTIN_FFS
#define compute_bit2idx(X, I) I = ffs(X)-1
 
#else /* USE_BUILTIN_FFS */
#define compute_bit2idx(X, I)\
{\
unsigned int Y = X - 1;\
unsigned int K = Y >> (16-4) & 16;\
unsigned int N = K; Y >>= K;\
N += K = Y >> (8-3) & 8; Y >>= K;\
N += K = Y >> (4-2) & 4; Y >>= K;\
N += K = Y >> (2-1) & 2; Y >>= K;\
N += K = Y >> (1-0) & 1; Y >>= K;\
I = (bindex_t)(N + Y);\
}
#endif /* USE_BUILTIN_FFS */
#endif /* GNUC */
 
/* isolate the least set bit of a bitmap */
#define least_bit(x) ((x) & -(x))
 
/* mask with all bits to left of least bit of x on */
#define left_bits(x) ((x<<1) | -(x<<1))
 
/* mask with all bits to left of or equal to least bit of x on */
#define same_or_left_bits(x) ((x) | -(x))
 
 
/* ----------------------- Runtime Check Support ------------------------- */
 
/*
For security, the main invariant is that malloc/free/etc never
writes to a static address other than malloc_state, unless static
malloc_state itself has been corrupted, which cannot occur via
malloc (because of these checks). In essence this means that we
believe all pointers, sizes, maps etc held in malloc_state, but
check all of those linked or offsetted from other embedded data
structures. These checks are interspersed with main code in a way
that tends to minimize their run-time cost.
 
When FOOTERS is defined, in addition to range checking, we also
verify footer fields of inuse chunks, which can be used guarantee
that the mstate controlling malloc/free is intact. This is a
streamlined version of the approach described by William Robertson
et al in "Run-time Detection of Heap-based Overflows" LISA'03
http://www.usenix.org/events/lisa03/tech/robertson.html The footer
of an inuse chunk holds the xor of its mstate and a random seed,
that is checked upon calls to free() and realloc(). This is
(probablistically) unguessable from outside the program, but can be
computed by any code successfully malloc'ing any chunk, so does not
itself provide protection against code that has already broken
security through some other means. Unlike Robertson et al, we
always dynamically check addresses of all offset chunks (previous,
next, etc). This turns out to be cheaper than relying on hashes.
*/
 
#if !INSECURE
/* Check if address a is at least as high as any from MORECORE or MMAP */
#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
/* Check if address of next chunk n is higher than base chunk p */
#define ok_next(p, n) ((char*)(p) < (char*)(n))
/* Check if p has its cinuse bit on */
#define ok_cinuse(p) cinuse(p)
/* Check if p has its pinuse bit on */
#define ok_pinuse(p) pinuse(p)
 
#else /* !INSECURE */
#define ok_address(M, a) (1)
#define ok_next(b, n) (1)
#define ok_cinuse(p) (1)
#define ok_pinuse(p) (1)
#endif /* !INSECURE */
 
#if (FOOTERS && !INSECURE)
/* Check if (alleged) mstate m has expected magic field */
#define ok_magic(M) ((M)->magic == mparams.magic)
#else /* (FOOTERS && !INSECURE) */
#define ok_magic(M) (1)
#endif /* (FOOTERS && !INSECURE) */
 
 
/* In gcc, use __builtin_expect to minimize impact of checks */
#if !INSECURE
//#if defined(__GNUC__) && __GNUC__ >= 3
//#define RTCHECK(e) __builtin_expect(e, 1)
//#else /* GNUC */
#define RTCHECK(e) (e)
//#endif /* GNUC */
//#else /* !INSECURE */
//#define RTCHECK(e) (1)
#endif /* !INSECURE */
 
/* macros to set up inuse chunks with or without footers */
 
#if !FOOTERS
 
#define mark_inuse_foot(M,p,s)
 
/* Set cinuse bit and pinuse bit of next chunk */
#define set_inuse(M,p,s)\
((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
 
/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
#define set_inuse_and_pinuse(M,p,s)\
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
 
/* Set size, cinuse and pinuse bit of this chunk */
#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
 
#else /* FOOTERS */
 
/* Set foot of inuse chunk to be xor of mstate and seed */
#define mark_inuse_foot(M,p,s)\
(((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
 
#define get_mstate_for(p)\
((mstate)(((mchunkptr)((char*)(p) +\
(chunksize(p))))->prev_foot ^ mparams.magic))
 
#define set_inuse(M,p,s)\
((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
(((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
mark_inuse_foot(M,p,s))
 
#define set_inuse_and_pinuse(M,p,s)\
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
(((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
mark_inuse_foot(M,p,s))
 
#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
mark_inuse_foot(M, p, s))
 
#endif /* !FOOTERS */
 
/* ---------------------------- setting mparams -------------------------- */
 
/* Initialize mparams */
static int init_mparams(void) {
if (mparams.page_size == 0) {
size_t s;
 
mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
#if MORECORE_CONTIGUOUS
mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
#else /* MORECORE_CONTIGUOUS */
mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
#endif /* MORECORE_CONTIGUOUS */
 
#if (FOOTERS && !INSECURE)
{
#if USE_DEV_RANDOM
int fd;
unsigned char buf[sizeof(size_t)];
/* Try to use /dev/urandom, else fall back on using time */
if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
read(fd, buf, sizeof(buf)) == sizeof(buf)) {
s = *((size_t *) buf);
close(fd);
}
else
#endif /* USE_DEV_RANDOM */
s = (size_t)(time(0) ^ (size_t)0x55555555U);
 
s |= (size_t)8U; /* ensure nonzero */
s &= ~(size_t)7U; /* improve chances of fault for bad values */
 
}
#else /* (FOOTERS && !INSECURE) */
s = (size_t)0x58585858U;
#endif /* (FOOTERS && !INSECURE) */
ACQUIRE_MAGIC_INIT_LOCK();
if (mparams.magic == 0) {
mparams.magic = s;
/* Set up lock for main malloc area */
INITIAL_LOCK(&gm->mutex);
gm->mflags = mparams.default_mflags;
}
RELEASE_MAGIC_INIT_LOCK();
 
//#ifndef WIN32
// mparams.page_size = 4096;
// mparams.granularity = ((DEFAULT_GRANULARITY != 0)?
// DEFAULT_GRANULARITY : mparams.page_size);
//#else /* WIN32 */
// {
mparams.page_size = 4096;
mparams.granularity = 16384;
// }
//#endif /* WIN32 */
 
/* Sanity-check configuration:
size_t must be unsigned and as wide as pointer type.
ints must be at least 4 bytes.
alignment must be at least 8.
Alignment, min chunk size, and page size must all be powers of 2.
*/
if ((sizeof(size_t) != sizeof(char*)) ||
(MAX_SIZE_T < MIN_CHUNK_SIZE) ||
(sizeof(int) < 4) ||
(MALLOC_ALIGNMENT < (size_t)8U) ||
((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) ||
((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0))
ABORT;
}
return 0;
}
 
/* support for mallopt */
static int change_mparam(int param_number, int value) {
size_t val = (size_t)value;
init_mparams();
switch(param_number) {
case M_TRIM_THRESHOLD:
mparams.trim_threshold = val;
return 1;
case M_GRANULARITY:
if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
mparams.granularity = val;
return 1;
}
else
return 0;
case M_MMAP_THRESHOLD:
mparams.mmap_threshold = val;
return 1;
default:
return 0;
}
}
 
#ifdef DEBUG
#endif /* DEBUG */
 
/* ----------------------------- statistics ------------------------------ */
 
#if !NO_MALLINFO
#endif /* !NO_MALLINFO */
 
/* ----------------------- Operations on smallbins ----------------------- */
 
/*
Various forms of linking and unlinking are defined as macros. Even
the ones for trees, which are very long but have very short typical
paths. This is ugly but reduces reliance on inlining support of
compilers.
*/
 
/* Link a free chunk into a smallbin */
#define insert_small_chunk(M, P, S) {\
bindex_t I = small_index(S);\
mchunkptr B = smallbin_at(M, I);\
mchunkptr F = B;\
assert(S >= MIN_CHUNK_SIZE);\
if (!smallmap_is_marked(M, I))\
mark_smallmap(M, I);\
else if (RTCHECK(ok_address(M, B->fd)))\
F = B->fd;\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
B->fd = P;\
F->bk = P;\
P->fd = F;\
P->bk = B;\
}
 
/* Unlink a chunk from a smallbin */
#define unlink_small_chunk(M, P, S) {\
mchunkptr F = P->fd;\
mchunkptr B = P->bk;\
bindex_t I = small_index(S);\
assert(P != B);\
assert(P != F);\
assert(chunksize(P) == small_index2size(I));\
if (F == B)\
clear_smallmap(M, I);\
else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\
(B == smallbin_at(M,I) || ok_address(M, B)))) {\
F->bk = B;\
B->fd = F;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
}
 
/* Unlink the first chunk from a smallbin */
#define unlink_first_small_chunk(M, B, P, I) {\
mchunkptr F = P->fd;\
assert(P != B);\
assert(P != F);\
assert(chunksize(P) == small_index2size(I));\
if (B == F)\
clear_smallmap(M, I);\
else if (RTCHECK(ok_address(M, F))) {\
B->fd = F;\
F->bk = B;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
}
 
/* Replace dv node, binning the old one */
/* Used only when dvsize known to be small */
#define replace_dv(M, P, S) {\
size_t DVS = M->dvsize;\
if (DVS != 0) {\
mchunkptr DV = M->dv;\
assert(is_small(DVS));\
insert_small_chunk(M, DV, DVS);\
}\
M->dvsize = S;\
M->dv = P;\
}
 
/* ------------------------- Operations on trees ------------------------- */
 
/* Insert chunk into tree */
#define insert_large_chunk(M, X, S) {\
tbinptr* H;\
bindex_t I;\
compute_tree_index(S, I);\
H = treebin_at(M, I);\
X->index = I;\
X->child[0] = X->child[1] = 0;\
if (!treemap_is_marked(M, I)) {\
mark_treemap(M, I);\
*H = X;\
X->parent = (tchunkptr)H;\
X->fd = X->bk = X;\
}\
else {\
tchunkptr T = *H;\
size_t K = S << leftshift_for_tree_index(I);\
for (;;) {\
if (chunksize(T) != S) {\
tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
K <<= 1;\
if (*C != 0)\
T = *C;\
else if (RTCHECK(ok_address(M, C))) {\
*C = X;\
X->parent = T;\
X->fd = X->bk = X;\
break;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
break;\
}\
}\
else {\
tchunkptr F = T->fd;\
if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
T->fd = F->bk = X;\
X->fd = F;\
X->bk = T;\
X->parent = 0;\
break;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
break;\
}\
}\
}\
}\
}
 
/*
Unlink steps:
 
1. If x is a chained node, unlink it from its same-sized fd/bk links
and choose its bk node as its replacement.
2. If x was the last node of its size, but not a leaf node, it must
be replaced with a leaf node (not merely one with an open left or
right), to make sure that lefts and rights of descendents
correspond properly to bit masks. We use the rightmost descendent
of x. We could use any other leaf, but this is easy to locate and
tends to counteract removal of leftmosts elsewhere, and so keeps
paths shorter than minimally guaranteed. This doesn't loop much
because on average a node in a tree is near the bottom.
3. If x is the base of a chain (i.e., has parent links) relink
x's parent and children to x's replacement (or null if none).
*/
 
#define unlink_large_chunk(M, X) {\
tchunkptr XP = X->parent;\
tchunkptr R;\
if (X->bk != X) {\
tchunkptr F = X->fd;\
R = X->bk;\
if (RTCHECK(ok_address(M, F))) {\
F->bk = R;\
R->fd = F;\
}\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
}\
else {\
tchunkptr* RP;\
if (((R = *(RP = &(X->child[1]))) != 0) ||\
((R = *(RP = &(X->child[0]))) != 0)) {\
tchunkptr* CP;\
while ((*(CP = &(R->child[1])) != 0) ||\
(*(CP = &(R->child[0])) != 0)) {\
R = *(RP = CP);\
}\
if (RTCHECK(ok_address(M, RP)))\
*RP = 0;\
else {\
CORRUPTION_ERROR_ACTION(M);\
}\
}\
}\
if (XP != 0) {\
tbinptr* H = treebin_at(M, X->index);\
if (X == *H) {\
if ((*H = R) == 0) \
clear_treemap(M, X->index);\
}\
else if (RTCHECK(ok_address(M, XP))) {\
if (XP->child[0] == X) \
XP->child[0] = R;\
else \
XP->child[1] = R;\
}\
else\
CORRUPTION_ERROR_ACTION(M);\
if (R != 0) {\
if (RTCHECK(ok_address(M, R))) {\
tchunkptr C0, C1;\
R->parent = XP;\
if ((C0 = X->child[0]) != 0) {\
if (RTCHECK(ok_address(M, C0))) {\
R->child[0] = C0;\
C0->parent = R;\
}\
else\
CORRUPTION_ERROR_ACTION(M);\
}\
if ((C1 = X->child[1]) != 0) {\
if (RTCHECK(ok_address(M, C1))) {\
R->child[1] = C1;\
C1->parent = R;\
}\
else\
CORRUPTION_ERROR_ACTION(M);\
}\
}\
else\
CORRUPTION_ERROR_ACTION(M);\
}\
}\
}
 
/* Relays to large vs small bin operations */
 
#define insert_chunk(M, P, S)\
if (is_small(S)) insert_small_chunk(M, P, S)\
else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
 
#define unlink_chunk(M, P, S)\
if (is_small(S)) unlink_small_chunk(M, P, S)\
else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
 
 
/* Relays to internal calls to malloc/free from realloc, memalign etc */
 
#if ONLY_MSPACES
#define internal_malloc(m, b) mspace_malloc(m, b)
#define internal_free(m, mem) mspace_free(m,mem);
#else /* ONLY_MSPACES */
#if MSPACES
#define internal_malloc(m, b)\
(m == gm)? dlmalloc(b) : mspace_malloc(m, b)
#define internal_free(m, mem)\
if (m == gm) dlfree(mem); else mspace_free(m,mem);
#else /* MSPACES */
#define internal_malloc(m, b) dlmalloc(b)
#define internal_free(m, mem) dlfree(mem)
#endif /* MSPACES */
#endif /* ONLY_MSPACES */
 
/* ----------------------- Direct-mmapping chunks ----------------------- */
 
/*
Directly mmapped chunks are set up with an offset to the start of
the mmapped region stored in the prev_foot field of the chunk. This
allows reconstruction of the required argument to MUNMAP when freed,
and also allows adjustment of the returned chunk to meet alignment
requirements (especially in memalign). There is also enough space
allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain
the PINUSE bit so frees can be checked.
*/
 
/* Malloc using mmap */
static void* mmap_alloc(mstate m, size_t nb) {
size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
if (mmsize > nb) { /* Check for wrap around 0 */
char* mm = (char*)(gui_ksys_mem_alloc(mmsize));
if (mm != CMFAIL) {
size_t offset = align_offset(chunk2mem(mm));
size_t psize = mmsize - offset - MMAP_FOOT_PAD;
mchunkptr p = (mchunkptr)(mm + offset);
p->prev_foot = offset | IS_MMAPPED_BIT;
(p)->head = (psize|CINUSE_BIT);
mark_inuse_foot(m, p, psize);
chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
 
if (mm < m->least_addr)
m->least_addr = mm;
if ((m->footprint += mmsize) > m->max_footprint)
m->max_footprint = m->footprint;
assert(is_aligned(chunk2mem(p)));
check_mmapped_chunk(m, p);
return chunk2mem(p);
}
}
return 0;
}
 
/* Realloc using mmap */
static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) {
size_t oldsize = chunksize(oldp);
if (is_small(nb)) /* Can't shrink mmap regions below small size */
return 0;
/* Keep old chunk if big enough but not too big */
if (oldsize >= nb + SIZE_T_SIZE &&
(oldsize - nb) <= (mparams.granularity << 1))
return oldp;
else {
size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT;
size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES +
CHUNK_ALIGN_MASK);
char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
oldmmsize, newmmsize, 1);
if (cp != CMFAIL) {
mchunkptr newp = (mchunkptr)(cp + offset);
size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
newp->head = (psize|CINUSE_BIT);
mark_inuse_foot(m, newp, psize);
chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
 
if (cp < m->least_addr)
m->least_addr = cp;
if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
m->max_footprint = m->footprint;
check_mmapped_chunk(m, newp);
return newp;
}
}
return 0;
}
 
/* -------------------------- mspace management -------------------------- */
 
/* Initialize top chunk and its size */
static void init_top(mstate m, mchunkptr p, size_t psize) {
/* Ensure alignment */
size_t offset = align_offset(chunk2mem(p));
p = (mchunkptr)((char*)p + offset);
psize -= offset;
 
m->top = p;
m->topsize = psize;
p->head = psize | PINUSE_BIT;
/* set size of fake trailing chunk holding overhead space only once */
chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
m->trim_check = mparams.trim_threshold; /* reset on each update */
}
 
/* Initialize bins for a new mstate that is otherwise zeroed out */
static void init_bins(mstate m) {
/* Establish circular links for smallbins */
bindex_t i;
for (i = 0; i < NSMALLBINS; ++i) {
sbinptr bin = smallbin_at(m,i);
bin->fd = bin->bk = bin;
}
}
 
#if PROCEED_ON_ERROR
 
/* default corruption action */
static void reset_on_error(mstate m) {
int i;
++malloc_corruption_error_count;
/* Reinitialize fields to forget about all memory */
m->smallbins = m->treebins = 0;
m->dvsize = m->topsize = 0;
m->seg.base = 0;
m->seg.size = 0;
m->seg.next = 0;
m->top = m->dv = 0;
for (i = 0; i < NTREEBINS; ++i)
*treebin_at(m, i) = 0;
init_bins(m);
}
#endif /* PROCEED_ON_ERROR */
 
/* Allocate chunk and prepend remainder with chunk in successor base. */
static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
size_t nb) {
mchunkptr p = align_as_chunk(newbase);
mchunkptr oldfirst = align_as_chunk(oldbase);
size_t psize = (char*)oldfirst - (char*)p;
mchunkptr q = chunk_plus_offset(p, nb);
size_t qsize = psize - nb;
set_size_and_pinuse_of_inuse_chunk(m, p, nb);
 
assert((char*)oldfirst > (char*)q);
assert(pinuse(oldfirst));
assert(qsize >= MIN_CHUNK_SIZE);
 
/* consolidate remainder with first chunk of old base */
if (oldfirst == m->top) {
size_t tsize = m->topsize += qsize;
m->top = q;
q->head = tsize | PINUSE_BIT;
check_top_chunk(m, q);
}
else if (oldfirst == m->dv) {
size_t dsize = m->dvsize += qsize;
m->dv = q;
set_size_and_pinuse_of_free_chunk(q, dsize);
}
else {
if (!cinuse(oldfirst)) {
size_t nsize = chunksize(oldfirst);
unlink_chunk(m, oldfirst, nsize);
oldfirst = chunk_plus_offset(oldfirst, nsize);
qsize += nsize;
}
set_free_with_pinuse(q, qsize, oldfirst);
insert_chunk(m, q, qsize);
check_free_chunk(m, q);
}
 
check_malloced_chunk(m, chunk2mem(p), nb);
return chunk2mem(p);
}
 
 
/* Add a segment to hold a new noncontiguous region */
static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
/* Determine locations and sizes of segment, fenceposts, old top */
char* old_top = (char*)m->top;
msegmentptr oldsp = segment_holding(m, old_top);
char* old_end = oldsp->base + oldsp->size;
size_t ssize = pad_request(sizeof(struct malloc_segment));
char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
size_t offset = align_offset(chunk2mem(rawsp));
char* asp = rawsp + offset;
char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
mchunkptr sp = (mchunkptr)csp;
msegmentptr ss = (msegmentptr)(chunk2mem(sp));
mchunkptr tnext = chunk_plus_offset(sp, ssize);
mchunkptr p = tnext;
int nfences = 0;
 
/* reset top to new space */
init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
 
/* Set up segment record */
assert(is_aligned(ss));
set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
*ss = m->seg; /* Push current record */
m->seg.base = tbase;
m->seg.size = tsize;
m->seg.sflags = mmapped;
m->seg.next = ss;
 
/* Insert trailing fenceposts */
for (;;) {
mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
p->head = FENCEPOST_HEAD;
++nfences;
if ((char*)(&(nextp->head)) < old_end)
p = nextp;
else
break;
}
assert(nfences >= 2);
 
/* Insert the rest of old top into a bin as an ordinary free chunk */
if (csp != old_top) {
mchunkptr q = (mchunkptr)old_top;
size_t psize = csp - old_top;
mchunkptr tn = chunk_plus_offset(q, psize);
set_free_with_pinuse(q, psize, tn);
insert_chunk(m, q, psize);
}
 
check_top_chunk(m, m->top);
}
 
/* -------------------------- System allocation -------------------------- */
 
/* Get memory from system using MORECORE or MMAP */
static void* sys_alloc(mstate m, size_t nb) {
char* tbase = CMFAIL;
size_t tsize = 0;
flag_t mmap_flag = 0;
 
init_mparams();
 
/* Directly map large chunks */
if (use_mmap(m) && nb >= mparams.mmap_threshold) {
void* mem = mmap_alloc(m, nb);
if (mem != 0)
return mem;
}
 
/*
Try getting memory in any of three ways (in most-preferred to
least-preferred order):
1. A call to MORECORE that can normally contiguously extend memory.
(disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
or main space is mmapped or a previous contiguous call failed)
2. A call to MMAP new space (disabled if not HAVE_MMAP).
Note that under the default settings, if MORECORE is unable to
fulfill a request, and HAVE_MMAP is true, then mmap is
used as a noncontiguous system allocator. This is a useful backup
strategy for systems with holes in address spaces -- in this case
sbrk cannot contiguously expand the heap, but mmap may be able to
find space.
3. A call to MORECORE that cannot usually contiguously extend memory.
(disabled if not HAVE_MORECORE)
*/
 
if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
char* br = CMFAIL;
msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
size_t asize = 0;
ACQUIRE_MORECORE_LOCK();
 
if (ss == 0) { /* First time through or recovery */
char* base = (char*)CALL_MORECORE(0);
if (base != CMFAIL) {
asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
/* Adjust to end on a page boundary */
if (!is_page_aligned(base))
asize += (page_align((size_t)base) - (size_t)base);
/* Can't call MORECORE if size is negative when treated as signed */
if (asize < HALF_MAX_SIZE_T &&
(br = (char*)(CALL_MORECORE(asize))) == base) {
tbase = base;
tsize = asize;
}
}
}
else {
/* Subtract out existing available top space from MORECORE request. */
asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE);
/* Use mem here only if it did continuously extend old space */
if (asize < HALF_MAX_SIZE_T &&
(br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) {
tbase = br;
tsize = asize;
}
}
 
if (tbase == CMFAIL) { /* Cope with partial failure */
if (br != CMFAIL) { /* Try to use/extend the space we did get */
if (asize < HALF_MAX_SIZE_T &&
asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) {
size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize);
if (esize < HALF_MAX_SIZE_T) {
char* end = (char*)CALL_MORECORE(esize);
if (end != CMFAIL)
asize += esize;
else { /* Can't use; try to release */
CALL_MORECORE(-asize);
br = CMFAIL;
}
}
}
}
if (br != CMFAIL) { /* Use the space we did get */
tbase = br;
tsize = asize;
}
else
disable_contiguous(m); /* Don't try contiguous path in the future */
}
 
RELEASE_MORECORE_LOCK();
}
 
if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE;
size_t rsize = granularity_align(req);
if (rsize > nb) { /* Fail if wraps around zero */
char* mp = (char*)(gui_ksys_mem_alloc(rsize));
if (mp != CMFAIL) {
tbase = mp;
tsize = rsize;
mmap_flag = IS_MMAPPED_BIT;
}
}
}
 
if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE);
if (asize < HALF_MAX_SIZE_T) {
char* br = CMFAIL;
char* end = CMFAIL;
ACQUIRE_MORECORE_LOCK();
br = (char*)(CALL_MORECORE(asize));
end = (char*)(CALL_MORECORE(0));
RELEASE_MORECORE_LOCK();
if (br != CMFAIL && end != CMFAIL && br < end) {
size_t ssize = end - br;
if (ssize > nb + TOP_FOOT_SIZE) {
tbase = br;
tsize = ssize;
}
}
}
}
 
if (tbase != CMFAIL) {
 
if ((m->footprint += tsize) > m->max_footprint)
m->max_footprint = m->footprint;
 
if (!is_initialized(m)) { /* first-time initialization */
m->seg.base = m->least_addr = tbase;
m->seg.size = tsize;
m->seg.sflags = mmap_flag;
m->magic = mparams.magic;
init_bins(m);
if (is_global(m))
init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
else {
/* Offset top by embedded malloc_state */
mchunkptr mn = next_chunk(mem2chunk(m));
init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
}
}
 
else {
/* Try to merge with an existing segment */
msegmentptr sp = &m->seg;
while (sp != 0 && tbase != sp->base + sp->size)
sp = sp->next;
if (sp != 0 &&
!is_extern_segment(sp) &&
(sp->sflags & IS_MMAPPED_BIT) == mmap_flag &&
segment_holds(sp, m->top)) { /* append */
sp->size += tsize;
init_top(m, m->top, m->topsize + tsize);
}
else {
if (tbase < m->least_addr)
m->least_addr = tbase;
sp = &m->seg;
while (sp != 0 && sp->base != tbase + tsize)
sp = sp->next;
if (sp != 0 &&
!is_extern_segment(sp) &&
(sp->sflags & IS_MMAPPED_BIT) == mmap_flag) {
char* oldbase = sp->base;
sp->base = tbase;
sp->size += tsize;
return prepend_alloc(m, tbase, oldbase, nb);
}
else
add_segment(m, tbase, tsize, mmap_flag);
}
}
 
if (nb < m->topsize) { /* Allocate from new or extended top space */
size_t rsize = m->topsize -= nb;
mchunkptr p = m->top;
mchunkptr r = m->top = chunk_plus_offset(p, nb);
r->head = rsize | PINUSE_BIT;
set_size_and_pinuse_of_inuse_chunk(m, p, nb);
check_top_chunk(m, m->top);
check_malloced_chunk(m, chunk2mem(p), nb);
return chunk2mem(p);
}
}
 
MALLOC_FAILURE_ACTION;
return 0;
}
 
/* ----------------------- system deallocation -------------------------- */
 
/* Unmap and unlink any mmapped segments that don't contain used chunks */
static size_t release_unused_segments(mstate m) {
size_t released = 0;
msegmentptr pred = &m->seg;
msegmentptr sp = pred->next;
while (sp != 0) {
char* base = sp->base;
size_t size = sp->size;
msegmentptr next = sp->next;
if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
mchunkptr p = align_as_chunk(base);
size_t psize = chunksize(p);
/* Can unmap if first chunk holds entire segment and not pinned */
if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
tchunkptr tp = (tchunkptr)p;
assert(segment_holds(sp, (char*)sp));
if (p == m->dv) {
m->dv = 0;
m->dvsize = 0;
}
else {
unlink_large_chunk(m, tp);
}
if (gui_ksys_mem_free(base, size) == 0) {
released += size;
m->footprint -= size;
/* unlink obsoleted record */
sp = pred;
sp->next = next;
}
else { /* back out if cannot unmap */
insert_large_chunk(m, tp, psize);
}
}
}
pred = sp;
sp = next;
}
return released;
}
 
static int sys_trim(mstate m, size_t pad) {
size_t released = 0;
if (pad < MAX_REQUEST && is_initialized(m)) {
pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
 
if (m->topsize > pad) {
/* Shrink top space in granularity-size units, keeping at least one */
size_t unit = mparams.granularity;
size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
SIZE_T_ONE) * unit;
msegmentptr sp = segment_holding(m, (char*)m->top);
 
if (!is_extern_segment(sp)) {
if (is_mmapped_segment(sp)) {
if (HAVE_MMAP &&
sp->size >= extra &&
!has_segment_link(m, sp)) { /* can't shrink if pinned */
size_t newsize = sp->size - extra;
/* Prefer mremap, fall back to munmap */
if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
(gui_ksys_mem_free(sp->base + newsize, extra) == 0)) {
released = extra;
}
}
}
else if (HAVE_MORECORE) {
if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
ACQUIRE_MORECORE_LOCK();
{
/* Make sure end of memory is where we last set it. */
char* old_br = (char*)(CALL_MORECORE(0));
if (old_br == sp->base + sp->size) {
char* rel_br = (char*)(CALL_MORECORE(-extra));
char* new_br = (char*)(CALL_MORECORE(0));
if (rel_br != CMFAIL && new_br < old_br)
released = old_br - new_br;
}
}
RELEASE_MORECORE_LOCK();
}
}
 
if (released != 0) {
sp->size -= released;
m->footprint -= released;
init_top(m, m->top, m->topsize - released);
check_top_chunk(m, m->top);
}
}
 
/* Unmap any unused mmapped segments */
if (HAVE_MMAP)
released += release_unused_segments(m);
 
/* On failure, disable autotrim to avoid repeated failed future calls */
if (released == 0)
m->trim_check = MAX_SIZE_T;
}
 
return (released != 0)? 1 : 0;
}
 
/* ---------------------------- malloc support --------------------------- */
 
/* allocate a large request from the best fitting chunk in a treebin */
static void* tmalloc_large(mstate m, size_t nb) {
tchunkptr v = 0;
size_t rsize = -nb; /* Unsigned negation */
tchunkptr t;
bindex_t idx;
compute_tree_index(nb, idx);
 
if ((t = *treebin_at(m, idx)) != 0) {
/* Traverse tree for this bin looking for node with size == nb */
size_t sizebits = nb << leftshift_for_tree_index(idx);
tchunkptr rst = 0; /* The deepest untaken right subtree */
for (;;) {
tchunkptr rt;
size_t trem = chunksize(t) - nb;
if (trem < rsize) {
v = t;
if ((rsize = trem) == 0)
break;
}
rt = t->child[1];
t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
if (rt != 0 && rt != t)
rst = rt;
if (t == 0) {
t = rst; /* set t to least subtree holding sizes > nb */
break;
}
sizebits <<= 1;
}
}
 
if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
if (leftbits != 0) {
bindex_t i;
binmap_t leastbit = least_bit(leftbits);
compute_bit2idx(leastbit, i);
t = *treebin_at(m, i);
}
}
 
while (t != 0) { /* find smallest of tree or subtree */
size_t trem = chunksize(t) - nb;
if (trem < rsize) {
rsize = trem;
v = t;
}
t = leftmost_child(t);
}
 
/* If dv is a better fit, return 0 so malloc will use it */
if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
if (RTCHECK(ok_address(m, v))) { /* split */
mchunkptr r = chunk_plus_offset(v, nb);
assert(chunksize(v) == rsize + nb);
if (RTCHECK(ok_next(v, r))) {
unlink_large_chunk(m, v);
if (rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(m, v, (rsize + nb));
else {
set_size_and_pinuse_of_inuse_chunk(m, v, nb);
set_size_and_pinuse_of_free_chunk(r, rsize);
insert_chunk(m, r, rsize);
}
return chunk2mem(v);
}
}
CORRUPTION_ERROR_ACTION(m);
}
return 0;
}
 
/* allocate a small request from the best fitting chunk in a treebin */
static void* tmalloc_small(mstate m, size_t nb) {
tchunkptr t, v;
size_t rsize;
bindex_t i;
binmap_t leastbit = least_bit(m->treemap);
compute_bit2idx(leastbit, i);
 
v = t = *treebin_at(m, i);
rsize = chunksize(t) - nb;
 
while ((t = leftmost_child(t)) != 0) {
size_t trem = chunksize(t) - nb;
if (trem < rsize) {
rsize = trem;
v = t;
}
}
 
if (RTCHECK(ok_address(m, v))) {
mchunkptr r = chunk_plus_offset(v, nb);
assert(chunksize(v) == rsize + nb);
if (RTCHECK(ok_next(v, r))) {
unlink_large_chunk(m, v);
if (rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(m, v, (rsize + nb));
else {
set_size_and_pinuse_of_inuse_chunk(m, v, nb);
set_size_and_pinuse_of_free_chunk(r, rsize);
replace_dv(m, r, rsize);
}
return chunk2mem(v);
}
}
 
CORRUPTION_ERROR_ACTION(m);
return 0;
}
 
/* --------------------------- realloc support --------------------------- */
 
static void* internal_realloc(mstate m, void* oldmem, size_t bytes) {
if (bytes >= MAX_REQUEST) {
MALLOC_FAILURE_ACTION;
return 0;
}
if (!PREACTION(m)) {
mchunkptr oldp = mem2chunk(oldmem);
size_t oldsize = chunksize(oldp);
mchunkptr next = chunk_plus_offset(oldp, oldsize);
mchunkptr newp = 0;
void* extra = 0;
 
/* Try to either shrink or extend into top. Else malloc-copy-free */
 
if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) &&
ok_next(oldp, next) && ok_pinuse(next))) {
size_t nb = request2size(bytes);
if (is_mmapped(oldp))
newp = mmap_resize(m, oldp, nb);
else if (oldsize >= nb) { /* already big enough */
size_t rsize = oldsize - nb;
newp = oldp;
if (rsize >= MIN_CHUNK_SIZE) {
mchunkptr remainder = chunk_plus_offset(newp, nb);
set_inuse(m, newp, nb);
set_inuse(m, remainder, rsize);
extra = chunk2mem(remainder);
}
}
else if (next == m->top && oldsize + m->topsize > nb) {
/* Expand into top */
size_t newsize = oldsize + m->topsize;
size_t newtopsize = newsize - nb;
mchunkptr newtop = chunk_plus_offset(oldp, nb);
set_inuse(m, oldp, nb);
newtop->head = newtopsize |PINUSE_BIT;
m->top = newtop;
m->topsize = newtopsize;
newp = oldp;
}
}
else {
USAGE_ERROR_ACTION(m, oldmem);
POSTACTION(m);
return 0;
}
 
POSTACTION(m);
 
if (newp != 0) {
if (extra != 0) {
internal_free(m, extra);
}
check_inuse_chunk(m, newp);
return chunk2mem(newp);
}
else {
void* newmem = internal_malloc(m, bytes);
if (newmem != 0) {
size_t oc = oldsize - overhead_for(oldp);
memcpy(newmem, oldmem, (oc < bytes)? oc : bytes);
internal_free(m, oldmem);
}
return newmem;
}
}
return 0;
}
 
/* --------------------------- memalign support -------------------------- */
 
static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */
return internal_malloc(m, bytes);
if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
alignment = MIN_CHUNK_SIZE;
if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
size_t a = MALLOC_ALIGNMENT << 1;
while (a < alignment) a <<= 1;
alignment = a;
}
 
if (bytes >= MAX_REQUEST - alignment) {
if (m != 0) { /* Test isn't needed but avoids compiler warning */
MALLOC_FAILURE_ACTION;
}
}
else {
size_t nb = request2size(bytes);
size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
char* mem = (char*)internal_malloc(m, req);
if (mem != 0) {
void* leader = 0;
void* trailer = 0;
mchunkptr p = mem2chunk(mem);
 
if (PREACTION(m)) return 0;
if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */
/*
Find an aligned spot inside chunk. Since we need to give
back leading space in a chunk of at least MIN_CHUNK_SIZE, if
the first calculation places us at a spot with less than
MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
We've allocated enough total room so that this is always
possible.
*/
char* br = (char*)mem2chunk((size_t)(((size_t)(mem +
alignment -
SIZE_T_ONE)) &
-alignment));
char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
br : br+alignment;
mchunkptr newp = (mchunkptr)pos;
size_t leadsize = pos - (char*)(p);
size_t newsize = chunksize(p) - leadsize;
 
if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
newp->prev_foot = p->prev_foot + leadsize;
newp->head = (newsize|CINUSE_BIT);
}
else { /* Otherwise, give back leader, use the rest */
set_inuse(m, newp, newsize);
set_inuse(m, p, leadsize);
leader = chunk2mem(p);
}
p = newp;
}
 
/* Give back spare room at the end */
if (!is_mmapped(p)) {
size_t size = chunksize(p);
if (size > nb + MIN_CHUNK_SIZE) {
size_t remainder_size = size - nb;
mchunkptr remainder = chunk_plus_offset(p, nb);
set_inuse(m, p, nb);
set_inuse(m, remainder, remainder_size);
trailer = chunk2mem(remainder);
}
}
 
assert (chunksize(p) >= nb);
assert((((size_t)(chunk2mem(p))) % alignment) == 0);
check_inuse_chunk(m, p);
POSTACTION(m);
if (leader != 0) {
internal_free(m, leader);
}
if (trailer != 0) {
internal_free(m, trailer);
}
return chunk2mem(p);
}
}
return 0;
}
 
/* ------------------------ comalloc/coalloc support --------------------- */
 
static void** ialloc(mstate m,
size_t n_elements,
size_t* sizes,
int opts,
void* chunks[]) {
/*
This provides common support for independent_X routines, handling
all of the combinations that can result.
 
The opts arg has:
bit 0 set if all elements are same size (using sizes[0])
bit 1 set if elements should be zeroed
*/
 
size_t element_size; /* chunksize of each element, if all same */
size_t contents_size; /* total size of elements */
size_t array_size; /* request size of pointer array */
void* mem; /* malloced aggregate space */
mchunkptr p; /* corresponding chunk */
size_t remainder_size; /* remaining bytes while splitting */
void** marray; /* either "chunks" or malloced ptr array */
mchunkptr array_chunk; /* chunk for malloced ptr array */
flag_t was_enabled; /* to disable mmap */
size_t size;
size_t i;
 
/* compute array length, if needed */
if (chunks != 0) {
if (n_elements == 0)
return chunks; /* nothing to do */
marray = chunks;
array_size = 0;
}
else {
/* if empty req, must still return chunk representing empty array */
if (n_elements == 0)
return (void**)internal_malloc(m, 0);
marray = 0;
array_size = request2size(n_elements * (sizeof(void*)));
}
 
/* compute total element size */
if (opts & 0x1) { /* all-same-size */
element_size = request2size(*sizes);
contents_size = n_elements * element_size;
}
else { /* add up all the sizes */
element_size = 0;
contents_size = 0;
for (i = 0; i != n_elements; ++i)
contents_size += request2size(sizes[i]);
}
 
size = contents_size + array_size;
 
/*
Allocate the aggregate chunk. First disable direct-mmapping so
malloc won't use it, since we would not be able to later
free/realloc space internal to a segregated mmap region.
*/
was_enabled = use_mmap(m);
disable_mmap(m);
mem = internal_malloc(m, size - CHUNK_OVERHEAD);
if (was_enabled)
enable_mmap(m);
if (mem == 0)
return 0;
 
if (PREACTION(m)) return 0;
p = mem2chunk(mem);
remainder_size = chunksize(p);
 
assert(!is_mmapped(p));
 
if (opts & 0x2) { /* optionally clear the elements */
memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
}
 
/* If not provided, allocate the pointer array as final part of chunk */
if (marray == 0) {
size_t array_chunk_size;
array_chunk = chunk_plus_offset(p, contents_size);
array_chunk_size = remainder_size - contents_size;
marray = (void**) (chunk2mem(array_chunk));
set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
remainder_size = contents_size;
}
 
/* split out elements */
for (i = 0; ; ++i) {
marray[i] = chunk2mem(p);
if (i != n_elements-1) {
if (element_size != 0)
size = element_size;
else
size = request2size(sizes[i]);
remainder_size -= size;
set_size_and_pinuse_of_inuse_chunk(m, p, size);
p = chunk_plus_offset(p, size);
}
else { /* the final element absorbs any overallocation slop */
set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
break;
}
}
 
#ifdef DEBUG
// if (marray != chunks) {
/* final element must have exactly exhausted chunk */
// if (element_size != 0) {
// assert(remainder_size == element_size);
// }
// else {
// assert(remainder_size == request2size(sizes[i]));
// }
// check_inuse_chunk(m, mem2chunk(marray));
// }
// for (i = 0; i != n_elements; ++i)
// check_inuse_chunk(m, mem2chunk(marray[i]));
 
#endif /* DEBUG */
 
POSTACTION(m);
return marray;
}
 
 
/* -------------------------- public routines ---------------------------- */
 
#if !ONLY_MSPACES
 
static void* dlmalloc(size_t bytes) {
/*
Basic algorithm:
If a small request (< 256 bytes minus per-chunk overhead):
1. If one exists, use a remainderless chunk in associated smallbin.
(Remainderless means that there are too few excess bytes to
represent as a chunk.)
2. If it is big enough, use the dv chunk, which is normally the
chunk adjacent to the one used for the most recent small request.
3. If one exists, split the smallest available chunk in a bin,
saving remainder in dv.
4. If it is big enough, use the top chunk.
5. If available, get memory from system and use it
Otherwise, for a large request:
1. Find the smallest available binned chunk that fits, and use it
if it is better fitting than dv chunk, splitting if necessary.
2. If better fitting than any binned chunk, use the dv chunk.
3. If it is big enough, use the top chunk.
4. If request size >= mmap threshold, try to directly mmap this chunk.
5. If available, get memory from system and use it
 
The ugly goto's here ensure that postaction occurs along all paths.
*/
 
if (!PREACTION(gm)) {
void* mem;
size_t nb;
if (bytes <= MAX_SMALL_REQUEST) {
bindex_t idx;
binmap_t smallbits;
nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
idx = small_index(nb);
smallbits = gm->smallmap >> idx;
 
if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
mchunkptr b, p;
idx += ~smallbits & 1; /* Uses next bin if idx empty */
b = smallbin_at(gm, idx);
p = b->fd;
assert(chunksize(p) == small_index2size(idx));
unlink_first_small_chunk(gm, b, p, idx);
set_inuse_and_pinuse(gm, p, small_index2size(idx));
mem = chunk2mem(p);
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
 
else if (nb > gm->dvsize) {
if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
mchunkptr b, p, r;
size_t rsize;
bindex_t i;
binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
binmap_t leastbit = least_bit(leftbits);
compute_bit2idx(leastbit, i);
b = smallbin_at(gm, i);
p = b->fd;
assert(chunksize(p) == small_index2size(i));
unlink_first_small_chunk(gm, b, p, i);
rsize = small_index2size(i) - nb;
/* Fit here cannot be remainderless if 4byte sizes */
if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(gm, p, small_index2size(i));
else {
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
r = chunk_plus_offset(p, nb);
set_size_and_pinuse_of_free_chunk(r, rsize);
replace_dv(gm, r, rsize);
}
mem = chunk2mem(p);
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
 
else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
}
}
else if (bytes >= MAX_REQUEST)
nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
else {
nb = pad_request(bytes);
if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
}
 
if (nb <= gm->dvsize) {
size_t rsize = gm->dvsize - nb;
mchunkptr p = gm->dv;
if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
gm->dvsize = rsize;
set_size_and_pinuse_of_free_chunk(r, rsize);
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
}
else { /* exhaust dv */
size_t dvs = gm->dvsize;
gm->dvsize = 0;
gm->dv = 0;
set_inuse_and_pinuse(gm, p, dvs);
}
mem = chunk2mem(p);
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
 
else if (nb < gm->topsize) { /* Split top */
size_t rsize = gm->topsize -= nb;
mchunkptr p = gm->top;
mchunkptr r = gm->top = chunk_plus_offset(p, nb);
r->head = rsize | PINUSE_BIT;
set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
mem = chunk2mem(p);
check_top_chunk(gm, gm->top);
check_malloced_chunk(gm, mem, nb);
goto postaction;
}
 
mem = sys_alloc(gm, nb);
 
postaction:
POSTACTION(gm);
return mem;
}
 
return 0;
}
 
static void dlfree(void* mem) {
/*
Consolidate freed chunks with preceeding or succeeding bordering
free chunks, if they exist, and then place in a bin. Intermixed
with special cases for top, dv, mmapped chunks, and usage errors.
*/
 
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
#if FOOTERS
mstate fm = get_mstate_for(p);
if (!ok_magic(fm)) {
USAGE_ERROR_ACTION(fm, p);
return;
}
#else /* FOOTERS */
#define fm gm
#endif /* FOOTERS */
if (!PREACTION(fm)) {
check_inuse_chunk(fm, p);
if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) {
size_t psize = chunksize(p);
mchunkptr next = chunk_plus_offset(p, psize);
if (!pinuse(p)) {
size_t prevsize = p->prev_foot;
if ((prevsize & IS_MMAPPED_BIT) != 0) {
prevsize &= ~IS_MMAPPED_BIT;
psize += prevsize + MMAP_FOOT_PAD;
if (gui_ksys_mem_free((char*)p - prevsize, psize) == 0)
fm->footprint -= psize;
goto postaction;
}
else {
mchunkptr prev = chunk_minus_offset(p, prevsize);
psize += prevsize;
p = prev;
if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
if (p != fm->dv) {
unlink_chunk(fm, p, prevsize);
}
else if ((next->head & INUSE_BITS) == INUSE_BITS) {
fm->dvsize = psize;
set_free_with_pinuse(p, psize, next);
goto postaction;
}
}
else
goto erroraction;
}
}
 
if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
if (!cinuse(next)) { /* consolidate forward */
if (next == fm->top) {
size_t tsize = fm->topsize += psize;
fm->top = p;
p->head = tsize | PINUSE_BIT;
if (p == fm->dv) {
fm->dv = 0;
fm->dvsize = 0;
}
if (should_trim(fm, tsize))
sys_trim(fm, 0);
goto postaction;
}
else if (next == fm->dv) {
size_t dsize = fm->dvsize += psize;
fm->dv = p;
set_size_and_pinuse_of_free_chunk(p, dsize);
goto postaction;
}
else {
size_t nsize = chunksize(next);
psize += nsize;
unlink_chunk(fm, next, nsize);
set_size_and_pinuse_of_free_chunk(p, psize);
if (p == fm->dv) {
fm->dvsize = psize;
goto postaction;
}
}
}
else
set_free_with_pinuse(p, psize, next);
insert_chunk(fm, p, psize);
check_free_chunk(fm, p);
goto postaction;
}
}
erroraction:
USAGE_ERROR_ACTION(fm, p);
postaction:
POSTACTION(fm);
}
}
#if !FOOTERS
#undef fm
#endif /* FOOTERS */
}
 
static void* dlcalloc(size_t n_elements, size_t elem_size) {
void* mem;
size_t req = 0;
if (n_elements != 0) {
req = n_elements * elem_size;
if (((n_elements | elem_size) & ~(size_t)0xffff) &&
(req / n_elements != elem_size))
req = MAX_SIZE_T; /* force downstream failure on overflow */
}
mem = dlmalloc(req);
if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
memset(mem, 0, req);
return mem;
}
 
static void* dlrealloc(void* oldmem, size_t bytes) {
if (oldmem == 0)
return dlmalloc(bytes);
#ifdef REALLOC_ZERO_BYTES_FREES
if (bytes == 0) {
dlfree(oldmem);
return 0;
}
#endif /* REALLOC_ZERO_BYTES_FREES */
else {
#if ! FOOTERS
mstate m = gm;
#else /* FOOTERS */
mstate m = get_mstate_for(mem2chunk(oldmem));
if (!ok_magic(m)) {
USAGE_ERROR_ACTION(m, oldmem);
return 0;
}
#endif /* FOOTERS */
return internal_realloc(m, oldmem, bytes);
}
}
 
static void* dlmemalign(size_t alignment, size_t bytes) {
return internal_memalign(gm, alignment, bytes);
}
 
static void** dlindependent_calloc(size_t n_elements, size_t elem_size,
void* chunks[]) {
size_t sz = elem_size; /* serves as 1-element array */
return ialloc(gm, n_elements, &sz, 3, chunks);
}
 
static void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
void* chunks[]) {
return ialloc(gm, n_elements, sizes, 0, chunks);
}
 
static void* dlvalloc(size_t bytes) {
size_t pagesz;
init_mparams();
pagesz = mparams.page_size;
return dlmemalign(pagesz, bytes);
}
 
static void* dlpvalloc(size_t bytes) {
size_t pagesz;
init_mparams();
pagesz = mparams.page_size;
return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE));
}
 
static int dlmalloc_trim(size_t pad) {
int result = 0;
if (!PREACTION(gm)) {
result = sys_trim(gm, pad);
POSTACTION(gm);
}
return result;
}
 
static size_t dlmalloc_footprint(void) {
return gm->footprint;
}
 
static size_t dlmalloc_max_footprint(void) {
return gm->max_footprint;
}
 
#if !NO_MALLINFO
struct mallinfo dlmallinfo(void) {
return internal_mallinfo(gm);
}
#endif /* NO_MALLINFO */
 
//void dlmalloc_stats() {
// internal_malloc_stats(gm);
//}
 
static size_t dlmalloc_usable_size(void* mem) {
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
if (cinuse(p))
return chunksize(p) - overhead_for(p);
}
return 0;
}
 
static int dlmallopt(int param_number, int value) {
return change_mparam(param_number, value);
}
 
#endif /* !ONLY_MSPACES */
 
/* ----------------------------- user mspaces ---------------------------- */
 
#if MSPACES
#endif /* MSPACES */
 
/* -------------------- Alternative MORECORE functions ------------------- */
 
/*
Guidelines for creating a custom version of MORECORE:
 
* For best performance, MORECORE should allocate in multiples of pagesize.
* MORECORE may allocate more memory than requested. (Or even less,
but this will usually result in a malloc failure.)
* MORECORE must not allocate memory when given argument zero, but
instead return one past the end address of memory from previous
nonzero call.
* For best performance, consecutive calls to MORECORE with positive
arguments should return increasing addresses, indicating that
space has been contiguously extended.
* Even though consecutive calls to MORECORE need not return contiguous
addresses, it must be OK for malloc'ed chunks to span multiple
regions in those cases where they do happen to be contiguous.
* MORECORE need not handle negative arguments -- it may instead
just return MFAIL when given negative arguments.
Negative arguments are always multiples of pagesize. MORECORE
must not misinterpret negative args as large positive unsigned
args. You can suppress all such calls from even occurring by defining
MORECORE_CANNOT_TRIM,
 
As an example alternative MORECORE, here is a custom allocator
kindly contributed for pre-OSX macOS. It uses virtually but not
necessarily physically contiguous non-paged memory (locked in,
present and won't get swapped out). You can use it by uncommenting
this section, adding some #includes, and setting up the appropriate
defines above:
 
#define MORECORE osMoreCore
 
There is also a shutdown routine that should somehow be called for
cleanup upon program exit.
 
#define MAX_POOL_ENTRIES 100
#define MINIMUM_MORECORE_SIZE (64 * 1024U)
static int next_os_pool;
void *our_os_pools[MAX_POOL_ENTRIES];
 
void *osMoreCore(int size)
{
void *ptr = 0;
static void *sbrk_top = 0;
 
if (size > 0)
{
if (size < MINIMUM_MORECORE_SIZE)
size = MINIMUM_MORECORE_SIZE;
if (CurrentExecutionLevel() == kTaskLevel)
ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
if (ptr == 0)
{
return (void *) MFAIL;
}
// save ptrs so they can be freed during cleanup
our_os_pools[next_os_pool] = ptr;
next_os_pool++;
ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
sbrk_top = (char *) ptr + size;
return ptr;
}
else if (size < 0)
{
// we don't currently support shrink behavior
return (void *) MFAIL;
}
else
{
return sbrk_top;
}
}
 
// cleanup any allocated memory pools
// called as last thing before shutting down driver
 
void osCleanupMem(void)
{
void **ptr;
 
for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
if (*ptr)
{
PoolDeallocate(*ptr);
*ptr = 0;
}
}
 
*/
 
 
/* -----------------------------------------------------------------------
History:
V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
* Add max_footprint functions
* Ensure all appropriate literals are size_t
* Fix conditional compilation problem for some #define settings
* Avoid concatenating segments with the one provided
in create_mspace_with_base
* Rename some variables to avoid compiler shadowing warnings
* Use explicit lock initialization.
* Better handling of sbrk interference.
* Simplify and fix segment insertion, trimming and mspace_destroy
* Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
* Thanks especially to Dennis Flanagan for help on these.
 
V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
* Fix memalign brace error.
 
V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
* Fix improper #endif nesting in C++
* Add explicit casts needed for C++
 
V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
* Use trees for large bins
* Support mspaces
* Use segments to unify sbrk-based and mmap-based system allocation,
removing need for emulation on most platforms without sbrk.
* Default safety checks
* Optional footer checks. Thanks to William Robertson for the idea.
* Internal code refactoring
* Incorporate suggestions and platform-specific changes.
Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
Aaron Bachmann, Emery Berger, and others.
* Speed up non-fastbin processing enough to remove fastbins.
* Remove useless cfree() to avoid conflicts with other apps.
* Remove internal memcpy, memset. Compilers handle builtins better.
* Remove some options that no one ever used and rename others.
 
V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
* Fix malloc_state bitmap array misdeclaration
 
V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
* Allow tuning of FIRST_SORTED_BIN_SIZE
* Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
* Better detection and support for non-contiguousness of MORECORE.
Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
* Bypass most of malloc if no frees. Thanks To Emery Berger.
* Fix freeing of old top non-contiguous chunk im sysmalloc.
* Raised default trim and map thresholds to 256K.
* Fix mmap-related #defines. Thanks to Lubos Lunak.
* Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
* Branch-free bin calculation
* Default trim and mmap thresholds now 256K.
 
V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
* Introduce independent_comalloc and independent_calloc.
Thanks to Michael Pachos for motivation and help.
* Make optional .h file available
* Allow > 2GB requests on 32bit systems.
* new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
and Anonymous.
* Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
helping test this.)
* memalign: check alignment arg
* realloc: don't try to shift chunks backwards, since this
leads to more fragmentation in some programs and doesn't
seem to help in any others.
* Collect all cases in malloc requiring system memory into sysmalloc
* Use mmap as backup to sbrk
* Place all internal state in malloc_state
* Introduce fastbins (although similar to 2.5.1)
* Many minor tunings and cosmetic improvements
* Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
* Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
* Include errno.h to support default failure action.
 
V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
* return null for negative arguments
* Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
* Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
(e.g. WIN32 platforms)
* Cleanup header file inclusion for WIN32 platforms
* Cleanup code to avoid Microsoft Visual C++ compiler complaints
* Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
memory allocation routines
* Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
* Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
usage of 'assert' in non-WIN32 code
* Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
avoid infinite loop
* Always call 'fREe()' rather than 'free()'
 
V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
* Fixed ordering problem with boundary-stamping
 
V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
* Added pvalloc, as recommended by H.J. Liu
* Added 64bit pointer support mainly from Wolfram Gloger
* Added anonymously donated WIN32 sbrk emulation
* Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
* malloc_extend_top: fix mask error that caused wastage after
foreign sbrks
* Add linux mremap support code from HJ Liu
 
V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
* Integrated most documentation with the code.
* Add support for mmap, with help from
Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
* Use last_remainder in more cases.
* Pack bins using idea from colin@nyx10.cs.du.edu
* Use ordered bins instead of best-fit threshhold
* Eliminate block-local decls to simplify tracing and debugging.
* Support another case of realloc via move into top
* Fix error occuring when initial sbrk_base not word-aligned.
* Rely on page size for units instead of SBRK_UNIT to
avoid surprises about sbrk alignment conventions.
* Add mallinfo, mallopt. Thanks to Raymond Nijssen
(raymond@es.ele.tue.nl) for the suggestion.
* Add `pad' argument to malloc_trim and top_pad mallopt parameter.
* More precautions for cases where other routines call sbrk,
courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
* Added macros etc., allowing use in linux libc from
H.J. Lu (hjl@gnu.ai.mit.edu)
* Inverted this history list
 
V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
* Re-tuned and fixed to behave more nicely with V2.6.0 changes.
* Removed all preallocation code since under current scheme
the work required to undo bad preallocations exceeds
the work saved in good cases for most test programs.
* No longer use return list or unconsolidated bins since
no scheme using them consistently outperforms those that don't
given above changes.
* Use best fit for very large chunks to prevent some worst-cases.
* Added some support for debugging
 
V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
* Removed footers when chunks are in use. Thanks to
Paul Wilson (wilson@cs.texas.edu) for the suggestion.
 
V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
* Added malloc_trim, with help from Wolfram Gloger
(wmglo@Dent.MED.Uni-Muenchen.DE).
 
V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
 
V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
* realloc: try to expand in both directions
* malloc: swap order of clean-bin strategy;
* realloc: only conditionally expand backwards
* Try not to scavenge used bins
* Use bin counts as a guide to preallocation
* Occasionally bin return list chunks in first scan
* Add a few optimizations from colin@nyx10.cs.du.edu
 
V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
* faster bin computation & slightly different binning
* merged all consolidations to one part of malloc proper
(eliminating old malloc_find_space & malloc_clean_bin)
* Scan 2 returns chunks (not just 1)
* Propagate failure in realloc if malloc returns 0
* Add stuff to allow compilation on non-ANSI compilers
from kpv@research.att.com
 
V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
* removed potential for odd address access in prev_chunk
* removed dependency on getpagesize.h
* misc cosmetics and a bit more internal documentation
* anticosmetics: mangled names in macros to evade debugger strangeness
* tested on sparc, hp-700, dec-mips, rs6000
with gcc & native cc (hp, dec only) allowing
Detlefs & Zorn comparison study (in SIGPLAN Notices.)
 
Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
* Based loosely on libg++-1.2X malloc. (It retains some of the overall
structure of old version, but most details differ.)
 
*/
/programs/develop/libraries/libGUI/SRC/parent_window.inc
0,0 → 1,142
/*
create parent of window
*/
 
#define PARENT_WINDOW_DEFAULT_SIZEX 320
#define PARENT_WINDOW_DEFAULT_SIZEY 200
 
#define PARENT_WINDOW_BORDER_WIDTH 5;
 
void gui_get_screen_parameters(void)
{
int value;
value=(int)gui_ksys_get_screen_bits_per_pixel();
screen.bits_per_pixel=(char)value;
screen.bytes_per_pixel=screen.bits_per_pixel >> 3;
screen.skin_height=gui_ksys_get_skin_height();
 
screen.x=PARENT_WINDOW_BORDER_WIDTH;
screen.y=screen.skin_height;
value=gui_ksys_get_screen_size();
screen.display_size_y=value & 0xffff;
screen.display_size_y=value >> 16;
}
 
void gui_draw_window(parent_t *window)
{
DWORD flag;
flag=3;
flag=flag<<24;
flag +=0xaabbcc;
 
gui_ksys_begin_draw_window();
gui_ksys_draw_window(window->ctrl_x,window->ctrl_y,window->ctrl_sizex,window->ctrl_sizey,flag);
gui_ksys_finish_draw_window();
}
 
//---------------------------------------------------------------------------------
// create window parent
//---------------------------------------------------------------------------------
void* CreateWindow(void)
{
struct HEADERPARENT *WindowParent;
 
WindowParent=malloc(sizeof(parent_t));
WindowParent->message=malloc(sizeof(gui_message_t));
WindowParent->control_for_callback_function=malloc(sizeof(DWORD)*MAX_CALLBACKS);
WindowParent->callback_for_control_callback=malloc(sizeof(DWORD)*MAX_CALLBACKS);
 
WindowParent->main_parent=(DWORD*)WindowParent;
WindowParent->global_active_control_for_keys=(DWORD*)NULL;
 
WindowParent->control_for_callback_function[0]=(DWORD*)NULL;
WindowParent->number_callbacks=0;
 
WindowParent->child_bk=(DWORD*)NULL;
WindowParent->active_control_for_keys=(DWORD*)NULL;
WindowParent->active_control_for_mouse=(DWORD*)NULL;
WindowParent->ctrl_x=0x0;
WindowParent->ctrl_y=0x0;
WindowParent->ctrl_sizex=PARENT_WINDOW_DEFAULT_SIZEX;
WindowParent->ctrl_sizey=PARENT_WINDOW_DEFAULT_SIZEY;
WindowParent->callback=(DWORD*)NULL;//no callbacks yet
WindowParent->timer=(DWORD*)NULL;//no timers yet
WindowParent->flags=0;
WindowParent->flags=WindowParent->flags | FLAG_SHOW_CONTROL;
WindowParent->flags=WindowParent->flags | FLAG_FOCUSE_INPUT_SUPPOROTE;
 
WindowParent->number_timers_for_controls=0;
WindowParent->timer_bk=(DWORD*)NULL;
WindowParent->timer_fd=(DWORD*)NULL;
 
WindowParent->callback=(DWORD*)NULL;
WindowParent->calev_bk=(DWORD*)NULL;
WindowParent->calev_fd=(DWORD*)NULL;
 
WindowParent->IDL_func=(DWORD*)NULL;
 
//---------------------------------------------------------------------------------
//---------------------------platform depended part of code------------------------
//---------------------------------------------------------------------------------
//create and initialize screen buffer
gui_get_screen_parameters();
//by default draw output to the screen
screen.draw_output=DRAW_OUTPUT_SCREEN;
//calculate size of client's arrea
screen.size_x=WindowParent->ctrl_sizex-9;
screen.size_y=WindowParent->ctrl_sizey-screen.skin_height-4;
//----------------------------------------------------------------------------------
ID=0;
#ifdef DEBUG
printf("\ncreated parent window %d",(DWORD)WindowParent);
#endif
return(WindowParent);
}
 
//---------------------------------------------------------------------------------
// create window parent
//---------------------------------------------------------------------------------
void SetWindowSizeRequest(parent_t *WindowParent,int size_x,int size_y)
{
static int x,y,sizex,sizey;
//---------------------------------------------------------------------------------
//---------------------------platform depended part of code------------------------
//---------------------------------------------------------------------------------
x=WindowParent->ctrl_x;
y=WindowParent->ctrl_y;
sizex=size_x;
sizey=size_y;
gui_ksys_set_position_and_size_window(x,y,sizex,sizey);
//---------------------------------------------------------------------------------
WindowParent->ctrl_sizex=sizex;
WindowParent->ctrl_sizey=sizey;
 
screen.size_x=WindowParent->ctrl_sizex-9;
screen.size_y=WindowParent->ctrl_sizey-screen.skin_height-4;
#ifdef DEBUG
printf("\nwindow resized new sizex=%d sizey=%d",
WindowParent->ctrl_sizex,
WindowParent->ctrl_sizey);
#endif
}
 
void GetNewWindowSizePos(parent_t *WindowParent)
{
static process_table_t procinfo;
gui_ksys_get_current_process_information(&procinfo);
WindowParent->ctrl_x=(DWORD)procinfo.winx_start;
WindowParent->ctrl_y=(DWORD)procinfo.winy_start;
WindowParent->ctrl_sizex=(DWORD)procinfo.winx_size;
WindowParent->ctrl_sizey=(DWORD)procinfo.winy_size;
 
//get screen parameters again
gui_get_screen_parameters();
}
/programs/develop/libraries/libGUI/SRC/stdarg.h
0,0 → 1,8
 
typedef char *va_list;
#define _roundsize(n) ( (sizeof(n) + 3) & ~3 )
#define va_start(ap,v) (ap = (va_list)&v+_roundsize(v))
#define va_arg(ap,t) ( *(t *)((ap += _roundsize(t)) - _roundsize(t)) )
#define va_end(ap) (ap = (va_list)0)
 
 
/programs/develop/libraries/libGUI/SRC/stdio.h
0,0 → 1,4
 
+
+
/programs/develop/libraries/libGUI/SRC/stdio.inc
0,0 → 1,792
/*
function for format output to the string
*/
 
static int formatted_double_to_string(long double number,int format1,int format2,char *s)
{
/*
double n;
double nbefor;
double nafter;
double v,v2;
long intdigit;
long beforpointdigit;
long div;
int i;
int pos;
int size;
int fmt1;
int fmt2;
long mul;
static char buf[200];
 
size=(int)s;
n=(double)number;
if (n<0) {*s='-';s++;n=-n;}
 
fmt1=format1;
fmt2=format2;
if (fmt2>18) {fmt2=18;} //maximum of size long long type
 
//clear array befor output
for(i=0;i<=200;i++) {buf[i]=0;}
 
if ((fmt1>=0) && (n<1))
{ //formatted output if 0<=n<1
mul=1;
for(i=0;i<fmt2;i++)
{n=n*10;mul=mul*10;}
 
n=n*10;
n=ceil(n);
intdigit=floor(n);
//intdigit=n;
intdigit=(intdigit/10);
 
pos=0;
mul=mul/10;
for(i=0;i<fmt2-1;i++)
{
div=intdigit/mul;
buf[pos]=(char)div;
pos++;
intdigit=intdigit-div*mul;
mul=mul/10;
if (mul==1) break;
}
buf[pos]=(char)intdigit;
*s='0';s++;
*s='.';s++;
for(i=0;i<format2;i++)
{
if ((buf[i]>=0) && (buf[i]<=9)) {*s='0'+buf[i];}
else {*s='0';}
s++;
}
}
else
{ //if n>=1
//v=floorf(n+0.00000000000001);
beforpointdigit=floor(n+0.00000000000001);
//beforpointdigit=n;
nbefor=beforpointdigit;
nafter=n-nbefor;
 
//print part of number befor point
mul=1;
for(i=0;i<200-2;i++)
{
mul=mul*10;
if ((beforpointdigit/mul)==0) {fmt1=i+1;break;}
}
 
pos=0;
mul=mul/10;
for(i=0;i<fmt1-1;i++)
{
div=beforpointdigit/mul;
buf[pos]=(char)div;
pos++;
beforpointdigit=beforpointdigit-div*mul;
mul=mul/10;
if (mul==1) break;
}
buf[pos]=(char)beforpointdigit;
 
for(i=0;i<fmt1;i++)
{
if ((buf[i]>=0) && (buf[i]<=9)) {*s='0'+buf[i];}
s++;
}
 
//print part of number after point
mul=1;
for(i=0;i<fmt2;i++)
{nafter=nafter*10;mul=mul*10;}
 
nafter=nafter*10;
nafter=ceil(nafter);
intdigit=floor(nafter);
//intdigit=nafter;
intdigit=intdigit/10;
 
pos=0;
mul=mul/10;
for(i=0;i<fmt2-1;i++)
{
div=intdigit/mul;
buf[pos]=(char)div;
pos++;
intdigit=intdigit-div*mul;
mul=mul/10;
if (mul==1) break;
}
buf[pos]=(char)intdigit;
*s='.';s++;
for(i=0;i<format2;i++)
{
if ((buf[i]>=0) && (buf[i]<=9)) {*s='0'+buf[i];}
else {*s='0';}
s++;
}
 
}
size=(int)s-size;
return(size);
*/
}
 
static int formatted_long_to_string(long long number,int fmt1,char *s)
{
int i;
int pos;
int fmt;
int size;
int difference_pos;
long digit;
long mul;
long div;
static char buf[200];
 
//clear array befor output
for(i=0;i<200;i++) {buf[i]=0;}
digit=number;
 
size=(int)s;
if (digit<0) {*s='-';s++;digit=-digit;}
if (digit==0) {*s='0';s++;goto end;}
 
mul=1;
for(i=0;i<200-2;i++)
{
mul=mul*10;
if ((digit/mul)==0) {fmt=i+1;break;}
}
 
difference_pos=i+1;
 
pos=0;
mul=mul/10;
for(i=0;i<fmt-1;i++)
{
div=digit/mul;
buf[pos]=(char)div;
pos++;
digit=digit-div*mul;
mul=mul/10;
if (mul==1) break;
}
buf[pos]=(char)digit;
 
if (fmt1>=difference_pos) fmt=fmt1;
else
fmt=difference_pos;
 
for(i=0;i<fmt;i++)
{
if (i<difference_pos)
{
if ((buf[i]>=0) && (buf[i]<=9)) {*s='0'+buf[i];}
}
else
{
*s=' ';
}
s++;
}
end:
size=(int)s-size;
return(size);
}
 
static int formatted_hex_to_string(long long number,int fmt1,char flag_register,char *s)
{
long n;
int i,pos;
int fmt;
long size;
int difference_pos;
static char xdigs_lower[]="0123456789abcdef";
static char xdigs_upper[]="0123456789ABCDEF";
static char buf[200];
 
n=(long)number;
size=(int)s;
if (n<0) {*s='-';s++;n=-n;}
 
if (n==0) {*s='0';s++;goto end;}
for(i=0;i<200;i++) {buf[i]=0;}
 
i=0;
if (flag_register==0)
{
while (n>0)
{
buf[i]=xdigs_lower[n & 15];
n=n>>4;
i++;
}
}
else
{
while (n>0)
{
buf[i]=xdigs_upper[n & 15];
n=n>>4;
i++;
}
}
 
pos=i;
difference_pos=i;
 
for(i=pos-1;i>=0;i--)
{
*s=buf[i];
s++;
}
 
if (fmt1-difference_pos>0)
{
for(i=difference_pos+1;i<=fmt1;i++)
{
*s=' ';
s++;
}
}
end:size=(int)s-size;
return(size);
}
 
static int formatted_octa_to_string(long long number,int fmt1,char flag_register,char *s)
{
long n;
int i,pos;
int fmt;
long size;
int difference_pos;
static char xdigs_lower[16]="012345678";
static char buf[200];
 
n=number;
size=(int)s;
if (n<0) {*s='-';s++;n=-n;}
 
if (n==0) {*s='0';s++;goto end;}
for(i=0;i<200;i++) {buf[i]=0;}
 
i=0;
if (flag_register==0)
{
while (n>0)
{
buf[i]=xdigs_lower[n & 7];
n=n>>3;
i++;
}
}
 
pos=i;
difference_pos=i;
 
for(i=pos-1;i>=0;i--)
{
*s=buf[i];
s++;
}
 
if (fmt1-difference_pos>0)
{
for(i=difference_pos+1;i<=fmt1;i++)
{
*s=' ';
s++;
}
}
end:size=(int)s-size;
return(size);
}
 
static int format_print(char *dest, size_t maxlen,const char *fmt0, va_list argp)
{
int i,j,k;
int length;
int fmt1,fmt2,stepen;
size_t pos,posc;
long long intdigit;
long double doubledigit;
float floatdigit;
const char *fmt,*fmtc;
char *s;
char *str;
static char buffmt1[30];
static char buffmt2[30];
static char buf[1024];
char format_flag;
char flag_point;
char flag_noformat;
char flag_long;
char flag_unsigned;
char flag_register;
char flag_plus;
 
fmt=fmt0;
s=dest;
pos=0;
maxlen--;
if (maxlen<=0) return(0);
while(pos<maxlen)
{
if (*fmt=='%')
{
 
if (*(fmt+1)=='%')
{
*s='%';
s++;
fmt=fmt+2;
pos++;
goto exit_check;
}
//checking to containg format in the string
fmtc=fmt;
posc=pos;
format_flag=0;
flag_long=0;
flag_unsigned=0;
flag_register=0;
flag_plus=0;
while((*fmtc!='\0') || (*fmtc!=0))
{
fmtc++;
posc++;
switch(*fmtc)
{
case 'c':
case 'C':
format_flag=1;
break;
case 'd':
case 'D':
case 'i':
case 'I':
format_flag=1;
break;
case 'e':
format_flag=1;
break;
case 'E':
format_flag=1;
flag_long=1;
break;
case 'f':
format_flag=1;
break;
case 'F':
format_flag=1;
flag_long=1;
break;
case 'g':
format_flag=1;
break;
case 'G':
format_flag=1;
flag_long=1;
break;
case 'l':
flag_long=1;
break;
case 'L':
flag_long=2;
break;
case 'o':
format_flag=1;
break;
case 's':
case 'S':
format_flag=1;
break;
case 'u':
case 'U':
format_flag=1;
flag_unsigned=1;
break;
case 'x':
format_flag=1;
break;
case 'X':
flag_register=1;
format_flag=1;
break;
case 'z':
case 'Z':
format_flag=1;
flag_unsigned=1;
break;
case '+':
flag_plus=1;
break;
 
default:;
}
if ((*fmtc=='%') || (*fmtc==' ')) break;
if (format_flag==1) break;
}
 
if (format_flag==0)
{
*s=*fmt;
fmt++;
s++;
pos++;
}
else
{
if ((posc-pos)==1)
{//simbols % and format simbol near tothere(for example %c )
fmt=fmtc+1;
switch(*fmtc)
{
case 'c':
case 'C':
if ((pos+1)<maxlen)
{
//*s=(int)va_arg(argp,char*);
*s=*((char *)argp);
argp=argp+4;
*s++;pos++;
}
break;
case 's':
case 'S':
str=va_arg(argp,char*);
length=strlen(str);
if ((pos+length)<maxlen)
{
memmove(s,str,length);
s=s+length;pos=pos+length;
}
break;
case 'd':
case 'D':
case 'i':
case 'I':
if (flag_long==0) {intdigit=va_arg(argp,int);}
if (flag_long==1) {intdigit=va_arg(argp,long);}
if (flag_long==2) {intdigit=va_arg(argp,long long);}
//intdigit=*((long*)argp);
//argp=argp+4;
if ((intdigit>0) && (flag_plus==1) && (pos+1<maxlen))
{
*s='+';
s++;
pos++;
}
length=formatted_long_to_string(intdigit,0,buf);
if ((pos+length)<maxlen)
{
memmove(s,buf,length);
s=s+length;pos=pos+length;
}
break;
case 'o':
if (flag_long==0) {intdigit=va_arg(argp,int);}
if (flag_long==1) {intdigit=va_arg(argp,long);}
if (flag_long==2) {intdigit=va_arg(argp,long long);}
//intdigit=*((long int *)argp);
//argp=argp+4;
 
length=formatted_octa_to_string(intdigit,0,flag_register,buf);
if ((pos+length)<maxlen)
{
memmove(s,buf,length);
s=s+length;pos=pos+length;
}
break;
case 'u':
case 'U':
if (flag_long==0) {intdigit=va_arg(argp,int);}
if (flag_long==1) {intdigit=va_arg(argp,long int);}
if (flag_long==2) {intdigit=va_arg(argp,long long);}
 
if (flag_unsigned==1) {
if (intdigit<0) {intdigit=-intdigit;}
}
 
length=formatted_long_to_string(intdigit,0,buf);
if ((pos+length)<maxlen)
{
memmove(s,buf,length);
s=s+length;pos=pos+length;
}
break;
case 'x':
case 'X':
if (flag_long==0) {intdigit=va_arg(argp,int);}
if (flag_long==1) {intdigit=va_arg(argp,long);}
if (flag_long==2) {intdigit=va_arg(argp,long long);}
//intdigit=*((long int *)argp);
//argp=argp+4;
 
length=formatted_hex_to_string(intdigit,0,flag_register,buf);
if ((pos+length)<maxlen)
{
memmove(s,buf,length);
s=s+length;pos=pos+length;
}
break;
case 'z':
case 'Z':
intdigit=va_arg(argp,size_t);
 
if (flag_unsigned==1) {
if (intdigit<0) {intdigit=-intdigit;}
}
 
length=formatted_long_to_string(intdigit,0,buf);
if ((pos+length)<maxlen)
{
memmove(s,buf,length);
s=s+length;pos=pos+length;
}
break;
default:;
 
}
}
else
{
fmt++;
flag_point=0;
flag_noformat=0;
fmt1=0;
fmt2=0;
j=0;
k=0;
for(i=pos+1;i<posc;i++)
{
switch(*fmt)
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
if (flag_point==0)
{
buffmt1[j]=*fmt-'0';
j++;
}
else
{
buffmt2[k]=*fmt-'0';
k++;
}
break;
case '.':
flag_point=1;
break;
case 'l':
case 'L':
break;
case '+':
break;
default:flag_noformat=1;
}
if (flag_noformat==1) break;
fmt++;
}
if (flag_noformat==0)
{
stepen=1;
for(i=j-1;i>=0;i--)
{
fmt1=fmt1+buffmt1[i]*stepen;
stepen=stepen*10;
}
stepen=1;
for(i=k-1;i>=0;i--)
{
fmt2=fmt2+buffmt2[i]*stepen;
stepen=stepen*10;
}
switch(*fmtc)
{
case 'f':
case 'F':
if (flag_long==0) {doubledigit=va_arg(argp,double);}
if (flag_long>=1) {doubledigit=va_arg(argp,long double);}
//doubledigit=*((double *)argp);
//sargp=argp+8;
length=formatted_double_to_string(doubledigit,fmt1,fmt2,buf);
if ((pos+length)<maxlen)
{
memmove(s,buf,length);
s=s+length;pos=pos+length;
}
break;
case 'd':
case 'D':
case 'i':
case 'I':
if (flag_long==0) {intdigit=va_arg(argp,int);}
if (flag_long==1) {intdigit=va_arg(argp,long);}
if (flag_long==2) {intdigit=va_arg(argp,long long);}
 
if ((intdigit>0) && (flag_plus==1) && (pos+1<maxlen))
{
*s='+';
s++;
pos++;
}
length=formatted_long_to_string(intdigit,fmt1,buf);
if ((pos+length)<maxlen)
{
memmove(s,buf,length);
s=s+length;pos=pos+length;
}
break;
case 'o':
if (flag_long==0) {intdigit=va_arg(argp,int);}
if (flag_long==1) {intdigit=va_arg(argp,long);}
if (flag_long==2) {intdigit=va_arg(argp,long long);}
length=formatted_octa_to_string(intdigit,fmt1,flag_register,buf);
if ((pos+length)<maxlen)
{
memmove(s,buf,length);
s=s+length;pos=pos+length;
}
break;
case 'u':
case 'U':
if (flag_long==0) {intdigit=va_arg(argp,int);}
if (flag_long==1) {intdigit=va_arg(argp,long int);}
if (flag_long==2) {intdigit=va_arg(argp,long long);}
 
if (flag_unsigned==1) {
if (intdigit<0) {intdigit=-intdigit;}
}
 
length=formatted_long_to_string(intdigit,fmt1,buf);
if ((pos+length)<maxlen)
{
memmove(s,buf,length);
s=s+length;pos=pos+length;
}
break;
case 'x':
case 'X':
if (flag_long==0) {intdigit=va_arg(argp,int);}
if (flag_long==1) {intdigit=va_arg(argp,long int);}
if (flag_long==2) {intdigit=va_arg(argp,long long);}
length=formatted_hex_to_string(intdigit,fmt1,flag_register,buf);
if ((pos+length)<maxlen)
{
memmove(s,buf,length);
s=s+length;pos=pos+length;
}
break;
case 'z':
case 'Z':
intdigit=va_arg(argp,size_t);
 
if (flag_unsigned==1) {
if (intdigit<0) {intdigit=-intdigit;}
}
 
length=formatted_long_to_string(intdigit,fmt1,buf);
if ((pos+length)<maxlen)
{
memmove(s,buf,length);
s=s+length;pos=pos+length;
}
break;
default:;
}
}
fmt=fmtc+1;
}
}
}
else
{
if (*fmt=='\0') {break;}
*s=*fmt;
fmt++;
s++;
pos++;
}
exit_check:;
}
*s='\0';
return(pos);
}
static char* dllname="/sys/lib/console.obj";
int console_init_status=0;
 
static char* imports[] = {"con_init","con_printf","con_exit"};
static char* caption = "libGUI debug Console";
 
static void (stdcall *con_init)(
DWORD wnd_width,
DWORD wnd_height,
DWORD scr_width,
DWORD scr_height,
const char* title);
static void (cdecl *con_printf)(const char* format,...);
static void (stdcall *con_exit)(DWORD bCloseWindow);
 
static void printf_link(import_t *exp, char** imports)
{
con_init = (void (stdcall *)(DWORD , DWORD, DWORD, DWORD, const char*))
gui_cofflib_getproc(exp, imports[0]);
con_printf = (void (cdecl *)(const char*,...))
gui_cofflib_getproc(exp, imports[1]);
con_exit = (void (stdcall *)(DWORD))
gui_cofflib_getproc(exp, imports[2]);
}
 
static int init_console(void)
{
import_t *hDll;
 
if((hDll = (import_t*)gui_ksys_load_dll(dllname)) == 0)
{
gui_debug_out_str("can't load lib\n");
return 1;
}
printf_link(hDll, imports);
con_init(78,26,78,200, caption);
return(0);
}
 
 
static int printf(const char *format,...)
{
int i;
int printed_simbols;
va_list arg;
char *s;
 
va_start(arg,format);
s=malloc(4096);
printed_simbols=format_print(s,4096,format,arg);
 
 
if (console_init_status==0)
{
i=init_console();
console_init_status=1;
}
con_printf("%s",s);
free(s);
 
return(printed_simbols);
}
 
/programs/develop/libraries/libGUI/SRC/stdlib.h
0,0 → 1,9
/*
some standart libC helper functions
*/
 
static void* malloc(DWORD size);
static void free(void *memory);
static void* realloc(void *old_mem,DWORD new_size);
static void exit(int c);
 
/programs/develop/libraries/libGUI/SRC/stdlib.inc
0,0 → 1,24
/*
some standart libC functions
*/
/*
static void* malloc(DWORD size)
{
return dlmalloc(size);
}
 
static void free(void *memory)
{
dlfree(memory);
}
 
static void* realloc(void *old_mem,DWORD new_size)
{
return dlrealloc(old_mem,new_size);
}
*/
 
static void exit(int c)
{
gui_ksys_exit(c);
}
/programs/develop/libraries/libGUI/SRC/string.h
0,0 → 1,17
/*
some libC function working with memory
*/
 
static void *memmove(void *dst,const void *src,size_t length);
static void *memset(const void *dst, int c, size_t length);
static size_t strlen(const char *s);
static char* strchr(const char *string, int c);
static char* strrchr(const char *string, int c);
static char* strstr(const char *s1,const char *s2);
static int strcmp(const char*,const char*);
static int strncmp(const char* string1, const char* string2,size_t count);
 
static int vsnprintf(char *dest, size_t size,const char *format,va_list ap);
static int cdecl snprintf(char *dest, size_t size, const char *format,...);
static int cdecl sprintf(char *dest,const char *format,...);
 
/programs/develop/libraries/libGUI/SRC/string.inc
0,0 → 1,163
/*
some libC function working with memory
*/
 
static void *memmove(void *dst,const void *src,size_t length)
{
void *value;
 
if (length & 3)
{//length not aligned in 4 bytes use reb movsb
__asm__ __volatile__(
"movl %%edi,%%eax\n\t"
"cld\n\t"
"rep\n\t"
"movsb"
:"=D"(value)
:"c"(length),"S"(src),"D"(dst)
:"eax");
}
else
{//length aligned in 4 bytes use rep movsd
length=length >> 2;//length=length/4
__asm__ __volatile__(
"movl %%edi,%%eax\n\t"
"cld\n\t"
"rep\n\t"
"movsd"
:"=D"(value)
:"c"(length),"S"(src),"D"(dst)
:"eax");
 
}
return(value);
}
 
static void *memset(const void *dst, int c, size_t length)
{
unsigned char cfill;
 
cfill=c;
while(length)
{
*(char*)dst=c;
dst=(char*)dst+1;
length--;
}
return((void*)1);
}
 
static size_t strlen(const char *s)
{
size_t i;
 
i=0;
while(*s!='\0')
{
i++;
s++;
}
return(i);
}
 
static char* strchr(const char *string, int c)
{
while(*string!='\0')
{
if (*string==(char)c) return((char*)string);
string++;
}
return(NULL);
}
 
static char* strrchr(const char *string, int c)
{
char *s;
int i,j;
 
s=(char*)string;
while(*s!='\0') {s++;}
 
j=(int)(s-string);
s--;
 
for(i=0;i<j;i++)
{
if (*s==(char)c) return(s);
s--;
}
 
return(NULL);
}
 
static char* strstr(const char *s1,const char *s2)
{
char *s;
int i,j,len1,len2;
 
len2=strlen(s2);
if (len2==0) return((char*)s1);
 
len1=strlen(s1);
for(i=0;i<len1-len2+1;i++)
{
if (s1[i]==s2[0])
{
for(j=0;j<len2;j++)
{
if (s1[i+j]!=s2[j]) break;
}
if (j==len2) return((char*)(s1+i));
}
}
return(NULL);
}
 
static int strcmp(const char* string1, const char* string2)
{
while (1)
{
if (*string1<*string2)
return -1;
if (*string1>*string2)
return 1;
if (*string1=='\0')
return 0;
string1++;
string2++;
}
}
 
static int strncmp(const char* string1, const char* string2,size_t count)
{
while(count>0 && *string1==*string2)
{
if (*string1) return 0;
++string1;
++string2;
--count;
}
if(count) return (*string1 - *string2);
return 0;
}
 
static int sprintf(char *dest,const char *format,...)
{
va_list arg;
va_start (arg, format);
return format_print(dest,strlen(dest), format, arg);
}
 
static int snprintf(char *dest, size_t size,const char *format,...)
{
va_list arg;
va_start (arg, format);
return format_print(dest,size, format, arg);
}
 
static int vsnprintf(char *dest, size_t size,const char *format,va_list ap)
{
return format_print(dest,size, format, ap);
}
 
 
/programs/develop/libraries/libGUI/SRC/types.h
0,0 → 1,13
/*
some used types
*/
#define NULL (void*)0
 
typedef unsigned int DWORD;
typedef unsigned char BYTE;
typedef unsigned short int WORD;
typedef unsigned int size_t;
 
//for win compilers
#define stdcall __stdcall
#define cdecl __cdecl
/programs/develop/libraries/libGUI/SRC
Property changes:
Added: tsvn:logminsize
+5
\ No newline at end of property
/programs/develop/libraries/libGUI/examples/src/button.c
0,0 → 1,70
/*
test libGUI library
*/
#include "stdarg.h"
#include "libGUI.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
 
#define FALSE 0
#define TRUE 1
 
void callback_func_delete_window(header_t *control,void *data)
{
QuitLibGUI((parent_t*)control);
}
 
void callback_func1(header_t *control,void *data)
{
printf("\nentry in button");
}
 
void callback_func2(header_t *control,void *data)
{
printf("\nbutton pressed");
}
 
void callback_func3(header_t *control,void *data)
{
printf("\nbutton released");
}
 
void callback_func4(header_t *control,void *data)
{
printf("\nleave button");
}
 
int main(int argc, char *argv[])
{
parent_t *window;
gui_callback_t *id1,*id2,*id3,*id4;
gui_button_data_t button_data;
gui_button_t *button;
 
//load libGUI library
LoadLibGUI(NULL);
 
//create main window
window=CreateWindow();
SetWindowSizeRequest(window,90,60);
//create button
button_data.x=5;
button_data.y=5;
button_data.width=70;
button_data.height=20;
//create button with text
button=CreateButtonWithText(&button_data,"Click my!");
//set callback functions for button close window
SetCallbackFunction(window,DELETE_EVENT,&callback_func_delete_window,NULL);
//set callback functions for button
id1=SetCallbackFunction(button,BUTTON_ENTER_EVENT,&callback_func1,NULL);
id2=SetCallbackFunction(button,BUTTON_PRESSED_EVENT,&callback_func2,NULL);
id3=SetCallbackFunction(button,BUTTON_RELEASED_EVENT,&callback_func3,NULL);
id4=SetCallbackFunction(button,BUTTON_LEAVE_EVENT,&callback_func4,NULL);
//pack button in window
PackControls(window,button);
//start main libGUI loop
LibGUImain(window);
}
/programs/develop/libraries/libGUI/examples/src/image.c
0,0 → 1,52
/*
test libGUI library
*/
#include "stdarg.h"
#include "libGUI.h"
#include "stdlib.h"
#include "stdio.h"
 
void callback_func_delete_window(header_t *control,void *data)
{
QuitLibGUI((parent_t*)control);
}
 
int main(int argc, char *argv[])
{
parent_t *window;
gui_image_data_t imdata;
gui_image_t *image;
int i,j;
unsigned int *img;
 
//load libGUI library
LoadLibGUI(NULL);//use default system path to library
//create main window
window=CreateWindow();
//change window size
SetWindowSizeRequest(window,220,142);
//set callback function for close window button
SetCallbackFunction(window,DELETE_EVENT,&callback_func_delete_window,NULL);
//create image
imdata.x=5;
imdata.y=5;
imdata.width=200;
imdata.height=100;
imdata.bits_per_pixel=32;//bits per pixel
 
image=CreateImage(&imdata);
img=(unsigned int*)image->img;
//generate 32 bits image
for(i=0;i<GetControlSizeY(image);i++)
{
for(j=0;j<GetControlSizeX(image);j++)
{
*img=100*(i*i+j*j-i*3+2*j);
img++;
}
}
//pack image in window
PackControls(window,image);
//start main libGUI loop
LibGUImain(window);
}
/programs/develop/libraries/libGUI/examples/src/progress_bar.c
0,0 → 1,66
/*
test libGUI library
*/
#include "stdarg.h"
#include "libGUI.h"
#include "string.h"
 
 
void callback_func_delete_window(header_t *control,void *data)
{
QuitLibGUI((parent_t*)control);
}
 
void ProgressBarCallback(void *data)
{
gui_progress_bar_t *progress_bar;
int progress;
static char txt[16];
progress_bar=(gui_progress_bar_t*)data;
progress_bar->progress+=0.01;//incrase progress
if (progress_bar->progress>1.0) progress_bar->progress=0.0;
 
//calculate progress level in %
progress=progress_bar->progress*100;
snprintf(txt,16,"progress %d%%",progress);
//set text for progress bar
ProgressBarSetText(progress_bar,txt);
}
 
int main(int argc, char *argv[])
{
parent_t *window;
gui_progress_bar_data_t progress_bar_data;
gui_progress_bar_t *progress_bar;
gui_timer_t *timer;
 
//load libGUI library
LoadLibGUI(NULL);//use default system path to library
//create main window
window=CreateWindow();
//change size of main window
SetWindowSizeRequest(window,320,57);
//set callback function for button close window
SetCallbackFunction(window,DELETE_EVENT,&callback_func_delete_window,NULL);
//create progress bar
progress_bar_data.x=5;
progress_bar_data.y=5;
progress_bar_data.width=300;
progress_bar_data.height=25;
progress_bar_data.progress=0.0;
progress_bar=CreateProgressBar(&progress_bar_data);
//create timer for update progress level each 50 millisecunds
timer=SetTimerCallbackForFunction(window,5,&ProgressBarCallback,progress_bar);
 
//pack progress bar in window
PackControls(window,progress_bar);
 
//update progress bar automatically each 50 millisecund
SetProgressBarPulse(progress_bar,5);
 
//call main libGUI loop
LibGUImain(window);
}
/programs/develop/libraries/libGUI/examples/src/scroll_bar.c
0,0 → 1,76
/*
test libGUI library
*/
#include "stdarg.h"
#include "libGUI.h"
#include "stdio.h"
 
#define FALSE 0
#define TRUE 1
 
void callback_func_delete_window(header_t *control,void *data)
{
printf("\nlibGUI quit...");
QuitLibGUI((parent_t*)control);
}
 
void ScrollStateH(header_t *control,void *data)
{
gui_scroll_bar_t *hsc;
 
hsc=(gui_scroll_bar_t*)control;
printf("\nhorizontal ruler position %d%%",(int)(hsc->ruller_pos*100));
}
 
void ScrollStateV(header_t *control,void *data)
{
gui_scroll_bar_t *vsc;
 
vsc=(gui_scroll_bar_t*)control;
printf("\nvertical ruler position %d%%",(int)(vsc->ruller_pos*100));
}
 
int main(int argc, char *argv[])
{
parent_t *window;
gui_callback_t *id1,*id2;
gui_scroll_bar_data_t horizontal_sbar_data;
gui_scroll_bar_data_t vertical_sbar_data;
gui_scroll_bar_t *ScrollBarH;
gui_scroll_bar_t *ScrollBarV;
 
//load libGUI library
LoadLibGUI(NULL);//use default system path to library
//create main window
window=CreateWindow();
//change size of window
SetWindowSizeRequest(window,270,207);
//create horizontal scroll bar
horizontal_sbar_data.x=5;
horizontal_sbar_data.y=5;
horizontal_sbar_data.width=250;
horizontal_sbar_data.height=16;
horizontal_sbar_data.ruller_size=0.2;//size of ruler E [0,1]
horizontal_sbar_data.ruller_pos=0.5;//ruler position E [0,1]
horizontal_sbar_data.ruller_step=0.1;//step of change ruler pos after press of button E [0,1]
//create vertical scroll bar
vertical_sbar_data.x=5;
vertical_sbar_data.y=26;
vertical_sbar_data.width=16;
vertical_sbar_data.height=150;
vertical_sbar_data.ruller_size=0.5;//size of ruler E [0,1]
vertical_sbar_data.ruller_pos=0.05;//ruler position E [0,1]
vertical_sbar_data.ruller_step=0.1;//step of change ruler pos after press of button E [0,1]
//create horizontal and vertical scroll bars
ScrollBarH=CreateHorizontalScrollBar(&horizontal_sbar_data);
ScrollBarV=CreateVerticalScrollBar(&vertical_sbar_data);
//set callback functions for scroll bars
id1=SetCallbackFunction(ScrollBarH,SCROLLBAR_CHANGED_EVENT,&ScrollStateH,NULL);
id2=SetCallbackFunction(ScrollBarV,SCROLLBAR_CHANGED_EVENT,&ScrollStateV,NULL);
//pack scroll bars in window
PackControls(window,ScrollBarH);
PackControls(window,ScrollBarV);
//start minl libGUI loop
LibGUImain(window);
}
/programs/develop/libraries/libGUI/examples/src/scrolled_window.c
0,0 → 1,67
/*
test libGUI library
*/
#include "stdarg.h"
#include "libGUI.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
 
void callback_func_delete_window(header_t *control,void *data)
{
QuitLibGUI((parent_t*)control);
}
 
void callback_func(header_t *control,void *data)
{
printf("\npressed button with ID=%d control=%d",(int)control->ctrl_ID,(int)control);
}
 
int main(int argc, char *argv[])
{
parent_t *window;
gui_button_data_t button_data;
gui_button_t *button;
gui_scrolled_window_data_t scroll_win_data;
gui_scrolled_window_t *ScrollWin;
int i,j;
static char txt[20];
//load libGUI library
LoadLibGUI(NULL);
//create main window
window=CreateWindow();
//change size of window
SetWindowSizeRequest(window,270,282);
//create scrolled window
scroll_win_data.x=5;
scroll_win_data.y=5;
scroll_win_data.width=250;
scroll_win_data.height=250;
ScrollWin=CreateScrolledWindow(&scroll_win_data);
 
//create buttons
for(j=1;j<=10;j++)
{
for(i=1;i<=10;i++)
{
button_data.x=10+(i-1)*75;
button_data.y=10+(j-1)*25;
button_data.width=70;
button_data.height=20;
 
snprintf(txt,20,"(%d,%d)",j,i);
button=CreateButtonWithText(&button_data,txt);
SetCallbackFunction(button,BUTTON_PRESSED_EVENT,&callback_func,NULL);
ScrolledWindowPackControls(ScrollWin,button);
}
}
//set callback function for button close window
SetCallbackFunction(window,DELETE_EVENT,&callback_func_delete_window,NULL);
//pack scrolled window in window
PackControls(window,ScrollWin);
//start main libGUI loop
LibGUImain(window);
}
/programs/develop/libraries/libGUI/examples/src/text.c
0,0 → 1,45
/*
hello world example
*/
 
#include "libGUI.h"
 
#define TRUE 1
#define FALSE 0
 
void callback_func_delete_window(header_t *control,void *data)
{
QuitLibGUI((parent_t*)control);
}
 
int main(int argc, char *argv[])
{
parent_t *window;
gui_text_data_t txtdata;
gui_text_t *text;
 
//load libGUI library
LoadLibGUI(NULL);//load from default system path to library
//create main window
window=CreateWindow();
//change size of window
SetWindowSizeRequest(window,92,46);
//set callback function for button close window
SetCallbackFunction(window,DELETE_EVENT,&callback_func_delete_window,NULL);
//create control text
txtdata.x=5;
txtdata.y=5;
txtdata.font=NULL;//use default system libGUI font
txtdata.background=TRUE;//use background for text
txtdata.color=0xffffff;//text color
txtdata.background_color=0xff8000;//background color
txtdata.text="Hello world!";
text=CreateText(&txtdata);
//pack control text in window
PackControls(window,text);
 
//start libGUI main loop
LibGUImain(window);
}
 
/programs/develop/libraries/libGUI/examples/src
Property changes:
Added: tsvn:logminsize
+5
\ No newline at end of property
/programs/develop/libraries/libGUI/examples
Property changes:
Added: tsvn:logminsize
+5
\ No newline at end of property
/programs/develop/libraries/libGUI/.
Property changes:
Added: tsvn:logminsize
+5
\ No newline at end of property