Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 6083 → Rev 6084

/drivers/video/drm/i915/intel_display.c
37,6 → 37,8
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_plane_helper.h>
43,29 → 45,37
#include <drm/drm_rect.h>
#include <linux/dma_remapping.h>
 
/* Primary plane formats supported by all gen */
#define COMMON_PRIMARY_FORMATS \
DRM_FORMAT_C8, \
DRM_FORMAT_RGB565, \
DRM_FORMAT_XRGB8888, \
DRM_FORMAT_ARGB8888
 
/* Primary plane formats for gen <= 3 */
static const uint32_t intel_primary_formats_gen2[] = {
COMMON_PRIMARY_FORMATS,
static const uint32_t i8xx_primary_formats[] = {
DRM_FORMAT_C8,
DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB1555,
DRM_FORMAT_ARGB1555,
DRM_FORMAT_XRGB8888,
};
 
/* Primary plane formats for gen >= 4 */
static const uint32_t intel_primary_formats_gen4[] = {
COMMON_PRIMARY_FORMATS, \
static const uint32_t i965_primary_formats[] = {
DRM_FORMAT_C8,
DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_XRGB2101010,
DRM_FORMAT_XBGR2101010,
};
 
static const uint32_t skl_primary_formats[] = {
DRM_FORMAT_C8,
DRM_FORMAT_RGB565,
DRM_FORMAT_XRGB8888,
DRM_FORMAT_XBGR8888,
DRM_FORMAT_ARGB8888,
DRM_FORMAT_ABGR8888,
DRM_FORMAT_XRGB2101010,
DRM_FORMAT_ARGB2101010,
DRM_FORMAT_XBGR2101010,
DRM_FORMAT_ABGR2101010,
DRM_FORMAT_YUYV,
DRM_FORMAT_YVYU,
DRM_FORMAT_UYVY,
DRM_FORMAT_VYUY,
};
 
/* Cursor formats */
76,12 → 86,10
void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
 
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config);
struct intel_crtc_state *pipe_config);
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config);
struct intel_crtc_state *pipe_config);
 
static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
int x, int y, struct drm_framebuffer *old_fb);
static int intel_framebuffer_init(struct drm_device *dev,
struct intel_framebuffer *ifb,
struct drm_mode_fb_cmd2 *mode_cmd,
95,18 → 103,21
static void haswell_set_pipeconf(struct drm_crtc *crtc);
static void intel_set_pipe_csc(struct drm_crtc *crtc);
static void vlv_prepare_pll(struct intel_crtc *crtc,
const struct intel_crtc_config *pipe_config);
const struct intel_crtc_state *pipe_config);
static void chv_prepare_pll(struct intel_crtc *crtc,
const struct intel_crtc_config *pipe_config);
const struct intel_crtc_state *pipe_config);
static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state);
static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
int num_connectors);
static void skylake_pfit_enable(struct intel_crtc *crtc);
static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
static void ironlake_pfit_enable(struct intel_crtc *crtc);
static void intel_modeset_setup_hw_state(struct drm_device *dev);
static void intel_pre_disable_primary(struct drm_crtc *crtc);
 
static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
{
if (!connector->mst_port)
return connector->encoder;
else
return &connector->mst_port->mst_encoders[pipe]->base;
}
 
typedef struct {
int min, max;
} intel_range_t;
122,6 → 133,42
intel_p2_t p2;
};
 
/* returns HPLL frequency in kHz */
static int valleyview_get_vco(struct drm_i915_private *dev_priv)
{
int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
 
/* Obtain SKU information */
mutex_lock(&dev_priv->sb_lock);
hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
CCK_FUSE_HPLL_FREQ_MASK;
mutex_unlock(&dev_priv->sb_lock);
 
return vco_freq[hpll_freq] * 1000;
}
 
static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
const char *name, u32 reg)
{
u32 val;
int divider;
 
if (dev_priv->hpll_freq == 0)
dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
 
mutex_lock(&dev_priv->sb_lock);
val = vlv_cck_read(dev_priv, reg);
mutex_unlock(&dev_priv->sb_lock);
 
divider = val & CCK_FREQUENCY_VALUES;
 
WARN((val & CCK_FREQUENCY_STATUS) !=
(divider << CCK_FREQUENCY_STATUS_SHIFT),
"%s change in progress\n", name);
 
return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
}
 
int
intel_pch_rawclk(struct drm_device *dev)
{
132,6 → 179,50
return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
}
 
/* hrawclock is 1/4 the FSB frequency */
int intel_hrawclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t clkcfg;
 
/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
if (IS_VALLEYVIEW(dev))
return 200;
 
clkcfg = I915_READ(CLKCFG);
switch (clkcfg & CLKCFG_FSB_MASK) {
case CLKCFG_FSB_400:
return 100;
case CLKCFG_FSB_533:
return 133;
case CLKCFG_FSB_667:
return 166;
case CLKCFG_FSB_800:
return 200;
case CLKCFG_FSB_1067:
return 266;
case CLKCFG_FSB_1333:
return 333;
/* these two are just a guess; one of them might be right */
case CLKCFG_FSB_1600:
case CLKCFG_FSB_1600_ALT:
return 400;
default:
return 133;
}
}
 
static void intel_update_czclk(struct drm_i915_private *dev_priv)
{
if (!IS_VALLEYVIEW(dev_priv))
return;
 
dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
CCK_CZ_CLOCK_CONTROL);
 
DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
}
 
static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_device *dev)
{
387,7 → 478,7
* them would make no difference.
*/
.dot = { .min = 25000 * 5, .max = 540000 * 5},
.vco = { .min = 4860000, .max = 6700000 },
.vco = { .min = 4800000, .max = 6480000 },
.n = { .min = 1, .max = 1 },
.m1 = { .min = 2, .max = 2 },
.m2 = { .min = 24 << 22, .max = 175 << 22 },
395,14 → 486,22
.p2 = { .p2_slow = 1, .p2_fast = 14 },
};
 
static void vlv_clock(int refclk, intel_clock_t *clock)
static const intel_limit_t intel_limits_bxt = {
/* FIXME: find real dot limits */
.dot = { .min = 0, .max = INT_MAX },
.vco = { .min = 4800000, .max = 6700000 },
.n = { .min = 1, .max = 1 },
.m1 = { .min = 2, .max = 2 },
/* FIXME: find real m2 limits */
.m2 = { .min = 2 << 22, .max = 255 << 22 },
.p1 = { .min = 2, .max = 4 },
.p2 = { .p2_slow = 1, .p2_fast = 20 },
};
 
static bool
needs_modeset(struct drm_crtc_state *state)
{
clock->m = clock->m1 * clock->m2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
return drm_atomic_crtc_needs_modeset(state);
}
 
/**
426,25 → 525,38
* intel_pipe_has_type() but looking at encoder->new_crtc instead of
* encoder->crtc.
*/
static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
int type)
{
struct drm_device *dev = crtc->base.dev;
struct drm_atomic_state *state = crtc_state->base.state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
struct intel_encoder *encoder;
int i, num_connectors = 0;
 
for_each_intel_encoder(dev, encoder)
if (encoder->new_crtc == crtc && encoder->type == type)
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc_state->base.crtc)
continue;
 
num_connectors++;
 
encoder = to_intel_encoder(connector_state->best_encoder);
if (encoder->type == type)
return true;
}
 
WARN_ON(num_connectors == 0);
 
return false;
}
 
static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
int refclk)
static const intel_limit_t *
intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
{
struct drm_device *dev = crtc->base.dev;
struct drm_device *dev = crtc_state->base.crtc->dev;
const intel_limit_t *limit;
 
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_is_dual_link_lvds(dev)) {
if (refclk == 100000)
limit = &intel_limits_ironlake_dual_lvds_100m;
462,20 → 574,21
return limit;
}
 
static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
static const intel_limit_t *
intel_g4x_limit(struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_device *dev = crtc_state->base.crtc->dev;
const intel_limit_t *limit;
 
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
if (intel_is_dual_link_lvds(dev))
limit = &intel_limits_g4x_dual_channel_lvds;
else
limit = &intel_limits_g4x_single_channel_lvds;
} else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
limit = &intel_limits_g4x_hdmi;
} else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
limit = &intel_limits_g4x_sdvo;
} else /* The option is for other outputs */
limit = &intel_limits_i9xx_sdvo;
483,17 → 596,20
return limit;
}
 
static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
static const intel_limit_t *
intel_limit(struct intel_crtc_state *crtc_state, int refclk)
{
struct drm_device *dev = crtc->base.dev;
struct drm_device *dev = crtc_state->base.crtc->dev;
const intel_limit_t *limit;
 
if (HAS_PCH_SPLIT(dev))
limit = intel_ironlake_limit(crtc, refclk);
if (IS_BROXTON(dev))
limit = &intel_limits_bxt;
else if (HAS_PCH_SPLIT(dev))
limit = intel_ironlake_limit(crtc_state, refclk);
else if (IS_G4X(dev)) {
limit = intel_g4x_limit(crtc);
limit = intel_g4x_limit(crtc_state);
} else if (IS_PINEVIEW(dev)) {
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
limit = &intel_limits_pineview_lvds;
else
limit = &intel_limits_pineview_sdvo;
502,14 → 618,14
} else if (IS_VALLEYVIEW(dev)) {
limit = &intel_limits_vlv;
} else if (!IS_GEN2(dev)) {
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i9xx_lvds;
else
limit = &intel_limits_i9xx_sdvo;
} else {
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i8xx_lvds;
else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
limit = &intel_limits_i8xx_dvo;
else
limit = &intel_limits_i8xx_dac;
517,15 → 633,25
return limit;
}
 
/*
* Platform specific helpers to calculate the port PLL loopback- (clock.m),
* and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
* (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
* The helpers' return value is the rate of the clock that is fed to the
* display engine's pipe which can be the above fast dot clock rate or a
* divided-down version of it.
*/
/* m1 is reserved as 0 in Pineview, n is a ring counter */
static void pineview_clock(int refclk, intel_clock_t *clock)
static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
{
clock->m = clock->m2 + 2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return;
return 0;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 
return clock->dot;
}
 
static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
533,25 → 659,41
return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
}
 
static void i9xx_clock(int refclk, intel_clock_t *clock)
static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
{
clock->m = i9xx_dpll_compute_m(clock);
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
return;
return 0;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 
return clock->dot;
}
 
static void chv_clock(int refclk, intel_clock_t *clock)
static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
{
clock->m = clock->m1 * clock->m2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return;
return 0;
clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 
return clock->dot / 5;
}
 
int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
{
clock->m = clock->m1 * clock->m2;
clock->p = clock->p1 * clock->p2;
if (WARN_ON(clock->n == 0 || clock->p == 0))
return 0;
clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
clock->n << 22);
clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 
return clock->dot / 5;
}
 
#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
573,11 → 715,11
if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
INTELPllInvalid("m1 out of range\n");
 
if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
if (clock->m1 <= clock->m2)
INTELPllInvalid("m1 <= m2\n");
 
if (!IS_VALLEYVIEW(dev)) {
if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
if (clock->p < limit->p.min || limit->p.max < clock->p)
INTELPllInvalid("p out of range\n");
if (clock->m < limit->m.min || limit->m.max < clock->m)
595,16 → 737,14
return true;
}
 
static bool
i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
static int
i9xx_select_p2_div(const intel_limit_t *limit,
const struct intel_crtc_state *crtc_state,
int target)
{
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock;
int err = target;
struct drm_device *dev = crtc_state->base.crtc->dev;
 
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
/*
* For LVDS just rely on its current settings for dual-channel.
* We haven't figured out how to reliably set up different
611,18 → 751,31
* single/dual channel state, if we even can.
*/
if (intel_is_dual_link_lvds(dev))
clock.p2 = limit->p2.p2_fast;
return limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
return limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
return limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
return limit->p2.p2_fast;
}
}
 
static bool
i9xx_find_best_dpll(const intel_limit_t *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc_state->base.crtc->dev;
intel_clock_t clock;
int err = target;
 
memset(best_clock, 0, sizeof(*best_clock));
 
clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
 
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
635,7 → 788,7
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
 
i9xx_clock(refclk, &clock);
i9xx_calc_dpll_params(refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
657,33 → 810,19
}
 
static bool
pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
pnv_find_best_dpll(const intel_limit_t *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->base.dev;
struct drm_device *dev = crtc_state->base.crtc->dev;
intel_clock_t clock;
int err = target;
 
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
/*
* For LVDS just rely on its current settings for dual-channel.
* We haven't figured out how to reliably set up different
* single/dual channel state, if we even can.
*/
if (intel_is_dual_link_lvds(dev))
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
 
memset(best_clock, 0, sizeof(*best_clock));
 
clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
 
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
clock.m1++) {
for (clock.m2 = limit->m2.min;
694,7 → 833,7
clock.p1 <= limit->p1.max; clock.p1++) {
int this_err;
 
pineview_clock(refclk, &clock);
pnv_calc_dpll_params(refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
716,31 → 855,22
}
 
static bool
g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
g4x_find_best_dpll(const intel_limit_t *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->base.dev;
struct drm_device *dev = crtc_state->base.crtc->dev;
intel_clock_t clock;
int max_n;
bool found;
bool found = false;
/* approximately equals target * 0.00585 */
int err_most = (target >> 8) + (target >> 9);
found = false;
 
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
if (intel_is_dual_link_lvds(dev))
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
} else {
if (target < limit->p2.dot_limit)
clock.p2 = limit->p2.p2_slow;
else
clock.p2 = limit->p2.p2_fast;
}
memset(best_clock, 0, sizeof(*best_clock));
 
memset(best_clock, 0, sizeof(*best_clock));
clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
 
max_n = limit->n.max;
/* based on hardware requirement, prefer smaller n to precision */
for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
753,7 → 883,7
clock.p1 >= limit->p1.min; clock.p1--) {
int this_err;
 
i9xx_clock(refclk, &clock);
i9xx_calc_dpll_params(refclk, &clock);
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
772,11 → 902,53
return found;
}
 
/*
* Check if the calculated PLL configuration is more optimal compared to the
* best configuration and error found so far. Return the calculated error.
*/
static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
const intel_clock_t *calculated_clock,
const intel_clock_t *best_clock,
unsigned int best_error_ppm,
unsigned int *error_ppm)
{
/*
* For CHV ignore the error and consider only the P value.
* Prefer a bigger P value based on HW requirements.
*/
if (IS_CHERRYVIEW(dev)) {
*error_ppm = 0;
 
return calculated_clock->p > best_clock->p;
}
 
if (WARN_ON_ONCE(!target_freq))
return false;
 
*error_ppm = div_u64(1000000ULL *
abs(target_freq - calculated_clock->dot),
target_freq);
/*
* Prefer a better P value over a better (smaller) error if the error
* is small. Ensure this preference for future configurations too by
* setting the error to 0.
*/
if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
*error_ppm = 0;
 
return true;
}
 
return *error_ppm + 10 < best_error_ppm;
}
 
static bool
vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
vlv_find_best_dpll(const intel_limit_t *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock;
unsigned int bestppm = 1000000;
796,50 → 968,49
clock.p = clock.p1 * clock.p2;
/* based on hardware requirement, prefer bigger m1,m2 values */
for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
unsigned int ppm, diff;
unsigned int ppm;
 
clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
refclk * clock.m1);
 
vlv_clock(refclk, &clock);
vlv_calc_dpll_params(refclk, &clock);
 
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
 
diff = abs(clock.dot - target);
ppm = div_u64(1000000ULL * diff, target);
if (!vlv_PLL_is_optimal(dev, target,
&clock,
best_clock,
bestppm, &ppm))
continue;
 
if (ppm < 100 && clock.p > best_clock->p) {
bestppm = 0;
*best_clock = clock;
found = true;
}
 
if (bestppm >= 10 && ppm < bestppm - 10) {
bestppm = ppm;
*best_clock = clock;
found = true;
}
}
}
}
}
 
return found;
}
 
static bool
chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
chv_find_best_dpll(const intel_limit_t *limit,
struct intel_crtc_state *crtc_state,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct drm_device *dev = crtc->base.dev;
unsigned int best_error_ppm;
intel_clock_t clock;
uint64_t m2;
int found = false;
 
memset(best_clock, 0, sizeof(*best_clock));
best_error_ppm = 1000000;
 
/*
* Based on hardware doc, the n always set to 1, and m1 always
853,6 → 1024,7
for (clock.p2 = limit->p2.p2_fast;
clock.p2 >= limit->p2.p2_slow;
clock.p2 -= clock.p2 > 10 ? 2 : 1) {
unsigned int error_ppm;
 
clock.p = clock.p1 * clock.p2;
 
864,23 → 1036,33
 
clock.m2 = m2;
 
chv_clock(refclk, &clock);
chv_calc_dpll_params(refclk, &clock);
 
if (!intel_PLL_is_valid(dev, limit, &clock))
continue;
 
/* based on hardware requirement, prefer bigger p
*/
if (clock.p > best_clock->p) {
if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
best_error_ppm, &error_ppm))
continue;
 
*best_clock = clock;
best_error_ppm = error_ppm;
found = true;
}
}
}
 
return found;
}
 
bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
intel_clock_t *best_clock)
{
int refclk = i9xx_get_refclk(crtc_state, 0);
 
return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
target_clock, refclk, NULL, best_clock);
}
 
bool intel_crtc_active(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
893,9 → 1075,13
*
* We can ditch the crtc->primary->fb check as soon as we can
* properly reconstruct framebuffers.
*
* FIXME: The intel_crtc->active here should be switched to
* crtc->state->active once we have proper CRTC states wired up
* for atomic.
*/
return intel_crtc->active && crtc->primary->fb &&
intel_crtc->config.adjusted_mode.crtc_clock;
return intel_crtc->active && crtc->primary->state->fb &&
intel_crtc->config->base.adjusted_mode.crtc_clock;
}
 
enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
904,7 → 1090,7
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 
return intel_crtc->config.cpu_transcoder;
return intel_crtc->config->cpu_transcoder;
}
 
static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
920,7 → 1106,7
line_mask = DSL_LINEMASK_GEN3;
 
line1 = I915_READ(reg) & line_mask;
mdelay(5);
msleep(5);
line2 = I915_READ(reg) & line_mask;
 
return line1 == line2;
946,7 → 1132,7
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
enum pipe pipe = crtc->pipe;
 
if (INTEL_INFO(dev)->gen >= 4) {
963,51 → 1149,6
}
}
 
/*
* ibx_digital_port_connected - is the specified port connected?
* @dev_priv: i915 private structure
* @port: the port to test
*
* Returns true if @port is connected, false otherwise.
*/
bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
struct intel_digital_port *port)
{
u32 bit;
 
if (HAS_PCH_IBX(dev_priv->dev)) {
switch (port->port) {
case PORT_B:
bit = SDE_PORTB_HOTPLUG;
break;
case PORT_C:
bit = SDE_PORTC_HOTPLUG;
break;
case PORT_D:
bit = SDE_PORTD_HOTPLUG;
break;
default:
return true;
}
} else {
switch (port->port) {
case PORT_B:
bit = SDE_PORTB_HOTPLUG_CPT;
break;
case PORT_C:
bit = SDE_PORTC_HOTPLUG_CPT;
break;
case PORT_D:
bit = SDE_PORTD_HOTPLUG_CPT;
break;
default:
return true;
}
}
 
return I915_READ(SDEISR) & bit;
}
 
static const char *state_string(bool enabled)
{
return enabled ? "on" : "off";
1017,14 → 1158,12
void assert_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
 
reg = DPLL(pipe);
val = I915_READ(reg);
val = I915_READ(DPLL(pipe));
cur_state = !!(val & DPLL_VCO_ENABLE);
WARN(cur_state != state,
I915_STATE_WARN(cur_state != state,
"PLL state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
1035,12 → 1174,12
u32 val;
bool cur_state;
 
mutex_lock(&dev_priv->dpio_lock);
mutex_lock(&dev_priv->sb_lock);
val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
mutex_unlock(&dev_priv->dpio_lock);
mutex_unlock(&dev_priv->sb_lock);
 
cur_state = val & DSI_PLL_VCO_EN;
WARN(cur_state != state,
I915_STATE_WARN(cur_state != state,
"DSI PLL state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
1052,10 → 1191,10
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
 
if (crtc->config.shared_dpll < 0)
if (crtc->config->shared_dpll < 0)
return NULL;
 
return &dev_priv->shared_dplls[crtc->config.shared_dpll];
return &dev_priv->shared_dplls[crtc->config->shared_dpll];
}
 
/* For ILK+ */
1071,7 → 1210,7
return;
 
cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
WARN(cur_state != state,
I915_STATE_WARN(cur_state != state,
"%s assertion failure (expected %s, current %s)\n",
pll->name, state_string(state), state_string(cur_state));
}
1079,8 → 1218,6
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
pipe);
1087,15 → 1224,13
 
if (HAS_DDI(dev_priv->dev)) {
/* DDI does not have a specific FDI_TX register */
reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
val = I915_READ(reg);
u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
} else {
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
u32 val = I915_READ(FDI_TX_CTL(pipe));
cur_state = !!(val & FDI_TX_ENABLE);
}
WARN(cur_state != state,
I915_STATE_WARN(cur_state != state,
"FDI TX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
1105,14 → 1240,12
static void assert_fdi_rx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
 
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
val = I915_READ(FDI_RX_CTL(pipe));
cur_state = !!(val & FDI_RX_ENABLE);
WARN(cur_state != state,
I915_STATE_WARN(cur_state != state,
"FDI RX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
1122,7 → 1255,6
static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
 
/* ILK FDI PLL is always enabled */
1133,22 → 1265,19
if (HAS_DDI(dev_priv->dev))
return;
 
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
val = I915_READ(FDI_TX_CTL(pipe));
I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
}
 
void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
 
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
val = I915_READ(FDI_RX_CTL(pipe));
cur_state = !!(val & FDI_RX_PLL_ENABLE);
WARN(cur_state != state,
I915_STATE_WARN(cur_state != state,
"FDI RX PLL assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
}
1190,7 → 1319,7
((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
locked = false;
 
WARN(panel_pipe == pipe && locked,
I915_STATE_WARN(panel_pipe == pipe && locked,
"panel assertion failure, pipe %c regs locked\n",
pipe_name(pipe));
}
1202,11 → 1331,11
bool cur_state;
 
if (IS_845G(dev) || IS_I865G(dev))
cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
else
cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
 
WARN(cur_state != state,
I915_STATE_WARN(cur_state != state,
"cursor on pipe %c assertion failure (expected %s, current %s)\n",
pipe_name(pipe), state_string(state), state_string(cur_state));
}
1216,8 → 1345,6
void assert_pipe(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
{
int reg;
u32 val;
bool cur_state;
enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
pipe);
1231,12 → 1358,11
POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
cur_state = false;
} else {
reg = PIPECONF(cpu_transcoder);
val = I915_READ(reg);
u32 val = I915_READ(PIPECONF(cpu_transcoder));
cur_state = !!(val & PIPECONF_ENABLE);
}
 
WARN(cur_state != state,
I915_STATE_WARN(cur_state != state,
"pipe %c assertion failure (expected %s, current %s)\n",
pipe_name(pipe), state_string(state), state_string(cur_state));
}
1244,14 → 1370,12
static void assert_plane(struct drm_i915_private *dev_priv,
enum plane plane, bool state)
{
int reg;
u32 val;
bool cur_state;
 
reg = DSPCNTR(plane);
val = I915_READ(reg);
val = I915_READ(DSPCNTR(plane));
cur_state = !!(val & DISPLAY_PLANE_ENABLE);
WARN(cur_state != state,
I915_STATE_WARN(cur_state != state,
"plane %c assertion failure (expected %s, current %s)\n",
plane_name(plane), state_string(state), state_string(cur_state));
}
1263,15 → 1387,12
enum pipe pipe)
{
struct drm_device *dev = dev_priv->dev;
int reg, i;
u32 val;
int cur_pipe;
int i;
 
/* Primary planes are fixed to pipes on gen4+ */
if (INTEL_INFO(dev)->gen >= 4) {
reg = DSPCNTR(pipe);
val = I915_READ(reg);
WARN(val & DISPLAY_PLANE_ENABLE,
u32 val = I915_READ(DSPCNTR(pipe));
I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
"plane %c assertion failure, should be disabled but not\n",
plane_name(pipe));
return;
1279,11 → 1400,10
 
/* Need to check both planes against the pipe */
for_each_pipe(dev_priv, i) {
reg = DSPCNTR(i);
val = I915_READ(reg);
cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
u32 val = I915_READ(DSPCNTR(i));
enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
DISPPLANE_SEL_PIPE_SHIFT;
WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
"plane %c assertion failure, should be off on pipe %c but is still active\n",
plane_name(i), pipe_name(pipe));
}
1293,34 → 1413,30
enum pipe pipe)
{
struct drm_device *dev = dev_priv->dev;
int reg, sprite;
u32 val;
int sprite;
 
if (INTEL_INFO(dev)->gen >= 9) {
for_each_sprite(pipe, sprite) {
val = I915_READ(PLANE_CTL(pipe, sprite));
WARN(val & PLANE_CTL_ENABLE,
for_each_sprite(dev_priv, pipe, sprite) {
u32 val = I915_READ(PLANE_CTL(pipe, sprite));
I915_STATE_WARN(val & PLANE_CTL_ENABLE,
"plane %d assertion failure, should be off on pipe %c but is still active\n",
sprite, pipe_name(pipe));
}
} else if (IS_VALLEYVIEW(dev)) {
for_each_sprite(pipe, sprite) {
reg = SPCNTR(pipe, sprite);
val = I915_READ(reg);
WARN(val & SP_ENABLE,
for_each_sprite(dev_priv, pipe, sprite) {
u32 val = I915_READ(SPCNTR(pipe, sprite));
I915_STATE_WARN(val & SP_ENABLE,
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
sprite_name(pipe, sprite), pipe_name(pipe));
}
} else if (INTEL_INFO(dev)->gen >= 7) {
reg = SPRCTL(pipe);
val = I915_READ(reg);
WARN(val & SPRITE_ENABLE,
u32 val = I915_READ(SPRCTL(pipe));
I915_STATE_WARN(val & SPRITE_ENABLE,
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
plane_name(pipe), pipe_name(pipe));
} else if (INTEL_INFO(dev)->gen >= 5) {
reg = DVSCNTR(pipe);
val = I915_READ(reg);
WARN(val & DVS_ENABLE,
u32 val = I915_READ(DVSCNTR(pipe));
I915_STATE_WARN(val & DVS_ENABLE,
"sprite %c assertion failure, should be off on pipe %c but is still active\n",
plane_name(pipe), pipe_name(pipe));
}
1328,7 → 1444,7
 
static void assert_vblank_disabled(struct drm_crtc *crtc)
{
if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
drm_crtc_vblank_put(crtc);
}
 
1337,25 → 1453,23
u32 val;
bool enabled;
 
WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
 
val = I915_READ(PCH_DREF_CONTROL);
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
DREF_SUPERSPREAD_SOURCE_MASK));
WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
}
 
static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
bool enabled;
 
reg = PCH_TRANSCONF(pipe);
val = I915_READ(reg);
val = I915_READ(PCH_TRANSCONF(pipe));
enabled = !!(val & TRANS_ENABLE);
WARN(enabled,
I915_STATE_WARN(enabled,
"transcoder assertion failed, should be off on pipe %c but is still active\n",
pipe_name(pipe));
}
1435,11 → 1549,11
enum pipe pipe, int reg, u32 port_sel)
{
u32 val = I915_READ(reg);
WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
"PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
 
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
&& (val & DP_PIPEB_SELECT),
"IBX PCH dp port still using transcoder B\n");
}
1448,11 → 1562,11
enum pipe pipe, int reg)
{
u32 val = I915_READ(reg);
WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
"PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
 
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
&& (val & SDVO_PIPE_B_SELECT),
"IBX PCH hdmi port still using transcoder B\n");
}
1460,7 → 1574,6
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
int reg;
u32 val;
 
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467,15 → 1580,13
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
 
reg = PCH_ADPA;
val = I915_READ(reg);
WARN(adpa_pipe_enabled(dev_priv, pipe, val),
val = I915_READ(PCH_ADPA);
I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
"PCH VGA enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
 
reg = PCH_LVDS;
val = I915_READ(reg);
WARN(lvds_pipe_enabled(dev_priv, pipe, val),
val = I915_READ(PCH_LVDS);
I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
"PCH LVDS enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
 
1484,28 → 1595,8
assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
}
 
static void intel_init_dpio(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (!IS_VALLEYVIEW(dev))
return;
 
/*
* IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
* CHV x1 PHY (DP/HDMI D)
* IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
*/
if (IS_CHERRYVIEW(dev)) {
DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
} else {
DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
}
}
 
static void vlv_enable_pll(struct intel_crtc *crtc,
const struct intel_crtc_config *pipe_config)
const struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
1544,7 → 1635,7
}
 
static void chv_enable_pll(struct intel_crtc *crtc,
const struct intel_crtc_config *pipe_config)
const struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
1556,7 → 1647,7
 
BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
 
mutex_lock(&dev_priv->dpio_lock);
mutex_lock(&dev_priv->sb_lock);
 
/* Enable back the 10bit clock to display controller */
tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563,6 → 1654,8
tmp |= DPIO_DCLKP_EN;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
 
mutex_unlock(&dev_priv->sb_lock);
 
/*
* Need to wait > 100ns between dclkp clock enable bit and PLL enable.
*/
1578,8 → 1671,6
/* not sure when this should be written */
I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
POSTING_READ(DPLL_MD(pipe));
 
mutex_unlock(&dev_priv->dpio_lock);
}
 
static int intel_num_dvo_pipes(struct drm_device *dev)
1588,7 → 1679,7
int count = 0;
 
for_each_intel_crtc(dev, crtc)
count += crtc->active &&
count += crtc->base.state->active &&
intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
 
return count;
1599,7 → 1690,7
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int reg = DPLL(crtc->pipe);
u32 dpll = crtc->config.dpll_hw_state.dpll;
u32 dpll = crtc->config->dpll_hw_state.dpll;
 
assert_pipe_disabled(dev_priv, crtc->pipe);
 
1623,6 → 1714,15
I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
}
 
/*
* Apparently we need to have VGA mode enabled prior to changing
* the P1/P2 dividers. Otherwise the DPLL will keep using the old
* dividers, even though the register value does change.
*/
I915_WRITE(reg, 0);
 
I915_WRITE(reg, dpll);
 
/* Wait for the clocks to stabilize. */
POSTING_READ(reg);
udelay(150);
1629,7 → 1729,7
 
if (INTEL_INFO(dev)->gen >= 4) {
I915_WRITE(DPLL_MD(crtc->pipe),
crtc->config.dpll_hw_state.dpll_md);
crtc->config->dpll_hw_state.dpll_md);
} else {
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
1669,7 → 1769,7
/* Disable DVO 2x clock on both PLLs if necessary */
if (IS_I830(dev) &&
intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
intel_num_dvo_pipes(dev) == 1) {
!intel_num_dvo_pipes(dev)) {
I915_WRITE(DPLL(PIPE_B),
I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
I915_WRITE(DPLL(PIPE_A),
1684,13 → 1784,13
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
 
I915_WRITE(DPLL(pipe), 0);
I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
POSTING_READ(DPLL(pipe));
}
 
static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
u32 val = 0;
u32 val;
 
/* Make sure the pipe isn't still relying on us */
assert_pipe_disabled(dev_priv, pipe);
1699,8 → 1799,9
* Leave integrated clock source and reference clock enabled for pipe B.
* The latter is needed for VGA hotplug / manual detection.
*/
val = DPLL_VGA_MODE_DIS;
if (pipe == PIPE_B)
val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
I915_WRITE(DPLL(pipe), val);
POSTING_READ(DPLL(pipe));
 
1715,13 → 1816,14
assert_pipe_disabled(dev_priv, pipe);
 
/* Set PLL en = 0 */
val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
val = DPLL_SSC_REF_CLK_CHV |
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
if (pipe != PIPE_A)
val |= DPLL_INTEGRATED_CRI_CLK_VLV;
I915_WRITE(DPLL(pipe), val);
POSTING_READ(DPLL(pipe));
 
mutex_lock(&dev_priv->dpio_lock);
mutex_lock(&dev_priv->sb_lock);
 
/* Disable 10bit clock to display controller */
val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728,22 → 1830,12
val &= ~DPIO_DCLKP_EN;
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
 
/* disable left/right clock distribution */
if (pipe != PIPE_B) {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
} else {
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
mutex_unlock(&dev_priv->sb_lock);
}
 
mutex_unlock(&dev_priv->dpio_lock);
}
 
void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
struct intel_digital_port *dport)
struct intel_digital_port *dport,
unsigned int expected_mask)
{
u32 port_mask;
int dpll_reg;
1756,6 → 1848,7
case PORT_C:
port_mask = DPLL_PORTC_READY_MASK;
dpll_reg = DPLL(0);
expected_mask <<= 4;
break;
case PORT_D:
port_mask = DPLL_PORTD_READY_MASK;
1765,9 → 1858,9
BUG();
}
 
if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
port_name(dport->port), I915_READ(dpll_reg));
if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
}
 
static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1834,13 → 1927,15
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
 
/* PCH only available on ILK+ */
BUG_ON(INTEL_INFO(dev)->gen < 5);
if (WARN_ON(pll == NULL))
if (INTEL_INFO(dev)->gen < 5)
return;
 
if (WARN_ON(pll->config.crtc_mask == 0))
if (pll == NULL)
return;
 
if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
return;
 
DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
pll->name, pll->active, pll->on,
crtc->base.base.id);
1896,10 → 1991,14
 
if (HAS_PCH_IBX(dev_priv->dev)) {
/*
* make the BPC in transcoder be consistent with
* that in pipeconf reg.
* Make the BPC in transcoder be consistent with
* that in pipeconf reg. For HDMI we must use 8bpc
* here for both 8bpc and 12bpc.
*/
val &= ~PIPECONF_BPC_MASK;
if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
val |= PIPECONF_8BPC;
else
val |= pipeconf_val & PIPECONF_BPC_MASK;
}
 
1931,9 → 2030,9
assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
 
/* Workaround: set timing override bit. */
val = I915_READ(_TRANSA_CHICKEN2);
val = I915_READ(TRANS_CHICKEN2(PIPE_A));
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(_TRANSA_CHICKEN2, val);
I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
 
val = TRANS_ENABLE;
pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1991,9 → 2090,9
DRM_ERROR("Failed to disable PCH transcoder\n");
 
/* Workaround: clear timing override bit. */
val = I915_READ(_TRANSA_CHICKEN2);
val = I915_READ(TRANS_CHICKEN2(PIPE_A));
val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
I915_WRITE(_TRANSA_CHICKEN2, val);
I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
}
 
/**
2014,6 → 2113,8
int reg;
u32 val;
 
DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
 
assert_planes_disabled(dev_priv, pipe);
assert_cursor_disabled(dev_priv, pipe);
assert_sprites_disabled(dev_priv, pipe);
2028,13 → 2129,13
* a plane. On ILK+ the pipe PLLs are integrated, so we don't
* need the check.
*/
if (!HAS_PCH_SPLIT(dev_priv->dev))
if (HAS_GMCH_DISPLAY(dev_priv->dev))
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
assert_dsi_pll_enabled(dev_priv);
else
assert_pll_enabled(dev_priv, pipe);
else {
if (crtc->config.has_pch_encoder) {
if (crtc->config->has_pch_encoder) {
/* if driving the PCH, we need FDI enabled */
assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
assert_fdi_tx_pll_enabled(dev_priv,
2068,11 → 2169,13
static void intel_disable_pipe(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
enum pipe pipe = crtc->pipe;
int reg;
u32 val;
 
DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
 
/*
* Make sure planes won't keep trying to pump pixels to us,
* or we might hang the display.
2090,7 → 2193,7
* Double wide has implications for planes
* so best keep it disabled when not needed.
*/
if (crtc->config.double_wide)
if (crtc->config->double_wide)
val &= ~PIPECONF_DOUBLE_WIDE;
 
/* Don't disable pipe or pipe PLLs if needed */
2103,121 → 2206,148
intel_wait_for_pipe_off(crtc);
}
 
/*
* Plane regs are double buffered, going from enabled->disabled needs a
* trigger in order to latch. The display address reg provides this.
*/
void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
enum plane plane)
static bool need_vtd_wa(struct drm_device *dev)
{
struct drm_device *dev = dev_priv->dev;
u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
 
I915_WRITE(reg, I915_READ(reg));
POSTING_READ(reg);
#ifdef CONFIG_INTEL_IOMMU
if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
return true;
#endif
return false;
}
 
/**
* intel_enable_primary_hw_plane - enable the primary plane on a given pipe
* @plane: plane to be enabled
* @crtc: crtc for the plane
*
* Enable @plane on @crtc, making sure that the pipe is running first.
*/
static void intel_enable_primary_hw_plane(struct drm_plane *plane,
struct drm_crtc *crtc)
unsigned int
intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
uint64_t fb_format_modifier, unsigned int plane)
{
struct drm_device *dev = plane->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
unsigned int tile_height;
uint32_t pixel_bytes;
 
/* If the pipe isn't enabled, we can't pump pixels and may hang */
assert_pipe_enabled(dev_priv, intel_crtc->pipe);
switch (fb_format_modifier) {
case DRM_FORMAT_MOD_NONE:
tile_height = 1;
break;
case I915_FORMAT_MOD_X_TILED:
tile_height = IS_GEN2(dev) ? 16 : 8;
break;
case I915_FORMAT_MOD_Y_TILED:
tile_height = 32;
break;
case I915_FORMAT_MOD_Yf_TILED:
pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
switch (pixel_bytes) {
default:
case 1:
tile_height = 64;
break;
case 2:
case 4:
tile_height = 32;
break;
case 8:
tile_height = 16;
break;
case 16:
WARN_ONCE(1,
"128-bit pixels are not supported for display!");
tile_height = 16;
break;
}
break;
default:
MISSING_CASE(fb_format_modifier);
tile_height = 1;
break;
}
 
if (intel_crtc->primary_enabled)
return;
return tile_height;
}
 
intel_crtc->primary_enabled = true;
 
dev_priv->display.update_primary_plane(crtc, plane->fb,
crtc->x, crtc->y);
 
/*
* BDW signals flip done immediately if the plane
* is disabled, even if the plane enable is already
* armed to occur at the next vblank :(
*/
if (IS_BROADWELL(dev))
intel_wait_for_vblank(dev, intel_crtc->pipe);
unsigned int
intel_fb_align_height(struct drm_device *dev, unsigned int height,
uint32_t pixel_format, uint64_t fb_format_modifier)
{
return ALIGN(height, intel_tile_height(dev, pixel_format,
fb_format_modifier, 0));
}
 
/**
* intel_disable_primary_hw_plane - disable the primary hardware plane
* @plane: plane to be disabled
* @crtc: crtc for the plane
*
* Disable @plane on @crtc, making sure that the pipe is running first.
*/
static void intel_disable_primary_hw_plane(struct drm_plane *plane,
struct drm_crtc *crtc)
static int
intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
const struct drm_plane_state *plane_state)
{
struct drm_device *dev = plane->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_rotation_info *info = &view->rotation_info;
unsigned int tile_height, tile_pitch;
 
assert_pipe_enabled(dev_priv, intel_crtc->pipe);
*view = i915_ggtt_view_normal;
 
if (!intel_crtc->primary_enabled)
return;
if (!plane_state)
return 0;
 
intel_crtc->primary_enabled = false;
if (!intel_rotation_90_or_270(plane_state->rotation))
return 0;
 
dev_priv->display.update_primary_plane(crtc, plane->fb,
crtc->x, crtc->y);
*view = i915_ggtt_view_rotated;
 
info->height = fb->height;
info->pixel_format = fb->pixel_format;
info->pitch = fb->pitches[0];
info->uv_offset = fb->offsets[1];
info->fb_modifier = fb->modifier[0];
 
tile_height = intel_tile_height(fb->dev, fb->pixel_format,
fb->modifier[0], 0);
tile_pitch = PAGE_SIZE / tile_height;
info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
info->size = info->width_pages * info->height_pages * PAGE_SIZE;
 
if (info->pixel_format == DRM_FORMAT_NV12) {
tile_height = intel_tile_height(fb->dev, fb->pixel_format,
fb->modifier[0], 1);
tile_pitch = PAGE_SIZE / tile_height;
info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
tile_height);
info->size_uv = info->width_pages_uv * info->height_pages_uv *
PAGE_SIZE;
}
 
static bool need_vtd_wa(struct drm_device *dev)
{
#ifdef CONFIG_INTEL_IOMMU
if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
return true;
#endif
return false;
return 0;
}
 
static int intel_align_height(struct drm_device *dev, int height, bool tiled)
static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
{
int tile_height;
 
tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
return ALIGN(height, tile_height);
if (INTEL_INFO(dev_priv)->gen >= 9)
return 256 * 1024;
else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
IS_VALLEYVIEW(dev_priv))
return 128 * 1024;
else if (INTEL_INFO(dev_priv)->gen >= 4)
return 4 * 1024;
else
return 0;
}
 
int
intel_pin_and_fence_fb_obj(struct drm_plane *plane,
struct drm_framebuffer *fb,
struct intel_engine_cs *pipelined)
const struct drm_plane_state *plane_state,
struct intel_engine_cs *pipelined,
struct drm_i915_gem_request **pipelined_request)
{
struct drm_device *dev = fb->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct i915_ggtt_view view;
u32 alignment;
int ret;
 
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
 
switch (obj->tiling_mode) {
case I915_TILING_NONE:
if (INTEL_INFO(dev)->gen >= 9)
alignment = 256 * 1024;
else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
alignment = 128 * 1024;
else if (INTEL_INFO(dev)->gen >= 4)
alignment = 4 * 1024;
else
alignment = 64 * 1024;
switch (fb->modifier[0]) {
case DRM_FORMAT_MOD_NONE:
alignment = intel_linear_alignment(dev_priv);
break;
case I915_TILING_X:
case I915_FORMAT_MOD_X_TILED:
if (INTEL_INFO(dev)->gen >= 9)
alignment = 256 * 1024;
else {
2225,13 → 2355,22
alignment = 0;
}
break;
case I915_TILING_Y:
WARN(1, "Y tiled bo slipped through, driver bug!\n");
case I915_FORMAT_MOD_Y_TILED:
case I915_FORMAT_MOD_Yf_TILED:
if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
"Y tiling bo slipped through, driver bug!\n"))
return -EINVAL;
alignment = 1 * 1024 * 1024;
break;
default:
BUG();
MISSING_CASE(fb->modifier[0]);
return -EINVAL;
}
 
ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
if (ret)
return ret;
 
/* Note that the w/a also requires 64 PTE of padding following the
* bo. We currently fill all unused PTE with the shadow page and so
* we should always have valid PTE following the scanout preventing
2250,7 → 2389,8
intel_runtime_pm_get(dev_priv);
 
dev_priv->mm.interruptible = false;
ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
pipelined_request, &view);
if (ret)
goto err_interruptible;
 
2259,11 → 2399,24
* framebuffer compression. For simplicity, we always install
* a fence as the cost is not that onerous.
*/
if (view.type == I915_GGTT_VIEW_NORMAL) {
ret = i915_gem_object_get_fence(obj);
if (ret)
if (ret == -EDEADLK) {
/*
* -EDEADLK means there are no free fences
* no pending flips.
*
* This is propagated to atomic, but it uses
* -EDEADLK to force a locking recovery, so
* change the returned error to -EBUSY.
*/
ret = -EBUSY;
goto err_unpin;
} else if (ret)
goto err_unpin;
 
i915_gem_object_pin_fence(obj);
}
 
dev_priv->mm.interruptible = true;
intel_runtime_pm_put(dev_priv);
2270,7 → 2423,7
return 0;
 
err_unpin:
i915_gem_object_unpin_from_display_plane(obj);
i915_gem_object_unpin_from_display_plane(obj, &view);
err_interruptible:
dev_priv->mm.interruptible = true;
intel_runtime_pm_put(dev_priv);
2277,17 → 2430,28
return ret;
}
 
void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
const struct drm_plane_state *plane_state)
{
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct i915_ggtt_view view;
int ret;
 
WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
 
ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
WARN_ONCE(ret, "Couldn't get view from plane state!");
 
if (view.type == I915_GGTT_VIEW_NORMAL)
i915_gem_object_unpin_fence(obj);
// i915_gem_object_unpin_from_display_plane(obj);
 
i915_gem_object_unpin_from_display_plane(obj, &view);
}
 
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
* is assumed to be a power-of-two. */
unsigned long intel_gen4_compute_page_offset(int *x, int *y,
unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
int *x, int *y,
unsigned int tiling_mode,
unsigned int cpp,
unsigned int pitch)
2303,16 → 2467,17
 
return tile_rows * pitch * 8 + tiles * 4096;
} else {
unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
unsigned int offset;
 
offset = *y * pitch + *x * cpp;
*y = 0;
*x = (offset & 4095) / cpp;
return offset & -4096;
*y = (offset & alignment) / pitch;
*x = ((offset & alignment) - *y * pitch) / cpp;
return offset & ~alignment;
}
}
 
int intel_format_to_fourcc(int format)
static int i9xx_format_to_fourcc(int format)
{
switch (format) {
case DISPPLANE_8BPP:
2333,47 → 2498,83
}
}
 
static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
struct intel_plane_config *plane_config)
static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
{
switch (format) {
case PLANE_CTL_FORMAT_RGB_565:
return DRM_FORMAT_RGB565;
default:
case PLANE_CTL_FORMAT_XRGB_8888:
if (rgb_order) {
if (alpha)
return DRM_FORMAT_ABGR8888;
else
return DRM_FORMAT_XBGR8888;
} else {
if (alpha)
return DRM_FORMAT_ARGB8888;
else
return DRM_FORMAT_XRGB8888;
}
case PLANE_CTL_FORMAT_XRGB_2101010:
if (rgb_order)
return DRM_FORMAT_XBGR2101010;
else
return DRM_FORMAT_XRGB2101010;
}
}
 
static bool
intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct drm_i915_gem_object *obj = NULL;
struct drm_mode_fb_cmd2 mode_cmd = { 0 };
u32 base = plane_config->base;
struct drm_framebuffer *fb = &plane_config->fb->base;
u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
u32 size_aligned = round_up(plane_config->base + plane_config->size,
PAGE_SIZE);
 
size_aligned -= base_aligned;
 
if (plane_config->size == 0)
return false;
 
obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
plane_config->size);
/* If the FB is too big, just don't use it since fbdev is not very
* important and we should probably use that space with FBC or other
* features. */
if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
return false;
 
obj = i915_gem_object_create_stolen_for_preallocated(dev,
base_aligned,
base_aligned,
size_aligned);
if (!obj)
return false;
 
obj->map_and_fenceable=true;
main_fb_obj = obj;
obj->tiling_mode = plane_config->tiling;
if (obj->tiling_mode == I915_TILING_X)
obj->stride = fb->pitches[0];
 
if (plane_config->tiled) {
obj->tiling_mode = I915_TILING_X;
obj->stride = crtc->base.primary->fb->pitches[0];
}
mode_cmd.pixel_format = fb->pixel_format;
mode_cmd.width = fb->width;
mode_cmd.height = fb->height;
mode_cmd.pitches[0] = fb->pitches[0];
mode_cmd.modifier[0] = fb->modifier[0];
mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
 
mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
mode_cmd.width = crtc->base.primary->fb->width;
mode_cmd.height = crtc->base.primary->fb->height;
mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
 
mutex_lock(&dev->struct_mutex);
 
if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
&mode_cmd, obj)) {
DRM_DEBUG_KMS("intel fb init failed\n");
goto out_unref_obj;
}
 
obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
mutex_unlock(&dev->struct_mutex);
 
DRM_DEBUG_KMS("plane fb obj %p\n", obj);
DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
return true;
 
out_unref_obj:
2382,23 → 2583,44
return false;
}
 
static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
struct intel_plane_config *plane_config)
/* Update plane->state->fb to match plane->fb after driver-internal updates */
static void
update_state_fb(struct drm_plane *plane)
{
if (plane->fb == plane->state->fb)
return;
 
if (plane->state->fb)
drm_framebuffer_unreference(plane->state->fb);
plane->state->fb = plane->fb;
if (plane->state->fb)
drm_framebuffer_reference(plane->state->fb);
}
 
static void
intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *c;
struct intel_crtc *i;
struct drm_i915_gem_object *obj;
struct drm_plane *primary = intel_crtc->base.primary;
struct drm_plane_state *plane_state = primary->state;
struct drm_crtc_state *crtc_state = intel_crtc->base.state;
struct intel_plane *intel_plane = to_intel_plane(primary);
struct drm_framebuffer *fb;
 
if (!intel_crtc->base.primary->fb)
if (!plane_config->fb)
return;
 
if (intel_alloc_plane_obj(intel_crtc, plane_config))
return;
if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
fb = &plane_config->fb->base;
goto valid_fb;
}
 
kfree(intel_crtc->base.primary->fb);
intel_crtc->base.primary->fb = NULL;
kfree(plane_config->fb);
 
/*
* Failed to alloc the obj, check to see if we should share
2413,21 → 2635,52
if (!i->active)
continue;
 
obj = intel_fb_obj(c->primary->fb);
if (obj == NULL)
fb = c->primary->fb;
if (!fb)
continue;
 
obj = intel_fb_obj(fb);
if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
drm_framebuffer_reference(fb);
goto valid_fb;
}
}
 
/*
* We've failed to reconstruct the BIOS FB. Current display state
* indicates that the primary plane is visible, but has a NULL FB,
* which will lead to problems later if we don't fix it up. The
* simplest solution is to just disable the primary plane now and
* pretend the BIOS never had it enabled.
*/
to_intel_plane_state(plane_state)->visible = false;
crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
intel_pre_disable_primary(&intel_crtc->base);
intel_plane->disable_plane(primary, &intel_crtc->base);
 
return;
 
valid_fb:
plane_state->src_x = 0;
plane_state->src_y = 0;
plane_state->src_w = fb->width << 16;
plane_state->src_h = fb->height << 16;
 
plane_state->crtc_x = 0;
plane_state->crtc_y = 0;
plane_state->crtc_w = fb->width;
plane_state->crtc_h = fb->height;
 
obj = intel_fb_obj(fb);
if (obj->tiling_mode != I915_TILING_NONE)
dev_priv->preserve_bios_swizzle = true;
 
drm_framebuffer_reference(c->primary->fb);
intel_crtc->base.primary->fb = c->primary->fb;
obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
break;
drm_framebuffer_reference(fb);
primary->fb = primary->state->fb = fb;
primary->crtc = primary->state->crtc = &intel_crtc->base;
intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
}
}
}
 
static void i9xx_update_primary_plane(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
2436,6 → 2689,8
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_plane *primary = crtc->primary;
bool visible = to_intel_plane_state(primary->state)->visible;
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long linear_offset;
2443,7 → 2698,7
u32 reg = DSPCNTR(plane);
int pixel_size;
 
if (!intel_crtc->primary_enabled) {
if (!visible || !fb) {
I915_WRITE(reg, 0);
if (INTEL_INFO(dev)->gen >= 4)
I915_WRITE(DSPSURF(plane), 0);
2471,13 → 2726,13
* which should always be the user's requested size.
*/
I915_WRITE(DSPSIZE(plane),
((intel_crtc->config.pipe_src_h - 1) << 16) |
(intel_crtc->config.pipe_src_w - 1));
((intel_crtc->config->pipe_src_h - 1) << 16) |
(intel_crtc->config->pipe_src_w - 1));
I915_WRITE(DSPPOS(plane), 0);
} else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
I915_WRITE(PRIMSIZE(plane),
((intel_crtc->config.pipe_src_h - 1) << 16) |
(intel_crtc->config.pipe_src_w - 1));
((intel_crtc->config->pipe_src_h - 1) << 16) |
(intel_crtc->config->pipe_src_w - 1));
I915_WRITE(PRIMPOS(plane), 0);
I915_WRITE(PRIMCNSTALPHA(plane), 0);
}
2487,7 → 2742,6
dspcntr |= DISPPLANE_8BPP;
break;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_ARGB1555:
dspcntr |= DISPPLANE_BGRX555;
break;
case DRM_FORMAT_RGB565:
2494,19 → 2748,15
dspcntr |= DISPPLANE_BGRX565;
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
dspcntr |= DISPPLANE_BGRX888;
break;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
dspcntr |= DISPPLANE_RGBX888;
break;
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
dspcntr |= DISPPLANE_BGRX101010;
break;
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_ABGR2101010:
dspcntr |= DISPPLANE_RGBX101010;
break;
default:
2524,7 → 2774,8
 
if (INTEL_INFO(dev)->gen >= 4) {
intel_crtc->dspaddr_offset =
intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
intel_gen4_compute_page_offset(dev_priv,
&x, &y, obj->tiling_mode,
pixel_size,
fb->pitches[0]);
linear_offset -= intel_crtc->dspaddr_offset;
2532,24 → 2783,24
intel_crtc->dspaddr_offset = linear_offset;
}
 
if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
dspcntr |= DISPPLANE_ROTATE_180;
 
x += (intel_crtc->config.pipe_src_w - 1);
y += (intel_crtc->config.pipe_src_h - 1);
x += (intel_crtc->config->pipe_src_w - 1);
y += (intel_crtc->config->pipe_src_h - 1);
 
/* Finding the last pixel of the last line of the display
data and adding to linear_offset*/
linear_offset +=
(intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
(intel_crtc->config.pipe_src_w - 1) * pixel_size;
(intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
(intel_crtc->config->pipe_src_w - 1) * pixel_size;
}
 
intel_crtc->adjusted_x = x;
intel_crtc->adjusted_y = y;
 
I915_WRITE(reg, dspcntr);
 
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
fb->pitches[0]);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
if (INTEL_INFO(dev)->gen >= 4) {
I915_WRITE(DSPSURF(plane),
2568,6 → 2819,8
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_plane *primary = crtc->primary;
bool visible = to_intel_plane_state(primary->state)->visible;
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long linear_offset;
2575,7 → 2828,7
u32 reg = DSPCNTR(plane);
int pixel_size;
 
if (!intel_crtc->primary_enabled) {
if (!visible || !fb) {
I915_WRITE(reg, 0);
I915_WRITE(DSPSURF(plane), 0);
POSTING_READ(reg);
2603,19 → 2856,15
dspcntr |= DISPPLANE_BGRX565;
break;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
dspcntr |= DISPPLANE_BGRX888;
break;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
dspcntr |= DISPPLANE_RGBX888;
break;
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
dspcntr |= DISPPLANE_BGRX101010;
break;
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_ABGR2101010:
dspcntr |= DISPPLANE_RGBX101010;
break;
default:
2630,30 → 2879,31
 
linear_offset = y * fb->pitches[0] + x * pixel_size;
intel_crtc->dspaddr_offset =
intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
intel_gen4_compute_page_offset(dev_priv,
&x, &y, obj->tiling_mode,
pixel_size,
fb->pitches[0]);
linear_offset -= intel_crtc->dspaddr_offset;
if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
dspcntr |= DISPPLANE_ROTATE_180;
 
if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
x += (intel_crtc->config.pipe_src_w - 1);
y += (intel_crtc->config.pipe_src_h - 1);
x += (intel_crtc->config->pipe_src_w - 1);
y += (intel_crtc->config->pipe_src_h - 1);
 
/* Finding the last pixel of the last line of the display
data and adding to linear_offset*/
linear_offset +=
(intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
(intel_crtc->config.pipe_src_w - 1) * pixel_size;
(intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
(intel_crtc->config->pipe_src_w - 1) * pixel_size;
}
}
 
intel_crtc->adjusted_x = x;
intel_crtc->adjusted_y = y;
 
I915_WRITE(reg, dspcntr);
 
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
fb->pitches[0]);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
I915_WRITE(DSPSURF(plane),
i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2666,6 → 2916,174
POSTING_READ(reg);
}
 
u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
uint32_t pixel_format)
{
u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
 
/*
* The stride is either expressed as a multiple of 64 bytes
* chunks for linear buffers or in number of tiles for tiled
* buffers.
*/
switch (fb_modifier) {
case DRM_FORMAT_MOD_NONE:
return 64;
case I915_FORMAT_MOD_X_TILED:
if (INTEL_INFO(dev)->gen == 2)
return 128;
return 512;
case I915_FORMAT_MOD_Y_TILED:
/* No need to check for old gens and Y tiling since this is
* about the display engine and those will be blocked before
* we get here.
*/
return 128;
case I915_FORMAT_MOD_Yf_TILED:
if (bits_per_pixel == 8)
return 64;
else
return 128;
default:
MISSING_CASE(fb_modifier);
return 64;
}
}
 
unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
struct drm_i915_gem_object *obj,
unsigned int plane)
{
const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
struct i915_vma *vma;
unsigned char *offset;
 
if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
view = &i915_ggtt_view_rotated;
 
vma = i915_gem_obj_to_ggtt_view(obj, view);
if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
view->type))
return -1;
 
offset = (unsigned char *)vma->node.start;
 
if (plane == 1) {
offset += vma->ggtt_view.rotation_info.uv_start_page *
PAGE_SIZE;
}
 
return (unsigned long)offset;
}
 
static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
 
I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
}
 
/*
* This function detaches (aka. unbinds) unused scalers in hardware
*/
static void skl_detach_scalers(struct intel_crtc *intel_crtc)
{
struct intel_crtc_scaler_state *scaler_state;
int i;
 
scaler_state = &intel_crtc->config->scaler_state;
 
/* loop through and disable scalers that aren't in use */
for (i = 0; i < intel_crtc->num_scalers; i++) {
if (!scaler_state->scalers[i].in_use)
skl_detach_scaler(intel_crtc, i);
}
}
 
u32 skl_plane_ctl_format(uint32_t pixel_format)
{
switch (pixel_format) {
case DRM_FORMAT_C8:
return PLANE_CTL_FORMAT_INDEXED;
case DRM_FORMAT_RGB565:
return PLANE_CTL_FORMAT_RGB_565;
case DRM_FORMAT_XBGR8888:
return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
case DRM_FORMAT_XRGB8888:
return PLANE_CTL_FORMAT_XRGB_8888;
/*
* XXX: For ARBG/ABGR formats we default to expecting scanout buffers
* to be already pre-multiplied. We need to add a knob (or a different
* DRM_FORMAT) for user-space to configure that.
*/
case DRM_FORMAT_ABGR8888:
return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
PLANE_CTL_ALPHA_SW_PREMULTIPLY;
case DRM_FORMAT_ARGB8888:
return PLANE_CTL_FORMAT_XRGB_8888 |
PLANE_CTL_ALPHA_SW_PREMULTIPLY;
case DRM_FORMAT_XRGB2101010:
return PLANE_CTL_FORMAT_XRGB_2101010;
case DRM_FORMAT_XBGR2101010:
return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
case DRM_FORMAT_YUYV:
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
case DRM_FORMAT_YVYU:
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
case DRM_FORMAT_UYVY:
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
case DRM_FORMAT_VYUY:
return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
default:
MISSING_CASE(pixel_format);
}
 
return 0;
}
 
u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
{
switch (fb_modifier) {
case DRM_FORMAT_MOD_NONE:
break;
case I915_FORMAT_MOD_X_TILED:
return PLANE_CTL_TILED_X;
case I915_FORMAT_MOD_Y_TILED:
return PLANE_CTL_TILED_Y;
case I915_FORMAT_MOD_Yf_TILED:
return PLANE_CTL_TILED_YF;
default:
MISSING_CASE(fb_modifier);
}
 
return 0;
}
 
u32 skl_plane_ctl_rotation(unsigned int rotation)
{
switch (rotation) {
case BIT(DRM_ROTATE_0):
break;
/*
* DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
* while i915 HW rotation is clockwise, thats why this swapping.
*/
case BIT(DRM_ROTATE_90):
return PLANE_CTL_ROTATE_270;
case BIT(DRM_ROTATE_180):
return PLANE_CTL_ROTATE_180;
case BIT(DRM_ROTATE_270):
return PLANE_CTL_ROTATE_90;
default:
MISSING_CASE(rotation);
}
 
return 0;
}
 
static void skylake_update_primary_plane(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int x, int y)
2673,12 → 3091,24
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_framebuffer *intel_fb;
struct drm_plane *plane = crtc->primary;
bool visible = to_intel_plane_state(plane->state)->visible;
struct drm_i915_gem_object *obj;
int pipe = intel_crtc->pipe;
u32 plane_ctl, stride;
u32 plane_ctl, stride_div, stride;
u32 tile_height, plane_offset, plane_size;
unsigned int rotation;
int x_offset, y_offset;
unsigned long surf_addr;
struct intel_crtc_state *crtc_state = intel_crtc->config;
struct intel_plane_state *plane_state;
int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
int scaler_id = -1;
 
if (!intel_crtc->primary_enabled) {
plane_state = to_intel_plane_state(plane->state);
 
if (!visible || !fb) {
I915_WRITE(PLANE_CTL(pipe, 0), 0);
I915_WRITE(PLANE_SURF(pipe, 0), 0);
POSTING_READ(PLANE_CTL(pipe, 0));
2689,66 → 3119,73
PLANE_CTL_PIPE_GAMMA_ENABLE |
PLANE_CTL_PIPE_CSC_ENABLE;
 
switch (fb->pixel_format) {
case DRM_FORMAT_RGB565:
plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
break;
case DRM_FORMAT_XRGB8888:
plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
break;
case DRM_FORMAT_XBGR8888:
plane_ctl |= PLANE_CTL_ORDER_RGBX;
plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
break;
case DRM_FORMAT_XRGB2101010:
plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
break;
case DRM_FORMAT_XBGR2101010:
plane_ctl |= PLANE_CTL_ORDER_RGBX;
plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
break;
default:
BUG();
}
plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
 
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
rotation = plane->state->rotation;
plane_ctl |= skl_plane_ctl_rotation(rotation);
 
/*
* The stride is either expressed as a multiple of 64 bytes chunks for
* linear buffers or in number of tiles for tiled buffers.
*/
switch (obj->tiling_mode) {
case I915_TILING_NONE:
stride = fb->pitches[0] >> 6;
break;
case I915_TILING_X:
plane_ctl |= PLANE_CTL_TILED_X;
stride = fb->pitches[0] >> 9;
break;
default:
BUG();
obj = intel_fb_obj(fb);
stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
fb->pixel_format);
surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
 
WARN_ON(drm_rect_width(&plane_state->src) == 0);
 
scaler_id = plane_state->scaler_id;
src_x = plane_state->src.x1 >> 16;
src_y = plane_state->src.y1 >> 16;
src_w = drm_rect_width(&plane_state->src) >> 16;
src_h = drm_rect_height(&plane_state->src) >> 16;
dst_x = plane_state->dst.x1;
dst_y = plane_state->dst.y1;
dst_w = drm_rect_width(&plane_state->dst);
dst_h = drm_rect_height(&plane_state->dst);
 
WARN_ON(x != src_x || y != src_y);
 
if (intel_rotation_90_or_270(rotation)) {
/* stride = Surface height in tiles */
tile_height = intel_tile_height(dev, fb->pixel_format,
fb->modifier[0], 0);
stride = DIV_ROUND_UP(fb->height, tile_height);
x_offset = stride * tile_height - y - src_h;
y_offset = x;
plane_size = (src_w - 1) << 16 | (src_h - 1);
} else {
stride = fb->pitches[0] / stride_div;
x_offset = x;
y_offset = y;
plane_size = (src_h - 1) << 16 | (src_w - 1);
}
plane_offset = y_offset << 16 | x_offset;
 
plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
plane_ctl |= PLANE_CTL_ROTATE_180;
intel_crtc->adjusted_x = x_offset;
intel_crtc->adjusted_y = y_offset;
 
I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
 
DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
i915_gem_obj_ggtt_offset(obj),
x, y, fb->width, fb->height,
fb->pitches[0]);
if (scaler_id >= 0) {
uint32_t ps_ctrl = 0;
 
WARN_ON(!dst_w || !dst_h);
ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
crtc_state->scaler_state.scalers[scaler_id].mode;
I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
I915_WRITE(PLANE_POS(pipe, 0), 0);
I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
I915_WRITE(PLANE_SIZE(pipe, 0),
(intel_crtc->config.pipe_src_h - 1) << 16 |
(intel_crtc->config.pipe_src_w - 1));
I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
} else {
I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
}
 
I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
 
POSTING_READ(PLANE_SURF(pipe, 0));
}
 
2760,8 → 3197,8
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (dev_priv->display.disable_fbc)
dev_priv->display.disable_fbc(dev);
if (dev_priv->fbc.disable_fbc)
dev_priv->fbc.disable_fbc(dev_priv);
 
dev_priv->display.update_primary_plane(crtc, fb, x, y);
 
2784,32 → 3221,25
 
static void intel_update_primary_planes(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
 
for_each_crtc(dev, crtc) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_plane *plane = to_intel_plane(crtc->primary);
struct intel_plane_state *plane_state;
 
drm_modeset_lock(&crtc->mutex, NULL);
/*
* FIXME: Once we have proper support for primary planes (and
* disabling them without disabling the entire crtc) allow again
* a NULL crtc->primary->fb.
*/
if (intel_crtc->active && crtc->primary->fb)
dev_priv->display.update_primary_plane(crtc,
crtc->primary->fb,
crtc->x,
crtc->y);
drm_modeset_unlock(&crtc->mutex);
drm_modeset_lock_crtc(crtc, &plane->base);
 
plane_state = to_intel_plane_state(plane->base.state);
 
if (plane_state->base.fb)
plane->commit_plane(&plane->base, plane_state);
 
drm_modeset_unlock_crtc(crtc);
}
}
 
void intel_prepare_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *crtc;
 
/* no reset support for gen2 */
if (IS_GEN2(dev))
return;
2819,16 → 3249,12
return;
 
drm_modeset_lock_all(dev);
 
/*
* Disabling the crtcs gracefully seems nicer. Also the
* g33 docs say we should at least disable all the planes.
*/
for_each_intel_crtc(dev, crtc) {
if (crtc->active)
dev_priv->display.crtc_disable(&crtc->base);
intel_display_suspend(dev);
}
}
 
void intel_finish_reset(struct drm_device *dev)
{
2852,6 → 3278,9
* so update the base address of all primary
* planes to the the last fb to make sure we're
* showing the correct fb after a reset.
*
* FIXME: Atomic will make this obsolete since we won't schedule
* CS-based flips (which might get lost in gpu resets) any more.
*/
intel_update_primary_planes(dev);
return;
2871,7 → 3300,7
dev_priv->display.hpd_irq_setup(dev);
spin_unlock_irq(&dev_priv->irq_lock);
 
intel_modeset_setup_hw_state(dev, true);
intel_display_resume(dev);
 
intel_hpd_init(dev_priv);
 
2878,11 → 3307,11
drm_modeset_unlock_all(dev);
}
 
static int
static void
intel_finish_fb(struct drm_framebuffer *old_fb)
{
struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
bool was_interruptible = dev_priv->mm.interruptible;
int ret;
 
2889,16 → 3318,19
/* Big Hammer, we also need to ensure that any pending
* MI_WAIT_FOR_EVENT inside a user batch buffer on the
* current scanout is retired before unpinning the old
* framebuffer.
* framebuffer. Note that we rely on userspace rendering
* into the buffer attached to the pipe they are waiting
* on. If not, userspace generates a GPU hang with IPEHR
* point to the MI_WAIT_FOR_EVENT.
*
* This should only fail upon a hung GPU, in which case we
* can safely continue.
*/
dev_priv->mm.interruptible = false;
ret = i915_gem_object_finish_gpu(obj);
ret = i915_gem_object_wait_rendering(obj, true);
dev_priv->mm.interruptible = was_interruptible;
 
return ret;
WARN_ON(ret);
}
 
static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2920,15 → 3352,24
}
#endif
 
static void intel_update_pipe_size(struct intel_crtc *crtc)
static void intel_update_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_state *old_crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
const struct drm_display_mode *adjusted_mode;
struct intel_crtc_state *pipe_config =
to_intel_crtc_state(crtc->base.state);
 
if (!i915.fastboot)
return;
/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
crtc->base.mode = crtc->base.state->mode;
 
DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
pipe_config->pipe_src_w, pipe_config->pipe_src_h);
 
if (HAS_DDI(dev))
intel_set_pipe_csc(&crtc->base);
 
/*
* Update pipe size and adjust fitter if needed: the reason for this is
* that in compute_mode_changes we check the native mode (not the pfit
2936,90 → 3377,26
* fastboot case, we'll flip, but if we don't update the pipesrc and
* pfit state, we'll end up with a big fb scanned out into the wrong
* sized surface.
*
* To fix this properly, we need to hoist the checks up into
* compute_mode_changes (or above), check the actual pfit state and
* whether the platform allows pfit disable with pipe active, and only
* then update the pipesrc and pfit state, even on the flip path.
*/
 
adjusted_mode = &crtc->config.adjusted_mode;
 
I915_WRITE(PIPESRC(crtc->pipe),
((adjusted_mode->crtc_hdisplay - 1) << 16) |
(adjusted_mode->crtc_vdisplay - 1));
if (!crtc->config.pch_pfit.enabled &&
(intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
I915_WRITE(PF_CTL(crtc->pipe), 0);
I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
}
crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
}
((pipe_config->pipe_src_w - 1) << 16) |
(pipe_config->pipe_src_h - 1));
 
static int
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
struct drm_framebuffer *old_fb = crtc->primary->fb;
struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
int ret;
/* on skylake this is done by detaching scalers */
if (INTEL_INFO(dev)->gen >= 9) {
skl_detach_scalers(crtc);
 
 
/* no fb bound */
if (!fb) {
DRM_ERROR("No FB bound\n");
return 0;
if (pipe_config->pch_pfit.enabled)
skylake_pfit_enable(crtc);
} else if (HAS_PCH_SPLIT(dev)) {
if (pipe_config->pch_pfit.enabled)
ironlake_pfit_enable(crtc);
else if (old_crtc_state->pch_pfit.enabled)
ironlake_pfit_disable(crtc, true);
}
 
if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
plane_name(intel_crtc->plane),
INTEL_INFO(dev)->num_pipes);
return -EINVAL;
}
 
mutex_lock(&dev->struct_mutex);
ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
if (ret == 0)
i915_gem_track_fb(old_obj, intel_fb_obj(fb),
INTEL_FRONTBUFFER_PRIMARY(pipe));
mutex_unlock(&dev->struct_mutex);
if (ret != 0) {
DRM_ERROR("pin & fence failed\n");
return ret;
}
 
dev_priv->display.update_primary_plane(crtc, fb, x, y);
 
if (intel_crtc->active)
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
 
crtc->primary->fb = fb;
crtc->x = x;
crtc->y = y;
 
if (old_fb) {
if (intel_crtc->active && old_fb != fb)
intel_wait_for_vblank(dev, intel_crtc->pipe);
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(old_obj);
mutex_unlock(&dev->struct_mutex);
}
 
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
 
return 0;
}
 
static void intel_fdi_normal_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
3061,38 → 3438,6
FDI_FE_ERRC_ENABLE);
}
 
static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
{
return crtc->base.enabled && crtc->active &&
crtc->config.has_pch_encoder;
}
 
static void ivb_modeset_global_resources(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *pipe_B_crtc =
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
struct intel_crtc *pipe_C_crtc =
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
uint32_t temp;
 
/*
* When everything is off disable fdi C so that we could enable fdi B
* with all lanes. Note that we don't care about enabled pipes without
* an enabled pch encoder.
*/
if (!pipe_has_enabled_pch(pipe_B_crtc) &&
!pipe_has_enabled_pch(pipe_C_crtc)) {
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
 
temp = I915_READ(SOUTH_CHICKEN1);
temp &= ~FDI_BC_BIFURCATION_SELECT;
DRM_DEBUG_KMS("disabling fdi C rx\n");
I915_WRITE(SOUTH_CHICKEN1, temp);
}
}
 
/* The FDI link training functions for ILK/Ibexpeak. */
static void ironlake_fdi_link_train(struct drm_crtc *crtc)
{
3119,7 → 3464,7
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
I915_WRITE(reg, temp | FDI_TX_ENABLE);
3217,7 → 3562,7
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
temp &= ~FDI_LINK_TRAIN_NONE;
temp |= FDI_LINK_TRAIN_PATTERN_1;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3368,7 → 3713,7
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~FDI_DP_PORT_WIDTH_MASK;
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
temp |= snb_b_fdi_train_param[j/2];
3456,7 → 3801,7
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
 
3619,11 → 3964,11
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
u32 divsel, phaseinc, auxdiv, phasedir = 0;
u32 temp;
 
mutex_lock(&dev_priv->dpio_lock);
mutex_lock(&dev_priv->sb_lock);
 
/* It is necessary to ungate the pixclk gate prior to programming
* the divisors, and gate it back when it is done.
3700,7 → 4045,7
 
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
 
mutex_unlock(&dev_priv->dpio_lock);
mutex_unlock(&dev_priv->sb_lock);
}
 
static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3708,7 → 4053,7
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
 
I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
I915_READ(HTOTAL(cpu_transcoder)));
3727,20 → 4072,23
I915_READ(VSYNCSHIFT(cpu_transcoder)));
}
 
static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t temp;
 
temp = I915_READ(SOUTH_CHICKEN1);
if (temp & FDI_BC_BIFURCATION_SELECT)
if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
return;
 
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
 
temp &= ~FDI_BC_BIFURCATION_SELECT;
if (enable)
temp |= FDI_BC_BIFURCATION_SELECT;
DRM_DEBUG_KMS("enabling fdi C rx\n");
 
DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
I915_WRITE(SOUTH_CHICKEN1, temp);
POSTING_READ(SOUTH_CHICKEN1);
}
3748,20 → 4096,19
static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
 
switch (intel_crtc->pipe) {
case PIPE_A:
break;
case PIPE_B:
if (intel_crtc->config.fdi_lanes > 2)
WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
if (intel_crtc->config->fdi_lanes > 2)
cpt_set_fdi_bc_bifurcation(dev, false);
else
cpt_enable_fdi_bc_bifurcation(dev);
cpt_set_fdi_bc_bifurcation(dev, true);
 
break;
case PIPE_C:
cpt_enable_fdi_bc_bifurcation(dev);
cpt_set_fdi_bc_bifurcation(dev, true);
 
break;
default:
3806,7 → 4153,7
temp = I915_READ(PCH_DPLL_SEL);
temp |= TRANS_DPLL_ENABLE(pipe);
sel = TRANS_DPLLB_SEL(pipe);
if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
temp |= sel;
else
temp &= ~sel;
3829,7 → 4176,7
intel_fdi_normal_train(crtc);
 
/* For PCH DP, enable TRANS_DP_CTL */
if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
reg = TRANS_DP_CTL(pipe);
temp = I915_READ(reg);
3836,8 → 4183,7
temp &= ~(TRANS_DP_PORT_SEL_MASK |
TRANS_DP_SYNC_MASK |
TRANS_DP_BPC_MASK);
temp |= (TRANS_DP_OUTPUT_ENABLE |
TRANS_DP_ENH_FRAMING);
temp |= TRANS_DP_OUTPUT_ENABLE;
temp |= bpc << 9; /* same format but at 11:9 */
 
if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3870,7 → 4216,7
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
 
assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
 
3882,33 → 4228,17
lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
}
 
void intel_put_shared_dpll(struct intel_crtc *crtc)
struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
 
if (pll == NULL)
return;
 
if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
WARN(1, "bad %s crtc mask\n", pll->name);
return;
}
 
pll->config.crtc_mask &= ~(1 << crtc->pipe);
if (pll->config.crtc_mask == 0) {
WARN_ON(pll->on);
WARN_ON(pll->active);
}
 
crtc->config.shared_dpll = DPLL_ID_PRIVATE;
}
 
struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct intel_shared_dpll *pll;
struct intel_shared_dpll_config *shared_dpll;
enum intel_dpll_id i;
int max = dev_priv->num_shared_dpll;
 
shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
 
if (HAS_PCH_IBX(dev_priv->dev)) {
/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
i = (enum intel_dpll_id) crtc->pipe;
3917,24 → 4247,46
DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
crtc->base.base.id, pll->name);
 
WARN_ON(pll->new_config->crtc_mask);
WARN_ON(shared_dpll[i].crtc_mask);
 
goto found;
}
 
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
if (IS_BROXTON(dev_priv->dev)) {
/* PLL is attached to port in bxt */
struct intel_encoder *encoder;
struct intel_digital_port *intel_dig_port;
 
encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
if (WARN_ON(!encoder))
return NULL;
 
intel_dig_port = enc_to_dig_port(&encoder->base);
/* 1:1 mapping between ports and PLLs */
i = (enum intel_dpll_id)intel_dig_port->port;
pll = &dev_priv->shared_dplls[i];
DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
crtc->base.base.id, pll->name);
WARN_ON(shared_dpll[i].crtc_mask);
 
goto found;
} else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
/* Do not consider SPLL */
max = 2;
 
for (i = 0; i < max; i++) {
pll = &dev_priv->shared_dplls[i];
 
/* Only want to check enabled timings first */
if (pll->new_config->crtc_mask == 0)
if (shared_dpll[i].crtc_mask == 0)
continue;
 
if (memcmp(&crtc->new_config->dpll_hw_state,
&pll->new_config->hw_state,
sizeof(pll->new_config->hw_state)) == 0) {
if (memcmp(&crtc_state->dpll_hw_state,
&shared_dpll[i].hw_state,
sizeof(crtc_state->dpll_hw_state)) == 0) {
DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
crtc->base.base.id, pll->name,
pll->new_config->crtc_mask,
shared_dpll[i].crtc_mask,
pll->active);
goto found;
}
3943,7 → 4295,7
/* Ok no matching timings, maybe there's a free one? */
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
pll = &dev_priv->shared_dplls[i];
if (pll->new_config->crtc_mask == 0) {
if (shared_dpll[i].crtc_mask == 0) {
DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
crtc->base.base.id, pll->name);
goto found;
3953,99 → 4305,209
return NULL;
 
found:
if (pll->new_config->crtc_mask == 0)
pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
if (shared_dpll[i].crtc_mask == 0)
shared_dpll[i].hw_state =
crtc_state->dpll_hw_state;
 
crtc->new_config->shared_dpll = i;
crtc_state->shared_dpll = i;
DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
pipe_name(crtc->pipe));
 
pll->new_config->crtc_mask |= 1 << crtc->pipe;
shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
 
return pll;
}
 
/**
* intel_shared_dpll_start_config - start a new PLL staged config
* @dev_priv: DRM device
* @clear_pipes: mask of pipes that will have their PLLs freed
*
* Starts a new PLL staged config, copying the current config but
* releasing the references of pipes specified in clear_pipes.
*/
static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
unsigned clear_pipes)
static void intel_shared_dpll_commit(struct drm_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->dev);
struct intel_shared_dpll_config *shared_dpll;
struct intel_shared_dpll *pll;
enum intel_dpll_id i;
 
if (!to_intel_atomic_state(state)->dpll_set)
return;
 
shared_dpll = to_intel_atomic_state(state)->shared_dpll;
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
pll = &dev_priv->shared_dplls[i];
pll->config = shared_dpll[i];
}
}
 
pll->new_config = kmemdup(&pll->config, sizeof pll->config,
GFP_KERNEL);
if (!pll->new_config)
goto cleanup;
static void cpt_verify_modeset(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int dslreg = PIPEDSL(pipe);
u32 temp;
 
pll->new_config->crtc_mask &= ~clear_pipes;
temp = I915_READ(dslreg);
udelay(500);
if (wait_for(I915_READ(dslreg) != temp, 5)) {
if (wait_for(I915_READ(dslreg) != temp, 5))
DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
}
}
 
static int
skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
unsigned scaler_user, int *scaler_id, unsigned int rotation,
int src_w, int src_h, int dst_w, int dst_h)
{
struct intel_crtc_scaler_state *scaler_state =
&crtc_state->scaler_state;
struct intel_crtc *intel_crtc =
to_intel_crtc(crtc_state->base.crtc);
int need_scaling;
 
need_scaling = intel_rotation_90_or_270(rotation) ?
(src_h != dst_w || src_w != dst_h):
(src_w != dst_w || src_h != dst_h);
 
/*
* if plane is being disabled or scaler is no more required or force detach
* - free scaler binded to this plane/crtc
* - in order to do this, update crtc->scaler_usage
*
* Here scaler state in crtc_state is set free so that
* scaler can be assigned to other user. Actual register
* update to free the scaler is done in plane/panel-fit programming.
* For this purpose crtc/plane_state->scaler_id isn't reset here.
*/
if (force_detach || !need_scaling) {
if (*scaler_id >= 0) {
scaler_state->scaler_users &= ~(1 << scaler_user);
scaler_state->scalers[*scaler_id].in_use = 0;
 
DRM_DEBUG_KMS("scaler_user index %u.%u: "
"Staged freeing scaler id %d scaler_users = 0x%x\n",
intel_crtc->pipe, scaler_user, *scaler_id,
scaler_state->scaler_users);
*scaler_id = -1;
}
return 0;
}
 
cleanup:
while (--i >= 0) {
pll = &dev_priv->shared_dplls[i];
kfree(pll->new_config);
pll->new_config = NULL;
/* range checks */
if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
 
src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
"size is out of scaler range\n",
intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
return -EINVAL;
}
 
return -ENOMEM;
/* mark this plane as a scaler user in crtc_state */
scaler_state->scaler_users |= (1 << scaler_user);
DRM_DEBUG_KMS("scaler_user index %u.%u: "
"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
scaler_state->scaler_users);
 
return 0;
}
 
static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
/**
* skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
*
* @state: crtc's scaler state
*
* Return
* 0 - scaler_usage updated successfully
* error - requested scaling cannot be supported or other error condition
*/
int skl_update_scaler_crtc(struct intel_crtc_state *state)
{
struct intel_shared_dpll *pll;
enum intel_dpll_id i;
struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
 
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
pll = &dev_priv->shared_dplls[i];
DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
 
WARN_ON(pll->new_config == &pll->config);
 
pll->config = *pll->new_config;
kfree(pll->new_config);
pll->new_config = NULL;
return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
&state->scaler_state.scaler_id, DRM_ROTATE_0,
state->pipe_src_w, state->pipe_src_h,
adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
}
}
 
static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
/**
* skl_update_scaler_plane - Stages update to scaler state for a given plane.
*
* @state: crtc's scaler state
* @plane_state: atomic plane state to update
*
* Return
* 0 - scaler_usage updated successfully
* error - requested scaling cannot be supported or other error condition
*/
static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state)
{
struct intel_shared_dpll *pll;
enum intel_dpll_id i;
 
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
pll = &dev_priv->shared_dplls[i];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_plane *intel_plane =
to_intel_plane(plane_state->base.plane);
struct drm_framebuffer *fb = plane_state->base.fb;
int ret;
 
WARN_ON(pll->new_config == &pll->config);
bool force_detach = !fb || !plane_state->visible;
 
kfree(pll->new_config);
pll->new_config = NULL;
DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
intel_plane->base.base.id, intel_crtc->pipe,
drm_plane_index(&intel_plane->base));
 
ret = skl_update_scaler(crtc_state, force_detach,
drm_plane_index(&intel_plane->base),
&plane_state->scaler_id,
plane_state->base.rotation,
drm_rect_width(&plane_state->src) >> 16,
drm_rect_height(&plane_state->src) >> 16,
drm_rect_width(&plane_state->dst),
drm_rect_height(&plane_state->dst));
 
if (ret || plane_state->scaler_id < 0)
return ret;
 
/* check colorkey */
if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
intel_plane->base.base.id);
return -EINVAL;
}
 
/* Check src format */
switch (fb->pixel_format) {
case DRM_FORMAT_RGB565:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_YUYV:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_VYUY:
break;
default:
DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
intel_plane->base.base.id, fb->base.id, fb->pixel_format);
return -EINVAL;
}
 
static void cpt_verify_modeset(struct drm_device *dev, int pipe)
return 0;
}
 
static void skylake_scaler_disable(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int dslreg = PIPEDSL(pipe);
u32 temp;
int i;
 
temp = I915_READ(dslreg);
udelay(500);
if (wait_for(I915_READ(dslreg) != temp, 5)) {
if (wait_for(I915_READ(dslreg) != temp, 5))
DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
for (i = 0; i < crtc->num_scalers; i++)
skl_detach_scaler(crtc, i);
}
}
 
static void skylake_pfit_enable(struct intel_crtc *crtc)
{
4052,13 → 4514,28
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
struct intel_crtc_scaler_state *scaler_state =
&crtc->config->scaler_state;
 
if (crtc->config.pch_pfit.enabled) {
I915_WRITE(PS_CTL(pipe), PS_ENABLE);
I915_WRITE(PS_WIN_POS(pipe), crtc->config.pch_pfit.pos);
I915_WRITE(PS_WIN_SZ(pipe), crtc->config.pch_pfit.size);
DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
 
if (crtc->config->pch_pfit.enabled) {
int id;
 
if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
DRM_ERROR("Requesting pfit without getting a scaler first\n");
return;
}
 
id = scaler_state->scaler_id;
I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
 
DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
}
}
 
static void ironlake_pfit_enable(struct intel_crtc *crtc)
{
4066,7 → 4543,7
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
 
if (crtc->config.pch_pfit.enabled) {
if (crtc->config->pch_pfit.enabled) {
/* Force use of hard-coded filter coefficients
* as some pre-programmed values are broken,
* e.g. x201.
4076,45 → 4553,17
PF_PIPE_SEL_IVB(pipe));
else
I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
}
}
 
static void intel_enable_planes(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
enum pipe pipe = to_intel_crtc(crtc)->pipe;
struct drm_plane *plane;
struct intel_plane *intel_plane;
 
drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
intel_plane = to_intel_plane(plane);
if (intel_plane->pipe == pipe)
intel_plane_restore(&intel_plane->base);
}
}
 
static void intel_disable_planes(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
enum pipe pipe = to_intel_crtc(crtc)->pipe;
struct drm_plane *plane;
struct intel_plane *intel_plane;
 
drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
intel_plane = to_intel_plane(plane);
if (intel_plane->pipe == pipe)
intel_plane_disable(&intel_plane->base);
}
}
 
void hsw_enable_ips(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (!crtc->config.ips_enabled)
if (!crtc->config->ips_enabled)
return;
 
/* We can only enable IPS after we enable a plane and wait for a vblank */
4147,7 → 4596,7
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (!crtc->config.ips_enabled)
if (!crtc->config->ips_enabled)
return;
 
assert_plane_enabled(dev_priv, crtc->plane);
4174,15 → 4623,14
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
int palreg = PALETTE(pipe);
int i;
bool reenable_ips = false;
 
/* The clocks have to be on to load the palette. */
if (!crtc->enabled || !intel_crtc->active)
if (!crtc->state->active)
return;
 
if (!HAS_PCH_SPLIT(dev_priv->dev)) {
if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
assert_dsi_pll_enabled(dev_priv);
else
4189,14 → 4637,10
assert_pll_enabled(dev_priv, pipe);
}
 
/* use legacy palette for Ironlake */
if (!HAS_GMCH_DISPLAY(dev))
palreg = LGC_PALETTE(pipe);
 
/* Workaround : Do not read or write the pipe palette/gamma data while
* GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
*/
if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
GAMMA_MODE_MODE_SPLIT)) {
hsw_disable_ips(intel_crtc);
4204,7 → 4648,14
}
 
for (i = 0; i < 256; i++) {
I915_WRITE(palreg + 4 * i,
u32 palreg;
 
if (HAS_GMCH_DISPLAY(dev))
palreg = PALETTE(pipe, i);
else
palreg = LGC_PALETTE(pipe, i);
 
I915_WRITE(palreg,
(intel_crtc->lut_r[i] << 16) |
(intel_crtc->lut_g[i] << 8) |
intel_crtc->lut_b[i]);
4214,9 → 4665,9
hsw_enable_ips(intel_crtc);
}
 
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
{
if (!enable && intel_crtc->overlay) {
if (intel_crtc->overlay) {
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
 
4232,50 → 4683,181
*/
}
 
static void intel_crtc_enable_planes(struct drm_crtc *crtc)
/**
* intel_post_enable_primary - Perform operations after enabling primary plane
* @crtc: the CRTC whose primary plane was just enabled
*
* Performs potentially sleeping operations that must be done after the primary
* plane is enabled, such as updating FBC and IPS. Note that this may be
* called due to an explicit primary plane update, or due to an implicit
* re-enable that is caused when a sprite plane is updated to no longer
* completely hide the primary plane.
*/
static void
intel_post_enable_primary(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
 
intel_enable_primary_hw_plane(crtc->primary, crtc);
intel_enable_planes(crtc);
intel_crtc_update_cursor(crtc, true);
intel_crtc_dpms_overlay(intel_crtc, true);
/*
* BDW signals flip done immediately if the plane
* is disabled, even if the plane enable is already
* armed to occur at the next vblank :(
*/
if (IS_BROADWELL(dev))
intel_wait_for_vblank(dev, pipe);
 
/*
* FIXME IPS should be fine as long as one plane is
* enabled, but in practice it seems to have problems
* when going from primary only to sprite only and vice
* versa.
*/
hsw_enable_ips(intel_crtc);
 
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
 
/*
* FIXME: Once we grow proper nuclear flip support out of this we need
* to compute the mask of flip planes precisely. For the time being
* consider this a flip from a NULL plane.
* Gen2 reports pipe underruns whenever all planes are disabled.
* So don't enable underrun reporting before at least some planes
* are enabled.
* FIXME: Need to fix the logic to work when we turn off all planes
* but leave the pipe running.
*/
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
if (IS_GEN2(dev))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
 
/* Underruns don't raise interrupts, so check manually. */
if (HAS_GMCH_DISPLAY(dev))
i9xx_check_fifo_underruns(dev_priv);
}
 
static void intel_crtc_disable_planes(struct drm_crtc *crtc)
/**
* intel_pre_disable_primary - Perform operations before disabling primary plane
* @crtc: the CRTC whose primary plane is to be disabled
*
* Performs potentially sleeping operations that must be done before the
* primary plane is disabled, such as updating FBC and IPS. Note that this may
* be called due to an explicit primary plane update, or due to an implicit
* disable that is caused when a sprite plane completely hides the primary
* plane.
*/
static void
intel_pre_disable_primary(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
 
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So diasble underrun reporting before all the planes get disabled.
* FIXME: Need to fix the logic to work when we turn off all planes
* but leave the pipe running.
*/
if (IS_GEN2(dev))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
 
if (dev_priv->fbc.plane == plane)
intel_disable_fbc(dev);
/*
* Vblank time updates from the shadow to live plane control register
* are blocked if the memory self-refresh mode is active at that
* moment. So to make sure the plane gets truly disabled, disable
* first the self-refresh mode. The self-refresh enable bit in turn
* will be checked/applied by the HW only at the next frame start
* event which is after the vblank start event, so we need to have a
* wait-for-vblank between disabling the plane and the pipe.
*/
if (HAS_GMCH_DISPLAY(dev)) {
intel_set_memory_cxsr(dev_priv, false);
dev_priv->wm.vlv.cxsr = false;
intel_wait_for_vblank(dev, pipe);
}
 
/*
* FIXME IPS should be fine as long as one plane is
* enabled, but in practice it seems to have problems
* when going from primary only to sprite only and vice
* versa.
*/
hsw_disable_ips(intel_crtc);
}
 
intel_crtc_dpms_overlay(intel_crtc, false);
intel_crtc_update_cursor(crtc, false);
intel_disable_planes(crtc);
intel_disable_primary_hw_plane(crtc->primary, crtc);
static void intel_post_plane_update(struct intel_crtc *crtc)
{
struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_plane *plane;
 
if (atomic->wait_vblank)
intel_wait_for_vblank(dev, crtc->pipe);
 
intel_frontbuffer_flip(dev, atomic->fb_bits);
 
if (atomic->disable_cxsr)
crtc->wm.cxsr_allowed = true;
 
if (crtc->atomic.update_wm_post)
intel_update_watermarks(&crtc->base);
 
if (atomic->update_fbc)
intel_fbc_update(dev_priv);
 
if (atomic->post_enable_primary)
intel_post_enable_primary(&crtc->base);
 
drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
intel_update_sprite_watermarks(plane, &crtc->base,
0, 0, 0, false, false);
 
memset(atomic, 0, sizeof(*atomic));
}
 
static void intel_pre_plane_update(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
struct drm_plane *p;
 
/* Track fb's for any planes being disabled */
drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
struct intel_plane *plane = to_intel_plane(p);
 
mutex_lock(&dev->struct_mutex);
i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
plane->frontbuffer_bit);
mutex_unlock(&dev->struct_mutex);
}
 
if (atomic->disable_fbc)
intel_fbc_disable_crtc(crtc);
 
if (crtc->atomic.disable_ips)
hsw_disable_ips(crtc);
 
if (atomic->pre_disable_primary)
intel_pre_disable_primary(&crtc->base);
 
if (atomic->disable_cxsr) {
crtc->wm.cxsr_allowed = false;
intel_set_memory_cxsr(dev_priv, false);
}
}
 
static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
{
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_plane *p;
int pipe = intel_crtc->pipe;
 
intel_crtc_dpms_overlay_disable(intel_crtc);
 
drm_for_each_plane_mask(p, dev, plane_mask)
to_intel_plane(p)->disable_plane(p, crtc);
 
/*
* FIXME: Once we grow proper nuclear flip support out of this we need
* to compute the mask of flip planes precisely. For the time being
4292,22 → 4874,20
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
 
WARN_ON(!crtc->enabled);
 
if (intel_crtc->active)
if (WARN_ON(intel_crtc->active))
return;
 
if (intel_crtc->config.has_pch_encoder)
if (intel_crtc->config->has_pch_encoder)
intel_prepare_shared_dpll(intel_crtc);
 
if (intel_crtc->config.has_dp_encoder)
intel_dp_set_m_n(intel_crtc);
if (intel_crtc->config->has_dp_encoder)
intel_dp_set_m_n(intel_crtc, M1_N1);
 
intel_set_pipe_timings(intel_crtc);
 
if (intel_crtc->config.has_pch_encoder) {
if (intel_crtc->config->has_pch_encoder) {
intel_cpu_transcoder_set_m_n(intel_crtc,
&intel_crtc->config.fdi_m_n, NULL);
&intel_crtc->config->fdi_m_n, NULL);
}
 
ironlake_set_pipeconf(crtc);
4321,7 → 4901,7
if (encoder->pre_enable)
encoder->pre_enable(encoder);
 
if (intel_crtc->config.has_pch_encoder) {
if (intel_crtc->config->has_pch_encoder) {
/* Note: FDI PLL enabling _must_ be done before we enable the
* cpu pipes, hence this is separate from all the other fdi/pch
* enabling. */
4342,19 → 4922,17
intel_update_watermarks(crtc);
intel_enable_pipe(intel_crtc);
 
if (intel_crtc->config.has_pch_encoder)
if (intel_crtc->config->has_pch_encoder)
ironlake_pch_enable(crtc);
 
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
 
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
 
if (HAS_PCH_CPT(dev))
cpt_verify_modeset(dev, intel_crtc->pipe);
 
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
 
intel_crtc_enable_planes(crtc);
}
 
/* IPS only exists on ULT machines and is tied to pipe A. */
4363,35 → 4941,6
return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
}
 
/*
* This implements the workaround described in the "notes" section of the mode
* set sequence documentation. When going from no pipes or single pipe to
* multiple pipes, and planes are enabled after the pipe, we need to wait at
* least 2 vblanks on the first pipe before enabling planes on the second pipe.
*/
static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct intel_crtc *crtc_it, *other_active_crtc = NULL;
 
/* We want to get the other_active_crtc only if there's only 1 other
* active crtc. */
for_each_intel_crtc(dev, crtc_it) {
if (!crtc_it->active || crtc_it == crtc)
continue;
 
if (other_active_crtc)
return;
 
other_active_crtc = crtc_it;
}
if (!other_active_crtc)
return;
 
intel_wait_for_vblank(dev, other_active_crtc->pipe);
intel_wait_for_vblank(dev, other_active_crtc->pipe);
}
 
static void haswell_crtc_enable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
4398,29 → 4947,30
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
int pipe = intel_crtc->pipe, hsw_workaround_pipe;
struct intel_crtc_state *pipe_config =
to_intel_crtc_state(crtc->state);
bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
 
WARN_ON(!crtc->enabled);
 
if (intel_crtc->active)
if (WARN_ON(intel_crtc->active))
return;
 
if (intel_crtc_to_shared_dpll(intel_crtc))
intel_enable_shared_dpll(intel_crtc);
 
if (intel_crtc->config.has_dp_encoder)
intel_dp_set_m_n(intel_crtc);
if (intel_crtc->config->has_dp_encoder)
intel_dp_set_m_n(intel_crtc, M1_N1);
 
intel_set_pipe_timings(intel_crtc);
 
if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
intel_crtc->config.pixel_multiplier - 1);
if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
intel_crtc->config->pixel_multiplier - 1);
}
 
if (intel_crtc->config.has_pch_encoder) {
if (intel_crtc->config->has_pch_encoder) {
intel_cpu_transcoder_set_m_n(intel_crtc,
&intel_crtc->config.fdi_m_n, NULL);
&intel_crtc->config->fdi_m_n, NULL);
}
 
haswell_set_pipeconf(crtc);
4430,19 → 4980,23
intel_crtc->active = true;
 
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
for_each_encoder_on_crtc(dev, crtc, encoder)
for_each_encoder_on_crtc(dev, crtc, encoder) {
if (encoder->pre_pll_enable)
encoder->pre_pll_enable(encoder);
if (encoder->pre_enable)
encoder->pre_enable(encoder);
}
 
if (intel_crtc->config.has_pch_encoder) {
if (intel_crtc->config->has_pch_encoder) {
intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
true);
dev_priv->display.fdi_link_train(crtc);
}
 
if (!is_dsi)
intel_ddi_enable_pipe_clock(intel_crtc);
 
if (IS_SKYLAKE(dev))
if (INTEL_INFO(dev)->gen >= 9)
skylake_pfit_enable(intel_crtc);
else
ironlake_pfit_enable(intel_crtc);
4454,47 → 5008,36
intel_crtc_load_lut(crtc);
 
intel_ddi_set_pipe_settings(crtc);
if (!is_dsi)
intel_ddi_enable_transcoder_func(crtc);
 
intel_update_watermarks(crtc);
intel_enable_pipe(intel_crtc);
 
if (intel_crtc->config.has_pch_encoder)
if (intel_crtc->config->has_pch_encoder)
lpt_pch_enable(crtc);
 
if (intel_crtc->config.dp_encoder_is_mst)
if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
intel_ddi_set_vc_payload_alloc(crtc, true);
 
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
 
for_each_encoder_on_crtc(dev, crtc, encoder) {
encoder->enable(encoder);
intel_opregion_notify_encoder(encoder, true);
}
 
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
 
/* If we change the relative order between pipe/planes enabling, we need
* to change the workaround. */
haswell_mode_set_planes_workaround(intel_crtc);
intel_crtc_enable_planes(crtc);
hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
intel_wait_for_vblank(dev, hsw_workaround_pipe);
intel_wait_for_vblank(dev, hsw_workaround_pipe);
}
 
static void skylake_pfit_disable(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
 
/* To avoid upsetting the power well on haswell only disable the pfit if
* it's in use. The hw state code will make sure we get this right. */
if (crtc->config.pch_pfit.enabled) {
I915_WRITE(PS_CTL(pipe), 0);
I915_WRITE(PS_WIN_POS(pipe), 0);
I915_WRITE(PS_WIN_SZ(pipe), 0);
}
}
 
static void ironlake_pfit_disable(struct intel_crtc *crtc)
static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
4502,7 → 5045,7
 
/* To avoid upsetting the power well on haswell only disable the pfit if
* it's in use. The hw state code will make sure we get this right. */
if (crtc->config.pch_pfit.enabled) {
if (force || crtc->config->pch_pfit.enabled) {
I915_WRITE(PF_CTL(pipe), 0);
I915_WRITE(PF_WIN_POS(pipe), 0);
I915_WRITE(PF_WIN_SZ(pipe), 0);
4518,31 → 5061,27
int pipe = intel_crtc->pipe;
u32 reg, temp;
 
if (!intel_crtc->active)
return;
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->disable(encoder);
 
intel_crtc_disable_planes(crtc);
 
drm_crtc_vblank_off(crtc);
assert_vblank_disabled(crtc);
 
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->disable(encoder);
 
if (intel_crtc->config.has_pch_encoder)
if (intel_crtc->config->has_pch_encoder)
intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
 
intel_disable_pipe(intel_crtc);
 
ironlake_pfit_disable(intel_crtc);
ironlake_pfit_disable(intel_crtc, false);
 
if (intel_crtc->config->has_pch_encoder)
ironlake_fdi_disable(crtc);
 
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->post_disable)
encoder->post_disable(encoder);
 
if (intel_crtc->config.has_pch_encoder) {
ironlake_fdi_disable(crtc);
 
if (intel_crtc->config->has_pch_encoder) {
ironlake_disable_pch_transcoder(dev_priv, pipe);
 
if (HAS_PCH_CPT(dev)) {
4560,18 → 5099,8
I915_WRITE(PCH_DPLL_SEL, temp);
}
 
/* disable PCH DPLL */
intel_disable_shared_dpll(intel_crtc);
 
ironlake_fdi_pll_disable(intel_crtc);
}
 
intel_crtc->active = false;
intel_update_watermarks(crtc);
 
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
}
 
static void haswell_crtc_disable(struct drm_crtc *crtc)
4580,39 → 5109,37
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
 
if (!intel_crtc->active)
return;
 
intel_crtc_disable_planes(crtc);
 
drm_crtc_vblank_off(crtc);
assert_vblank_disabled(crtc);
 
for_each_encoder_on_crtc(dev, crtc, encoder) {
intel_opregion_notify_encoder(encoder, false);
encoder->disable(encoder);
}
 
if (intel_crtc->config.has_pch_encoder)
drm_crtc_vblank_off(crtc);
assert_vblank_disabled(crtc);
 
if (intel_crtc->config->has_pch_encoder)
intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
false);
intel_disable_pipe(intel_crtc);
 
if (intel_crtc->config.dp_encoder_is_mst)
if (intel_crtc->config->dp_encoder_is_mst)
intel_ddi_set_vc_payload_alloc(crtc, false);
 
if (!is_dsi)
intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
 
if (IS_SKYLAKE(dev))
skylake_pfit_disable(intel_crtc);
if (INTEL_INFO(dev)->gen >= 9)
skylake_scaler_disable(intel_crtc);
else
ironlake_pfit_disable(intel_crtc);
ironlake_pfit_disable(intel_crtc, false);
 
if (!is_dsi)
intel_ddi_disable_pipe_clock(intel_crtc);
 
if (intel_crtc->config.has_pch_encoder) {
if (intel_crtc->config->has_pch_encoder) {
lpt_disable_pch_transcoder(dev_priv);
intel_ddi_fdi_disable(crtc);
}
4620,32 → 5147,15
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->post_disable)
encoder->post_disable(encoder);
 
intel_crtc->active = false;
intel_update_watermarks(crtc);
 
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
 
if (intel_crtc_to_shared_dpll(intel_crtc))
intel_disable_shared_dpll(intel_crtc);
}
 
static void ironlake_crtc_off(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
intel_put_shared_dpll(intel_crtc);
}
 
 
static void i9xx_pfit_enable(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc_config *pipe_config = &crtc->config;
struct intel_crtc_state *pipe_config = crtc->config;
 
if (!crtc->config.gmch_pfit.control)
if (!pipe_config->gmch_pfit.control)
return;
 
/*
4674,12 → 5184,34
return POWER_DOMAIN_PORT_DDI_C_4_LANES;
case PORT_D:
return POWER_DOMAIN_PORT_DDI_D_4_LANES;
case PORT_E:
return POWER_DOMAIN_PORT_DDI_E_2_LANES;
default:
WARN_ON_ONCE(1);
MISSING_CASE(port);
return POWER_DOMAIN_PORT_OTHER;
}
}
 
static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
{
switch (port) {
case PORT_A:
return POWER_DOMAIN_AUX_A;
case PORT_B:
return POWER_DOMAIN_AUX_B;
case PORT_C:
return POWER_DOMAIN_AUX_C;
case PORT_D:
return POWER_DOMAIN_AUX_D;
case PORT_E:
/* FIXME: Check VBT for actual wiring of PORT E */
return POWER_DOMAIN_AUX_D;
default:
MISSING_CASE(port);
return POWER_DOMAIN_AUX_A;
}
}
 
#define for_each_power_domain(domain, mask) \
for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
if ((1 << (domain)) & (mask))
4711,6 → 5243,36
}
}
 
enum intel_display_power_domain
intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
{
struct drm_device *dev = intel_encoder->base.dev;
struct intel_digital_port *intel_dig_port;
 
switch (intel_encoder->type) {
case INTEL_OUTPUT_UNKNOWN:
case INTEL_OUTPUT_HDMI:
/*
* Only DDI platforms should ever use these output types.
* We can get here after the HDMI detect code has already set
* the type of the shared encoder. Since we can't be sure
* what's the status of the given connectors, play safe and
* run the DP detection too.
*/
WARN_ON_ONCE(!HAS_DDI(dev));
case INTEL_OUTPUT_DISPLAYPORT:
case INTEL_OUTPUT_EDP:
intel_dig_port = enc_to_dig_port(&intel_encoder->base);
return port_to_aux_power_domain(intel_dig_port->port);
case INTEL_OUTPUT_DP_MST:
intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
return port_to_aux_power_domain(intel_dig_port->port);
default:
MISSING_CASE(intel_encoder->type);
return POWER_DOMAIN_AUX_A;
}
}
 
static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
4720,12 → 5282,15
unsigned long mask;
enum transcoder transcoder;
 
if (!crtc->state->active)
return 0;
 
transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
 
mask = BIT(POWER_DOMAIN_PIPE(pipe));
mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
if (intel_crtc->config.pch_pfit.enabled ||
intel_crtc->config.pch_pfit.force_thru)
if (intel_crtc->config->pch_pfit.enabled ||
intel_crtc->config->pch_pfit.force_thru)
mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
 
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4734,64 → 5299,131
return mask;
}
 
static void modeset_update_crtc_power_domains(struct drm_device *dev)
static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
struct intel_crtc *crtc;
 
/*
* First get all needed power domains, then put all unneeded, to avoid
* any unnecessary toggling of the power wells.
*/
for_each_intel_crtc(dev, crtc) {
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum intel_display_power_domain domain;
unsigned long domains, new_domains, old_domains;
 
if (!crtc->base.enabled)
continue;
old_domains = intel_crtc->enabled_power_domains;
intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
 
pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
domains = new_domains & ~old_domains;
 
for_each_power_domain(domain, pipe_domains[crtc->pipe])
for_each_power_domain(domain, domains)
intel_display_power_get(dev_priv, domain);
 
return old_domains & ~new_domains;
}
 
if (dev_priv->display.modeset_global_resources)
dev_priv->display.modeset_global_resources(dev);
 
for_each_intel_crtc(dev, crtc) {
static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
unsigned long domains)
{
enum intel_display_power_domain domain;
 
for_each_power_domain(domain, crtc->enabled_power_domains)
for_each_power_domain(domain, domains)
intel_display_power_put(dev_priv, domain);
}
 
crtc->enabled_power_domains = pipe_domains[crtc->pipe];
static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long put_domains[I915_MAX_PIPES] = {};
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
int i;
 
for_each_crtc_in_state(state, crtc, crtc_state, i) {
if (needs_modeset(crtc->state))
put_domains[to_intel_crtc(crtc)->pipe] =
modeset_get_crtc_power_domains(crtc);
}
 
intel_display_set_init_power(dev_priv, false);
if (dev_priv->display.modeset_commit_cdclk) {
unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
 
if (cdclk != dev_priv->cdclk_freq &&
!WARN_ON(!state->allow_modeset))
dev_priv->display.modeset_commit_cdclk(state);
}
 
/* returns HPLL frequency in kHz */
static int valleyview_get_vco(struct drm_i915_private *dev_priv)
for (i = 0; i < I915_MAX_PIPES; i++)
if (put_domains[i])
modeset_put_power_domains(dev_priv, put_domains[i]);
}
 
static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
{
int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
int max_cdclk_freq = dev_priv->max_cdclk_freq;
 
/* Obtain SKU information */
mutex_lock(&dev_priv->dpio_lock);
hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
CCK_FUSE_HPLL_FREQ_MASK;
mutex_unlock(&dev_priv->dpio_lock);
if (INTEL_INFO(dev_priv)->gen >= 9 ||
IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
return max_cdclk_freq;
else if (IS_CHERRYVIEW(dev_priv))
return max_cdclk_freq*95/100;
else if (INTEL_INFO(dev_priv)->gen < 4)
return 2*max_cdclk_freq*90/100;
else
return max_cdclk_freq*90/100;
}
 
return vco_freq[hpll_freq] * 1000;
static void intel_update_max_cdclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (IS_SKYLAKE(dev)) {
u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
 
if (limit == SKL_DFSM_CDCLK_LIMIT_675)
dev_priv->max_cdclk_freq = 675000;
else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
dev_priv->max_cdclk_freq = 540000;
else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
dev_priv->max_cdclk_freq = 450000;
else
dev_priv->max_cdclk_freq = 337500;
} else if (IS_BROADWELL(dev)) {
/*
* FIXME with extra cooling we can allow
* 540 MHz for ULX and 675 Mhz for ULT.
* How can we know if extra cooling is
* available? PCI ID, VTB, something else?
*/
if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
dev_priv->max_cdclk_freq = 450000;
else if (IS_BDW_ULX(dev))
dev_priv->max_cdclk_freq = 450000;
else if (IS_BDW_ULT(dev))
dev_priv->max_cdclk_freq = 540000;
else
dev_priv->max_cdclk_freq = 675000;
} else if (IS_CHERRYVIEW(dev)) {
dev_priv->max_cdclk_freq = 320000;
} else if (IS_VALLEYVIEW(dev)) {
dev_priv->max_cdclk_freq = 400000;
} else {
/* otherwise assume cdclk is fixed */
dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
}
 
static void vlv_update_cdclk(struct drm_device *dev)
dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
 
DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
dev_priv->max_cdclk_freq);
 
DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
dev_priv->max_dotclk_freq);
}
 
static void intel_update_cdclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
dev_priv->vlv_cdclk_freq);
dev_priv->cdclk_freq);
 
/*
* Program the gmbus_freq based on the cdclk frequency.
4798,9 → 5430,412
* BSpec erroneously claims we should aim for 4MHz, but
* in fact 1MHz is the correct frequency.
*/
I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
if (IS_VALLEYVIEW(dev)) {
/*
* Program the gmbus_freq based on the cdclk frequency.
* BSpec erroneously claims we should aim for 4MHz, but
* in fact 1MHz is the correct frequency.
*/
I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
}
 
if (dev_priv->max_cdclk_freq == 0)
intel_update_max_cdclk(dev);
}
 
static void broxton_set_cdclk(struct drm_device *dev, int frequency)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t divider;
uint32_t ratio;
uint32_t current_freq;
int ret;
 
/* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
switch (frequency) {
case 144000:
divider = BXT_CDCLK_CD2X_DIV_SEL_4;
ratio = BXT_DE_PLL_RATIO(60);
break;
case 288000:
divider = BXT_CDCLK_CD2X_DIV_SEL_2;
ratio = BXT_DE_PLL_RATIO(60);
break;
case 384000:
divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
ratio = BXT_DE_PLL_RATIO(60);
break;
case 576000:
divider = BXT_CDCLK_CD2X_DIV_SEL_1;
ratio = BXT_DE_PLL_RATIO(60);
break;
case 624000:
divider = BXT_CDCLK_CD2X_DIV_SEL_1;
ratio = BXT_DE_PLL_RATIO(65);
break;
case 19200:
/*
* Bypass frequency with DE PLL disabled. Init ratio, divider
* to suppress GCC warning.
*/
ratio = 0;
divider = 0;
break;
default:
DRM_ERROR("unsupported CDCLK freq %d", frequency);
 
return;
}
 
mutex_lock(&dev_priv->rps.hw_lock);
/* Inform power controller of upcoming frequency change */
ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
0x80000000);
mutex_unlock(&dev_priv->rps.hw_lock);
 
if (ret) {
DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
ret, frequency);
return;
}
 
current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
/* convert from .1 fixpoint MHz with -1MHz offset to kHz */
current_freq = current_freq * 500 + 1000;
 
/*
* DE PLL has to be disabled when
* - setting to 19.2MHz (bypass, PLL isn't used)
* - before setting to 624MHz (PLL needs toggling)
* - before setting to any frequency from 624MHz (PLL needs toggling)
*/
if (frequency == 19200 || frequency == 624000 ||
current_freq == 624000) {
I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
/* Timeout 200us */
if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
1))
DRM_ERROR("timout waiting for DE PLL unlock\n");
}
 
if (frequency != 19200) {
uint32_t val;
 
val = I915_READ(BXT_DE_PLL_CTL);
val &= ~BXT_DE_PLL_RATIO_MASK;
val |= ratio;
I915_WRITE(BXT_DE_PLL_CTL, val);
 
I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
/* Timeout 200us */
if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
DRM_ERROR("timeout waiting for DE PLL lock\n");
 
val = I915_READ(CDCLK_CTL);
val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
val |= divider;
/*
* Disable SSA Precharge when CD clock frequency < 500 MHz,
* enable otherwise.
*/
val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
if (frequency >= 500000)
val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
 
val &= ~CDCLK_FREQ_DECIMAL_MASK;
/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
val |= (frequency - 1000) / 500;
I915_WRITE(CDCLK_CTL, val);
}
 
mutex_lock(&dev_priv->rps.hw_lock);
ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
DIV_ROUND_UP(frequency, 25000));
mutex_unlock(&dev_priv->rps.hw_lock);
 
if (ret) {
DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
ret, frequency);
return;
}
 
intel_update_cdclk(dev);
}
 
void broxton_init_cdclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t val;
 
/*
* NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
* or else the reset will hang because there is no PCH to respond.
* Move the handshake programming to initialization sequence.
* Previously was left up to BIOS.
*/
val = I915_READ(HSW_NDE_RSTWRN_OPT);
val &= ~RESET_PCH_HANDSHAKE_ENABLE;
I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
 
/* Enable PG1 for cdclk */
intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
 
/* check if cd clock is enabled */
if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
DRM_DEBUG_KMS("Display already initialized\n");
return;
}
 
/*
* FIXME:
* - The initial CDCLK needs to be read from VBT.
* Need to make this change after VBT has changes for BXT.
* - check if setting the max (or any) cdclk freq is really necessary
* here, it belongs to modeset time
*/
broxton_set_cdclk(dev, 624000);
 
I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
POSTING_READ(DBUF_CTL);
 
udelay(10);
 
if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
DRM_ERROR("DBuf power enable timeout!\n");
}
 
void broxton_uninit_cdclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
POSTING_READ(DBUF_CTL);
 
udelay(10);
 
if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
DRM_ERROR("DBuf power disable timeout!\n");
 
/* Set minimum (bypass) frequency, in effect turning off the DE PLL */
broxton_set_cdclk(dev, 19200);
 
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
}
 
static const struct skl_cdclk_entry {
unsigned int freq;
unsigned int vco;
} skl_cdclk_frequencies[] = {
{ .freq = 308570, .vco = 8640 },
{ .freq = 337500, .vco = 8100 },
{ .freq = 432000, .vco = 8640 },
{ .freq = 450000, .vco = 8100 },
{ .freq = 540000, .vco = 8100 },
{ .freq = 617140, .vco = 8640 },
{ .freq = 675000, .vco = 8100 },
};
 
static unsigned int skl_cdclk_decimal(unsigned int freq)
{
return (freq - 1000) / 500;
}
 
static unsigned int skl_cdclk_get_vco(unsigned int freq)
{
unsigned int i;
 
for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
 
if (e->freq == freq)
return e->vco;
}
 
return 8100;
}
 
static void
skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
{
unsigned int min_freq;
u32 val;
 
/* select the minimum CDCLK before enabling DPLL 0 */
val = I915_READ(CDCLK_CTL);
val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
val |= CDCLK_FREQ_337_308;
 
if (required_vco == 8640)
min_freq = 308570;
else
min_freq = 337500;
 
val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
 
I915_WRITE(CDCLK_CTL, val);
POSTING_READ(CDCLK_CTL);
 
/*
* We always enable DPLL0 with the lowest link rate possible, but still
* taking into account the VCO required to operate the eDP panel at the
* desired frequency. The usual DP link rates operate with a VCO of
* 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
* The modeset code is responsible for the selection of the exact link
* rate later on, with the constraint of choosing a frequency that
* works with required_vco.
*/
val = I915_READ(DPLL_CTRL1);
 
val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
if (required_vco == 8640)
val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
SKL_DPLL0);
else
val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
SKL_DPLL0);
 
I915_WRITE(DPLL_CTRL1, val);
POSTING_READ(DPLL_CTRL1);
 
I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
 
if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
DRM_ERROR("DPLL0 not locked\n");
}
 
static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
{
int ret;
u32 val;
 
/* inform PCU we want to change CDCLK */
val = SKL_CDCLK_PREPARE_FOR_CHANGE;
mutex_lock(&dev_priv->rps.hw_lock);
ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
mutex_unlock(&dev_priv->rps.hw_lock);
 
return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
}
 
static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
{
unsigned int i;
 
for (i = 0; i < 15; i++) {
if (skl_cdclk_pcu_ready(dev_priv))
return true;
udelay(10);
}
 
return false;
}
 
static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
{
struct drm_device *dev = dev_priv->dev;
u32 freq_select, pcu_ack;
 
DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
 
if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
DRM_ERROR("failed to inform PCU about cdclk change\n");
return;
}
 
/* set CDCLK_CTL */
switch(freq) {
case 450000:
case 432000:
freq_select = CDCLK_FREQ_450_432;
pcu_ack = 1;
break;
case 540000:
freq_select = CDCLK_FREQ_540;
pcu_ack = 2;
break;
case 308570:
case 337500:
default:
freq_select = CDCLK_FREQ_337_308;
pcu_ack = 0;
break;
case 617140:
case 675000:
freq_select = CDCLK_FREQ_675_617;
pcu_ack = 3;
break;
}
 
I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
POSTING_READ(CDCLK_CTL);
 
/* inform PCU of the change */
mutex_lock(&dev_priv->rps.hw_lock);
sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
mutex_unlock(&dev_priv->rps.hw_lock);
 
intel_update_cdclk(dev);
}
 
void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
{
/* disable DBUF power */
I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
POSTING_READ(DBUF_CTL);
 
udelay(10);
 
if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
DRM_ERROR("DBuf power disable timeout\n");
 
/*
* DMC assumes ownership of LCPLL and will get confused if we touch it.
*/
if (dev_priv->csr.dmc_payload) {
/* disable DPLL0 */
I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) &
~LCPLL_PLL_ENABLE);
if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
DRM_ERROR("Couldn't disable DPLL0\n");
}
 
intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
}
 
void skl_init_cdclk(struct drm_i915_private *dev_priv)
{
u32 val;
unsigned int required_vco;
 
/* enable PCH reset handshake */
val = I915_READ(HSW_NDE_RSTWRN_OPT);
I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
 
/* enable PG1 and Misc I/O */
intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
 
/* DPLL0 not enabled (happens on early BIOS versions) */
if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
/* enable DPLL0 */
required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
skl_dpll0_enable(dev_priv, required_vco);
}
 
/* set CDCLK to the frequency the BIOS chose */
skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
 
/* enable DBUF power */
I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
POSTING_READ(DBUF_CTL);
 
udelay(10);
 
if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
DRM_ERROR("DBuf power enable timeout\n");
}
 
/* Adjust CDclk dividers to allow high res or save power if possible */
static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
{
4807,7 → 5842,8
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, cmd;
 
WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
WARN_ON(dev_priv->display.get_display_clock_speed(dev)
!= dev_priv->cdclk_freq);
 
if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
cmd = 2;
4828,26 → 5864,25
}
mutex_unlock(&dev_priv->rps.hw_lock);
 
mutex_lock(&dev_priv->sb_lock);
 
if (cdclk == 400000) {
u32 divider;
 
divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
 
mutex_lock(&dev_priv->dpio_lock);
/* adjust cdclk divider */
val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
val &= ~DISPLAY_FREQUENCY_VALUES;
val &= ~CCK_FREQUENCY_VALUES;
val |= divider;
vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
 
if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
50))
DRM_ERROR("timed out waiting for CDclk change\n");
mutex_unlock(&dev_priv->dpio_lock);
}
 
mutex_lock(&dev_priv->dpio_lock);
/* adjust self-refresh exit latency value */
val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
val &= ~0x7f;
4861,9 → 5896,10
else
val |= 3000 / 250; /* 3.0 usec */
vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
mutex_unlock(&dev_priv->dpio_lock);
 
vlv_update_cdclk(dev);
mutex_unlock(&dev_priv->sb_lock);
 
intel_update_cdclk(dev);
}
 
static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4871,27 → 5907,27
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, cmd;
 
WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
WARN_ON(dev_priv->display.get_display_clock_speed(dev)
!= dev_priv->cdclk_freq);
 
switch (cdclk) {
case 400000:
cmd = 3;
break;
case 333333:
case 320000:
cmd = 2;
break;
case 266667:
cmd = 1;
break;
case 200000:
cmd = 0;
break;
default:
WARN_ON(1);
MISSING_CASE(cdclk);
return;
}
 
/*
* Specs are full of misinformation, but testing on actual
* hardware has shown that we just need to write the desired
* CCK divider into the Punit register.
*/
cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
 
mutex_lock(&dev_priv->rps.hw_lock);
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
val &= ~DSPFREQGUAR_MASK_CHV;
4904,7 → 5940,7
}
mutex_unlock(&dev_priv->rps.hw_lock);
 
vlv_update_cdclk(dev);
intel_update_cdclk(dev);
}
 
static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4911,27 → 5947,25
int max_pixclk)
{
int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
 
/* FIXME: Punit isn't quite ready yet */
if (IS_CHERRYVIEW(dev_priv->dev))
return 400000;
 
/*
* Really only a few cases to deal with, as only 4 CDclks are supported:
* 200MHz
* 267MHz
* 320/333MHz (depends on HPLL freq)
* 400MHz
* So we check to see whether we're above 90% of the lower bin and
* adjust if needed.
* 400MHz (VLV only)
* So we check to see whether we're above 90% (VLV) or 95% (CHV)
* of the lower bin and adjust if needed.
*
* We seem to get an unstable or solid color picture at 200MHz.
* Not sure what's wrong. For now use 200MHz only when all pipes
* are off.
*/
if (max_pixclk > freq_320*9/10)
if (!IS_CHERRYVIEW(dev_priv) &&
max_pixclk > freq_320*limit/100)
return 400000;
else if (max_pixclk > 266667*9/10)
else if (max_pixclk > 266667*limit/100)
return freq_320;
else if (max_pixclk > 0)
return 266667;
4939,47 → 5973,123
return 200000;
}
 
/* compute the max pixel clock for new configuration */
static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
int max_pixclk)
{
struct drm_device *dev = dev_priv->dev;
/*
* FIXME:
* - remove the guardband, it's not needed on BXT
* - set 19.2MHz bypass frequency if there are no active pipes
*/
if (max_pixclk > 576000*9/10)
return 624000;
else if (max_pixclk > 384000*9/10)
return 576000;
else if (max_pixclk > 288000*9/10)
return 384000;
else if (max_pixclk > 144000*9/10)
return 288000;
else
return 144000;
}
 
/* Compute the max pixel clock for new configuration. Uses atomic state if
* that's non-NULL, look at current state otherwise. */
static int intel_mode_max_pixclk(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct intel_crtc *intel_crtc;
struct intel_crtc_state *crtc_state;
int max_pixclk = 0;
 
for_each_intel_crtc(dev, intel_crtc) {
if (intel_crtc->new_enabled)
crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
 
if (!crtc_state->base.enable)
continue;
 
max_pixclk = max(max_pixclk,
intel_crtc->new_config->adjusted_mode.crtc_clock);
crtc_state->base.adjusted_mode.crtc_clock);
}
 
return max_pixclk;
}
 
static void valleyview_modeset_global_pipes(struct drm_device *dev,
unsigned *prepare_pipes)
static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc;
int max_pixclk = intel_mode_max_pixclk(dev_priv);
int max_pixclk = intel_mode_max_pixclk(dev, state);
 
if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
dev_priv->vlv_cdclk_freq)
return;
if (max_pixclk < 0)
return max_pixclk;
 
/* disable/enable all currently active pipes while we change cdclk */
for_each_intel_crtc(dev, intel_crtc)
if (intel_crtc->base.enabled)
*prepare_pipes |= (1 << intel_crtc->pipe);
to_intel_atomic_state(state)->cdclk =
valleyview_calc_cdclk(dev_priv, max_pixclk);
 
return 0;
}
 
static void valleyview_modeset_global_resources(struct drm_device *dev)
static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
{
struct drm_device *dev = state->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int max_pixclk = intel_mode_max_pixclk(dev_priv);
int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
int max_pixclk = intel_mode_max_pixclk(dev, state);
 
if (req_cdclk != dev_priv->vlv_cdclk_freq) {
if (max_pixclk < 0)
return max_pixclk;
 
to_intel_atomic_state(state)->cdclk =
broxton_calc_cdclk(dev_priv, max_pixclk);
 
return 0;
}
 
static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
{
unsigned int credits, default_credits;
 
if (IS_CHERRYVIEW(dev_priv))
default_credits = PFI_CREDIT(12);
else
default_credits = PFI_CREDIT(8);
 
if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
/* CHV suggested value is 31 or 63 */
if (IS_CHERRYVIEW(dev_priv))
credits = PFI_CREDIT_63;
else
credits = PFI_CREDIT(15);
} else {
credits = default_credits;
}
 
/*
* WA - write default credits before re-programming
* FIXME: should we also set the resend bit here?
*/
I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
default_credits);
 
I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
credits | PFI_CREDIT_RESEND);
 
/*
* FIXME is this guaranteed to clear
* immediately or should we poll for it?
*/
WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
}
 
static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
{
struct drm_device *dev = old_state->dev;
unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
struct drm_i915_private *dev_priv = dev->dev_private;
 
/*
* FIXME: We can end up here with all power domains off, yet
* with a CDCLK frequency other than the minimum. To account
* for this take the PIPE-A power domain, which covers the HW
4995,9 → 6105,10
else
valleyview_set_cdclk(dev, req_cdclk);
 
vlv_program_pfi_credits(dev_priv);
 
intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
}
}
 
static void valleyview_crtc_enable(struct drm_crtc *crtc)
{
5008,23 → 6119,14
int pipe = intel_crtc->pipe;
bool is_dsi;
 
WARN_ON(!crtc->enabled);
 
if (intel_crtc->active)
if (WARN_ON(intel_crtc->active))
return;
 
is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
 
if (!is_dsi) {
if (IS_CHERRYVIEW(dev))
chv_prepare_pll(intel_crtc, &intel_crtc->config);
else
vlv_prepare_pll(intel_crtc, &intel_crtc->config);
}
if (intel_crtc->config->has_dp_encoder)
intel_dp_set_m_n(intel_crtc, M1_N1);
 
if (intel_crtc->config.has_dp_encoder)
intel_dp_set_m_n(intel_crtc);
 
intel_set_pipe_timings(intel_crtc);
 
if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5045,11 → 6147,14
encoder->pre_pll_enable(encoder);
 
if (!is_dsi) {
if (IS_CHERRYVIEW(dev))
chv_enable_pll(intel_crtc, &intel_crtc->config);
else
vlv_enable_pll(intel_crtc, &intel_crtc->config);
if (IS_CHERRYVIEW(dev)) {
chv_prepare_pll(intel_crtc, intel_crtc->config);
chv_enable_pll(intel_crtc, intel_crtc->config);
} else {
vlv_prepare_pll(intel_crtc, intel_crtc->config);
vlv_enable_pll(intel_crtc, intel_crtc->config);
}
}
 
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->pre_enable)
5059,19 → 6164,13
 
intel_crtc_load_lut(crtc);
 
intel_update_watermarks(crtc);
intel_enable_pipe(intel_crtc);
 
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
 
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
 
intel_crtc_enable_planes(crtc);
 
/* Underruns don't raise interrupts, so check manually. */
i9xx_check_fifo_underruns(dev_priv);
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
}
 
static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5079,8 → 6178,8
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
 
I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
}
 
static void i9xx_crtc_enable(struct drm_crtc *crtc)
5091,15 → 6190,13
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
 
WARN_ON(!crtc->enabled);
 
if (intel_crtc->active)
if (WARN_ON(intel_crtc->active))
return;
 
i9xx_set_pll_dividers(intel_crtc);
 
if (intel_crtc->config.has_dp_encoder)
intel_dp_set_m_n(intel_crtc);
if (intel_crtc->config->has_dp_encoder)
intel_dp_set_m_n(intel_crtc, M1_N1);
 
intel_set_pipe_timings(intel_crtc);
 
5123,26 → 6220,11
intel_update_watermarks(crtc);
intel_enable_pipe(intel_crtc);
 
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
 
assert_vblank_disabled(crtc);
drm_crtc_vblank_on(crtc);
 
intel_crtc_enable_planes(crtc);
 
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So don't enable underrun reporting before at least some planes
* are enabled.
* FIXME: Need to fix the logic to work when we turn off all planes
* but leave the pipe running.
*/
if (IS_GEN2(dev))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
 
/* Underruns don't raise interrupts, so check manually. */
i9xx_check_fifo_underruns(dev_priv);
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
}
 
static void i9xx_pfit_disable(struct intel_crtc *crtc)
5150,7 → 6232,7
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (!crtc->config.gmch_pfit.control)
if (!crtc->config->gmch_pfit.control)
return;
 
assert_pipe_disabled(dev_priv, crtc->pipe);
5168,31 → 6250,7
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
 
if (!intel_crtc->active)
return;
 
/*
* Gen2 reports pipe underruns whenever all planes are disabled.
* So diasble underrun reporting before all the planes get disabled.
* FIXME: Need to fix the logic to work when we turn off all planes
* but leave the pipe running.
*/
if (IS_GEN2(dev))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
 
/*
* Vblank time updates from the shadow to live plane control register
* are blocked if the memory self-refresh mode is active at that
* moment. So to make sure the plane gets truly disabled, disable
* first the self-refresh mode. The self-refresh enable bit in turn
* will be checked/applied by the HW only at the next frame start
* event which is after the vblank start event, so we need to have a
* wait-for-vblank between disabling the plane and the pipe.
*/
intel_set_memory_cxsr(dev_priv, false);
intel_crtc_disable_planes(crtc);
 
/*
* On gen2 planes are double buffered but the pipe isn't, so we must
* wait for planes to fully turn off before disabling the pipe.
* We also need to wait on all gmch platforms because of the
5200,12 → 6258,12
*/
intel_wait_for_vblank(dev, pipe);
 
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->disable(encoder);
 
drm_crtc_vblank_off(crtc);
assert_vblank_disabled(crtc);
 
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->disable(encoder);
 
intel_disable_pipe(intel_crtc);
 
i9xx_pfit_disable(intel_crtc);
5223,42 → 6281,35
i9xx_disable_pll(intel_crtc);
}
 
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->post_pll_disable)
encoder->post_pll_disable(encoder);
 
if (!IS_GEN2(dev))
intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
 
intel_crtc->active = false;
intel_update_watermarks(crtc);
 
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
}
 
static void i9xx_crtc_off(struct drm_crtc *crtc)
static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
{
}
 
/* Master function to enable/disable CRTC and corresponding power wells */
void intel_crtc_control(struct drm_crtc *crtc, bool enable)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
enum intel_display_power_domain domain;
unsigned long domains;
 
if (enable) {
if (!intel_crtc->active) {
domains = get_crtc_power_domains(crtc);
for_each_power_domain(domain, domains)
intel_display_power_get(dev_priv, domain);
intel_crtc->enabled_power_domains = domains;
if (!intel_crtc->active)
return;
 
dev_priv->display.crtc_enable(crtc);
if (to_intel_plane_state(crtc->primary->state)->visible) {
intel_pre_disable_primary(crtc);
 
intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
to_intel_plane_state(crtc->primary->state)->visible = false;
}
} else {
if (intel_crtc->active) {
 
dev_priv->display.crtc_disable(crtc);
intel_crtc->active = false;
intel_update_watermarks(crtc);
intel_disable_shared_dpll(intel_crtc);
 
domains = intel_crtc->enabled_power_domains;
for_each_power_domain(domain, domains)
5265,60 → 6316,65
intel_display_power_put(dev_priv, domain);
intel_crtc->enabled_power_domains = 0;
}
}
}
 
/**
* Sets the power management mode of the pipe and plane.
/*
* turn all crtc's off, but do not adjust state
* This has to be paired with a call to intel_modeset_setup_hw_state.
*/
void intel_crtc_update_dpms(struct drm_crtc *crtc)
int intel_display_suspend(struct drm_device *dev)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *intel_encoder;
bool enable = false;
struct drm_mode_config *config = &dev->mode_config;
struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
struct drm_atomic_state *state;
struct drm_crtc *crtc;
unsigned crtc_mask = 0;
int ret = 0;
 
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
enable |= intel_encoder->connectors_active;
if (WARN_ON(!ctx))
return 0;
 
intel_crtc_control(crtc, enable);
}
lockdep_assert_held(&ctx->ww_ctx);
state = drm_atomic_state_alloc(dev);
if (WARN_ON(!state))
return -ENOMEM;
 
static void intel_crtc_disable(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_connector *connector;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
enum pipe pipe = to_intel_crtc(crtc)->pipe;
state->acquire_ctx = ctx;
state->allow_modeset = true;
 
/* crtc should still be enabled when we disable it. */
WARN_ON(!crtc->enabled);
for_each_crtc(dev, crtc) {
struct drm_crtc_state *crtc_state =
drm_atomic_get_crtc_state(state, crtc);
 
dev_priv->display.crtc_disable(crtc);
dev_priv->display.off(crtc);
ret = PTR_ERR_OR_ZERO(crtc_state);
if (ret)
goto free;
 
if (crtc->primary->fb) {
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(old_obj);
i915_gem_track_fb(old_obj, NULL,
INTEL_FRONTBUFFER_PRIMARY(pipe));
mutex_unlock(&dev->struct_mutex);
crtc->primary->fb = NULL;
if (!crtc_state->active)
continue;
 
crtc_state->active = false;
crtc_mask |= 1 << drm_crtc_index(crtc);
}
 
/* Update computed state. */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
if (!connector->encoder || !connector->encoder->crtc)
continue;
if (crtc_mask) {
ret = drm_atomic_commit(state);
 
if (connector->encoder->crtc != crtc)
continue;
if (!ret) {
for_each_crtc(dev, crtc)
if (crtc_mask & (1 << drm_crtc_index(crtc)))
crtc->state->active = true;
 
connector->dpms = DRM_MODE_DPMS_OFF;
to_intel_encoder(connector->encoder)->connectors_active = false;
return ret;
}
}
 
free:
if (ret)
DRM_ERROR("Suspending crtc's failed with %i\n", ret);
drm_atomic_state_free(state);
return ret;
}
 
void intel_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5327,84 → 6383,73
kfree(intel_encoder);
}
 
/* Simple dpms helper for encoders with just one connector, no cloning and only
* one kind of off state. It clamps all !ON modes to fully OFF and changes the
* state of the entire output pipe. */
static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
{
if (mode == DRM_MODE_DPMS_ON) {
encoder->connectors_active = true;
 
intel_crtc_update_dpms(encoder->base.crtc);
} else {
encoder->connectors_active = false;
 
intel_crtc_update_dpms(encoder->base.crtc);
}
}
 
/* Cross check the actual hw state with our own modeset state tracking (and it's
* internal consistency). */
static void intel_connector_check_state(struct intel_connector *connector)
{
if (connector->get_hw_state(connector)) {
struct intel_encoder *encoder = connector->encoder;
struct drm_crtc *crtc;
bool encoder_enabled;
enum pipe pipe;
struct drm_crtc *crtc = connector->base.state->crtc;
 
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.base.id,
connector->base.name);
 
/* there is no real hw state for MST connectors */
if (connector->mst_port)
if (connector->get_hw_state(connector)) {
struct intel_encoder *encoder = connector->encoder;
struct drm_connector_state *conn_state = connector->base.state;
 
I915_STATE_WARN(!crtc,
"connector enabled without attached crtc\n");
 
if (!crtc)
return;
 
WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
"wrong connector dpms state\n");
WARN(connector->base.encoder != &encoder->base,
"active connector not linked to encoder\n");
I915_STATE_WARN(!crtc->state->active,
"connector is active, but attached crtc isn't\n");
 
if (encoder) {
WARN(!encoder->connectors_active,
"encoder->connectors_active not set\n");
 
encoder_enabled = encoder->get_hw_state(encoder, &pipe);
WARN(!encoder_enabled, "encoder not enabled\n");
if (WARN_ON(!encoder->base.crtc))
if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
return;
 
crtc = encoder->base.crtc;
I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
"atomic encoder doesn't match attached encoder\n");
 
WARN(!crtc->enabled, "crtc not enabled\n");
WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
WARN(pipe != to_intel_crtc(crtc)->pipe,
"encoder active on the wrong pipe\n");
I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
"attached encoder crtc differs from connector crtc\n");
} else {
I915_STATE_WARN(crtc && crtc->state->active,
"attached crtc is active, but connector isn't\n");
I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
"best encoder set without crtc!\n");
}
}
}
 
/* Even simpler default implementation, if there's really no special case to
* consider. */
void intel_connector_dpms(struct drm_connector *connector, int mode)
int intel_connector_init(struct intel_connector *connector)
{
/* All the simple cases only support two dpms states. */
if (mode != DRM_MODE_DPMS_ON)
mode = DRM_MODE_DPMS_OFF;
struct drm_connector_state *connector_state;
 
if (mode == connector->dpms)
return;
connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
if (!connector_state)
return -ENOMEM;
 
connector->dpms = mode;
connector->base.state = connector_state;
return 0;
}
 
/* Only need to change hw state when actually enabled */
if (connector->encoder)
intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
struct intel_connector *intel_connector_alloc(void)
{
struct intel_connector *connector;
 
intel_modeset_check_state(connector->dev);
connector = kzalloc(sizeof *connector, GFP_KERNEL);
if (!connector)
return NULL;
 
if (intel_connector_init(connector) < 0) {
kfree(connector);
return NULL;
}
 
return connector;
}
 
/* Simple connector->get_hw_state implementation for encoders that support only
* one connector and no cloning and hence the encoder state determines the state
* of the connector. */
5416,19 → 6461,27
return encoder->get_hw_state(encoder, &pipe);
}
 
static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
struct intel_crtc_config *pipe_config)
static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *pipe_B_crtc =
to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
if (crtc_state->base.enable && crtc_state->has_pch_encoder)
return crtc_state->fdi_lanes;
 
return 0;
}
 
static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
struct intel_crtc_state *pipe_config)
{
struct drm_atomic_state *state = pipe_config->base.state;
struct intel_crtc *other_crtc;
struct intel_crtc_state *other_crtc_state;
 
DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
pipe_name(pipe), pipe_config->fdi_lanes);
if (pipe_config->fdi_lanes > 4) {
DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return false;
return -EINVAL;
}
 
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5435,40 → 6488,53
if (pipe_config->fdi_lanes > 2) {
DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
pipe_config->fdi_lanes);
return false;
return -EINVAL;
} else {
return true;
return 0;
}
}
 
if (INTEL_INFO(dev)->num_pipes == 2)
return true;
return 0;
 
/* Ivybridge 3 pipe is really complicated */
switch (pipe) {
case PIPE_A:
return true;
return 0;
case PIPE_B:
if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
pipe_config->fdi_lanes > 2) {
if (pipe_config->fdi_lanes <= 2)
return 0;
 
other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
other_crtc_state =
intel_atomic_get_crtc_state(state, other_crtc);
if (IS_ERR(other_crtc_state))
return PTR_ERR(other_crtc_state);
 
if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return false;
return -EINVAL;
}
return true;
return 0;
case PIPE_C:
if (!pipe_has_enabled_pch(pipe_B_crtc) ||
pipe_B_crtc->config.fdi_lanes <= 2) {
if (pipe_config->fdi_lanes > 2) {
DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
pipe_name(pipe), pipe_config->fdi_lanes);
return false;
return -EINVAL;
}
} else {
 
other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
other_crtc_state =
intel_atomic_get_crtc_state(state, other_crtc);
if (IS_ERR(other_crtc_state))
return PTR_ERR(other_crtc_state);
 
if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
return false;
return -EINVAL;
}
return true;
return 0;
default:
BUG();
}
5476,12 → 6542,12
 
#define RETRY 1
static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
int lane, link_bw, fdi_dotclock;
bool setup_ok, needs_recompute = false;
const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
int lane, link_bw, fdi_dotclock, ret;
bool needs_recompute = false;
 
retry:
/* FDI is a binary signal running at ~2.7GHz, encoding
5503,9 → 6569,9
intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
link_bw, &pipe_config->fdi_m_n);
 
setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
intel_crtc->pipe, pipe_config);
if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
pipe_config->pipe_bpp -= 2*3;
DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
pipe_config->pipe_bpp);
5518,28 → 6584,51
if (needs_recompute)
return RETRY;
 
return setup_ok ? 0 : -EINVAL;
return ret;
}
 
static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
struct intel_crtc_state *pipe_config)
{
if (pipe_config->pipe_bpp > 24)
return false;
 
/* HSW can handle pixel rate up to cdclk? */
if (IS_HASWELL(dev_priv->dev))
return true;
 
/*
* We compare against max which means we must take
* the increased cdclk requirement into account when
* calculating the new cdclk.
*
* Should measure whether using a lower cdclk w/o IPS
*/
return ilk_pipe_pixel_rate(pipe_config) <=
dev_priv->max_cdclk_freq * 95 / 100;
}
 
static void hsw_compute_ips_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
 
pipe_config->ips_enabled = i915.enable_ips &&
hsw_crtc_supports_ips(crtc) &&
pipe_config->pipe_bpp <= 24;
pipe_config_supports_ips(dev_priv, pipe_config);
}
 
static int intel_crtc_compute_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
 
/* FIXME should check pixel clock limits on all platforms */
if (INTEL_INFO(dev)->gen < 4) {
int clock_limit =
dev_priv->display.get_display_clock_speed(dev);
int clock_limit = dev_priv->max_cdclk_freq;
 
/*
* Enable pixel doubling when the dot clock
5564,7 → 6653,7
* - LVDS dual channel mode
* - Double wide pipe
*/
if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
pipe_config->pipe_src_w &= ~1;
 
5572,17 → 6661,9
* WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
*/
if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
adjusted_mode->hsync_start == adjusted_mode->hdisplay)
adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
return -EINVAL;
 
if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
} else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
/* only a 8bpc pipe, with 6bpc dither through the panel fitter
* for lvds. */
pipe_config->pipe_bpp = 8*3;
}
 
if (HAS_IPS(dev))
hsw_compute_ips_config(crtc, pipe_config);
 
5592,32 → 6673,130
return 0;
}
 
static int valleyview_get_display_clock_speed(struct drm_device *dev)
static int skylake_get_display_clock_speed(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val;
int divider;
struct drm_i915_private *dev_priv = to_i915(dev);
uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
uint32_t cdctl = I915_READ(CDCLK_CTL);
uint32_t linkrate;
 
/* FIXME: Punit isn't quite ready yet */
if (IS_CHERRYVIEW(dev))
return 400000;
if (!(lcpll1 & LCPLL_PLL_ENABLE))
return 24000; /* 24MHz is the cd freq with NSSC ref */
 
if (dev_priv->hpll_freq == 0)
dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
return 540000;
 
mutex_lock(&dev_priv->dpio_lock);
val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
mutex_unlock(&dev_priv->dpio_lock);
linkrate = (I915_READ(DPLL_CTRL1) &
DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
 
divider = val & DISPLAY_FREQUENCY_VALUES;
if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
linkrate == DPLL_CTRL1_LINK_RATE_1080) {
/* vco 8640 */
switch (cdctl & CDCLK_FREQ_SEL_MASK) {
case CDCLK_FREQ_450_432:
return 432000;
case CDCLK_FREQ_337_308:
return 308570;
case CDCLK_FREQ_675_617:
return 617140;
default:
WARN(1, "Unknown cd freq selection\n");
}
} else {
/* vco 8100 */
switch (cdctl & CDCLK_FREQ_SEL_MASK) {
case CDCLK_FREQ_450_432:
return 450000;
case CDCLK_FREQ_337_308:
return 337500;
case CDCLK_FREQ_675_617:
return 675000;
default:
WARN(1, "Unknown cd freq selection\n");
}
}
 
WARN((val & DISPLAY_FREQUENCY_STATUS) !=
(divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
"cdclk change in progress\n");
/* error case, do as if DPLL0 isn't enabled */
return 24000;
}
 
return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
static int broxton_get_display_clock_speed(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = to_i915(dev);
uint32_t cdctl = I915_READ(CDCLK_CTL);
uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
int cdclk;
 
if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
return 19200;
 
cdclk = 19200 * pll_ratio / 2;
 
switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
case BXT_CDCLK_CD2X_DIV_SEL_1:
return cdclk; /* 576MHz or 624MHz */
case BXT_CDCLK_CD2X_DIV_SEL_1_5:
return cdclk * 2 / 3; /* 384MHz */
case BXT_CDCLK_CD2X_DIV_SEL_2:
return cdclk / 2; /* 288MHz */
case BXT_CDCLK_CD2X_DIV_SEL_4:
return cdclk / 4; /* 144MHz */
}
 
/* error case, do as if DE PLL isn't enabled */
return 19200;
}
 
static int broadwell_get_display_clock_speed(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t lcpll = I915_READ(LCPLL_CTL);
uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
 
if (lcpll & LCPLL_CD_SOURCE_FCLK)
return 800000;
else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
return 450000;
else if (freq == LCPLL_CLK_FREQ_450)
return 450000;
else if (freq == LCPLL_CLK_FREQ_54O_BDW)
return 540000;
else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
return 337500;
else
return 675000;
}
 
static int haswell_get_display_clock_speed(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t lcpll = I915_READ(LCPLL_CTL);
uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
 
if (lcpll & LCPLL_CD_SOURCE_FCLK)
return 800000;
else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
return 450000;
else if (freq == LCPLL_CLK_FREQ_450)
return 450000;
else if (IS_HSW_ULT(dev))
return 337500;
else
return 540000;
}
 
static int valleyview_get_display_clock_speed(struct drm_device *dev)
{
return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
CCK_DISPLAY_CLOCK_CONTROL);
}
 
static int ilk_get_display_clock_speed(struct drm_device *dev)
{
return 450000;
}
 
static int i945_get_display_clock_speed(struct drm_device *dev)
{
return 400000;
5625,7 → 6804,7
 
static int i915_get_display_clock_speed(struct drm_device *dev)
{
return 333000;
return 333333;
}
 
static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5641,19 → 6820,19
 
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_267_MHZ_PNV:
return 267000;
return 266667;
case GC_DISPLAY_CLOCK_333_MHZ_PNV:
return 333000;
return 333333;
case GC_DISPLAY_CLOCK_444_MHZ_PNV:
return 444000;
return 444444;
case GC_DISPLAY_CLOCK_200_MHZ_PNV:
return 200000;
default:
DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
case GC_DISPLAY_CLOCK_133_MHZ_PNV:
return 133000;
return 133333;
case GC_DISPLAY_CLOCK_167_MHZ_PNV:
return 167000;
return 166667;
}
}
 
5664,11 → 6843,11
pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
 
if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
return 133000;
return 133333;
else {
switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
case GC_DISPLAY_CLOCK_333_MHZ:
return 333000;
return 333333;
default:
case GC_DISPLAY_CLOCK_190_200_MHZ:
return 190000;
5678,23 → 6857,40
 
static int i865_get_display_clock_speed(struct drm_device *dev)
{
return 266000;
return 266667;
}
 
static int i855_get_display_clock_speed(struct drm_device *dev)
static int i85x_get_display_clock_speed(struct drm_device *dev)
{
u16 hpllcc = 0;
 
/*
* 852GM/852GMV only supports 133 MHz and the HPLLCC
* encoding is different :(
* FIXME is this the right way to detect 852GM/852GMV?
*/
if (dev->pdev->revision == 0x1)
return 133333;
 
// pci_bus_read_config_word(dev->pdev->bus,
// PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
 
/* Assume that the hardware is in the high speed state. This
* should be the default.
*/
switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
case GC_CLOCK_133_200:
case GC_CLOCK_133_200_2:
case GC_CLOCK_100_200:
return 200000;
case GC_CLOCK_166_250:
return 250000;
case GC_CLOCK_100_133:
return 133000;
return 133333;
case GC_CLOCK_133_266:
case GC_CLOCK_133_266_2:
case GC_CLOCK_166_266:
return 266667;
}
 
/* Shouldn't happen */
5703,9 → 6899,178
 
static int i830_get_display_clock_speed(struct drm_device *dev)
{
return 133000;
return 133333;
}
 
static unsigned int intel_hpll_vco(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
static const unsigned int blb_vco[8] = {
[0] = 3200000,
[1] = 4000000,
[2] = 5333333,
[3] = 4800000,
[4] = 6400000,
};
static const unsigned int pnv_vco[8] = {
[0] = 3200000,
[1] = 4000000,
[2] = 5333333,
[3] = 4800000,
[4] = 2666667,
};
static const unsigned int cl_vco[8] = {
[0] = 3200000,
[1] = 4000000,
[2] = 5333333,
[3] = 6400000,
[4] = 3333333,
[5] = 3566667,
[6] = 4266667,
};
static const unsigned int elk_vco[8] = {
[0] = 3200000,
[1] = 4000000,
[2] = 5333333,
[3] = 4800000,
};
static const unsigned int ctg_vco[8] = {
[0] = 3200000,
[1] = 4000000,
[2] = 5333333,
[3] = 6400000,
[4] = 2666667,
[5] = 4266667,
};
const unsigned int *vco_table;
unsigned int vco;
uint8_t tmp = 0;
 
/* FIXME other chipsets? */
if (IS_GM45(dev))
vco_table = ctg_vco;
else if (IS_G4X(dev))
vco_table = elk_vco;
else if (IS_CRESTLINE(dev))
vco_table = cl_vco;
else if (IS_PINEVIEW(dev))
vco_table = pnv_vco;
else if (IS_G33(dev))
vco_table = blb_vco;
else
return 0;
 
tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
 
vco = vco_table[tmp & 0x7];
if (vco == 0)
DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
else
DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
 
return vco;
}
 
static int gm45_get_display_clock_speed(struct drm_device *dev)
{
unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
uint16_t tmp = 0;
 
pci_read_config_word(dev->pdev, GCFGC, &tmp);
 
cdclk_sel = (tmp >> 12) & 0x1;
 
switch (vco) {
case 2666667:
case 4000000:
case 5333333:
return cdclk_sel ? 333333 : 222222;
case 3200000:
return cdclk_sel ? 320000 : 228571;
default:
DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
return 222222;
}
}
 
static int i965gm_get_display_clock_speed(struct drm_device *dev)
{
static const uint8_t div_3200[] = { 16, 10, 8 };
static const uint8_t div_4000[] = { 20, 12, 10 };
static const uint8_t div_5333[] = { 24, 16, 14 };
const uint8_t *div_table;
unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
uint16_t tmp = 0;
 
pci_read_config_word(dev->pdev, GCFGC, &tmp);
 
cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
 
if (cdclk_sel >= ARRAY_SIZE(div_3200))
goto fail;
 
switch (vco) {
case 3200000:
div_table = div_3200;
break;
case 4000000:
div_table = div_4000;
break;
case 5333333:
div_table = div_5333;
break;
default:
goto fail;
}
 
return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
 
fail:
DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
return 200000;
}
 
static int g33_get_display_clock_speed(struct drm_device *dev)
{
static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
const uint8_t *div_table;
unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
uint16_t tmp = 0;
 
pci_read_config_word(dev->pdev, GCFGC, &tmp);
 
cdclk_sel = (tmp >> 4) & 0x7;
 
if (cdclk_sel >= ARRAY_SIZE(div_3200))
goto fail;
 
switch (vco) {
case 3200000:
div_table = div_3200;
break;
case 4000000:
div_table = div_4000;
break;
case 4800000:
div_table = div_4800;
break;
case 5333333:
div_table = div_5333;
break;
default:
goto fail;
}
 
return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
 
fail:
DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
return 190476;
}
 
static void
intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
{
5747,15 → 7112,18
&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
}
 
static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
int num_connectors)
{
struct drm_device *dev = crtc->base.dev;
struct drm_device *dev = crtc_state->base.crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int refclk;
 
if (IS_VALLEYVIEW(dev)) {
WARN_ON(!crtc_state->base.state);
 
if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
refclk = 100000;
} else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
} else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
refclk = dev_priv->vbt.lvds_ssc_freq;
DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5779,6 → 7147,7
}
 
static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
intel_clock_t *reduced_clock)
{
struct drm_device *dev = crtc->base.dev;
5785,24 → 7154,24
u32 fp, fp2 = 0;
 
if (IS_PINEVIEW(dev)) {
fp = pnv_dpll_compute_fp(&crtc->new_config->dpll);
fp = pnv_dpll_compute_fp(&crtc_state->dpll);
if (reduced_clock)
fp2 = pnv_dpll_compute_fp(reduced_clock);
} else {
fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
if (reduced_clock)
fp2 = i9xx_dpll_compute_fp(reduced_clock);
}
 
crtc->new_config->dpll_hw_state.fp0 = fp;
crtc_state->dpll_hw_state.fp0 = fp;
 
crtc->lowfreq_avail = false;
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
reduced_clock && i915.powersave) {
crtc->new_config->dpll_hw_state.fp1 = fp2;
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
reduced_clock) {
crtc_state->dpll_hw_state.fp1 = fp2;
crtc->lowfreq_avail = true;
} else {
crtc->new_config->dpll_hw_state.fp1 = fp;
crtc_state->dpll_hw_state.fp1 = fp;
}
}
 
5855,7 → 7224,7
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = crtc->pipe;
enum transcoder transcoder = crtc->config.cpu_transcoder;
enum transcoder transcoder = crtc->config->cpu_transcoder;
 
if (INTEL_INFO(dev)->gen >= 5) {
I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5866,8 → 7235,8
* for gen < 8) and if DRRS is supported (to make sure the
* registers are not unnecessarily accessed).
*/
if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
crtc->config.has_drrs) {
if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
crtc->config->has_drrs) {
I915_WRITE(PIPE_DATA_M2(transcoder),
TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5882,17 → 7251,33
}
}
 
void intel_dp_set_m_n(struct intel_crtc *crtc)
void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
{
if (crtc->config.has_pch_encoder)
intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
 
if (m_n == M1_N1) {
dp_m_n = &crtc->config->dp_m_n;
dp_m2_n2 = &crtc->config->dp_m2_n2;
} else if (m_n == M2_N2) {
 
/*
* M2_N2 registers are not supported. Hence m2_n2 divider value
* needs to be programmed into M1_N1.
*/
dp_m_n = &crtc->config->dp_m2_n2;
} else {
DRM_ERROR("Unsupported divider value\n");
return;
}
 
if (crtc->config->has_pch_encoder)
intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
else
intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
&crtc->config.dp_m2_n2);
intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
}
 
static void vlv_update_pll(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
static void vlv_compute_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
u32 dpll, dpll_md;
 
5901,8 → 7286,8
* clock for pipe B, since VGA hotplug / manual detection depends
* on it.
*/
dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
/* We should never disable this, set it here for state tracking */
if (crtc->pipe == PIPE_B)
dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5915,7 → 7300,7
}
 
static void vlv_prepare_pll(struct intel_crtc *crtc,
const struct intel_crtc_config *pipe_config)
const struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
5924,7 → 7309,7
u32 bestn, bestm1, bestm2, bestp1, bestp2;
u32 coreclk, reg_val;
 
mutex_lock(&dev_priv->dpio_lock);
mutex_lock(&dev_priv->sb_lock);
 
bestn = pipe_config->dpll.n;
bestm1 = pipe_config->dpll.m1;
5976,7 → 7361,7
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
0x00d0000f);
 
if (crtc->config.has_dp_encoder) {
if (pipe_config->has_dp_encoder) {
/* Use SSC source */
if (pipe == PIPE_A)
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6002,14 → 7387,14
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
 
vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
mutex_unlock(&dev_priv->dpio_lock);
mutex_unlock(&dev_priv->sb_lock);
}
 
static void chv_update_pll(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
static void chv_compute_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
DPLL_VCO_ENABLE;
if (crtc->pipe != PIPE_A)
pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6019,7 → 7404,7
}
 
static void chv_prepare_pll(struct intel_crtc *crtc,
const struct intel_crtc_config *pipe_config)
const struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
6026,9 → 7411,10
int pipe = crtc->pipe;
int dpll_reg = DPLL(crtc->pipe);
enum dpio_channel port = vlv_pipe_to_channel(pipe);
u32 loopfilter, intcoeff;
u32 loopfilter, tribuf_calcntr;
u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
int refclk;
u32 dpio_val;
int vco;
 
bestn = pipe_config->dpll.n;
bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6036,6 → 7422,9
bestm2 = pipe_config->dpll.m2 >> 22;
bestp1 = pipe_config->dpll.p1;
bestp2 = pipe_config->dpll.p2;
vco = pipe_config->dpll.vco;
dpio_val = 0;
loopfilter = 0;
 
/*
* Enable Refclk and SSC
6043,7 → 7432,7
I915_WRITE(dpll_reg,
pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
 
mutex_lock(&dev_priv->dpio_lock);
mutex_lock(&dev_priv->sb_lock);
 
/* p1 and p2 divider */
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6064,29 → 7453,58
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
 
/* M2 fraction division enable */
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
DPIO_CHV_FRAC_DIV_EN |
(2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
if (bestm2_frac)
dpio_val |= DPIO_CHV_FRAC_DIV_EN;
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
 
/* Program digital lock detect threshold */
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
if (!bestm2_frac)
dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
 
/* Loop filter */
refclk = i9xx_get_refclk(crtc, 0);
loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
2 << DPIO_CHV_GAIN_CTRL_SHIFT;
if (refclk == 100000)
intcoeff = 11;
else if (refclk == 38400)
intcoeff = 10;
else
intcoeff = 9;
loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
if (vco == 5400000) {
loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0x9;
} else if (vco <= 6200000) {
loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0x9;
} else if (vco <= 6480000) {
loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0x8;
} else {
/* Not supported. Apply the same limits as in the max case */
loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
tribuf_calcntr = 0;
}
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
 
dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
 
/* AFC Recal */
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
DPIO_AFC_RECAL);
 
mutex_unlock(&dev_priv->dpio_lock);
mutex_unlock(&dev_priv->sb_lock);
}
 
/**
6104,17 → 7522,18
{
struct intel_crtc *crtc =
to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
struct intel_crtc_config pipe_config = {
struct intel_crtc_state pipe_config = {
.base.crtc = &crtc->base,
.pixel_multiplier = 1,
.dpll = *dpll,
};
 
if (IS_CHERRYVIEW(dev)) {
chv_update_pll(crtc, &pipe_config);
chv_compute_dpll(crtc, &pipe_config);
chv_prepare_pll(crtc, &pipe_config);
chv_enable_pll(crtc, &pipe_config);
} else {
vlv_update_pll(crtc, &pipe_config);
vlv_compute_dpll(crtc, &pipe_config);
vlv_prepare_pll(crtc, &pipe_config);
vlv_enable_pll(crtc, &pipe_config);
}
6136,7 → 7555,8
vlv_disable_pll(to_i915(dev), pipe);
}
 
static void i9xx_update_pll(struct intel_crtc *crtc,
static void i9xx_compute_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
intel_clock_t *reduced_clock,
int num_connectors)
{
6144,22 → 7564,22
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpll;
bool is_sdvo;
struct dpll *clock = &crtc->new_config->dpll;
struct dpll *clock = &crtc_state->dpll;
 
i9xx_update_pll_dividers(crtc, reduced_clock);
i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
 
is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
 
dpll = DPLL_VGA_MODE_DIS;
 
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
 
if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
dpll |= (crtc->new_config->pixel_multiplier - 1)
dpll |= (crtc_state->pixel_multiplier - 1)
<< SDVO_MULTIPLIER_SHIFT_HIRES;
}
 
6166,7 → 7586,7
if (is_sdvo)
dpll |= DPLL_SDVO_HIGH_SPEED;
 
if (crtc->new_config->has_dp_encoder)
if (crtc_state->has_dp_encoder)
dpll |= DPLL_SDVO_HIGH_SPEED;
 
/* compute bitmask from p1 value */
6194,9 → 7614,9
if (INTEL_INFO(dev)->gen >= 4)
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
 
if (crtc->new_config->sdvo_tv_clock)
if (crtc_state->sdvo_tv_clock)
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
6203,16 → 7623,17
dpll |= PLL_REF_INPUT_DREFCLK;
 
dpll |= DPLL_VCO_ENABLE;
crtc->new_config->dpll_hw_state.dpll = dpll;
crtc_state->dpll_hw_state.dpll = dpll;
 
if (INTEL_INFO(dev)->gen >= 4) {
u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
u32 dpll_md = (crtc_state->pixel_multiplier - 1)
<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
crtc_state->dpll_hw_state.dpll_md = dpll_md;
}
}
 
static void i8xx_update_pll(struct intel_crtc *crtc,
static void i8xx_compute_dpll(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
intel_clock_t *reduced_clock,
int num_connectors)
{
6219,13 → 7640,13
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpll;
struct dpll *clock = &crtc->new_config->dpll;
struct dpll *clock = &crtc_state->dpll;
 
i9xx_update_pll_dividers(crtc, reduced_clock);
i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
 
dpll = DPLL_VGA_MODE_DIS;
 
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
} else {
if (clock->p1 == 2)
6236,10 → 7657,10
dpll |= PLL_P2_DIVIDE_BY_4;
}
 
if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
dpll |= DPLL_DVO_2X_MODE;
 
if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
6246,7 → 7667,7
dpll |= PLL_REF_INPUT_DREFCLK;
 
dpll |= DPLL_VCO_ENABLE;
crtc->new_config->dpll_hw_state.dpll = dpll;
crtc_state->dpll_hw_state.dpll = dpll;
}
 
static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6254,9 → 7675,8
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe = intel_crtc->pipe;
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
struct drm_display_mode *adjusted_mode =
&intel_crtc->config.adjusted_mode;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
uint32_t crtc_vtotal, crtc_vblank_end;
int vsyncshift = 0;
 
6314,12 → 7734,12
* always be the user's requested size.
*/
I915_WRITE(PIPESRC(pipe),
((intel_crtc->config.pipe_src_w - 1) << 16) |
(intel_crtc->config.pipe_src_h - 1));
((intel_crtc->config->pipe_src_w - 1) << 16) |
(intel_crtc->config->pipe_src_h - 1));
}
 
static void intel_get_pipe_timings(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
6327,29 → 7747,29
uint32_t tmp;
 
tmp = I915_READ(HTOTAL(cpu_transcoder));
pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(HBLANK(cpu_transcoder));
pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(HSYNC(cpu_transcoder));
pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
 
tmp = I915_READ(VTOTAL(cpu_transcoder));
pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(VBLANK(cpu_transcoder));
pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
tmp = I915_READ(VSYNC(cpu_transcoder));
pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
 
if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
pipe_config->adjusted_mode.crtc_vtotal += 1;
pipe_config->adjusted_mode.crtc_vblank_end += 1;
pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
pipe_config->base.adjusted_mode.crtc_vtotal += 1;
pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
}
 
tmp = I915_READ(PIPESRC(crtc->pipe));
6356,27 → 7776,32
pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
 
pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
}
 
void intel_mode_from_pipe_config(struct drm_display_mode *mode,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
 
mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
 
mode->flags = pipe_config->adjusted_mode.flags;
mode->flags = pipe_config->base.adjusted_mode.flags;
mode->type = DRM_MODE_TYPE_DRIVER;
 
mode->clock = pipe_config->adjusted_mode.crtc_clock;
mode->flags |= pipe_config->adjusted_mode.flags;
mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
mode->flags |= pipe_config->base.adjusted_mode.flags;
 
mode->hsync = drm_mode_hsync(mode);
mode->vrefresh = drm_mode_vrefresh(mode);
drm_mode_set_name(mode);
}
 
static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6391,17 → 7816,17
(intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
 
if (intel_crtc->config.double_wide)
if (intel_crtc->config->double_wide)
pipeconf |= PIPECONF_DOUBLE_WIDE;
 
/* only g4x and later have fancy bpc/dither controls */
if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
/* Bspec claims that we can't use dithering for 30bpp pipes. */
if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
pipeconf |= PIPECONF_DITHER_EN |
PIPECONF_DITHER_TYPE_SP;
 
switch (intel_crtc->config.pipe_bpp) {
switch (intel_crtc->config->pipe_bpp) {
case 18:
pipeconf |= PIPECONF_6BPC;
break;
6426,7 → 7851,7
}
}
 
if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
if (INTEL_INFO(dev)->gen < 4 ||
intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6435,7 → 7860,7
} else
pipeconf |= PIPECONF_PROGRESSIVE;
 
if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
 
I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6442,25 → 7867,32
POSTING_READ(PIPECONF(intel_crtc->pipe));
}
 
static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int refclk, num_connectors = 0;
intel_clock_t clock, reduced_clock;
bool ok, has_reduced_clock = false;
bool is_lvds = false, is_dsi = false;
intel_clock_t clock;
bool ok;
bool is_dsi = false;
struct intel_encoder *encoder;
const intel_limit_t *limit;
struct drm_atomic_state *state = crtc_state->base.state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int i;
 
for_each_intel_encoder(dev, encoder) {
if (encoder->new_crtc != crtc)
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
 
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != &crtc->base)
continue;
 
encoder = to_intel_encoder(connector_state->best_encoder);
 
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_DSI:
is_dsi = true;
break;
6474,8 → 7906,8
if (is_dsi)
return 0;
 
if (!crtc->new_config->clock_set) {
refclk = i9xx_get_refclk(crtc, num_connectors);
if (!crtc_state->clock_set) {
refclk = i9xx_get_refclk(crtc_state, num_connectors);
 
/*
* Returns a set of divisors for the desired target clock with
6483,9 → 7915,9
* the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
* 2) / p1 / p2.
*/
limit = intel_limit(crtc, refclk);
ok = dev_priv->display.find_dpll(limit, crtc,
crtc->new_config->port_clock,
limit = intel_limit(crtc_state, refclk);
ok = dev_priv->display.find_dpll(limit, crtc_state,
crtc_state->port_clock,
refclk, NULL, &clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
6492,38 → 7924,23
return -EINVAL;
}
 
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target
* clock. If the clocks don't match, we can't switch
* the display clock by using the FP0/FP1. In such case
* we will disable the LVDS downclock feature.
*/
has_reduced_clock =
dev_priv->display.find_dpll(limit, crtc,
dev_priv->lvds_downclock,
refclk, &clock,
&reduced_clock);
}
/* Compat-code for transition, will disappear. */
crtc->new_config->dpll.n = clock.n;
crtc->new_config->dpll.m1 = clock.m1;
crtc->new_config->dpll.m2 = clock.m2;
crtc->new_config->dpll.p1 = clock.p1;
crtc->new_config->dpll.p2 = clock.p2;
crtc_state->dpll.n = clock.n;
crtc_state->dpll.m1 = clock.m1;
crtc_state->dpll.m2 = clock.m2;
crtc_state->dpll.p1 = clock.p1;
crtc_state->dpll.p2 = clock.p2;
}
 
if (IS_GEN2(dev)) {
i8xx_update_pll(crtc,
has_reduced_clock ? &reduced_clock : NULL,
i8xx_compute_dpll(crtc, crtc_state, NULL,
num_connectors);
} else if (IS_CHERRYVIEW(dev)) {
chv_update_pll(crtc, crtc->new_config);
chv_compute_dpll(crtc, crtc_state);
} else if (IS_VALLEYVIEW(dev)) {
vlv_update_pll(crtc, crtc->new_config);
vlv_compute_dpll(crtc, crtc_state);
} else {
i9xx_update_pll(crtc,
has_reduced_clock ? &reduced_clock : NULL,
i9xx_compute_dpll(crtc, crtc_state, NULL,
num_connectors);
}
 
6531,7 → 7948,7
}
 
static void i9xx_get_pfit_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
6561,7 → 7978,7
}
 
static void vlv_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
6574,9 → 7991,9
if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
return;
 
mutex_lock(&dev_priv->dpio_lock);
mutex_lock(&dev_priv->sb_lock);
mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
mutex_unlock(&dev_priv->dpio_lock);
mutex_unlock(&dev_priv->sb_lock);
 
clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
clock.m2 = mdiv & DPIO_M2DIV_MASK;
6584,14 → 8001,12
clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
 
vlv_clock(refclk, &clock);
 
/* clock.dot is the fast clock */
pipe_config->port_clock = clock.dot / 5;
pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
}
 
static void i9xx_get_plane_config(struct intel_crtc *crtc,
struct intel_plane_config *plane_config)
static void
i9xx_get_initial_plane_config(struct intel_crtc *crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
6598,28 → 8013,36
u32 val, base, offset;
int pipe = crtc->pipe, plane = crtc->plane;
int fourcc, pixel_format;
int aligned_height;
unsigned int aligned_height;
struct drm_framebuffer *fb;
struct intel_framebuffer *intel_fb;
 
crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
if (!crtc->base.primary->fb) {
val = I915_READ(DSPCNTR(plane));
if (!(val & DISPLAY_PLANE_ENABLE))
return;
 
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
DRM_DEBUG_KMS("failed to alloc fb\n");
return;
}
 
val = I915_READ(DSPCNTR(plane));
fb = &intel_fb->base;
 
if (INTEL_INFO(dev)->gen >= 4)
if (val & DISPPLANE_TILED)
plane_config->tiled = true;
if (INTEL_INFO(dev)->gen >= 4) {
if (val & DISPPLANE_TILED) {
plane_config->tiling = I915_TILING_X;
fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
}
}
 
pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
fourcc = intel_format_to_fourcc(pixel_format);
crtc->base.primary->fb->pixel_format = fourcc;
crtc->base.primary->fb->bits_per_pixel =
drm_format_plane_cpp(fourcc, 0) * 8;
fourcc = i9xx_format_to_fourcc(pixel_format);
fb->pixel_format = fourcc;
fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
 
if (INTEL_INFO(dev)->gen >= 4) {
if (plane_config->tiled)
if (plane_config->tiling)
offset = I915_READ(DSPTILEOFF(plane));
else
offset = I915_READ(DSPLINOFF(plane));
6630,29 → 8053,30
plane_config->base = base;
 
val = I915_READ(PIPESRC(pipe));
crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
fb->width = ((val >> 16) & 0xfff) + 1;
fb->height = ((val >> 0) & 0xfff) + 1;
 
val = I915_READ(DSPSTRIDE(pipe));
crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
// fb->pitches[0] = val & 0xffffffc0;
fb->pitches[0] = 2560*4;
 
aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
plane_config->tiled);
aligned_height = intel_fb_align_height(dev, fb->height,
fb->pixel_format,
fb->modifier[0]);
 
plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
aligned_height);
// plane_config->size = fb->pitches[0] * aligned_height;
plane_config->size = i915_fbsize*1024*1024;
 
DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
pipe, plane, crtc->base.primary->fb->width,
crtc->base.primary->fb->height,
crtc->base.primary->fb->bits_per_pixel, base,
crtc->base.primary->fb->pitches[0],
DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
pipe_name(pipe), plane, fb->width, fb->height,
fb->bits_per_pixel, base, fb->pitches[0],
plane_config->size);
 
plane_config->fb = intel_fb;
}
 
static void chv_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
6659,30 → 8083,30
int pipe = pipe_config->cpu_transcoder;
enum dpio_channel port = vlv_pipe_to_channel(pipe);
intel_clock_t clock;
u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
int refclk = 100000;
 
mutex_lock(&dev_priv->dpio_lock);
mutex_lock(&dev_priv->sb_lock);
cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
mutex_unlock(&dev_priv->dpio_lock);
pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
mutex_unlock(&dev_priv->sb_lock);
 
clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
clock.m2 = (pll_dw0 & 0xff) << 22;
if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
clock.m2 |= pll_dw2 & 0x3fffff;
clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
 
chv_clock(refclk, &clock);
 
/* clock.dot is the fast clock */
pipe_config->port_clock = clock.dot / 5;
pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
}
 
static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
6768,6 → 8192,14
else
i9xx_crtc_clock_get(crtc, pipe_config);
 
/*
* Normally the dotclock is filled in by the encoder .get_config()
* but in case the pipe is enabled w/o any ports we need a sane
* default.
*/
pipe_config->base.adjusted_mode.crtc_clock =
pipe_config->port_clock / pipe_config->pixel_multiplier;
 
return true;
}
 
7029,11 → 8461,10
 
if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
with_spread = true;
if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
with_fdi, "LP PCH doesn't have FDI\n"))
if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
with_fdi = false;
 
mutex_lock(&dev_priv->dpio_lock);
mutex_lock(&dev_priv->sb_lock);
 
tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
tmp &= ~SBI_SSCCTL_DISABLE;
7053,13 → 8484,12
}
}
 
reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
SBI_GEN0 : SBI_DBUFF0;
reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
 
mutex_unlock(&dev_priv->dpio_lock);
mutex_unlock(&dev_priv->sb_lock);
}
 
/* Sequence to disable CLKOUT_DP */
7068,10 → 8498,9
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t reg, tmp;
 
mutex_lock(&dev_priv->dpio_lock);
mutex_lock(&dev_priv->sb_lock);
 
reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
SBI_GEN0 : SBI_DBUFF0;
reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7087,7 → 8516,7
intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
}
 
mutex_unlock(&dev_priv->dpio_lock);
mutex_unlock(&dev_priv->sb_lock);
}
 
static void lpt_init_pch_refclk(struct drm_device *dev)
7122,18 → 8551,23
lpt_init_pch_refclk(dev);
}
 
static int ironlake_get_refclk(struct drm_crtc *crtc)
static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->dev;
struct drm_device *dev = crtc_state->base.crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_atomic_state *state = crtc_state->base.state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
struct intel_encoder *encoder;
int num_connectors = 0;
int num_connectors = 0, i;
bool is_lvds = false;
 
for_each_intel_encoder(dev, encoder) {
if (encoder->new_crtc != to_intel_crtc(crtc))
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc_state->base.crtc)
continue;
 
encoder = to_intel_encoder(connector_state->best_encoder);
 
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
7162,7 → 8596,7
 
val = 0;
 
switch (intel_crtc->config.pipe_bpp) {
switch (intel_crtc->config->pipe_bpp) {
case 18:
val |= PIPECONF_6BPC;
break;
7180,15 → 8614,15
BUG();
}
 
if (intel_crtc->config.dither)
if (intel_crtc->config->dither)
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
 
if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= PIPECONF_INTERLACED_ILK;
else
val |= PIPECONF_PROGRESSIVE;
 
if (intel_crtc->config.limited_color_range)
if (intel_crtc->config->limited_color_range)
val |= PIPECONF_COLOR_RANGE_SELECT;
 
I915_WRITE(PIPECONF(pipe), val);
7217,7 → 8651,7
* consideration.
*/
 
if (intel_crtc->config.limited_color_range)
if (intel_crtc->config->limited_color_range)
coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
 
/*
7241,7 → 8675,7
if (INTEL_INFO(dev)->gen > 6) {
uint16_t postoff = 0;
 
if (intel_crtc->config.limited_color_range)
if (intel_crtc->config->limited_color_range)
postoff = (16 * (1 << 12) / 255) & 0x1fff;
 
I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7252,7 → 8686,7
} else {
uint32_t mode = CSC_MODE_YUV_TO_RGB;
 
if (intel_crtc->config.limited_color_range)
if (intel_crtc->config->limited_color_range)
mode |= CSC_BLACK_SCREEN_OFFSET;
 
I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7265,15 → 8699,15
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
uint32_t val;
 
val = 0;
 
if (IS_HASWELL(dev) && intel_crtc->config.dither)
if (IS_HASWELL(dev) && intel_crtc->config->dither)
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
 
if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
val |= PIPECONF_INTERLACED_ILK;
else
val |= PIPECONF_PROGRESSIVE;
7287,7 → 8721,7
if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
val = 0;
 
switch (intel_crtc->config.pipe_bpp) {
switch (intel_crtc->config->pipe_bpp) {
case 18:
val |= PIPEMISC_DITHER_6_BPC;
break;
7305,7 → 8739,7
BUG();
}
 
if (intel_crtc->config.dither)
if (intel_crtc->config->dither)
val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
 
I915_WRITE(PIPEMISC(pipe), val);
7313,6 → 8747,7
}
 
static bool ironlake_compute_clocks(struct drm_crtc *crtc,
struct intel_crtc_state *crtc_state,
intel_clock_t *clock,
bool *has_reduced_clock,
intel_clock_t *reduced_clock)
7319,41 → 8754,24
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int refclk;
const intel_limit_t *limit;
bool ret, is_lvds = false;
bool ret;
 
is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
refclk = ironlake_get_refclk(crtc_state);
 
refclk = ironlake_get_refclk(crtc);
 
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(intel_crtc, refclk);
ret = dev_priv->display.find_dpll(limit, intel_crtc,
intel_crtc->new_config->port_clock,
limit = intel_limit(crtc_state, refclk);
ret = dev_priv->display.find_dpll(limit, crtc_state,
crtc_state->port_clock,
refclk, NULL, clock);
if (!ret)
return false;
 
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target clock.
* If the clocks don't match, we can't switch the display clock
* by using the FP0/FP1. In such case we will disable the LVDS
* downclock feature.
*/
*has_reduced_clock =
dev_priv->display.find_dpll(limit, intel_crtc,
dev_priv->lvds_downclock,
refclk, clock,
reduced_clock);
}
 
return true;
}
 
7374,6 → 8792,7
}
 
static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state,
u32 *fp,
intel_clock_t *reduced_clock, u32 *fp2)
{
7380,16 → 8799,21
struct drm_crtc *crtc = &intel_crtc->base;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *intel_encoder;
struct drm_atomic_state *state = crtc_state->base.state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
struct intel_encoder *encoder;
uint32_t dpll;
int factor, num_connectors = 0;
int factor, num_connectors = 0, i;
bool is_lvds = false, is_sdvo = false;
 
for_each_intel_encoder(dev, intel_encoder) {
if (intel_encoder->new_crtc != to_intel_crtc(crtc))
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc_state->base.crtc)
continue;
 
switch (intel_encoder->type) {
encoder = to_intel_encoder(connector_state->best_encoder);
 
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
7411,10 → 8835,10
dev_priv->vbt.lvds_ssc_freq == 100000) ||
(HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
factor = 25;
} else if (intel_crtc->new_config->sdvo_tv_clock)
} else if (crtc_state->sdvo_tv_clock)
factor = 20;
 
if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
*fp |= FP_CB_TUNE;
 
if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7427,20 → 8851,20
else
dpll |= DPLLB_MODE_DAC_SERIAL;
 
dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
dpll |= (crtc_state->pixel_multiplier - 1)
<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
 
if (is_sdvo)
dpll |= DPLL_SDVO_HIGH_SPEED;
if (intel_crtc->new_config->has_dp_encoder)
if (crtc_state->has_dp_encoder)
dpll |= DPLL_SDVO_HIGH_SPEED;
 
/* compute bitmask from p1 value */
dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
/* also FPA1 */
dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
 
switch (intel_crtc->new_config->dpll.p2) {
switch (crtc_state->dpll.p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
7463,7 → 8887,8
return dpll | DPLL_VCO_ENABLE;
}
 
static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->base.dev;
intel_clock_t clock, reduced_clock;
7472,44 → 8897,47
bool is_lvds = false;
struct intel_shared_dpll *pll;
 
memset(&crtc_state->dpll_hw_state, 0,
sizeof(crtc_state->dpll_hw_state));
 
is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
 
WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
"Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
 
ok = ironlake_compute_clocks(&crtc->base, &clock,
ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
&has_reduced_clock, &reduced_clock);
if (!ok && !crtc->new_config->clock_set) {
if (!ok && !crtc_state->clock_set) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
/* Compat-code for transition, will disappear. */
if (!crtc->new_config->clock_set) {
crtc->new_config->dpll.n = clock.n;
crtc->new_config->dpll.m1 = clock.m1;
crtc->new_config->dpll.m2 = clock.m2;
crtc->new_config->dpll.p1 = clock.p1;
crtc->new_config->dpll.p2 = clock.p2;
if (!crtc_state->clock_set) {
crtc_state->dpll.n = clock.n;
crtc_state->dpll.m1 = clock.m1;
crtc_state->dpll.m2 = clock.m2;
crtc_state->dpll.p1 = clock.p1;
crtc_state->dpll.p2 = clock.p2;
}
 
/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
if (crtc->new_config->has_pch_encoder) {
fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
if (crtc_state->has_pch_encoder) {
fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
if (has_reduced_clock)
fp2 = i9xx_dpll_compute_fp(&reduced_clock);
 
dpll = ironlake_compute_dpll(crtc,
dpll = ironlake_compute_dpll(crtc, crtc_state,
&fp, &reduced_clock,
has_reduced_clock ? &fp2 : NULL);
 
crtc->new_config->dpll_hw_state.dpll = dpll;
crtc->new_config->dpll_hw_state.fp0 = fp;
crtc_state->dpll_hw_state.dpll = dpll;
crtc_state->dpll_hw_state.fp0 = fp;
if (has_reduced_clock)
crtc->new_config->dpll_hw_state.fp1 = fp2;
crtc_state->dpll_hw_state.fp1 = fp2;
else
crtc->new_config->dpll_hw_state.fp1 = fp;
crtc_state->dpll_hw_state.fp1 = fp;
 
pll = intel_get_shared_dpll(crtc);
pll = intel_get_shared_dpll(crtc, crtc_state);
if (pll == NULL) {
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
pipe_name(crtc->pipe));
7517,7 → 8945,7
}
}
 
if (is_lvds && has_reduced_clock && i915.powersave)
if (is_lvds && has_reduced_clock)
crtc->lowfreq_avail = true;
else
crtc->lowfreq_avail = false;
7563,7 → 8991,7
* registers are not unnecessarily read).
*/
if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
crtc->config.has_drrs) {
crtc->config->has_drrs) {
m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7584,9 → 9012,9
}
 
void intel_dp_get_m_n(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
if (crtc->config.has_pch_encoder)
if (pipe_config->has_pch_encoder)
intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
else
intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7595,7 → 9023,7
}
 
static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
&pipe_config->fdi_m_n, NULL);
7602,23 → 9030,123
}
 
static void skylake_get_pfit_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t tmp;
struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
uint32_t ps_ctrl = 0;
int id = -1;
int i;
 
tmp = I915_READ(PS_CTL(crtc->pipe));
 
if (tmp & PS_ENABLE) {
/* find scaler attached to this pipe */
for (i = 0; i < crtc->num_scalers; i++) {
ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
id = i;
pipe_config->pch_pfit.enabled = true;
pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
break;
}
}
 
scaler_state->scaler_id = id;
if (id >= 0) {
scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
} else {
scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
}
}
 
static void
skylake_get_initial_plane_config(struct intel_crtc *crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, base, offset, stride_mult, tiling;
int pipe = crtc->pipe;
int fourcc, pixel_format;
unsigned int aligned_height;
struct drm_framebuffer *fb;
struct intel_framebuffer *intel_fb;
 
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
DRM_DEBUG_KMS("failed to alloc fb\n");
return;
}
 
fb = &intel_fb->base;
 
val = I915_READ(PLANE_CTL(pipe, 0));
if (!(val & PLANE_CTL_ENABLE))
goto error;
 
pixel_format = val & PLANE_CTL_FORMAT_MASK;
fourcc = skl_format_to_fourcc(pixel_format,
val & PLANE_CTL_ORDER_RGBX,
val & PLANE_CTL_ALPHA_MASK);
fb->pixel_format = fourcc;
fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
 
tiling = val & PLANE_CTL_TILED_MASK;
switch (tiling) {
case PLANE_CTL_TILED_LINEAR:
fb->modifier[0] = DRM_FORMAT_MOD_NONE;
break;
case PLANE_CTL_TILED_X:
plane_config->tiling = I915_TILING_X;
fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
break;
case PLANE_CTL_TILED_Y:
fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
break;
case PLANE_CTL_TILED_YF:
fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
break;
default:
MISSING_CASE(tiling);
goto error;
}
 
base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
plane_config->base = base;
 
offset = I915_READ(PLANE_OFFSET(pipe, 0));
 
val = I915_READ(PLANE_SIZE(pipe, 0));
fb->height = ((val >> 16) & 0xfff) + 1;
fb->width = ((val >> 0) & 0x1fff) + 1;
 
val = I915_READ(PLANE_STRIDE(pipe, 0));
stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
fb->pixel_format);
// fb->pitches[0] = (val & 0x3ff) * stride_mult;
fb->pitches[0] = 2560*4;
 
aligned_height = intel_fb_align_height(dev, fb->height,
fb->pixel_format,
fb->modifier[0]);
 
// plane_config->size = fb->pitches[0] * aligned_height;
plane_config->size = i915_fbsize*1024*1024;
 
DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
pipe_name(pipe), fb->width, fb->height,
fb->bits_per_pixel, base, fb->pitches[0],
plane_config->size);
 
plane_config->fb = intel_fb;
return;
 
error:
kfree(fb);
}
 
static void ironlake_get_pfit_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
7641,68 → 9169,79
}
}
 
static void ironlake_get_plane_config(struct intel_crtc *crtc,
struct intel_plane_config *plane_config)
static void
ironlake_get_initial_plane_config(struct intel_crtc *crtc,
struct intel_initial_plane_config *plane_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 val, base, offset;
int pipe = crtc->pipe, plane = crtc->plane;
int pipe = crtc->pipe;
int fourcc, pixel_format;
int aligned_height;
unsigned int aligned_height;
struct drm_framebuffer *fb;
struct intel_framebuffer *intel_fb;
 
crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
if (!crtc->base.primary->fb) {
val = I915_READ(DSPCNTR(pipe));
if (!(val & DISPLAY_PLANE_ENABLE))
return;
 
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
DRM_DEBUG_KMS("failed to alloc fb\n");
return;
}
 
val = I915_READ(DSPCNTR(plane));
fb = &intel_fb->base;
 
if (INTEL_INFO(dev)->gen >= 4)
if (val & DISPPLANE_TILED)
plane_config->tiled = true;
if (INTEL_INFO(dev)->gen >= 4) {
if (val & DISPPLANE_TILED) {
plane_config->tiling = I915_TILING_X;
fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
}
}
 
pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
fourcc = intel_format_to_fourcc(pixel_format);
crtc->base.primary->fb->pixel_format = fourcc;
crtc->base.primary->fb->bits_per_pixel =
drm_format_plane_cpp(fourcc, 0) * 8;
fourcc = i9xx_format_to_fourcc(pixel_format);
fb->pixel_format = fourcc;
fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
 
base = I915_READ(DSPSURF(plane)) & 0xfffff000;
base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
offset = I915_READ(DSPOFFSET(plane));
offset = I915_READ(DSPOFFSET(pipe));
} else {
if (plane_config->tiled)
offset = I915_READ(DSPTILEOFF(plane));
if (plane_config->tiling)
offset = I915_READ(DSPTILEOFF(pipe));
else
offset = I915_READ(DSPLINOFF(plane));
offset = I915_READ(DSPLINOFF(pipe));
}
plane_config->base = base;
 
val = I915_READ(PIPESRC(pipe));
crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
fb->width = ((val >> 16) & 0xfff) + 1;
fb->height = ((val >> 0) & 0xfff) + 1;
 
val = I915_READ(DSPSTRIDE(pipe));
crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
// fb->pitches[0] = val & 0xffffffc0;
fb->pitches[0] = 2560*4;
 
aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
plane_config->tiled);
aligned_height = intel_fb_align_height(dev, fb->height,
fb->pixel_format,
fb->modifier[0]);
 
plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
aligned_height);
// plane_config->size = fb->pitches[0] * aligned_height;
plane_config->size = i915_fbsize*1024*1024;
 
DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
pipe, plane, crtc->base.primary->fb->width,
crtc->base.primary->fb->height,
crtc->base.primary->fb->bits_per_pixel, base,
crtc->base.primary->fb->pitches[0],
DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
pipe_name(pipe), fb->width, fb->height,
fb->bits_per_pixel, base, fb->pitches[0],
plane_config->size);
 
plane_config->fb = intel_fb;
}
 
static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
7789,24 → 9328,24
struct intel_crtc *crtc;
 
for_each_intel_crtc(dev, crtc)
WARN(crtc->active, "CRTC for pipe %c enabled\n",
I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
pipe_name(crtc->pipe));
 
WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
"CPU PWM1 enabled\n");
if (IS_HASWELL(dev))
WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
"CPU PWM2 enabled\n");
WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
"PCH PWM1 enabled\n");
WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
"Utility pin enabled\n");
WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
 
/*
* In theory we can still leave IRQs enabled, as long as only the HPD
7814,7 → 9353,7
* gen-specific and since we only disable LCPLL after we fully disable
* the interrupts, the check below should be enough.
*/
WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
}
 
static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7912,19 → 9451,8
/*
* Make sure we're not on PC8 state before disabling PC8, otherwise
* we'll hang the machine. To prevent PC8 state, just enable force_wake.
*
* The other problem is that hsw_restore_lcpll() is called as part of
* the runtime PM resume sequence, so we can't just call
* gen6_gt_force_wake_get() because that function calls
* intel_runtime_pm_get(), and we can't change the runtime PM refcount
* while we are on the resume sequence. So to solve this problem we have
* to call special forcewake code that doesn't touch runtime PM and
* doesn't enable the forcewake delayed work.
*/
spin_lock_irq(&dev_priv->uncore.lock);
if (dev_priv->uncore.forcewake_count++ == 0)
dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
spin_unlock_irq(&dev_priv->uncore.lock);
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
 
if (val & LCPLL_POWER_DOWN_ALLOW) {
val &= ~LCPLL_POWER_DOWN_ALLOW;
7954,11 → 9482,8
DRM_ERROR("Switching back to LCPLL failed\n");
}
 
/* See the big comment above. */
spin_lock_irq(&dev_priv->uncore.lock);
if (--dev_priv->uncore.forcewake_count == 0)
dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
spin_unlock_irq(&dev_priv->uncore.lock);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
intel_update_cdclk(dev_priv->dev);
}
 
/*
7991,7 → 9516,7
 
DRM_DEBUG_KMS("Enabling package C8+\n");
 
if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
if (HAS_PCH_LPT_LP(dev)) {
val = I915_READ(SOUTH_DSPCLK_GATE_D);
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8011,7 → 9536,7
hsw_restore_lcpll(dev_priv);
lpt_init_pch_refclk(dev);
 
if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
if (HAS_PCH_LPT_LP(dev)) {
val = I915_READ(SOUTH_DSPCLK_GATE_D);
val |= PCH_LP_PARTITION_LEVEL_DISABLE;
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8020,9 → 9545,166
intel_prepare_ddi(dev);
}
 
static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
{
if (!intel_ddi_pll_select(crtc))
struct drm_device *dev = old_state->dev;
unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
 
broxton_set_cdclk(dev, req_cdclk);
}
 
/* compute the max rate for new configuration */
static int ilk_max_pixel_rate(struct drm_atomic_state *state)
{
struct intel_crtc *intel_crtc;
struct intel_crtc_state *crtc_state;
int max_pixel_rate = 0;
 
for_each_intel_crtc(state->dev, intel_crtc) {
int pixel_rate;
 
crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
 
if (!crtc_state->base.enable)
continue;
 
pixel_rate = ilk_pipe_pixel_rate(crtc_state);
 
/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
 
max_pixel_rate = max(max_pixel_rate, pixel_rate);
}
 
return max_pixel_rate;
}
 
static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t val, data;
int ret;
 
if (WARN((I915_READ(LCPLL_CTL) &
(LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
"trying to change cdclk frequency with cdclk not enabled\n"))
return;
 
mutex_lock(&dev_priv->rps.hw_lock);
ret = sandybridge_pcode_write(dev_priv,
BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
mutex_unlock(&dev_priv->rps.hw_lock);
if (ret) {
DRM_ERROR("failed to inform pcode about cdclk change\n");
return;
}
 
val = I915_READ(LCPLL_CTL);
val |= LCPLL_CD_SOURCE_FCLK;
I915_WRITE(LCPLL_CTL, val);
 
if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE, 1))
DRM_ERROR("Switching to FCLK failed\n");
 
val = I915_READ(LCPLL_CTL);
val &= ~LCPLL_CLK_FREQ_MASK;
 
switch (cdclk) {
case 450000:
val |= LCPLL_CLK_FREQ_450;
data = 0;
break;
case 540000:
val |= LCPLL_CLK_FREQ_54O_BDW;
data = 1;
break;
case 337500:
val |= LCPLL_CLK_FREQ_337_5_BDW;
data = 2;
break;
case 675000:
val |= LCPLL_CLK_FREQ_675_BDW;
data = 3;
break;
default:
WARN(1, "invalid cdclk frequency\n");
return;
}
 
I915_WRITE(LCPLL_CTL, val);
 
val = I915_READ(LCPLL_CTL);
val &= ~LCPLL_CD_SOURCE_FCLK;
I915_WRITE(LCPLL_CTL, val);
 
if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
DRM_ERROR("Switching back to LCPLL failed\n");
 
mutex_lock(&dev_priv->rps.hw_lock);
sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
mutex_unlock(&dev_priv->rps.hw_lock);
 
intel_update_cdclk(dev);
 
WARN(cdclk != dev_priv->cdclk_freq,
"cdclk requested %d kHz but got %d kHz\n",
cdclk, dev_priv->cdclk_freq);
}
 
static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->dev);
int max_pixclk = ilk_max_pixel_rate(state);
int cdclk;
 
/*
* FIXME should also account for plane ratio
* once 64bpp pixel formats are supported.
*/
if (max_pixclk > 540000)
cdclk = 675000;
else if (max_pixclk > 450000)
cdclk = 540000;
else if (max_pixclk > 337500)
cdclk = 450000;
else
cdclk = 337500;
 
/*
* FIXME move the cdclk caclulation to
* compute_config() so we can fail gracegully.
*/
if (cdclk > dev_priv->max_cdclk_freq) {
DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
cdclk, dev_priv->max_cdclk_freq);
cdclk = dev_priv->max_cdclk_freq;
}
 
to_intel_atomic_state(state)->cdclk = cdclk;
 
return 0;
}
 
static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
{
struct drm_device *dev = old_state->dev;
unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
 
broadwell_set_cdclk(dev, req_cdclk);
}
 
static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
if (!intel_ddi_pll_select(crtc, crtc_state))
return -EINVAL;
 
crtc->lowfreq_avail = false;
8030,16 → 9712,47
return 0;
}
 
static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
enum port port,
struct intel_crtc_state *pipe_config)
{
switch (port) {
case PORT_A:
pipe_config->ddi_pll_sel = SKL_DPLL0;
pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
break;
case PORT_B:
pipe_config->ddi_pll_sel = SKL_DPLL1;
pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
break;
case PORT_C:
pipe_config->ddi_pll_sel = SKL_DPLL2;
pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
break;
default:
DRM_ERROR("Incorrect port type\n");
}
}
 
static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
enum port port,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
u32 temp;
u32 temp, dpll_ctl1;
 
temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
 
switch (pipe_config->ddi_pll_sel) {
case SKL_DPLL0:
/*
* On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
* of the shared DPLL framework and thus needs to be read out
* separately
*/
dpll_ctl1 = I915_READ(DPLL_CTRL1);
pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
break;
case SKL_DPLL1:
pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
break;
8054,7 → 9767,7
 
static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
enum port port,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
 
8065,11 → 9778,13
case PORT_CLK_SEL_WRPLL2:
pipe_config->shared_dpll = DPLL_ID_WRPLL2;
break;
case PORT_CLK_SEL_SPLL:
pipe_config->shared_dpll = DPLL_ID_SPLL;
}
}
 
static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
8083,6 → 9798,8
 
if (IS_SKYLAKE(dev))
skylake_get_ddi_pll(dev_priv, port, pipe_config);
else if (IS_BROXTON(dev))
bxt_get_ddi_pll(dev_priv, port, pipe_config);
else
haswell_get_ddi_pll(dev_priv, port, pipe_config);
 
8111,7 → 9828,7
}
 
static bool haswell_get_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
8159,9 → 9876,19
 
intel_get_pipe_timings(crtc, pipe_config);
 
if (INTEL_INFO(dev)->gen >= 9) {
skl_init_scalers(dev, crtc, pipe_config);
}
 
pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
 
if (INTEL_INFO(dev)->gen >= 9) {
pipe_config->scaler_state.scaler_id = -1;
pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
}
 
if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
if (IS_SKYLAKE(dev))
if (INTEL_INFO(dev)->gen >= 9)
skylake_get_pfit_config(crtc, pipe_config);
else
ironlake_get_pfit_config(crtc, pipe_config);
8181,7 → 9908,7
return true;
}
 
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
static void i845_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
8188,9 → 9915,9
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t cntl = 0, size = 0;
 
if (base) {
unsigned int width = intel_crtc->cursor_width;
unsigned int height = intel_crtc->cursor_height;
if (on) {
unsigned int width = intel_crtc->base.cursor->state->crtc_w;
unsigned int height = intel_crtc->base.cursor->state->crtc_h;
unsigned int stride = roundup_pow_of_two(width) * 4;
 
switch (stride) {
8221,13 → 9948,13
/* On these chipsets we can only modify the base/size/stride
* whilst the cursor is disabled.
*/
I915_WRITE(_CURACNTR, 0);
POSTING_READ(_CURACNTR);
I915_WRITE(CURCNTR(PIPE_A), 0);
POSTING_READ(CURCNTR(PIPE_A));
intel_crtc->cursor_cntl = 0;
}
 
if (intel_crtc->cursor_base != base) {
I915_WRITE(_CURABASE, base);
I915_WRITE(CURBASE(PIPE_A), base);
intel_crtc->cursor_base = base;
}
 
8237,24 → 9964,23
}
 
if (intel_crtc->cursor_cntl != cntl) {
I915_WRITE(_CURACNTR, cntl);
POSTING_READ(_CURACNTR);
I915_WRITE(CURCNTR(PIPE_A), cntl);
POSTING_READ(CURCNTR(PIPE_A));
intel_crtc->cursor_cntl = cntl;
}
}
 
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base, bool on)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
uint32_t cntl;
uint32_t cntl = 0;
 
cntl = 0;
if (base) {
if (on) {
cntl = MCURSOR_GAMMA_ENABLE;
switch (intel_crtc->cursor_width) {
switch (intel_crtc->base.cursor->state->crtc_w) {
case 64:
cntl |= CURSOR_MODE_64_ARGB_AX;
break;
8265,16 → 9991,16
cntl |= CURSOR_MODE_256_ARGB_AX;
break;
default:
WARN_ON(1);
MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
return;
}
cntl |= pipe << 28; /* Connect to correct pipe */
 
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
if (HAS_DDI(dev))
cntl |= CURSOR_PIPE_CSC_ENABLE;
}
 
if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
cntl |= CURSOR_ROTATE_180;
 
if (intel_crtc->cursor_cntl != cntl) {
8298,22 → 10024,22
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int x = crtc->cursor_x;
int y = crtc->cursor_y;
struct drm_plane_state *cursor_state = crtc->cursor->state;
int x = cursor_state->crtc_x;
int y = cursor_state->crtc_y;
u32 base = 0, pos = 0;
 
if (on)
base = intel_crtc->cursor_addr;
 
if (x >= intel_crtc->config.pipe_src_w)
base = 0;
if (x >= intel_crtc->config->pipe_src_w)
on = false;
 
if (y >= intel_crtc->config.pipe_src_h)
base = 0;
if (y >= intel_crtc->config->pipe_src_h)
on = false;
 
if (x < 0) {
if (x + intel_crtc->cursor_width <= 0)
base = 0;
if (x + cursor_state->crtc_w <= 0)
on = false;
 
pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
x = -x;
8321,8 → 10047,8
pos |= x << CURSOR_X_SHIFT;
 
if (y < 0) {
if (y + intel_crtc->cursor_height <= 0)
base = 0;
if (y + cursor_state->crtc_h <= 0)
on = false;
 
pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
y = -y;
8329,22 → 10055,19
}
pos |= y << CURSOR_Y_SHIFT;
 
if (base == 0 && intel_crtc->cursor_base == 0)
return;
 
I915_WRITE(CURPOS(pipe), pos);
 
/* ILK+ do this automagically */
if (HAS_GMCH_DISPLAY(dev) &&
to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
base += (intel_crtc->cursor_height *
intel_crtc->cursor_width - 1) * 4;
crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
base += (cursor_state->crtc_h *
cursor_state->crtc_w - 1) * 4;
}
 
if (IS_845G(dev) || IS_I865G(dev))
i845_update_cursor(crtc, base);
i845_update_cursor(crtc, base, on);
else
i9xx_update_cursor(crtc, base);
i9xx_update_cursor(crtc, base, on);
}
 
static bool cursor_size_ok(struct drm_device *dev,
8384,109 → 10107,6
return true;
}
 
static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
struct drm_i915_gem_object *obj,
uint32_t width, uint32_t height)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
unsigned old_width;
uint32_t addr;
int ret;
 
/* if we want to turn off the cursor ignore width and height */
if (!obj) {
DRM_DEBUG_KMS("cursor off\n");
addr = 0;
mutex_lock(&dev->struct_mutex);
goto finish;
}
 
/* we only need to pin inside GTT if cursor is non-phy */
mutex_lock(&dev->struct_mutex);
if (!INTEL_INFO(dev)->cursor_needs_physical) {
unsigned alignment;
 
/*
* Global gtt pte registers are special registers which actually
* forward writes to a chunk of system memory. Which means that
* there is no risk that the register values disappear as soon
* as we call intel_runtime_pm_put(), so it is correct to wrap
* only the pin/unpin/fence and not more.
*/
intel_runtime_pm_get(dev_priv);
 
/* Note that the w/a also requires 2 PTE of padding following
* the bo. We currently fill all unused PTE with the shadow
* page and so we should always have valid PTE following the
* cursor preventing the VT-d warning.
*/
alignment = 0;
if (need_vtd_wa(dev))
alignment = 64*1024;
 
ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
if (ret) {
DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
intel_runtime_pm_put(dev_priv);
goto fail_locked;
}
 
ret = i915_gem_object_put_fence(obj);
if (ret) {
DRM_DEBUG_KMS("failed to release fence for cursor");
intel_runtime_pm_put(dev_priv);
goto fail_unpin;
}
 
addr = i915_gem_obj_ggtt_offset(obj);
 
intel_runtime_pm_put(dev_priv);
} else {
int align = IS_I830(dev) ? 16 * 1024 : 256;
ret = 1;//i915_gem_object_attach_phys(obj, align);
if (ret) {
DRM_DEBUG_KMS("failed to attach phys object\n");
goto fail_locked;
}
addr = obj->phys_handle->busaddr;
}
 
finish:
if (intel_crtc->cursor_bo) {
if (!INTEL_INFO(dev)->cursor_needs_physical)
i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
}
 
i915_gem_track_fb(intel_crtc->cursor_bo, obj,
INTEL_FRONTBUFFER_CURSOR(pipe));
mutex_unlock(&dev->struct_mutex);
 
old_width = intel_crtc->cursor_width;
 
intel_crtc->cursor_addr = addr;
intel_crtc->cursor_bo = obj;
intel_crtc->cursor_width = width;
intel_crtc->cursor_height = height;
 
if (intel_crtc->active) {
if (old_width != width)
intel_update_watermarks(crtc);
intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
 
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
}
 
return 0;
fail_unpin:
i915_gem_object_unpin_from_display_plane(obj);
fail_locked:
mutex_unlock(&dev->struct_mutex);
return ret;
}
 
static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t start, uint32_t size)
{
8591,7 → 10211,7
mode_fits_in_fbdev(struct drm_device *dev,
struct drm_display_mode *mode)
{
#ifdef CONFIG_DRM_I915_FBDEV
#ifdef CONFIG_DRM_FBDEV_EMULATION
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
struct drm_framebuffer *fb;
8619,6 → 10239,41
#endif
}
 
static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_framebuffer *fb,
int x, int y)
{
struct drm_plane_state *plane_state;
int hdisplay, vdisplay;
int ret;
 
plane_state = drm_atomic_get_plane_state(state, crtc->primary);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
 
if (mode)
drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
else
hdisplay = vdisplay = 0;
 
ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
if (ret)
return ret;
drm_atomic_set_fb_for_plane(plane_state, fb);
plane_state->crtc_x = 0;
plane_state->crtc_y = 0;
plane_state->crtc_w = hdisplay;
plane_state->crtc_h = vdisplay;
plane_state->src_x = x << 16;
plane_state->src_y = y << 16;
plane_state->src_w = hdisplay << 16;
plane_state->src_h = vdisplay << 16;
 
return 0;
}
 
bool intel_get_load_detect_pipe(struct drm_connector *connector,
struct drm_display_mode *mode,
struct intel_load_detect_pipe *old,
8633,6 → 10288,9
struct drm_device *dev = encoder->dev;
struct drm_framebuffer *fb;
struct drm_mode_config *config = &dev->mode_config;
struct drm_atomic_state *state = NULL;
struct drm_connector_state *connector_state;
struct intel_crtc_state *crtc_state;
int ret, i = -1;
 
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8642,7 → 10300,7
retry:
ret = drm_modeset_lock(&config->connection_mutex, ctx);
if (ret)
goto fail_unlock;
goto fail;
 
/*
* Algorithm gets a little messy:
8660,10 → 10318,10
 
ret = drm_modeset_lock(&crtc->mutex, ctx);
if (ret)
goto fail_unlock;
goto fail;
ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
if (ret)
goto fail_unlock;
goto fail;
 
old->dpms_mode = connector->dpms;
old->load_detect_temp = false;
8680,11 → 10338,8
i++;
if (!(encoder->possible_crtcs & (1 << i)))
continue;
if (possible_crtc->enabled)
if (possible_crtc->state->enable)
continue;
/* This can occur when applying the pipe A quirk on resume. */
if (to_intel_crtc(possible_crtc)->new_enabled)
continue;
 
crtc = possible_crtc;
break;
8695,25 → 10350,44
*/
if (!crtc) {
DRM_DEBUG_KMS("no pipe available for load-detect\n");
goto fail_unlock;
goto fail;
}
 
ret = drm_modeset_lock(&crtc->mutex, ctx);
if (ret)
goto fail_unlock;
goto fail;
ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
if (ret)
goto fail_unlock;
intel_encoder->new_crtc = to_intel_crtc(crtc);
to_intel_connector(connector)->new_encoder = intel_encoder;
goto fail;
 
intel_crtc = to_intel_crtc(crtc);
intel_crtc->new_enabled = true;
intel_crtc->new_config = &intel_crtc->config;
old->dpms_mode = connector->dpms;
old->load_detect_temp = true;
old->release_fb = NULL;
 
state = drm_atomic_state_alloc(dev);
if (!state)
return false;
 
state->acquire_ctx = ctx;
 
connector_state = drm_atomic_get_connector_state(state, connector);
if (IS_ERR(connector_state)) {
ret = PTR_ERR(connector_state);
goto fail;
}
 
connector_state->crtc = crtc;
connector_state->best_encoder = &intel_encoder->base;
 
crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
goto fail;
}
 
crtc_state->base.active = crtc_state->base.enable = true;
 
if (!mode)
mode = &load_detect_mode;
 
8736,12 → 10410,19
goto fail;
}
 
if (intel_set_mode(crtc, mode, 0, 0, fb)) {
ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
if (ret)
goto fail;
 
drm_mode_copy(&crtc_state->base.mode, mode);
 
if (drm_atomic_commit(state)) {
DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
if (old->release_fb)
old->release_fb->funcs->destroy(old->release_fb);
goto fail;
}
crtc->primary->crtc = crtc;
 
/* let the connector get through one full cycle before testing */
intel_wait_for_vblank(dev, intel_crtc->pipe);
8748,12 → 10429,9
return true;
 
fail:
intel_crtc->new_enabled = crtc->enabled;
if (intel_crtc->new_enabled)
intel_crtc->new_config = &intel_crtc->config;
else
intel_crtc->new_config = NULL;
fail_unlock:
drm_atomic_state_free(state);
state = NULL;
 
if (ret == -EDEADLK) {
drm_modeset_backoff(ctx);
goto retry;
8763,13 → 10441,19
}
 
void intel_release_load_detect_pipe(struct drm_connector *connector,
struct intel_load_detect_pipe *old)
struct intel_load_detect_pipe *old,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_device *dev = connector->dev;
struct intel_encoder *intel_encoder =
intel_attached_encoder(connector);
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_atomic_state *state;
struct drm_connector_state *connector_state;
struct intel_crtc_state *crtc_state;
int ret;
 
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, connector->name,
8776,12 → 10460,34
encoder->base.id, encoder->name);
 
if (old->load_detect_temp) {
to_intel_connector(connector)->new_encoder = NULL;
intel_encoder->new_crtc = NULL;
intel_crtc->new_enabled = false;
intel_crtc->new_config = NULL;
intel_set_mode(crtc, NULL, 0, 0, NULL);
state = drm_atomic_state_alloc(dev);
if (!state)
goto fail;
 
state->acquire_ctx = ctx;
 
connector_state = drm_atomic_get_connector_state(state, connector);
if (IS_ERR(connector_state))
goto fail;
 
crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
if (IS_ERR(crtc_state))
goto fail;
 
connector_state->best_encoder = NULL;
connector_state->crtc = NULL;
 
crtc_state->base.enable = crtc_state->base.active = false;
 
ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
0, 0);
if (ret)
goto fail;
 
ret = drm_atomic_commit(state);
if (ret)
goto fail;
 
if (old->release_fb) {
drm_framebuffer_unregister_private(old->release_fb);
drm_framebuffer_unreference(old->release_fb);
8793,10 → 10499,15
/* Switch crtc and encoder back off if necessary */
if (old->dpms_mode != DRM_MODE_DPMS_ON)
connector->funcs->dpms(connector, old->dpms_mode);
 
return;
fail:
DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
drm_atomic_state_free(state);
}
 
static int i9xx_pll_refclk(struct drm_device *dev,
const struct intel_crtc_config *pipe_config)
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpll = pipe_config->dpll_hw_state.dpll;
8813,7 → 10524,7
 
/* Returns the clock of the currently programmed mode of the given pipe. */
static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
8821,6 → 10532,7
u32 dpll = pipe_config->dpll_hw_state.dpll;
u32 fp;
intel_clock_t clock;
int port_clock;
int refclk = i9xx_pll_refclk(dev, pipe_config);
 
if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8861,9 → 10573,9
}
 
if (IS_PINEVIEW(dev))
pineview_clock(refclk, &clock);
port_clock = pnv_calc_dpll_params(refclk, &clock);
else
i9xx_clock(refclk, &clock);
port_clock = i9xx_calc_dpll_params(refclk, &clock);
} else {
u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8889,7 → 10601,7
clock.p2 = 2;
}
 
i9xx_clock(refclk, &clock);
port_clock = i9xx_calc_dpll_params(refclk, &clock);
}
 
/*
8897,7 → 10609,7
* port_clock to compute adjusted_mode.crtc_clock in the
* encoder's get_config() function.
*/
pipe_config->port_clock = clock.dot;
pipe_config->port_clock = port_clock;
}
 
int intel_dotclock_calculate(int link_freq,
8920,7 → 10632,7
}
 
static void ironlake_pch_clock_get(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
 
8933,7 → 10645,7
* agree once we know their relationship in the encoder's
* get_config() function.
*/
pipe_config->adjusted_mode.crtc_clock =
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
&pipe_config->fdi_m_n);
}
8944,9 → 10656,9
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
struct drm_display_mode *mode;
struct intel_crtc_config pipe_config;
struct intel_crtc_state pipe_config;
int htot = I915_READ(HTOTAL(cpu_transcoder));
int hsync = I915_READ(HSYNC(cpu_transcoder));
int vtot = I915_READ(VTOTAL(cpu_transcoder));
8986,42 → 10698,6
return mode;
}
 
static void intel_decrease_pllclock(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 
if (!HAS_GMCH_DISPLAY(dev))
return;
 
if (!dev_priv->lvds_downclock_avail)
return;
 
/*
* Since this is called by a timer, we should never get here in
* the manual case.
*/
if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
int pipe = intel_crtc->pipe;
int dpll_reg = DPLL(pipe);
int dpll;
 
DRM_DEBUG_DRIVER("downclocking LVDS\n");
 
assert_panel_unlocked(dev_priv, pipe);
 
dpll = I915_READ(dpll_reg);
dpll |= DISPLAY_RATE_SELECT_FPA1;
I915_WRITE(dpll_reg, dpll);
intel_wait_for_vblank(dev, pipe);
dpll = I915_READ(dpll_reg);
if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
}
 
}
 
void intel_mark_busy(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
9031,6 → 10707,8
 
intel_runtime_pm_get(dev_priv);
i915_update_gfx_val(dev_priv);
if (INTEL_INFO(dev)->gen >= 6)
gen6_rps_busy(dev_priv);
dev_priv->mm.busy = true;
}
 
9037,7 → 10715,6
void intel_mark_idle(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
 
if (!dev_priv->mm.busy)
return;
9044,20 → 10721,9
 
dev_priv->mm.busy = false;
 
if (!i915.powersave)
goto out;
 
for_each_crtc(dev, crtc) {
if (!crtc->primary->fb)
continue;
 
intel_decrease_pllclock(crtc);
}
 
if (INTEL_INFO(dev)->gen >= 6)
gen6_rps_idle(dev->dev_private);
 
out:
intel_runtime_pm_put(dev_priv);
}
 
9087,21 → 10753,23
{
struct intel_unpin_work *work =
container_of(__work, struct intel_unpin_work, work);
struct drm_device *dev = work->crtc->dev;
enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
struct intel_crtc *crtc = to_intel_crtc(work->crtc);
struct drm_device *dev = crtc->base.dev;
struct drm_plane *primary = crtc->base.primary;
 
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(work->old_fb_obj);
intel_unpin_fb_obj(work->old_fb, primary->state);
drm_gem_object_unreference(&work->pending_flip_obj->base);
drm_gem_object_unreference(&work->old_fb_obj->base);
 
intel_update_fbc(dev);
if (work->flip_queued_req)
i915_gem_request_assign(&work->flip_queued_req, NULL);
mutex_unlock(&dev->struct_mutex);
 
intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
drm_framebuffer_unreference(work->old_fb);
 
BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
atomic_dec(&crtc->unpin_work_count);
 
kfree(work);
}
9195,7 → 10863,7
*/
return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
crtc->unpin_work->gtt_offset &&
g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
crtc->unpin_work->flip_count);
}
 
9221,11 → 10889,11
spin_unlock_irqrestore(&dev->event_lock, flags);
}
 
static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
{
/* Ensure that the work item is consistent when activating it ... */
smp_wmb();
atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
atomic_set(&work->pending, INTEL_FLIP_PENDING);
/* and that it is marked active as soon as the irq could fire. */
smp_wmb();
}
9234,14 → 10902,15
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
struct drm_i915_gem_request *req,
uint32_t flags)
{
struct intel_engine_cs *ring = req->ring;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 flip_mask;
int ret;
 
ret = intel_ring_begin(ring, 6);
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
 
9260,8 → 10929,7
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
intel_ring_emit(ring, 0); /* aux display base address, unused */
 
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
intel_mark_page_flip_active(intel_crtc->unpin_work);
return 0;
}
 
9269,14 → 10937,15
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
struct drm_i915_gem_request *req,
uint32_t flags)
{
struct intel_engine_cs *ring = req->ring;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 flip_mask;
int ret;
 
ret = intel_ring_begin(ring, 6);
ret = intel_ring_begin(req, 6);
if (ret)
return ret;
 
9292,8 → 10961,7
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
intel_ring_emit(ring, MI_NOOP);
 
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
intel_mark_page_flip_active(intel_crtc->unpin_work);
return 0;
}
 
9301,15 → 10969,16
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
struct drm_i915_gem_request *req,
uint32_t flags)
{
struct intel_engine_cs *ring = req->ring;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t pf, pipesrc;
int ret;
 
ret = intel_ring_begin(ring, 4);
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
 
9331,8 → 11000,7
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
intel_ring_emit(ring, pf | pipesrc);
 
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
intel_mark_page_flip_active(intel_crtc->unpin_work);
return 0;
}
 
9340,15 → 11008,16
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
struct drm_i915_gem_request *req,
uint32_t flags)
{
struct intel_engine_cs *ring = req->ring;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t pf, pipesrc;
int ret;
 
ret = intel_ring_begin(ring, 4);
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
 
9367,8 → 11036,7
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
intel_ring_emit(ring, pf | pipesrc);
 
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
intel_mark_page_flip_active(intel_crtc->unpin_work);
return 0;
}
 
9376,9 → 11044,10
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct intel_engine_cs *ring,
struct drm_i915_gem_request *req,
uint32_t flags)
{
struct intel_engine_cs *ring = req->ring;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t plane_bit = 0;
int len, ret;
9420,11 → 11089,11
* then do the cacheline alignment, and finally emit the
* MI_DISPLAY_FLIP.
*/
ret = intel_ring_cacheline_align(ring);
ret = intel_ring_cacheline_align(req);
if (ret)
return ret;
 
ret = intel_ring_begin(ring, len);
ret = intel_ring_begin(req, len);
if (ret)
return ret;
 
9444,10 → 11113,10
DERRMR_PIPEB_PRI_FLIP_DONE |
DERRMR_PIPEC_PRI_FLIP_DONE));
if (IS_GEN8(dev))
intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
MI_SRM_LRM_GLOBAL_GTT);
else
intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
MI_SRM_LRM_GLOBAL_GTT);
intel_ring_emit(ring, DERRMR);
intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9462,12 → 11131,154
intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
intel_ring_emit(ring, (MI_NOOP));
 
intel_mark_page_flip_active(intel_crtc);
__intel_ring_advance(ring);
intel_mark_page_flip_active(intel_crtc->unpin_work);
return 0;
}
 
static int intel_default_queue_flip(struct drm_device *dev,
static bool use_mmio_flip(struct intel_engine_cs *ring,
struct drm_i915_gem_object *obj)
{
/*
* This is not being used for older platforms, because
* non-availability of flip done interrupt forces us to use
* CS flips. Older platforms derive flip done using some clever
* tricks involving the flip_pending status bits and vblank irqs.
* So using MMIO flips there would disrupt this mechanism.
*/
 
if (ring == NULL)
return true;
 
if (INTEL_INFO(ring->dev)->gen < 5)
return false;
 
if (i915.use_mmio_flip < 0)
return false;
else if (i915.use_mmio_flip > 0)
return true;
else if (i915.enable_execlists)
return true;
else
return ring != i915_gem_request_get_ring(obj->last_write_req);
}
 
static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
struct intel_unpin_work *work)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
const enum pipe pipe = intel_crtc->pipe;
u32 ctl, stride;
 
ctl = I915_READ(PLANE_CTL(pipe, 0));
ctl &= ~PLANE_CTL_TILED_MASK;
switch (fb->modifier[0]) {
case DRM_FORMAT_MOD_NONE:
break;
case I915_FORMAT_MOD_X_TILED:
ctl |= PLANE_CTL_TILED_X;
break;
case I915_FORMAT_MOD_Y_TILED:
ctl |= PLANE_CTL_TILED_Y;
break;
case I915_FORMAT_MOD_Yf_TILED:
ctl |= PLANE_CTL_TILED_YF;
break;
default:
MISSING_CASE(fb->modifier[0]);
}
 
/*
* The stride is either expressed as a multiple of 64 bytes chunks for
* linear buffers or in number of tiles for tiled buffers.
*/
stride = fb->pitches[0] /
intel_fb_stride_alignment(dev, fb->modifier[0],
fb->pixel_format);
 
/*
* Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
* PLANE_SURF updates, the update is then guaranteed to be atomic.
*/
I915_WRITE(PLANE_CTL(pipe, 0), ctl);
I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
 
I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
POSTING_READ(PLANE_SURF(pipe, 0));
}
 
static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
struct intel_unpin_work *work)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_framebuffer *intel_fb =
to_intel_framebuffer(intel_crtc->base.primary->fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
u32 dspcntr;
u32 reg;
 
reg = DSPCNTR(intel_crtc->plane);
dspcntr = I915_READ(reg);
 
if (obj->tiling_mode != I915_TILING_NONE)
dspcntr |= DISPPLANE_TILED;
else
dspcntr &= ~DISPPLANE_TILED;
 
I915_WRITE(reg, dspcntr);
 
I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
POSTING_READ(DSPSURF(intel_crtc->plane));
}
 
/*
* XXX: This is the temporary way to update the plane registers until we get
* around to using the usual plane update functions for MMIO flips
*/
static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
{
struct intel_crtc *crtc = mmio_flip->crtc;
struct intel_unpin_work *work;
 
spin_lock_irq(&crtc->base.dev->event_lock);
work = crtc->unpin_work;
spin_unlock_irq(&crtc->base.dev->event_lock);
if (work == NULL)
return;
 
intel_mark_page_flip_active(work);
 
intel_pipe_update_start(crtc);
 
if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
skl_do_mmio_flip(crtc, work);
else
/* use_mmio_flip() retricts MMIO flips to ilk+ */
ilk_do_mmio_flip(crtc, work);
 
intel_pipe_update_end(crtc);
}
 
static void intel_mmio_flip_work_func(struct work_struct *work)
{
struct intel_mmio_flip *mmio_flip =
container_of(work, struct intel_mmio_flip, work);
 
if (mmio_flip->req) {
WARN_ON(__i915_wait_request(mmio_flip->req,
mmio_flip->crtc->reset_counter,
false, NULL,
&mmio_flip->i915->rps.mmioflips));
i915_gem_request_unreference__unlocked(mmio_flip->req);
}
 
intel_do_mmio_flip(mmio_flip);
kfree(mmio_flip);
}
 
static int intel_queue_mmio_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
9474,9 → 11285,100
struct intel_engine_cs *ring,
uint32_t flags)
{
struct intel_mmio_flip *mmio_flip;
 
mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
if (mmio_flip == NULL)
return -ENOMEM;
 
mmio_flip->i915 = to_i915(dev);
mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
mmio_flip->crtc = to_intel_crtc(crtc);
 
INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
schedule_work(&mmio_flip->work);
 
return 0;
}
 
static int intel_default_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_request *req,
uint32_t flags)
{
return -ENODEV;
}
 
static bool __intel_pageflip_stall_check(struct drm_device *dev,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work = intel_crtc->unpin_work;
u32 addr;
 
if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
return true;
 
if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
return false;
 
if (!work->enable_stall_check)
return false;
 
if (work->flip_ready_vblank == 0) {
if (work->flip_queued_req &&
!i915_gem_request_completed(work->flip_queued_req, true))
return false;
 
work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
}
 
if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
return false;
 
/* Potential stall - if we see that the flip has happened,
* assume a missed interrupt. */
if (INTEL_INFO(dev)->gen >= 4)
addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
else
addr = I915_READ(DSPADDR(intel_crtc->plane));
 
/* There is a potential issue here with a false positive after a flip
* to the same address. We could address this by checking for a
* non-incrementing frame counter.
*/
return addr == work->gtt_offset;
}
 
void intel_check_page_flip(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
 
WARN_ON(!in_interrupt());
 
if (crtc == NULL)
return;
 
spin_lock(&dev->event_lock);
work = intel_crtc->unpin_work;
if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
work->flip_queued_vblank, drm_vblank_count(dev, pipe));
page_flip_completed(intel_crtc);
work = NULL;
}
if (work != NULL &&
drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
spin_unlock(&dev->event_lock);
}
 
static int intel_crtc_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event,
9487,9 → 11389,12
struct drm_framebuffer *old_fb = crtc->primary->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_plane *primary = crtc->primary;
enum pipe pipe = intel_crtc->pipe;
struct intel_unpin_work *work;
struct intel_engine_cs *ring;
bool mmio_flip;
struct drm_i915_gem_request *request = NULL;
int ret;
 
/*
9522,7 → 11427,7
 
work->event = event;
work->crtc = crtc;
work->old_fb_obj = intel_fb_obj(old_fb);
work->old_fb = old_fb;
INIT_WORK(&work->work, intel_unpin_work_fn);
 
ret = drm_crtc_vblank_get(crtc);
9553,33 → 11458,34
if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
flush_workqueue(dev_priv->wq);
 
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto cleanup;
 
/* Reference the objects for the scheduled work. */
drm_gem_object_reference(&work->old_fb_obj->base);
drm_framebuffer_reference(work->old_fb);
drm_gem_object_reference(&obj->base);
 
crtc->primary->fb = fb;
update_state_fb(crtc->primary);
 
work->pending_flip_obj = obj;
 
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto cleanup;
 
atomic_inc(&intel_crtc->unpin_work_count);
intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
 
if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
 
if (IS_VALLEYVIEW(dev)) {
ring = &dev_priv->ring[BCS];
if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
/* vlv: DISPLAY_FLIP fails to change tiling */
ring = NULL;
} else if (IS_IVYBRIDGE(dev)) {
} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
ring = &dev_priv->ring[BCS];
} else if (INTEL_INFO(dev)->gen >= 7) {
ring = obj->ring;
ring = i915_gem_request_get_ring(obj->last_write_req);
if (ring == NULL || ring->id != RCS)
ring = &dev_priv->ring[BCS];
} else {
9586,55 → 11492,78
ring = &dev_priv->ring[RCS];
}
 
ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
mmio_flip = use_mmio_flip(ring, obj);
 
/* When using CS flips, we want to emit semaphores between rings.
* However, when using mmio flips we will create a task to do the
* synchronisation, so all we want here is to pin the framebuffer
* into the display plane and skip any waits.
*/
ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
crtc->primary->state,
mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
if (ret)
goto cleanup_pending;
 
work->gtt_offset =
i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
obj, 0);
work->gtt_offset += intel_crtc->dspaddr_offset;
 
if (use_mmio_flip(ring, obj)) {
if (mmio_flip) {
ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
page_flip_flags);
if (ret)
goto cleanup_unpin;
 
work->flip_queued_seqno = obj->last_write_seqno;
work->flip_queued_ring = obj->ring;
i915_gem_request_assign(&work->flip_queued_req,
obj->last_write_req);
} else {
ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
if (!request) {
ret = i915_gem_request_alloc(ring, ring->default_context, &request);
if (ret)
goto cleanup_unpin;
}
 
ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
page_flip_flags);
if (ret)
goto cleanup_unpin;
 
work->flip_queued_seqno = intel_ring_get_seqno(ring);
work->flip_queued_ring = ring;
i915_gem_request_assign(&work->flip_queued_req, request);
}
 
work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
if (request)
i915_add_request_no_flush(request);
 
work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
work->enable_stall_check = true;
 
i915_gem_track_fb(work->old_fb_obj, obj,
INTEL_FRONTBUFFER_PRIMARY(pipe));
 
intel_disable_fbc(dev);
intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
to_intel_plane(primary)->frontbuffer_bit);
mutex_unlock(&dev->struct_mutex);
 
intel_fbc_disable_crtc(intel_crtc);
intel_frontbuffer_flip_prepare(dev,
to_intel_plane(primary)->frontbuffer_bit);
 
trace_i915_flip_request(intel_crtc->plane, obj);
 
return 0;
 
cleanup_unpin:
intel_unpin_fb_obj(obj);
intel_unpin_fb_obj(fb, crtc->primary->state);
cleanup_pending:
if (request)
i915_gem_request_cancel(request);
atomic_dec(&intel_crtc->unpin_work_count);
mutex_unlock(&dev->struct_mutex);
cleanup:
crtc->primary->fb = old_fb;
drm_gem_object_unreference(&work->old_fb_obj->base);
drm_gem_object_unreference(&obj->base);
mutex_unlock(&dev->struct_mutex);
update_state_fb(crtc->primary);
 
cleanup:
drm_gem_object_unreference_unlocked(&obj->base);
drm_framebuffer_unreference(work->old_fb);
 
spin_lock_irq(&dev->event_lock);
intel_crtc->unpin_work = NULL;
spin_unlock_irq(&dev->event_lock);
9644,9 → 11573,35
kfree(work);
 
if (ret == -EIO) {
struct drm_atomic_state *state;
struct drm_plane_state *plane_state;
 
out_hang:
// intel_crtc_wait_for_pending_flips(crtc);
ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
state = drm_atomic_state_alloc(dev);
if (!state)
return -ENOMEM;
state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
 
retry:
plane_state = drm_atomic_get_plane_state(state, primary);
ret = PTR_ERR_OR_ZERO(plane_state);
if (!ret) {
drm_atomic_set_fb_for_plane(plane_state, fb);
 
ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
if (!ret)
ret = drm_atomic_commit(state);
}
 
if (ret == -EDEADLK) {
drm_modeset_backoff(state->acquire_ctx);
drm_atomic_state_clear(state);
goto retry;
}
 
if (ret)
drm_atomic_state_free(state);
 
if (ret == 0 && event) {
spin_lock_irq(&dev->event_lock);
drm_send_vblank_event(dev, pipe, event);
9657,72 → 11612,294
}
#endif
 
static struct drm_crtc_helper_funcs intel_helper_funcs = {
.mode_set_base_atomic = intel_pipe_set_base_atomic,
.load_lut = intel_crtc_load_lut,
};
 
/**
* intel_modeset_update_staged_output_state
* intel_wm_need_update - Check whether watermarks need updating
* @plane: drm plane
* @state: new plane state
*
* Updates the staged output configuration state, e.g. after we've read out the
* current hw state.
* Check current plane state versus the new one to determine whether
* watermarks need to be recalculated.
*
* Returns true or false.
*/
static void intel_modeset_update_staged_output_state(struct drm_device *dev)
static bool intel_wm_need_update(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
/* Update watermarks on tiling changes. */
if (!plane->state->fb || !state->fb ||
plane->state->fb->modifier[0] != state->fb->modifier[0] ||
plane->state->rotation != state->rotation)
return true;
 
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
connector->new_encoder =
to_intel_encoder(connector->base.encoder);
if (plane->state->crtc_w != state->crtc_w)
return true;
 
return false;
}
 
for_each_intel_encoder(dev, encoder) {
encoder->new_crtc =
to_intel_crtc(encoder->base.crtc);
int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
struct drm_plane_state *plane_state)
{
struct drm_crtc *crtc = crtc_state->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_plane *plane = plane_state->plane;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_plane_state *old_plane_state =
to_intel_plane_state(plane->state);
int idx = intel_crtc->base.base.id, ret;
int i = drm_plane_index(plane);
bool mode_changed = needs_modeset(crtc_state);
bool was_crtc_enabled = crtc->state->active;
bool is_crtc_enabled = crtc_state->active;
 
bool turn_off, turn_on, visible, was_visible;
struct drm_framebuffer *fb = plane_state->fb;
 
if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
plane->type != DRM_PLANE_TYPE_CURSOR) {
ret = skl_update_scaler_plane(
to_intel_crtc_state(crtc_state),
to_intel_plane_state(plane_state));
if (ret)
return ret;
}
 
for_each_intel_crtc(dev, crtc) {
crtc->new_enabled = crtc->base.enabled;
/*
* Disabling a plane is always okay; we just need to update
* fb tracking in a special way since cleanup_fb() won't
* get called by the plane helpers.
*/
if (old_plane_state->base.fb && !fb)
intel_crtc->atomic.disabled_planes |= 1 << i;
 
if (crtc->new_enabled)
crtc->new_config = &crtc->config;
else
crtc->new_config = NULL;
was_visible = old_plane_state->visible;
visible = to_intel_plane_state(plane_state)->visible;
 
if (!was_crtc_enabled && WARN_ON(was_visible))
was_visible = false;
 
if (!is_crtc_enabled && WARN_ON(visible))
visible = false;
 
if (!was_visible && !visible)
return 0;
 
turn_off = was_visible && (!visible || mode_changed);
turn_on = visible && (!was_visible || mode_changed);
 
DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
plane->base.id, fb ? fb->base.id : -1);
 
DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
plane->base.id, was_visible, visible,
turn_off, turn_on, mode_changed);
 
if (turn_on) {
intel_crtc->atomic.update_wm_pre = true;
/* must disable cxsr around plane enable/disable */
if (plane->type != DRM_PLANE_TYPE_CURSOR) {
intel_crtc->atomic.disable_cxsr = true;
/* to potentially re-enable cxsr */
intel_crtc->atomic.wait_vblank = true;
intel_crtc->atomic.update_wm_post = true;
}
} else if (turn_off) {
intel_crtc->atomic.update_wm_post = true;
/* must disable cxsr around plane enable/disable */
if (plane->type != DRM_PLANE_TYPE_CURSOR) {
if (is_crtc_enabled)
intel_crtc->atomic.wait_vblank = true;
intel_crtc->atomic.disable_cxsr = true;
}
} else if (intel_wm_need_update(plane, plane_state)) {
intel_crtc->atomic.update_wm_pre = true;
}
 
/**
* intel_modeset_commit_output_state
if (visible || was_visible)
intel_crtc->atomic.fb_bits |=
to_intel_plane(plane)->frontbuffer_bit;
 
switch (plane->type) {
case DRM_PLANE_TYPE_PRIMARY:
intel_crtc->atomic.wait_for_flips = true;
intel_crtc->atomic.pre_disable_primary = turn_off;
intel_crtc->atomic.post_enable_primary = turn_on;
 
if (turn_off) {
/*
* FIXME: Actually if we will still have any other
* plane enabled on the pipe we could let IPS enabled
* still, but for now lets consider that when we make
* primary invisible by setting DSPCNTR to 0 on
* update_primary_plane function IPS needs to be
* disable.
*/
intel_crtc->atomic.disable_ips = true;
 
intel_crtc->atomic.disable_fbc = true;
}
 
/*
* FBC does not work on some platforms for rotated
* planes, so disable it when rotation is not 0 and
* update it when rotation is set back to 0.
*
* This function copies the stage display pipe configuration to the real one.
* FIXME: This is redundant with the fbc update done in
* the primary plane enable function except that that
* one is done too late. We eventually need to unify
* this.
*/
static void intel_modeset_commit_output_state(struct drm_device *dev)
 
if (visible &&
INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
dev_priv->fbc.crtc == intel_crtc &&
plane_state->rotation != BIT(DRM_ROTATE_0))
intel_crtc->atomic.disable_fbc = true;
 
/*
* BDW signals flip done immediately if the plane
* is disabled, even if the plane enable is already
* armed to occur at the next vblank :(
*/
if (turn_on && IS_BROADWELL(dev))
intel_crtc->atomic.wait_vblank = true;
 
intel_crtc->atomic.update_fbc |= visible || mode_changed;
break;
case DRM_PLANE_TYPE_CURSOR:
break;
case DRM_PLANE_TYPE_OVERLAY:
if (turn_off && !mode_changed) {
intel_crtc->atomic.wait_vblank = true;
intel_crtc->atomic.update_sprite_watermarks |=
1 << i;
}
}
return 0;
}
 
static bool encoders_cloneable(const struct intel_encoder *a,
const struct intel_encoder *b)
{
struct intel_crtc *crtc;
/* masks could be asymmetric, so check both ways */
return a == b || (a->cloneable & (1 << b->type) &&
b->cloneable & (1 << a->type));
}
 
static bool check_single_encoder_cloning(struct drm_atomic_state *state,
struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct intel_encoder *source_encoder;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int i;
 
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != &crtc->base)
continue;
 
source_encoder =
to_intel_encoder(connector_state->best_encoder);
if (!encoders_cloneable(encoder, source_encoder))
return false;
}
 
return true;
}
 
static bool check_encoder_cloning(struct drm_atomic_state *state,
struct intel_crtc *crtc)
{
struct intel_encoder *encoder;
struct intel_connector *connector;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int i;
 
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
connector->base.encoder = &connector->new_encoder->base;
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != &crtc->base)
continue;
 
encoder = to_intel_encoder(connector_state->best_encoder);
if (!check_single_encoder_cloning(state, crtc, encoder))
return false;
}
 
for_each_intel_encoder(dev, encoder) {
encoder->base.crtc = &encoder->new_crtc->base;
return true;
}
 
for_each_intel_crtc(dev, crtc) {
crtc->base.enabled = crtc->new_enabled;
static int intel_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *pipe_config =
to_intel_crtc_state(crtc_state);
struct drm_atomic_state *state = crtc_state->state;
int ret;
bool mode_changed = needs_modeset(crtc_state);
 
if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
return -EINVAL;
}
 
if (mode_changed && !crtc_state->active)
intel_crtc->atomic.update_wm_post = true;
 
if (mode_changed && crtc_state->enable &&
dev_priv->display.crtc_compute_clock &&
!WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
ret = dev_priv->display.crtc_compute_clock(intel_crtc,
pipe_config);
if (ret)
return ret;
}
 
ret = 0;
if (INTEL_INFO(dev)->gen >= 9) {
if (mode_changed)
ret = skl_update_scaler_crtc(pipe_config);
 
if (!ret)
ret = intel_atomic_setup_scalers(dev, intel_crtc,
pipe_config);
}
 
return ret;
}
 
static const struct drm_crtc_helper_funcs intel_helper_funcs = {
.mode_set_base_atomic = intel_pipe_set_base_atomic,
.load_lut = intel_crtc_load_lut,
.atomic_begin = intel_begin_crtc_commit,
.atomic_flush = intel_finish_crtc_commit,
.atomic_check = intel_crtc_atomic_check,
};
 
static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
{
struct intel_connector *connector;
 
for_each_intel_connector(dev, connector) {
if (connector->base.encoder) {
connector->base.state->best_encoder =
connector->base.encoder;
connector->base.state->crtc =
connector->base.encoder->crtc;
} else {
connector->base.state->best_encoder = NULL;
connector->base.state->crtc = NULL;
}
}
}
 
static void
connected_sink_compute_bpp(struct intel_connector *connector,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
int bpp = pipe_config->pipe_bpp;
 
9748,59 → 11925,33
 
static int
compute_baseline_pipe_bpp(struct intel_crtc *crtc,
struct drm_framebuffer *fb,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = crtc->base.dev;
struct intel_connector *connector;
int bpp;
struct drm_atomic_state *state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int bpp, i;
 
switch (fb->pixel_format) {
case DRM_FORMAT_C8:
bpp = 8*3; /* since we go through a colormap */
break;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_ARGB1555:
/* checked in intel_framebuffer_init already */
if (WARN_ON(INTEL_INFO(dev)->gen > 3))
return -EINVAL;
case DRM_FORMAT_RGB565:
bpp = 6*3; /* min is 18bpp */
break;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
/* checked in intel_framebuffer_init already */
if (WARN_ON(INTEL_INFO(dev)->gen < 4))
return -EINVAL;
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
bpp = 10*3;
else if (INTEL_INFO(dev)->gen >= 5)
bpp = 12*3;
else
bpp = 8*3;
break;
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_ABGR2101010:
/* checked in intel_framebuffer_init already */
if (WARN_ON(INTEL_INFO(dev)->gen < 4))
return -EINVAL;
bpp = 10*3;
break;
/* TODO: gen4+ supports 16 bpc floating point, too. */
default:
DRM_DEBUG_KMS("unsupported depth\n");
return -EINVAL;
}
 
 
pipe_config->pipe_bpp = bpp;
 
state = pipe_config->base.state;
 
/* Clamp display bpp to EDID value */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (!connector->new_encoder ||
connector->new_encoder->new_crtc != crtc)
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != &crtc->base)
continue;
 
connected_sink_compute_bpp(connector, pipe_config);
connected_sink_compute_bpp(to_intel_connector(connector),
pipe_config);
}
 
return bpp;
9818,12 → 11969,18
}
 
static void intel_dump_pipe_config(struct intel_crtc *crtc,
struct intel_crtc_config *pipe_config,
struct intel_crtc_state *pipe_config,
const char *context)
{
DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
context, pipe_name(crtc->pipe));
struct drm_device *dev = crtc->base.dev;
struct drm_plane *plane;
struct intel_plane *intel_plane;
struct intel_plane_state *state;
struct drm_framebuffer *fb;
 
DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
context, pipe_config, pipe_name(crtc->pipe));
 
DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
pipe_config->pipe_bpp, pipe_config->dither);
9833,14 → 11990,16
pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
pipe_config->fdi_m_n.tu);
DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
pipe_config->has_dp_encoder,
pipe_config->lane_count,
pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
pipe_config->dp_m_n.tu);
 
DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
pipe_config->has_dp_encoder,
pipe_config->lane_count,
pipe_config->dp_m2_n2.gmch_m,
pipe_config->dp_m2_n2.gmch_n,
pipe_config->dp_m2_n2.link_m,
9852,13 → 12011,17
pipe_config->has_infoframe);
 
DRM_DEBUG_KMS("requested mode:\n");
drm_mode_debug_printmodeline(&pipe_config->requested_mode);
drm_mode_debug_printmodeline(&pipe_config->base.mode);
DRM_DEBUG_KMS("adjusted mode:\n");
drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
intel_dump_crtc_timings(&pipe_config->adjusted_mode);
drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
DRM_DEBUG_KMS("pipe src size: %dx%d\n",
pipe_config->pipe_src_w, pipe_config->pipe_src_h);
DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
crtc->num_scalers,
pipe_config->scaler_state.scaler_users,
pipe_config->scaler_state.scaler_id);
DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
pipe_config->gmch_pfit.control,
pipe_config->gmch_pfit.pgm_ratios,
9869,52 → 12032,83
pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
}
 
static bool encoders_cloneable(const struct intel_encoder *a,
const struct intel_encoder *b)
{
/* masks could be asymmetric, so check both ways */
return a == b || (a->cloneable & (1 << b->type) &&
b->cloneable & (1 << a->type));
if (IS_BROXTON(dev)) {
DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
"pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
"pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
pipe_config->ddi_pll_sel,
pipe_config->dpll_hw_state.ebb0,
pipe_config->dpll_hw_state.ebb4,
pipe_config->dpll_hw_state.pll0,
pipe_config->dpll_hw_state.pll1,
pipe_config->dpll_hw_state.pll2,
pipe_config->dpll_hw_state.pll3,
pipe_config->dpll_hw_state.pll6,
pipe_config->dpll_hw_state.pll8,
pipe_config->dpll_hw_state.pll9,
pipe_config->dpll_hw_state.pll10,
pipe_config->dpll_hw_state.pcsdw12);
} else if (IS_SKYLAKE(dev)) {
DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
"ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
pipe_config->ddi_pll_sel,
pipe_config->dpll_hw_state.ctrl1,
pipe_config->dpll_hw_state.cfgcr1,
pipe_config->dpll_hw_state.cfgcr2);
} else if (HAS_DDI(dev)) {
DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
pipe_config->ddi_pll_sel,
pipe_config->dpll_hw_state.wrpll,
pipe_config->dpll_hw_state.spll);
} else {
DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
"fp0: 0x%x, fp1: 0x%x\n",
pipe_config->dpll_hw_state.dpll,
pipe_config->dpll_hw_state.dpll_md,
pipe_config->dpll_hw_state.fp0,
pipe_config->dpll_hw_state.fp1);
}
 
static bool check_single_encoder_cloning(struct intel_crtc *crtc,
struct intel_encoder *encoder)
{
struct drm_device *dev = crtc->base.dev;
struct intel_encoder *source_encoder;
DRM_DEBUG_KMS("planes on this crtc\n");
list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
intel_plane = to_intel_plane(plane);
if (intel_plane->pipe != crtc->pipe)
continue;
 
for_each_intel_encoder(dev, source_encoder) {
if (source_encoder->new_crtc != crtc)
state = to_intel_plane_state(plane->state);
fb = state->base.fb;
if (!fb) {
DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
"disabled, scaler_id = %d\n",
plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
plane->base.id, intel_plane->pipe,
(crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
drm_plane_index(plane), state->scaler_id);
continue;
 
if (!encoders_cloneable(encoder, source_encoder))
return false;
}
 
return true;
DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
plane->base.id, intel_plane->pipe,
crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
drm_plane_index(plane));
DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
fb->base.id, fb->width, fb->height, fb->pixel_format);
DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
state->scaler_id,
state->src.x1 >> 16, state->src.y1 >> 16,
drm_rect_width(&state->src) >> 16,
drm_rect_height(&state->src) >> 16,
state->dst.x1, state->dst.y1,
drm_rect_width(&state->dst), drm_rect_height(&state->dst));
}
 
static bool check_encoder_cloning(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct intel_encoder *encoder;
 
for_each_intel_encoder(dev, encoder) {
if (encoder->new_crtc != crtc)
continue;
 
if (!check_single_encoder_cloning(crtc, encoder))
return false;
}
 
return true;
}
 
static bool check_digital_port_conflicts(struct drm_device *dev)
static bool check_digital_port_conflicts(struct drm_atomic_state *state)
{
struct intel_connector *connector;
struct drm_device *dev = state->dev;
struct drm_connector *connector;
unsigned int used_ports = 0;
 
/*
9922,15 → 12116,21
* list to detect the problem on ddi platforms
* where there's just one encoder per digital port.
*/
list_for_each_entry(connector,
&dev->mode_config.connector_list, base.head) {
struct intel_encoder *encoder = connector->new_encoder;
drm_for_each_connector(connector, dev) {
struct drm_connector_state *connector_state;
struct intel_encoder *encoder;
 
if (!encoder)
connector_state = drm_atomic_get_existing_connector_state(state, connector);
if (!connector_state)
connector_state = connector->state;
 
if (!connector_state->best_encoder)
continue;
 
WARN_ON(!encoder->new_crtc);
encoder = to_intel_encoder(connector_state->best_encoder);
 
WARN_ON(!connector_state->crtc);
 
switch (encoder->type) {
unsigned int port_mask;
case INTEL_OUTPUT_UNKNOWN:
9954,37 → 12154,54
return true;
}
 
static struct intel_crtc_config *
intel_modeset_pipe_config(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_display_mode *mode)
static void
clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *encoder;
struct intel_crtc_config *pipe_config;
int plane_bpp, ret = -EINVAL;
bool retry = true;
struct drm_crtc_state tmp_state;
struct intel_crtc_scaler_state scaler_state;
struct intel_dpll_hw_state dpll_hw_state;
enum intel_dpll_id shared_dpll;
uint32_t ddi_pll_sel;
bool force_thru;
 
if (!check_encoder_cloning(to_intel_crtc(crtc))) {
DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
return ERR_PTR(-EINVAL);
}
/* FIXME: before the switch to atomic started, a new pipe_config was
* kzalloc'd. Code that depends on any field being zero should be
* fixed, so that the crtc_state can be safely duplicated. For now,
* only fields that are know to not cause problems are preserved. */
 
if (!check_digital_port_conflicts(dev)) {
DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
return ERR_PTR(-EINVAL);
tmp_state = crtc_state->base;
scaler_state = crtc_state->scaler_state;
shared_dpll = crtc_state->shared_dpll;
dpll_hw_state = crtc_state->dpll_hw_state;
ddi_pll_sel = crtc_state->ddi_pll_sel;
force_thru = crtc_state->pch_pfit.force_thru;
 
memset(crtc_state, 0, sizeof *crtc_state);
 
crtc_state->base = tmp_state;
crtc_state->scaler_state = scaler_state;
crtc_state->shared_dpll = shared_dpll;
crtc_state->dpll_hw_state = dpll_hw_state;
crtc_state->ddi_pll_sel = ddi_pll_sel;
crtc_state->pch_pfit.force_thru = force_thru;
}
 
pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
if (!pipe_config)
return ERR_PTR(-ENOMEM);
static int
intel_modeset_pipe_config(struct drm_crtc *crtc,
struct intel_crtc_state *pipe_config)
{
struct drm_atomic_state *state = pipe_config->base.state;
struct intel_encoder *encoder;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int base_bpp, ret = -EINVAL;
int i;
bool retry = true;
 
drm_mode_copy(&pipe_config->adjusted_mode, mode);
drm_mode_copy(&pipe_config->requested_mode, mode);
clear_intel_crtc_state(pipe_config);
 
pipe_config->cpu_transcoder =
(enum transcoder) to_intel_crtc(crtc)->pipe;
pipe_config->shared_dpll = DPLL_ID_PRIVATE;
 
/*
* Sanitize sync polarity flags based on requested ones. If neither
9991,21 → 12208,17
* positive or negative polarity is requested, treat this as meaning
* negative polarity.
*/
if (!(pipe_config->adjusted_mode.flags &
if (!(pipe_config->base.adjusted_mode.flags &
(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
 
if (!(pipe_config->adjusted_mode.flags &
if (!(pipe_config->base.adjusted_mode.flags &
(DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
 
/* Compute a starting value for pipe_config->pipe_bpp taking the source
* plane pixel format and any sink constraints into account. Returns the
* source plane bpp so that dithering can be selected on mismatches
* after encoders and crtc also have had their say. */
plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
fb, pipe_config);
if (plane_bpp < 0)
base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
pipe_config);
if (base_bpp < 0)
goto fail;
 
/*
10016,9 → 12229,9
* computation to clearly distinguish it from the adjusted mode, which
* can be changed by the connectors in the below retry loop.
*/
drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
drm_crtc_get_hv_timing(&pipe_config->base.mode,
&pipe_config->pipe_src_w,
&pipe_config->pipe_src_h);
 
encoder_retry:
/* Ensure the port clock defaults are reset when retrying. */
10026,17 → 12239,19
pipe_config->pixel_multiplier = 1;
 
/* Fill in default crtc timings, allow encoders to overwrite them. */
drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
CRTC_STEREO_DOUBLE);
 
/* Pass our mode to the connectors and the CRTC to give them a chance to
* adjust it according to limitations or connector properties, and also
* a chance to reject the mode entirely.
*/
for_each_intel_encoder(dev, encoder) {
 
if (&encoder->new_crtc->base != crtc)
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc)
continue;
 
encoder = to_intel_encoder(connector_state->best_encoder);
 
if (!(encoder->compute_config(encoder, pipe_config))) {
DRM_DEBUG_KMS("Encoder config failure\n");
goto fail;
10046,7 → 12261,7
/* Set default port clock if not overwritten by the encoder. Needs to be
* done afterwards in case the encoder adjusts the mode. */
if (!pipe_config->port_clock)
pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
* pipe_config->pixel_multiplier;
 
ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10066,216 → 12281,187
goto encoder_retry;
}
 
pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
/* Dithering seems to not pass-through bits correctly when it should, so
* only enable it on 6bpc panels. */
pipe_config->dither = pipe_config->pipe_bpp == 6*3;
DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
 
return pipe_config;
fail:
kfree(pipe_config);
return ERR_PTR(ret);
return ret;
}
 
/* Computes which crtcs are affected and sets the relevant bits in the mask. For
* simplicity we use the crtc's pipe number (because it's easier to obtain). */
static void
intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
unsigned *prepare_pipes, unsigned *disable_pipes)
intel_modeset_update_crtc_state(struct drm_atomic_state *state)
{
struct intel_crtc *intel_crtc;
struct drm_device *dev = crtc->dev;
struct intel_encoder *encoder;
struct intel_connector *connector;
struct drm_crtc *tmp_crtc;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
int i;
 
*disable_pipes = *modeset_pipes = *prepare_pipes = 0;
/* Double check state. */
for_each_crtc_in_state(state, crtc, crtc_state, i) {
to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
 
/* Check which crtcs have changed outputs connected to them, these need
* to be part of the prepare_pipes mask. We don't (yet) support global
* modeset across multiple crtcs, so modeset_pipes will only have one
* bit set at most. */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->base.encoder == &connector->new_encoder->base)
continue;
 
if (connector->base.encoder) {
tmp_crtc = connector->base.encoder->crtc;
 
*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
/* Update hwmode for vblank functions */
if (crtc->state->active)
crtc->hwmode = crtc->state->adjusted_mode;
else
crtc->hwmode.crtc_clock = 0;
}
 
if (connector->new_encoder)
*prepare_pipes |=
1 << connector->new_encoder->new_crtc->pipe;
}
 
for_each_intel_encoder(dev, encoder) {
if (encoder->base.crtc == &encoder->new_crtc->base)
continue;
static bool intel_fuzzy_clock_check(int clock1, int clock2)
{
int diff;
 
if (encoder->base.crtc) {
tmp_crtc = encoder->base.crtc;
if (clock1 == clock2)
return true;
 
*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
}
if (!clock1 || !clock2)
return false;
 
if (encoder->new_crtc)
*prepare_pipes |= 1 << encoder->new_crtc->pipe;
}
diff = abs(clock1 - clock2);
 
/* Check for pipes that will be enabled/disabled ... */
for_each_intel_crtc(dev, intel_crtc) {
if (intel_crtc->base.enabled == intel_crtc->new_enabled)
continue;
if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
return true;
 
if (!intel_crtc->new_enabled)
*disable_pipes |= 1 << intel_crtc->pipe;
else
*prepare_pipes |= 1 << intel_crtc->pipe;
return false;
}
 
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
list_for_each_entry((intel_crtc), \
&(dev)->mode_config.crtc_list, \
base.head) \
if (mask & (1 <<(intel_crtc)->pipe))
 
/* set_mode is also used to update properties on life display pipes. */
intel_crtc = to_intel_crtc(crtc);
if (intel_crtc->new_enabled)
*prepare_pipes |= 1 << intel_crtc->pipe;
 
/*
* For simplicity do a full modeset on any pipe where the output routing
* changed. We could be more clever, but that would require us to be
* more careful with calling the relevant encoder->mode_set functions.
*/
if (*prepare_pipes)
*modeset_pipes = *prepare_pipes;
 
/* ... and mask these out. */
*modeset_pipes &= ~(*disable_pipes);
*prepare_pipes &= ~(*disable_pipes);
 
/*
* HACK: We don't (yet) fully support global modesets. intel_set_config
* obies this rule, but the modeset restore mode of
* intel_modeset_setup_hw_state does not.
*/
*modeset_pipes &= 1 << intel_crtc->pipe;
*prepare_pipes &= 1 << intel_crtc->pipe;
 
DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
*modeset_pipes, *prepare_pipes, *disable_pipes);
}
 
static bool intel_crtc_in_use(struct drm_crtc *crtc)
static bool
intel_compare_m_n(unsigned int m, unsigned int n,
unsigned int m2, unsigned int n2,
bool exact)
{
struct drm_encoder *encoder;
struct drm_device *dev = crtc->dev;
 
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
if (encoder->crtc == crtc)
if (m == m2 && n == n2)
return true;
 
if (exact || !m || !n || !m2 || !n2)
return false;
}
 
static void
intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *intel_encoder;
struct intel_crtc *intel_crtc;
struct drm_connector *connector;
BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
 
intel_shared_dpll_commit(dev_priv);
 
for_each_intel_encoder(dev, intel_encoder) {
if (!intel_encoder->base.crtc)
continue;
 
intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
 
if (prepare_pipes & (1 << intel_crtc->pipe))
intel_encoder->connectors_active = false;
if (m > m2) {
while (m > m2) {
m2 <<= 1;
n2 <<= 1;
}
 
intel_modeset_commit_output_state(dev);
 
/* Double check state. */
for_each_intel_crtc(dev, intel_crtc) {
WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
WARN_ON(intel_crtc->new_config &&
intel_crtc->new_config != &intel_crtc->config);
WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
} else if (m < m2) {
while (m < m2) {
m <<= 1;
n <<= 1;
}
 
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
if (!connector->encoder || !connector->encoder->crtc)
continue;
 
intel_crtc = to_intel_crtc(connector->encoder->crtc);
 
if (prepare_pipes & (1 << intel_crtc->pipe)) {
struct drm_property *dpms_property =
dev->mode_config.dpms_property;
 
connector->dpms = DRM_MODE_DPMS_ON;
drm_object_property_set_value(&connector->base,
dpms_property,
DRM_MODE_DPMS_ON);
 
intel_encoder = to_intel_encoder(connector->encoder);
intel_encoder->connectors_active = true;
}
}
 
return m == m2 && n == n2;
}
 
static bool intel_fuzzy_clock_check(int clock1, int clock2)
static bool
intel_compare_link_m_n(const struct intel_link_m_n *m_n,
struct intel_link_m_n *m2_n2,
bool adjust)
{
int diff;
if (m_n->tu == m2_n2->tu &&
intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
intel_compare_m_n(m_n->link_m, m_n->link_n,
m2_n2->link_m, m2_n2->link_n, !adjust)) {
if (adjust)
*m2_n2 = *m_n;
 
if (clock1 == clock2)
return true;
}
 
if (!clock1 || !clock2)
return false;
 
diff = abs(clock1 - clock2);
 
if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
return true;
 
return false;
}
 
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
list_for_each_entry((intel_crtc), \
&(dev)->mode_config.crtc_list, \
base.head) \
if (mask & (1 <<(intel_crtc)->pipe))
 
static bool
intel_pipe_config_compare(struct drm_device *dev,
struct intel_crtc_config *current_config,
struct intel_crtc_config *pipe_config)
struct intel_crtc_state *current_config,
struct intel_crtc_state *pipe_config,
bool adjust)
{
bool ret = true;
 
#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
do { \
if (!adjust) \
DRM_ERROR(fmt, ##__VA_ARGS__); \
else \
DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
} while (0)
 
#define PIPE_CONF_CHECK_X(name) \
if (current_config->name != pipe_config->name) { \
DRM_ERROR("mismatch in " #name " " \
INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
"(expected 0x%08x, found 0x%08x)\n", \
current_config->name, \
pipe_config->name); \
return false; \
ret = false; \
}
 
#define PIPE_CONF_CHECK_I(name) \
if (current_config->name != pipe_config->name) { \
DRM_ERROR("mismatch in " #name " " \
INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
"(expected %i, found %i)\n", \
current_config->name, \
pipe_config->name); \
return false; \
ret = false; \
}
 
#define PIPE_CONF_CHECK_M_N(name) \
if (!intel_compare_link_m_n(&current_config->name, \
&pipe_config->name,\
adjust)) { \
INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
"(expected tu %i gmch %i/%i link %i/%i, " \
"found tu %i, gmch %i/%i link %i/%i)\n", \
current_config->name.tu, \
current_config->name.gmch_m, \
current_config->name.gmch_n, \
current_config->name.link_m, \
current_config->name.link_n, \
pipe_config->name.tu, \
pipe_config->name.gmch_m, \
pipe_config->name.gmch_n, \
pipe_config->name.link_m, \
pipe_config->name.link_n); \
ret = false; \
}
 
#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
if (!intel_compare_link_m_n(&current_config->name, \
&pipe_config->name, adjust) && \
!intel_compare_link_m_n(&current_config->alt_name, \
&pipe_config->name, adjust)) { \
INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
"(expected tu %i gmch %i/%i link %i/%i, " \
"or tu %i gmch %i/%i link %i/%i, " \
"found tu %i, gmch %i/%i link %i/%i)\n", \
current_config->name.tu, \
current_config->name.gmch_m, \
current_config->name.gmch_n, \
current_config->name.link_m, \
current_config->name.link_n, \
current_config->alt_name.tu, \
current_config->alt_name.gmch_m, \
current_config->alt_name.gmch_n, \
current_config->alt_name.link_m, \
current_config->alt_name.link_n, \
pipe_config->name.tu, \
pipe_config->name.gmch_m, \
pipe_config->name.gmch_n, \
pipe_config->name.link_m, \
pipe_config->name.link_n); \
ret = false; \
}
 
/* This is required for BDW+ where there is only one set of registers for
* switching between high and low RR.
* This macro can be used whenever a comparison has to be made between one
10284,30 → 12470,30
#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
if ((current_config->name != pipe_config->name) && \
(current_config->alt_name != pipe_config->name)) { \
DRM_ERROR("mismatch in " #name " " \
INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
"(expected %i or %i, found %i)\n", \
current_config->name, \
current_config->alt_name, \
pipe_config->name); \
return false; \
ret = false; \
}
 
#define PIPE_CONF_CHECK_FLAGS(name, mask) \
if ((current_config->name ^ pipe_config->name) & (mask)) { \
DRM_ERROR("mismatch in " #name "(" #mask ") " \
INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
"(expected %i, found %i)\n", \
current_config->name & (mask), \
pipe_config->name & (mask)); \
return false; \
ret = false; \
}
 
#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
DRM_ERROR("mismatch in " #name " " \
INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
"(expected %i, found %i)\n", \
current_config->name, \
pipe_config->name); \
return false; \
ret = false; \
}
 
#define PIPE_CONF_QUIRK(quirk) \
10317,49 → 12503,32
 
PIPE_CONF_CHECK_I(has_pch_encoder);
PIPE_CONF_CHECK_I(fdi_lanes);
PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
PIPE_CONF_CHECK_I(fdi_m_n.link_m);
PIPE_CONF_CHECK_I(fdi_m_n.link_n);
PIPE_CONF_CHECK_I(fdi_m_n.tu);
PIPE_CONF_CHECK_M_N(fdi_m_n);
 
PIPE_CONF_CHECK_I(has_dp_encoder);
PIPE_CONF_CHECK_I(lane_count);
 
if (INTEL_INFO(dev)->gen < 8) {
PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
PIPE_CONF_CHECK_I(dp_m_n.link_m);
PIPE_CONF_CHECK_I(dp_m_n.link_n);
PIPE_CONF_CHECK_I(dp_m_n.tu);
PIPE_CONF_CHECK_M_N(dp_m_n);
 
if (current_config->has_drrs) {
PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
PIPE_CONF_CHECK_I(dp_m2_n2.tu);
}
} else {
PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
}
if (current_config->has_drrs)
PIPE_CONF_CHECK_M_N(dp_m2_n2);
} else
PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
 
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
 
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
 
PIPE_CONF_CHECK_I(pixel_multiplier);
PIPE_CONF_CHECK_I(has_hdmi_sink);
10370,45 → 12539,39
 
PIPE_CONF_CHECK_I(has_audio);
 
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_INTERLACE);
 
if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_PHSYNC);
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_NHSYNC);
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_PVSYNC);
PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
DRM_MODE_FLAG_NVSYNC);
}
 
PIPE_CONF_CHECK_I(pipe_src_w);
PIPE_CONF_CHECK_I(pipe_src_h);
 
/*
* FIXME: BIOS likes to set up a cloned config with lvds+external
* screen. Since we don't yet re-compute the pipe config when moving
* just the lvds port away to another pipe the sw tracking won't match.
*
* Proper atomic modesets with recomputed global state will fix this.
* Until then just don't check gmch state for inherited modes.
*/
if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
PIPE_CONF_CHECK_I(gmch_pfit.control);
PIPE_CONF_CHECK_X(gmch_pfit.control);
/* pfit ratios are autocomputed by the hw on gen4+ */
if (INTEL_INFO(dev)->gen < 4)
PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
}
PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
 
if (!adjust) {
PIPE_CONF_CHECK_I(pipe_src_w);
PIPE_CONF_CHECK_I(pipe_src_h);
 
PIPE_CONF_CHECK_I(pch_pfit.enabled);
if (current_config->pch_pfit.enabled) {
PIPE_CONF_CHECK_I(pch_pfit.pos);
PIPE_CONF_CHECK_I(pch_pfit.size);
PIPE_CONF_CHECK_X(pch_pfit.pos);
PIPE_CONF_CHECK_X(pch_pfit.size);
}
 
PIPE_CONF_CHECK_I(scaler_state.scaler_id);
}
 
/* BDW+ don't expose a synchronous way to read the state */
if (IS_HASWELL(dev))
PIPE_CONF_CHECK_I(ips_enabled);
10423,6 → 12586,7
PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
PIPE_CONF_CHECK_X(dpll_hw_state.spll);
PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10430,7 → 12594,7
if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
PIPE_CONF_CHECK_I(pipe_bpp);
 
PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
 
#undef PIPE_CONF_CHECK_X
10439,8 → 12603,9
#undef PIPE_CONF_CHECK_FLAGS
#undef PIPE_CONF_CHECK_CLOCK_FUZZY
#undef PIPE_CONF_QUIRK
#undef INTEL_ERR_OR_DBG_KMS
 
return true;
return ret;
}
 
static void check_wm_state(struct drm_device *dev)
10464,7 → 12629,7
continue;
 
/* planes */
for_each_plane(pipe, plane) {
for_each_plane(dev_priv, pipe, plane) {
hw_entry = &hw_ddb.plane[pipe][plane];
sw_entry = &sw_ddb->plane[pipe][plane];
 
10479,8 → 12644,8
}
 
/* cursor */
hw_entry = &hw_ddb.cursor[pipe];
sw_entry = &sw_ddb->cursor[pipe];
hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
 
if (skl_ddb_entry_equal(hw_entry, sw_entry))
continue;
10494,18 → 12659,23
}
 
static void
check_connector_state(struct drm_device *dev)
check_connector_state(struct drm_device *dev,
struct drm_atomic_state *old_state)
{
struct intel_connector *connector;
struct drm_connector_state *old_conn_state;
struct drm_connector *connector;
int i;
 
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
for_each_connector_in_state(old_state, connector, old_conn_state, i) {
struct drm_encoder *encoder = connector->encoder;
struct drm_connector_state *state = connector->state;
 
/* This also checks the encoder/connector hw state with the
* ->get_hw_state callbacks. */
intel_connector_check_state(connector);
intel_connector_check_state(to_intel_connector(connector));
 
WARN(&connector->new_encoder->base != connector->base.encoder,
"connector's staged encoder doesn't match current encoder\n");
I915_STATE_WARN(state->best_encoder != encoder,
"connector's atomic encoder doesn't match legacy encoder\n");
}
}
 
10517,124 → 12687,107
 
for_each_intel_encoder(dev, encoder) {
bool enabled = false;
bool active = false;
enum pipe pipe, tracked_pipe;
enum pipe pipe;
 
DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
encoder->base.base.id,
encoder->base.name);
 
WARN(&encoder->new_crtc->base != encoder->base.crtc,
"encoder's stage crtc doesn't match current crtc\n");
WARN(encoder->connectors_active && !encoder->base.crtc,
"encoder's active_connectors set, but no crtc\n");
 
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->base.encoder != &encoder->base)
for_each_intel_connector(dev, connector) {
if (connector->base.state->best_encoder != &encoder->base)
continue;
enabled = true;
if (connector->base.dpms != DRM_MODE_DPMS_OFF)
active = true;
 
I915_STATE_WARN(connector->base.state->crtc !=
encoder->base.crtc,
"connector's crtc doesn't match encoder crtc\n");
}
/*
* for MST connectors if we unplug the connector is gone
* away but the encoder is still connected to a crtc
* until a modeset happens in response to the hotplug.
*/
if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
continue;
 
WARN(!!encoder->base.crtc != enabled,
I915_STATE_WARN(!!encoder->base.crtc != enabled,
"encoder's enabled state mismatch "
"(expected %i, found %i)\n",
!!encoder->base.crtc, enabled);
WARN(active && !encoder->base.crtc,
"active encoder with no crtc\n");
 
WARN(encoder->connectors_active != active,
"encoder's computed active state doesn't match tracked active state "
"(expected %i, found %i)\n", active, encoder->connectors_active);
if (!encoder->base.crtc) {
bool active;
 
active = encoder->get_hw_state(encoder, &pipe);
WARN(active != encoder->connectors_active,
"encoder's hw state doesn't match sw tracking "
"(expected %i, found %i)\n",
encoder->connectors_active, active);
 
if (!encoder->base.crtc)
continue;
 
tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
WARN(active && pipe != tracked_pipe,
"active encoder's pipe doesn't match"
"(expected %i, found %i)\n",
tracked_pipe, pipe);
 
I915_STATE_WARN(active,
"encoder detached but still enabled on pipe %c.\n",
pipe_name(pipe));
}
}
}
 
static void
check_crtc_state(struct drm_device *dev)
check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_crtc_config pipe_config;
struct drm_crtc_state *old_crtc_state;
struct drm_crtc *crtc;
int i;
 
for_each_intel_crtc(dev, crtc) {
bool enabled = false;
bool active = false;
for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *pipe_config, *sw_config;
bool active;
 
memset(&pipe_config, 0, sizeof(pipe_config));
if (!needs_modeset(crtc->state) &&
!to_intel_crtc_state(crtc->state)->update_pipe)
continue;
 
__drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
pipe_config = to_intel_crtc_state(old_crtc_state);
memset(pipe_config, 0, sizeof(*pipe_config));
pipe_config->base.crtc = crtc;
pipe_config->base.state = old_state;
 
DRM_DEBUG_KMS("[CRTC:%d]\n",
crtc->base.base.id);
crtc->base.id);
 
WARN(crtc->active && !crtc->base.enabled,
"active crtc, but not enabled in sw tracking\n");
active = dev_priv->display.get_pipe_config(intel_crtc,
pipe_config);
 
for_each_intel_encoder(dev, encoder) {
if (encoder->base.crtc != &crtc->base)
continue;
enabled = true;
if (encoder->connectors_active)
active = true;
}
/* hw state is inconsistent with the pipe quirk */
if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
active = crtc->state->active;
 
WARN(active != crtc->active,
"crtc's computed active state doesn't match tracked active state "
"(expected %i, found %i)\n", active, crtc->active);
WARN(enabled != crtc->base.enabled,
"crtc's computed enabled state doesn't match tracked enabled state "
"(expected %i, found %i)\n", enabled, crtc->base.enabled);
I915_STATE_WARN(crtc->state->active != active,
"crtc active state doesn't match with hw state "
"(expected %i, found %i)\n", crtc->state->active, active);
 
active = dev_priv->display.get_pipe_config(crtc,
&pipe_config);
I915_STATE_WARN(intel_crtc->active != crtc->state->active,
"transitional active state does not match atomic hw state "
"(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
 
/* hw state is inconsistent with the pipe quirk */
if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
(crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
active = crtc->active;
for_each_encoder_on_crtc(dev, crtc, encoder) {
enum pipe pipe;
 
for_each_intel_encoder(dev, encoder) {
enum pipe pipe;
if (encoder->base.crtc != &crtc->base)
continue;
if (encoder->get_hw_state(encoder, &pipe))
encoder->get_config(encoder, &pipe_config);
active = encoder->get_hw_state(encoder, &pipe);
I915_STATE_WARN(active != crtc->state->active,
"[ENCODER:%i] active %i with crtc active %i\n",
encoder->base.base.id, active, crtc->state->active);
 
I915_STATE_WARN(active && intel_crtc->pipe != pipe,
"Encoder connected to wrong pipe %c\n",
pipe_name(pipe));
 
if (active)
encoder->get_config(encoder, pipe_config);
}
 
WARN(crtc->active != active,
"crtc active state doesn't match with hw state "
"(expected %i, found %i)\n", crtc->active, active);
if (!crtc->state->active)
continue;
 
if (active &&
!intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
WARN(1, "pipe state doesn't match!\n");
intel_dump_pipe_config(crtc, &pipe_config,
sw_config = to_intel_crtc_state(crtc->state);
if (!intel_pipe_config_compare(dev, sw_config,
pipe_config, false)) {
I915_STATE_WARN(1, "pipe state doesn't match!\n");
intel_dump_pipe_config(intel_crtc, pipe_config,
"[hw state]");
intel_dump_pipe_config(crtc, &crtc->config,
intel_dump_pipe_config(intel_crtc, sw_config,
"[sw state]");
}
}
10659,47 → 12812,48
 
active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
 
WARN(pll->active > hweight32(pll->config.crtc_mask),
I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
"more active pll users than references: %i vs %i\n",
pll->active, hweight32(pll->config.crtc_mask));
WARN(pll->active && !pll->on,
I915_STATE_WARN(pll->active && !pll->on,
"pll in active use but not on in sw tracking\n");
WARN(pll->on && !pll->active,
I915_STATE_WARN(pll->on && !pll->active,
"pll in on but not on in use in sw tracking\n");
WARN(pll->on != active,
I915_STATE_WARN(pll->on != active,
"pll on state mismatch (expected %i, found %i)\n",
pll->on, active);
 
for_each_intel_crtc(dev, crtc) {
if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
enabled_crtcs++;
if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
active_crtcs++;
}
WARN(pll->active != active_crtcs,
I915_STATE_WARN(pll->active != active_crtcs,
"pll active crtcs mismatch (expected %i, found %i)\n",
pll->active, active_crtcs);
WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
"pll enabled crtcs mismatch (expected %i, found %i)\n",
hweight32(pll->config.crtc_mask), enabled_crtcs);
 
WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
sizeof(dpll_hw_state)),
"pll hw state mismatch\n");
}
}
 
void
intel_modeset_check_state(struct drm_device *dev)
static void
intel_modeset_check_state(struct drm_device *dev,
struct drm_atomic_state *old_state)
{
check_wm_state(dev);
check_connector_state(dev);
check_connector_state(dev, old_state);
check_encoder_state(dev);
check_crtc_state(dev);
check_crtc_state(dev, old_state);
check_shared_dpll_state(dev);
}
 
void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
int dotclock)
{
/*
10706,9 → 12860,9
* FDI already provided one idea for the dotclock.
* Yell if the encoder disagrees.
*/
WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
"FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
pipe_config->adjusted_mode.crtc_clock, dotclock);
pipe_config->base.adjusted_mode.crtc_clock, dotclock);
}
 
static void update_scanline_offset(struct intel_crtc *crtc)
10734,11 → 12888,11
* one to the value.
*/
if (IS_GEN2(dev)) {
const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
int vtotal;
 
vtotal = mode->crtc_vtotal;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
vtotal = adjusted_mode->crtc_vtotal;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
vtotal /= 2;
 
crtc->scanline_offset = vtotal - 1;
10749,679 → 12903,412
crtc->scanline_offset = 1;
}
 
static struct intel_crtc_config *
intel_modeset_compute_config(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_framebuffer *fb,
unsigned *modeset_pipes,
unsigned *prepare_pipes,
unsigned *disable_pipes)
static void intel_modeset_clear_plls(struct drm_atomic_state *state)
{
struct intel_crtc_config *pipe_config = NULL;
 
intel_modeset_affected_pipes(crtc, modeset_pipes,
prepare_pipes, disable_pipes);
 
if ((*modeset_pipes) == 0)
goto out;
 
/*
* Note this needs changes when we start tracking multiple modes
* and crtcs. At that point we'll need to compute the whole config
* (i.e. one pipe_config for each crtc) rather than just the one
* for this crtc.
*/
pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
if (IS_ERR(pipe_config)) {
goto out;
}
intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
"[modeset]");
 
out:
return pipe_config;
}
 
static int __intel_set_mode(struct drm_crtc *crtc,
struct drm_display_mode *mode,
int x, int y, struct drm_framebuffer *fb,
struct intel_crtc_config *pipe_config,
unsigned modeset_pipes,
unsigned prepare_pipes,
unsigned disable_pipes)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_display_mode *saved_mode;
struct drm_device *dev = state->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_shared_dpll_config *shared_dpll = NULL;
struct intel_crtc *intel_crtc;
int ret = 0;
struct intel_crtc_state *intel_crtc_state;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
int i;
 
saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
if (!saved_mode)
return -ENOMEM;
if (!dev_priv->display.crtc_compute_clock)
return;
 
*saved_mode = crtc->mode;
for_each_crtc_in_state(state, crtc, crtc_state, i) {
int dpll;
 
if (modeset_pipes)
to_intel_crtc(crtc)->new_config = pipe_config;
intel_crtc = to_intel_crtc(crtc);
intel_crtc_state = to_intel_crtc_state(crtc_state);
dpll = intel_crtc_state->shared_dpll;
 
/*
* See if the config requires any additional preparation, e.g.
* to adjust global state with pipes off. We need to do this
* here so we can get the modeset_pipe updated config for the new
* mode set on this crtc. For other crtcs we need to use the
* adjusted_mode bits in the crtc directly.
*/
if (IS_VALLEYVIEW(dev)) {
valleyview_modeset_global_pipes(dev, &prepare_pipes);
if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
continue;
 
/* may have added more to prepare_pipes than we should */
prepare_pipes &= ~disable_pipes;
}
intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
 
if (dev_priv->display.crtc_compute_clock) {
unsigned clear_pipes = modeset_pipes | disable_pipes;
if (!shared_dpll)
shared_dpll = intel_atomic_get_shared_dpll_state(state);
 
ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
if (ret)
goto done;
 
for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
ret = dev_priv->display.crtc_compute_clock(intel_crtc);
if (ret) {
intel_shared_dpll_abort_config(dev_priv);
goto done;
shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
}
}
}
 
for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
intel_crtc_disable(&intel_crtc->base);
 
for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
if (intel_crtc->base.enabled)
dev_priv->display.crtc_disable(&intel_crtc->base);
}
 
/* crtc->mode is already used by the ->mode_set callbacks, hence we need
* to set it here already despite that we pass it down the callchain.
*
* Note we'll need to fix this up when we start tracking multiple
* pipes; here we assume a single modeset_pipe and only track the
* single crtc and mode.
*/
if (modeset_pipes) {
crtc->mode = *mode;
/* mode_set/enable/disable functions rely on a correct pipe
* config. */
to_intel_crtc(crtc)->config = *pipe_config;
to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
 
/*
* Calculate and store various constants which
* are later needed by vblank and swap-completion
* timestamping. They are derived from true hwmode.
* This implements the workaround described in the "notes" section of the mode
* set sequence documentation. When going from no pipes or single pipe to
* multiple pipes, and planes are enabled after the pipe, we need to wait at
* least 2 vblanks on the first pipe before enabling planes on the second pipe.
*/
drm_calc_timestamping_constants(crtc,
&pipe_config->adjusted_mode);
}
static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state;
struct intel_crtc *intel_crtc;
struct drm_crtc *crtc;
struct intel_crtc_state *first_crtc_state = NULL;
struct intel_crtc_state *other_crtc_state = NULL;
enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
int i;
 
/* Only after disabling all output pipelines that will be changed can we
* update the the output configuration. */
intel_modeset_update_state(dev, prepare_pipes);
/* look at all crtc's that are going to be enabled in during modeset */
for_each_crtc_in_state(state, crtc, crtc_state, i) {
intel_crtc = to_intel_crtc(crtc);
 
modeset_update_crtc_power_domains(dev);
if (!crtc_state->active || !needs_modeset(crtc_state))
continue;
 
/* Set up the DPLL and any encoders state that needs to adjust or depend
* on the DPLL.
*/
for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
struct drm_framebuffer *old_fb = crtc->primary->fb;
struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
 
mutex_lock(&dev->struct_mutex);
ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
if (ret != 0) {
DRM_ERROR("pin & fence failed\n");
mutex_unlock(&dev->struct_mutex);
goto done;
if (first_crtc_state) {
other_crtc_state = to_intel_crtc_state(crtc_state);
break;
} else {
first_crtc_state = to_intel_crtc_state(crtc_state);
first_pipe = intel_crtc->pipe;
}
if (old_fb)
intel_unpin_fb_obj(old_obj);
i915_gem_track_fb(old_obj, obj,
INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
mutex_unlock(&dev->struct_mutex);
 
crtc->primary->fb = fb;
crtc->x = x;
crtc->y = y;
}
 
/* Now enable the clocks, plane, pipe, and connectors that we set up. */
for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
update_scanline_offset(intel_crtc);
/* No workaround needed? */
if (!first_crtc_state)
return 0;
 
dev_priv->display.crtc_enable(&intel_crtc->base);
}
/* w/a possibly needed, check how many crtc's are already enabled. */
for_each_intel_crtc(state->dev, intel_crtc) {
struct intel_crtc_state *pipe_config;
 
/* FIXME: add subpixel order */
done:
if (ret && crtc->enabled)
crtc->mode = *saved_mode;
pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
if (IS_ERR(pipe_config))
return PTR_ERR(pipe_config);
 
kfree(pipe_config);
kfree(saved_mode);
return ret;
}
pipe_config->hsw_workaround_pipe = INVALID_PIPE;
 
static int intel_set_mode_pipes(struct drm_crtc *crtc,
struct drm_display_mode *mode,
int x, int y, struct drm_framebuffer *fb,
struct intel_crtc_config *pipe_config,
unsigned modeset_pipes,
unsigned prepare_pipes,
unsigned disable_pipes)
{
int ret;
if (!pipe_config->base.active ||
needs_modeset(&pipe_config->base))
continue;
 
ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
prepare_pipes, disable_pipes);
/* 2 or more enabled crtcs means no need for w/a */
if (enabled_pipe != INVALID_PIPE)
return 0;
 
if (ret == 0)
intel_modeset_check_state(crtc->dev);
 
return ret;
enabled_pipe = intel_crtc->pipe;
}
 
static int intel_set_mode(struct drm_crtc *crtc,
struct drm_display_mode *mode,
int x, int y, struct drm_framebuffer *fb)
{
struct intel_crtc_config *pipe_config;
unsigned modeset_pipes, prepare_pipes, disable_pipes;
if (enabled_pipe != INVALID_PIPE)
first_crtc_state->hsw_workaround_pipe = enabled_pipe;
else if (other_crtc_state)
other_crtc_state->hsw_workaround_pipe = first_pipe;
 
pipe_config = intel_modeset_compute_config(crtc, mode, fb,
&modeset_pipes,
&prepare_pipes,
&disable_pipes);
 
if (IS_ERR(pipe_config))
return PTR_ERR(pipe_config);
 
return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
modeset_pipes, prepare_pipes,
disable_pipes);
return 0;
}
 
void intel_crtc_restore_mode(struct drm_crtc *crtc)
static int intel_modeset_all_pipes(struct drm_atomic_state *state)
{
intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
}
 
#undef for_each_intel_crtc_masked
 
static void intel_set_config_free(struct intel_set_config *config)
{
if (!config)
return;
 
kfree(config->save_connector_encoders);
kfree(config->save_encoder_crtcs);
kfree(config->save_crtc_enabled);
kfree(config);
}
 
static int intel_set_config_save_state(struct drm_device *dev,
struct intel_set_config *config)
{
struct drm_crtc *crtc;
struct drm_encoder *encoder;
struct drm_connector *connector;
int count;
struct drm_crtc_state *crtc_state;
int ret = 0;
 
config->save_crtc_enabled =
kcalloc(dev->mode_config.num_crtc,
sizeof(bool), GFP_KERNEL);
if (!config->save_crtc_enabled)
return -ENOMEM;
/* add all active pipes to the state */
for_each_crtc(state->dev, crtc) {
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
 
config->save_encoder_crtcs =
kcalloc(dev->mode_config.num_encoder,
sizeof(struct drm_crtc *), GFP_KERNEL);
if (!config->save_encoder_crtcs)
return -ENOMEM;
if (!crtc_state->active || needs_modeset(crtc_state))
continue;
 
config->save_connector_encoders =
kcalloc(dev->mode_config.num_connector,
sizeof(struct drm_encoder *), GFP_KERNEL);
if (!config->save_connector_encoders)
return -ENOMEM;
crtc_state->mode_changed = true;
 
/* Copy data. Note that driver private data is not affected.
* Should anything bad happen only the expected state is
* restored, not the drivers personal bookkeeping.
*/
count = 0;
for_each_crtc(dev, crtc) {
config->save_crtc_enabled[count++] = crtc->enabled;
}
ret = drm_atomic_add_affected_connectors(state, crtc);
if (ret)
break;
 
count = 0;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
config->save_encoder_crtcs[count++] = encoder->crtc;
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
break;
}
 
count = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
config->save_connector_encoders[count++] = connector->encoder;
return ret;
}
 
return 0;
}
 
static void intel_set_config_restore_state(struct drm_device *dev,
struct intel_set_config *config)
static int intel_modeset_checks(struct drm_atomic_state *state)
{
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
int count;
struct drm_device *dev = state->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
 
count = 0;
for_each_intel_crtc(dev, crtc) {
crtc->new_enabled = config->save_crtc_enabled[count++];
 
if (crtc->new_enabled)
crtc->new_config = &crtc->config;
else
crtc->new_config = NULL;
if (!check_digital_port_conflicts(state)) {
DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
return -EINVAL;
}
 
count = 0;
for_each_intel_encoder(dev, encoder) {
encoder->new_crtc =
to_intel_crtc(config->save_encoder_crtcs[count++]);
}
/*
* See if the config requires any additional preparation, e.g.
* to adjust global state with pipes off. We need to do this
* here so we can get the modeset_pipe updated config for the new
* mode set on this crtc. For other crtcs we need to use the
* adjusted_mode bits in the crtc directly.
*/
if (dev_priv->display.modeset_calc_cdclk) {
unsigned int cdclk;
 
count = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
connector->new_encoder =
to_intel_encoder(config->save_connector_encoders[count++]);
}
}
ret = dev_priv->display.modeset_calc_cdclk(state);
 
static bool
is_crtc_connector_off(struct drm_mode_set *set)
{
int i;
cdclk = to_intel_atomic_state(state)->cdclk;
if (!ret && cdclk != dev_priv->cdclk_freq)
ret = intel_modeset_all_pipes(state);
 
if (set->num_connectors == 0)
return false;
if (ret < 0)
return ret;
} else
to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
 
if (WARN_ON(set->connectors == NULL))
return false;
intel_modeset_clear_plls(state);
 
for (i = 0; i < set->num_connectors; i++)
if (set->connectors[i]->encoder &&
set->connectors[i]->encoder->crtc == set->crtc &&
set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
return true;
if (IS_HASWELL(dev))
return haswell_mode_set_planes_workaround(state);
 
return false;
return 0;
}
 
static void
intel_set_config_compute_mode_changes(struct drm_mode_set *set,
struct intel_set_config *config)
/**
* intel_atomic_check - validate state object
* @dev: drm device
* @state: state to validate
*/
static int intel_atomic_check(struct drm_device *dev,
struct drm_atomic_state *state)
{
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
int ret, i;
bool any_ms = false;
 
/* We should be able to check here if the fb has the same properties
* and then just flip_or_move it */
if (is_crtc_connector_off(set)) {
config->mode_changed = true;
} else if (set->crtc->primary->fb != set->fb) {
/*
* If we have no fb, we can only flip as long as the crtc is
* active, otherwise we need a full mode set. The crtc may
* be active if we've only disabled the primary plane, or
* in fastboot situations.
*/
if (set->crtc->primary->fb == NULL) {
struct intel_crtc *intel_crtc =
to_intel_crtc(set->crtc);
ret = drm_atomic_helper_check_modeset(dev, state);
if (ret)
return ret;
 
if (intel_crtc->active) {
DRM_DEBUG_KMS("crtc has no fb, will flip\n");
config->fb_changed = true;
} else {
DRM_DEBUG_KMS("inactive crtc, full mode set\n");
config->mode_changed = true;
}
} else if (set->fb == NULL) {
config->mode_changed = true;
} else if (set->fb->pixel_format !=
set->crtc->primary->fb->pixel_format) {
config->mode_changed = true;
} else {
config->fb_changed = true;
}
}
for_each_crtc_in_state(state, crtc, crtc_state, i) {
struct intel_crtc_state *pipe_config =
to_intel_crtc_state(crtc_state);
 
if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
config->fb_changed = true;
memset(&to_intel_crtc(crtc)->atomic, 0,
sizeof(struct intel_crtc_atomic_commit));
 
if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
DRM_DEBUG_KMS("modes are different, full mode set\n");
drm_mode_debug_printmodeline(&set->crtc->mode);
drm_mode_debug_printmodeline(set->mode);
config->mode_changed = true;
}
/* Catch I915_MODE_FLAG_INHERITED */
if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
crtc_state->mode_changed = true;
 
DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
set->crtc->base.id, config->mode_changed, config->fb_changed);
if (!crtc_state->enable) {
if (needs_modeset(crtc_state))
any_ms = true;
continue;
}
 
static int
intel_modeset_stage_output_state(struct drm_device *dev,
struct drm_mode_set *set,
struct intel_set_config *config)
{
struct intel_connector *connector;
struct intel_encoder *encoder;
struct intel_crtc *crtc;
int ro;
if (!needs_modeset(crtc_state))
continue;
 
/* The upper layers ensure that we either disable a crtc or have a list
* of connectors. For paranoia, double-check this. */
WARN_ON(!set->fb && (set->num_connectors != 0));
WARN_ON(set->fb && (set->num_connectors == 0));
/* FIXME: For only active_changed we shouldn't need to do any
* state recomputation at all. */
 
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
/* Otherwise traverse passed in connector list and get encoders
* for them. */
for (ro = 0; ro < set->num_connectors; ro++) {
if (set->connectors[ro] == &connector->base) {
connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
break;
}
}
ret = drm_atomic_add_affected_connectors(state, crtc);
if (ret)
return ret;
 
/* If we disable the crtc, disable all its connectors. Also, if
* the connector is on the changing crtc but not on the new
* connector list, disable it. */
if ((!set->fb || ro == set->num_connectors) &&
connector->base.encoder &&
connector->base.encoder->crtc == set->crtc) {
connector->new_encoder = NULL;
ret = intel_modeset_pipe_config(crtc, pipe_config);
if (ret)
return ret;
 
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
connector->base.base.id,
connector->base.name);
if (i915.fastboot &&
intel_pipe_config_compare(state->dev,
to_intel_crtc_state(crtc->state),
pipe_config, true)) {
crtc_state->mode_changed = false;
to_intel_crtc_state(crtc_state)->update_pipe = true;
}
 
if (needs_modeset(crtc_state)) {
any_ms = true;
 
if (&connector->new_encoder->base != connector->base.encoder) {
DRM_DEBUG_KMS("encoder changed, full mode switch\n");
config->mode_changed = true;
ret = drm_atomic_add_affected_planes(state, crtc);
if (ret)
return ret;
}
 
intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
needs_modeset(crtc_state) ?
"[modeset]" : "[fastset]");
}
/* connector->new_encoder is now updated for all connectors. */
 
/* Update crtc of enabled connectors. */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
struct drm_crtc *new_crtc;
if (any_ms) {
ret = intel_modeset_checks(state);
 
if (!connector->new_encoder)
continue;
if (ret)
return ret;
} else
to_intel_atomic_state(state)->cdclk =
to_i915(state->dev)->cdclk_freq;
 
new_crtc = connector->new_encoder->base.crtc;
 
for (ro = 0; ro < set->num_connectors; ro++) {
if (set->connectors[ro] == &connector->base)
new_crtc = set->crtc;
return drm_atomic_helper_check_planes(state->dev, state);
}
 
/* Make sure the new CRTC will work with the encoder */
if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
new_crtc)) {
/**
* intel_atomic_commit - commit validated state object
* @dev: DRM device
* @state: the top-level driver state object
* @async: asynchronous commit
*
* This function commits a top-level state object that has been validated
* with drm_atomic_helper_check().
*
* FIXME: Atomic modeset support for i915 is not yet complete. At the moment
* we can only handle plane-related operations and do not yet support
* asynchronous commit.
*
* RETURNS
* Zero for success or -errno.
*/
static int intel_atomic_commit(struct drm_device *dev,
struct drm_atomic_state *state,
bool async)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
struct drm_crtc_state *crtc_state;
int ret = 0;
int i;
bool any_ms = false;
 
if (async) {
DRM_DEBUG_KMS("i915 does not yet support async commit\n");
return -EINVAL;
}
connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
 
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
connector->base.base.id,
connector->base.name,
new_crtc->base.id);
}
ret = drm_atomic_helper_prepare_planes(dev, state);
if (ret)
return ret;
 
/* Check for any encoders that needs to be disabled. */
for_each_intel_encoder(dev, encoder) {
int num_connectors = 0;
list_for_each_entry(connector,
&dev->mode_config.connector_list,
base.head) {
if (connector->new_encoder == encoder) {
WARN_ON(!connector->new_encoder->new_crtc);
num_connectors++;
}
}
drm_atomic_helper_swap_state(dev, state);
 
if (num_connectors == 0)
encoder->new_crtc = NULL;
else if (num_connectors > 1)
return -EINVAL;
for_each_crtc_in_state(state, crtc, crtc_state, i) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 
/* Only now check for crtc changes so we don't miss encoders
* that will be disabled. */
if (&encoder->new_crtc->base != encoder->base.crtc) {
DRM_DEBUG_KMS("crtc changed, full mode switch\n");
config->mode_changed = true;
}
}
/* Now we've also updated encoder->new_crtc for all encoders. */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->new_encoder)
if (connector->new_encoder != connector->encoder)
connector->encoder = connector->new_encoder;
}
for_each_intel_crtc(dev, crtc) {
crtc->new_enabled = false;
if (!needs_modeset(crtc->state))
continue;
 
for_each_intel_encoder(dev, encoder) {
if (encoder->new_crtc == crtc) {
crtc->new_enabled = true;
break;
any_ms = true;
intel_pre_plane_update(intel_crtc);
 
if (crtc_state->active) {
intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
dev_priv->display.crtc_disable(crtc);
intel_crtc->active = false;
intel_disable_shared_dpll(intel_crtc);
}
}
 
if (crtc->new_enabled != crtc->base.enabled) {
DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
crtc->new_enabled ? "en" : "dis");
config->mode_changed = true;
}
/* Only after disabling all output pipelines that will be changed can we
* update the the output configuration. */
intel_modeset_update_crtc_state(state);
 
if (crtc->new_enabled)
crtc->new_config = &crtc->config;
else
crtc->new_config = NULL;
}
if (any_ms) {
intel_shared_dpll_commit(state);
 
return 0;
drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
modeset_update_crtc_power_domains(state);
}
 
static void disable_crtc_nofb(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct intel_encoder *encoder;
struct intel_connector *connector;
/* Now enable the clocks, plane, pipe, and connectors that we set up. */
for_each_crtc_in_state(state, crtc, crtc_state, i) {
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bool modeset = needs_modeset(crtc->state);
bool update_pipe = !modeset &&
to_intel_crtc_state(crtc->state)->update_pipe;
unsigned long put_domains = 0;
 
DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
pipe_name(crtc->pipe));
 
list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
if (connector->new_encoder &&
connector->new_encoder->new_crtc == crtc)
connector->new_encoder = NULL;
if (modeset && crtc->state->active) {
update_scanline_offset(to_intel_crtc(crtc));
dev_priv->display.crtc_enable(crtc);
}
 
for_each_intel_encoder(dev, encoder) {
if (encoder->new_crtc == crtc)
encoder->new_crtc = NULL;
}
if (update_pipe) {
put_domains = modeset_get_crtc_power_domains(crtc);
 
crtc->new_enabled = false;
crtc->new_config = NULL;
/* make sure intel_modeset_check_state runs */
any_ms = true;
}
 
static int intel_crtc_set_config(struct drm_mode_set *set)
{
struct drm_device *dev;
struct drm_mode_set save_set;
struct intel_set_config *config;
struct intel_crtc_config *pipe_config;
unsigned modeset_pipes, prepare_pipes, disable_pipes;
int ret;
if (!modeset)
intel_pre_plane_update(intel_crtc);
 
BUG_ON(!set);
BUG_ON(!set->crtc);
BUG_ON(!set->crtc->helper_private);
drm_atomic_helper_commit_planes_on_crtc(crtc_state);
 
/* Enforce sane interface api - has been abused by the fb helper. */
BUG_ON(!set->mode && set->fb);
BUG_ON(set->fb && set->num_connectors == 0);
if (put_domains)
modeset_put_power_domains(dev_priv, put_domains);
 
if (set->fb) {
DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
set->crtc->base.id, set->fb->base.id,
(int)set->num_connectors, set->x, set->y);
} else {
DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
intel_post_plane_update(intel_crtc);
}
 
dev = set->crtc->dev;
/* FIXME: add subpixel order */
 
ret = -ENOMEM;
config = kzalloc(sizeof(*config), GFP_KERNEL);
if (!config)
goto out_config;
// drm_atomic_helper_wait_for_vblanks(dev, state);
 
ret = intel_set_config_save_state(dev, config);
if (ret)
goto out_config;
drm_atomic_helper_cleanup_planes(dev, state);
 
save_set.crtc = set->crtc;
save_set.mode = &set->crtc->mode;
save_set.x = set->crtc->x;
save_set.y = set->crtc->y;
save_set.fb = set->crtc->primary->fb;
if (any_ms)
intel_modeset_check_state(dev, state);
 
/* Compute whether we need a full modeset, only an fb base update or no
* change at all. In the future we might also check whether only the
* mode changed, e.g. for LVDS where we only change the panel fitter in
* such cases. */
intel_set_config_compute_mode_changes(set, config);
drm_atomic_state_free(state);
 
ret = intel_modeset_stage_output_state(dev, set, config);
if (ret)
goto fail;
return 0;
}
 
pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
set->fb,
&modeset_pipes,
&prepare_pipes,
&disable_pipes);
if (IS_ERR(pipe_config)) {
ret = PTR_ERR(pipe_config);
goto fail;
} else if (pipe_config) {
if (pipe_config->has_audio !=
to_intel_crtc(set->crtc)->config.has_audio)
config->mode_changed = true;
void intel_crtc_restore_mode(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_atomic_state *state;
struct drm_crtc_state *crtc_state;
int ret;
 
/*
* Note we have an issue here with infoframes: current code
* only updates them on the full mode set path per hw
* requirements. So here we should be checking for any
* required changes and forcing a mode set.
*/
state = drm_atomic_state_alloc(dev);
if (!state) {
DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
crtc->base.id);
return;
}
 
/* set_mode will free it in the mode_changed case */
if (!config->mode_changed)
kfree(pipe_config);
state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
 
intel_update_pipe_size(to_intel_crtc(set->crtc));
retry:
crtc_state = drm_atomic_get_crtc_state(state, crtc);
ret = PTR_ERR_OR_ZERO(crtc_state);
if (!ret) {
if (!crtc_state->active)
goto out;
 
if (config->mode_changed) {
ret = intel_set_mode_pipes(set->crtc, set->mode,
set->x, set->y, set->fb, pipe_config,
modeset_pipes, prepare_pipes,
disable_pipes);
} else if (config->fb_changed) {
struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
 
// intel_crtc_wait_for_pending_flips(set->crtc);
 
ret = intel_pipe_set_base(set->crtc,
set->x, set->y, set->fb);
 
/*
* We need to make sure the primary plane is re-enabled if it
* has previously been turned off.
*/
if (!intel_crtc->primary_enabled && ret == 0) {
WARN_ON(!intel_crtc->active);
intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
crtc_state->mode_changed = true;
ret = drm_atomic_commit(state);
}
 
/*
* In the fastboot case this may be our only check of the
* state after boot. It would be better to only do it on
* the first update, but we don't have a nice way of doing that
* (and really, set_config isn't used much for high freq page
* flipping, so increasing its cost here shouldn't be a big
* deal).
*/
if (i915.fastboot && ret == 0)
intel_modeset_check_state(set->crtc->dev);
if (ret == -EDEADLK) {
drm_atomic_state_clear(state);
drm_modeset_backoff(state->acquire_ctx);
goto retry;
}
 
if (ret) {
DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
set->crtc->base.id, ret);
fail:
intel_set_config_restore_state(dev, config);
 
/*
* HACK: if the pipe was on, but we didn't have a framebuffer,
* force the pipe off to avoid oopsing in the modeset code
* due to fb==NULL. This should only happen during boot since
* we don't yet reconstruct the FB from the hardware state.
*/
if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
disable_crtc_nofb(to_intel_crtc(save_set.crtc));
 
/* Try to restore the config */
if (config->mode_changed &&
intel_set_mode(save_set.crtc, save_set.mode,
save_set.x, save_set.y, save_set.fb))
DRM_ERROR("failed to restore config after modeset failure\n");
if (ret)
out:
drm_atomic_state_free(state);
}
 
out_config:
intel_set_config_free(config);
return ret;
}
#undef for_each_intel_crtc_masked
 
static const struct drm_crtc_funcs intel_crtc_funcs = {
.gamma_set = intel_crtc_gamma_set,
.set_config = intel_crtc_set_config,
.set_config = drm_atomic_helper_set_config,
.destroy = intel_crtc_destroy,
// .page_flip = intel_crtc_page_flip,
.atomic_duplicate_state = intel_crtc_duplicate_state,
.atomic_destroy_state = intel_crtc_destroy_state,
};
 
static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11524,91 → 13411,131
BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
}
 
static int
intel_primary_plane_disable(struct drm_plane *plane)
/**
* intel_prepare_plane_fb - Prepare fb for usage on plane
* @plane: drm plane to prepare for
* @fb: framebuffer to prepare for presentation
*
* Prepares a framebuffer for usage on a display plane. Generally this
* involves pinning the underlying object and updating the frontbuffer tracking
* bits. Some older platforms need special physical address handling for
* cursor planes.
*
* Returns 0 on success, negative error code on failure.
*/
int
intel_prepare_plane_fb(struct drm_plane *plane,
const struct drm_plane_state *new_state)
{
struct drm_device *dev = plane->dev;
struct intel_crtc *intel_crtc;
struct drm_framebuffer *fb = new_state->fb;
struct intel_plane *intel_plane = to_intel_plane(plane);
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
int ret = 0;
 
if (!plane->fb)
if (!obj)
return 0;
 
BUG_ON(!plane->crtc);
mutex_lock(&dev->struct_mutex);
 
intel_crtc = to_intel_crtc(plane->crtc);
if (plane->type == DRM_PLANE_TYPE_CURSOR &&
INTEL_INFO(dev)->cursor_needs_physical) {
int align = IS_I830(dev) ? 16 * 1024 : 256;
ret = 1;
if (ret)
DRM_DEBUG_KMS("failed to attach phys object\n");
} else {
ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
}
 
/*
* Even though we checked plane->fb above, it's still possible that
* the primary plane has been implicitly disabled because the crtc
* coordinates given weren't visible, or because we detected
* that it was 100% covered by a sprite plane. Or, the CRTC may be
* off and we've set a fb, but haven't actually turned on the CRTC yet.
* In either case, we need to unpin the FB and let the fb pointer get
* updated, but otherwise we don't need to touch the hardware.
if (ret == 0)
i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
 
mutex_unlock(&dev->struct_mutex);
 
return ret;
}
 
/**
* intel_cleanup_plane_fb - Cleans up an fb after plane use
* @plane: drm plane to clean up for
* @fb: old framebuffer that was on plane
*
* Cleans up a framebuffer that has just been removed from a plane.
*/
if (!intel_crtc->primary_enabled)
goto disable_unpin;
void
intel_cleanup_plane_fb(struct drm_plane *plane,
const struct drm_plane_state *old_state)
{
struct drm_device *dev = plane->dev;
struct drm_i915_gem_object *obj = intel_fb_obj(old_state->fb);
 
// intel_crtc_wait_for_pending_flips(plane->crtc);
intel_disable_primary_hw_plane(plane, plane->crtc);
if (!obj)
return;
 
disable_unpin:
if (plane->type != DRM_PLANE_TYPE_CURSOR ||
!INTEL_INFO(dev)->cursor_needs_physical) {
mutex_lock(&dev->struct_mutex);
i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
intel_unpin_fb_obj(intel_fb_obj(plane->fb));
intel_unpin_fb_obj(old_state->fb, old_state);
mutex_unlock(&dev->struct_mutex);
plane->fb = NULL;
 
return 0;
}
}
 
static int
intel_check_primary_plane(struct drm_plane *plane,
struct intel_plane_state *state)
int
skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_framebuffer *fb = state->fb;
struct drm_rect *dest = &state->dst;
struct drm_rect *src = &state->src;
const struct drm_rect *clip = &state->clip;
int max_scale;
struct drm_device *dev;
struct drm_i915_private *dev_priv;
int crtc_clock, cdclk;
 
return drm_plane_helper_check_update(plane, crtc, fb,
src, dest, clip,
DRM_PLANE_HELPER_NO_SCALING,
DRM_PLANE_HELPER_NO_SCALING,
false, true, &state->visible);
if (!intel_crtc || !crtc_state)
return DRM_PLANE_HELPER_NO_SCALING;
 
dev = intel_crtc->base.dev;
dev_priv = dev->dev_private;
crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
 
if (!crtc_clock || !cdclk)
return DRM_PLANE_HELPER_NO_SCALING;
 
/*
* skl max scale is lower of:
* close to 3 but not 3, -1 is for that purpose
* or
* cdclk/crtc_clock
*/
max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
 
return max_scale;
}
 
static int
intel_prepare_primary_plane(struct drm_plane *plane,
intel_check_primary_plane(struct drm_plane *plane,
struct intel_crtc_state *crtc_state,
struct intel_plane_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_framebuffer *fb = state->fb;
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
int ret;
struct drm_crtc *crtc = state->base.crtc;
struct drm_framebuffer *fb = state->base.fb;
int min_scale = DRM_PLANE_HELPER_NO_SCALING;
int max_scale = DRM_PLANE_HELPER_NO_SCALING;
bool can_position = false;
 
 
 
if (old_obj != obj) {
mutex_lock(&dev->struct_mutex);
ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
if (ret == 0)
i915_gem_track_fb(old_obj, obj,
INTEL_FRONTBUFFER_PRIMARY(pipe));
mutex_unlock(&dev->struct_mutex);
if (ret != 0) {
DRM_DEBUG_KMS("pin & fence failed\n");
return ret;
/* use scaler when colorkey is not required */
if (INTEL_INFO(plane->dev)->gen >= 9 &&
state->ckey.flags == I915_SET_COLORKEY_NONE) {
min_scale = 1;
max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
can_position = true;
}
}
 
return 0;
return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
&state->dst, &state->clip,
min_scale, max_scale,
can_position, true,
&state->visible);
}
 
static void
11615,145 → 13542,80
intel_commit_primary_plane(struct drm_plane *plane,
struct intel_plane_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_framebuffer *fb = state->fb;
struct drm_device *dev = crtc->dev;
struct drm_crtc *crtc = state->base.crtc;
struct drm_framebuffer *fb = state->base.fb;
struct drm_device *dev = plane->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
enum pipe pipe = intel_crtc->pipe;
struct drm_framebuffer *old_fb = plane->fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
struct intel_plane *intel_plane = to_intel_plane(plane);
struct intel_crtc *intel_crtc;
struct drm_rect *src = &state->src;
 
crtc->primary->fb = fb;
crtc = crtc ? crtc : plane->crtc;
intel_crtc = to_intel_crtc(crtc);
 
plane->fb = fb;
crtc->x = src->x1 >> 16;
crtc->y = src->y1 >> 16;
 
intel_plane->crtc_x = state->orig_dst.x1;
intel_plane->crtc_y = state->orig_dst.y1;
intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
intel_plane->src_x = state->orig_src.x1;
intel_plane->src_y = state->orig_src.y1;
intel_plane->src_w = drm_rect_width(&state->orig_src);
intel_plane->src_h = drm_rect_height(&state->orig_src);
intel_plane->obj = obj;
if (!crtc->state->active)
return;
 
if (intel_crtc->active) {
/*
* FBC does not work on some platforms for rotated
* planes, so disable it when rotation is not 0 and
* update it when rotation is set back to 0.
*
* FIXME: This is redundant with the fbc update done in
* the primary plane enable function except that that
* one is done too late. We eventually need to unify
* this.
*/
if (intel_crtc->primary_enabled &&
INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
dev_priv->fbc.plane == intel_crtc->plane &&
intel_plane->rotation != BIT(DRM_ROTATE_0)) {
intel_disable_fbc(dev);
dev_priv->display.update_primary_plane(crtc, fb,
state->src.x1 >> 16,
state->src.y1 >> 16);
}
 
if (state->visible) {
bool was_enabled = intel_crtc->primary_enabled;
static void
intel_disable_primary_plane(struct drm_plane *plane,
struct drm_crtc *crtc)
{
struct drm_device *dev = plane->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
 
/* FIXME: kill this fastboot hack */
intel_update_pipe_size(intel_crtc);
dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
}
 
intel_crtc->primary_enabled = true;
static void intel_begin_crtc_commit(struct drm_crtc *crtc,
struct drm_crtc_state *old_crtc_state)
{
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_crtc_state *old_intel_state =
to_intel_crtc_state(old_crtc_state);
bool modeset = needs_modeset(crtc->state);
 
dev_priv->display.update_primary_plane(crtc, plane->fb,
crtc->x, crtc->y);
if (intel_crtc->atomic.update_wm_pre)
intel_update_watermarks(crtc);
 
/*
* BDW signals flip done immediately if the plane
* is disabled, even if the plane enable is already
* armed to occur at the next vblank :(
*/
if (IS_BROADWELL(dev) && !was_enabled)
intel_wait_for_vblank(dev, intel_crtc->pipe);
} else {
/*
* If clipping results in a non-visible primary plane,
* we'll disable the primary plane. Note that this is
* a bit different than what happens if userspace
* explicitly disables the plane by passing fb=0
* because plane->fb still gets set and pinned.
*/
intel_disable_primary_hw_plane(plane, crtc);
}
/* Perform vblank evasion around commit operation */
if (crtc->state->active)
intel_pipe_update_start(intel_crtc);
 
intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
if (modeset)
return;
 
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
if (to_intel_crtc_state(crtc->state)->update_pipe)
intel_update_pipe_config(intel_crtc, old_intel_state);
else if (INTEL_INFO(dev)->gen >= 9)
skl_detach_scalers(intel_crtc);
}
 
if (old_fb && old_fb != fb) {
if (intel_crtc->active)
intel_wait_for_vblank(dev, intel_crtc->pipe);
 
mutex_lock(&dev->struct_mutex);
intel_unpin_fb_obj(old_obj);
mutex_unlock(&dev->struct_mutex);
}
}
 
static int
intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
struct drm_framebuffer *fb, int crtc_x, int crtc_y,
unsigned int crtc_w, unsigned int crtc_h,
uint32_t src_x, uint32_t src_y,
uint32_t src_w, uint32_t src_h)
static void intel_finish_crtc_commit(struct drm_crtc *crtc,
struct drm_crtc_state *old_crtc_state)
{
struct intel_plane_state state;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int ret;
 
state.crtc = crtc;
state.fb = fb;
 
/* sample coordinates in 16.16 fixed point */
state.src.x1 = src_x;
state.src.x2 = src_x + src_w;
state.src.y1 = src_y;
state.src.y2 = src_y + src_h;
 
/* integer pixels */
state.dst.x1 = crtc_x;
state.dst.x2 = crtc_x + crtc_w;
state.dst.y1 = crtc_y;
state.dst.y2 = crtc_y + crtc_h;
 
state.clip.x1 = 0;
state.clip.y1 = 0;
state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
 
state.orig_src = state.src;
state.orig_dst = state.dst;
 
ret = intel_check_primary_plane(plane, &state);
if (ret)
return ret;
 
ret = intel_prepare_primary_plane(plane, &state);
if (ret)
return ret;
 
intel_commit_primary_plane(plane, &state);
 
return 0;
if (crtc->state->active)
intel_pipe_update_end(intel_crtc);
}
 
/* Common destruction function for both primary and cursor planes */
static void intel_plane_destroy(struct drm_plane *plane)
/**
* intel_plane_destroy - destroy a plane
* @plane: plane to destroy
*
* Common destruction function for all types of planes (primary, cursor,
* sprite).
*/
void intel_plane_destroy(struct drm_plane *plane)
{
struct intel_plane *intel_plane = to_intel_plane(plane);
drm_plane_cleanup(plane);
11760,11 → 13622,16
kfree(intel_plane);
}
 
static const struct drm_plane_funcs intel_primary_plane_funcs = {
.update_plane = intel_primary_plane_setplane,
.disable_plane = intel_primary_plane_disable,
const struct drm_plane_funcs intel_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.destroy = intel_plane_destroy,
.set_property = intel_plane_set_property
.set_property = drm_atomic_helper_plane_set_property,
.atomic_get_property = intel_plane_atomic_get_property,
.atomic_set_property = intel_plane_atomic_set_property,
.atomic_duplicate_state = intel_plane_duplicate_state,
.atomic_destroy_state = intel_plane_destroy_state,
 
};
 
static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11771,77 → 13638,92
int pipe)
{
struct intel_plane *primary;
struct intel_plane_state *state;
const uint32_t *intel_primary_formats;
int num_formats;
unsigned int num_formats;
 
primary = kzalloc(sizeof(*primary), GFP_KERNEL);
if (primary == NULL)
return NULL;
 
state = intel_create_plane_state(&primary->base);
if (!state) {
kfree(primary);
return NULL;
}
primary->base.state = &state->base;
 
primary->can_scale = false;
primary->max_downscale = 1;
if (INTEL_INFO(dev)->gen >= 9) {
primary->can_scale = true;
state->scaler_id = -1;
}
primary->pipe = pipe;
primary->plane = pipe;
primary->rotation = BIT(DRM_ROTATE_0);
primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
primary->check_plane = intel_check_primary_plane;
primary->commit_plane = intel_commit_primary_plane;
primary->disable_plane = intel_disable_primary_plane;
if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
primary->plane = !pipe;
 
if (INTEL_INFO(dev)->gen <= 3) {
intel_primary_formats = intel_primary_formats_gen2;
num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
if (INTEL_INFO(dev)->gen >= 9) {
intel_primary_formats = skl_primary_formats;
num_formats = ARRAY_SIZE(skl_primary_formats);
} else if (INTEL_INFO(dev)->gen >= 4) {
intel_primary_formats = i965_primary_formats;
num_formats = ARRAY_SIZE(i965_primary_formats);
} else {
intel_primary_formats = intel_primary_formats_gen4;
num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
intel_primary_formats = i8xx_primary_formats;
num_formats = ARRAY_SIZE(i8xx_primary_formats);
}
 
drm_universal_plane_init(dev, &primary->base, 0,
&intel_primary_plane_funcs,
&intel_plane_funcs,
intel_primary_formats, num_formats,
DRM_PLANE_TYPE_PRIMARY);
 
if (INTEL_INFO(dev)->gen >= 4) {
if (!dev->mode_config.rotation_property)
dev->mode_config.rotation_property =
drm_mode_create_rotation_property(dev,
BIT(DRM_ROTATE_0) |
BIT(DRM_ROTATE_180));
if (dev->mode_config.rotation_property)
drm_object_attach_property(&primary->base.base,
dev->mode_config.rotation_property,
primary->rotation);
}
if (INTEL_INFO(dev)->gen >= 4)
intel_create_rotation_property(dev, primary);
 
drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
 
return &primary->base;
}
 
static int
intel_cursor_plane_disable(struct drm_plane *plane)
void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
{
if (!plane->fb)
return 0;
if (!dev->mode_config.rotation_property) {
unsigned long flags = BIT(DRM_ROTATE_0) |
BIT(DRM_ROTATE_180);
 
BUG_ON(!plane->crtc);
if (INTEL_INFO(dev)->gen >= 9)
flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
 
return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
dev->mode_config.rotation_property =
drm_mode_create_rotation_property(dev, flags);
}
if (dev->mode_config.rotation_property)
drm_object_attach_property(&plane->base.base,
dev->mode_config.rotation_property,
plane->base.state->rotation);
}
 
static int
intel_check_cursor_plane(struct drm_plane *plane,
struct intel_crtc_state *crtc_state,
struct intel_plane_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_device *dev = crtc->dev;
struct drm_framebuffer *fb = state->fb;
struct drm_rect *dest = &state->dst;
struct drm_rect *src = &state->src;
const struct drm_rect *clip = &state->clip;
struct drm_crtc *crtc = crtc_state->base.crtc;
struct drm_framebuffer *fb = state->base.fb;
struct drm_i915_gem_object *obj = intel_fb_obj(fb);
int crtc_w, crtc_h;
enum pipe pipe = to_intel_plane(plane)->pipe;
unsigned stride;
int ret;
 
ret = drm_plane_helper_check_update(plane, crtc, fb,
src, dest, clip,
ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
&state->dst, &state->clip,
DRM_PLANE_HELPER_NO_SCALING,
DRM_PLANE_HELPER_NO_SCALING,
true, true, &state->visible);
11848,141 → 13730,108
if (ret)
return ret;
 
 
/* if we want to turn off the cursor ignore width and height */
if (!obj)
return 0;
 
/* Check for which cursor types we support */
crtc_w = drm_rect_width(&state->orig_dst);
crtc_h = drm_rect_height(&state->orig_dst);
if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
DRM_DEBUG("Cursor dimension not supported\n");
if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
DRM_DEBUG("Cursor dimension %dx%d not supported\n",
state->base.crtc_w, state->base.crtc_h);
return -EINVAL;
}
 
stride = roundup_pow_of_two(crtc_w) * 4;
if (obj->base.size < stride * crtc_h) {
stride = roundup_pow_of_two(state->base.crtc_w) * 4;
if (obj->base.size < stride * state->base.crtc_h) {
DRM_DEBUG_KMS("buffer is too small\n");
return -ENOMEM;
}
 
if (fb == crtc->cursor->fb)
return 0;
 
/* we only need to pin inside GTT if cursor is non-phy */
mutex_lock(&dev->struct_mutex);
if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
DRM_DEBUG_KMS("cursor cannot be tiled\n");
ret = -EINVAL;
return -EINVAL;
}
mutex_unlock(&dev->struct_mutex);
 
return ret;
/*
* There's something wrong with the cursor on CHV pipe C.
* If it straddles the left edge of the screen then
* moving it away from the edge or disabling it often
* results in a pipe underrun, and often that can lead to
* dead pipe (constant underrun reported, and it scans
* out just a solid color). To recover from that, the
* display power well must be turned off and on again.
* Refuse the put the cursor into that compromised position.
*/
if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
state->visible && state->base.crtc_x < 0) {
DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
return -EINVAL;
}
 
static int
intel_commit_cursor_plane(struct drm_plane *plane,
struct intel_plane_state *state)
{
struct drm_crtc *crtc = state->crtc;
struct drm_framebuffer *fb = state->fb;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_plane *intel_plane = to_intel_plane(plane);
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
int crtc_w, crtc_h;
 
crtc->cursor_x = state->orig_dst.x1;
crtc->cursor_y = state->orig_dst.y1;
 
intel_plane->crtc_x = state->orig_dst.x1;
intel_plane->crtc_y = state->orig_dst.y1;
intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
intel_plane->src_x = state->orig_src.x1;
intel_plane->src_y = state->orig_src.y1;
intel_plane->src_w = drm_rect_width(&state->orig_src);
intel_plane->src_h = drm_rect_height(&state->orig_src);
intel_plane->obj = obj;
 
if (fb != crtc->cursor->fb) {
crtc_w = drm_rect_width(&state->orig_dst);
crtc_h = drm_rect_height(&state->orig_dst);
return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
} else {
intel_crtc_update_cursor(crtc, state->visible);
 
 
return 0;
}
 
static void
intel_disable_cursor_plane(struct drm_plane *plane,
struct drm_crtc *crtc)
{
intel_crtc_update_cursor(crtc, false);
}
 
static int
intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
struct drm_framebuffer *fb, int crtc_x, int crtc_y,
unsigned int crtc_w, unsigned int crtc_h,
uint32_t src_x, uint32_t src_y,
uint32_t src_w, uint32_t src_h)
static void
intel_commit_cursor_plane(struct drm_plane *plane,
struct intel_plane_state *state)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_plane_state state;
int ret;
struct drm_crtc *crtc = state->base.crtc;
struct drm_device *dev = plane->dev;
struct intel_crtc *intel_crtc;
struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
uint32_t addr;
 
state.crtc = crtc;
state.fb = fb;
crtc = crtc ? crtc : plane->crtc;
intel_crtc = to_intel_crtc(crtc);
 
/* sample coordinates in 16.16 fixed point */
state.src.x1 = src_x;
state.src.x2 = src_x + src_w;
state.src.y1 = src_y;
state.src.y2 = src_y + src_h;
if (!obj)
addr = 0;
else if (!INTEL_INFO(dev)->cursor_needs_physical)
addr = i915_gem_obj_ggtt_offset(obj);
else
addr = obj->phys_handle->busaddr;
 
/* integer pixels */
state.dst.x1 = crtc_x;
state.dst.x2 = crtc_x + crtc_w;
state.dst.y1 = crtc_y;
state.dst.y2 = crtc_y + crtc_h;
intel_crtc->cursor_addr = addr;
 
state.clip.x1 = 0;
state.clip.y1 = 0;
state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
 
state.orig_src = state.src;
state.orig_dst = state.dst;
 
ret = intel_check_cursor_plane(plane, &state);
if (ret)
return ret;
 
return intel_commit_cursor_plane(plane, &state);
if (crtc->state->active)
intel_crtc_update_cursor(crtc, state->visible);
}
 
static const struct drm_plane_funcs intel_cursor_plane_funcs = {
.update_plane = intel_cursor_plane_update,
.disable_plane = intel_cursor_plane_disable,
.destroy = intel_plane_destroy,
.set_property = intel_plane_set_property,
};
 
static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
int pipe)
{
struct intel_plane *cursor;
struct intel_plane_state *state;
 
cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
if (cursor == NULL)
return NULL;
 
state = intel_create_plane_state(&cursor->base);
if (!state) {
kfree(cursor);
return NULL;
}
cursor->base.state = &state->base;
 
cursor->can_scale = false;
cursor->max_downscale = 1;
cursor->pipe = pipe;
cursor->plane = pipe;
cursor->rotation = BIT(DRM_ROTATE_0);
cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
cursor->check_plane = intel_check_cursor_plane;
cursor->commit_plane = intel_commit_cursor_plane;
cursor->disable_plane = intel_disable_cursor_plane;
 
drm_universal_plane_init(dev, &cursor->base, 0,
&intel_cursor_plane_funcs,
&intel_plane_funcs,
intel_cursor_formats,
ARRAY_SIZE(intel_cursor_formats),
DRM_PLANE_TYPE_CURSOR);
11996,16 → 13845,38
if (dev->mode_config.rotation_property)
drm_object_attach_property(&cursor->base.base,
dev->mode_config.rotation_property,
cursor->rotation);
state->base.rotation);
}
 
if (INTEL_INFO(dev)->gen >=9)
state->scaler_id = -1;
 
drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
 
return &cursor->base;
}
 
static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state)
{
int i;
struct intel_scaler *intel_scaler;
struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
 
for (i = 0; i < intel_crtc->num_scalers; i++) {
intel_scaler = &scaler_state->scalers[i];
intel_scaler->in_use = 0;
intel_scaler->mode = PS_SCALER_MODE_DYN;
}
 
scaler_state->scaler_id = -1;
}
 
static void intel_crtc_init(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc;
struct intel_crtc_state *crtc_state = NULL;
struct drm_plane *primary = NULL;
struct drm_plane *cursor = NULL;
int i, ret;
12014,6 → 13885,23
if (intel_crtc == NULL)
return;
 
crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
if (!crtc_state)
goto fail;
intel_crtc->config = crtc_state;
intel_crtc->base.state = &crtc_state->base;
crtc_state->base.crtc = &intel_crtc->base;
 
/* initialize shared scalers */
if (INTEL_INFO(dev)->gen >= 9) {
if (pipe == PIPE_C)
intel_crtc->num_scalers = 1;
else
intel_crtc->num_scalers = SKL_NUM_SCALERS;
 
skl_init_scalers(dev, intel_crtc, crtc_state);
}
 
primary = intel_primary_plane_create(dev, pipe);
if (!primary)
goto fail;
12049,6 → 13937,8
intel_crtc->cursor_cntl = ~0;
intel_crtc->cursor_size = ~0;
 
intel_crtc->wm.cxsr_allowed = true;
 
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12064,6 → 13954,7
drm_plane_cleanup(primary);
if (cursor)
drm_plane_cleanup(cursor);
kfree(crtc_state);
kfree(intel_crtc);
}
 
12087,9 → 13978,6
struct drm_crtc *drmmode_crtc;
struct intel_crtc *crtc;
 
if (!drm_core_check_feature(dev, DRIVER_MODESET))
return -ENODEV;
 
drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
 
if (!drmmode_crtc) {
12136,28 → 14024,6
return true;
}
 
const char *intel_output_name(int output)
{
static const char *names[] = {
[INTEL_OUTPUT_UNUSED] = "Unused",
[INTEL_OUTPUT_ANALOG] = "Analog",
[INTEL_OUTPUT_DVO] = "DVO",
[INTEL_OUTPUT_SDVO] = "SDVO",
[INTEL_OUTPUT_LVDS] = "LVDS",
[INTEL_OUTPUT_TVOUT] = "TV",
[INTEL_OUTPUT_HDMI] = "HDMI",
[INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
[INTEL_OUTPUT_EDP] = "eDP",
[INTEL_OUTPUT_DSI] = "DSI",
[INTEL_OUTPUT_UNKNOWN] = "Unknown",
};
 
if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
return "Invalid";
 
return names[output];
}
 
static bool intel_crt_present(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
12188,13 → 14054,26
if (intel_crt_present(dev))
intel_crt_init(dev);
 
if (HAS_DDI(dev)) {
if (IS_BROXTON(dev)) {
/*
* FIXME: Broxton doesn't support port detection via the
* DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
* detect the ports.
*/
intel_ddi_init(dev, PORT_A);
intel_ddi_init(dev, PORT_B);
intel_ddi_init(dev, PORT_C);
} else if (HAS_DDI(dev)) {
int found;
 
/* Haswell uses DDI functions to detect digital outputs */
found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
/* DDI A only supports eDP */
if (found)
/*
* Haswell uses DDI functions to detect digital outputs.
* On SKL pre-D0 the strap isn't connected, so we assume
* it's there.
*/
found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
/* WaIgnoreDDIAStrap: skl */
if (found || IS_SKYLAKE(dev))
intel_ddi_init(dev, PORT_A);
 
/* DDI B, C and D detection is indicated by the SFUSE_STRAP
12207,6 → 14086,15
intel_ddi_init(dev, PORT_C);
if (found & SFUSE_STRAP_DDID_DETECTED)
intel_ddi_init(dev, PORT_D);
/*
* On SKL we don't have a way to detect DDI-E so we rely on VBT.
*/
if (IS_SKYLAKE(dev) &&
(dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
intel_ddi_init(dev, PORT_E);
 
} else if (HAS_PCH_SPLIT(dev)) {
int found;
dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12244,42 → 14132,41
* eDP ports. Consult the VBT as well as DP_DETECTED to
* detect eDP ports.
*/
if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
PORT_B);
if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
!intel_dp_is_edp(dev, PORT_B))
intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
if (I915_READ(VLV_DP_B) & DP_DETECTED ||
intel_dp_is_edp(dev, PORT_B))
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
intel_dp_init(dev, VLV_DP_B, PORT_B);
 
if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
PORT_C);
if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
!intel_dp_is_edp(dev, PORT_C))
intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
if (I915_READ(VLV_DP_C) & DP_DETECTED ||
intel_dp_is_edp(dev, PORT_C))
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
intel_dp_init(dev, VLV_DP_C, PORT_C);
 
if (IS_CHERRYVIEW(dev)) {
if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
PORT_D);
/* eDP not supported on port D, so don't check VBT */
if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
intel_hdmi_init(dev, CHV_HDMID, PORT_D);
if (I915_READ(CHV_DP_D) & DP_DETECTED)
intel_dp_init(dev, CHV_DP_D, PORT_D);
}
 
intel_dsi_init(dev);
} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
} else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
bool found = false;
 
if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOB\n");
found = intel_sdvo_init(dev, GEN3_SDVOB, true);
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
if (!found && IS_G4X(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
}
 
if (!found && SUPPORTS_INTEGRATED_DP(dev))
if (!found && IS_G4X(dev))
intel_dp_init(dev, DP_B, PORT_B);
}
 
12292,21 → 14179,20
 
if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
 
if (SUPPORTS_INTEGRATED_HDMI(dev)) {
if (IS_G4X(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
}
if (SUPPORTS_INTEGRATED_DP(dev))
if (IS_G4X(dev))
intel_dp_init(dev, DP_C, PORT_C);
}
 
if (SUPPORTS_INTEGRATED_DP(dev) &&
if (IS_G4X(dev) &&
(I915_READ(DP_D) & DP_DETECTED))
intel_dp_init(dev, DP_D, PORT_D);
} else if (IS_GEN2(dev))
intel_dvo_init(dev);
 
 
intel_psr_init(dev);
 
for_each_intel_encoder(dev, encoder) {
12320,59 → 14206,151
drm_helper_move_panel_connectors_to_head(dev);
}
 
static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct drm_device *dev = fb->dev;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 
drm_framebuffer_cleanup(fb);
mutex_lock(&dev->struct_mutex);
WARN_ON(!intel_fb->obj->framebuffer_references--);
drm_gem_object_unreference(&intel_fb->obj->base);
mutex_unlock(&dev->struct_mutex);
kfree(intel_fb);
}
 
static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
struct drm_file *file,
unsigned int *handle)
{
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
 
if (obj->userptr.mm) {
DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
return -EINVAL;
}
 
return drm_gem_handle_create(file, &obj->base, handle);
}
 
static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
struct drm_file *file,
unsigned flags, unsigned color,
struct drm_clip_rect *clips,
unsigned num_clips)
{
struct drm_device *dev = fb->dev;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
 
mutex_lock(&dev->struct_mutex);
intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
mutex_unlock(&dev->struct_mutex);
 
return 0;
}
 
static const struct drm_framebuffer_funcs intel_fb_funcs = {
// .destroy = intel_user_framebuffer_destroy,
// .create_handle = intel_user_framebuffer_create_handle,
.destroy = intel_user_framebuffer_destroy,
.create_handle = intel_user_framebuffer_create_handle,
.dirty = intel_user_framebuffer_dirty,
};
 
static
u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
uint32_t pixel_format)
{
u32 gen = INTEL_INFO(dev)->gen;
 
if (gen >= 9) {
/* "The stride in bytes must not exceed the of the size of 8K
* pixels and 32K bytes."
*/
return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
} else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
return 32*1024;
} else if (gen >= 4) {
if (fb_modifier == I915_FORMAT_MOD_X_TILED)
return 16*1024;
else
return 32*1024;
} else if (gen >= 3) {
if (fb_modifier == I915_FORMAT_MOD_X_TILED)
return 8*1024;
else
return 16*1024;
} else {
/* XXX DSPC is limited to 4k tiled */
return 8*1024;
}
}
 
static int intel_framebuffer_init(struct drm_device *dev,
struct intel_framebuffer *intel_fb,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
int aligned_height;
int pitch_limit;
unsigned int aligned_height;
int ret;
u32 pitch_limit, stride_alignment;
 
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
 
if (obj->tiling_mode == I915_TILING_Y) {
DRM_DEBUG("hardware does not support tiling Y\n");
if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
/* Enforce that fb modifier and tiling mode match, but only for
* X-tiled. This is needed for FBC. */
if (!!(obj->tiling_mode == I915_TILING_X) !=
!!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
return -EINVAL;
}
} else {
if (obj->tiling_mode == I915_TILING_X)
mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
else if (obj->tiling_mode == I915_TILING_Y) {
DRM_DEBUG("No Y tiling for legacy addfb\n");
return -EINVAL;
}
}
 
if (mode_cmd->pitches[0] & 63) {
DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
mode_cmd->pitches[0]);
/* Passed in modifier sanity checking. */
switch (mode_cmd->modifier[0]) {
case I915_FORMAT_MOD_Y_TILED:
case I915_FORMAT_MOD_Yf_TILED:
if (INTEL_INFO(dev)->gen < 9) {
DRM_DEBUG("Unsupported tiling 0x%llx!\n",
mode_cmd->modifier[0]);
return -EINVAL;
}
case DRM_FORMAT_MOD_NONE:
case I915_FORMAT_MOD_X_TILED:
break;
default:
DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
mode_cmd->modifier[0]);
return -EINVAL;
}
 
if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
pitch_limit = 32*1024;
} else if (INTEL_INFO(dev)->gen >= 4) {
if (obj->tiling_mode)
pitch_limit = 16*1024;
else
pitch_limit = 32*1024;
} else if (INTEL_INFO(dev)->gen >= 3) {
if (obj->tiling_mode)
pitch_limit = 8*1024;
else
pitch_limit = 16*1024;
} else
/* XXX DSPC is limited to 4k tiled */
pitch_limit = 8*1024;
stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
mode_cmd->pixel_format);
if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
mode_cmd->pitches[0], stride_alignment);
return -EINVAL;
}
 
pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
mode_cmd->pixel_format);
if (mode_cmd->pitches[0] > pitch_limit) {
DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
obj->tiling_mode ? "tiled" : "linear",
DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
"tiled" : "linear",
mode_cmd->pitches[0], pitch_limit);
return -EINVAL;
}
 
if (obj->tiling_mode != I915_TILING_NONE &&
if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
mode_cmd->pitches[0] != obj->stride) {
DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
mode_cmd->pitches[0], obj->stride);
12387,7 → 14365,6
case DRM_FORMAT_ARGB8888:
break;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_ARGB1555:
if (INTEL_INFO(dev)->gen > 3) {
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
12394,12 → 14371,16
return -EINVAL;
}
break;
case DRM_FORMAT_ABGR8888:
if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
return -EINVAL;
}
break;
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
case DRM_FORMAT_XBGR2101010:
case DRM_FORMAT_ABGR2101010:
if (INTEL_INFO(dev)->gen < 4) {
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
12406,6 → 14387,13
return -EINVAL;
}
break;
case DRM_FORMAT_ABGR2101010:
if (!IS_VALLEYVIEW(dev)) {
DRM_DEBUG("unsupported pixel format: %s\n",
drm_get_format_name(mode_cmd->pixel_format));
return -EINVAL;
}
break;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_YVYU:
12426,8 → 14414,9
if (mode_cmd->offsets[0] != 0)
return -EINVAL;
 
aligned_height = intel_align_height(dev, mode_cmd->height,
obj->tiling_mode);
aligned_height = intel_fb_align_height(dev, mode_cmd->height,
mode_cmd->pixel_format,
mode_cmd->modifier[0]);
/* FIXME drm helper for size checks (especially planar formats)? */
if (obj->base.size < aligned_height * mode_cmd->pitches[0])
return -EINVAL;
12445,7 → 14434,23
return 0;
}
 
#ifndef CONFIG_DRM_I915_FBDEV
static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device *dev,
struct drm_file *filp,
struct drm_mode_fb_cmd2 *user_mode_cmd)
{
struct drm_i915_gem_object *obj;
struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
 
obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
mode_cmd.handles[0]));
if (&obj->base == NULL)
return ERR_PTR(-ENOENT);
 
return intel_framebuffer_create(dev, &mode_cmd, obj);
}
 
#ifndef CONFIG_DRM_FBDEV_EMULATION
static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
{
}
12452,8 → 14457,12
#endif
 
static const struct drm_mode_config_funcs intel_mode_funcs = {
.fb_create = NULL,
.fb_create = intel_user_framebuffer_create,
.output_poll_changed = intel_fbdev_output_poll_changed,
.atomic_check = intel_atomic_check,
.atomic_commit = intel_atomic_commit,
.atomic_state_alloc = intel_atomic_state_alloc,
.atomic_state_clear = intel_atomic_state_clear,
};
 
/* Set up chip specific display functions */
12472,57 → 14481,91
else
dev_priv->display.find_dpll = i9xx_find_best_dpll;
 
if (HAS_DDI(dev)) {
if (INTEL_INFO(dev)->gen >= 9) {
dev_priv->display.get_pipe_config = haswell_get_pipe_config;
dev_priv->display.get_plane_config = ironlake_get_plane_config;
dev_priv->display.get_initial_plane_config =
skylake_get_initial_plane_config;
dev_priv->display.crtc_compute_clock =
haswell_crtc_compute_clock;
dev_priv->display.crtc_enable = haswell_crtc_enable;
dev_priv->display.crtc_disable = haswell_crtc_disable;
dev_priv->display.off = ironlake_crtc_off;
if (INTEL_INFO(dev)->gen >= 9)
dev_priv->display.update_primary_plane =
skylake_update_primary_plane;
else
} else if (HAS_DDI(dev)) {
dev_priv->display.get_pipe_config = haswell_get_pipe_config;
dev_priv->display.get_initial_plane_config =
ironlake_get_initial_plane_config;
dev_priv->display.crtc_compute_clock =
haswell_crtc_compute_clock;
dev_priv->display.crtc_enable = haswell_crtc_enable;
dev_priv->display.crtc_disable = haswell_crtc_disable;
dev_priv->display.update_primary_plane =
ironlake_update_primary_plane;
} else if (HAS_PCH_SPLIT(dev)) {
dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
dev_priv->display.get_plane_config = ironlake_get_plane_config;
dev_priv->display.get_initial_plane_config =
ironlake_get_initial_plane_config;
dev_priv->display.crtc_compute_clock =
ironlake_crtc_compute_clock;
dev_priv->display.crtc_enable = ironlake_crtc_enable;
dev_priv->display.crtc_disable = ironlake_crtc_disable;
dev_priv->display.off = ironlake_crtc_off;
dev_priv->display.update_primary_plane =
ironlake_update_primary_plane;
} else if (IS_VALLEYVIEW(dev)) {
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
dev_priv->display.get_plane_config = i9xx_get_plane_config;
dev_priv->display.get_initial_plane_config =
i9xx_get_initial_plane_config;
dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
dev_priv->display.crtc_enable = valleyview_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
dev_priv->display.off = i9xx_crtc_off;
dev_priv->display.update_primary_plane =
i9xx_update_primary_plane;
} else {
dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
dev_priv->display.get_plane_config = i9xx_get_plane_config;
dev_priv->display.get_initial_plane_config =
i9xx_get_initial_plane_config;
dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
dev_priv->display.crtc_enable = i9xx_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
dev_priv->display.off = i9xx_crtc_off;
dev_priv->display.update_primary_plane =
i9xx_update_primary_plane;
}
 
/* Returns the core display clock speed */
if (IS_VALLEYVIEW(dev))
if (IS_SKYLAKE(dev))
dev_priv->display.get_display_clock_speed =
skylake_get_display_clock_speed;
else if (IS_BROXTON(dev))
dev_priv->display.get_display_clock_speed =
broxton_get_display_clock_speed;
else if (IS_BROADWELL(dev))
dev_priv->display.get_display_clock_speed =
broadwell_get_display_clock_speed;
else if (IS_HASWELL(dev))
dev_priv->display.get_display_clock_speed =
haswell_get_display_clock_speed;
else if (IS_VALLEYVIEW(dev))
dev_priv->display.get_display_clock_speed =
valleyview_get_display_clock_speed;
else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
else if (IS_GEN5(dev))
dev_priv->display.get_display_clock_speed =
ilk_get_display_clock_speed;
else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
IS_GEN6(dev) || IS_IVYBRIDGE(dev))
dev_priv->display.get_display_clock_speed =
i945_get_display_clock_speed;
else if (IS_GM45(dev))
dev_priv->display.get_display_clock_speed =
gm45_get_display_clock_speed;
else if (IS_CRESTLINE(dev))
dev_priv->display.get_display_clock_speed =
i965gm_get_display_clock_speed;
else if (IS_PINEVIEW(dev))
dev_priv->display.get_display_clock_speed =
pnv_get_display_clock_speed;
else if (IS_G33(dev) || IS_G4X(dev))
dev_priv->display.get_display_clock_speed =
g33_get_display_clock_speed;
else if (IS_I915G(dev))
dev_priv->display.get_display_clock_speed =
i915_get_display_clock_speed;
12540,10 → 14583,12
i865_get_display_clock_speed;
else if (IS_I85X(dev))
dev_priv->display.get_display_clock_speed =
i855_get_display_clock_speed;
else /* 852, 830 */
i85x_get_display_clock_speed;
else { /* 830 */
WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
dev_priv->display.get_display_clock_speed =
i830_get_display_clock_speed;
}
 
if (IS_GEN5(dev)) {
dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12552,22 → 14597,30
} else if (IS_IVYBRIDGE(dev)) {
/* FIXME: detect B0+ stepping and use auto training */
dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
dev_priv->display.modeset_global_resources =
ivb_modeset_global_resources;
} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
dev_priv->display.fdi_link_train = hsw_fdi_link_train;
if (IS_BROADWELL(dev)) {
dev_priv->display.modeset_commit_cdclk =
broadwell_modeset_commit_cdclk;
dev_priv->display.modeset_calc_cdclk =
broadwell_modeset_calc_cdclk;
}
} else if (IS_VALLEYVIEW(dev)) {
dev_priv->display.modeset_global_resources =
valleyview_modeset_global_resources;
dev_priv->display.modeset_commit_cdclk =
valleyview_modeset_commit_cdclk;
dev_priv->display.modeset_calc_cdclk =
valleyview_modeset_calc_cdclk;
} else if (IS_BROXTON(dev)) {
dev_priv->display.modeset_commit_cdclk =
broxton_modeset_commit_cdclk;
dev_priv->display.modeset_calc_cdclk =
broxton_modeset_calc_cdclk;
}
 
/* Default just returns -ENODEV to indicate unsupported */
// dev_priv->display.queue_flip = intel_default_queue_flip;
 
 
 
 
intel_panel_init_backlight_funcs(dev);
 
mutex_init(&dev_priv->pps_mutex);
}
12658,9 → 14711,6
};
 
static struct intel_quirk intel_quirks[] = {
/* HP Mini needs pipe A force quirk (LP: #322104) */
{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
 
/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
 
12706,11 → 14756,20
/* Apple Macbook 2,1 (Core 2 T7400) */
{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
 
/* Apple Macbook 4,1 */
{ 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
 
/* Toshiba CB35 Chromebook (Celeron 2955U) */
{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
 
/* HP Chromebook 14 (Celeron 2955U) */
{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
 
/* Dell Chromebook 11 */
{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
 
/* Dell Chromebook 11 (2015 version) */
{ 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
};
 
static void intel_init_quirks(struct drm_device *dev)
12741,6 → 14800,7
u8 sr1;
u32 vga_reg = i915_vgacntrl_reg(dev);
 
/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
// vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
outb(SR01, VGA_SR_INDEX);
sr1 = inb(VGA_SR_DATA);
12748,23 → 14808,15
// vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
udelay(300);
 
/*
* Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
* from S3 without preserving (some of?) the other bits.
*/
I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
I915_WRITE(vga_reg, VGA_DISP_DISABLE);
POSTING_READ(vga_reg);
}
 
void intel_modeset_init_hw(struct drm_device *dev)
{
intel_update_cdclk(dev);
intel_prepare_ddi(dev);
 
if (IS_VALLEYVIEW(dev))
vlv_update_cdclk(dev);
 
intel_init_clock_gating(dev);
 
intel_enable_gt_powersave(dev);
}
 
12774,7 → 14826,7
int sprite, ret;
enum pipe pipe;
struct intel_crtc *crtc;
 
ENTER();
drm_mode_config_init(dev);
 
dev->mode_config.min_width = 0;
12783,6 → 14835,8
dev->mode_config.preferred_depth = 24;
dev->mode_config.prefer_shadow = 1;
 
dev->mode_config.allow_fb_modifiers = true;
 
dev->mode_config.funcs = &intel_mode_funcs;
 
intel_init_quirks(dev);
12792,6 → 14846,24
if (INTEL_INFO(dev)->num_pipes == 0)
return;
 
/*
* There may be no VBT; and if the BIOS enabled SSC we can
* just keep using it to avoid unnecessary flicker. Whereas if the
* BIOS isn't using it, don't assume it will work even if the VBT
* indicates as much.
*/
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
DREF_SSC1_ENABLE);
 
if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
bios_lvds_use_ssc ? "en" : "dis",
dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
}
}
 
intel_init_display(dev);
 
if (IS_GEN2(dev)) {
12821,7 → 14893,7
 
for_each_pipe(dev_priv, pipe) {
intel_crtc_init(dev, pipe);
for_each_sprite(pipe, sprite) {
for_each_sprite(dev_priv, pipe, sprite) {
ret = intel_plane_init(dev, pipe, sprite);
if (ret)
DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12829,24 → 14901,25
}
}
 
intel_init_dpio(dev);
intel_update_czclk(dev_priv);
intel_update_cdclk(dev);
 
intel_shared_dpll_init(dev);
 
/* save the BIOS value before clobbering it */
dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
/* Just disable it once at startup */
i915_disable_vga(dev);
intel_setup_outputs(dev);
 
/* Just in case the BIOS is doing something questionable. */
intel_disable_fbc(dev);
intel_fbc_disable(dev_priv);
 
drm_modeset_lock_all(dev);
intel_modeset_setup_hw_state(dev, false);
intel_modeset_setup_hw_state(dev);
drm_modeset_unlock_all(dev);
 
for_each_intel_crtc(dev, crtc) {
struct intel_initial_plane_config plane_config = {};
 
if (!crtc->active)
continue;
 
12857,17 → 14930,28
* can even allow for smooth boot transitions if the BIOS
* fb is large enough for the active pipe configuration.
*/
if (dev_priv->display.get_plane_config) {
dev_priv->display.get_plane_config(crtc,
&crtc->plane_config);
dev_priv->display.get_initial_plane_config(crtc,
&plane_config);
 
/*
* If the fb is shared between multiple heads, we'll
* just get the first one.
*/
crtc->plane_config.size = 16*1024*1024;
intel_find_plane_obj(crtc, &crtc->plane_config);
intel_find_initial_plane_obj(crtc, &plane_config);
if(!main_fb_obj)
{
struct drm_framebuffer *fb;
 
fb = crtc->base.primary->fb;
main_fb_obj = intel_fb_obj(fb);
main_fb_obj->map_and_fenceable=true;
DRM_DEBUG_KMS("main_fb_obj %p gtt_offset 0x%08lx\n", main_fb_obj, i915_gem_obj_ggtt_offset(main_fb_obj));
}
 
}
 
 
LEAVE();
}
 
static void intel_enable_pipe_a(struct drm_device *dev)
12880,9 → 14964,7
/* We can't just switch on the pipe A, we need to set things up with a
* proper mode and output configuration. As a gross hack, enable pipe A
* by enabling the load detect pipe once. */
list_for_each_entry(connector,
&dev->mode_config.connector_list,
base.head) {
for_each_intel_connector(dev, connector) {
if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
crt = &connector->base;
break;
12893,7 → 14975,7
return;
 
if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
intel_release_load_detect_pipe(crt, &load_detect_temp);
intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
}
 
static bool
12901,13 → 14983,12
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg, val;
u32 val;
 
if (INTEL_INFO(dev)->num_pipes == 1)
return true;
 
reg = DSPCNTR(!crtc->plane);
val = I915_READ(reg);
val = I915_READ(DSPCNTR(!crtc->plane));
 
if ((val & DISPLAY_PLANE_ENABLE) &&
(!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12916,6 → 14997,17
return true;
}
 
static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct intel_encoder *encoder;
 
for_each_encoder_on_crtc(dev, &crtc->base, encoder)
return true;
 
return false;
}
 
static void intel_sanitize_crtc(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
12923,21 → 15015,29
u32 reg;
 
/* Clear any frame start delays used for debugging left by the BIOS */
reg = PIPECONF(crtc->config.cpu_transcoder);
reg = PIPECONF(crtc->config->cpu_transcoder);
I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
 
/* restore vblank interrupts to correct state */
drm_crtc_vblank_reset(&crtc->base);
if (crtc->active) {
update_scanline_offset(crtc);
drm_vblank_on(dev, crtc->pipe);
} else
drm_vblank_off(dev, crtc->pipe);
struct intel_plane *plane;
 
drm_crtc_vblank_on(&crtc->base);
 
/* Disable everything but the primary plane */
for_each_intel_plane_on_crtc(dev, crtc, plane) {
if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
continue;
 
plane->disable_plane(&plane->base, &crtc->base);
}
}
 
/* We need to sanitize the plane -> pipe mapping first because this will
* disable the crtc (and hence change the state) if it is wrong. Note
* that gen4+ has a fixed plane -> pipe mapping. */
if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
struct intel_connector *connector;
bool plane;
 
DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12947,33 → 15047,12
* Temporarily change the plane mapping and disable everything
* ... */
plane = crtc->plane;
to_intel_plane_state(crtc->base.primary->state)->visible = true;
crtc->plane = !plane;
crtc->primary_enabled = true;
dev_priv->display.crtc_disable(&crtc->base);
intel_crtc_disable_noatomic(&crtc->base);
crtc->plane = plane;
 
/* ... and break all links. */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->encoder->base.crtc != &crtc->base)
continue;
 
connector->base.dpms = DRM_MODE_DPMS_OFF;
connector->base.encoder = NULL;
}
/* multiple connectors may have the same encoder:
* handle them and break crtc link separately */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head)
if (connector->encoder->base.crtc == &crtc->base) {
connector->encoder->base.crtc = NULL;
connector->encoder->connectors_active = false;
}
 
WARN_ON(crtc->active);
crtc->base.enabled = false;
}
 
if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
crtc->pipe == PIPE_A && !crtc->active) {
/* BIOS forgot to enable pipe A, this mostly happens after
12985,19 → 15064,23
 
/* Adjust the state of the output pipe according to whether we
* have active connectors/encoders. */
intel_crtc_update_dpms(&crtc->base);
if (!intel_crtc_has_encoders(crtc))
intel_crtc_disable_noatomic(&crtc->base);
 
if (crtc->active != crtc->base.enabled) {
if (crtc->active != crtc->base.state->active) {
struct intel_encoder *encoder;
 
/* This can happen either due to bugs in the get_hw_state
* functions or because the pipe is force-enabled due to the
* functions or because of calls to intel_crtc_disable_noatomic,
* or because the pipe is force-enabled due to the
* pipe A quirk. */
DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
crtc->base.base.id,
crtc->base.enabled ? "enabled" : "disabled",
crtc->base.state->enable ? "enabled" : "disabled",
crtc->active ? "enabled" : "disabled");
 
WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
crtc->base.state->active = crtc->active;
crtc->base.enabled = crtc->active;
 
/* Because we only establish the connector -> encoder ->
13007,11 → 15090,9
* actually up, hence no need to break them. */
WARN_ON(crtc->active);
 
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
WARN_ON(encoder->connectors_active);
for_each_encoder_on_crtc(dev, &crtc->base, encoder)
encoder->base.crtc = NULL;
}
}
 
if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
/*
13036,6 → 15117,7
{
struct intel_connector *connector;
struct drm_device *dev = encoder->base.dev;
bool active = false;
 
/* We need to check both for a crtc link (meaning that the
* encoder is active and trying to read from a pipe) and the
13043,7 → 15125,15
bool has_active_crtc = encoder->base.crtc &&
to_intel_crtc(encoder->base.crtc)->active;
 
if (encoder->connectors_active && !has_active_crtc) {
for_each_intel_connector(dev, connector) {
if (connector->base.encoder != &encoder->base)
continue;
 
active = true;
break;
}
 
if (active && !has_active_crtc) {
DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
encoder->base.base.id,
encoder->base.name);
13060,15 → 15150,12
encoder->post_disable(encoder);
}
encoder->base.crtc = NULL;
encoder->connectors_active = false;
 
/* Inconsistent output/port/pipe state happens presumably due to
* a bug in one of the get_hw_state functions. Or someplace else
* in our code, like the register restore mess on resume. Clamp
* things to off as a safer default. */
list_for_each_entry(connector,
&dev->mode_config.connector_list,
base.head) {
for_each_intel_connector(dev, connector) {
if (connector->encoder != encoder)
continue;
connector->base.dpms = DRM_MODE_DPMS_OFF;
13107,14 → 15194,25
i915_redisable_vga_power_on(dev);
}
 
static bool primary_get_hw_state(struct intel_crtc *crtc)
static bool primary_get_hw_state(struct intel_plane *plane)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
 
if (!crtc->active)
return false;
return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
}
 
return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
/* FIXME read out full plane state for all planes */
static void readout_plane_state(struct intel_crtc *crtc)
{
struct drm_plane *primary = crtc->base.primary;
struct intel_plane_state *plane_state =
to_intel_plane_state(primary->state);
 
plane_state->visible =
primary_get_hw_state(to_intel_plane(primary));
 
if (plane_state->visible)
crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
}
 
static void intel_modeset_readout_hw_state(struct drm_device *dev)
13127,16 → 15225,18
int i;
 
for_each_intel_crtc(dev, crtc) {
memset(&crtc->config, 0, sizeof(crtc->config));
__drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
memset(crtc->config, 0, sizeof(*crtc->config));
crtc->config->base.crtc = &crtc->base;
 
crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
 
crtc->active = dev_priv->display.get_pipe_config(crtc,
&crtc->config);
crtc->config);
 
crtc->base.state->active = crtc->active;
crtc->base.enabled = crtc->active;
crtc->primary_enabled = primary_get_hw_state(crtc);
 
readout_plane_state(crtc);
 
DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
crtc->base.base.id,
crtc->active ? "enabled" : "disabled");
13169,12 → 15269,11
if (encoder->get_hw_state(encoder, &pipe)) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
encoder->base.crtc = &crtc->base;
encoder->get_config(encoder, &crtc->config);
encoder->get_config(encoder, crtc->config);
} else {
encoder->base.crtc = NULL;
}
 
encoder->connectors_active = false;
DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
encoder->base.base.id,
encoder->base.name,
13182,11 → 15281,9
pipe_name(pipe));
}
 
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
for_each_intel_connector(dev, connector) {
if (connector->get_hw_state(connector)) {
connector->base.dpms = DRM_MODE_DPMS_ON;
connector->encoder->connectors_active = true;
connector->base.encoder = &connector->encoder->base;
} else {
connector->base.dpms = DRM_MODE_DPMS_OFF;
13197,12 → 15294,46
connector->base.name,
connector->base.encoder ? "enabled" : "disabled");
}
 
for_each_intel_crtc(dev, crtc) {
crtc->base.hwmode = crtc->config->base.adjusted_mode;
 
memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
if (crtc->base.state->active) {
intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
 
/*
* The initial mode needs to be set in order to keep
* the atomic core happy. It wants a valid mode if the
* crtc's enabled, so we do the above call.
*
* At this point some state updated by the connectors
* in their ->detect() callback has not run yet, so
* no recalculation can be done yet.
*
* Even if we could do a recalculation and modeset
* right now it would cause a double modeset if
* fbdev or userspace chooses a different initial mode.
*
* If that happens, someone indicated they wanted a
* mode change, which means it's safe to do a full
* recalculation.
*/
crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
 
drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
update_scanline_offset(crtc);
}
}
}
 
/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
* and i915 state tracking structures. */
void intel_modeset_setup_hw_state(struct drm_device *dev,
bool force_restore)
/* Scan out the current hw modeset state,
* and sanitizes it to the current state
*/
static void
intel_modeset_setup_hw_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
13212,20 → 15343,6
 
intel_modeset_readout_hw_state(dev);
 
/*
* Now that we have the config, copy it to each CRTC struct
* Note that this could go away if we move to using crtc_config
* checking everywhere.
*/
for_each_intel_crtc(dev, crtc) {
if (crtc->active && i915.fastboot) {
intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
crtc->base.base.id);
drm_mode_debug_printmodeline(&crtc->base.mode);
}
}
 
/* HW state is read out, now we need to sanitize this mess. */
for_each_intel_encoder(dev, encoder) {
intel_sanitize_encoder(encoder);
13234,9 → 15351,12
for_each_pipe(dev_priv, pipe) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
intel_sanitize_crtc(crtc);
intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
intel_dump_pipe_config(crtc, crtc->config,
"[setup_hw_state]");
}
 
intel_modeset_update_connector_atomic_state(dev);
 
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
 
13249,52 → 15369,85
pll->on = false;
}
 
if (IS_GEN9(dev))
if (IS_VALLEYVIEW(dev))
vlv_wm_get_hw_state(dev);
else if (IS_GEN9(dev))
skl_wm_get_hw_state(dev);
else if (HAS_PCH_SPLIT(dev))
ilk_wm_get_hw_state(dev);
 
if (force_restore) {
i915_redisable_vga(dev);
for_each_intel_crtc(dev, crtc) {
unsigned long put_domains;
 
/*
* We need to use raw interfaces for restoring state to avoid
* checking (bogus) intermediate states.
*/
for_each_pipe(dev_priv, pipe) {
struct drm_crtc *crtc =
dev_priv->pipe_to_crtc_mapping[pipe];
put_domains = modeset_get_crtc_power_domains(&crtc->base);
if (WARN_ON(put_domains))
modeset_put_power_domains(dev_priv, put_domains);
}
intel_display_set_init_power(dev_priv, false);
}
 
intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
crtc->primary->fb);
void intel_display_resume(struct drm_device *dev)
{
struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
struct intel_connector *conn;
struct intel_plane *plane;
struct drm_crtc *crtc;
int ret;
 
if (!state)
return;
 
state->acquire_ctx = dev->mode_config.acquire_ctx;
 
/* preserve complete old state, including dpll */
intel_atomic_get_shared_dpll_state(state);
 
for_each_crtc(dev, crtc) {
struct drm_crtc_state *crtc_state =
drm_atomic_get_crtc_state(state, crtc);
 
ret = PTR_ERR_OR_ZERO(crtc_state);
if (ret)
goto err;
 
/* force a restore */
crtc_state->mode_changed = true;
}
} else {
intel_modeset_update_staged_output_state(dev);
 
for_each_intel_plane(dev, plane) {
ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
if (ret)
goto err;
}
 
intel_modeset_check_state(dev);
for_each_intel_connector(dev, conn) {
ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
if (ret)
goto err;
}
 
intel_modeset_setup_hw_state(dev);
 
i915_redisable_vga(dev);
ret = drm_atomic_commit(state);
if (!ret)
return;
 
err:
DRM_ERROR("Restoring old state failed with %i\n", ret);
drm_atomic_state_free(state);
}
 
void intel_modeset_gem_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *c;
struct drm_i915_gem_object *obj;
int ret;
 
mutex_lock(&dev->struct_mutex);
intel_init_gt_powersave(dev);
mutex_unlock(&dev->struct_mutex);
 
/*
* There may be no VBT; and if the BIOS enabled SSC we can
* just keep using it to avoid unnecessary flicker. Whereas if the
* BIOS isn't using it, don't assume it will work even if the VBT
* indicates as much.
*/
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
DREF_SSC1_ENABLE);
 
intel_modeset_init_hw(dev);
 
// intel_setup_overlay(dev);
13304,22 → 15457,29
* pinned & fenced. When we do the allocation it's too early
* for this.
*/
mutex_lock(&dev->struct_mutex);
for_each_crtc(dev, c) {
obj = intel_fb_obj(c->primary->fb);
if (obj == NULL)
continue;
 
if (intel_pin_and_fence_fb_obj(c->primary,
mutex_lock(&dev->struct_mutex);
ret = intel_pin_and_fence_fb_obj(c->primary,
c->primary->fb,
NULL)) {
c->primary->state,
NULL, NULL);
mutex_unlock(&dev->struct_mutex);
if (ret) {
DRM_ERROR("failed to pin boot fb on pipe %d\n",
to_intel_crtc(c)->pipe);
drm_framebuffer_unreference(c->primary->fb);
c->primary->fb = NULL;
c->primary->crtc = c->primary->state->crtc = NULL;
update_state_fb(c->primary);
c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
}
}
mutex_unlock(&dev->struct_mutex);
 
intel_backlight_register(dev);
}
 
void intel_connector_unregister(struct intel_connector *intel_connector)
13353,16 → 15513,10
*/
drm_kms_helper_poll_fini(dev);
 
mutex_lock(&dev->struct_mutex);
 
intel_unregister_dsm_handler();
 
intel_disable_fbc(dev);
intel_fbc_disable(dev_priv);
 
ironlake_teardown_rc6(dev);
 
mutex_unlock(&dev->struct_mutex);
 
/* flush any delayed tasks or pending work */
flush_scheduled_work();