Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 2129 → Rev 2130

/kernel/branches/Kolibri-acpi/const.inc
645,7 → 645,7
end virtual
 
struc MEM_STATE
{ .mutex rd 1
{ .mutex MUTEX
.smallmap rd 1
.treemap rd 1
.topsize rd 1
664,7 → 664,7
.kernel_pages dd ?
.kernel_tables dd ?
.sys_page_dir dd ?
.pg_mutex dd ?
.mutex MUTEX
}
 
;struc LIB
/kernel/branches/Kolibri-acpi/core/apic.inc
5,7 → 5,7
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 
IRQ_RESERVE = 24 ; 16 or 24
IRQ_RESERVED = 24 ; 16 or 24
 
iglobal
IRQ_COUNT dd 24
62,10 → 62,11
shr eax, 16
inc al
movzx eax, al
cmp al, IRQ_RESERVE
cmp al, IRQ_RESERVED
jbe @f
mov al, IRQ_RESERVE
@@: mov [IRQ_COUNT], eax
mov al, IRQ_RESERVED
@@:
mov [IRQ_COUNT], eax
 
; Reroute IOAPIC & mask all interrupts
xor ecx, ecx
106,7 → 107,7
 
;init handlers table
 
mov ecx, IRQ_RESERVE
mov ecx, IRQ_RESERVED
mov edi, irqh_tab
@@:
mov eax, edi
/kernel/branches/Kolibri-acpi/core/exports.inc
85,7 → 85,14
szStrchr db 'strchr',0
szStrrchr db 'strrchr',0
 
szDiskAdd db 'DiskAdd',0
szDiskDel db 'DiskDel',0
szDiskMediaChanged db 'DiskMediaChanged',0
 
szTimerHS db 'TimerHS',0
szCancelTimerHS db 'CancelTimerHS',0
 
 
align 16
kernel_export:
dd szRegService , reg_service
/kernel/branches/Kolibri-acpi/core/heap.inc
151,7 → 151,8
 
mov [mem_block_list+63*4], ebx
mov byte [mem_block_map], 0xFC
and [heap_mutex], 0
mov ecx, heap_mutex
call mutex_init
mov [heap_blocks], 4095
mov [free_blocks], 4094
ret
272,14 → 273,14
push esi
push edi
 
mov ecx, heap_mutex
call mutex_lock
 
mov eax, [size]
add eax, 4095
and eax, not 4095
mov [size], eax
 
mov ebx, heap_mutex
call wait_mutex ;ebx
 
cmp eax, [heap_free]
ja .error
 
355,10 → 356,11
mov [edx+list_bk], esi
 
mov [esi+block_flags], USED_BLOCK
mov eax, [esi+block_base]
mov ebx, [size]
sub [heap_free], ebx
and [heap_mutex], 0
mov ecx, heap_mutex
call mutex_unlock
mov eax, [esi+block_base]
pop edi
pop esi
pop ebx
378,17 → 380,19
mov [edx+list_bk], edi
 
mov [edi+block_flags], USED_BLOCK
mov eax, [edi+block_base]
mov ebx, [size]
sub [heap_free], ebx
and [heap_mutex], 0
mov ecx, heap_mutex
call mutex_unlock
mov eax, [edi+block_base]
pop edi
pop esi
pop ebx
ret
.error:
mov ecx, heap_mutex
call mutex_unlock
xor eax, eax
mov [heap_mutex], eax
pop edi
pop esi
pop ebx
400,9 → 404,10
push ebx
push esi
push edi
mov ebx, heap_mutex
call wait_mutex ;ebx
 
mov ecx, heap_mutex
call mutex_lock
 
mov eax, [base]
mov esi, [mem_used.fd]
@@:
491,9 → 496,10
@@:
bts [mem_block_mask], eax
.m_eq:
mov ecx, heap_mutex
call mutex_unlock
xor eax, eax
mov [heap_mutex], eax
dec eax
not eax
pop edi
pop esi
pop ebx
513,16 → 519,18
@@:
bts [mem_block_mask], eax
mov [esi+block_flags],FREE_BLOCK
mov ecx, heap_mutex
call mutex_unlock
xor eax, eax
mov [heap_mutex], eax
dec eax
not eax
pop edi
pop esi
pop ebx
ret
.fail:
mov ecx, heap_mutex
call mutex_unlock
xor eax, eax
mov [heap_mutex], eax
pop edi
pop esi
pop ebx
607,8 → 615,8
proc kernel_free stdcall, base:dword
push ebx esi
 
mov ebx, heap_mutex
call wait_mutex ;ebx
mov ecx, heap_mutex
call mutex_lock
 
mov eax, [base]
mov esi, [mem_used.fd]
624,19 → 632,17
cmp [esi+block_flags], USED_BLOCK
jne .fail
 
and [heap_mutex], 0
call mutex_unlock
 
push ecx
mov ecx, [esi+block_size];
shr ecx, 12
call release_pages ;eax, ecx
pop ecx
stdcall free_kernel_space, [base]
pop esi ebx
ret
.fail:
call mutex_unlock
xor eax, eax
mov [heap_mutex], eax
pop esi ebx
ret
endp
/kernel/branches/Kolibri-acpi/core/irq.inc
5,6 → 5,10
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 
 
IRQ_POOL_SIZE equ 48
 
 
macro __list_add new, prev, next
{
mov [next+LHEAD.prev], new
28,13 → 32,13
uglobal
 
align 16
irqh_tab rd LHEAD.sizeof * IRQ_RESERVE / 4
irqh_tab rd LHEAD.sizeof * IRQ_RESERVED / 4
 
irqh_pool rd IRQH.sizeof *48 /4
irqh_pool rd IRQH.sizeof * IRQ_POOL_SIZE /4
next_irqh rd 1
 
irq_active_set rd 1
irq_failed rd IRQ_RESERVE
irq_failed rd IRQ_RESERVED
 
endg
 
44,8 → 48,6
.irqh dd ?
endl
 
xchg bx, bx
 
and [.irqh], 0
 
push ebx
54,7 → 56,7
test ebx, ebx
jz .err
 
cmp ebx, IRQ_RESERVE
cmp ebx, IRQ_RESERVED
jae .err
 
mov edx, [handler]
72,9 → 74,10
 
mov eax, [ecx]
mov [next_irqh], eax
 
mov [.irqh], ecx
 
mov [irq_failed+ebx*4], 0 ;clear counter
 
mov eax, [user_data]
mov [ecx+IRQH.handler], edx
mov [ecx+IRQH.data], eax
81,9 → 84,8
 
lea edx, [irqh_tab+ebx*8]
list_add_tail ecx, edx ;clobber eax
stdcall enable_irq, ebx
 
stdcall enable_irq, [irq]
 
.fail:
popfd
.err:
116,7 → 118,6
endp
 
 
 
macro irq_serv_h [num] {
forward
align 4
142,8 → 143,6
.main:
save_ring3_context
 
xchg bx, bx
 
mov ebp, [esp + 32]
mov bx, app_data ;os_data
mov ds, bx
212,4 → 211,15
add esp, 4
iret
 
align 4
irqD:
push eax
push ecx
xor eax,eax
out 0xf0,al
mov eax, 13
call IRQ_EOI
pop ecx
pop eax
iret
 
/kernel/branches/Kolibri-acpi/core/malloc.inc
20,7 → 20,7
; esi= nb
; ebx= idx
;
align 16
align 4
malloc:
push esi
 
31,8 → 31,8
and esi, -8
add esi, 8
 
mov ebx, mst.mutex
call wait_mutex ;ebx
mov ecx, mst.mutex
call mutex_lock
 
cmp esi, 256
jae .large
92,9 → 92,13
pop edi
pop ebp
.done:
mov esi, eax
mov ecx, mst.mutex
call mutex_unlock
mov eax, esi
pop esi
mov [mst.mutex], 0
ret
 
.split:
lea ebx, [edx+8] ;ebx=mem
 
133,10 → 137,10
mov [edx+12], eax ; F->bk = r;
mov [eax+8], edx ; r->fd = F;
mov [eax+12], ecx ; r->bk = B;
 
mov eax, ebx
pop esi
mov [mst.mutex], 0
ret
jmp .done
 
.small:
 
; if (ms.treemap != 0 && (mem = malloc_small(nb)) != 0)
150,9 → 154,8
call malloc_small
test eax, eax
jz .from_top
pop esi
and [mst.mutex], 0
ret
jmp .done
 
.large:
 
; if (ms.treemap != 0 && (mem = malloc_large(nb)) != 0)
189,18 → 192,15
mov [edx+4], eax
mov [ecx+4], esi
lea eax, [ecx+8]
pop esi
and [mst.mutex], 0
ret
jmp .done
 
.fail:
xor eax, eax
pop esi
and [mst.mutex], 0
ret
jmp .done
 
; param
; eax= mem
 
align 4
free:
push edi
mov edi, eax
211,8 → 211,8
test byte [edi+4], 2
je .fail
 
mov ebx, mst.mutex
call wait_mutex ;ebx
mov ecx, mst.mutex
call mutex_lock
 
; psize = p->head & (~3);
 
289,7 → 289,10
mov [mst.top], edi
mov [edi+4], eax
.fail2:
and [mst.mutex], 0
mov esi, eax
mov ecx, mst.mutex
call mutex_unlock
mov eax, esi
pop esi
.fail:
pop edi
410,13 → 413,15
mov [esi+8], edx ;P->fd = F
mov [esi+12], eax ;P->bk = B
pop esi
and [mst.mutex], 0
mov ecx, mst.mutex
call mutex_unlock
ret
.large:
mov ebx, eax
call insert_large_chunk
pop esi
and [mst.mutex], 0
mov ecx, mst.mutex
call mutex_unlock
ret
 
 
1025,5 → 1030,8
cmp eax, mst.smallbins+512
jb @B
 
mov ecx, mst.mutex
call mutex_init
 
ret
 
/kernel/branches/Kolibri-acpi/core/memory.inc
214,30 → 214,32
 
align 4
commit_pages:
push edi
test ecx, ecx
jz .fail
 
push edi
push eax
push ecx
mov ecx, pg_data.mutex
call mutex_lock
pop ecx
pop eax
 
mov edi, ebx
mov ebx, pg_data.pg_mutex
call wait_mutex ;ebx
shr edi, 12
lea edi, [page_tabs+edi*4]
@@:
stosd
invlpg [ebx]
add eax, 0x1000
add ebx, 0x1000
loop @B
 
mov edx, 0x1000
mov ebx, edi
shr ebx, 12
@@:
mov [page_tabs+ebx*4], eax
; push eax
invlpg [edi]
; pop eax
add edi, edx
add eax, edx
inc ebx
dec ecx
jnz @B
mov [pg_data.pg_mutex],ecx
pop edi
 
mov ecx, pg_data.mutex
call mutex_unlock
.fail:
pop edi
ret
 
 
248,16 → 250,22
align 4
release_pages:
 
pushad
mov ebx, pg_data.pg_mutex
call wait_mutex ;ebx
push ebp
push esi
push edi
push ebx
 
mov esi, eax
mov edi, eax
 
shr esi, 10
add esi, page_tabs
shr esi, 12
lea esi, [page_tabs+esi*4]
 
push ecx
mov ecx, pg_data.mutex
call mutex_lock
pop ecx
 
mov ebp, [pg_data.pages_free]
mov ebx, [page_start]
mov edx, sys_pgmap
264,9 → 272,7
@@:
xor eax, eax
xchg eax, [esi]
push eax
invlpg [edi]
pop eax
 
test eax, 1
jz .next
285,11 → 291,16
.next:
add edi, 0x1000
add esi, 4
dec ecx
jnz @B
loop @B
 
mov [pg_data.pages_free], ebp
and [pg_data.pg_mutex],0
popad
mov ecx, pg_data.mutex
call mutex_unlock
 
pop ebx
pop edi
pop esi
pop ebp
ret
 
; param
423,8 → 434,8
align 4
proc new_mem_resize stdcall, new_size:dword
 
mov ebx, pg_data.pg_mutex
call wait_mutex ;ebx
mov ecx, pg_data.mutex
call mutex_lock
 
mov edi, [new_size]
add edi,4095
464,8 → 475,10
mov ebx, [new_size]
call update_mem_size
 
mov ecx, pg_data.mutex
call mutex_unlock
 
xor eax, eax
dec [pg_data.pg_mutex]
ret
.expand:
 
539,9 → 552,11
pop edi
pop esi
.exit:
mov ecx, pg_data.mutex
call mutex_unlock
 
xor eax, eax
inc eax
dec [pg_data.pg_mutex]
ret
endp
 
/kernel/branches/Kolibri-acpi/core/sys32.inc
54,7 → 54,7
dd irq_serv.irq_22
dd irq_serv.irq_23
 
times 32 - IRQ_RESERVE dd unknown_interrupt
times 32 - IRQ_RESERVED dd unknown_interrupt
;int_0x40 gate trap (for directly copied)
dw i40 and 0xFFFF, os_code, 11101111b shl 8, i40 shr 16
 
246,18 → 246,6
 
 
align 4
irqD:
push eax
xor eax,eax
out 0xf0,al
mov al,0x20
out 0xa0,al
out 0x20,al
pop eax
iret
 
 
align 4
set_application_table_status:
push eax
 
682,8 → 670,13
restore .slot
 
iglobal
if lang eq ru
boot_sched_1 db '‘®§¤ ­¨¥ GDT TSS 㪠§ â¥«ï',0
boot_sched_2 db '‘®§¤ ­¨¥ IDT â ¡«¨æë',0
else
boot_sched_1 db 'Building gdt tss pointer',0
boot_sched_2 db 'Building IDT table',0
end if
endg
 
 
/kernel/branches/Kolibri-acpi/core/taskman.inc
360,8 → 360,8
app_tabs dd ?
endl
 
mov ebx, pg_data.pg_mutex
call wait_mutex ;ebx
mov ecx, pg_data.mutex
call mutex_lock
 
xor eax, eax
mov [dir_addr], eax
480,11 → 480,13
.done:
stdcall map_page,[tmp_task_pdir],dword 0,dword PG_UNMAP
 
dec [pg_data.pg_mutex]
mov ecx, pg_data.mutex
call mutex_unlock
mov eax, [dir_addr]
ret
.fail:
dec [pg_data.pg_mutex]
mov ecx, pg_data.mutex
call mutex_unlock
cmp [dir_addr], 0
je @f
stdcall destroy_app_space, [dir_addr], 0
554,10 → 556,10
jg .ret
;if there isn't threads then clear memory.
mov esi, [dlls_list]
call destroy_all_hdlls
call destroy_all_hdlls ;ecx=APPDATA
 
mov ebx, pg_data.pg_mutex
call wait_mutex ;ebx
mov ecx, pg_data.mutex
call mutex_lock
 
mov eax, [pg_dir]
and eax, not 0xFFF
583,7 → 585,8
.exit:
stdcall map_page,[tmp_task_ptab],0,PG_UNMAP
stdcall map_page,[tmp_task_pdir],0,PG_UNMAP
dec [pg_data.pg_mutex]
mov ecx, pg_data.mutex
call mutex_unlock
.ret:
ret
endp
956,25 → 959,7
ret
endp
 
; param
; ebx=mutex
 
align 4
wait_mutex:
;;Maxis use atomic bts for mutex 4.4.2009
push eax
push ebx
.do_wait:
bts dword [ebx],0
jnc .locked
call change_task
jmp .do_wait
.locked:
pop ebx
pop eax
ret
 
align 4
tls_app_entry:
 
call init_heap
/kernel/branches/Kolibri-acpi/core/timers.inc
0,0 → 1,205
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Copyright (C) KolibriOS team 2011. All rights reserved. ;;
;; Distributed under terms of the GNU General Public License ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 
$Revision: 2122 $
 
; Simple implementation of timers. All timers are organized in a double-linked
; list, and the OS loop after every timer tick processes the list.
 
; This structure describes a timer for the kernel.
struct TIMER
.Next dd ?
.Prev dd ?
; These fields organize a double-linked list of all timers.
.TimerFunc dd ?
; Function to be called when the timer is activated.
.UserData dd ?
; The value that is passed as is to .TimerFunc.
.Time dd ?
; Time at which the timer should be activated.
.Interval dd ?
; Interval between activations of the timer, in 0.01s.
ends
 
iglobal
align 4
; The head of timer list.
timer_list:
dd timer_list
dd timer_list
endg
uglobal
; These two variables are used to synchronize access to the global list.
; Logically, they form an recursive mutex. Physically, the first variable holds
; the slot number of the current owner or 0, the second variable holds the
; recursion count.
; The mutex should be recursive to allow a timer function to add/delete other
; timers or itself.
timer_list_owner dd 0
timer_list_numlocks dd 0
; A timer function can delete any timer, including itself and the next timer in
; the chain. To handle such situation correctly, we keep the next timer in a
; global variable, so the removing operation can update it.
timer_next dd 0
endg
 
; This internal function acquires the lock for the global list.
lock_timer_list:
mov edx, [CURRENT_TASK]
@@:
xor eax, eax
lock cmpxchg [timer_list_owner], edx
jz @f
cmp eax, edx
jz @f
call change_task
jmp @b
@@:
inc [timer_list_numlocks]
ret
 
; This internal function releases the lock for the global list.
unlock_timer_list:
dec [timer_list_numlocks]
jnz .nothing
mov [timer_list_owner], 0
.nothing:
ret
 
; This function adds a timer.
; If deltaStart is nonzero, the timer is activated after deltaStart hundredths
; of seconds starting from the current time. If interval is nonzero, the timer
; is activated every deltaWork hundredths of seconds starting from the first
; activation. The activated timer calls timerFunc as stdcall function with one
; argument userData.
; Return value is NULL if something has failed or some value which is opaque
; for the caller. Later this value can be used for cancel_timer_hs.
proc timer_hs stdcall uses ebx, deltaStart:dword, interval:dword, \
timerFunc:dword, userData:dword
; 1. Allocate memory for the TIMER structure.
; 1a. Call the allocator.
push sizeof.TIMER
pop eax
call malloc
; 1b. If allocation failed, return (go to 5) with eax = 0.
test eax, eax
jz .nothing
; 2. Setup the TIMER structure.
xchg ebx, eax
; 2a. Copy values from the arguments.
mov ecx, [interval]
mov [ebx+TIMER.Interval], ecx
mov ecx, [timerFunc]
mov [ebx+TIMER.TimerFunc], ecx
mov ecx, [userData]
mov [ebx+TIMER.UserData], ecx
; 2b. Get time of the next activation.
mov ecx, [deltaStart]
test ecx, ecx
jnz @f
mov ecx, [interval]
@@:
add ecx, [timer_ticks]
mov [ebx+TIMER.Time], ecx
; 3. Insert the TIMER structure to the global list.
; 3a. Acquire the lock.
call lock_timer_list
; 3b. Insert an item at ebx to the tail of the timer_list.
mov eax, timer_list
mov ecx, [eax+TIMER.Prev]
mov [ebx+TIMER.Next], eax
mov [ebx+TIMER.Prev], ecx
mov [eax+TIMER.Prev], ebx
mov [ecx+TIMER.Next], ebx
; 3c. Release the lock.
call unlock_timer_list
; 4. Return with eax = pointer to TIMER structure.
xchg ebx, eax
.nothing:
; 5. Returning.
ret
endp
 
; This function removes a timer.
; The only argument is [esp+4] = the value which was returned from timer_hs.
cancel_timer_hs:
push ebx ; save used register to be stdcall
; 1. Remove the TIMER structure from the global list.
; 1a. Acquire the lock.
call lock_timer_list
mov ebx, [esp+4+4]
; 1b. Delete an item at ebx from the double-linked list.
mov eax, [ebx+TIMER.Next]
mov ecx, [ebx+TIMER.Prev]
mov [eax+TIMER.Prev], ecx
mov [ecx+TIMER.Next], eax
; 1c. If we are removing the next timer in currently processing chain,
; the next timer for this timer becomes new next timer.
cmp ebx, [timer_next]
jnz @f
mov [timer_next], eax
@@:
; 1d. Release the lock.
call unlock_timer_list
; 2. Free the TIMER structure.
xchg eax, ebx
call free
; 3. Return.
pop ebx ; restore used register to be stdcall
ret 4 ; purge one dword argument to be stdcall
 
; This function is regularly called from osloop. It processes the global list
; and activates the corresponding timers.
check_timers:
; 1. Acquire the lock.
call lock_timer_list
; 2. Loop over all registered timers, checking time.
; 2a. Get the first item.
mov eax, [timer_list+TIMER.Next]
mov [timer_next], eax
.loop:
; 2b. Check for end of list.
cmp eax, timer_list
jz .done
; 2c. Get and store the next timer.
mov edx, [eax+TIMER.Next]
mov [timer_next], edx
; 2d. Check time for timer activation.
; We can't just compare [timer_ticks] and [TIMER.Time], since overflows are
; possible: if the current time is 0FFFFFFFFh ticks and timer should be
; activated in 3 ticks, the simple comparison will produce incorrect result.
; So we calculate the difference [timer_ticks] - [TIMER.Time]; if it is
; non-negative, the time is over; if it is negative, then either the time is
; not over or we have not processed this timer for 2^31 ticks, what is very
; unlikely.
mov edx, [timer_ticks]
sub edx, [eax+TIMER.Time]
js .next
; The timer should be activated now.
; 2e. Store the timer data in the stack. This is required since 2f can delete
; the timer, invalidating the content.
push [eax+TIMER.UserData] ; parameter for TimerFunc
push [eax+TIMER.TimerFunc] ; to be restored in 2g
; 2f. Calculate time of next activation or delete the timer if it is one-shot.
mov ecx, [eax+TIMER.Interval]
add [eax+TIMER.Time], ecx
test ecx, ecx
jnz .nodelete
stdcall cancel_timer_hs, eax
.nodelete:
; 2g. Activate timer, using data from the stack.
pop eax
call eax
.next:
; 2h. Advance to the next timer and continue the loop.
mov eax, [timer_next]
jmp .loop
.done:
; 3. Release the lock.
call unlock_timer_list
; 4. Return.
ret
/kernel/branches/Kolibri-acpi/core/v86.inc
328,7 → 328,7
cmp edx, -1
jz .noirqhook
uglobal
v86_irqhooks rd IRQ_RESERVE * 2
v86_irqhooks rd IRQ_RESERVED * 2
endg
cmp [v86_irqhooks+edx*8], 0
jz @f
839,6 → 839,7
; mov byte [BOOT_VAR + 48Eh], 0FFh
; ret
 
align 4
v86_irq:
; push irq/pushad/jmp v86_irq
; eax = irq
/kernel/branches/Kolibri-acpi/data32.inc
47,8 → 47,34
db 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
 
 
 
if lang eq ru
boot_fonts db '˜à¨äâë § £à㦥­ë',0
boot_memdetect db 'Š®«¨ç¥á⢮ ®¯¥à â¨¢­®© ¯ ¬ïâ¨',' ',' Œ¡',0
boot_tss db '“áâ ­®¢ª  TSSs',0
boot_cpuid db '—⥭¨¥ CPUIDs',0
boot_devices db '®¨áª ãáâனáâ¢',0
boot_timer db '“áâ ­®¢ª  â ©¬¥à ',0
boot_irqs db '¥à¥®¯à¥¤¥«¥­¨¥ IRQ',0
boot_setmouse db '“áâ ­®¢ª  ¬ëè¨',0
boot_windefs db '“áâ ­®¢ª  ­ áâ஥ª ®ª®­ ¯® 㬮«ç ­¨î',0
boot_bgr db '“áâ ­®¢ª  ä®­ ',0
boot_resirqports db '¥§¥à¢¨à®¢ ­¨¥ IRQ ¨ ¯®à⮢',0
boot_setrports db '“áâ ­®¢ª   ¤à¥á®¢ IRQ',0
boot_setostask db '‘®§¤ ­¨¥ ¯à®æ¥áá  ï¤à ',0
boot_allirqs db 'Žâªàë⨥ ¢á¥å IRQ',0
boot_tsc db '—⥭¨¥ TSC',0
boot_cpufreq db '— áâ®â  ¯à®æ¥áá®à  ',' ',' Œƒæ',0
boot_pal_ega db '“áâ ­®¢ª  EGA/CGA 320x200 ¯ «¨âàë',0
boot_pal_vga db '“áâ ­®¢ª  VGA 640x480 ¯ «¨âàë',0
boot_failed db '‡ £à㧪  ¯¥à¢®£® ¯à¨«®¦¥­¨ï ­¥ 㤠« áì',0
boot_mtrr db '“áâ ­®¢ª  MTRR',0
if preboot_blogesc
boot_tasking db '‚ᥠ£®â®¢® ¤«ï § ¯ã᪠, ­ ¦¬¨âॠESC ¤«ï áâ àâ ',0
end if
else
boot_fonts db 'Fonts loaded',0
boot_memdetect db 'Determining amount of memory',0
boot_fonts db 'Fonts loaded',0
boot_tss db 'Setting TSSs',0
boot_cpuid db 'Reading CPUIDs',0
boot_devices db 'Detecting devices',0
63,13 → 89,15
boot_pal_ega db 'Setting EGA/CGA 320x200 palette',0
boot_pal_vga db 'Setting VGA 640x480 palette',0
boot_failed db 'Failed to start first app',0
boot_APIC_found db 'APIC enabled', 0
boot_APIC_nfound db 'APIC not found', 0
 
boot_mtrr db 'Setting MTRR',0
if preboot_blogesc
boot_tasking db 'All set - press ESC to start',0
end if
end if
 
boot_APIC_found db 'APIC enabled', 0
boot_APIC_nfound db 'APIC not found', 0
 
;new_process_loading db 'K : New Process - loading',13,10,0
;new_process_running db 'K : New Process - done',13,10,0
start_not_enough_memory db 'K : New Process - not enough memory',13,10,0
280,7 → 308,7
mem_block_start rd 1
mem_block_end rd 1
 
heap_mutex rd 1
heap_mutex MUTEX
heap_size rd 1
heap_free rd 1
heap_blocks rd 1
/kernel/branches/Kolibri-acpi/docs/drivers_api.txt
0,0 → 1,94
All functions are stdcall unless mentioned otherwise.
 
=== Disk ===
The kernel exports the functions 'DiskAdd', 'DiskMediaChanged', 'DiskDel' for
drivers. They must be called in the following order: DiskAdd, then zero or
more DiskMediaChanged, then optionally DiskDel. The driver must not call
two functions in parallel, including two calls to DiskMediaChanged.
 
void* DiskAdd(DISKFUNC* functions, const char* name, void* userdata, int flags);
; The pointer 'functions' must be valid at least until the disk will be deleted
; (until DISKFUNC.close is called).
; The pointer 'name' can be invalid after this function returns.
; It should point to ASCIIZ-string without leading '/' in latin lowercase and
; digits, like 'usbhd0'.
; The value 'userdata' is any pointer-sized data, passed as is to all
; callbacks.
DISK_NO_INSERT_NOTIFICATION = 1
; The bitfield 'flags' has currently only one bit defined. If it is set, the
; driver will never call DiskMediaChanged(hDisk, true), so the kernel must scan
; for media insertion when the operation is requested.
struc DISKFUNC
{
.strucsize dd ?
.close dd ?
; void close(void* userdata);
; Optional.
; The last function that is called for the given disk. The kernel calls it when
; the kernel has finished all operations with the disk and it is safe to free
; all driver-specific data identified by 'userdata'.
.closemedia dd ?
; void closemedia(void* userdata);
; Optional.
; The kernel calls this function when it finished all processing with the
; current media. If media is removed, the driver should decline all requests
; to that media with DISK_STATUS_NO_MEDIA, even if new media is inserted,
; until this function is called. If media is removed, a new call to
; DiskMediaChanged(hDisk, true) is not allowed until this function is called.
.querymedia dd ?
; int querymedia(void* userdata, DISKMEDIAINFO* info);
; return value: 0 = success, otherwise = error
.read dd ?
; int read(void* userdata, void* buffer, __int64 startsector,
; int* numsectors);
; return value: 0 = success, otherwise = error
.write dd ?
; int write(void* userdata, const void* buffer, __int64 startsector,
; int* numsectors);
; Optional.
; return value: 0 = success, otherwise = error
.flush dd ?
; int flush(void* userdata);
; Optional.
; Flushes the hardware cache, if it exists. Note that a driver should not
; implement a software cache for read/write, since they are called from the
; kernel cache manager.
}
struc DISKMEDIAINFO
{
.flags dd ?
DISK_MEDIA_READONLY = 1
.sectorsize dd ?
.capacity dq ?
}
void DiskDel(void* hDisk);
; This function informs the kernel that the disk should be deleted from the
; system. This function removes the disk from the global file system; however,
; it is possible that active operations with the disk are still running. When
; the disk is actually removed, the kernel calls the 'close' function, which
; can free all device-related resources.
void DiskMediaChanged(void* hDisk, int newstate);
; This function informs the kernel that a media has been inserted, removed or
; changed. 'newstate' should be zero if currently there is no media inserted
; and nonzero in the other case. This function must not be called with nonzero
; 'newstate' from any of callbacks. This function must not be called if another
; call to this function is active.
 
=== Timers ===
Timers allow to schedule a function call to some time in the future, once
or periodically. A timer function can do anything, including adding/removing
other timers and itself, but it should not run time-consuming tasks, since that
would block the processing thread for a long time; for such tasks it is
recommended to create new thread.
 
void* TimerHS(unsigned int deltaStart, unsigned int interval,
void* timerFunc, void* userData);
; Registers a timer which is activated in (deltaStart == 0 ? deltaStart :
; interval) 1/100ths of second starting from the current time. If interval
; is zero, this timer is automatically deleted when activated. Otherwise,
; this timer will be activated every (interval) 1/100ths of second from the
; first activation. Activated timer calls timerFunc(userData) as stdcall.
; Returned value: NULL = failed, otherwise = timer handle which can be passed
; to CancelTimerHS.
void CancelTimerHS(void* hTimer);
; Cancels previously registered timer.
/kernel/branches/Kolibri-acpi/drivers/com_mouse.asm
332,7 → 332,7
 
mov [esi+COM_MOUSE_DATA.MouseByteNumber],0
.EndMouseInterrupt:
 
mov al, 1
ret
 
;all initialized data place here
/kernel/branches/Kolibri-acpi/drivers/sb16/sb16.asm
240,6 → 240,7
stdcall [callback],SB16Buffer1 ;for 64k buffer
end if
xor eax,eax
not eax
ret
 
.fill_second_half:
250,6 → 251,7
stdcall [callback],SB16Buffer3 ;for 64k buffer
end if
xor eax,eax
not eax
ret
endp
;-------------------------------------------------------------------------------
/kernel/branches/Kolibri-acpi/drivers/vidintel.asm
0,0 → 1,465
; Stub of videodriver for Intel videocards.
; (c) CleverMouse
 
; When the start procedure gots control,
; it tries to detect preferred resolution,
; sets the detected resolution assuming 32-bpp VESA mode and exits
; (without registering a service).
; Detection can be overloaded with compile-time settings
; use_predefined_mode/predefined_width/predefined_height.
 
; set predefined resolution here
use_predefined_mode = 0;1
predefined_width = 0;1366
predefined_height = 0;768
 
; standard driver stuff
format MS COFF
 
DEBUG = 1
 
include 'proc32.inc'
include 'imports.inc'
 
public START
public version
 
section '.flat' code readable align 16
; the start procedure (see the description above)
START:
; 1. Detect device. Abort if not found.
push esi
call DetectDevice
test esi, esi
jz .return0
; 2. Detect optimal mode unless the mode is given explicitly. Abort if failed.
if use_predefined_mode = 0
call DetectMode
end if
cmp [width], 0
jz .return0_cleanup
; 3. Set the detected mode.
call SetMode
; 4. Cleanup and return.
.return0_cleanup:
stdcall FreeKernelSpace, esi
.return0:
pop esi
xor eax, eax
ret 4
 
; check that there is Intel videocard
; if so, map MMIO registers and set internal variables
; esi points to MMIO block; NULL means no device
DetectDevice:
; 1. Sanity check: check that we are dealing with Intel videocard.
; Integrated video device for Intel is always at PCI:0:2:0.
xor esi, esi ; initialize return value to NULL
; 1a. Get PCI VendorID and DeviceID.
push esi
push 10h
push esi
call PciRead32
; 1b. loword(eax) = ax = VendorID, hiword(eax) = DeviceID.
; Test whether we have Intel chipset.
cmp ax, 8086h
jnz .return
; 1c. Say hi including DeviceID.
shr eax, 10h
push edi
pusha
mov edi, pciid_text
call WriteWord
mov esi, hellomsg
call SysMsgBoardStr
popa
; 1d. Test whether we know this DeviceID.
; If this is the case, remember the position of the device in line of Intel cards;
; this knowledge will be useful later.
; Tested on devices with id: 8086:0046, partially 8086:2A02.
mov ecx, pciids_num
mov edi, pciids
repnz scasw
pop edi
jnz .return_unknown_pciid
sub ecx, pciids_num - 1
neg ecx
mov [deviceType], ecx
; 1e. Continue saying hi with positive intonation.
pusha
mov esi, knownmsg
call SysMsgBoardStr
popa
; 2. Prepare MMIO region to control the card.
; 2a. Read MMIO physical address from PCI config space.
push 10h
cmp ecx, i9xx_start
jae @f
mov byte [esp], 14h
@@:
push 10h
push esi
call PciRead32
; 2b. Mask out PCI region type, lower 4 bits.
and al, not 0xF
; 2c. Create virtual mapping of the physical memory.
push 1Bh
push 100000h
push eax
call MapIoMem
; 3. Return.
xchg esi, eax
.return:
ret
; 1f. If we do not know DeviceID, continue saying hi with negative intonation.
.return_unknown_pciid:
pusha
mov esi, unknownmsg
call SysMsgBoardStr
popa
ret
 
; Convert word in ax to hexadecimal text in edi, advance edi.
WriteWord:
; 1. Convert high byte.
push eax
mov al, ah
call WriteByte
pop eax
; 2. Convert low byte.
; Fall through to WriteByte; ret from WriteByte is ret from WriteWord too.
 
; Convert byte in al to hexadecimal text in edi, advance edi.
WriteByte:
; 1. Convert high nibble.
push eax
shr al, 4
call WriteNibble
pop eax
; 2. Convert low nibble.
and al, 0xF
; Fall through to WriteNibble; ret from WriteNibble is ret from WriteByte too.
 
; Convert nibble in al to hexadecimal text in edi, advance edi.
WriteNibble:
; Obvious, isn't it?
cmp al, 10
sbb al, 69h
das
stosb
ret
 
if use_predefined_mode = 0
; detect resolution of the flat panel
DetectMode:
push esi edi
; 1. Get the location of block of GMBUS* registers.
; Starting with Ironlake, GMBUS* registers were moved.
add esi, 5100h
cmp [deviceType], ironlake_start
jb @f
add esi, 0xC0000
@@:
; 2. Initialize GMBUS engine.
mov edi, edid
mov ecx, 0x10000
@@:
test byte [esi+8+1], 80h
loopnz @b
jnz .fail
mov dword [esi], 3
test byte [esi+8+1], 4
jz .noreset
call ResetGMBus
jnz .fail
.noreset:
; 3. Send read command.
and dword [esi+20h], 0
mov dword [esi+4], 4E8000A1h
; 4. Wait for data, writing to the buffer as data arrive.
.getdata:
mov ecx, 0x10000
@@:
test byte [esi+8+1], 8
loopz @b
test byte [esi+8+1], 4
jz .dataok
call ResetGMBus
jmp .fail
.dataok:
mov eax, [esi+0Ch]
stosd
cmp edi, edid+80h
jb .getdata
; 5. Wait for bus idle.
mov ecx, 0x10000
@@:
test byte [esi+8+1], 2
loopnz @b
; 6. We got EDID; dump it if DEBUG.
if DEBUG
pusha
xor ecx, ecx
mov esi, edid
mov edi, edid_text
.dumploop:
lodsb
call WriteByte
mov al, ' '
stosb
inc cl
test cl, 15
jnz @f
mov byte [edi-1], 13
mov al, 10
stosb
@@:
test cl, cl
jns .dumploop
mov esi, edidmsg
call SysMsgBoardStr
popa
end if
; 7. Test whether EDID is good.
; 7a. Signature: 00 FF FF FF FF FF FF 00.
mov esi, edid
cmp dword [esi], 0xFFFFFF00
jnz .fail
cmp dword [esi+4], 0x00FFFFFF
jnz .fail
; 7b. Checksum must be zero.
xor edx, edx
mov ecx, 80h
@@:
lodsb
add dl, al
loop @b
jnz .fail
; 8. Get width and height from EDID.
xor eax, eax
mov ah, [esi-80h+3Ah]
shr ah, 4
mov al, [esi-80h+38h]
mov [width], eax
mov ah, [esi-80h+3Dh]
shr ah, 4
mov al, [esi-80h+3Bh]
mov [height], eax
; 9. Return.
.fail:
pop edi esi
ret
 
; reset bus, clear all errors
ResetGMBus:
; look into the PRM
mov dword [esi+4], 80000000h
mov dword [esi+4], 0
mov ecx, 0x10000
@@:
test byte [esi+8+1], 2
loopnz @b
ret
end if
 
; set resolution [width]*[height]
SetMode:
; 1. Program the registers of videocard.
; look into the PRM
cli
; or byte [esi+7000Ah], 0Ch ; PIPEACONF: disable Display+Cursor Planes
; or byte [esi+7100Ah], 0Ch ; PIPEBCONF: disable Display+Cursor Planes
xor eax, eax
xor edx, edx
cmp [deviceType], i965_start
jb @f
mov dl, 9Ch - 84h
@@:
; or byte [esi+71403h], 80h ; VGACNTRL: VGA Display Disable
and byte [esi+70080h], not 27h ; CURACNTR: disable cursor A
mov dword [esi+70084h], eax ; CURABASE: force write to CURA* regs
and byte [esi+700C0h], not 27h ; CURBCNTR: disable cursor B
mov dword [esi+700C4h], eax ; CURBBASE: force write to CURB* regs
and byte [esi+70183h], not 80h ; DSPACNTR: disable Primary A Plane
mov dword [esi+edx+70184h], eax ; DSPALINOFF/DSPASURF: force write to DSPA* regs
and byte [esi+71183h], not 80h ; DSPBCNTR: disable Primary B Plane
mov dword [esi+edx+71184h], eax ; DSPBLINOFF/DSPBSURF: force write to DSPB* regs
if 1
cmp [deviceType], ironlake_start
jae .disable_pipes
mov edx, 10000h
or byte [esi+70024h], 2 ; PIPEASTAT: clear VBLANK status
or byte [esi+71024h], 2 ; PIPEBSTAT: clear VBLANK status
.wait_vblank_preironlake1:
mov ecx, 1000h
loop $
test byte [esi+7000Bh], 80h ; PIPEACONF: pipe A active?
jz @f
test byte [esi+70024h], 2 ; PIPEASTAT: got VBLANK?
jz .wait_vblank_preironlake2
@@:
test byte [esi+7100Bh], 80h ; PIPEBCONF: pipe B active?
jz .disable_pipes
test byte [esi+71024h], 2 ; PIPEBSTAT: got VBLANK?
jnz .disable_pipes
.wait_vblank_preironlake2:
dec edx
jnz .wait_vblank_preironlake1
jmp .not_disabled
.disable_pipes:
end if
and byte [esi+7000Bh], not 80h ; PIPEACONF: disable pipe
and byte [esi+7100Bh], not 80h ; PIPEBCONF: disable pipe
if 1
mov edx, 10000h
@@:
mov ecx, 1000h
loop $
test byte [esi+7000Bh], 40h ; PIPEACONF: wait until pipe disabled
jz @f
dec edx
jnz @b
.not_disabled:
sti
jmp .return
@@:
test byte [esi+7100Bh], 40h ; PIPEBCONF: wait until pipe disabled
jz @f
mov ecx, 1000h
loop $
dec edx
jnz @b
jmp .not_disabled
@@:
else
; alternative way of waiting for pipe stop, works too
mov edx, 1000h
.dis1:
push dword [esi+71000h]
push dword [esi+70000h]
mov ecx, 10000h
loop $
pop eax
xor eax, [esi+70000h]
and eax, 1FFFh
pop eax
jnz .notdis1
xor eax, [esi+71000h]
and eax, 1FFFh
jz .disabled
.notdis1:
dec edx
jnz .dis1
.not_disabled:
sti
jmp .return
.disabled:
end if
lea eax, [esi+61183h]
cmp [deviceType], ironlake_start
jb @f
add eax, 0xE0000 - 0x60000
@@:
lea edx, [esi+60000h]
test byte [eax], 40h
jz @f
add edx, 1000h
@@:
mov eax, [width]
dec eax
shl eax, 16
mov ax, word [height]
dec eax
mov dword [edx+1Ch], eax ; PIPEASRC: set source image size
ror eax, 16
mov dword [edx+10190h], eax ; for old cards
mov ecx, [width]
add ecx, 15
and ecx, not 15
shl ecx, 2
mov dword [edx+10188h], ecx ; DSPASTRIDE: set scanline length
and byte [esi+61233h], not 80h ; PFIT_CONTROL: disable panel fitting
or byte [edx+1000Bh], 80h ; PIPEACONF: enable pipe
; and byte [edx+1000Ah], not 0Ch ; PIPEACONF: enable Display+Cursor Planes
or byte [edx+10183h], 80h ; DSPACNTR: enable Display Plane A
sti
; 2. Notify the kernel that resolution has changed.
call GetDisplay
mov edx, [width]
mov dword [eax+8], edx
mov edx, [height]
mov dword [eax+0Ch], edx
mov [eax+18h], ecx
mov eax, [width]
dec eax
dec edx
call SetScreen
.return:
ret
 
align 4
hellomsg db 'Intel videocard detected, PciId=8086:'
pciid_text db '0000'
db ', which is ', 0
knownmsg db 'known',13,10,0
unknownmsg db 'unknown',13,10,0
 
if DEBUG
edidmsg db 'EDID successfully read:',13,10
edid_text rb 8*(16*3+1)
db 0
end if
 
version:
dd 0x50005
 
width dd predefined_width
height dd predefined_height
 
pciids:
dw 0x3577 ; i830m
dw 0x2562 ; 845g
dw 0x3582 ; i855gm
i865_start = ($ - pciids) / 2
dw 0x2572 ; i865g
i9xx_start = ($ - pciids) / 2
dw 0x2582 ; i915g
dw 0x258a ; e7221g (i915g)
dw 0x2592 ; i915gm
dw 0x2772 ; i945g
dw 0x27a2 ; i945gm
dw 0x27ae ; i945gme
i965_start = ($ - pciids) / 2
dw 0x2972 ; i946qz (i965g)
dw 0x2982 ; g35g (i965g)
dw 0x2992 ; i965q (i965g)
dw 0x29a2 ; i965g
dw 0x29b2 ; q35g
dw 0x29c2 ; g33g
dw 0x29d2 ; q33g
dw 0x2a02 ; i965gm
dw 0x2a12 ; i965gm
dw 0x2a42 ; gm45
dw 0x2e02 ; g45
dw 0x2e12 ; g45
dw 0x2e22 ; g45
dw 0x2e32 ; g45
dw 0x2e42 ; g45
dw 0x2e92 ; g45
dw 0xa001 ; pineview
dw 0xa011 ; pineview
ironlake_start = ($ - pciids) / 2
dw 0x0042 ; ironlake_d
dw 0x0046 ; ironlake_m
dw 0x0102 ; sandybridge_d
dw 0x0112 ; sandybridge_d
dw 0x0122 ; sandybridge_d
dw 0x0106 ; sandybridge_m
dw 0x0116 ; sandybridge_m
dw 0x0126 ; sandybridge_m
dw 0x010A ; sandybridge_d
pciids_num = ($ - pciids) / 2
 
align 4
deviceType dd ?
edid rb 0x80
/kernel/branches/Kolibri-acpi/drivers/vt823x.asm
0,0 → 1,1281
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Copyright (C) KolibriOS team 2004-2007. All rights reserved. ;;
;; Distributed under terms of the GNU General Public License ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 
format MS COFF
 
DEBUG equ 1
 
include 'proc32.inc'
include 'imports.inc'
 
API_VERSION equ 0x01000100
 
USE_COM_IRQ equ 0 ;make irq 3 and irq 4 available for PCI devices
IRQ_REMAP equ 0
IRQ_LINE equ 0
 
 
;irq 0,1,2,8,12,13 ­¥¤®áâ㯭ë
; FEDCBA9876543210
VALID_IRQ equ 1100111011111000b
ATTCH_IRQ equ 0000111010100000b
 
if USE_COM_IRQ
ATTCH_IRQ equ 0000111010111000b
end if
 
CPU_FREQ equ 2600d
 
BIT0 EQU 0x00000001
BIT1 EQU 0x00000002
BIT5 EQU 0x00000020
BIT10 EQU 0x00000400
 
VID_VIA equ 0x1106
 
CTRL_VT82C686 equ 0x3058
CTRL_VT8233_5 equ 0x3059
 
 
CODEC_MASTER_VOL_REG equ 0x02
CODEC_AUX_VOL equ 0x04 ;
CODEC_PCM_OUT_REG equ 0x18 ; PCM output volume
CODEC_EXT_AUDIO_REG equ 0x28 ; extended audio
CODEC_EXT_AUDIO_CTRL_REG equ 0x2a ; extended audio control
CODEC_PCM_FRONT_DACRATE_REG equ 0x2c ; PCM out sample rate
CODEC_PCM_SURND_DACRATE_REG equ 0x2e ; surround sound sample rate
CODEC_PCM_LFE_DACRATE_REG equ 0x30 ; LFE sample rate
 
 
;VIA host controller registers set
;; common offsets
VIA_REG_OFFSET_STATUS equ 0x00 ;; byte - channel status
VIA_REG_STAT_ACTIVE equ 0x80 ;; RO
VIA_REG_STAT_PAUSED equ 0x40 ;; RO
VIA_REG_STAT_TRIGGER_QUEUED equ 0x08 ;; RO
VIA_REG_STAT_STOPPED equ 0x04 ;; RWC
VIA_REG_STAT_EOL equ 0x02 ;; RWC
VIA_REG_STAT_FLAG equ 0x01 ;; RWC
VIA_REG_OFFSET_CONTROL equ 0x01 ;; byte - channel control
VIA_REG_CTRL_START equ 0x80 ;; WO
VIA_REG_CTRL_TERMINATE equ 0x40 ;; WO
VIA_REG_CTRL_AUTOSTART equ 0x20
VIA_REG_CTRL_PAUSE equ 0x08 ;; RW
VIA_REG_CTRL_INT_STOP equ 0x04
VIA_REG_CTRL_INT_EOL equ 0x02
VIA_REG_CTRL_INT_FLAG equ 0x01
VIA_REG_CTRL_RESET equ 0x01 ;; RW - probably reset? undocumented
VIA_REG_CTRL_INT equ (VIA_REG_CTRL_INT_FLAG or \
VIA_REG_CTRL_INT_EOL or \
VIA_REG_CTRL_AUTOSTART)
VIA_REG_OFFSET_TYPE equ 0x02 ;; byte - channel type (686 only)
VIA_REG_TYPE_AUTOSTART equ 0x80 ;; RW - autostart at EOL
VIA_REG_TYPE_16BIT equ 0x20 ;; RW
VIA_REG_TYPE_STEREO equ 0x10 ;; RW
VIA_REG_TYPE_INT_LLINE equ 0x00
VIA_REG_TYPE_INT_LSAMPLE equ 0x04
VIA_REG_TYPE_INT_LESSONE equ 0x08
VIA_REG_TYPE_INT_MASK equ 0x0c
VIA_REG_TYPE_INT_EOL equ 0x02
VIA_REG_TYPE_INT_FLAG equ 0x01
VIA_REG_OFFSET_TABLE_PTR equ 0x04 ;; dword - channel table pointer
VIA_REG_OFFSET_CURR_PTR equ 0x04 ;; dword - channel current pointer
VIA_REG_OFFSET_STOP_IDX equ 0x08 ;; dword - stop index, channel type, sample rate
VIA8233_REG_TYPE_16BIT equ 0x00200000 ;; RW
VIA8233_REG_TYPE_STEREO equ 0x00100000 ;; RW
VIA_REG_OFFSET_CURR_COUNT equ 0x0c ;; dword - channel current count (24 bit)
VIA_REG_OFFSET_CURR_INDEX equ 0x0f ;; byte - channel current index (for via8233 only)
 
 
VIADEV_PLAYBACK equ 0x00
VIADEV_CAPTURE equ 0x10
VIADEV_FM equ 0x20
 
;; AC'97 ;;
VIA_REG_AC97 equ 0x80 ; dword
VIA_REG_AC97_CODEC_ID_MASK equ 0xC0000000 ;(3<<30)
VIA_REG_AC97_CODEC_ID_SHIFT equ 30
VIA_REG_AC97_CODEC_ID_PRIMARY equ 0x00
VIA_REG_AC97_CODEC_ID_SECONDARY equ 0x01
VIA_REG_AC97_SECONDARY_VALID equ 0x08000000 ;(1<<27)
VIA_REG_AC97_PRIMARY_VALID equ 0x02000000 ;(1<<25)
VIA_REG_AC97_BUSY equ 0x01000000 ;(1<<24)
VIA_REG_AC97_READ equ 0x00800000 ;(1<<23)
VIA_REG_AC97_CMD_SHIFT equ 16
VIA_REG_AC97_CMD_MASK equ 0x7E
VIA_REG_AC97_DATA_SHIFT equ 0
VIA_REG_AC97_DATA_MASK equ 0xFFFF
 
VIA_REG_SGD_SHADOW equ 0x84 ; dword
 
;; via8233-specific registers ;;
VIA_REG_OFS_PLAYBACK_VOLUME_L equ 0x02 ;; byte
VIA_REG_OFS_PLAYBACK_VOLUME_R equ 0x03 ;; byte
VIA_REG_OFS_MULTPLAY_FORMAT equ 0x02 ;; byte - format and channels
VIA_REG_MULTPLAY_FMT_8BIT equ 0x00
VIA_REG_MULTPLAY_FMT_16BIT equ 0x80
VIA_REG_MULTPLAY_FMT_CH_MASK equ 0x70 ;; # channels << 4 (valid = 1,2,4,6)
VIA_REG_OFS_CAPTURE_FIFO equ 0x02 ;; byte - bit 6 = fifo enable
VIA_REG_CAPTURE_FIFO_ENABLE equ 0x40
 
VIA_DXS_MAX_VOLUME equ 31 ;; max. volume (attenuation) of reg 0x32/33
 
VIA_TBL_BIT_FLAG equ 0x40000000
VIA_TBL_BIT_EOL equ 0x80000000
 
;; pci space ;;
VIA_ACLINK_STAT equ 0x40
;...
VIA_ACLINK_C00_READY equ 0x01 ; primary codec ready
VIA_ACLINK_CTRL equ 0x41
VIA_ACLINK_CTRL_ENABLE equ 0x80 ; 0: disable, 1: enable
VIA_ACLINK_CTRL_RESET equ 0x40 ; 0: assert, 1: de-assert
VIA_ACLINK_CTRL_SYNC equ 0x20 ; 0: release SYNC, 1: force SYNC hi
VIA_ACLINK_CTRL_SDO equ 0x10 ; 0: release SDO, 1: force SDO hi
VIA_ACLINK_CTRL_VRA equ 0x08 ; 0: disable VRA, 1: enable VRA
VIA_ACLINK_CTRL_PCM equ 0x04 ; 0: disable PCM, 1: enable PCM
VIA_ACLINK_CTRL_FM equ 0x02 ; via686 only
VIA_ACLINK_CTRL_SB equ 0x01 ; via686 only
VIA_ACLINK_CTRL_INIT equ (VIA_ACLINK_CTRL_ENABLE or \
VIA_ACLINK_CTRL_RESET or \
VIA_ACLINK_CTRL_PCM or \
VIA_ACLINK_CTRL_VRA)
VIA_FUNC_ENABLE equ 0x42
VIA_FUNC_MIDI_PNP equ 0x80 ; FIXME: it's 0x40 in the datasheet!
VIA_FUNC_MIDI_IRQMASK equ 0x40 ; FIXME: not documented!
VIA_FUNC_RX2C_WRITE equ 0x20
VIA_FUNC_SB_FIFO_EMPTY equ 0x10
VIA_FUNC_ENABLE_GAME equ 0x08
VIA_FUNC_ENABLE_FM equ 0x04
VIA_FUNC_ENABLE_MIDI equ 0x02
VIA_FUNC_ENABLE_SB equ 0x01
VIA_PNP_CONTROL equ 0x43
VIA_FM_NMI_CTRL equ 0x48
VIA8233_VOLCHG_CTRL equ 0x48
VIA8233_SPDIF_CTRL equ 0x49
VIA8233_SPDIF_DX3 equ 0x08
VIA8233_SPDIF_SLOT_MASK equ 0x03
VIA8233_SPDIF_SLOT_1011 equ 0x00
VIA8233_SPDIF_SLOT_34 equ 0x01
VIA8233_SPDIF_SLOT_78 equ 0x02
VIA8233_SPDIF_SLOT_69 equ 0x03
;] Asper
 
 
SRV_GETVERSION equ 0
DEV_PLAY equ 1
DEV_STOP equ 2
DEV_CALLBACK equ 3
DEV_SET_BUFF equ 4
DEV_NOTIFY equ 5
DEV_SET_MASTERVOL equ 6
DEV_GET_MASTERVOL equ 7
DEV_GET_INFO equ 8
 
struc AC_CNTRL ;AC controller base class
{ .bus dd ?
.devfn dd ?
 
.vendor dd ?
.dev_id dd ?
.pci_cmd dd ?
.pci_stat dd ?
 
.codec_io_base dd ?
.codec_mem_base dd ?
 
.ctrl_io_base dd ?
.ctrl_mem_base dd ?
.cfg_reg dd ?
.int_line dd ?
 
.vendor_ids dd ? ;vendor id string
.ctrl_ids dd ? ;hub id string
 
.buffer dd ?
 
.notify_pos dd ?
.notify_task dd ?
 
.lvi_reg dd ?
.ctrl_setup dd ?
.user_callback dd ?
.codec_read16 dd ?
.codec_write16 dd ?
 
.ctrl_read8 dd ?
.ctrl_read16 dd ?
.ctrl_read32 dd ?
 
.ctrl_write8 dd ?
.ctrl_write16 dd ?
.ctrl_write32 dd ?
}
 
struc CODEC ;Audio Chip base class
{
.chip_id dd ?
.flags dd ?
.status dd ?
 
.ac_vendor_ids dd ? ;ac vendor id string
.chip_ids dd ? ;chip model string
 
.shadow_flag dd ?
dd ?
 
.regs dw ? ; codec registers
.reg_master_vol dw ? ;0x02
.reg_aux_out_vol dw ? ;0x04
.reg_mone_vol dw ? ;0x06
.reg_master_tone dw ? ;0x08
.reg_beep_vol dw ? ;0x0A
.reg_phone_vol dw ? ;0x0C
.reg_mic_vol dw ? ;0x0E
.reg_line_in_vol dw ? ;0x10
.reg_cd_vol dw ? ;0x12
.reg_video_vol dw ? ;0x14
.reg_aux_in_vol dw ? ;0x16
.reg_pcm_out_vol dw ? ;0x18
.reg_rec_select dw ? ;0x1A
.reg_rec_gain dw ? ;0x1C
.reg_rec_gain_mic dw ? ;0x1E
.reg_gen dw ? ;0x20
.reg_3d_ctrl dw ? ;0X22
.reg_page dw ? ;0X24
.reg_powerdown dw ? ;0x26
.reg_ext_audio dw ? ;0x28
.reg_ext_st dw ? ;0x2a
.reg_pcm_front_rate dw ? ;0x2c
.reg_pcm_surr_rate dw ? ;0x2e
.reg_lfe_rate dw ? ;0x30
.reg_pcm_in_rate dw ? ;0x32
dw ? ;0x34
.reg_cent_lfe_vol dw ? ;0x36
.reg_surr_vol dw ? ;0x38
.reg_spdif_ctrl dw ? ;0x3A
dw ? ;0x3C
dw ? ;0x3E
dw ? ;0x40
dw ? ;0x42
dw ? ;0x44
dw ? ;0x46
dw ? ;0x48
dw ? ;0x4A
dw ? ;0x4C
dw ? ;0x4E
dw ? ;0x50
dw ? ;0x52
dw ? ;0x54
dw ? ;0x56
dw ? ;0x58
dw ? ;0x5A
dw ? ;0x5C
dw ? ;0x5E
.reg_page_0 dw ? ;0x60
.reg_page_1 dw ? ;0x62
.reg_page_2 dw ? ;0x64
.reg_page_3 dw ? ;0x66
.reg_page_4 dw ? ;0x68
.reg_page_5 dw ? ;0x6A
.reg_page_6 dw ? ;0x6C
.reg_page_7 dw ? ;0x6E
dw ? ;0x70
dw ? ;0x72
dw ? ;0x74
dw ? ;0x76
dw ? ;0x78
dw ? ;0x7A
.reg_vendor_id_1 dw ? ;0x7C
.reg_vendor_id_2 dw ? ;0x7E
 
 
.reset dd ? ;virual
.set_master_vol dd ?
}
 
struc CTRL_INFO
{ .pci_cmd dd ?
.irq dd ?
.glob_cntrl dd ?
.glob_sta dd ?
.codec_io_base dd ?
.ctrl_io_base dd ?
.codec_mem_base dd ?
.ctrl_mem_base dd ?
.codec_id dd ?
}
 
struc IOCTL
{ .handle dd ?
.io_code dd ?
.input dd ?
.inp_size dd ?
.output dd ?
.out_size dd ?
}
 
virtual at 0
IOCTL IOCTL
end virtual
 
EVENT_NOTIFY equ 0x00000200
 
public START
public service_proc
public version
 
section '.flat' code readable align 16
 
proc START stdcall, state:dword
 
cmp [state], 1
jne .stop
 
if DEBUG
mov esi, msgInit
call SysMsgBoardStr
end if
 
call detect_controller
test eax, eax
jz .fail
 
if DEBUG
mov esi,[ctrl.vendor_ids]
call SysMsgBoardStr
mov esi, [ctrl.ctrl_ids]
call SysMsgBoardStr
end if
 
call init_controller
test eax, eax
jz .fail
 
call init_codec
test eax, eax
jz .fail
 
call setup_codec
 
mov esi, msgPrimBuff
call SysMsgBoardStr
call create_primary_buff
mov esi, msgDone
call SysMsgBoardStr
 
if IRQ_REMAP
pushf
cli
 
mov ebx, [ctrl.int_line]
in al, 0xA1
mov ah, al
in al, 0x21
test ebx, ebx
jz .skip
bts ax, bx ;mask old line
.skip:
bts ax, IRQ_LINE ;mask new ine
out 0x21, al
mov al, ah
out 0xA1, al
 
stdcall PciWrite8, 0, 0xF8, 0x61, IRQ_LINE ;remap IRQ
 
mov dx, 0x4d0 ;8259 ELCR1
in al, dx
bts ax, IRQ_LINE
out dx, al ;set level-triggered mode
mov [ctrl.int_line], IRQ_LINE
popf
mov esi, msgRemap
call SysMsgBoardStr
end if
 
mov eax, VALID_IRQ
mov ebx, [ctrl.int_line]
mov esi, msgInvIRQ
bt eax, ebx
jnc .fail_msg
mov eax, ATTCH_IRQ
mov esi, msgAttchIRQ
bt eax, ebx
jnc .fail_msg
 
stdcall AttachIntHandler, ebx, ac97_irq_VIA, dword 0
.reg:
stdcall RegService, sz_sound_srv, service_proc
ret
.fail:
if DEBUG
mov esi, msgFail
call SysMsgBoardStr
end if
xor eax, eax
ret
.fail_msg:
call SysMsgBoardStr
xor eax, eax
ret
.stop:
call stop
xor eax, eax
ret
endp
 
handle equ IOCTL.handle
io_code equ IOCTL.io_code
input equ IOCTL.input
inp_size equ IOCTL.inp_size
output equ IOCTL.output
out_size equ IOCTL.out_size
 
align 4
proc service_proc stdcall, ioctl:dword
 
mov edi, [ioctl]
mov eax, [edi+io_code]
 
cmp eax, SRV_GETVERSION
jne @F
mov eax, [edi+output]
cmp [edi+out_size], 4
jne .fail
 
mov [eax], dword API_VERSION
xor eax, eax
ret
@@:
cmp eax, DEV_PLAY
jne @F
if DEBUG
mov esi, msgPlay
call SysMsgBoardStr
end if
call play
ret
@@:
cmp eax, DEV_STOP
jne @F
if DEBUG
mov esi, msgStop
call SysMsgBoardStr
end if
call stop
ret
@@:
cmp eax, DEV_CALLBACK
jne @F
mov ebx, [edi+input]
stdcall set_callback, [ebx]
ret
@@:
cmp eax, DEV_SET_MASTERVOL
jne @F
mov eax, [edi+input]
mov eax, [eax]
call set_master_vol ;eax= vol
ret
@@:
cmp eax, DEV_GET_MASTERVOL
jne @F
mov ebx, [edi+output]
stdcall get_master_vol, ebx
ret
@@:
cmp eax, DEV_GET_INFO
jne @F
mov ebx, [edi+output]
stdcall get_dev_info, ebx
ret
@@:
.fail:
or eax, -1
ret
endp
 
restore handle
restore io_code
restore input
restore inp_size
restore output
restore out_size
 
 
align 4
proc ac97_irq_VIA
locals
status db 0
endl
 
mov edx, VIADEV_PLAYBACK +VIA_REG_OFFSET_STATUS
call [ctrl.ctrl_read8]
test al, VIA_REG_STAT_ACTIVE
jz @f
 
and al, VIA_REG_STAT_EOL or VIA_REG_STAT_FLAG or VIA_REG_STAT_STOPPED
mov byte [status], al
 
mov ebx, dword [buff_list]
cmp [ctrl.user_callback], 0
je @f
stdcall [ctrl.user_callback], ebx
@@:
mov al, byte [status] ;; ack ;;
mov edx, VIADEV_PLAYBACK +VIA_REG_OFFSET_STATUS
call [ctrl.ctrl_write8]
 
ret
endp
 
 
align 4
proc create_primary_buff
 
stdcall KernelAlloc, 0x10000
mov [ctrl.buffer], eax
 
mov edi, eax
mov ecx, 0x10000/4
xor eax, eax
cld
rep stosd
 
mov eax, [ctrl.buffer]
call GetPgAddr
mov edi, pcmout_bdl
stosd
mov eax, 0x80004000
stosd
 
mov edi, buff_list
mov eax, [ctrl.buffer]
mov ecx, 4
@@:
mov [edi], eax
mov [edi+16], eax
mov [edi+32], eax
mov [edi+48], eax
mov [edi+64], eax
mov [edi+80], eax
mov [edi+96], eax
mov [edi+112], eax
 
;add eax, 0x4000
add edi, 4
loop @B
 
stdcall channel_reset, VIADEV_PLAYBACK
stdcall codec_check_ready
 
mov eax, pcmout_bdl
mov ebx, eax
call GetPgAddr
and ebx, 0xFFF
add eax, ebx
 
mov edx, VIADEV_PLAYBACK +VIA_REG_OFFSET_TABLE_PTR
call [ctrl.ctrl_write32]
 
stdcall codec_check_ready
 
mov edx, VIADEV_PLAYBACK +VIA_REG_OFS_PLAYBACK_VOLUME_L
mov eax, 7;31
call [ctrl.ctrl_write8]
 
mov edx, VIADEV_PLAYBACK +VIA_REG_OFS_PLAYBACK_VOLUME_R
mov eax, 7;31
call [ctrl.ctrl_write8]
 
mov edx, VIADEV_PLAYBACK +VIA_REG_OFFSET_STOP_IDX
mov eax, VIA8233_REG_TYPE_16BIT or VIA8233_REG_TYPE_STEREO or 0xfffff or 0xff000000
mov [ctrl.lvi_reg], 16;0xF;eax
call [ctrl.ctrl_write32]
 
stdcall codec_check_ready
ret
endp
 
 
proc channel_reset channel:dword
mov esi, dword [channel]
mov edx, esi
add edx, VIA_REG_OFFSET_CONTROL
mov eax, VIA_REG_CTRL_PAUSE or VIA_REG_CTRL_TERMINATE or VIA_REG_CTRL_RESET
call [ctrl.ctrl_write8]
 
mov edx, esi
add edx, VIA_REG_OFFSET_CONTROL
call [ctrl.ctrl_read8]
 
mov eax, 50000 ; wait 50 ms
call StallExec
; disable interrupts
mov edx, esi
add edx, VIA_REG_OFFSET_CONTROL
xor eax, eax
call [ctrl.ctrl_write8]
 
; clear interrupts
mov edx, esi
add edx, VIA_REG_OFFSET_STATUS
mov eax, 0x03
call [ctrl.ctrl_write8]
 
;outb(0x00, VIADEV_REG(viadev, OFFSET_TYPE)); /* for via686 */
; mov edx, esi ;; for via686
; add edx, VIA_REG_OFFSET_TYPE
; mov eax, 0x03
; call [ctrl.ctrl_write8]
 
;; outl(0, VIADEV_REG(viadev, OFFSET_CURR_PTR));
;mov edx, esi
;add edx, VIA_REG_OFFSET_CURR_PTR
;xor eax, eax
;call [ctrl.ctrl_write8]
 
ret
endp
 
 
align 4
proc detect_controller
locals
last_bus dd ?
bus dd ?
devfn dd ?
endl
 
xor eax, eax
mov [bus], eax
inc eax
call PciApi
cmp eax, -1
je .err
 
mov [last_bus], eax
 
.next_bus:
and [devfn], 0
.next_dev:
stdcall PciRead32, [bus], [devfn], dword 0
test eax, eax
jz .next
cmp eax, -1
je .next
 
mov edi, devices
@@:
mov ebx, [edi]
test ebx, ebx
jz .next
 
cmp eax, ebx
je .found
add edi, 12
jmp @B
.next:
inc [devfn]
cmp [devfn], 256
jb .next_dev
mov eax, [bus]
inc eax
mov [bus], eax
cmp eax, [last_bus]
jna .next_bus
xor eax, eax
ret
.found:
mov ebx, [bus]
mov [ctrl.bus], ebx
 
mov ecx, [devfn]
mov [ctrl.devfn], ecx
 
mov edx, eax
and edx, 0xFFFF
mov [ctrl.vendor], edx
shr eax, 16
mov [ctrl.dev_id], eax
 
mov ebx, [edi+4]
mov [ctrl.ctrl_ids], ebx
mov esi, [edi+8]
mov [ctrl.ctrl_setup], esi
 
cmp edx, VID_VIA
jne @F
mov [ctrl.vendor_ids], msg_VIA
ret
@@:
 
.err:
xor eax, eax
mov [ctrl.vendor_ids], eax ;something wrong ?
ret
endp
 
align 4
proc init_controller
 
stdcall PciRead32, [ctrl.bus], [ctrl.devfn], dword 4
mov ebx, eax
and eax, 0xFFFF
mov [ctrl.pci_cmd], eax
shr ebx, 16
mov [ctrl.pci_stat], ebx
 
mov esi, msgPciCmd
call SysMsgBoardStr
call dword2str
call SysMsgBoardStr
 
mov esi, msgPciStat
call SysMsgBoardStr
mov eax, [ctrl.pci_stat]
call dword2str
call SysMsgBoardStr
 
mov esi, msgCtrlIsaIo
call SysMsgBoardStr
stdcall PciRead32, [ctrl.bus], [ctrl.devfn], dword 0x10
call dword2str
call SysMsgBoardStr
 
and eax, 0xFFC0
mov [ctrl.ctrl_io_base], eax
 
.default:
stdcall PciRead32, [ctrl.bus], [ctrl.devfn], dword 0x3C
and eax, 0xFF
@@:
mov [ctrl.int_line], eax
 
;stdcall PciRead8, [ctrl.bus], [ctrl.devfn], dword VIA_FUNC_ENABLE ;0x42
;mov byte [old_legacy], al
 
;stdcall PciRead8, [ctrl.bus], [ctrl.devfn], dword VIA_PNP_CONTROL ;0x43
;mov byte [old_legacy_cfg], al
 
;mov al, VIA_FUNC_ENABLE_SB or VIA_FUNC_ENABLE_FM
;xor al, 0xFF
;and al, byte [old_legacy]
;and eax, 0xFF
;stdcall PciWrite8, [ctrl.bus], [ctrl.devfn], dword VIA_FUNC_ENABLE, eax ;0x42
;mov byte [old_legacy], al
 
call [ctrl.ctrl_setup]
xor eax, eax
inc eax
ret
endp
 
align 4
proc set_VIA
mov [ctrl.codec_read16], codec_io_r16 ;virtual
mov [ctrl.codec_write16], codec_io_w16 ;virtual
 
mov [ctrl.ctrl_read8 ], ctrl_io_r8 ;virtual
mov [ctrl.ctrl_read16], ctrl_io_r16 ;virtual
mov [ctrl.ctrl_read32], ctrl_io_r32 ;virtual
 
mov [ctrl.ctrl_write8 ], ctrl_io_w8 ;virtual
mov [ctrl.ctrl_write16], ctrl_io_w16 ;virtual
mov [ctrl.ctrl_write32], ctrl_io_w32 ;virtual
ret
endp
 
 
align 4
proc init_codec
locals
counter dd ?
endl
 
mov esi, msgControl
call SysMsgBoardStr
stdcall PciRead8, [ctrl.bus], [ctrl.devfn], dword VIA_ACLINK_CTRL
and eax, 0xFF
call dword2str
call SysMsgBoardStr
 
mov esi, msgStatus
call SysMsgBoardStr
stdcall PciRead8, [ctrl.bus], [ctrl.devfn], dword VIA_ACLINK_STAT
and eax, 0xFF
push eax
call dword2str
call SysMsgBoardStr
pop eax
 
test eax, VIA_ACLINK_C00_READY
jz .ready
 
call reset_codec
test eax, eax
jz .err
 
.ready:
xor edx, edx ; ac_reg_0
call [ctrl.codec_write16]
jmp .done
 
.err:
xor eax, eax ; timeout error
ret
 
.done:
call detect_codec
 
xor eax, eax
inc eax
ret
endp
 
align 4
proc reset_codec
stdcall PciWrite8, [ctrl.bus], [ctrl.devfn], dword VIA_ACLINK_CTRL, \
VIA_ACLINK_CTRL_ENABLE or VIA_ACLINK_CTRL_RESET or VIA_ACLINK_CTRL_SYNC
mov eax, 100000 ; wait 100 ms
call StallExec
.cold:
call cold_reset
jnc .ok
 
if DEBUG
mov esi, msgCFail
call SysMsgBoardStr
end if
xor eax, eax ; timeout error
ret
.ok:
if DEBUG
mov esi, msgResetOk
call SysMsgBoardStr
end if
xor eax, eax
inc eax
ret
endp
 
 
align 4
proc cold_reset
locals
counter dd ?
endl
 
stdcall PciWrite8, [ctrl.bus], [ctrl.devfn], dword VIA_ACLINK_CTRL, dword 0
 
if DEBUG
mov esi, msgCold
call SysMsgBoardStr
end if
 
mov eax, 100000 ; wait 100 ms ;400000 ; wait 400 ms
call StallExec
 
;; ACLink on, deassert ACLink reset, VSR, SGD data out
;; note - FM data out has trouble with non VRA codecs !!
stdcall PciWrite8, [ctrl.bus], [ctrl.devfn], dword VIA_ACLINK_CTRL, dword VIA_ACLINK_CTRL_INIT
 
mov [counter], 16 ; total 20*100 ms = 2s
.wait:
stdcall PciRead8, [ctrl.bus], [ctrl.devfn], dword VIA_ACLINK_STAT
test eax, VIA_ACLINK_C00_READY
jnz .ok
 
mov eax, 100000 ; wait 100 ms
call StallExec
 
dec [counter]
jnz .wait
 
if DEBUG
mov esi, msgCRFail
call SysMsgBoardStr
end if
 
.fail:
stc
ret
.ok:
mov esi, msgControl
call SysMsgBoardStr
stdcall PciRead8, [ctrl.bus], [ctrl.devfn], dword VIA_ACLINK_CTRL
call dword2str
call SysMsgBoardStr
 
mov esi, msgStatus
call SysMsgBoardStr
stdcall PciRead8, [ctrl.bus], [ctrl.devfn], dword VIA_ACLINK_STAT
and eax, 0xFF
push eax
call dword2str
call SysMsgBoardStr
pop eax
 
test eax, VIA_ACLINK_C00_READY ;CTRL_ST_CREADY
jz .fail
clc
ret
endp
 
align 4
play:
mov edx, VIADEV_PLAYBACK +VIA_REG_OFFSET_STOP_IDX
mov eax, VIA8233_REG_TYPE_16BIT or VIA8233_REG_TYPE_STEREO or 0xfffff or 0xff000000
mov [ctrl.lvi_reg], 16
call [ctrl.ctrl_write32]
 
mov eax, VIA_REG_CTRL_INT
or eax, VIA_REG_CTRL_START
mov edx, VIADEV_PLAYBACK +VIA_REG_OFFSET_CONTROL
call [ctrl.ctrl_write8]
 
xor eax, eax
ret
 
align 4
stop:
mov eax, VIA_REG_CTRL_INT
or eax, VIA_REG_CTRL_TERMINATE
mov edx, VIADEV_PLAYBACK +VIA_REG_OFFSET_CONTROL
call [ctrl.ctrl_write8]
 
stdcall channel_reset, VIADEV_PLAYBACK
xor eax, eax
ret
 
align 4
proc get_dev_info stdcall, p_info:dword
virtual at esi
CTRL_INFO CTRL_INFO
end virtual
 
mov esi, [p_info]
mov eax, [ctrl.int_line]
mov ecx, [ctrl.ctrl_io_base]
mov [CTRL_INFO.irq], eax
mov [CTRL_INFO.ctrl_io_base], ecx
 
xor eax, eax
;mov edx, VIADEV_PLAYBACK +VIA_REG_OFFSET_TABLE_PTR
;call [ctrl.ctrl_read32]
mov [CTRL_INFO.codec_io_base], eax
;mov edx, VIADEV_PLAYBACK +VIA_REG_OFFSET_STOP_IDX
;call [ctrl.ctrl_read32]
mov [CTRL_INFO.codec_mem_base], eax
;mov edx, VIADEV_PLAYBACK +VIA_REG_OFFSET_CURR_COUNT
;call [ctrl.ctrl_read32]
mov [CTRL_INFO.ctrl_mem_base], eax
 
mov eax, [codec.chip_id]
mov [CTRL_INFO.codec_id], eax
 
mov edx, VIADEV_PLAYBACK +VIA_REG_OFFSET_CONTROL
call [ctrl.ctrl_read8]
and eax, 0xFF
mov [CTRL_INFO.glob_cntrl], eax
 
mov edx, VIADEV_PLAYBACK +VIA_REG_OFFSET_STATUS
call [ctrl.ctrl_read8]
and eax, 0xFF
mov [CTRL_INFO.glob_sta], eax
 
mov ebx, [ctrl.pci_cmd]
mov [CTRL_INFO.pci_cmd], ebx
ret
endp
 
align 4
proc set_callback stdcall, handler:dword
mov eax, [handler]
mov [ctrl.user_callback], eax
ret
endp
 
 
align 4
proc codec_check_ready stdcall
locals
counter dd ?
endl
 
mov [counter], 1000 ; total 1000*1 ms = 1s
.wait:
call [ctrl.codec_read16]
test eax, VIA_REG_AC97_BUSY
jz .ok
 
mov eax, 1000 ; wait 1 ms
call StallExec
 
sub [counter] , 1
jnz .wait
.err:
mov eax, -1
ret
.ok:
and eax, 0xFFFF
ret
endp
 
 
align 4
proc codec_valid stdcall
stdcall codec_check_ready
ret
endp
 
align 4
proc codec_read stdcall, ac_reg:dword ; reg = edx, reval = eax
locals
counter dd ?
endl
 
;Use only primary codec.
mov eax, [ac_reg]
and eax, 0x7F
shl eax, VIA_REG_AC97_CMD_SHIFT
or eax, VIA_REG_AC97_PRIMARY_VALID or VIA_REG_AC97_READ
 
mov [counter], 3 ; total 3*20 ms = 60ms
.wait:
push eax
call [ctrl.codec_write16]
 
mov eax, 20000 ; wait 20 ms
call StallExec
 
stdcall codec_valid,
cmp eax, 0
pop eax
jge .ok
 
sub [counter] , 1
jnz .wait
jmp .err
 
.ok:
mov eax, 25000 ; wait 25 ms
call StallExec
 
call [ctrl.codec_read16] ;change edx !!!
and eax, 0xFFFF
ret
.err:
if DEBUG
mov esi, msgCInvalid
call SysMsgBoardStr
end if
mov eax, -1 ; invalid codec error
ret
endp
 
align 4
proc codec_write stdcall, ac_reg:dword
;Use only primary codec.
mov esi, [ac_reg]
mov edx, esi
shl edx, VIA_REG_AC97_CMD_SHIFT
 
shl eax, VIA_REG_AC97_DATA_SHIFT
or edx, eax
 
mov eax, VIA_REG_AC97_CODEC_ID_PRIMARY ;not VIA_REG_AC97_CODEC_ID_PRIMARY
shl eax, VIA_REG_AC97_CODEC_ID_SHIFT
or edx, eax
 
mov eax, edx
mov edx, esi
call [ctrl.codec_write16]
mov [codec.regs+esi], ax
 
stdcall codec_check_ready
cmp eax, 0
jl .err
.ok:
ret
.err:
if DEBUG
mov esi, msgCFail
call SysMsgBoardStr
end if
;mov eax, -1 ; codec not ready error
ret
endp
 
align 4
proc StallExec
push ecx
push edx
push ebx
push eax
 
mov ecx, CPU_FREQ
mul ecx
mov ebx, eax ;low
mov ecx, edx ;high
rdtsc
add ebx, eax
adc ecx, edx
@@:
rdtsc
sub eax, ebx
sbb edx, ecx
js @B
 
pop eax
pop ebx
pop edx
pop ecx
ret
endp
 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; CONTROLLER IO functions
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 
align 4
proc codec_io_r16 ;r32
mov edx, [ctrl.ctrl_io_base]
add edx, VIA_REG_AC97
in eax, dx
ret
endp
 
align 4
proc codec_io_w16 ;w32
mov edx, [ctrl.ctrl_io_base]
add edx, VIA_REG_AC97
out dx, eax
ret
endp
 
align 4
proc ctrl_io_r8
add edx, [ctrl.ctrl_io_base]
in al, dx
ret
endp
 
align 4
proc ctrl_io_r16
add edx, [ctrl.ctrl_io_base]
in ax, dx
ret
endp
 
align 4
proc ctrl_io_r32
add edx, [ctrl.ctrl_io_base]
in eax, dx
ret
endp
 
align 4
proc ctrl_io_w8
add edx, [ctrl.ctrl_io_base]
out dx, al
ret
endp
 
align 4
proc ctrl_io_w16
add edx, [ctrl.ctrl_io_base]
out dx, ax
ret
endp
 
align 4
proc ctrl_io_w32
add edx, [ctrl.ctrl_io_base]
out dx, eax
ret
endp
 
 
align 4
dword2str:
push eax ebx ecx
mov esi, hex_buff
mov ecx, -8
@@:
rol eax, 4
mov ebx, eax
and ebx, 0x0F
mov bl, [ebx+hexletters]
mov [8+esi+ecx], bl
inc ecx
jnz @B
pop ecx ebx eax
ret
 
hexletters db '0123456789ABCDEF'
hex_buff db 8 dup(0),13,10,0
 
 
include "codec.inc"
 
align 4
devices dd (CTRL_VT82C686 shl 16)+VID_VIA,msg_VT82C686,set_VIA
dd (CTRL_VT8233_5 shl 16)+VID_VIA,msg_VT8233,set_VIA
dd 0 ;terminator
 
 
version dd (5 shl 16) or (API_VERSION and 0xFFFF)
 
msg_VT82C686 db 'VT82C686', 13,10, 0
msg_VT8233 db 'VT8233', 13,10, 0
msg_VIA db 'VIA' , 13,10, 0
 
szKernel db 'KERNEL', 0
sz_sound_srv db 'SOUND',0
 
msgInit db 'detect hardware...',13,10,0
msgFail db 'device not found',13,10,0
msgAttchIRQ db 'IRQ line not supported', 13,10, 0
msgInvIRQ db 'IRQ line not assigned or invalid', 13,10, 0
msgPlay db 'start play', 13,10,0
msgStop db 'stop play', 13,10,0
;msgIRQ db 'AC97 IRQ', 13,10,0
;msgInitCtrl db 'init controller',13,10,0
;msgInitCodec db 'init codec',13,10,0
msgPrimBuff db 'create primary buffer ...',0
msgDone db 'done',13,10,0
msgRemap db 'Remap IRQ',13,10,0
;msgReg db 'set service handler',13,10,0
;msgOk db 'service installed',13,10,0
msgCold db 'cold reset',13,10,0
;msgWarm db 'warm reset',13,10,0
;msgWRFail db 'warm reset failed',13,10,0
msgCRFail db 'cold reset failed',13,10,0
msgCFail db 'codec not ready',13,10,0
msgCInvalid db 'codec is not valid',13,10,0 ;Asper
msgResetOk db 'reset complete',13,10,0
msgStatus db 'global status ',0
msgControl db 'global control ',0
msgPciCmd db 'PCI command ',0
msgPciStat db 'PCI status ',0
msgCtrlIsaIo db 'controller io base ',0
;msgMixIsaIo db 'codec io base ',0
;msgCtrlMMIo db 'controller mmio base ',0
;msgMixMMIo db 'codec mmio base ',0
;msgIrqMap db 'AC97 irq map as ',0
 
 
section '.data' data readable writable align 16
 
pcmout_bdl rq 32
buff_list rd 32
 
codec CODEC
ctrl AC_CNTRL
 
chip_type rb 1
/kernel/branches/Kolibri-acpi/fs/disk.inc
0,0 → 1,1216
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ;;
;; Copyright (C) KolibriOS team 2011. All rights reserved. ;;
;; Distributed under terms of the GNU General Public License ;;
;; ;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
 
; =============================================================================
; ================================= Constants =================================
; =============================================================================
; Error codes for callback functions.
DISK_STATUS_OK = 0 ; success
DISK_STATUS_GENERAL_ERROR = -1; if no other code is suitable
DISK_STATUS_INVALID_CALL = 1 ; invalid input parameters
DISK_STATUS_NO_MEDIA = 2 ; no media present
DISK_STATUS_END_OF_MEDIA = 3 ; end of media while reading/writing data
; Driver flags. Represent bits in DISK.DriverFlags.
DISK_NO_INSERT_NOTIFICATION = 1
; Media flags. Represent bits in DISKMEDIAINFO.Flags.
DISK_MEDIA_READONLY = 1
 
; If we see too many partitions, probably there is some error on the disk.
; 256 partitions should be enough for any reasonable use.
; Also, the same number is limiting the number of MBRs to process; if we see
; too many MBRs, probably there is a loop in the MBR structure.
MAX_NUM_PARTITIONS = 256
 
; =============================================================================
; ================================ Structures =================================
; =============================================================================
; This structure defines all callback functions for working with the physical
; device. They are implemented by a driver. Objects with this structure reside
; in a driver.
struct DISKFUNC
.strucsize dd ?
; Size of the structure. This field is intended for possible extensions of
; this structure. If a new function is added to this structure and a driver
; implements an old version, the caller can detect this by checking .strucsize,
; so the driver remains compatible.
.close dd ?
; The pointer to the function which frees all driver-specific resources for
; the disk.
; Optional, may be NULL.
; void close(void* userdata);
.closemedia dd ?
; The pointer to the function which informs the driver that the kernel has
; finished all processing with the current media. If media is removed, the
; driver should decline all requests to that media with DISK_STATUS_NO_MEDIA,
; even if new media is inserted, until this function is called. If media is
; removed, a new call to 'disk_media_changed' is not allowed until this
; function is called.
; Optional, may be NULL (if media is not removable).
; void closemedia(void* userdata);
.querymedia dd ?
; The pointer to the function which determines capabilities of the media.
; int querymedia(void* userdata, DISKMEDIAINFO* info);
; Return value: one of DISK_STATUS_*
.read dd ?
; The pointer to the function which reads data from the device.
; int read(void* userdata, void* buffer, __int64 startsector, int* numsectors);
; input: *numsectors = number of sectors to read
; output: *numsectors = number of sectors which were successfully read
; Return value: one of DISK_STATUS_*
.write dd ?
; The pointer to the function which writes data to the device.
; Optional, may be NULL.
; int write(void* userdata, void* buffer, __int64 startsector, int* numsectors);
; input: *numsectors = number of sectors to write
; output: *numsectors = number of sectors which were successfully written
; Return value: one of DISK_STATUS_*
.flush dd ?
; The pointer to the function which flushes the internal device cache.
; Optional, may be NULL.
; int flush(void* userdata);
; Return value: one of DISK_STATUS_*
; Note that read/write are called by the cache manager, so a driver should not
; create a software cache. This function is implemented for flushing a hardware
; cache, if it exists.
ends
 
; This structure holds an information about a media.
; Objects with this structure are allocated by the kernel as a part of DISK
; structure and filled by a driver in the 'querymedia' callback.
struct DISKMEDIAINFO
.Flags dd ?
; Combination of DISK_MEDIA_* bits.
.SectorSize dd ?
; Size of the sector.
.Capacity dq ?
; Size of the media in sectors.
ends
 
; This structure represents a disk device and its media for the kernel.
; This structure is allocated by the kernel in the 'disk_add' function,
; freed in the 'disk_dereference' function.
struct DISK
; Fields of disk object
.Next dd ?
.Prev dd ?
; All disk devices are linked in one list with these two fields.
; Head of the list is the 'disk_list' variable.
.Functions dd ?
; Pointer to the 'DISKFUNC' structure with driver functions.
.Name dd ?
; Pointer to the string used for accesses through the global filesystem.
.UserData dd ?
; This field is passed to all callback functions so a driver can decide which
; physical device is addressed.
.DriverFlags dd ?
; Bitfield. Currently only DISK_NO_INSERT_NOTIFICATION bit is defined.
; If it is set, the driver will never issue 'disk_media_changed' notification
; with argument set to true, so the kernel must try to detect media during
; requests from the file system.
.RefCount dd ?
; Count of active references to this structure. One reference is kept during
; the lifetime of the structure between 'disk_add' and 'disk_del'.
; Another reference is taken during any filesystem operation for this disk.
; One reference is added if media is inserted.
; The structure is destroyed when the reference count decrements to zero:
; this usually occurs in 'disk_del', but can be delayed to the end of last
; filesystem operation, if one is active.
.MediaLock MUTEX
; Lock to protect the MEDIA structure. See the description after
; 'disk_list_mutex' for the locking strategy.
; Fields of media object
.MediaInserted db ?
; 0 if media is not inserted, nonzero otherwise.
.MediaUsed db ?
; 0 if media fields are not used, nonzero otherwise. If .MediaRefCount is
; nonzero, this field is nonzero too; however, when .MediaRefCount goes
; to zero, there is some time interval during which media object is still used.
align 4
; The following fields are not valid unless either .MediaInserted is nonzero
; or they are accessed from a code which has obtained the reference when
; .MediaInserted was nonzero.
.MediaRefCount dd ?
; Count of active references to the media object. One reference is kept during
; the lifetime of the media between two calls to 'disk_media_changed'.
; Another reference is taken during any filesystem operation for this media.
; The callback 'closemedia' is called when the reference count decrements to
; zero: this usually occurs in 'disk_media_changed', but can be delayed to the
; end of last filesystem operation, if one is active.
.MediaInfo DISKMEDIAINFO
; This field keeps an information about the current media.
.NumPartitions dd ?
; Number of partitions on this media.
.Partitions dd ?
; Pointer to array of .NumPartitions pointers to PARTITION structures.
ends
 
; This structure represents one partition for the kernel. This is a base
; template, the actual contents after common fields is determined by the
; file system code for this partition.
struct PARTITION
.FirstSector dq ?
; First sector of the partition.
.Length dq ?
; Length of the partition in sectors.
.FSUserFunctions dd ?
; Handlers for the sysfunction 70h. This field is a pointer to the following
; array. The first dword is a number of supported subfunctions, other dwords
; point to handlers of corresponding subfunctions.
; This field is 0 if file system is not recognized.
; ...fs-specific data may follow...
ends
 
; This is an external structure, it represents an entry in the partition table.
struct PARTITION_TABLE_ENTRY
.Bootable db ?
; 80h = bootable partition, 0 = non-bootable partition, other values = invalid
.FirstHead db ?
.FirstSector db ?
.FirstTrack db ?
; Coordinates of first sector in CHS.
.Type db ?
; Partition type, one of predefined constants. 0 = empty, several types denote
; extended partition (see process_partition_table_entry), we are not interested
; in other values.
.LastHead db ?
.LastSector db ?
.LastTrack db ?
; Coordinates of last sector in CHS.
.FirstAbsSector dd ?
; Coordinate of first sector in LBA.
.Length dd ?
; Length of the partition in sectors.
ends
 
; =============================================================================
; ================================ Global data ================================
; =============================================================================
iglobal
; The pseudo-item for the list of all DISK structures.
; Initialized to the empty list.
disk_list:
dd disk_list
dd disk_list
endg
uglobal
; This mutex guards all operations with the global list of DISK structures.
disk_list_mutex MUTEX
; * There are two dependent objects, a disk and a media. In the simplest case
; disk and media are both non-removable. However, in the general case both
; can be removed at any time, simultaneously or only media, this makes things
; complicated.
; * For efficiency, both disk and media objects are located in the one
; structure named DISK. However, logically they are different.
; * The following operations use data of disk object: adding (disk_add);
; deleting (disk_del); filesystem (fs_lfn which eventually calls
; dyndisk_handler or dyndisk_enum_root).
; * The following operations use data of media object: adding/removing
; (disk_media_changed); filesystem (fs_lfn which eventually calls
; dyndisk_handler; dyndisk_enum_root doesn't work with media).
; * Notifications disk_add, disk_media_changed, disk_del are synchronized
; between themselves, this is a requirement for the driver. However, file
; system operations are asynchronous, can be issued at any time by any
; thread.
; * We must prevent a situation when a filesystem operation thinks that the
; object is still valid but in fact the notification has destroyed the
; object. So we keep a reference counter for both disk and media and destroy
; the object when this counter goes to zero.
; * The driver must know when it is safe to free driver-allocated resources.
; The object can be alive even after death notification has completed.
; We use special callbacks to satisfy both assertions: 'close' for the disk
; and 'closemedia' for the media. The destruction of the object includes
; calling the corresponding callback.
; * Each filesystem operation keeps one reference for the disk and one
; reference for the media. Notification disk_del forces notification on the
; media death, so the reference counter for the disk is always not less than
; the reference counter for the media.
; * Two operations "get the object" and "increment the reference counter" can
; not be done simultaneously. We use a mutex to guard the consistency here.
; It must be a part of the container for the object, so that this mutex can
; be acquired as a part of getting the object from the container. The
; container for disk object is the global list, and this list is guarded by
; 'disk_list_mutex'. The container for media object is the disk object, and
; the corresponding mutex is DISK.MediaLock.
; * Notifications do not change the data of objects, they can only remove
; objects. Thus we don't need another synchronization at this level. If two
; filesystem operations are referencing the same filesystem data, this is
; better resolved at the level of the filesystem.
endg
 
iglobal
; The function 'disk_scan_partitions' needs two 512-byte buffers for
; MBR and bootsectors data. It can not use the static buffers always,
; since it can be called for two or more disks in parallel. However, this
; case is not typical. We reserve two static 512-byte buffers and a flag
; that these buffers are currently used. If 'disk_scan_partitions' detects that
; the buffers are currently used, it allocates buffers from the heap.
; The flag is implemented as a global dword variable. When the static buffers
; are not used, the value is -1. When the static buffers are used, the value
; is normally 0 and temporarily can become greater. The function increments
; this value. If the resulting value is zero, it uses the buffers and
; decrements the value when the job is done. Otherwise, it immediately
; decrements the value and uses buffers from the heap, allocated in the
; beginning and freed in the end.
partition_buffer_users dd -1
endg
uglobal
; The static buffers for MBR and bootsectors data.
align 16
mbr_buffer rb 512
bootsect_buffer rb 512
endg
 
iglobal
; This is the array of default implementations of driver callbacks.
; Same as DRIVERFUNC structure except for the first field; all functions must
; have the default implementations.
align 4
disk_default_callbacks:
dd disk_default_close
dd disk_default_closemedia
dd disk_default_querymedia
dd disk_default_read
dd disk_default_write
dd disk_default_flush
endg
 
; =============================================================================
; ================================= Functions =================================
; =============================================================================
 
; This function registers a disk device.
; This includes:
; - allocating an internal structure describing this device;
; - registering this structure in the global filesystem.
; The function initializes the disk as if there is no media. If a media is
; present, the function 'disk_media_changed' should be called after this
; function succeeds.
; Parameters:
; [esp+4] = pointer to DISKFUNC structure with the callbacks
; [esp+8] = pointer to name (ASCIIZ string)
; [esp+12] = userdata to be passed to the callbacks as is.
; [esp+16] = flags, bitfield. Currently only DISK_NO_INSERT_NOTIFICATION bit
; is defined.
; Return value:
; NULL = operation has failed
; non-NULL = handle of the disk. This handle can be used
; in the operations with other Disk* functions.
; The handle is the pointer to the internal structure DISK.
disk_add:
push ebx esi ; save used registers to be stdcall
; 1. Allocate the DISK structure.
; 1a. Call the heap manager.
push sizeof.DISK
pop eax
call malloc
; 1b. Check the result. If allocation failed, return (go to 9) with eax = 0.
test eax, eax
jz .nothing
; 2. Copy disk name to the DISK structure.
; 2a. Get length of the name, including the terminating zero.
mov esi, [esp+8+8] ; esi = pointer to name
push eax ; save allocated pointer to DISK
xor eax, eax ; the argument of malloc() is in eax
@@:
inc eax
cmp byte [esi+eax-1], 0
jnz @b
; 2b. Call the heap manager.
call malloc
; 2c. Check the result. If allocation failed, go to 7.
pop ebx ; restore allocated pointer to DISK
test eax, eax
jz .free
; 2d. Store the allocated pointer to the DISK structure.
mov [ebx+DISK.Name], eax
; 2e. Copy the name.
@@:
mov dl, [esi]
mov [eax], dl
inc esi
inc eax
test dl, dl
jnz @b
; 3. Copy other arguments of the function to the DISK structure.
mov eax, [esp+4+8]
mov [ebx+DISK.Functions], eax
mov eax, [esp+12+8]
mov [ebx+DISK.UserData], eax
mov eax, [esp+16+8]
mov [ebx+DISK.DriverFlags], eax
; 4. Initialize other fields of the DISK structure.
; Media is not inserted, initialized state of mutex is zero,
; reference counter is 1.
lea ecx, [ebx+DISK.MediaLock]
call mutex_init
xor eax, eax
mov dword [ebx+DISK.MediaInserted], eax
inc eax
mov [ebx+DISK.RefCount], eax
; The DISK structure is initialized.
; 5. Insert the new structure to the global list.
; 5a. Acquire the mutex.
mov ecx, disk_list_mutex
call mutex_lock
; 5b. Insert item to the tail of double-linked list.
mov edx, disk_list
list_add_tail ebx, edx ;ebx= new edx= list head
; 5c. Release the mutex.
call mutex_unlock
; 6. Return with eax = pointer to DISK.
xchg eax, ebx
jmp .nothing
.free:
; Memory allocation for DISK structure succeeded, but for disk name failed.
; 7. Free the DISK structure.
xchg eax, ebx
call free
; 8. Return with eax = 0.
xor eax, eax
.nothing:
; 9. Return.
pop esi ebx ; restore used registers to be stdcall
ret 16 ; purge 4 dword arguments to be stdcall
 
; This function deletes a disk device from the global filesystem.
; This includes:
; - removing a media including all partitions;
; - deleting this structure from the global filesystem;
; - dereferencing the DISK structure and possibly destroying it.
; Parameters:
; [esp+4] = handle of the disk, i.e. the pointer to the DISK structure.
; Return value: none.
disk_del:
push esi ; save used registers to be stdcall
; 1. Force media to be removed. If the media is already removed, the
; call does nothing.
mov esi, [esp+4+8] ; esi = handle of the disk
stdcall disk_media_changed, esi, 0
; 2. Delete the structure from the global list.
; 2a. Acquire the mutex.
mov ecx, disk_list_mutex
call mutex_lock
; 2b. Delete item from double-linked list.
mov eax, [esi+DISK.Next]
mov edx, [esi+DISK.Prev]
mov [eax+DISK.Prev], edx
mov [edx+DISK.Next], eax
; 2c. Release the mutex.
call mutex_unlock
; 3. The structure still has one reference created in disk_add. Remove this
; reference. If there are no other references, disk_dereference will free the
; structure.
call disk_dereference
; 4. Return.
pop esi ; restore used registers to be stdcall
ret 4 ; purge 1 dword argument to be stdcall
 
; This is an internal function which removes a previously obtained reference
; to the disk. If this is the last reference, this function lets the driver
; finalize all associated data, and afterwards frees the DISK structure.
; esi = pointer to DISK structure
disk_dereference:
; 1. Decrement reference counter. Use atomic operation to correctly handle
; possible simultaneous calls.
lock dec [esi+DISK.RefCount]
; 2. If the result is nonzero, there are other references, so nothing to do.
; In this case, return (go to 4).
jnz .nothing
; 3. If we are here, we just removed the last reference and must destroy the
; disk object.
; 3a. Call the driver.
mov al, DISKFUNC.close
stdcall disk_call_driver
; 3b. Free the structure.
xchg eax, esi
call free
; 4. Return.
.nothing:
ret
 
; This is an internal function which removes a previously obtained reference
; to the media. If this is the last reference, this function calls 'closemedia'
; callback to signal the driver that the processing has finished and it is safe
; to inform about a new media.
; esi = pointer to DISK structure
disk_media_dereference:
; 1. Decrement reference counter. Use atomic operation to correctly handle
; possible simultaneous calls.
lock dec [esi+DISK.MediaRefCount]
; 2. If the result is nonzero, there are other references, so nothing to do.
; In this case, return (go to 4).
jnz .nothing
; 3. If we are here, we just removed the last reference and must destroy the
; media object.
; Note that the same place inside the DISK structure is reused for all media
; objects, so we must guarantee that reusing does not happen while freeing.
; Reusing is only possible when someone processes a new media. There are two
; mutually exclusive variants:
; * driver issues media insert notifications (DISK_NO_INSERT_NOTIFICATION bit
; in DISK.DriverFlags is not set). In this case, we require from the driver
; that such notification (except for the first one) can occur only after a
; call to 'closemedia' callback.
; * driver does not issue media insert notifications. In this case, the kernel
; itself must sometimes check whether media is inserted. We have the flag
; DISK.MediaUsed, visible to the kernel. This flag signals to the other parts
; of kernel that the way is free.
; In the first case other parts of the kernel do not use DISK.MediaUsed, so it
; does not matter when this flag is cleared. In the second case this flag must
; be cleared after all other actions, including call to 'closemedia'.
; 3a. Free all partitions.
push esi edi
mov edi, [esi+DISK.NumPartitions]
mov esi, [esi+DISK.Partitions]
test edi, edi
jz .nofree
.freeloop:
lodsd
call free
dec edi
jnz .freeloop
.nofree:
pop edi esi
; 3b. Call the driver.
mov al, DISKFUNC.closemedia
stdcall disk_call_driver
; 3c. Clear the flag.
mov [esi+DISK.MediaUsed], 0
.nothing:
ret
 
; This function is called by the driver and informs the kernel that the media
; has changed. If the media is non-removable, it is called exactly once
; immediately after 'disk_add' and once from 'disk_del'.
; Parameters:
; [esp+4] = handle of the disk, i.e. the pointer to the DISK structure.
; [esp+8] = new status of the media: zero = no media, nonzero = media inserted.
disk_media_changed:
push ebx esi edi ; save used registers to be stdcall
; 1. Remove the existing media, if it is present.
mov esi, [esp+4+12] ; esi = pointer to DISK
; 1a. Check whether it is present. Since DISK.MediaInserted is changed only
; in this function and calls to this function are synchronized, no lock is
; required for checking.
cmp [esi+DISK.MediaInserted], 0
jz .noremove
; We really need to remove the media.
; 1b. Acquire mutex.
lea ecx, [esi+DISK.MediaLock]
call mutex_lock
; 1c. Clear the flag.
mov [esi+DISK.MediaInserted], 0
; 1d. Release mutex.
call mutex_unlock
; 1e. Remove the "lifetime" reference and possibly destroy the structure.
call disk_media_dereference
.noremove:
; 2. Test whether there is new media.
cmp dword [esp+8+12], 0
jz .noinsert
; Yep, there is.
; 3. Process the new media. We assume that all media fields are available to
; use, see comments in 'disk_media_dereference' (this covers using by previous
; media referencers) and note that calls to this function are synchronized
; (this covers using by new media referencers).
; 3a. Call the 'querymedia' callback.
; .Flags are set to zero for possible future extensions.
lea edx, [esi+DISK.MediaInfo]
and [edx+DISKMEDIAINFO.Flags], 0
mov al, DISKFUNC.querymedia
stdcall disk_call_driver, edx
; 3b. Check the result of the callback. Abort if it failed.
test eax, eax
jnz .noinsert
; 3c. Acquire the lifetime reference for the media object.
inc [esi+DISK.MediaRefCount]
; 3d. Scan for partitions. Ignore result; the list of partitions is valid even
; on errors.
call disk_scan_partitions
; 3e. Media is inserted and available for use.
inc [esi+DISK.MediaInserted]
.noinsert:
; 4. Return.
pop edi esi ebx ; restore used registers to be stdcall
ret 8 ; purge 2 dword arguments to be stdcall
 
; This function is a thunk for all functions of a disk driver.
; It checks whether the referenced function is implemented in the driver.
; If so, this function jumps to the function in the driver.
; Otherwise, it jumps to the default implementation.
; al = offset of function in the DISKFUNC structure;
; esi = pointer to the DISK structure;
; stack is the same as for the corresponding function except that the
; first parameter (void* userdata) is prepended automatically.
disk_call_driver:
movzx eax, al ; eax = offset of function in the DISKFUNC structure
; 1. Prepend the first argument to the stack.
pop ecx ; ecx = return address
push [esi+DISK.UserData] ; add argument
push ecx ; save return address
; 2. Check that the required function is inside the table. If not, go to 5.
mov ecx, [esi+DISK.Functions]
cmp eax, [ecx+DISKFUNC.strucsize]
jae .default
; 3. Check that the required function is implemented. If not, go to 5.
mov ecx, [ecx+eax]
test ecx, ecx
jz .default
; 4. Jump to the required function.
jmp ecx
.default:
; 5. Driver does not implement the required function; use default implementation.
jmp dword [disk_default_callbacks+eax-4]
 
; The default implementation of DISKFUNC.querymedia.
disk_default_querymedia:
push DISK_STATUS_INVALID_CALL
pop eax
ret 8
 
; The default implementation of DISKFUNC.read and DISKFUNC.write.
disk_default_read:
disk_default_write:
push DISK_STATUS_INVALID_CALL
pop eax
ret 20
 
; The default implementation of DISKFUNC.close, DISKFUNC.closemedia and
; DISKFUNC.flush.
disk_default_close:
disk_default_closemedia:
disk_default_flush:
xor eax, eax
ret 4
 
; This is an internal function called from 'disk_media_changed' when new media
; is detected. It creates the list of partitions for the media.
; If media is not partitioned, then the list consists of one partition which
; covers all the media.
; esi = pointer to the DISK structure.
disk_scan_partitions:
; 1. Initialize .NumPartitions and .Partitions fields as zeros: empty list.
and [esi+DISK.NumPartitions], 0
and [esi+DISK.Partitions], 0
; 2. Currently we can work only with 512-bytes sectors. Check this restriction.
; The only exception is 2048-bytes CD/DVD, but they are not supported yet by
; this code.
cmp [esi+DISK.MediaInfo.SectorSize], 512
jz .doscan
DEBUGF 1,'K : sector size is %d, only 512 is supported\n',[esi+DISK.MediaInfo.SectorSize]
ret
.doscan:
; 3. Acquire the buffer for MBR and bootsector tests. See the comment before
; the 'partition_buffer_users' variable.
mov ebx, mbr_buffer ; assume the global buffer is free
lock inc [partition_buffer_users]
jz .buffer_acquired ; yes, it is free
lock dec [partition_buffer_users] ; no, we must allocate
stdcall kernel_alloc, 1024
test eax, eax
jz .nothing
xchg eax, ebx
.buffer_acquired:
; MBR/EBRs are organized in the chain. We use a loop over MBR/EBRs, but no
; more than MAX_NUM_PARTITION times.
; 4. Prepare things for the loop.
; ebp will hold the sector number for current MBR/EBR.
; [esp] will hold the sector number for current extended partition, if there
; is one.
; [esp+4] will hold the counter that prevents long loops.
push ebp ; save ebp
push MAX_NUM_PARTITIONS ; the counter of max MBRs to process
xor ebp, ebp ; start from sector zero
push ebp ; no extended partition yet
.new_mbr:
; 5. Read the current sector.
; Note that 'read' callback operates with 64-bit sector numbers, so we must
; push additional zero as a high dword of sector number.
mov al, DISKFUNC.read
push 1
stdcall disk_call_driver, ebx, ebp, 0, esp
pop ecx
; 6. If the read has failed, abort the loop.
dec ecx
jnz .mbr_failed
; 7. Check the MBR/EBR signature. If it is wrong, abort the loop.
; Soon we will access the partition table which starts at ebx+0x1BE,
; so we can fill its address right now. If we do it now, then the addressing
; [ecx+0x40] is shorter than [ebx+0x1fe]: one-byte offset vs 4-bytes offset.
lea ecx, [ebx+0x1be] ; ecx -> partition table
cmp word [ecx+0x40], 0xaa55
jnz .mbr_failed
; 8. The MBR is treated differently from EBRs. For MBR we additionally need to
; execute step 9 and possibly step 10.
test ebp, ebp
jnz .mbr
; Partition table can be present or not present. In the first case, we just
; read the MBR. In the second case, we just read the bootsector for some
; filesystem.
; We use the following algorithm to distinguish between these cases.
; A. If at least one entry of the partition table is invalid, this is
; a bootsector. See the description of 'is_partition_table_entry' for
; definition of validity.
; B. If all entries are empty (filesystem type field is zero) and the first
; byte is jmp opcode (0EBh or 0E9h), this is a bootsector which happens to
; have zeros in the place of partition table.
; C. Otherwise, this is a MBR.
; 9. Test for MBR vs bootsector.
; 9a. Check entries. If any is invalid, go to 10 (rule A).
call is_partition_table_entry
jc .notmbr
add ecx, 10h
call is_partition_table_entry
jc .notmbr
add ecx, 10h
call is_partition_table_entry
jc .notmbr
add ecx, 10h
call is_partition_table_entry
jc .notmbr
; 9b. Check types of the entries. If at least one is nonzero, go to 11 (rule C).
mov al, [ecx-30h+PARTITION_TABLE_ENTRY.Type]
or al, [ecx-20h+PARTITION_TABLE_ENTRY.Type]
or al, [ecx-10h+PARTITION_TABLE_ENTRY.Type]
or al, [ecx+PARTITION_TABLE_ENTRY.Type]
jnz .mbr
; 9c. Empty partition table or bootsector with many zeroes? (rule B)
cmp byte [ebx], 0EBh
jz .notmbr
cmp byte [ebx], 0E9h
jnz .mbr
.notmbr:
; 10. This is not MBR. The media is not partitioned. Create one partition
; which covers all the media and abort the loop.
stdcall disk_add_partition, 0, 0, \
dword [esi+DISK.MediaInfo.Capacity], dword [esi+DISK.MediaInfo.Capacity+4]
jmp .done
.mbr:
; 11. Process all entries of the new MBR/EBR
lea ecx, [ebx+0x1be] ; ecx -> partition table
push 0 ; assume no extended partition
call process_partition_table_entry
add ecx, 10h
call process_partition_table_entry
add ecx, 10h
call process_partition_table_entry
add ecx, 10h
call process_partition_table_entry
pop ebp
; 12. Test whether we found a new EBR and should continue the loop.
; 12a. If there was no next EBR, return.
test ebp, ebp
jz .done
; Ok, we have EBR.
; 12b. EBRs addresses are relative to the start of extended partition.
; For simplicity, just abort if an 32-bit overflow occurs; large disks
; are most likely partitioned with GPT, not MBR scheme, since the precise
; calculation here would increase limit just twice at the price of big
; compatibility problems.
pop eax ; load extended partition
add ebp, eax
; 12c. If extended partition has not yet started, start it.
test eax, eax
jnz @f
mov eax, ebp
@@:
; 12c. If the limit is not exceeded, continue the loop.
dec dword [esp]
push eax ; store extended partition
jnz .new_mbr
.mbr_failed:
.done:
; 13. Cleanup after the loop.
pop eax ; not important anymore
pop eax ; not important anymore
pop ebp ; restore ebp
; 14. Release the buffer.
; 14a. Test whether it is the global buffer or we have allocated it.
cmp ebx, mbr_buffer
jz .release_partition_buffer
; 14b. If we have allocated it, free it.
xchg eax, ebx
call free
jmp .nothing
; 14c. Otherwise, release reference.
.release_partition_buffer:
lock dec [partition_buffer_users]
.nothing:
; 15. Return.
ret
 
; This is an internal function called from disk_scan_partitions. It checks
; whether the entry pointed to by ecx is a valid entry of partition table.
; The entry is valid if the first byte is 0 or 80h, the first sector plus the
; length is less than twice the size of media. Multiplication by two is
; required since the size mentioned in the partition table can be slightly
; greater than the real size.
is_partition_table_entry:
; 1. Check .Bootable field.
mov al, [ecx+PARTITION_TABLE_ENTRY.Bootable]
and al, 7Fh
jnz .invalid
; 3. Calculate first sector + length. Note that .FirstAbsSector is relative
; to the MBR/EBR, so the real sum is ebp + .FirstAbsSector + .Length.
mov eax, ebp
xor edx, edx
add eax, [ecx+PARTITION_TABLE_ENTRY.FirstAbsSector]
adc edx, 0
add eax, [ecx+PARTITION_TABLE_ENTRY.Length]
adc edx, 0
; 4. Divide by two.
shr edx, 1
rcr eax, 1
; 5. Compare with capacity. If the subtraction (edx:eax) - .Capacity does not
; overflow, this is bad.
sub eax, dword [esi+DISK.MediaInfo.Capacity]
sbb edx, dword [esi+DISK.MediaInfo.Capacity+4]
jnc .invalid
.valid:
; 5. Return success: CF is cleared.
clc
ret
.invalid:
; 6. Return fail: CF is set.
stc
ret
 
; This is an internal function called from disk_scan_partitions. It processes
; the entry pointed to by ecx.
; * If the entry is invalid, just ignore this entry.
; * If the type is zero, just ignore this entry.
; * If the type is one of types for extended partition, store the address
; of this partition as the new MBR in [esp+4].
; * Otherwise, add the partition to the list of partitions for this disk.
; We don't use the type from the entry to identify the file system;
; fs-specific checks do this more reliably.
process_partition_table_entry:
; 1. Check for valid entry. If invalid, return (go to 5).
call is_partition_table_entry
jc .nothing
; 2. Check for empty entry. If invalid, return (go to 5).
mov al, [ecx+PARTITION_TABLE_ENTRY.Type]
test al, al
jz .nothing
; 3. Check for extended partition. If extended, go to 6.
irp type,\
0x05,\ ; DOS: extended partition
0x0f,\ ; WIN95: extended partition, LBA-mapped
0xc5,\ ; DRDOS/secured: extended partition
0xd5 ; Old Multiuser DOS secured: extended partition
{
cmp al, type
jz .extended
}
; 4. If we are here, that is a normal partition. Add it to the list.
; Note that the first sector is relative to MBR/EBR.
mov eax, ebp
xor edx, edx
add eax, [ecx+PARTITION_TABLE_ENTRY.FirstAbsSector]
adc edx, 0
push ecx
stdcall disk_add_partition, eax, edx, \
[ecx+PARTITION_TABLE_ENTRY.Length], 0
pop ecx
.nothing:
; 5. Return.
ret
.extended:
; 6. If we are here, that is an extended partition. Store the address.
mov eax, [ecx+PARTITION_TABLE_ENTRY.FirstAbsSector]
mov [esp+4], eax
ret
 
; This is an internal function called from disk_scan_partitions and
; process_partition_table_entry. It adds one partition to the list of
; partitions for the media.
proc disk_add_partition stdcall uses ebx edi, start:qword, length:qword
; 1. Check that this partition will not exceed the limit on total number.
cmp [esi+DISK.NumPartitions], MAX_NUM_PARTITIONS
jae .nothing
; 2. Check that this partition does not overlap with any already registered
; partition. Since any file system assumes that the disk data will not change
; outside of its control, such overlap could be destructive.
; Since the number of partitions is usually very small and is guaranteed not
; to be large, the simple linear search is sufficient.
; 2a. Prepare the loop: edi will point to the current item of .Partitions
; array, ecx will be the current item, ebx will hold number of items left.
mov edi, [esi+DISK.Partitions]
mov ebx, [esi+DISK.NumPartitions]
test ebx, ebx
jz .partitionok
.scan_existing:
; 2b. Get the next partition.
mov ecx, [edi]
add edi, 4
; The range [.FirstSector, .FirstSector+.Length) must be either entirely to
; the left of [start, start+length) or entirely to the right.
; 2c. Subtract .FirstSector - start. The possible overflow distinguish between
; cases "to the left" (2?) and "to the right" (2d).
mov eax, dword [ecx+PARTITION.FirstSector]
mov edx, dword [ecx+PARTITION.FirstSector+4]
sub eax, dword [start]
sbb edx, dword [start+4]
jb .less
; 2d. .FirstSector is greater than or equal to start. Check that .FirstSector
; is greater than or equal to start+length; the subtraction
; (.FirstSector-start) - length must not cause overflow. Go to 2g if life is
; good or to 2f in the other case.
sub eax, dword [length]
sbb edx, dword [length+4]
jb .overlap
jmp .next_existing
.less:
; 2e. .FirstSector is less than start. Check that .FirstSector+.Length is less
; than or equal to start. If the addition (.FirstSector-start) + .Length does
; not cause overflow, then .FirstSector + .Length is strictly less than start;
; since the equality is also valid, use decrement preliminarily. Go to 2g or
; 2f depending on the overflow.
sub eax, 1
sbb edx, 0
add eax, dword [ecx+PARTITION.Length]
adc edx, dword [ecx+PARTITION.Length+4]
jnc .next_existing
.overlap:
; 2f. The partition overlaps with previously registered partition. Say warning
; and return with nothing done.
dbgstr 'two partitions overlap, ignoring the last one'
jmp .nothing
.next_existing:
; 2g. The partition does not overlap with the current partition. Continue the
; loop.
dec ebx
jnz .scan_existing
.partitionok:
; 3. The partition has passed tests. Reallocate the partitions array for a new
; entry.
; 3a. Call the allocator.
mov eax, [esi+DISK.NumPartitions]
inc eax ; one more entry
shl eax, 2 ; each entry is dword
call malloc
; 3b. Test the result. If failed, return with nothing done.
test eax, eax
jz .nothing
; 3c. Copy the old array to the new array.
mov edi, eax
push esi
mov ecx, [esi+DISK.NumPartitions]
mov esi, [esi+DISK.Partitions]
rep movsd
pop esi
; 3d. Set the field in the DISK structure to the new array.
xchg [esi+DISK.Partitions], eax
; 3e. Free the old array.
call free
; 4. Recognize the file system.
; 4a. Call the filesystem recognizer. It will allocate the PARTITION structure
; with possible filesystem-specific fields.
call disk_detect_partition
; 4b. Check return value. If zero, return with list not changed; so far only
; the array was reallocated, this is ok for other code.
test eax, eax
jz .nothing
; 5. Insert the new partition to the list.
stosd
inc [esi+DISK.NumPartitions]
; 6. Return.
.nothing:
ret
endp
 
; This is an internal function called from disk_add_partition.
; It tries to recognize the file system on the partition and allocates the
; corresponding PARTITION structure with filesystem-specific fields.
disk_detect_partition:
; This function inherits the stack frame from disk_add_partition. In stdcall
; with ebp-based frame arguments start from ebp+8, since [ebp]=saved ebp
; and [ebp+4]=return address.
virtual at ebp+8
.start dq ?
.length dq ?
end virtual
; Currently no file systems are supported, so just allocate the PARTITION
; structure without extra fields.
; 1. Allocate and check result.
push sizeof.PARTITION
pop eax
call malloc
test eax, eax
jz .nothing
; 2. Fill the common fields: copy .start and .length.
mov edx, dword [.start]
mov dword [eax+PARTITION.FirstSector], edx
mov edx, dword [.start+4]
mov dword [eax+PARTITION.FirstSector+4], edx
mov edx, dword [.length]
mov dword [eax+PARTITION.Length], edx
mov edx, dword [.length+4]
mov dword [eax+PARTITION.Length+4], edx
.nothing:
; 3. Return with eax = pointer to PARTITION or NULL.
ret
 
; This function is called from file_system_lfn.
; This handler gets the control each time when fn 70 is called
; with unknown item of root subdirectory.
; in: esi -> name
; ebp = 0 or rest of name relative to esi
; out: if the handler processes path, it must not return in file_system_lfn,
; but instead pop return address and return directly to the caller
; otherwise simply return
dyndisk_handler:
push ebx edi ; save registers used in file_system_lfn
; 1. Acquire the mutex.
mov ecx, disk_list_mutex
call mutex_lock
; 2. Loop over the list of DISK structures.
; 2a. Initialize.
mov ebx, disk_list
.scan:
; 2b. Get the next item.
mov ebx, [ebx+DISK.Next]
; 2c. Check whether the list is done. If so, go to 3.
cmp ebx, disk_list
jz .notfound
; 2d. Compare names. If names match, go to 5.
mov edi, [ebx+DISK.Name]
push esi
@@:
; esi points to the name from fs operation; it is terminated by zero or slash.
lodsb
test al, al
jz .eoin_dec
cmp al, '/'
jz .eoin
; edi points to the disk name.
inc edi
; edi points to lowercase name, this is a requirement for the driver.
; Characters at esi can have any register. Lowercase the current character.
; This lowercasing works for latin letters and digits; since the disk name
; should not contain other symbols, this is ok.
or al, 20h
cmp al, [edi-1]
jz @b
.wrongname:
; 2f. Names don't match. Continue the loop.
pop esi
jmp .scan
.notfound:
; The loop is done and no name matches.
; 3. Release the mutex.
call mutex_unlock
; 4. Return normally.
pop edi ebx ; restore registers used in file_system_lfn
ret
; part of 2d: the name matches partially, but we must check that this is full
; equality.
.eoin_dec:
dec esi
.eoin:
cmp byte [edi], 0
jnz .wrongname
; We found the addressed DISK structure.
; 5. Reference the disk.
lock inc [ebx+DISK.RefCount]
; 6. Now we are sure that the DISK structure is not going to die at least
; while we are working with it, so release the global mutex.
call mutex_unlock
; 7. Acquire the mutex for media object.
pop edi ; restore edi
lea ecx, [ebx+DISK.MediaLock]
call mutex_lock
; 8. Get the media object. If it is not NULL, reference it.
xor edx, edx
cmp [ebx+DISK.MediaInserted], dl
jz @f
mov edx, ebx
inc [ebx+DISK.MediaRefCount]
@@:
; 9. Now we are sure that the media object, if it exists, is not going to die
; at least while we are working with it, so release the mutex for media object.
call mutex_unlock
mov ecx, ebx
pop ebx eax ; restore ebx, pop return address
; 10. Check whether the fs operation wants to enumerate partitions (go to 11)
; or work with some concrete partition (go to 12).
cmp byte [esi], 0
jnz .haspartition
; 11. The fs operation wants to enumerate partitions.
; 11a. Only "list directory" operation is applicable to /<diskname> path. Check
; the operation code. If wrong, go to 13.
cmp dword [ebx], 1
jnz .access_denied
; 11b. If the media is inserted, use 'fs_dyndisk_next' as an enumeration
; procedure. Otherwise, use 'fs_dyndisk_next_nomedia'.
mov esi, fs_dyndisk_next_nomedia
test edx, edx
jz @f
mov esi, fs_dyndisk_next
@@:
; 11c. Let the procedure from fs_lfn.inc do the job.
jmp file_system_lfn.maindir_noesi
.haspartition:
; 12. The fs operation has specified some partition.
; 12a. Store parameters for callback functions.
push edx
push ecx
; 12b. Store callback functions.
push dyndisk_cleanup
push fs_dyndisk
mov edi, esp
; 12c. Let the procedure from fs_lfn.inc do the job.
jmp file_system_lfn.found2
.access_denied:
; 13. Fail the operation with the appropriate code.
mov dword [esp+32], ERROR_ACCESS_DENIED
.cleanup:
; 14. Cleanup.
mov esi, ecx ; disk*dereference assume that esi points to DISK
.cleanup_esi:
test edx, edx ; if there are no media, we didn't reference it
jz @f
call disk_media_dereference
@@:
call disk_dereference
; 15. Return.
ret
 
; This is a callback for cleaning up things called from file_system_lfn.found2.
dyndisk_cleanup:
mov esi, [edi+8]
mov edx, [edi+12]
jmp dyndisk_handler.cleanup_esi
 
; This is a callback for enumerating partitions called from
; file_system_lfn.maindir in the case of inserted media.
; It just increments eax until DISK.NumPartitions reached and then
; cleans up.
fs_dyndisk_next:
cmp eax, [ecx+DISK.NumPartitions]
jae .nomore
inc eax
clc
ret
.nomore:
pusha
mov esi, ecx
call disk_media_dereference
call disk_dereference
popa
stc
ret
 
; This is a callback for enumerating partitions called from
; file_system_lfn.maindir in the case of missing media.
; In this case we create one pseudo-partition.
fs_dyndisk_next_nomedia:
cmp eax, 1
jae .nomore
inc eax
clc
ret
.nomore:
pusha
mov esi, ecx
call disk_dereference
popa
stc
ret
 
; This is a callback for doing real work with selected partition.
; Currently this is just placeholder, since no file systems are supported.
; edi = esp -> {dd fs_dyndisk, dd dyndisk_cleanup, dd pointer to DISK, dd media object}
; ecx = partition number, esi+ebp = ASCIIZ name
fs_dyndisk:
dec ecx ; convert to zero-based partition index
pop edx edx edx eax ; edx = pointer to DISK, eax = NULL or edx
test eax, eax
jz .nomedia
.main:
cmp ecx, [edx+DISK.NumPartitions]
jae .notfound
mov dword [esp+32], ERROR_UNKNOWN_FS
.cleanup:
mov esi, edx
call disk_media_dereference
call disk_dereference
ret
.notfound:
mov dword [esp+32], ERROR_FILE_NOT_FOUND
jmp .cleanup
.nomedia:
test ecx, ecx
jnz .notfound
test byte [edx+DISK.DriverFlags], DISK_NO_INSERT_NOTIFICATION
jz .deverror
; if the driver does not support insert notifications and we are the only fs
; operation with this disk, issue the fake insert notification; if media is
; still not inserted, 'disk_media_changed' will detect this and do nothing
;;; push ebx
lea ecx, [edx+DISK.MediaLock]
call mutex_lock
cmp [edx+DISK.MediaRefCount], 1
jnz .noluck
call mutex_unlock
push edx
stdcall disk_media_changed, edx, 1
pop edx
lea ecx, [edx+DISK.MediaLock]
call mutex_lock
cmp [edx+DISK.MediaInserted], 0
jz .noluck
lock inc [edx+DISK.MediaRefCount]
call mutex_unlock
xor ecx, ecx
jmp .main
.noluck:
call mutex_unlock
.deverror:
mov dword [esp+32], ERROR_DEVICE
mov esi, edx
call disk_dereference
ret
 
; This function is called from file_system_lfn.
; This handler is called when virtual root is enumerated
; and must return all items which can be handled by this.
; It is called several times, first time with eax=0
; in: eax = 0 for first call, previously returned value for subsequent calls
; out: eax = 0 => no more items
; eax != 0 => buffer pointed to by edi contains name of item
dyndisk_enum_root:
push ebx ; save register used in file_system_lfn
mov ecx, disk_list_mutex ; it will be useful
; 1. If this is the first call, acquire the mutex and initialize.
test eax, eax
jnz .notfirst
call mutex_lock
mov eax, disk_list
.notfirst:
; 2. Get next item.
mov eax, [eax+DISK.Next]
; 3. If there are no more items, go to 6.
cmp eax, disk_list
jz .last
; 4. Copy name from the DISK structure to edi.
push eax esi
mov esi, [eax+DISK.Name]
@@:
lodsb
stosb
test al, al
jnz @b
pop esi eax
; 5. Return with eax = item.
pop ebx ; restore register used in file_system_lfn
ret
.last:
; 6. Release the mutex and return with eax = 0.
call mutex_unlock
xor eax, eax
pop ebx ; restore register used in file_system_lfn
ret
/kernel/branches/Kolibri-acpi/fs/fat32.inc
60,6 → 60,7
ERROR_DISK_FULL = 8
ERROR_FAT_TABLE = 9
ERROR_ACCESS_DENIED = 10
ERROR_DEVICE = 11
 
PUSHAD_EAX equ [esp+28]
PUSHAD_ECX equ [esp+24]
/kernel/branches/Kolibri-acpi/fs/fs_lfn.inc
85,6 → 85,7
 
fs_additional_handlers:
dd biosdisk_handler, biosdisk_enum_root
dd dyndisk_handler, dyndisk_enum_root
; add new handlers here
dd 0
 
383,7 → 384,8
.notfounda:
cmp edi, esp
jnz .notfound
add esp, 8
call dword [edi+4]
add esp, 16
jmp .notfound
 
.found1:
850,6 → 852,8
jmp file_system_lfn.maindir_noesi
@@:
push ecx
push ecx
push biosdisk_cleanup
push fs_OnBd
mov edi, esp
jmp file_system_lfn.found2
858,10 → 862,11
cmp eax, [BiosDiskPartitions+ecx*4]
inc eax
cmc
biosdisk_cleanup:
ret
 
fs_OnBd:
pop edx edx
pop edx edx edx edx
; edx = disk number, ecx = partition number
; esi+ebp = name
call reserve_hd1
/kernel/branches/Kolibri-acpi/init.inc
266,7 → 266,6
add ebx, [pg_data.pagemap_size-OS_BASE]
mov [page_end-OS_BASE], ebx
 
mov [pg_data.pg_mutex-OS_BASE], 0
ret
endp
 
/kernel/branches/Kolibri-acpi/kernel.asm
321,6 → 321,12
mov eax, cr3
mov cr3, eax ; flush TLB
 
mov ecx, pg_data.mutex
call mutex_init
 
mov ecx, disk_list_mutex
call mutex_init
 
; SAVE REAL MODE VARIABLES
mov ax, [BOOT_VAR + 0x9031]
mov [IDEContrRegsBaseAddr], ax
713,7 → 719,11
call boot_log
 
movzx ecx, word [boot_y]
or ecx, (10+29*6) shl 16 ; "Determining amount of memory"
if lang eq ru
or ecx, (10+30*6) shl 16
else
or ecx, (10+29*6) shl 16
end if
sub ecx, 10
mov edx, 0xFFFFFF
mov ebx, [MEM_AMOUNT]
832,7 → 842,11
 
mov ebx, edx
movzx ecx, word [boot_y]
add ecx, (10+17*6) shl 16 - 10 ; 'CPU frequency is '
if lang eq ru
add ecx, (10+19*6) shl 16 - 10; 'Determining amount of memory'
else
add ecx, (10+17*6) shl 16 - 10; 'Determining amount of memory'
end if
mov edx, 0xFFFFFF
xor edi,edi
mov eax, 0x00040000
2270,18 → 2284,18
sound_flag db 0
endg
 
UID_NONE=0
UID_MENUETOS=1 ;official
UID_KOLIBRI=2 ;russian
 
iglobal
version_inf:
db 0,7,7,0 ; version 0.7.7.0
db UID_KOLIBRI
db 0
dd __REV__
version_end:
endg
 
UID_NONE=0
UID_MENUETOS=1 ;official
UID_KOLIBRI=2 ;russian
 
sys_cachetodiskette:
cmp ebx, 1
jne .no_floppy_a_save
/kernel/branches/Kolibri-acpi/kernel32.inc
223,6 → 223,7
include "core/v86.inc" ; virtual-8086 manager
include "core/apic.inc" ; Interrupt Controller functions
include "core/irq.inc" ; irq handling functions
include "core/timers.inc"
 
; GUI stuff
include "gui/window.inc"
234,6 → 235,7
 
; file system
 
include "fs/disk.inc" ; support for plug-n-play disks
include "fs/fs.inc" ; syscall
include "fs/fat32.inc" ; read / write for fat32 filesystem
include "fs/ntfs.inc" ; read / write for ntfs filesystem
/kernel/branches/Kolibri-acpi/macros.inc
20,6 → 20,9
struc name arg {
}
 
macro declare_sizeof xname,value
{ sizeof.#xname = value }
 
macro struct_helper name
{
match xname,name
26,7 → 29,7
\{
virtual at 0
xname xname
sizeof.#xname = $ - xname
declare_sizeof xname, $ - xname
name equ sizeof.#xname
end virtual
\}
/kernel/branches/Kolibri-acpi/network/socket.inc
54,7 → 54,7
.SEG_LEN dd ? ; segment length
.SEG_WND dd ? ; segment window
.wndsizeTimer dd ? ; window size timer
.lock dd ? ; lock mutex
.lock MUTEX ; lock mutex
.rxData dd ? ; receive data buffer here
ends
 
99,6 → 99,11
rep stosd
pop eax
 
mov ebx, eax
lea ecx, [eax+SOCKET.lock]
call mutex_init
mov eax, ebx
 
; add socket to the list by changing pointers
mov ebx, net_sockets
push [ebx + SOCKET.NextPtr]
703,10 → 708,10
or eax, eax
jz .error
 
lea ebx, [eax + SOCKET.lock]
call wait_mutex
mov ebx, eax
lea ecx, [eax + SOCKET.lock]
call mutex_lock
 
mov ebx, eax
mov eax, [ebx + SOCKET.rxDataCount] ; get count of bytes
test eax, eax
jz .error_release
727,15 → 732,18
and ecx, 3
rep movsb
 
mov [ebx + SOCKET.lock], 0
lea ecx, [ebx + SOCKET.lock]
mov ebx, eax
 
call mutex_unlock
mov eax, ebx
ret
 
.error_release:
mov [ebx + SOCKET.lock], 0
lea ecx, [ebx + SOCKET.lock]
call mutex_unlock
.error:
xor ebx, ebx
xor eax, eax
ret
endp
 
756,10 → 764,11
or eax, eax
jz .error
 
lea ebx, [eax + SOCKET.lock]
call wait_mutex
mov ebx, eax
 
mov ebx, eax
lea ecx, [eax + SOCKET.lock]
call mutex_lock
 
mov eax, [ebx + SOCKET.rxDataCount] ; get count of bytes
test eax, eax ; if count of bytes is zero..
jz .exit ; exit function (eax will be zero)
789,7 → 798,9
rep movsb ; copy remaining bytes
 
.exit:
mov [ebx + SOCKET.lock], 0
lea ecx, [ebx + SOCKET.lock]
call mutex_unlock
mov eax, edx
ret ; at last, exit
 
.error:
800,7 → 811,9
xor esi, esi
mov [ebx + SOCKET.rxDataCount], esi ; store new count (zero)
call .start_copy
mov [ebx + SOCKET.lock], 0
lea ecx, [ebx + SOCKET.lock]
call mutex_unlock
mov eax, edx
ret
 
.start_copy:
/kernel/branches/Kolibri-acpi/network/tcp.inc
963,12 → 963,10
jmp .exit
 
.data:
push ebx
add ebx, SOCKET.lock
call wait_mutex
pop ebx
push ecx
lea ecx, [ebx+SOCKET.lock]
call mutex_lock
 
push ecx
push ebx
mov eax, [ebx + SOCKET.rxDataCount]
add eax, ecx
986,8 → 984,10
 
cld
rep movsb ; copy the data across
mov [ebx + SOCKET.lock], 0 ; release mutex
 
lea ecx,[ebx + SOCKET.lock]
call mutex_unlock
 
; flag an event to the application
pop ebx
call signal_network_event
1031,8 → 1031,9
.overflow:
; no place in buffer
; so simply restore stack and exit
lea ecx, [ebx + SOCKET.lock]
call mutex_unlock
pop eax ecx
mov [ebx + SOCKET.lock], 0
ret
endp