Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 1962 → Rev 1963

/drivers/video/drm/radeon/radeon_pm.c
24,23 → 24,14
#include "radeon.h"
#include "avivod.h"
 
#define DRM_DEBUG_DRIVER(fmt, args...)
 
#define RADEON_IDLE_LOOP_MS 100
#define RADEON_RECLOCK_DELAY_MS 200
#define RADEON_WAIT_VBLANK_TIMEOUT 200
#define RADEON_WAIT_IDLE_TIMEOUT 200
 
static void radeon_pm_set_clocks_locked(struct radeon_device *rdev);
static void radeon_pm_set_clocks(struct radeon_device *rdev);
static void radeon_pm_idle_work_handler(struct work_struct *work);
static int radeon_debugfs_pm_init(struct radeon_device *rdev);
 
static const char *pm_state_names[4] = {
"PM_STATE_DISABLED",
"PM_STATE_MINIMUM",
"PM_STATE_PAUSED",
"PM_STATE_ACTIVE"
};
 
static const char *pm_state_types[5] = {
static const char *radeon_pm_state_type_name[5] = {
"Default",
"Powersave",
"Battery",
48,238 → 39,552
"Performance",
};
 
static void radeon_print_power_mode_info(struct radeon_device *rdev)
static void radeon_dynpm_idle_work_handler(struct work_struct *work);
static int radeon_debugfs_pm_init(struct radeon_device *rdev);
static bool radeon_pm_in_vbl(struct radeon_device *rdev);
static bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish);
static void radeon_pm_update_profile(struct radeon_device *rdev);
static void radeon_pm_set_clocks(struct radeon_device *rdev);
 
static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
 
#define ACPI_AC_CLASS "ac_adapter"
 
#ifdef CONFIG_ACPI
static int radeon_acpi_event(struct notifier_block *nb,
unsigned long val,
void *data)
{
int i, j;
bool is_default;
struct radeon_device *rdev = container_of(nb, struct radeon_device, acpi_nb);
struct acpi_bus_event *entry = (struct acpi_bus_event *)data;
 
DRM_INFO("%d Power State(s)\n", rdev->pm.num_power_states);
for (i = 0; i < rdev->pm.num_power_states; i++) {
if (rdev->pm.default_power_state == &rdev->pm.power_state[i])
is_default = true;
if (strcmp(entry->device_class, ACPI_AC_CLASS) == 0) {
if (power_supply_is_system_supplied() > 0)
DRM_DEBUG_DRIVER("pm: AC\n");
else
is_default = false;
DRM_INFO("State %d %s %s\n", i,
pm_state_types[rdev->pm.power_state[i].type],
is_default ? "(default)" : "");
if ((rdev->flags & RADEON_IS_PCIE) && !(rdev->flags & RADEON_IS_IGP))
DRM_INFO("\t%d PCIE Lanes\n", rdev->pm.power_state[i].non_clock_info.pcie_lanes);
DRM_INFO("\t%d Clock Mode(s)\n", rdev->pm.power_state[i].num_clock_modes);
for (j = 0; j < rdev->pm.power_state[i].num_clock_modes; j++) {
if (rdev->flags & RADEON_IS_IGP)
DRM_INFO("\t\t%d engine: %d\n",
j,
rdev->pm.power_state[i].clock_info[j].sclk * 10);
else
DRM_INFO("\t\t%d engine/memory: %d/%d\n",
j,
rdev->pm.power_state[i].clock_info[j].sclk * 10,
rdev->pm.power_state[i].clock_info[j].mclk * 10);
DRM_DEBUG_DRIVER("pm: DC\n");
 
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
if (rdev->pm.profile == PM_PROFILE_AUTO) {
mutex_lock(&rdev->pm.mutex);
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
mutex_unlock(&rdev->pm.mutex);
}
}
}
 
static struct radeon_power_state * radeon_pick_power_state(struct radeon_device *rdev,
enum radeon_pm_state_type type)
return NOTIFY_OK;
}
#endif
 
static void radeon_pm_update_profile(struct radeon_device *rdev)
{
int i, j;
enum radeon_pm_state_type wanted_types[2];
int wanted_count;
 
switch (type) {
case POWER_STATE_TYPE_DEFAULT:
default:
return rdev->pm.default_power_state;
case POWER_STATE_TYPE_POWERSAVE:
if (rdev->flags & RADEON_IS_MOBILITY) {
wanted_types[0] = POWER_STATE_TYPE_POWERSAVE;
wanted_types[1] = POWER_STATE_TYPE_BATTERY;
wanted_count = 2;
} else {
wanted_types[0] = POWER_STATE_TYPE_PERFORMANCE;
wanted_count = 1;
}
switch (rdev->pm.profile) {
case PM_PROFILE_DEFAULT:
rdev->pm.profile_index = PM_PROFILE_DEFAULT_IDX;
break;
case POWER_STATE_TYPE_BATTERY:
if (rdev->flags & RADEON_IS_MOBILITY) {
wanted_types[0] = POWER_STATE_TYPE_BATTERY;
wanted_types[1] = POWER_STATE_TYPE_POWERSAVE;
wanted_count = 2;
case PM_PROFILE_AUTO:
if (power_supply_is_system_supplied() > 0) {
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_HIGH_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_HIGH_SH_IDX;
} else {
wanted_types[0] = POWER_STATE_TYPE_PERFORMANCE;
wanted_count = 1;
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_MID_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_MID_SH_IDX;
}
break;
case POWER_STATE_TYPE_BALANCED:
case POWER_STATE_TYPE_PERFORMANCE:
wanted_types[0] = type;
wanted_count = 1;
case PM_PROFILE_LOW:
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_LOW_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_LOW_SH_IDX;
break;
case PM_PROFILE_MID:
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_MID_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_MID_SH_IDX;
break;
case PM_PROFILE_HIGH:
if (rdev->pm.active_crtc_count > 1)
rdev->pm.profile_index = PM_PROFILE_HIGH_MH_IDX;
else
rdev->pm.profile_index = PM_PROFILE_HIGH_SH_IDX;
break;
}
 
for (i = 0; i < wanted_count; i++) {
for (j = 0; j < rdev->pm.num_power_states; j++) {
if (rdev->pm.power_state[j].type == wanted_types[i])
return &rdev->pm.power_state[j];
if (rdev->pm.active_crtc_count == 0) {
rdev->pm.requested_power_state_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_off_ps_idx;
rdev->pm.requested_clock_mode_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_off_cm_idx;
} else {
rdev->pm.requested_power_state_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_on_ps_idx;
rdev->pm.requested_clock_mode_index =
rdev->pm.profiles[rdev->pm.profile_index].dpms_on_cm_idx;
}
}
 
return rdev->pm.default_power_state;
static void radeon_unmap_vram_bos(struct radeon_device *rdev)
{
struct radeon_bo *bo, *n;
 
if (list_empty(&rdev->gem.objects))
return;
 
}
 
static struct radeon_pm_clock_info * radeon_pick_clock_mode(struct radeon_device *rdev,
struct radeon_power_state *power_state,
enum radeon_pm_clock_mode_type type)
 
static void radeon_set_power_state(struct radeon_device *rdev)
{
switch (type) {
case POWER_MODE_TYPE_DEFAULT:
default:
return power_state->default_clock_mode;
case POWER_MODE_TYPE_LOW:
return &power_state->clock_info[0];
case POWER_MODE_TYPE_MID:
if (power_state->num_clock_modes > 2)
return &power_state->clock_info[1];
u32 sclk, mclk;
bool misc_after = false;
 
if ((rdev->pm.requested_clock_mode_index == rdev->pm.current_clock_mode_index) &&
(rdev->pm.requested_power_state_index == rdev->pm.current_power_state_index))
return;
 
if (radeon_gui_idle(rdev)) {
sclk = rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].sclk;
if (sclk > rdev->pm.default_sclk)
sclk = rdev->pm.default_sclk;
 
mclk = rdev->pm.power_state[rdev->pm.requested_power_state_index].
clock_info[rdev->pm.requested_clock_mode_index].mclk;
if (mclk > rdev->pm.default_mclk)
mclk = rdev->pm.default_mclk;
 
/* upvolt before raising clocks, downvolt after lowering clocks */
if (sclk < rdev->pm.current_sclk)
misc_after = true;
 
// radeon_sync_with_vblank(rdev);
 
if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
if (!radeon_pm_in_vbl(rdev))
return;
}
 
radeon_pm_prepare(rdev);
 
if (!misc_after)
/* voltage, pcie lanes, etc.*/
radeon_pm_misc(rdev);
 
/* set engine clock */
if (sclk != rdev->pm.current_sclk) {
radeon_pm_debug_check_in_vbl(rdev, false);
radeon_set_engine_clock(rdev, sclk);
radeon_pm_debug_check_in_vbl(rdev, true);
rdev->pm.current_sclk = sclk;
DRM_DEBUG_DRIVER("Setting: e: %d\n", sclk);
}
 
/* set memory clock */
if (rdev->asic->set_memory_clock && (mclk != rdev->pm.current_mclk)) {
radeon_pm_debug_check_in_vbl(rdev, false);
radeon_set_memory_clock(rdev, mclk);
radeon_pm_debug_check_in_vbl(rdev, true);
rdev->pm.current_mclk = mclk;
DRM_DEBUG_DRIVER("Setting: m: %d\n", mclk);
}
 
if (misc_after)
/* voltage, pcie lanes, etc.*/
radeon_pm_misc(rdev);
 
radeon_pm_finish(rdev);
 
rdev->pm.current_power_state_index = rdev->pm.requested_power_state_index;
rdev->pm.current_clock_mode_index = rdev->pm.requested_clock_mode_index;
} else
DRM_DEBUG_DRIVER("pm: GUI not idle!!!\n");
}
 
static void radeon_pm_set_clocks(struct radeon_device *rdev)
{
int i;
 
/* no need to take locks, etc. if nothing's going to change */
if ((rdev->pm.requested_clock_mode_index == rdev->pm.current_clock_mode_index) &&
(rdev->pm.requested_power_state_index == rdev->pm.current_power_state_index))
return;
 
mutex_lock(&rdev->ddev->struct_mutex);
mutex_lock(&rdev->vram_mutex);
mutex_lock(&rdev->cp.mutex);
 
/* gui idle int has issues on older chips it seems */
if (rdev->family >= CHIP_R600) {
if (rdev->irq.installed) {
/* wait for GPU idle */
rdev->pm.gui_idle = false;
rdev->irq.gui_idle = true;
}
} else {
if (rdev->cp.ready) {
// struct radeon_fence *fence;
// radeon_ring_alloc(rdev, 64);
// radeon_fence_create(rdev, &fence);
// radeon_fence_emit(rdev, fence);
// radeon_ring_commit(rdev);
// radeon_fence_wait(fence, false);
// radeon_fence_unref(&fence);
}
}
radeon_unmap_vram_bos(rdev);
 
if (rdev->irq.installed) {
for (i = 0; i < rdev->num_crtc; i++) {
if (rdev->pm.active_crtcs & (1 << i)) {
rdev->pm.req_vblank |= (1 << i);
// drm_vblank_get(rdev->ddev, i);
}
}
}
 
radeon_set_power_state(rdev);
 
if (rdev->irq.installed) {
for (i = 0; i < rdev->num_crtc; i++) {
if (rdev->pm.req_vblank & (1 << i)) {
rdev->pm.req_vblank &= ~(1 << i);
// drm_vblank_put(rdev->ddev, i);
}
}
}
 
/* update display watermarks based on new power state */
radeon_update_bandwidth_info(rdev);
if (rdev->pm.active_crtc_count)
radeon_bandwidth_update(rdev);
 
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
 
mutex_unlock(&rdev->cp.mutex);
mutex_unlock(&rdev->vram_mutex);
mutex_unlock(&rdev->ddev->struct_mutex);
}
 
static void radeon_pm_print_states(struct radeon_device *rdev)
{
int i, j;
struct radeon_power_state *power_state;
struct radeon_pm_clock_info *clock_info;
 
DRM_DEBUG_DRIVER("%d Power State(s)\n", rdev->pm.num_power_states);
for (i = 0; i < rdev->pm.num_power_states; i++) {
power_state = &rdev->pm.power_state[i];
DRM_DEBUG_DRIVER("State %d: %s\n", i,
radeon_pm_state_type_name[power_state->type]);
if (i == rdev->pm.default_power_state_index)
DRM_DEBUG_DRIVER("\tDefault");
if ((rdev->flags & RADEON_IS_PCIE) && !(rdev->flags & RADEON_IS_IGP))
DRM_DEBUG_DRIVER("\t%d PCIE Lanes\n", power_state->pcie_lanes);
if (power_state->flags & RADEON_PM_STATE_SINGLE_DISPLAY_ONLY)
DRM_DEBUG_DRIVER("\tSingle display only\n");
DRM_DEBUG_DRIVER("\t%d Clock Mode(s)\n", power_state->num_clock_modes);
for (j = 0; j < power_state->num_clock_modes; j++) {
clock_info = &(power_state->clock_info[j]);
if (rdev->flags & RADEON_IS_IGP)
DRM_DEBUG_DRIVER("\t\t%d e: %d%s\n",
j,
clock_info->sclk * 10,
clock_info->flags & RADEON_PM_MODE_NO_DISPLAY ? "\tNo display only" : "");
else
return &power_state->clock_info[0];
break;
case POWER_MODE_TYPE_HIGH:
return &power_state->clock_info[power_state->num_clock_modes - 1];
DRM_DEBUG_DRIVER("\t\t%d e: %d\tm: %d\tv: %d%s\n",
j,
clock_info->sclk * 10,
clock_info->mclk * 10,
clock_info->voltage.voltage,
clock_info->flags & RADEON_PM_MODE_NO_DISPLAY ? "\tNo display only" : "");
}
}
}
 
static ssize_t radeon_get_pm_profile(struct device *dev,
struct device_attribute *attr,
char *buf)
{
 
return snprintf(buf, PAGE_SIZE, "%s\n", "default");
}
 
static void radeon_get_power_state(struct radeon_device *rdev,
enum radeon_pm_action action)
static ssize_t radeon_set_pm_profile(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
switch (action) {
case PM_ACTION_MINIMUM:
rdev->pm.requested_power_state = radeon_pick_power_state(rdev, POWER_STATE_TYPE_BATTERY);
rdev->pm.requested_clock_mode =
radeon_pick_clock_mode(rdev, rdev->pm.requested_power_state, POWER_MODE_TYPE_LOW);
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
 
mutex_lock(&rdev->pm.mutex);
 
rdev->pm.profile = PM_PROFILE_DEFAULT;
 
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
fail:
mutex_unlock(&rdev->pm.mutex);
 
return count;
}
 
static ssize_t radeon_get_pm_method(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
int pm = rdev->pm.pm_method;
 
return snprintf(buf, PAGE_SIZE, "%s\n",
(pm == PM_METHOD_DYNPM) ? "dynpm" : "profile");
}
 
static ssize_t radeon_set_pm_method(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t count)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
 
 
if (strncmp("dynpm", buf, strlen("dynpm")) == 0) {
mutex_lock(&rdev->pm.mutex);
rdev->pm.pm_method = PM_METHOD_DYNPM;
rdev->pm.dynpm_state = DYNPM_STATE_PAUSED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT;
mutex_unlock(&rdev->pm.mutex);
} else if (strncmp("profile", buf, strlen("profile")) == 0) {
mutex_lock(&rdev->pm.mutex);
/* disable dynpm */
rdev->pm.dynpm_state = DYNPM_STATE_DISABLED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
rdev->pm.pm_method = PM_METHOD_PROFILE;
mutex_unlock(&rdev->pm.mutex);
// cancel_delayed_work_sync(&rdev->pm.dynpm_idle_work);
} else {
DRM_ERROR("invalid power method!\n");
goto fail;
}
radeon_pm_compute_clocks(rdev);
fail:
return count;
}
 
static ssize_t radeon_hwmon_show_temp(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct drm_device *ddev = pci_get_drvdata(to_pci_dev(dev));
struct radeon_device *rdev = ddev->dev_private;
u32 temp;
 
switch (rdev->pm.int_thermal_type) {
case THERMAL_TYPE_RV6XX:
temp = rv6xx_get_temp(rdev);
break;
case PM_ACTION_DOWNCLOCK:
rdev->pm.requested_power_state = radeon_pick_power_state(rdev, POWER_STATE_TYPE_POWERSAVE);
rdev->pm.requested_clock_mode =
radeon_pick_clock_mode(rdev, rdev->pm.requested_power_state, POWER_MODE_TYPE_MID);
case THERMAL_TYPE_RV770:
temp = rv770_get_temp(rdev);
break;
case PM_ACTION_UPCLOCK:
rdev->pm.requested_power_state = radeon_pick_power_state(rdev, POWER_STATE_TYPE_DEFAULT);
rdev->pm.requested_clock_mode =
radeon_pick_clock_mode(rdev, rdev->pm.requested_power_state, POWER_MODE_TYPE_HIGH);
case THERMAL_TYPE_EVERGREEN:
case THERMAL_TYPE_NI:
temp = evergreen_get_temp(rdev);
break;
case PM_ACTION_NONE:
default:
DRM_ERROR("Requested mode for not defined action\n");
return;
temp = 0;
break;
}
DRM_INFO("Requested: e: %d m: %d p: %d\n",
rdev->pm.requested_clock_mode->sclk,
rdev->pm.requested_clock_mode->mclk,
rdev->pm.requested_power_state->non_clock_info.pcie_lanes);
 
return snprintf(buf, PAGE_SIZE, "%d\n", temp);
}
 
static void radeon_set_power_state(struct radeon_device *rdev)
static ssize_t radeon_hwmon_show_name(struct device *dev,
struct device_attribute *attr,
char *buf)
{
/* if *_clock_mode are the same, *_power_state are as well */
if (rdev->pm.requested_clock_mode == rdev->pm.current_clock_mode)
return;
return sprintf(buf, "radeon\n");
}
 
DRM_INFO("Setting: e: %d m: %d p: %d\n",
rdev->pm.requested_clock_mode->sclk,
rdev->pm.requested_clock_mode->mclk,
rdev->pm.requested_power_state->non_clock_info.pcie_lanes);
/* set pcie lanes */
/* set voltage */
/* set engine clock */
radeon_set_engine_clock(rdev, rdev->pm.requested_clock_mode->sclk);
/* set memory clock */
static int radeon_hwmon_init(struct radeon_device *rdev)
{
int err = 0;
 
rdev->pm.current_power_state = rdev->pm.requested_power_state;
rdev->pm.current_clock_mode = rdev->pm.requested_clock_mode;
rdev->pm.int_hwmon_dev = NULL;
 
return err;
}
 
static void radeon_hwmon_fini(struct radeon_device *rdev)
{
}
 
void radeon_pm_suspend(struct radeon_device *rdev)
{
mutex_lock(&rdev->pm.mutex);
if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
if (rdev->pm.dynpm_state == DYNPM_STATE_ACTIVE)
rdev->pm.dynpm_state = DYNPM_STATE_SUSPENDED;
}
mutex_unlock(&rdev->pm.mutex);
 
// cancel_delayed_work_sync(&rdev->pm.dynpm_idle_work);
}
 
void radeon_pm_resume(struct radeon_device *rdev)
{
/* asic init will reset the default power state */
mutex_lock(&rdev->pm.mutex);
rdev->pm.current_power_state_index = rdev->pm.default_power_state_index;
rdev->pm.current_clock_mode_index = 0;
rdev->pm.current_sclk = rdev->pm.default_sclk;
rdev->pm.current_mclk = rdev->pm.default_mclk;
rdev->pm.current_vddc = rdev->pm.power_state[rdev->pm.default_power_state_index].clock_info[0].voltage.voltage;
if (rdev->pm.pm_method == PM_METHOD_DYNPM
&& rdev->pm.dynpm_state == DYNPM_STATE_SUSPENDED) {
rdev->pm.dynpm_state = DYNPM_STATE_ACTIVE;
// schedule_delayed_work(&rdev->pm.dynpm_idle_work,
// msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
}
mutex_unlock(&rdev->pm.mutex);
radeon_pm_compute_clocks(rdev);
}
 
int radeon_pm_init(struct radeon_device *rdev)
{
rdev->pm.state = PM_STATE_DISABLED;
rdev->pm.planned_action = PM_ACTION_NONE;
rdev->pm.downclocked = false;
int ret;
 
/* default to profile method */
rdev->pm.pm_method = PM_METHOD_PROFILE;
rdev->pm.profile = PM_PROFILE_DEFAULT;
rdev->pm.dynpm_state = DYNPM_STATE_DISABLED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_NONE;
rdev->pm.dynpm_can_upclock = true;
rdev->pm.dynpm_can_downclock = true;
rdev->pm.default_sclk = rdev->clock.default_sclk;
rdev->pm.default_mclk = rdev->clock.default_mclk;
rdev->pm.current_sclk = rdev->clock.default_sclk;
rdev->pm.current_mclk = rdev->clock.default_mclk;
rdev->pm.int_thermal_type = THERMAL_TYPE_NONE;
 
if (rdev->bios) {
if (rdev->is_atom_bios)
radeon_atombios_get_power_modes(rdev);
else
radeon_combios_get_power_modes(rdev);
radeon_print_power_mode_info(rdev);
radeon_pm_print_states(rdev);
radeon_pm_init_profile(rdev);
}
 
if (radeon_debugfs_pm_init(rdev)) {
DRM_ERROR("Failed to register debugfs file for PM!\n");
/* set up the internal thermal sensor if applicable */
ret = radeon_hwmon_init(rdev);
if (ret)
return ret;
 
if (rdev->pm.num_power_states > 1) {
 
DRM_INFO("radeon: power management initialized\n");
}
 
// INIT_DELAYED_WORK(&rdev->pm.idle_work, radeon_pm_idle_work_handler);
return 0;
}
 
if (radeon_dynpm != -1 && radeon_dynpm) {
rdev->pm.state = PM_STATE_PAUSED;
DRM_INFO("radeon: dynamic power management enabled\n");
void radeon_pm_fini(struct radeon_device *rdev)
{
if (rdev->pm.num_power_states > 1) {
mutex_lock(&rdev->pm.mutex);
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
rdev->pm.profile = PM_PROFILE_DEFAULT;
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
} else if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
/* reset default clocks */
rdev->pm.dynpm_state = DYNPM_STATE_DISABLED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT;
radeon_pm_set_clocks(rdev);
}
mutex_unlock(&rdev->pm.mutex);
 
DRM_INFO("radeon: power management initialized\n");
// cancel_delayed_work_sync(&rdev->pm.dynpm_idle_work);
 
return 0;
}
 
radeon_hwmon_fini(rdev);
}
 
void radeon_pm_compute_clocks(struct radeon_device *rdev)
{
struct drm_device *ddev = rdev->ddev;
struct drm_connector *connector;
struct drm_crtc *crtc;
struct radeon_crtc *radeon_crtc;
int count = 0;
 
if (rdev->pm.state == PM_STATE_DISABLED)
if (rdev->pm.num_power_states < 2)
return;
 
mutex_lock(&rdev->pm.mutex);
 
rdev->pm.active_crtcs = 0;
list_for_each_entry(connector,
&ddev->mode_config.connector_list, head) {
if (connector->encoder &&
connector->dpms != DRM_MODE_DPMS_OFF) {
radeon_crtc = to_radeon_crtc(connector->encoder->crtc);
rdev->pm.active_crtc_count = 0;
list_for_each_entry(crtc,
&ddev->mode_config.crtc_list, head) {
radeon_crtc = to_radeon_crtc(crtc);
if (radeon_crtc->enabled) {
rdev->pm.active_crtcs |= (1 << radeon_crtc->crtc_id);
++count;
rdev->pm.active_crtc_count++;
}
}
 
if (count > 1) {
if (rdev->pm.state == PM_STATE_ACTIVE) {
if (rdev->pm.pm_method == PM_METHOD_PROFILE) {
radeon_pm_update_profile(rdev);
radeon_pm_set_clocks(rdev);
} else if (rdev->pm.pm_method == PM_METHOD_DYNPM) {
if (rdev->pm.dynpm_state != DYNPM_STATE_DISABLED) {
if (rdev->pm.active_crtc_count > 1) {
if (rdev->pm.dynpm_state == DYNPM_STATE_ACTIVE) {
// cancel_delayed_work(&rdev->pm.dynpm_idle_work);
 
rdev->pm.state = PM_STATE_PAUSED;
rdev->pm.planned_action = PM_ACTION_UPCLOCK;
if (rdev->pm.downclocked)
rdev->pm.dynpm_state = DYNPM_STATE_PAUSED;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_DEFAULT;
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
 
DRM_DEBUG("radeon: dynamic power management deactivated\n");
DRM_DEBUG_DRIVER("radeon: dynamic power management deactivated\n");
}
} else if (count == 1) {
} else if (rdev->pm.active_crtc_count == 1) {
/* TODO: Increase clocks if needed for current mode */
 
if (rdev->pm.state == PM_STATE_MINIMUM) {
rdev->pm.state = PM_STATE_ACTIVE;
rdev->pm.planned_action = PM_ACTION_UPCLOCK;
if (rdev->pm.dynpm_state == DYNPM_STATE_MINIMUM) {
rdev->pm.dynpm_state = DYNPM_STATE_ACTIVE;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_UPCLOCK;
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
 
// schedule_delayed_work(&rdev->pm.dynpm_idle_work,
// msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
} else if (rdev->pm.dynpm_state == DYNPM_STATE_PAUSED) {
rdev->pm.dynpm_state = DYNPM_STATE_ACTIVE;
// schedule_delayed_work(&rdev->pm.dynpm_idle_work,
// msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
DRM_DEBUG_DRIVER("radeon: dynamic power management activated\n");
}
else if (rdev->pm.state == PM_STATE_PAUSED) {
rdev->pm.state = PM_STATE_ACTIVE;
DRM_DEBUG("radeon: dynamic power management activated\n");
} else { /* count == 0 */
if (rdev->pm.dynpm_state != DYNPM_STATE_MINIMUM) {
// cancel_delayed_work(&rdev->pm.dynpm_idle_work);
 
rdev->pm.dynpm_state = DYNPM_STATE_MINIMUM;
rdev->pm.dynpm_planned_action = DYNPM_ACTION_MINIMUM;
radeon_pm_get_dynpm_state(rdev);
radeon_pm_set_clocks(rdev);
}
}
else { /* count == 0 */
if (rdev->pm.state != PM_STATE_MINIMUM) {
rdev->pm.state = PM_STATE_MINIMUM;
rdev->pm.planned_action = PM_ACTION_MINIMUM;
radeon_pm_set_clocks(rdev);
}
}
 
286,139 → 591,38
mutex_unlock(&rdev->pm.mutex);
}
 
static bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish)
static bool radeon_pm_in_vbl(struct radeon_device *rdev)
{
u32 stat_crtc1 = 0, stat_crtc2 = 0;
int crtc, vpos, hpos, vbl_status;
bool in_vbl = true;
 
if (ASIC_IS_AVIVO(rdev)) {
if (rdev->pm.active_crtcs & (1 << 0)) {
stat_crtc1 = RREG32(D1CRTC_STATUS);
if (!(stat_crtc1 & 1))
/* Iterate over all active crtc's. All crtc's must be in vblank,
* otherwise return in_vbl == false.
*/
for (crtc = 0; (crtc < rdev->num_crtc) && in_vbl; crtc++) {
if (rdev->pm.active_crtcs & (1 << crtc)) {
vbl_status = radeon_get_crtc_scanoutpos(rdev->ddev, crtc, &vpos, &hpos);
if ((vbl_status & DRM_SCANOUTPOS_VALID) &&
!(vbl_status & DRM_SCANOUTPOS_INVBL))
in_vbl = false;
}
if (rdev->pm.active_crtcs & (1 << 1)) {
stat_crtc2 = RREG32(D2CRTC_STATUS);
if (!(stat_crtc2 & 1))
in_vbl = false;
}
}
if (in_vbl == false)
DRM_INFO("not in vbl for pm change %08x %08x at %s\n", stat_crtc1,
stat_crtc2, finish ? "exit" : "entry");
 
return in_vbl;
}
static void radeon_pm_set_clocks_locked(struct radeon_device *rdev)
{
/*radeon_fence_wait_last(rdev);*/
switch (rdev->pm.planned_action) {
case PM_ACTION_UPCLOCK:
rdev->pm.downclocked = false;
break;
case PM_ACTION_DOWNCLOCK:
rdev->pm.downclocked = true;
break;
case PM_ACTION_MINIMUM:
break;
case PM_ACTION_NONE:
DRM_ERROR("%s: PM_ACTION_NONE\n", __func__);
break;
}
 
/* check if we are in vblank */
radeon_pm_debug_check_in_vbl(rdev, false);
radeon_set_power_state(rdev);
radeon_pm_debug_check_in_vbl(rdev, true);
rdev->pm.planned_action = PM_ACTION_NONE;
}
 
static void radeon_pm_set_clocks(struct radeon_device *rdev)
static bool radeon_pm_debug_check_in_vbl(struct radeon_device *rdev, bool finish)
{
radeon_get_power_state(rdev, rdev->pm.planned_action);
mutex_lock(&rdev->cp.mutex);
u32 stat_crtc = 0;
bool in_vbl = radeon_pm_in_vbl(rdev);
 
if (rdev->pm.active_crtcs & (1 << 0)) {
rdev->pm.req_vblank |= (1 << 0);
// drm_vblank_get(rdev->ddev, 0);
if (in_vbl == false)
DRM_DEBUG_DRIVER("not in vbl for pm change %08x at %s\n", stat_crtc,
finish ? "exit" : "entry");
return in_vbl;
}
if (rdev->pm.active_crtcs & (1 << 1)) {
rdev->pm.req_vblank |= (1 << 1);
// drm_vblank_get(rdev->ddev, 1);
}
if (rdev->pm.active_crtcs)
// wait_event_interruptible_timeout(
// rdev->irq.vblank_queue, 0,
// msecs_to_jiffies(RADEON_WAIT_VBLANK_TIMEOUT));
if (rdev->pm.req_vblank & (1 << 0)) {
rdev->pm.req_vblank &= ~(1 << 0);
// drm_vblank_put(rdev->ddev, 0);
}
if (rdev->pm.req_vblank & (1 << 1)) {
rdev->pm.req_vblank &= ~(1 << 1);
// drm_vblank_put(rdev->ddev, 1);
}
 
radeon_pm_set_clocks_locked(rdev);
mutex_unlock(&rdev->cp.mutex);
}
 
#if 0
static void radeon_pm_idle_work_handler(struct work_struct *work)
{
struct radeon_device *rdev;
rdev = container_of(work, struct radeon_device,
pm.idle_work.work);
 
mutex_lock(&rdev->pm.mutex);
if (rdev->pm.state == PM_STATE_ACTIVE) {
unsigned long irq_flags;
int not_processed = 0;
 
read_lock_irqsave(&rdev->fence_drv.lock, irq_flags);
if (!list_empty(&rdev->fence_drv.emited)) {
struct list_head *ptr;
list_for_each(ptr, &rdev->fence_drv.emited) {
/* count up to 3, that's enought info */
if (++not_processed >= 3)
break;
}
}
read_unlock_irqrestore(&rdev->fence_drv.lock, irq_flags);
 
if (not_processed >= 3) { /* should upclock */
if (rdev->pm.planned_action == PM_ACTION_DOWNCLOCK) {
rdev->pm.planned_action = PM_ACTION_NONE;
} else if (rdev->pm.planned_action == PM_ACTION_NONE &&
rdev->pm.downclocked) {
rdev->pm.planned_action =
PM_ACTION_UPCLOCK;
rdev->pm.action_timeout = jiffies +
msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS);
}
} else if (not_processed == 0) { /* should downclock */
if (rdev->pm.planned_action == PM_ACTION_UPCLOCK) {
rdev->pm.planned_action = PM_ACTION_NONE;
} else if (rdev->pm.planned_action == PM_ACTION_NONE &&
!rdev->pm.downclocked) {
rdev->pm.planned_action =
PM_ACTION_DOWNCLOCK;
rdev->pm.action_timeout = jiffies +
msecs_to_jiffies(RADEON_RECLOCK_DELAY_MS);
}
}
 
if (rdev->pm.planned_action != PM_ACTION_NONE &&
jiffies > rdev->pm.action_timeout) {
radeon_pm_set_clocks(rdev);
}
}
mutex_unlock(&rdev->pm.mutex);
 
queue_delayed_work(rdev->wq, &rdev->pm.idle_work,
msecs_to_jiffies(RADEON_IDLE_LOOP_MS));
}
#endif
 
/*
* Debugfs info
*/
430,12 → 634,13
struct drm_device *dev = node->minor->dev;
struct radeon_device *rdev = dev->dev_private;
 
seq_printf(m, "state: %s\n", pm_state_names[rdev->pm.state]);
seq_printf(m, "default engine clock: %u0 kHz\n", rdev->clock.default_sclk);
seq_printf(m, "default engine clock: %u0 kHz\n", rdev->pm.default_sclk);
seq_printf(m, "current engine clock: %u0 kHz\n", radeon_get_engine_clock(rdev));
seq_printf(m, "default memory clock: %u0 kHz\n", rdev->clock.default_mclk);
seq_printf(m, "default memory clock: %u0 kHz\n", rdev->pm.default_mclk);
if (rdev->asic->get_memory_clock)
seq_printf(m, "current memory clock: %u0 kHz\n", radeon_get_memory_clock(rdev));
if (rdev->pm.current_vddc)
seq_printf(m, "voltage: %u mV\n", rdev->pm.current_vddc);
if (rdev->asic->get_pcie_lanes)
seq_printf(m, "PCIE lanes: %d\n", radeon_get_pcie_lanes(rdev));