Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 4679 → Rev 4680

/contrib/media/updf/include/ext/bvector
0,0 → 1,46
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
 
#ifndef __SGI_STL_BVECTOR_H
#define __SGI_STL_BVECTOR_H
 
 
#include <bits/std_vector.h>
#include <ext/stl_bvector.h>
 
#ifdef __STL_USE_NAMESPACES
 
using __STD::bit_vector;
 
#endif /* __STL_USE_NAMESPACES */
 
#endif /* __SGI_STL_BVECTOR_H */
 
// Local Variables:
// mode:C++
// End:
 
 
/contrib/media/updf/include/ext/hash_map
0,0 → 1,407
/*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
 
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
 
#ifndef __SGI_STL_INTERNAL_HASH_MAP_H
#define __SGI_STL_INTERNAL_HASH_MAP_H
 
#include <ext/stl_hashtable.h>
#include <bits/concept_check.h>
 
namespace std
{
 
// Forward declaration of equality operator; needed for friend declaration.
 
template <class _Key, class _Tp,
class _HashFcn = hash<_Key>,
class _EqualKey = equal_to<_Key>,
class _Alloc = allocator<_Tp> >
class hash_map;
 
template <class _Key, class _Tp, class _HashFn, class _EqKey, class _Alloc>
inline bool operator==(const hash_map<_Key, _Tp, _HashFn, _EqKey, _Alloc>&,
const hash_map<_Key, _Tp, _HashFn, _EqKey, _Alloc>&);
 
template <class _Key, class _Tp, class _HashFcn, class _EqualKey,
class _Alloc>
class hash_map
{
private:
typedef hashtable<pair<const _Key,_Tp>,_Key,_HashFcn,
_Select1st<pair<const _Key,_Tp> >,_EqualKey,_Alloc> _Ht;
_Ht _M_ht;
 
public:
typedef typename _Ht::key_type key_type;
typedef _Tp data_type;
typedef _Tp mapped_type;
typedef typename _Ht::value_type value_type;
typedef typename _Ht::hasher hasher;
typedef typename _Ht::key_equal key_equal;
typedef typename _Ht::size_type size_type;
typedef typename _Ht::difference_type difference_type;
typedef typename _Ht::pointer pointer;
typedef typename _Ht::const_pointer const_pointer;
typedef typename _Ht::reference reference;
typedef typename _Ht::const_reference const_reference;
 
typedef typename _Ht::iterator iterator;
typedef typename _Ht::const_iterator const_iterator;
 
typedef typename _Ht::allocator_type allocator_type;
 
hasher hash_funct() const { return _M_ht.hash_funct(); }
key_equal key_eq() const { return _M_ht.key_eq(); }
allocator_type get_allocator() const { return _M_ht.get_allocator(); }
 
public:
hash_map() : _M_ht(100, hasher(), key_equal(), allocator_type()) {}
explicit hash_map(size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type()) {}
hash_map(size_type __n, const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type()) {}
hash_map(size_type __n, const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a) {}
 
template <class _InputIterator>
hash_map(_InputIterator __f, _InputIterator __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
template <class _InputIterator>
hash_map(_InputIterator __f, _InputIterator __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
template <class _InputIterator>
hash_map(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
template <class _InputIterator>
hash_map(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_unique(__f, __l); }
 
public:
size_type size() const { return _M_ht.size(); }
size_type max_size() const { return _M_ht.max_size(); }
bool empty() const { return _M_ht.empty(); }
void swap(hash_map& __hs) { _M_ht.swap(__hs._M_ht); }
 
template <class _K1, class _T1, class _HF, class _EqK, class _Al>
friend bool operator== (const hash_map<_K1, _T1, _HF, _EqK, _Al>&,
const hash_map<_K1, _T1, _HF, _EqK, _Al>&);
 
iterator begin() { return _M_ht.begin(); }
iterator end() { return _M_ht.end(); }
const_iterator begin() const { return _M_ht.begin(); }
const_iterator end() const { return _M_ht.end(); }
 
public:
pair<iterator,bool> insert(const value_type& __obj)
{ return _M_ht.insert_unique(__obj); }
template <class _InputIterator>
void insert(_InputIterator __f, _InputIterator __l)
{ _M_ht.insert_unique(__f,__l); }
pair<iterator,bool> insert_noresize(const value_type& __obj)
{ return _M_ht.insert_unique_noresize(__obj); }
 
iterator find(const key_type& __key) { return _M_ht.find(__key); }
const_iterator find(const key_type& __key) const
{ return _M_ht.find(__key); }
 
_Tp& operator[](const key_type& __key) {
return _M_ht.find_or_insert(value_type(__key, _Tp())).second;
}
 
size_type count(const key_type& __key) const { return _M_ht.count(__key); }
pair<iterator, iterator> equal_range(const key_type& __key)
{ return _M_ht.equal_range(__key); }
pair<const_iterator, const_iterator>
equal_range(const key_type& __key) const
{ return _M_ht.equal_range(__key); }
 
size_type erase(const key_type& __key) {return _M_ht.erase(__key); }
void erase(iterator __it) { _M_ht.erase(__it); }
void erase(iterator __f, iterator __l) { _M_ht.erase(__f, __l); }
void clear() { _M_ht.clear(); }
 
void resize(size_type __hint) { _M_ht.resize(__hint); }
size_type bucket_count() const { return _M_ht.bucket_count(); }
size_type max_bucket_count() const { return _M_ht.max_bucket_count(); }
size_type elems_in_bucket(size_type __n) const
{ return _M_ht.elems_in_bucket(__n); }
};
 
template <class _Key, class _Tp, class _HashFcn, class _EqlKey, class _Alloc>
inline bool
operator==(const hash_map<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm1,
const hash_map<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm2)
{
return __hm1._M_ht == __hm2._M_ht;
}
 
template <class _Key, class _Tp, class _HashFcn, class _EqlKey, class _Alloc>
inline bool
operator!=(const hash_map<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm1,
const hash_map<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm2) {
return !(__hm1 == __hm2);
}
 
template <class _Key, class _Tp, class _HashFcn, class _EqlKey, class _Alloc>
inline void
swap(hash_map<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm1,
hash_map<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm2)
{
__hm1.swap(__hm2);
}
 
// Forward declaration of equality operator; needed for friend declaration.
 
template <class _Key, class _Tp,
class _HashFcn = hash<_Key>,
class _EqualKey = equal_to<_Key>,
class _Alloc = allocator<_Tp> >
class hash_multimap;
 
template <class _Key, class _Tp, class _HF, class _EqKey, class _Alloc>
inline bool
operator==(const hash_multimap<_Key,_Tp,_HF,_EqKey,_Alloc>& __hm1,
const hash_multimap<_Key,_Tp,_HF,_EqKey,_Alloc>& __hm2);
 
template <class _Key, class _Tp, class _HashFcn, class _EqualKey, class _Alloc>
class hash_multimap
{
// concept requirements
__glibcpp_class_requires(_Key, _SGIAssignableConcept);
__glibcpp_class_requires(_Tp, _SGIAssignableConcept);
__glibcpp_class_requires3(_HashFcn, size_t, _Key, _UnaryFunctionConcept);
__glibcpp_class_requires3(_EqualKey, _Key, _Key, _BinaryPredicateConcept);
 
private:
typedef hashtable<pair<const _Key, _Tp>, _Key, _HashFcn,
_Select1st<pair<const _Key, _Tp> >, _EqualKey, _Alloc>
_Ht;
_Ht _M_ht;
 
public:
typedef typename _Ht::key_type key_type;
typedef _Tp data_type;
typedef _Tp mapped_type;
typedef typename _Ht::value_type value_type;
typedef typename _Ht::hasher hasher;
typedef typename _Ht::key_equal key_equal;
 
typedef typename _Ht::size_type size_type;
typedef typename _Ht::difference_type difference_type;
typedef typename _Ht::pointer pointer;
typedef typename _Ht::const_pointer const_pointer;
typedef typename _Ht::reference reference;
typedef typename _Ht::const_reference const_reference;
 
typedef typename _Ht::iterator iterator;
typedef typename _Ht::const_iterator const_iterator;
 
typedef typename _Ht::allocator_type allocator_type;
 
hasher hash_funct() const { return _M_ht.hash_funct(); }
key_equal key_eq() const { return _M_ht.key_eq(); }
allocator_type get_allocator() const { return _M_ht.get_allocator(); }
 
public:
hash_multimap() : _M_ht(100, hasher(), key_equal(), allocator_type()) {}
explicit hash_multimap(size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type()) {}
hash_multimap(size_type __n, const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type()) {}
hash_multimap(size_type __n, const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a) {}
 
template <class _InputIterator>
hash_multimap(_InputIterator __f, _InputIterator __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
template <class _InputIterator>
hash_multimap(_InputIterator __f, _InputIterator __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
template <class _InputIterator>
hash_multimap(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
template <class _InputIterator>
hash_multimap(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_equal(__f, __l); }
 
public:
size_type size() const { return _M_ht.size(); }
size_type max_size() const { return _M_ht.max_size(); }
bool empty() const { return _M_ht.empty(); }
void swap(hash_multimap& __hs) { _M_ht.swap(__hs._M_ht); }
 
template <class _K1, class _T1, class _HF, class _EqK, class _Al>
friend bool operator== (const hash_multimap<_K1, _T1, _HF, _EqK, _Al>&,
const hash_multimap<_K1, _T1, _HF, _EqK, _Al>&);
 
iterator begin() { return _M_ht.begin(); }
iterator end() { return _M_ht.end(); }
const_iterator begin() const { return _M_ht.begin(); }
const_iterator end() const { return _M_ht.end(); }
 
public:
iterator insert(const value_type& __obj)
{ return _M_ht.insert_equal(__obj); }
template <class _InputIterator>
void insert(_InputIterator __f, _InputIterator __l)
{ _M_ht.insert_equal(__f,__l); }
iterator insert_noresize(const value_type& __obj)
{ return _M_ht.insert_equal_noresize(__obj); }
 
iterator find(const key_type& __key) { return _M_ht.find(__key); }
const_iterator find(const key_type& __key) const
{ return _M_ht.find(__key); }
 
size_type count(const key_type& __key) const { return _M_ht.count(__key); }
pair<iterator, iterator> equal_range(const key_type& __key)
{ return _M_ht.equal_range(__key); }
pair<const_iterator, const_iterator>
equal_range(const key_type& __key) const
{ return _M_ht.equal_range(__key); }
 
size_type erase(const key_type& __key) {return _M_ht.erase(__key); }
void erase(iterator __it) { _M_ht.erase(__it); }
void erase(iterator __f, iterator __l) { _M_ht.erase(__f, __l); }
void clear() { _M_ht.clear(); }
 
public:
void resize(size_type __hint) { _M_ht.resize(__hint); }
size_type bucket_count() const { return _M_ht.bucket_count(); }
size_type max_bucket_count() const { return _M_ht.max_bucket_count(); }
size_type elems_in_bucket(size_type __n) const
{ return _M_ht.elems_in_bucket(__n); }
};
 
template <class _Key, class _Tp, class _HF, class _EqKey, class _Alloc>
inline bool
operator==(const hash_multimap<_Key,_Tp,_HF,_EqKey,_Alloc>& __hm1,
const hash_multimap<_Key,_Tp,_HF,_EqKey,_Alloc>& __hm2)
{
return __hm1._M_ht == __hm2._M_ht;
}
 
template <class _Key, class _Tp, class _HF, class _EqKey, class _Alloc>
inline bool
operator!=(const hash_multimap<_Key,_Tp,_HF,_EqKey,_Alloc>& __hm1,
const hash_multimap<_Key,_Tp,_HF,_EqKey,_Alloc>& __hm2) {
return !(__hm1 == __hm2);
}
 
template <class _Key, class _Tp, class _HashFcn, class _EqlKey, class _Alloc>
inline void
swap(hash_multimap<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm1,
hash_multimap<_Key,_Tp,_HashFcn,_EqlKey,_Alloc>& __hm2)
{
__hm1.swap(__hm2);
}
 
 
// Specialization of insert_iterator so that it will work for hash_map
// and hash_multimap.
 
template <class _Key, class _Tp, class _HashFn, class _EqKey, class _Alloc>
class insert_iterator<hash_map<_Key, _Tp, _HashFn, _EqKey, _Alloc> > {
protected:
typedef hash_map<_Key, _Tp, _HashFn, _EqKey, _Alloc> _Container;
_Container* container;
public:
typedef _Container container_type;
typedef output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
 
insert_iterator(_Container& __x) : container(&__x) {}
insert_iterator(_Container& __x, typename _Container::iterator)
: container(&__x) {}
insert_iterator<_Container>&
operator=(const typename _Container::value_type& __value) {
container->insert(__value);
return *this;
}
insert_iterator<_Container>& operator*() { return *this; }
insert_iterator<_Container>& operator++() { return *this; }
insert_iterator<_Container>& operator++(int) { return *this; }
};
 
template <class _Key, class _Tp, class _HashFn, class _EqKey, class _Alloc>
class insert_iterator<hash_multimap<_Key, _Tp, _HashFn, _EqKey, _Alloc> > {
protected:
typedef hash_multimap<_Key, _Tp, _HashFn, _EqKey, _Alloc> _Container;
_Container* container;
typename _Container::iterator iter;
public:
typedef _Container container_type;
typedef output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
 
insert_iterator(_Container& __x) : container(&__x) {}
insert_iterator(_Container& __x, typename _Container::iterator)
: container(&__x) {}
insert_iterator<_Container>&
operator=(const typename _Container::value_type& __value) {
container->insert(__value);
return *this;
}
insert_iterator<_Container>& operator*() { return *this; }
insert_iterator<_Container>& operator++() { return *this; }
insert_iterator<_Container>& operator++(int) { return *this; }
};
 
} // namespace std
 
#endif /* __SGI_STL_INTERNAL_HASH_MAP_H */
 
// Local Variables:
// mode:C++
// End:
/contrib/media/updf/include/ext/hash_set
0,0 → 1,396
/*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
 
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
 
#ifndef __SGI_STL_INTERNAL_HASH_SET_H
#define __SGI_STL_INTERNAL_HASH_SET_H
 
#include <ext/stl_hashtable.h>
#include <bits/concept_check.h>
 
namespace std
{
 
// Forward declaration of equality operator; needed for friend declaration.
 
template <class _Value,
class _HashFcn = hash<_Value>,
class _EqualKey = equal_to<_Value>,
class _Alloc = allocator<_Value> >
class hash_set;
 
template <class _Value, class _HashFcn, class _EqualKey, class _Alloc>
inline bool
operator==(const hash_set<_Value,_HashFcn,_EqualKey,_Alloc>& __hs1,
const hash_set<_Value,_HashFcn,_EqualKey,_Alloc>& __hs2);
 
template <class _Value, class _HashFcn, class _EqualKey, class _Alloc>
class hash_set
{
// concept requirements
__glibcpp_class_requires(_Value, _SGIAssignableConcept);
__glibcpp_class_requires3(_HashFcn, size_t, _Value, _UnaryFunctionConcept);
__glibcpp_class_requires3(_EqualKey, _Value, _Value, _BinaryPredicateConcept);
 
private:
typedef hashtable<_Value, _Value, _HashFcn, _Identity<_Value>,
_EqualKey, _Alloc> _Ht;
_Ht _M_ht;
 
public:
typedef typename _Ht::key_type key_type;
typedef typename _Ht::value_type value_type;
typedef typename _Ht::hasher hasher;
typedef typename _Ht::key_equal key_equal;
 
typedef typename _Ht::size_type size_type;
typedef typename _Ht::difference_type difference_type;
typedef typename _Ht::const_pointer pointer;
typedef typename _Ht::const_pointer const_pointer;
typedef typename _Ht::const_reference reference;
typedef typename _Ht::const_reference const_reference;
 
typedef typename _Ht::const_iterator iterator;
typedef typename _Ht::const_iterator const_iterator;
 
typedef typename _Ht::allocator_type allocator_type;
 
hasher hash_funct() const { return _M_ht.hash_funct(); }
key_equal key_eq() const { return _M_ht.key_eq(); }
allocator_type get_allocator() const { return _M_ht.get_allocator(); }
 
public:
hash_set()
: _M_ht(100, hasher(), key_equal(), allocator_type()) {}
explicit hash_set(size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type()) {}
hash_set(size_type __n, const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type()) {}
hash_set(size_type __n, const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a) {}
 
template <class _InputIterator>
hash_set(_InputIterator __f, _InputIterator __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
template <class _InputIterator>
hash_set(_InputIterator __f, _InputIterator __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
template <class _InputIterator>
hash_set(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_unique(__f, __l); }
template <class _InputIterator>
hash_set(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_unique(__f, __l); }
 
public:
size_type size() const { return _M_ht.size(); }
size_type max_size() const { return _M_ht.max_size(); }
bool empty() const { return _M_ht.empty(); }
void swap(hash_set& __hs) { _M_ht.swap(__hs._M_ht); }
 
template <class _Val, class _HF, class _EqK, class _Al>
friend bool operator== (const hash_set<_Val, _HF, _EqK, _Al>&,
const hash_set<_Val, _HF, _EqK, _Al>&);
 
iterator begin() const { return _M_ht.begin(); }
iterator end() const { return _M_ht.end(); }
 
public:
pair<iterator, bool> insert(const value_type& __obj)
{
pair<typename _Ht::iterator, bool> __p = _M_ht.insert_unique(__obj);
return pair<iterator,bool>(__p.first, __p.second);
}
template <class _InputIterator>
void insert(_InputIterator __f, _InputIterator __l)
{ _M_ht.insert_unique(__f,__l); }
pair<iterator, bool> insert_noresize(const value_type& __obj)
{
pair<typename _Ht::iterator, bool> __p =
_M_ht.insert_unique_noresize(__obj);
return pair<iterator, bool>(__p.first, __p.second);
}
 
iterator find(const key_type& __key) const { return _M_ht.find(__key); }
 
size_type count(const key_type& __key) const { return _M_ht.count(__key); }
pair<iterator, iterator> equal_range(const key_type& __key) const
{ return _M_ht.equal_range(__key); }
 
size_type erase(const key_type& __key) {return _M_ht.erase(__key); }
void erase(iterator __it) { _M_ht.erase(__it); }
void erase(iterator __f, iterator __l) { _M_ht.erase(__f, __l); }
void clear() { _M_ht.clear(); }
 
public:
void resize(size_type __hint) { _M_ht.resize(__hint); }
size_type bucket_count() const { return _M_ht.bucket_count(); }
size_type max_bucket_count() const { return _M_ht.max_bucket_count(); }
size_type elems_in_bucket(size_type __n) const
{ return _M_ht.elems_in_bucket(__n); }
};
 
template <class _Value, class _HashFcn, class _EqualKey, class _Alloc>
inline bool
operator==(const hash_set<_Value,_HashFcn,_EqualKey,_Alloc>& __hs1,
const hash_set<_Value,_HashFcn,_EqualKey,_Alloc>& __hs2)
{
return __hs1._M_ht == __hs2._M_ht;
}
 
template <class _Value, class _HashFcn, class _EqualKey, class _Alloc>
inline bool
operator!=(const hash_set<_Value,_HashFcn,_EqualKey,_Alloc>& __hs1,
const hash_set<_Value,_HashFcn,_EqualKey,_Alloc>& __hs2) {
return !(__hs1 == __hs2);
}
 
template <class _Val, class _HashFcn, class _EqualKey, class _Alloc>
inline void
swap(hash_set<_Val,_HashFcn,_EqualKey,_Alloc>& __hs1,
hash_set<_Val,_HashFcn,_EqualKey,_Alloc>& __hs2)
{
__hs1.swap(__hs2);
}
 
 
template <class _Value,
class _HashFcn = hash<_Value>,
class _EqualKey = equal_to<_Value>,
class _Alloc = allocator<_Value> >
class hash_multiset;
 
template <class _Val, class _HashFcn, class _EqualKey, class _Alloc>
inline bool
operator==(const hash_multiset<_Val,_HashFcn,_EqualKey,_Alloc>& __hs1,
const hash_multiset<_Val,_HashFcn,_EqualKey,_Alloc>& __hs2);
 
 
template <class _Value, class _HashFcn, class _EqualKey, class _Alloc>
class hash_multiset
{
// concept requirements
__glibcpp_class_requires(_Value, _SGIAssignableConcept);
__glibcpp_class_requires3(_HashFcn, size_t, _Value, _UnaryFunctionConcept);
__glibcpp_class_requires3(_EqualKey, _Value, _Value, _BinaryPredicateConcept);
 
private:
typedef hashtable<_Value, _Value, _HashFcn, _Identity<_Value>,
_EqualKey, _Alloc> _Ht;
_Ht _M_ht;
 
public:
typedef typename _Ht::key_type key_type;
typedef typename _Ht::value_type value_type;
typedef typename _Ht::hasher hasher;
typedef typename _Ht::key_equal key_equal;
 
typedef typename _Ht::size_type size_type;
typedef typename _Ht::difference_type difference_type;
typedef typename _Ht::const_pointer pointer;
typedef typename _Ht::const_pointer const_pointer;
typedef typename _Ht::const_reference reference;
typedef typename _Ht::const_reference const_reference;
 
typedef typename _Ht::const_iterator iterator;
typedef typename _Ht::const_iterator const_iterator;
 
typedef typename _Ht::allocator_type allocator_type;
 
hasher hash_funct() const { return _M_ht.hash_funct(); }
key_equal key_eq() const { return _M_ht.key_eq(); }
allocator_type get_allocator() const { return _M_ht.get_allocator(); }
 
public:
hash_multiset()
: _M_ht(100, hasher(), key_equal(), allocator_type()) {}
explicit hash_multiset(size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type()) {}
hash_multiset(size_type __n, const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type()) {}
hash_multiset(size_type __n, const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a) {}
 
template <class _InputIterator>
hash_multiset(_InputIterator __f, _InputIterator __l)
: _M_ht(100, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
template <class _InputIterator>
hash_multiset(_InputIterator __f, _InputIterator __l, size_type __n)
: _M_ht(__n, hasher(), key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
template <class _InputIterator>
hash_multiset(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf)
: _M_ht(__n, __hf, key_equal(), allocator_type())
{ _M_ht.insert_equal(__f, __l); }
template <class _InputIterator>
hash_multiset(_InputIterator __f, _InputIterator __l, size_type __n,
const hasher& __hf, const key_equal& __eql,
const allocator_type& __a = allocator_type())
: _M_ht(__n, __hf, __eql, __a)
{ _M_ht.insert_equal(__f, __l); }
 
public:
size_type size() const { return _M_ht.size(); }
size_type max_size() const { return _M_ht.max_size(); }
bool empty() const { return _M_ht.empty(); }
void swap(hash_multiset& hs) { _M_ht.swap(hs._M_ht); }
 
template <class _Val, class _HF, class _EqK, class _Al>
friend bool operator== (const hash_multiset<_Val, _HF, _EqK, _Al>&,
const hash_multiset<_Val, _HF, _EqK, _Al>&);
 
iterator begin() const { return _M_ht.begin(); }
iterator end() const { return _M_ht.end(); }
 
public:
iterator insert(const value_type& __obj)
{ return _M_ht.insert_equal(__obj); }
template <class _InputIterator>
void insert(_InputIterator __f, _InputIterator __l)
{ _M_ht.insert_equal(__f,__l); }
iterator insert_noresize(const value_type& __obj)
{ return _M_ht.insert_equal_noresize(__obj); }
 
iterator find(const key_type& __key) const { return _M_ht.find(__key); }
 
size_type count(const key_type& __key) const { return _M_ht.count(__key); }
pair<iterator, iterator> equal_range(const key_type& __key) const
{ return _M_ht.equal_range(__key); }
 
size_type erase(const key_type& __key) {return _M_ht.erase(__key); }
void erase(iterator __it) { _M_ht.erase(__it); }
void erase(iterator __f, iterator __l) { _M_ht.erase(__f, __l); }
void clear() { _M_ht.clear(); }
 
public:
void resize(size_type __hint) { _M_ht.resize(__hint); }
size_type bucket_count() const { return _M_ht.bucket_count(); }
size_type max_bucket_count() const { return _M_ht.max_bucket_count(); }
size_type elems_in_bucket(size_type __n) const
{ return _M_ht.elems_in_bucket(__n); }
};
 
template <class _Val, class _HashFcn, class _EqualKey, class _Alloc>
inline bool
operator==(const hash_multiset<_Val,_HashFcn,_EqualKey,_Alloc>& __hs1,
const hash_multiset<_Val,_HashFcn,_EqualKey,_Alloc>& __hs2)
{
return __hs1._M_ht == __hs2._M_ht;
}
 
template <class _Val, class _HashFcn, class _EqualKey, class _Alloc>
inline bool
operator!=(const hash_multiset<_Val,_HashFcn,_EqualKey,_Alloc>& __hs1,
const hash_multiset<_Val,_HashFcn,_EqualKey,_Alloc>& __hs2) {
return !(__hs1 == __hs2);
}
 
template <class _Val, class _HashFcn, class _EqualKey, class _Alloc>
inline void
swap(hash_multiset<_Val,_HashFcn,_EqualKey,_Alloc>& __hs1,
hash_multiset<_Val,_HashFcn,_EqualKey,_Alloc>& __hs2) {
__hs1.swap(__hs2);
}
 
// Specialization of insert_iterator so that it will work for hash_set
// and hash_multiset.
 
template <class _Value, class _HashFcn, class _EqualKey, class _Alloc>
class insert_iterator<hash_set<_Value, _HashFcn, _EqualKey, _Alloc> > {
protected:
typedef hash_set<_Value, _HashFcn, _EqualKey, _Alloc> _Container;
_Container* container;
public:
typedef _Container container_type;
typedef output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
 
insert_iterator(_Container& __x) : container(&__x) {}
insert_iterator(_Container& __x, typename _Container::iterator)
: container(&__x) {}
insert_iterator<_Container>&
operator=(const typename _Container::value_type& __value) {
container->insert(__value);
return *this;
}
insert_iterator<_Container>& operator*() { return *this; }
insert_iterator<_Container>& operator++() { return *this; }
insert_iterator<_Container>& operator++(int) { return *this; }
};
 
template <class _Value, class _HashFcn, class _EqualKey, class _Alloc>
class insert_iterator<hash_multiset<_Value, _HashFcn, _EqualKey, _Alloc> > {
protected:
typedef hash_multiset<_Value, _HashFcn, _EqualKey, _Alloc> _Container;
_Container* container;
typename _Container::iterator iter;
public:
typedef _Container container_type;
typedef output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
 
insert_iterator(_Container& __x) : container(&__x) {}
insert_iterator(_Container& __x, typename _Container::iterator)
: container(&__x) {}
insert_iterator<_Container>&
operator=(const typename _Container::value_type& __value) {
container->insert(__value);
return *this;
}
insert_iterator<_Container>& operator*() { return *this; }
insert_iterator<_Container>& operator++() { return *this; }
insert_iterator<_Container>& operator++(int) { return *this; }
};
 
} // namespace std
 
#endif /* __SGI_STL_INTERNAL_HASH_SET_H */
 
// Local Variables:
// mode:C++
// End:
/contrib/media/updf/include/ext/rope
0,0 → 1,32
/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
 
#ifndef __SGI_STL_ROPE
#define __SGI_STL_ROPE
 
#include <bits/stl_algobase.h>
#include <bits/stl_tempbuf.h>
#include <bits/stl_algo.h>
#include <bits/stl_function.h>
#include <bits/stl_numeric.h>
#include <bits/stl_alloc.h>
#include <bits/stl_construct.h>
#include <bits/stl_uninitialized.h>
#include <ext/stl_hash_fun.h>
#include <ext/stl_rope.h>
 
#endif /* __SGI_STL_ROPE */
 
// Local Variables:
// mode:C++
// End:
/contrib/media/updf/include/ext/ropeimpl.h
0,0 → 1,1509
/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
 
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
 
#include <bits/std_cstdio.h>
#include <bits/std_iostream.h>
 
#ifdef __STL_USE_EXCEPTIONS
# include <bits/std_stdexcept.h>
#endif
 
namespace std
{
 
// Set buf_start, buf_end, and buf_ptr appropriately, filling tmp_buf
// if necessary. Assumes _M_path_end[leaf_index] and leaf_pos are correct.
// Results in a valid buf_ptr if the iterator can be legitimately
// dereferenced.
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_S_setbuf(
_Rope_iterator_base<_CharT,_Alloc>& __x)
{
const _RopeRep* __leaf = __x._M_path_end[__x._M_leaf_index];
size_t __leaf_pos = __x._M_leaf_pos;
size_t __pos = __x._M_current_pos;
 
switch(__leaf->_M_tag) {
case _RopeRep::_S_leaf:
__x._M_buf_start =
((_Rope_RopeLeaf<_CharT,_Alloc>*)__leaf)->_M_data;
__x._M_buf_ptr = __x._M_buf_start + (__pos - __leaf_pos);
__x._M_buf_end = __x._M_buf_start + __leaf->_M_size;
break;
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
{
size_t __len = _S_iterator_buf_len;
size_t __buf_start_pos = __leaf_pos;
size_t __leaf_end = __leaf_pos + __leaf->_M_size;
char_producer<_CharT>* __fn =
((_Rope_RopeFunction<_CharT,_Alloc>*)__leaf)->_M_fn;
 
if (__buf_start_pos + __len <= __pos) {
__buf_start_pos = __pos - __len/4;
if (__buf_start_pos + __len > __leaf_end) {
__buf_start_pos = __leaf_end - __len;
}
}
if (__buf_start_pos + __len > __leaf_end) {
__len = __leaf_end - __buf_start_pos;
}
(*__fn)(__buf_start_pos - __leaf_pos, __len, __x._M_tmp_buf);
__x._M_buf_ptr = __x._M_tmp_buf + (__pos - __buf_start_pos);
__x._M_buf_start = __x._M_tmp_buf;
__x._M_buf_end = __x._M_tmp_buf + __len;
}
break;
default:
__stl_assert(0);
}
}
 
// Set path and buffer inside a rope iterator. We assume that
// pos and root are already set.
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_S_setcache
(_Rope_iterator_base<_CharT,_Alloc>& __x)
{
const _RopeRep* __path[_RopeRep::_S_max_rope_depth+1];
const _RopeRep* __curr_rope;
int __curr_depth = -1; /* index into path */
size_t __curr_start_pos = 0;
size_t __pos = __x._M_current_pos;
unsigned char __dirns = 0; // Bit vector marking right turns in the path
 
__stl_assert(__pos <= __x._M_root->_M_size);
if (__pos >= __x._M_root->_M_size) {
__x._M_buf_ptr = 0;
return;
}
__curr_rope = __x._M_root;
if (0 != __curr_rope->_M_c_string) {
/* Treat the root as a leaf. */
__x._M_buf_start = __curr_rope->_M_c_string;
__x._M_buf_end = __curr_rope->_M_c_string + __curr_rope->_M_size;
__x._M_buf_ptr = __curr_rope->_M_c_string + __pos;
__x._M_path_end[0] = __curr_rope;
__x._M_leaf_index = 0;
__x._M_leaf_pos = 0;
return;
}
for(;;) {
++__curr_depth;
__stl_assert(__curr_depth <= _RopeRep::_S_max_rope_depth);
__path[__curr_depth] = __curr_rope;
switch(__curr_rope->_M_tag) {
case _RopeRep::_S_leaf:
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
__x._M_leaf_pos = __curr_start_pos;
goto done;
case _RopeRep::_S_concat:
{
_Rope_RopeConcatenation<_CharT,_Alloc>* __c =
(_Rope_RopeConcatenation<_CharT,_Alloc>*)__curr_rope;
_RopeRep* __left = __c->_M_left;
size_t __left_len = __left->_M_size;
__dirns <<= 1;
if (__pos >= __curr_start_pos + __left_len) {
__dirns |= 1;
__curr_rope = __c->_M_right;
__curr_start_pos += __left_len;
} else {
__curr_rope = __left;
}
}
break;
}
}
done:
// Copy last section of path into _M_path_end.
{
int __i = -1;
int __j = __curr_depth + 1 - _S_path_cache_len;
 
if (__j < 0) __j = 0;
while (__j <= __curr_depth) {
__x._M_path_end[++__i] = __path[__j++];
}
__x._M_leaf_index = __i;
}
__x._M_path_directions = __dirns;
_S_setbuf(__x);
}
 
// Specialized version of the above. Assumes that
// the path cache is valid for the previous position.
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_S_setcache_for_incr
(_Rope_iterator_base<_CharT,_Alloc>& __x)
{
int __current_index = __x._M_leaf_index;
const _RopeRep* __current_node = __x._M_path_end[__current_index];
size_t __len = __current_node->_M_size;
size_t __node_start_pos = __x._M_leaf_pos;
unsigned char __dirns = __x._M_path_directions;
_Rope_RopeConcatenation<_CharT,_Alloc>* __c;
 
__stl_assert(__x._M_current_pos <= __x._M_root->_M_size);
if (__x._M_current_pos - __node_start_pos < __len) {
/* More stuff in this leaf, we just didn't cache it. */
_S_setbuf(__x);
return;
}
__stl_assert(__node_start_pos + __len == __x._M_current_pos);
// node_start_pos is starting position of last_node.
while (--__current_index >= 0) {
if (!(__dirns & 1) /* Path turned left */)
break;
__current_node = __x._M_path_end[__current_index];
__c = (_Rope_RopeConcatenation<_CharT,_Alloc>*)__current_node;
// Otherwise we were in the right child. Thus we should pop
// the concatenation node.
__node_start_pos -= __c->_M_left->_M_size;
__dirns >>= 1;
}
if (__current_index < 0) {
// We underflowed the cache. Punt.
_S_setcache(__x);
return;
}
__current_node = __x._M_path_end[__current_index];
__c = (_Rope_RopeConcatenation<_CharT,_Alloc>*)__current_node;
// current_node is a concatenation node. We are positioned on the first
// character in its right child.
// node_start_pos is starting position of current_node.
__node_start_pos += __c->_M_left->_M_size;
__current_node = __c->_M_right;
__x._M_path_end[++__current_index] = __current_node;
__dirns |= 1;
while (_RopeRep::_S_concat == __current_node->_M_tag) {
++__current_index;
if (_S_path_cache_len == __current_index) {
int __i;
for (__i = 0; __i < _S_path_cache_len-1; __i++) {
__x._M_path_end[__i] = __x._M_path_end[__i+1];
}
--__current_index;
}
__current_node =
((_Rope_RopeConcatenation<_CharT,_Alloc>*)__current_node)->_M_left;
__x._M_path_end[__current_index] = __current_node;
__dirns <<= 1;
// node_start_pos is unchanged.
}
__x._M_leaf_index = __current_index;
__x._M_leaf_pos = __node_start_pos;
__x._M_path_directions = __dirns;
_S_setbuf(__x);
}
 
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_M_incr(size_t __n) {
_M_current_pos += __n;
if (0 != _M_buf_ptr) {
size_t __chars_left = _M_buf_end - _M_buf_ptr;
if (__chars_left > __n) {
_M_buf_ptr += __n;
} else if (__chars_left == __n) {
_M_buf_ptr += __n;
_S_setcache_for_incr(*this);
} else {
_M_buf_ptr = 0;
}
}
}
 
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_M_decr(size_t __n) {
if (0 != _M_buf_ptr) {
size_t __chars_left = _M_buf_ptr - _M_buf_start;
if (__chars_left >= __n) {
_M_buf_ptr -= __n;
} else {
_M_buf_ptr = 0;
}
}
_M_current_pos -= __n;
}
 
template <class _CharT, class _Alloc>
void _Rope_iterator<_CharT,_Alloc>::_M_check() {
if (_M_root_rope->_M_tree_ptr != _M_root) {
// _Rope was modified. Get things fixed up.
_RopeRep::_S_unref(_M_root);
_M_root = _M_root_rope->_M_tree_ptr;
_RopeRep::_S_ref(_M_root);
_M_buf_ptr = 0;
}
}
 
template <class _CharT, class _Alloc>
inline
_Rope_const_iterator<_CharT, _Alloc>::_Rope_const_iterator(
const _Rope_iterator<_CharT,_Alloc>& __x)
: _Rope_iterator_base<_CharT,_Alloc>(__x)
{ }
 
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT,_Alloc>::_Rope_iterator(
rope<_CharT,_Alloc>& __r, size_t __pos)
: _Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr, __pos),
_M_root_rope(&__r)
{
_RopeRep::_S_ref(_M_root);
}
 
template <class _CharT, class _Alloc>
inline size_t
rope<_CharT,_Alloc>::_S_char_ptr_len(const _CharT* __s)
{
const _CharT* __p = __s;
 
while (!_S_is0(*__p)) { ++__p; }
return (__p - __s);
}
 
 
#ifndef __GC
 
template <class _CharT, class _Alloc>
inline void _Rope_RopeRep<_CharT,_Alloc>::_M_free_c_string()
{
_CharT* __cstr = _M_c_string;
if (0 != __cstr) {
size_t __size = _M_size + 1;
destroy(__cstr, __cstr + __size);
_Data_deallocate(__cstr, __size);
}
}
 
 
template <class _CharT, class _Alloc>
inline void _Rope_RopeRep<_CharT,_Alloc>::_S_free_string(_CharT* __s,
size_t __n,
allocator_type __a)
{
if (!_S_is_basic_char_type((_CharT*)0)) {
destroy(__s, __s + __n);
}
// This has to be a static member, so this gets a bit messy
__a.deallocate(
__s, _Rope_RopeLeaf<_CharT,_Alloc>::_S_rounded_up_size(__n));
}
 
 
// There are several reasons for not doing this with virtual destructors
// and a class specific delete operator:
// - A class specific delete operator can't easily get access to
// allocator instances if we need them.
// - Any virtual function would need a 4 or byte vtable pointer;
// this only requires a one byte tag per object.
template <class _CharT, class _Alloc>
void _Rope_RopeRep<_CharT,_Alloc>::_M_free_tree()
{
switch(_M_tag) {
case _S_leaf:
{
_Rope_RopeLeaf<_CharT,_Alloc>* __l
= (_Rope_RopeLeaf<_CharT,_Alloc>*)this;
__l->_Rope_RopeLeaf<_CharT,_Alloc>::~_Rope_RopeLeaf();
_L_deallocate(__l, 1);
break;
}
case _S_concat:
{
_Rope_RopeConcatenation<_CharT,_Alloc>* __c
= (_Rope_RopeConcatenation<_CharT,_Alloc>*)this;
__c->_Rope_RopeConcatenation<_CharT,_Alloc>::
~_Rope_RopeConcatenation();
_C_deallocate(__c, 1);
break;
}
case _S_function:
{
_Rope_RopeFunction<_CharT,_Alloc>* __f
= (_Rope_RopeFunction<_CharT,_Alloc>*)this;
__f->_Rope_RopeFunction<_CharT,_Alloc>::~_Rope_RopeFunction();
_F_deallocate(__f, 1);
break;
}
case _S_substringfn:
{
_Rope_RopeSubstring<_CharT,_Alloc>* __ss =
(_Rope_RopeSubstring<_CharT,_Alloc>*)this;
__ss->_Rope_RopeSubstring<_CharT,_Alloc>::
~_Rope_RopeSubstring();
_S_deallocate(__ss, 1);
break;
}
}
}
#else
 
template <class _CharT, class _Alloc>
inline void _Rope_RopeRep<_CharT,_Alloc>::_S_free_string
(const _CharT*, size_t, allocator_type)
{}
 
#endif
 
 
// Concatenate a C string onto a leaf rope by copying the rope data.
// Used for short ropes.
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeLeaf*
rope<_CharT,_Alloc>::_S_leaf_concat_char_iter
(_RopeLeaf* __r, const _CharT* __iter, size_t __len)
{
size_t __old_len = __r->_M_size;
_CharT* __new_data = (_CharT*)
_Data_allocate(_S_rounded_up_size(__old_len + __len));
_RopeLeaf* __result;
uninitialized_copy_n(__r->_M_data, __old_len, __new_data);
uninitialized_copy_n(__iter, __len, __new_data + __old_len);
_S_cond_store_eos(__new_data[__old_len + __len]);
__STL_TRY {
__result = _S_new_RopeLeaf(__new_data, __old_len + __len,
__r->get_allocator());
}
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(__new_data, __old_len + __len,
__r->get_allocator()));
return __result;
}
 
#ifndef __GC
// As above, but it's OK to clobber original if refcount is 1
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeLeaf*
rope<_CharT,_Alloc>::_S_destr_leaf_concat_char_iter
(_RopeLeaf* __r, const _CharT* __iter, size_t __len)
{
__stl_assert(__r->_M_ref_count >= 1);
if (__r->_M_ref_count > 1)
return _S_leaf_concat_char_iter(__r, __iter, __len);
size_t __old_len = __r->_M_size;
if (_S_allocated_capacity(__old_len) >= __old_len + __len) {
// The space has been partially initialized for the standard
// character types. But that doesn't matter for those types.
uninitialized_copy_n(__iter, __len, __r->_M_data + __old_len);
if (_S_is_basic_char_type((_CharT*)0)) {
_S_cond_store_eos(__r->_M_data[__old_len + __len]);
__stl_assert(__r->_M_c_string == __r->_M_data);
} else if (__r->_M_c_string != __r->_M_data && 0 != __r->_M_c_string) {
__r->_M_free_c_string();
__r->_M_c_string = 0;
}
__r->_M_size = __old_len + __len;
__stl_assert(__r->_M_ref_count == 1);
__r->_M_ref_count = 2;
return __r;
} else {
_RopeLeaf* __result = _S_leaf_concat_char_iter(__r, __iter, __len);
__stl_assert(__result->_M_ref_count == 1);
return __result;
}
}
#endif
 
// Assumes left and right are not 0.
// Does not increment (nor decrement on exception) child reference counts.
// Result has ref count 1.
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeRep*
rope<_CharT,_Alloc>::_S_tree_concat (_RopeRep* __left, _RopeRep* __right)
{
_RopeConcatenation* __result =
_S_new_RopeConcatenation(__left, __right, __left->get_allocator());
size_t __depth = __result->_M_depth;
__stl_assert(__left->get_allocator() == __right->get_allocator());
if (__depth > 20 && (__result->_M_size < 1000 ||
__depth > _RopeRep::_S_max_rope_depth)) {
_RopeRep* __balanced;
__STL_TRY {
__balanced = _S_balance(__result);
# ifndef __GC
if (__result != __balanced) {
__stl_assert(1 == __result->_M_ref_count
&& 1 == __balanced->_M_ref_count);
}
# endif
__result->_M_unref_nonnil();
}
__STL_UNWIND((_C_deallocate(__result,1)));
// In case of exception, we need to deallocate
// otherwise dangling result node. But caller
// still owns its children. Thus unref is
// inappropriate.
return __balanced;
} else {
return __result;
}
}
 
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeRep* rope<_CharT,_Alloc>::_S_concat_char_iter
(_RopeRep* __r, const _CharT*__s, size_t __slen)
{
_RopeRep* __result;
if (0 == __slen) {
_S_ref(__r);
return __r;
}
if (0 == __r)
return __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __slen,
__r->get_allocator());
if (_RopeRep::_S_leaf == __r->_M_tag &&
__r->_M_size + __slen <= _S_copy_max) {
__result = _S_leaf_concat_char_iter((_RopeLeaf*)__r, __s, __slen);
# ifndef __GC
__stl_assert(1 == __result->_M_ref_count);
# endif
return __result;
}
if (_RopeRep::_S_concat == __r->_M_tag
&& _RopeRep::_S_leaf == ((_RopeConcatenation*)__r)->_M_right->_M_tag) {
_RopeLeaf* __right =
(_RopeLeaf* )(((_RopeConcatenation* )__r)->_M_right);
if (__right->_M_size + __slen <= _S_copy_max) {
_RopeRep* __left = ((_RopeConcatenation*)__r)->_M_left;
_RopeRep* __nright =
_S_leaf_concat_char_iter((_RopeLeaf*)__right, __s, __slen);
__left->_M_ref_nonnil();
__STL_TRY {
__result = _S_tree_concat(__left, __nright);
}
__STL_UNWIND(_S_unref(__left); _S_unref(__nright));
# ifndef __GC
__stl_assert(1 == __result->_M_ref_count);
# endif
return __result;
}
}
_RopeRep* __nright =
__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __slen, __r->get_allocator());
__STL_TRY {
__r->_M_ref_nonnil();
__result = _S_tree_concat(__r, __nright);
}
__STL_UNWIND(_S_unref(__r); _S_unref(__nright));
# ifndef __GC
__stl_assert(1 == __result->_M_ref_count);
# endif
return __result;
}
 
#ifndef __GC
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeRep*
rope<_CharT,_Alloc>::_S_destr_concat_char_iter(
_RopeRep* __r, const _CharT* __s, size_t __slen)
{
_RopeRep* __result;
if (0 == __r)
return __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __slen,
__r->get_allocator());
size_t __count = __r->_M_ref_count;
size_t __orig_size = __r->_M_size;
__stl_assert(__count >= 1);
if (__count > 1) return _S_concat_char_iter(__r, __s, __slen);
if (0 == __slen) {
__r->_M_ref_count = 2; // One more than before
return __r;
}
if (__orig_size + __slen <= _S_copy_max &&
_RopeRep::_S_leaf == __r->_M_tag) {
__result = _S_destr_leaf_concat_char_iter((_RopeLeaf*)__r, __s, __slen);
return __result;
}
if (_RopeRep::_S_concat == __r->_M_tag) {
_RopeLeaf* __right = (_RopeLeaf*)(((_RopeConcatenation*)__r)->_M_right);
if (_RopeRep::_S_leaf == __right->_M_tag
&& __right->_M_size + __slen <= _S_copy_max) {
_RopeRep* __new_right =
_S_destr_leaf_concat_char_iter(__right, __s, __slen);
if (__right == __new_right) {
__stl_assert(__new_right->_M_ref_count == 2);
__new_right->_M_ref_count = 1;
} else {
__stl_assert(__new_right->_M_ref_count >= 1);
__right->_M_unref_nonnil();
}
__stl_assert(__r->_M_ref_count == 1);
__r->_M_ref_count = 2; // One more than before.
((_RopeConcatenation*)__r)->_M_right = __new_right;
__r->_M_size = __orig_size + __slen;
if (0 != __r->_M_c_string) {
__r->_M_free_c_string();
__r->_M_c_string = 0;
}
return __r;
}
}
_RopeRep* __right =
__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __slen, __r->get_allocator());
__r->_M_ref_nonnil();
__STL_TRY {
__result = _S_tree_concat(__r, __right);
}
__STL_UNWIND(_S_unref(__r); _S_unref(__right))
__stl_assert(1 == __result->_M_ref_count);
return __result;
}
#endif /* !__GC */
 
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeRep*
rope<_CharT,_Alloc>::_S_concat(_RopeRep* __left, _RopeRep* __right)
{
if (0 == __left) {
_S_ref(__right);
return __right;
}
if (0 == __right) {
__left->_M_ref_nonnil();
return __left;
}
if (_RopeRep::_S_leaf == __right->_M_tag) {
if (_RopeRep::_S_leaf == __left->_M_tag) {
if (__right->_M_size + __left->_M_size <= _S_copy_max) {
return _S_leaf_concat_char_iter((_RopeLeaf*)__left,
((_RopeLeaf*)__right)->_M_data,
__right->_M_size);
}
} else if (_RopeRep::_S_concat == __left->_M_tag
&& _RopeRep::_S_leaf ==
((_RopeConcatenation*)__left)->_M_right->_M_tag) {
_RopeLeaf* __leftright =
(_RopeLeaf*)(((_RopeConcatenation*)__left)->_M_right);
if (__leftright->_M_size + __right->_M_size <= _S_copy_max) {
_RopeRep* __leftleft = ((_RopeConcatenation*)__left)->_M_left;
_RopeRep* __rest = _S_leaf_concat_char_iter(__leftright,
((_RopeLeaf*)__right)->_M_data,
__right->_M_size);
__leftleft->_M_ref_nonnil();
__STL_TRY {
return(_S_tree_concat(__leftleft, __rest));
}
__STL_UNWIND(_S_unref(__leftleft); _S_unref(__rest))
}
}
}
__left->_M_ref_nonnil();
__right->_M_ref_nonnil();
__STL_TRY {
return(_S_tree_concat(__left, __right));
}
__STL_UNWIND(_S_unref(__left); _S_unref(__right));
}
 
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeRep*
rope<_CharT,_Alloc>::_S_substring(_RopeRep* __base,
size_t __start, size_t __endp1)
{
if (0 == __base) return 0;
size_t __len = __base->_M_size;
size_t __adj_endp1;
const size_t __lazy_threshold = 128;
if (__endp1 >= __len) {
if (0 == __start) {
__base->_M_ref_nonnil();
return __base;
} else {
__adj_endp1 = __len;
}
} else {
__adj_endp1 = __endp1;
}
switch(__base->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__base;
_RopeRep* __left = __c->_M_left;
_RopeRep* __right = __c->_M_right;
size_t __left_len = __left->_M_size;
_RopeRep* __result;
 
if (__adj_endp1 <= __left_len) {
return _S_substring(__left, __start, __endp1);
} else if (__start >= __left_len) {
return _S_substring(__right, __start - __left_len,
__adj_endp1 - __left_len);
}
_Self_destruct_ptr __left_result(
_S_substring(__left, __start, __left_len));
_Self_destruct_ptr __right_result(
_S_substring(__right, 0, __endp1 - __left_len));
__result = _S_concat(__left_result, __right_result);
# ifndef __GC
__stl_assert(1 == __result->_M_ref_count);
# endif
return __result;
}
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__base;
_RopeLeaf* __result;
size_t __result_len;
if (__start >= __adj_endp1) return 0;
__result_len = __adj_endp1 - __start;
if (__result_len > __lazy_threshold) goto lazy;
# ifdef __GC
const _CharT* __section = __l->_M_data + __start;
__result = _S_new_RopeLeaf(__section, __result_len,
__base->get_allocator());
__result->_M_c_string = 0; // Not eos terminated.
# else
// We should sometimes create substring node instead.
__result = __STL_ROPE_FROM_UNOWNED_CHAR_PTR(
__l->_M_data + __start, __result_len,
__base->get_allocator());
# endif
return __result;
}
case _RopeRep::_S_substringfn:
// Avoid introducing multiple layers of substring nodes.
{
_RopeSubstring* __old = (_RopeSubstring*)__base;
size_t __result_len;
if (__start >= __adj_endp1) return 0;
__result_len = __adj_endp1 - __start;
if (__result_len > __lazy_threshold) {
_RopeSubstring* __result =
_S_new_RopeSubstring(__old->_M_base,
__start + __old->_M_start,
__adj_endp1 - __start,
__base->get_allocator());
return __result;
 
} // *** else fall through: ***
}
case _RopeRep::_S_function:
{
_RopeFunction* __f = (_RopeFunction*)__base;
_CharT* __section;
size_t __result_len;
if (__start >= __adj_endp1) return 0;
__result_len = __adj_endp1 - __start;
 
if (__result_len > __lazy_threshold) goto lazy;
__section = (_CharT*)
_Data_allocate(_S_rounded_up_size(__result_len));
__STL_TRY {
(*(__f->_M_fn))(__start, __result_len, __section);
}
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(
__section, __result_len, __base->get_allocator()));
_S_cond_store_eos(__section[__result_len]);
return _S_new_RopeLeaf(__section, __result_len,
__base->get_allocator());
}
}
/*NOTREACHED*/
__stl_assert(false);
lazy:
{
// Create substring node.
return _S_new_RopeSubstring(__base, __start, __adj_endp1 - __start,
__base->get_allocator());
}
}
 
template<class _CharT>
class _Rope_flatten_char_consumer : public _Rope_char_consumer<_CharT> {
private:
_CharT* _M_buf_ptr;
public:
 
_Rope_flatten_char_consumer(_CharT* __buffer) {
_M_buf_ptr = __buffer;
};
~_Rope_flatten_char_consumer() {}
bool operator() (const _CharT* __leaf, size_t __n) {
uninitialized_copy_n(__leaf, __n, _M_buf_ptr);
_M_buf_ptr += __n;
return true;
}
};
template<class _CharT>
class _Rope_find_char_char_consumer : public _Rope_char_consumer<_CharT> {
private:
_CharT _M_pattern;
public:
size_t _M_count; // Number of nonmatching characters
_Rope_find_char_char_consumer(_CharT __p)
: _M_pattern(__p), _M_count(0) {}
~_Rope_find_char_char_consumer() {}
bool operator() (const _CharT* __leaf, size_t __n) {
size_t __i;
for (__i = 0; __i < __n; __i++) {
if (__leaf[__i] == _M_pattern) {
_M_count += __i; return false;
}
}
_M_count += __n; return true;
}
};
template<class _CharT, class _Traits>
// Here _CharT is both the stream and rope character type.
class _Rope_insert_char_consumer : public _Rope_char_consumer<_CharT> {
private:
typedef basic_ostream<_CharT,_Traits> _Insert_ostream;
_Insert_ostream& _M_o;
public:
_Rope_insert_char_consumer(_Insert_ostream& __writer)
: _M_o(__writer) {};
~_Rope_insert_char_consumer() { };
// Caller is presumed to own the ostream
bool operator() (const _CharT* __leaf, size_t __n);
// Returns true to continue traversal.
};
template<class _CharT, class _Traits>
bool _Rope_insert_char_consumer<_CharT, _Traits>::operator()
(const _CharT* __leaf, size_t __n)
{
size_t __i;
// We assume that formatting is set up correctly for each element.
for (__i = 0; __i < __n; __i++) _M_o.put(__leaf[__i]);
return true;
}
 
template <class _CharT, class _Alloc>
bool rope<_CharT, _Alloc>::_S_apply_to_pieces(
_Rope_char_consumer<_CharT>& __c,
const _RopeRep* __r,
size_t __begin, size_t __end)
{
if (0 == __r) return true;
switch(__r->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __conc = (_RopeConcatenation*)__r;
_RopeRep* __left = __conc->_M_left;
size_t __left_len = __left->_M_size;
if (__begin < __left_len) {
size_t __left_end = min(__left_len, __end);
if (!_S_apply_to_pieces(__c, __left, __begin, __left_end))
return false;
}
if (__end > __left_len) {
_RopeRep* __right = __conc->_M_right;
size_t __right_start = max(__left_len, __begin);
if (!_S_apply_to_pieces(__c, __right,
__right_start - __left_len,
__end - __left_len)) {
return false;
}
}
}
return true;
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
return __c(__l->_M_data + __begin, __end - __begin);
}
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
{
_RopeFunction* __f = (_RopeFunction*)__r;
size_t __len = __end - __begin;
bool __result;
_CharT* __buffer =
(_CharT*)alloc::allocate(__len * sizeof(_CharT));
__STL_TRY {
(*(__f->_M_fn))(__begin, __len, __buffer);
__result = __c(__buffer, __len);
alloc::deallocate(__buffer, __len * sizeof(_CharT));
}
__STL_UNWIND((alloc::deallocate(__buffer,
__len * sizeof(_CharT))))
return __result;
}
default:
__stl_assert(false);
/*NOTREACHED*/
return false;
}
}
 
template<class _CharT, class _Traits>
inline void _Rope_fill(basic_ostream<_CharT, _Traits>& __o, size_t __n)
{
char __f = __o.fill();
size_t __i;
 
for (__i = 0; __i < __n; __i++) __o.put(__f);
}
 
template <class _CharT> inline bool _Rope_is_simple(_CharT*) { return false; }
inline bool _Rope_is_simple(char*) { return true; }
inline bool _Rope_is_simple(wchar_t*) { return true; }
 
template<class _CharT, class _Traits, class _Alloc>
basic_ostream<_CharT, _Traits>& operator<< (basic_ostream<_CharT, _Traits>& __o,
const rope<_CharT, _Alloc>& __r)
{
size_t __w = __o.width();
bool __left = bool(__o.flags() & ios::left);
size_t __pad_len;
size_t __rope_len = __r.size();
_Rope_insert_char_consumer<_CharT, _Traits> __c(__o);
bool __is_simple = _Rope_is_simple((_CharT*)0);
if (__rope_len < __w) {
__pad_len = __w - __rope_len;
} else {
__pad_len = 0;
}
if (!__is_simple) __o.width(__w/__rope_len);
__STL_TRY {
if (__is_simple && !__left && __pad_len > 0) {
_Rope_fill(__o, __pad_len);
}
__r.apply_to_pieces(0, __r.size(), __c);
if (__is_simple && __left && __pad_len > 0) {
_Rope_fill(__o, __pad_len);
}
if (!__is_simple)
__o.width(__w);
}
__STL_UNWIND(if (!__is_simple) __o.width(__w))
return __o;
}
 
template <class _CharT, class _Alloc>
_CharT*
rope<_CharT,_Alloc>::_S_flatten(_RopeRep* __r,
size_t __start, size_t __len,
_CharT* __buffer)
{
_Rope_flatten_char_consumer<_CharT> __c(__buffer);
_S_apply_to_pieces(__c, __r, __start, __start + __len);
return(__buffer + __len);
}
 
template <class _CharT, class _Alloc>
size_t
rope<_CharT,_Alloc>::find(_CharT __pattern, size_t __start) const
{
_Rope_find_char_char_consumer<_CharT> __c(__pattern);
_S_apply_to_pieces(__c, _M_tree_ptr, __start, size());
size_type __result_pos = __start + __c._M_count;
# ifndef __STL_OLD_ROPE_SEMANTICS
if (__result_pos == size()) __result_pos = npos;
# endif
return __result_pos;
}
 
template <class _CharT, class _Alloc>
_CharT*
rope<_CharT,_Alloc>::_S_flatten(_RopeRep* __r, _CharT* __buffer)
{
if (0 == __r) return __buffer;
switch(__r->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
_RopeRep* __right = __c->_M_right;
_CharT* __rest = _S_flatten(__left, __buffer);
return _S_flatten(__right, __rest);
}
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
return copy_n(__l->_M_data, __l->_M_size, __buffer).second;
}
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
// We dont yet do anything with substring nodes.
// This needs to be fixed before ropefiles will work well.
{
_RopeFunction* __f = (_RopeFunction*)__r;
(*(__f->_M_fn))(0, __f->_M_size, __buffer);
return __buffer + __f->_M_size;
}
default:
__stl_assert(false);
/*NOTREACHED*/
return 0;
}
}
 
 
// This needs work for _CharT != char
template <class _CharT, class _Alloc>
void
rope<_CharT,_Alloc>::_S_dump(_RopeRep* __r, int __indent)
{
for (int __i = 0; __i < __indent; __i++) putchar(' ');
if (0 == __r) {
printf("NULL\n"); return;
}
if (_RopeRep::_S_concat == __r->_M_tag) {
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
_RopeRep* __right = __c->_M_right;
 
# ifdef __GC
printf("Concatenation %p (depth = %d, len = %ld, %s balanced)\n",
__r, __r->_M_depth, __r->_M_size, __r->_M_is_balanced? "" : "not");
# else
printf("Concatenation %p (rc = %ld, depth = %d, "
"len = %ld, %s balanced)\n",
__r, __r->_M_ref_count, __r->_M_depth, __r->_M_size,
__r->_M_is_balanced? "" : "not");
# endif
_S_dump(__left, __indent + 2);
_S_dump(__right, __indent + 2);
return;
} else {
char* __kind;
 
switch (__r->_M_tag) {
case _RopeRep::_S_leaf:
__kind = "Leaf";
break;
case _RopeRep::_S_function:
__kind = "Function";
break;
case _RopeRep::_S_substringfn:
__kind = "Function representing substring";
break;
default:
__kind = "(corrupted kind field!)";
}
# ifdef __GC
printf("%s %p (depth = %d, len = %ld) ",
__kind, __r, __r->_M_depth, __r->_M_size);
# else
printf("%s %p (rc = %ld, depth = %d, len = %ld) ",
__kind, __r, __r->_M_ref_count, __r->_M_depth, __r->_M_size);
# endif
if (_S_is_one_byte_char_type((_CharT*)0)) {
const int __max_len = 40;
_Self_destruct_ptr __prefix(_S_substring(__r, 0, __max_len));
_CharT __buffer[__max_len + 1];
bool __too_big = __r->_M_size > __prefix->_M_size;
 
_S_flatten(__prefix, __buffer);
__buffer[__prefix->_M_size] = _S_eos((_CharT*)0);
printf("%s%s\n",
(char*)__buffer, __too_big? "...\n" : "\n");
} else {
printf("\n");
}
}
}
 
template <class _CharT, class _Alloc>
const unsigned long
rope<_CharT,_Alloc>::_S_min_len[
_Rope_RopeRep<_CharT,_Alloc>::_S_max_rope_depth + 1] = {
/* 0 */1, /* 1 */2, /* 2 */3, /* 3 */5, /* 4 */8, /* 5 */13, /* 6 */21,
/* 7 */34, /* 8 */55, /* 9 */89, /* 10 */144, /* 11 */233, /* 12 */377,
/* 13 */610, /* 14 */987, /* 15 */1597, /* 16 */2584, /* 17 */4181,
/* 18 */6765, /* 19 */10946, /* 20 */17711, /* 21 */28657, /* 22 */46368,
/* 23 */75025, /* 24 */121393, /* 25 */196418, /* 26 */317811,
/* 27 */514229, /* 28 */832040, /* 29 */1346269, /* 30 */2178309,
/* 31 */3524578, /* 32 */5702887, /* 33 */9227465, /* 34 */14930352,
/* 35 */24157817, /* 36 */39088169, /* 37 */63245986, /* 38 */102334155,
/* 39 */165580141, /* 40 */267914296, /* 41 */433494437,
/* 42 */701408733, /* 43 */1134903170, /* 44 */1836311903,
/* 45 */2971215073u };
// These are Fibonacci numbers < 2**32.
 
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeRep*
rope<_CharT,_Alloc>::_S_balance(_RopeRep* __r)
{
_RopeRep* __forest[_RopeRep::_S_max_rope_depth + 1];
_RopeRep* __result = 0;
int __i;
// Invariant:
// The concatenation of forest in descending order is equal to __r.
// __forest[__i]._M_size >= _S_min_len[__i]
// __forest[__i]._M_depth = __i
// References from forest are included in refcount.
 
for (__i = 0; __i <= _RopeRep::_S_max_rope_depth; ++__i)
__forest[__i] = 0;
__STL_TRY {
_S_add_to_forest(__r, __forest);
for (__i = 0; __i <= _RopeRep::_S_max_rope_depth; ++__i)
if (0 != __forest[__i]) {
# ifndef __GC
_Self_destruct_ptr __old(__result);
# endif
__result = _S_concat(__forest[__i], __result);
__forest[__i]->_M_unref_nonnil();
# if !defined(__GC) && defined(__STL_USE_EXCEPTIONS)
__forest[__i] = 0;
# endif
}
}
__STL_UNWIND(for(__i = 0; __i <= _RopeRep::_S_max_rope_depth; __i++)
_S_unref(__forest[__i]))
if (__result->_M_depth > _RopeRep::_S_max_rope_depth) {
# ifdef __STL_USE_EXCEPTIONS
__STL_THROW(length_error("rope too long"));
# else
abort();
# endif
}
return(__result);
}
 
 
template <class _CharT, class _Alloc>
void
rope<_CharT,_Alloc>::_S_add_to_forest(_RopeRep* __r, _RopeRep** __forest)
{
if (__r->_M_is_balanced) {
_S_add_leaf_to_forest(__r, __forest);
return;
}
__stl_assert(__r->_M_tag == _RopeRep::_S_concat);
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
 
_S_add_to_forest(__c->_M_left, __forest);
_S_add_to_forest(__c->_M_right, __forest);
}
}
 
 
template <class _CharT, class _Alloc>
void
rope<_CharT,_Alloc>::_S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest)
{
_RopeRep* __insertee; // included in refcount
_RopeRep* __too_tiny = 0; // included in refcount
int __i; // forest[0..__i-1] is empty
size_t __s = __r->_M_size;
 
for (__i = 0; __s >= _S_min_len[__i+1]/* not this bucket */; ++__i) {
if (0 != __forest[__i]) {
# ifndef __GC
_Self_destruct_ptr __old(__too_tiny);
# endif
__too_tiny = _S_concat_and_set_balanced(__forest[__i], __too_tiny);
__forest[__i]->_M_unref_nonnil();
__forest[__i] = 0;
}
}
{
# ifndef __GC
_Self_destruct_ptr __old(__too_tiny);
# endif
__insertee = _S_concat_and_set_balanced(__too_tiny, __r);
}
// Too_tiny dead, and no longer included in refcount.
// Insertee is live and included.
__stl_assert(_S_is_almost_balanced(__insertee));
__stl_assert(__insertee->_M_depth <= __r->_M_depth + 1);
for (;; ++__i) {
if (0 != __forest[__i]) {
# ifndef __GC
_Self_destruct_ptr __old(__insertee);
# endif
__insertee = _S_concat_and_set_balanced(__forest[__i], __insertee);
__forest[__i]->_M_unref_nonnil();
__forest[__i] = 0;
__stl_assert(_S_is_almost_balanced(__insertee));
}
__stl_assert(_S_min_len[__i] <= __insertee->_M_size);
__stl_assert(__forest[__i] == 0);
if (__i == _RopeRep::_S_max_rope_depth ||
__insertee->_M_size < _S_min_len[__i+1]) {
__forest[__i] = __insertee;
// refcount is OK since __insertee is now dead.
return;
}
}
}
 
template <class _CharT, class _Alloc>
_CharT
rope<_CharT,_Alloc>::_S_fetch(_RopeRep* __r, size_type __i)
{
__GC_CONST _CharT* __cstr = __r->_M_c_string;
 
__stl_assert(__i < __r->_M_size);
if (0 != __cstr) return __cstr[__i];
for(;;) {
switch(__r->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
size_t __left_len = __left->_M_size;
 
if (__i >= __left_len) {
__i -= __left_len;
__r = __c->_M_right;
} else {
__r = __left;
}
}
break;
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
return __l->_M_data[__i];
}
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
{
_RopeFunction* __f = (_RopeFunction*)__r;
_CharT __result;
 
(*(__f->_M_fn))(__i, 1, &__result);
return __result;
}
}
}
}
 
# ifndef __GC
// Return a uniquely referenced character slot for the given
// position, or 0 if that's not possible.
template <class _CharT, class _Alloc>
_CharT*
rope<_CharT,_Alloc>::_S_fetch_ptr(_RopeRep* __r, size_type __i)
{
_RopeRep* __clrstack[_RopeRep::_S_max_rope_depth];
size_t __csptr = 0;
 
for(;;) {
if (__r->_M_ref_count > 1) return 0;
switch(__r->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
size_t __left_len = __left->_M_size;
 
if (__c->_M_c_string != 0) __clrstack[__csptr++] = __c;
if (__i >= __left_len) {
__i -= __left_len;
__r = __c->_M_right;
} else {
__r = __left;
}
}
break;
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
if (__l->_M_c_string != __l->_M_data && __l->_M_c_string != 0)
__clrstack[__csptr++] = __l;
while (__csptr > 0) {
-- __csptr;
_RopeRep* __d = __clrstack[__csptr];
__d->_M_free_c_string();
__d->_M_c_string = 0;
}
return __l->_M_data + __i;
}
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
return 0;
}
}
}
# endif /* __GC */
 
// The following could be implemented trivially using
// lexicographical_compare_3way.
// We do a little more work to avoid dealing with rope iterators for
// flat strings.
template <class _CharT, class _Alloc>
int
rope<_CharT,_Alloc>::_S_compare (const _RopeRep* __left,
const _RopeRep* __right)
{
size_t __left_len;
size_t __right_len;
 
if (0 == __right) return 0 != __left;
if (0 == __left) return -1;
__left_len = __left->_M_size;
__right_len = __right->_M_size;
if (_RopeRep::_S_leaf == __left->_M_tag) {
_RopeLeaf* __l = (_RopeLeaf*) __left;
if (_RopeRep::_S_leaf == __right->_M_tag) {
_RopeLeaf* __r = (_RopeLeaf*) __right;
return lexicographical_compare_3way(
__l->_M_data, __l->_M_data + __left_len,
__r->_M_data, __r->_M_data + __right_len);
} else {
const_iterator __rstart(__right, 0);
const_iterator __rend(__right, __right_len);
return lexicographical_compare_3way(
__l->_M_data, __l->_M_data + __left_len,
__rstart, __rend);
}
} else {
const_iterator __lstart(__left, 0);
const_iterator __lend(__left, __left_len);
if (_RopeRep::_S_leaf == __right->_M_tag) {
_RopeLeaf* __r = (_RopeLeaf*) __right;
return lexicographical_compare_3way(
__lstart, __lend,
__r->_M_data, __r->_M_data + __right_len);
} else {
const_iterator __rstart(__right, 0);
const_iterator __rend(__right, __right_len);
return lexicographical_compare_3way(
__lstart, __lend,
__rstart, __rend);
}
}
}
 
// Assignment to reference proxies.
template <class _CharT, class _Alloc>
_Rope_char_ref_proxy<_CharT, _Alloc>&
_Rope_char_ref_proxy<_CharT, _Alloc>::operator= (_CharT __c) {
_RopeRep* __old = _M_root->_M_tree_ptr;
# ifndef __GC
// First check for the case in which everything is uniquely
// referenced. In that case we can do this destructively.
_CharT* __ptr = _My_rope::_S_fetch_ptr(__old, _M_pos);
if (0 != __ptr) {
*__ptr = __c;
return *this;
}
# endif
_Self_destruct_ptr __left(
_My_rope::_S_substring(__old, 0, _M_pos));
_Self_destruct_ptr __right(
_My_rope::_S_substring(__old, _M_pos+1, __old->_M_size));
_Self_destruct_ptr __result_left(
_My_rope::_S_destr_concat_char_iter(__left, &__c, 1));
 
# ifndef __GC
__stl_assert(__left == __result_left || 1 == __result_left->_M_ref_count);
# endif
_RopeRep* __result =
_My_rope::_S_concat(__result_left, __right);
# ifndef __GC
__stl_assert(1 <= __result->_M_ref_count);
_RopeRep::_S_unref(__old);
# endif
_M_root->_M_tree_ptr = __result;
return *this;
}
 
template <class _CharT, class _Alloc>
inline _Rope_char_ref_proxy<_CharT, _Alloc>::operator _CharT () const
{
if (_M_current_valid) {
return _M_current;
} else {
return _My_rope::_S_fetch(_M_root->_M_tree_ptr, _M_pos);
}
}
template <class _CharT, class _Alloc>
_Rope_char_ptr_proxy<_CharT, _Alloc>
_Rope_char_ref_proxy<_CharT, _Alloc>::operator& () const {
return _Rope_char_ptr_proxy<_CharT, _Alloc>(*this);
}
 
template <class _CharT, class _Alloc>
rope<_CharT, _Alloc>::rope(size_t __n, _CharT __c,
const allocator_type& __a)
: _Base(__a)
{
rope<_CharT,_Alloc> __result;
const size_t __exponentiate_threshold = 32;
size_t __exponent;
size_t __rest;
_CharT* __rest_buffer;
_RopeRep* __remainder;
rope<_CharT,_Alloc> __remainder_rope;
 
if (0 == __n)
return;
__exponent = __n / __exponentiate_threshold;
__rest = __n % __exponentiate_threshold;
if (0 == __rest) {
__remainder = 0;
} else {
__rest_buffer = _Data_allocate(_S_rounded_up_size(__rest));
uninitialized_fill_n(__rest_buffer, __rest, __c);
_S_cond_store_eos(__rest_buffer[__rest]);
__STL_TRY {
__remainder = _S_new_RopeLeaf(__rest_buffer, __rest, __a);
}
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(__rest_buffer, __rest, __a))
}
__remainder_rope._M_tree_ptr = __remainder;
if (__exponent != 0) {
_CharT* __base_buffer =
_Data_allocate(_S_rounded_up_size(__exponentiate_threshold));
_RopeLeaf* __base_leaf;
rope __base_rope;
uninitialized_fill_n(__base_buffer, __exponentiate_threshold, __c);
_S_cond_store_eos(__base_buffer[__exponentiate_threshold]);
__STL_TRY {
__base_leaf = _S_new_RopeLeaf(__base_buffer,
__exponentiate_threshold, __a);
}
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(__base_buffer,
__exponentiate_threshold, __a))
__base_rope._M_tree_ptr = __base_leaf;
if (1 == __exponent) {
__result = __base_rope;
# ifndef __GC
__stl_assert(2 == __result._M_tree_ptr->_M_ref_count);
// One each for base_rope and __result
# endif
} else {
__result = power(__base_rope, __exponent,
_Rope_Concat_fn<_CharT,_Alloc>());
}
if (0 != __remainder) {
__result += __remainder_rope;
}
} else {
__result = __remainder_rope;
}
_M_tree_ptr = __result._M_tree_ptr;
_M_tree_ptr->_M_ref_nonnil();
}
 
template<class _CharT, class _Alloc>
_CharT rope<_CharT,_Alloc>::_S_empty_c_str[1];
 
template<class _CharT, class _Alloc>
const _CharT* rope<_CharT,_Alloc>::c_str() const {
if (0 == _M_tree_ptr) {
_S_empty_c_str[0] = _S_eos((_CharT*)0); // Possibly redundant,
// but probably fast.
return _S_empty_c_str;
}
__GC_CONST _CharT* __old_c_string = _M_tree_ptr->_M_c_string;
if (0 != __old_c_string) return(__old_c_string);
size_t __s = size();
_CharT* __result = _Data_allocate(__s + 1);
_S_flatten(_M_tree_ptr, __result);
__result[__s] = _S_eos((_CharT*)0);
# ifdef __GC
_M_tree_ptr->_M_c_string = __result;
# else
if ((__old_c_string = (__GC_CONST _CharT*)
_Atomic_swap((unsigned long *)(&(_M_tree_ptr->_M_c_string)),
(unsigned long)__result)) != 0) {
// It must have been added in the interim. Hence it had to have been
// separately allocated. Deallocate the old copy, since we just
// replaced it.
destroy(__old_c_string, __old_c_string + __s + 1);
_Data_deallocate(__old_c_string, __s + 1);
}
# endif
return(__result);
}
 
template<class _CharT, class _Alloc>
const _CharT* rope<_CharT,_Alloc>::replace_with_c_str() {
if (0 == _M_tree_ptr) {
_S_empty_c_str[0] = _S_eos((_CharT*)0);
return _S_empty_c_str;
}
__GC_CONST _CharT* __old_c_string = _M_tree_ptr->_M_c_string;
if (_RopeRep::_S_leaf == _M_tree_ptr->_M_tag && 0 != __old_c_string) {
return(__old_c_string);
}
size_t __s = size();
_CharT* __result = _Data_allocate(_S_rounded_up_size(__s));
_S_flatten(_M_tree_ptr, __result);
__result[__s] = _S_eos((_CharT*)0);
_M_tree_ptr->_M_unref_nonnil();
_M_tree_ptr = _S_new_RopeLeaf(__result, __s, get_allocator());
return(__result);
}
 
// Algorithm specializations. More should be added.
 
template<class _Rope_iterator> // was templated on CharT and Alloc
void // VC++ workaround
_Rope_rotate(_Rope_iterator __first,
_Rope_iterator __middle,
_Rope_iterator __last)
{
typedef typename _Rope_iterator::value_type _CharT;
typedef typename _Rope_iterator::_allocator_type _Alloc;
__stl_assert(__first.container() == __middle.container()
&& __middle.container() == __last.container());
rope<_CharT,_Alloc>& __r(__first.container());
rope<_CharT,_Alloc> __prefix = __r.substr(0, __first.index());
rope<_CharT,_Alloc> __suffix =
__r.substr(__last.index(), __r.size() - __last.index());
rope<_CharT,_Alloc> __part1 =
__r.substr(__middle.index(), __last.index() - __middle.index());
rope<_CharT,_Alloc> __part2 =
__r.substr(__first.index(), __middle.index() - __first.index());
__r = __prefix;
__r += __part1;
__r += __part2;
__r += __suffix;
}
 
#if !defined(__GNUC__)
// Appears to confuse g++
inline void rotate(_Rope_iterator<char,__STL_DEFAULT_ALLOCATOR(char)> __first,
_Rope_iterator<char,__STL_DEFAULT_ALLOCATOR(char)> __middle,
_Rope_iterator<char,__STL_DEFAULT_ALLOCATOR(char)> __last) {
_Rope_rotate(__first, __middle, __last);
}
#endif
 
# if 0
// Probably not useful for several reasons:
// - for SGIs 7.1 compiler and probably some others,
// this forces lots of rope<wchar_t, ...> instantiations, creating a
// code bloat and compile time problem. (Fixed in 7.2.)
// - wchar_t is 4 bytes wide on most UNIX platforms, making it unattractive
// for unicode strings. Unsigned short may be a better character
// type.
inline void rotate(
_Rope_iterator<wchar_t,__STL_DEFAULT_ALLOCATOR(char)> __first,
_Rope_iterator<wchar_t,__STL_DEFAULT_ALLOCATOR(char)> __middle,
_Rope_iterator<wchar_t,__STL_DEFAULT_ALLOCATOR(char)> __last) {
_Rope_rotate(__first, __middle, __last);
}
# endif
 
} // namespace std
 
// Local Variables:
// mode:C++
// End:
/contrib/media/updf/include/ext/slist
0,0 → 1,903
/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
 
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
 
#ifndef __SGI_STL_INTERNAL_SLIST_H
#define __SGI_STL_INTERNAL_SLIST_H
 
#include <bits/stl_algobase.h>
#include <bits/stl_alloc.h>
#include <bits/stl_construct.h>
#include <bits/stl_uninitialized.h>
#include <bits/concept_check.h>
 
namespace std
{
 
struct _Slist_node_base
{
_Slist_node_base* _M_next;
};
 
inline _Slist_node_base*
__slist_make_link(_Slist_node_base* __prev_node,
_Slist_node_base* __new_node)
{
__new_node->_M_next = __prev_node->_M_next;
__prev_node->_M_next = __new_node;
return __new_node;
}
 
inline _Slist_node_base*
__slist_previous(_Slist_node_base* __head,
const _Slist_node_base* __node)
{
while (__head && __head->_M_next != __node)
__head = __head->_M_next;
return __head;
}
 
inline const _Slist_node_base*
__slist_previous(const _Slist_node_base* __head,
const _Slist_node_base* __node)
{
while (__head && __head->_M_next != __node)
__head = __head->_M_next;
return __head;
}
 
inline void __slist_splice_after(_Slist_node_base* __pos,
_Slist_node_base* __before_first,
_Slist_node_base* __before_last)
{
if (__pos != __before_first && __pos != __before_last) {
_Slist_node_base* __first = __before_first->_M_next;
_Slist_node_base* __after = __pos->_M_next;
__before_first->_M_next = __before_last->_M_next;
__pos->_M_next = __first;
__before_last->_M_next = __after;
}
}
 
inline void
__slist_splice_after(_Slist_node_base* __pos, _Slist_node_base* __head)
{
_Slist_node_base* __before_last = __slist_previous(__head, 0);
if (__before_last != __head) {
_Slist_node_base* __after = __pos->_M_next;
__pos->_M_next = __head->_M_next;
__head->_M_next = 0;
__before_last->_M_next = __after;
}
}
 
inline _Slist_node_base* __slist_reverse(_Slist_node_base* __node)
{
_Slist_node_base* __result = __node;
__node = __node->_M_next;
__result->_M_next = 0;
while(__node) {
_Slist_node_base* __next = __node->_M_next;
__node->_M_next = __result;
__result = __node;
__node = __next;
}
return __result;
}
 
inline size_t __slist_size(_Slist_node_base* __node)
{
size_t __result = 0;
for ( ; __node != 0; __node = __node->_M_next)
++__result;
return __result;
}
 
template <class _Tp>
struct _Slist_node : public _Slist_node_base
{
_Tp _M_data;
};
 
struct _Slist_iterator_base
{
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef forward_iterator_tag iterator_category;
 
_Slist_node_base* _M_node;
 
_Slist_iterator_base(_Slist_node_base* __x) : _M_node(__x) {}
void _M_incr() { _M_node = _M_node->_M_next; }
 
bool operator==(const _Slist_iterator_base& __x) const {
return _M_node == __x._M_node;
}
bool operator!=(const _Slist_iterator_base& __x) const {
return _M_node != __x._M_node;
}
};
 
template <class _Tp, class _Ref, class _Ptr>
struct _Slist_iterator : public _Slist_iterator_base
{
typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
typedef _Slist_iterator<_Tp, _Ref, _Ptr> _Self;
 
typedef _Tp value_type;
typedef _Ptr pointer;
typedef _Ref reference;
typedef _Slist_node<_Tp> _Node;
 
_Slist_iterator(_Node* __x) : _Slist_iterator_base(__x) {}
_Slist_iterator() : _Slist_iterator_base(0) {}
_Slist_iterator(const iterator& __x) : _Slist_iterator_base(__x._M_node) {}
 
reference operator*() const { return ((_Node*) _M_node)->_M_data; }
pointer operator->() const { return &(operator*()); }
 
_Self& operator++()
{
_M_incr();
return *this;
}
_Self operator++(int)
{
_Self __tmp = *this;
_M_incr();
return __tmp;
}
};
 
 
// Base class that encapsulates details of allocators. Three cases:
// an ordinary standard-conforming allocator, a standard-conforming
// allocator with no non-static data, and an SGI-style allocator.
// This complexity is necessary only because we're worrying about backward
// compatibility and because we want to avoid wasting storage on an
// allocator instance if it isn't necessary.
 
// Base for general standard-conforming allocators.
template <class _Tp, class _Allocator, bool _IsStatic>
class _Slist_alloc_base {
public:
typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _M_node_allocator; }
 
_Slist_alloc_base(const allocator_type& __a) : _M_node_allocator(__a) {}
 
protected:
_Slist_node<_Tp>* _M_get_node()
{ return _M_node_allocator.allocate(1); }
void _M_put_node(_Slist_node<_Tp>* __p)
{ _M_node_allocator.deallocate(__p, 1); }
 
protected:
typename _Alloc_traits<_Slist_node<_Tp>,_Allocator>::allocator_type
_M_node_allocator;
_Slist_node_base _M_head;
};
 
// Specialization for instanceless allocators.
template <class _Tp, class _Allocator>
class _Slist_alloc_base<_Tp,_Allocator, true> {
public:
typedef typename _Alloc_traits<_Tp,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
 
_Slist_alloc_base(const allocator_type&) {}
 
protected:
typedef typename _Alloc_traits<_Slist_node<_Tp>, _Allocator>::_Alloc_type
_Alloc_type;
_Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
 
protected:
_Slist_node_base _M_head;
};
 
 
template <class _Tp, class _Alloc>
struct _Slist_base
: public _Slist_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
typedef _Slist_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
 
_Slist_base(const allocator_type& __a)
: _Base(__a) { this->_M_head._M_next = 0; }
~_Slist_base() { _M_erase_after(&this->_M_head, 0); }
 
protected:
 
_Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
{
_Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
_Slist_node_base* __next_next = __next->_M_next;
__pos->_M_next = __next_next;
destroy(&__next->_M_data);
_M_put_node(__next);
return __next_next;
}
_Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);
};
 
template <class _Tp, class _Alloc>
_Slist_node_base*
_Slist_base<_Tp,_Alloc>::_M_erase_after(_Slist_node_base* __before_first,
_Slist_node_base* __last_node) {
_Slist_node<_Tp>* __cur = (_Slist_node<_Tp>*) (__before_first->_M_next);
while (__cur != __last_node) {
_Slist_node<_Tp>* __tmp = __cur;
__cur = (_Slist_node<_Tp>*) __cur->_M_next;
destroy(&__tmp->_M_data);
_M_put_node(__tmp);
}
__before_first->_M_next = __last_node;
return __last_node;
}
 
template <class _Tp, class _Alloc = allocator<_Tp> >
class slist : private _Slist_base<_Tp,_Alloc>
{
// concept requirements
__glibcpp_class_requires(_Tp, _SGIAssignableConcept);
 
private:
typedef _Slist_base<_Tp,_Alloc> _Base;
public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
 
typedef _Slist_iterator<_Tp, _Tp&, _Tp*> iterator;
typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
 
typedef typename _Base::allocator_type allocator_type;
allocator_type get_allocator() const { return _Base::get_allocator(); }
 
private:
typedef _Slist_node<_Tp> _Node;
typedef _Slist_node_base _Node_base;
typedef _Slist_iterator_base _Iterator_base;
 
_Node* _M_create_node(const value_type& __x) {
_Node* __node = this->_M_get_node();
__STL_TRY {
construct(&__node->_M_data, __x);
__node->_M_next = 0;
}
__STL_UNWIND(this->_M_put_node(__node));
return __node;
}
_Node* _M_create_node() {
_Node* __node = this->_M_get_node();
__STL_TRY {
construct(&__node->_M_data);
__node->_M_next = 0;
}
__STL_UNWIND(this->_M_put_node(__node));
return __node;
}
 
public:
explicit slist(const allocator_type& __a = allocator_type()) : _Base(__a) {}
 
slist(size_type __n, const value_type& __x,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_fill(&this->_M_head, __n, __x); }
 
explicit slist(size_type __n) : _Base(allocator_type())
{ _M_insert_after_fill(&this->_M_head, __n, value_type()); }
 
// We don't need any dispatching tricks here, because _M_insert_after_range
// already does them.
template <class _InputIterator>
slist(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type()) : _Base(__a)
{ _M_insert_after_range(&this->_M_head, __first, __last); }
 
slist(const slist& __x) : _Base(__x.get_allocator())
{ _M_insert_after_range(&this->_M_head, __x.begin(), __x.end()); }
 
slist& operator= (const slist& __x);
 
~slist() {}
 
public:
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
 
void assign(size_type __n, const _Tp& __val)
{ _M_fill_assign(__n, __val); }
 
void _M_fill_assign(size_type __n, const _Tp& __val);
 
template <class _InputIterator>
void assign(_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
 
template <class _Integer>
void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_type) __n, (_Tp) __val); }
 
template <class _InputIterator>
void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
__false_type);
 
public:
 
iterator begin() { return iterator((_Node*)this->_M_head._M_next); }
const_iterator begin() const
{ return const_iterator((_Node*)this->_M_head._M_next);}
 
iterator end() { return iterator(0); }
const_iterator end() const { return const_iterator(0); }
 
// Experimental new feature: before_begin() returns a
// non-dereferenceable iterator that, when incremented, yields
// begin(). This iterator may be used as the argument to
// insert_after, erase_after, etc. Note that even for an empty
// slist, before_begin() is not the same iterator as end(). It
// is always necessary to increment before_begin() at least once to
// obtain end().
iterator before_begin() { return iterator((_Node*) &this->_M_head); }
const_iterator before_begin() const
{ return const_iterator((_Node*) &this->_M_head); }
 
size_type size() const { return __slist_size(this->_M_head._M_next); }
size_type max_size() const { return size_type(-1); }
 
bool empty() const { return this->_M_head._M_next == 0; }
 
void swap(slist& __x)
{ std::swap(this->_M_head._M_next, __x._M_head._M_next); }
 
public:
 
reference front() { return ((_Node*) this->_M_head._M_next)->_M_data; }
const_reference front() const
{ return ((_Node*) this->_M_head._M_next)->_M_data; }
void push_front(const value_type& __x) {
__slist_make_link(&this->_M_head, _M_create_node(__x));
}
void push_front() { __slist_make_link(&this->_M_head, _M_create_node()); }
void pop_front() {
_Node* __node = (_Node*) this->_M_head._M_next;
this->_M_head._M_next = __node->_M_next;
destroy(&__node->_M_data);
this->_M_put_node(__node);
}
 
iterator previous(const_iterator __pos) {
return iterator((_Node*) __slist_previous(&this->_M_head, __pos._M_node));
}
const_iterator previous(const_iterator __pos) const {
return const_iterator((_Node*) __slist_previous(&this->_M_head,
__pos._M_node));
}
 
private:
_Node* _M_insert_after(_Node_base* __pos, const value_type& __x) {
return (_Node*) (__slist_make_link(__pos, _M_create_node(__x)));
}
 
_Node* _M_insert_after(_Node_base* __pos) {
return (_Node*) (__slist_make_link(__pos, _M_create_node()));
}
 
void _M_insert_after_fill(_Node_base* __pos,
size_type __n, const value_type& __x) {
for (size_type __i = 0; __i < __n; ++__i)
__pos = __slist_make_link(__pos, _M_create_node(__x));
}
 
// Check whether it's an integral type. If so, it's not an iterator.
template <class _InIter>
void _M_insert_after_range(_Node_base* __pos,
_InIter __first, _InIter __last) {
typedef typename _Is_integer<_InIter>::_Integral _Integral;
_M_insert_after_range(__pos, __first, __last, _Integral());
}
 
template <class _Integer>
void _M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x,
__true_type) {
_M_insert_after_fill(__pos, __n, __x);
}
 
template <class _InIter>
void _M_insert_after_range(_Node_base* __pos,
_InIter __first, _InIter __last,
__false_type) {
while (__first != __last) {
__pos = __slist_make_link(__pos, _M_create_node(*__first));
++__first;
}
}
 
public:
 
iterator insert_after(iterator __pos, const value_type& __x) {
return iterator(_M_insert_after(__pos._M_node, __x));
}
 
iterator insert_after(iterator __pos) {
return insert_after(__pos, value_type());
}
 
void insert_after(iterator __pos, size_type __n, const value_type& __x) {
_M_insert_after_fill(__pos._M_node, __n, __x);
}
 
// We don't need any dispatching tricks here, because _M_insert_after_range
// already does them.
template <class _InIter>
void insert_after(iterator __pos, _InIter __first, _InIter __last) {
_M_insert_after_range(__pos._M_node, __first, __last);
}
 
iterator insert(iterator __pos, const value_type& __x) {
return iterator(_M_insert_after(__slist_previous(&this->_M_head,
__pos._M_node),
__x));
}
 
iterator insert(iterator __pos) {
return iterator(_M_insert_after(__slist_previous(&this->_M_head,
__pos._M_node),
value_type()));
}
 
void insert(iterator __pos, size_type __n, const value_type& __x) {
_M_insert_after_fill(__slist_previous(&this->_M_head, __pos._M_node),
__n, __x);
}
// We don't need any dispatching tricks here, because _M_insert_after_range
// already does them.
template <class _InIter>
void insert(iterator __pos, _InIter __first, _InIter __last) {
_M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node),
__first, __last);
}
 
public:
iterator erase_after(iterator __pos) {
return iterator((_Node*) this->_M_erase_after(__pos._M_node));
}
iterator erase_after(iterator __before_first, iterator __last) {
return iterator((_Node*) this->_M_erase_after(__before_first._M_node,
__last._M_node));
}
 
iterator erase(iterator __pos) {
return (_Node*) this->_M_erase_after(__slist_previous(&this->_M_head,
__pos._M_node));
}
iterator erase(iterator __first, iterator __last) {
return (_Node*) this->_M_erase_after(
__slist_previous(&this->_M_head, __first._M_node), __last._M_node);
}
 
void resize(size_type new_size, const _Tp& __x);
void resize(size_type new_size) { resize(new_size, _Tp()); }
void clear() { this->_M_erase_after(&this->_M_head, 0); }
 
public:
// Moves the range [__before_first + 1, __before_last + 1) to *this,
// inserting it immediately after __pos. This is constant time.
void splice_after(iterator __pos,
iterator __before_first, iterator __before_last)
{
if (__before_first != __before_last)
__slist_splice_after(__pos._M_node, __before_first._M_node,
__before_last._M_node);
}
 
// Moves the element that follows __prev to *this, inserting it immediately
// after __pos. This is constant time.
void splice_after(iterator __pos, iterator __prev)
{
__slist_splice_after(__pos._M_node,
__prev._M_node, __prev._M_node->_M_next);
}
 
 
// Removes all of the elements from the list __x to *this, inserting
// them immediately after __pos. __x must not be *this. Complexity:
// linear in __x.size().
void splice_after(iterator __pos, slist& __x)
{
__slist_splice_after(__pos._M_node, &__x._M_head);
}
 
// Linear in distance(begin(), __pos), and linear in __x.size().
void splice(iterator __pos, slist& __x) {
if (__x._M_head._M_next)
__slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
&__x._M_head, __slist_previous(&__x._M_head, 0));
}
 
// Linear in distance(begin(), __pos), and in distance(__x.begin(), __i).
void splice(iterator __pos, slist& __x, iterator __i) {
__slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
__slist_previous(&__x._M_head, __i._M_node),
__i._M_node);
}
 
// Linear in distance(begin(), __pos), in distance(__x.begin(), __first),
// and in distance(__first, __last).
void splice(iterator __pos, slist& __x, iterator __first, iterator __last)
{
if (__first != __last)
__slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
__slist_previous(&__x._M_head, __first._M_node),
__slist_previous(__first._M_node, __last._M_node));
}
 
public:
void reverse() {
if (this->_M_head._M_next)
this->_M_head._M_next = __slist_reverse(this->_M_head._M_next);
}
 
void remove(const _Tp& __val);
void unique();
void merge(slist& __x);
void sort();
 
template <class _Predicate>
void remove_if(_Predicate __pred);
 
template <class _BinaryPredicate>
void unique(_BinaryPredicate __pred);
 
template <class _StrictWeakOrdering>
void merge(slist&, _StrictWeakOrdering);
 
template <class _StrictWeakOrdering>
void sort(_StrictWeakOrdering __comp);
};
 
template <class _Tp, class _Alloc>
slist<_Tp,_Alloc>& slist<_Tp,_Alloc>::operator=(const slist<_Tp,_Alloc>& __x)
{
if (&__x != this) {
_Node_base* __p1 = &this->_M_head;
_Node* __n1 = (_Node*) this->_M_head._M_next;
const _Node* __n2 = (const _Node*) __x._M_head._M_next;
while (__n1 && __n2) {
__n1->_M_data = __n2->_M_data;
__p1 = __n1;
__n1 = (_Node*) __n1->_M_next;
__n2 = (const _Node*) __n2->_M_next;
}
if (__n2 == 0)
this->_M_erase_after(__p1, 0);
else
_M_insert_after_range(__p1, const_iterator((_Node*)__n2),
const_iterator(0));
}
return *this;
}
 
template <class _Tp, class _Alloc>
void slist<_Tp, _Alloc>::_M_fill_assign(size_type __n, const _Tp& __val) {
_Node_base* __prev = &this->_M_head;
_Node* __node = (_Node*) this->_M_head._M_next;
for ( ; __node != 0 && __n > 0 ; --__n) {
__node->_M_data = __val;
__prev = __node;
__node = (_Node*) __node->_M_next;
}
if (__n > 0)
_M_insert_after_fill(__prev, __n, __val);
else
this->_M_erase_after(__prev, 0);
}
 
template <class _Tp, class _Alloc> template <class _InputIter>
void
slist<_Tp, _Alloc>::_M_assign_dispatch(_InputIter __first, _InputIter __last,
__false_type)
{
_Node_base* __prev = &this->_M_head;
_Node* __node = (_Node*) this->_M_head._M_next;
while (__node != 0 && __first != __last) {
__node->_M_data = *__first;
__prev = __node;
__node = (_Node*) __node->_M_next;
++__first;
}
if (__first != __last)
_M_insert_after_range(__prev, __first, __last);
else
this->_M_erase_after(__prev, 0);
}
 
template <class _Tp, class _Alloc>
inline bool
operator==(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
{
typedef typename slist<_Tp,_Alloc>::const_iterator const_iterator;
const_iterator __end1 = _SL1.end();
const_iterator __end2 = _SL2.end();
 
const_iterator __i1 = _SL1.begin();
const_iterator __i2 = _SL2.begin();
while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
++__i1;
++__i2;
}
return __i1 == __end1 && __i2 == __end2;
}
 
 
template <class _Tp, class _Alloc>
inline bool
operator<(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
{
return lexicographical_compare(_SL1.begin(), _SL1.end(),
_SL2.begin(), _SL2.end());
}
 
template <class _Tp, class _Alloc>
inline bool
operator!=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
return !(_SL1 == _SL2);
}
 
template <class _Tp, class _Alloc>
inline bool
operator>(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
return _SL2 < _SL1;
}
 
template <class _Tp, class _Alloc>
inline bool
operator<=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
return !(_SL2 < _SL1);
}
 
template <class _Tp, class _Alloc>
inline bool
operator>=(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2) {
return !(_SL1 < _SL2);
}
 
template <class _Tp, class _Alloc>
inline void swap(slist<_Tp,_Alloc>& __x, slist<_Tp,_Alloc>& __y) {
__x.swap(__y);
}
 
 
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::resize(size_type __len, const _Tp& __x)
{
_Node_base* __cur = &this->_M_head;
while (__cur->_M_next != 0 && __len > 0) {
--__len;
__cur = __cur->_M_next;
}
if (__cur->_M_next)
this->_M_erase_after(__cur, 0);
else
_M_insert_after_fill(__cur, __len, __x);
}
 
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::remove(const _Tp& __val)
{
_Node_base* __cur = &this->_M_head;
while (__cur && __cur->_M_next) {
if (((_Node*) __cur->_M_next)->_M_data == __val)
this->_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
}
 
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::unique()
{
_Node_base* __cur = this->_M_head._M_next;
if (__cur) {
while (__cur->_M_next) {
if (((_Node*)__cur)->_M_data ==
((_Node*)(__cur->_M_next))->_M_data)
this->_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
}
}
 
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x)
{
_Node_base* __n1 = &this->_M_head;
while (__n1->_M_next && __x._M_head._M_next) {
if (((_Node*) __x._M_head._M_next)->_M_data <
((_Node*) __n1->_M_next)->_M_data)
__slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
__n1 = __n1->_M_next;
}
if (__x._M_head._M_next) {
__n1->_M_next = __x._M_head._M_next;
__x._M_head._M_next = 0;
}
}
 
template <class _Tp, class _Alloc>
void slist<_Tp,_Alloc>::sort()
{
if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
slist __carry;
slist __counter[64];
int __fill = 0;
while (!empty()) {
__slist_splice_after(&__carry._M_head,
&this->_M_head, this->_M_head._M_next);
int __i = 0;
while (__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry);
__carry.swap(__counter[__i]);
++__i;
}
__carry.swap(__counter[__i]);
if (__i == __fill)
++__fill;
}
 
for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1]);
this->swap(__counter[__fill-1]);
}
}
 
template <class _Tp, class _Alloc>
template <class _Predicate>
void slist<_Tp,_Alloc>::remove_if(_Predicate __pred)
{
_Node_base* __cur = &this->_M_head;
while (__cur->_M_next) {
if (__pred(((_Node*) __cur->_M_next)->_M_data))
this->_M_erase_after(__cur);
else
__cur = __cur->_M_next;
}
}
 
template <class _Tp, class _Alloc> template <class _BinaryPredicate>
void slist<_Tp,_Alloc>::unique(_BinaryPredicate __pred)
{
_Node* __cur = (_Node*) this->_M_head._M_next;
if (__cur) {
while (__cur->_M_next) {
if (__pred(((_Node*)__cur)->_M_data,
((_Node*)(__cur->_M_next))->_M_data))
this->_M_erase_after(__cur);
else
__cur = (_Node*) __cur->_M_next;
}
}
}
 
template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x,
_StrictWeakOrdering __comp)
{
_Node_base* __n1 = &this->_M_head;
while (__n1->_M_next && __x._M_head._M_next) {
if (__comp(((_Node*) __x._M_head._M_next)->_M_data,
((_Node*) __n1->_M_next)->_M_data))
__slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
__n1 = __n1->_M_next;
}
if (__x._M_head._M_next) {
__n1->_M_next = __x._M_head._M_next;
__x._M_head._M_next = 0;
}
}
 
template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
void slist<_Tp,_Alloc>::sort(_StrictWeakOrdering __comp)
{
if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
slist __carry;
slist __counter[64];
int __fill = 0;
while (!empty()) {
__slist_splice_after(&__carry._M_head,
&this->_M_head, this->_M_head._M_next);
int __i = 0;
while (__i < __fill && !__counter[__i].empty()) {
__counter[__i].merge(__carry, __comp);
__carry.swap(__counter[__i]);
++__i;
}
__carry.swap(__counter[__i]);
if (__i == __fill)
++__fill;
}
 
for (int __i = 1; __i < __fill; ++__i)
__counter[__i].merge(__counter[__i-1], __comp);
this->swap(__counter[__fill-1]);
}
}
 
// Specialization of insert_iterator so that insertions will be constant
// time rather than linear time.
 
template <class _Tp, class _Alloc>
class insert_iterator<slist<_Tp, _Alloc> > {
protected:
typedef slist<_Tp, _Alloc> _Container;
_Container* container;
typename _Container::iterator iter;
public:
typedef _Container container_type;
typedef output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
 
insert_iterator(_Container& __x, typename _Container::iterator __i)
: container(&__x) {
if (__i == __x.begin())
iter = __x.before_begin();
else
iter = __x.previous(__i);
}
 
insert_iterator<_Container>&
operator=(const typename _Container::value_type& __value) {
iter = container->insert_after(iter, __value);
return *this;
}
insert_iterator<_Container>& operator*() { return *this; }
insert_iterator<_Container>& operator++() { return *this; }
insert_iterator<_Container>& operator++(int) { return *this; }
};
 
} // namespace std
 
#endif /* __SGI_STL_INTERNAL_SLIST_H */
 
// Local Variables:
// mode:C++
// End:
/contrib/media/updf/include/ext/stl_bvector.h
0,0 → 1,896
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996-1999
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
 
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
 
#ifndef __SGI_STL_INTERNAL_BVECTOR_H
#define __SGI_STL_INTERNAL_BVECTOR_H
 
__STL_BEGIN_NAMESPACE
 
static const int __WORD_BIT = int(CHAR_BIT*sizeof(unsigned int));
 
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
 
struct _Bit_reference {
unsigned int* _M_p;
unsigned int _M_mask;
_Bit_reference(unsigned int* __x, unsigned int __y)
: _M_p(__x), _M_mask(__y) {}
 
public:
_Bit_reference() : _M_p(0), _M_mask(0) {}
operator bool() const { return !(!(*_M_p & _M_mask)); }
_Bit_reference& operator=(bool __x)
{
if (__x) *_M_p |= _M_mask;
else *_M_p &= ~_M_mask;
return *this;
}
_Bit_reference& operator=(const _Bit_reference& __x)
{ return *this = bool(__x); }
bool operator==(const _Bit_reference& __x) const
{ return bool(*this) == bool(__x); }
bool operator<(const _Bit_reference& __x) const {
return !bool(*this) && bool(__x);
}
void flip() { *_M_p ^= _M_mask; }
};
 
inline void swap(_Bit_reference __x, _Bit_reference __y)
{
bool __tmp = __x;
__x = __y;
__y = __tmp;
}
 
struct _Bit_iterator_base : public random_access_iterator<bool, ptrdiff_t>
{
unsigned int* _M_p;
unsigned int _M_offset;
 
_Bit_iterator_base(unsigned int* __x, unsigned int __y)
: _M_p(__x), _M_offset(__y) {}
 
void _M_bump_up() {
if (_M_offset++ == __WORD_BIT - 1) {
_M_offset = 0;
++_M_p;
}
}
void _M_bump_down() {
if (_M_offset-- == 0) {
_M_offset = __WORD_BIT - 1;
--_M_p;
}
}
 
void _M_incr(ptrdiff_t __i) {
difference_type __n = __i + _M_offset;
_M_p += __n / __WORD_BIT;
__n = __n % __WORD_BIT;
if (__n < 0) {
_M_offset = (unsigned int) __n + __WORD_BIT;
--_M_p;
} else
_M_offset = (unsigned int) __n;
}
 
bool operator==(const _Bit_iterator_base& __i) const {
return _M_p == __i._M_p && _M_offset == __i._M_offset;
}
bool operator<(const _Bit_iterator_base& __i) const {
return _M_p < __i._M_p || (_M_p == __i._M_p && _M_offset < __i._M_offset);
}
bool operator!=(const _Bit_iterator_base& __i) const {
return !(*this == __i);
}
bool operator>(const _Bit_iterator_base& __i) const {
return __i < *this;
}
bool operator<=(const _Bit_iterator_base& __i) const {
return !(__i < *this);
}
bool operator>=(const _Bit_iterator_base& __i) const {
return !(*this < __i);
}
};
 
inline ptrdiff_t
operator-(const _Bit_iterator_base& __x, const _Bit_iterator_base& __y) {
return __WORD_BIT * (__x._M_p - __y._M_p) + __x._M_offset - __y._M_offset;
}
 
 
struct _Bit_iterator : public _Bit_iterator_base
{
typedef _Bit_reference reference;
typedef _Bit_reference* pointer;
typedef _Bit_iterator iterator;
 
_Bit_iterator() : _Bit_iterator_base(0, 0) {}
_Bit_iterator(unsigned int* __x, unsigned int __y)
: _Bit_iterator_base(__x, __y) {}
 
reference operator*() const { return reference(_M_p, 1U << _M_offset); }
iterator& operator++() {
_M_bump_up();
return *this;
}
iterator operator++(int) {
iterator __tmp = *this;
_M_bump_up();
return __tmp;
}
iterator& operator--() {
_M_bump_down();
return *this;
}
iterator operator--(int) {
iterator __tmp = *this;
_M_bump_down();
return __tmp;
}
iterator& operator+=(difference_type __i) {
_M_incr(__i);
return *this;
}
iterator& operator-=(difference_type __i) {
*this += -__i;
return *this;
}
iterator operator+(difference_type __i) const {
iterator __tmp = *this;
return __tmp += __i;
}
iterator operator-(difference_type __i) const {
iterator __tmp = *this;
return __tmp -= __i;
}
 
reference operator[](difference_type __i) { return *(*this + __i); }
};
 
inline _Bit_iterator
operator+(ptrdiff_t __n, const _Bit_iterator& __x) { return __x + __n; }
 
 
struct _Bit_const_iterator : public _Bit_iterator_base
{
typedef bool reference;
typedef bool const_reference;
typedef const bool* pointer;
typedef _Bit_const_iterator const_iterator;
 
_Bit_const_iterator() : _Bit_iterator_base(0, 0) {}
_Bit_const_iterator(unsigned int* __x, unsigned int __y)
: _Bit_iterator_base(__x, __y) {}
_Bit_const_iterator(const _Bit_iterator& __x)
: _Bit_iterator_base(__x._M_p, __x._M_offset) {}
 
const_reference operator*() const {
return _Bit_reference(_M_p, 1U << _M_offset);
}
const_iterator& operator++() {
_M_bump_up();
return *this;
}
const_iterator operator++(int) {
const_iterator __tmp = *this;
_M_bump_up();
return __tmp;
}
const_iterator& operator--() {
_M_bump_down();
return *this;
}
const_iterator operator--(int) {
const_iterator __tmp = *this;
_M_bump_down();
return __tmp;
}
const_iterator& operator+=(difference_type __i) {
_M_incr(__i);
return *this;
}
const_iterator& operator-=(difference_type __i) {
*this += -__i;
return *this;
}
const_iterator operator+(difference_type __i) const {
const_iterator __tmp = *this;
return __tmp += __i;
}
const_iterator operator-(difference_type __i) const {
const_iterator __tmp = *this;
return __tmp -= __i;
}
const_reference operator[](difference_type __i) {
return *(*this + __i);
}
};
 
inline _Bit_const_iterator
operator+(ptrdiff_t __n, const _Bit_const_iterator& __x) { return __x + __n; }
 
 
// Bit-vector base class, which encapsulates the difference between
// old SGI-style allocators and standard-conforming allocators.
 
#ifdef __STL_USE_STD_ALLOCATORS
 
// Base class for ordinary allocators.
template <class _Allocator, bool __is_static>
class _Bvector_alloc_base {
public:
typedef typename _Alloc_traits<bool, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _M_data_allocator; }
 
_Bvector_alloc_base(const allocator_type& __a)
: _M_data_allocator(__a), _M_start(), _M_finish(), _M_end_of_storage(0) {}
 
protected:
unsigned int* _M_bit_alloc(size_t __n)
{ return _M_data_allocator.allocate((__n + __WORD_BIT - 1)/__WORD_BIT); }
void _M_deallocate() {
if (_M_start._M_p)
_M_data_allocator.deallocate(_M_start._M_p,
_M_end_of_storage - _M_start._M_p);
}
 
typename _Alloc_traits<unsigned int, _Allocator>::allocator_type
_M_data_allocator;
_Bit_iterator _M_start;
_Bit_iterator _M_finish;
unsigned int* _M_end_of_storage;
};
 
// Specialization for instanceless allocators.
template <class _Allocator>
class _Bvector_alloc_base<_Allocator, true> {
public:
typedef typename _Alloc_traits<bool, _Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
 
_Bvector_alloc_base(const allocator_type&)
: _M_start(), _M_finish(), _M_end_of_storage(0) {}
 
protected:
typedef typename _Alloc_traits<unsigned int, _Allocator>::_Alloc_type
_Alloc_type;
unsigned int* _M_bit_alloc(size_t __n)
{ return _Alloc_type::allocate((__n + __WORD_BIT - 1)/__WORD_BIT); }
void _M_deallocate() {
if (_M_start._M_p)
_Alloc_type::deallocate(_M_start._M_p,
_M_end_of_storage - _M_start._M_p);
}
 
_Bit_iterator _M_start;
_Bit_iterator _M_finish;
unsigned int* _M_end_of_storage;
};
 
template <class _Alloc>
class _Bvector_base
: public _Bvector_alloc_base<_Alloc,
_Alloc_traits<bool, _Alloc>::_S_instanceless>
{
typedef _Bvector_alloc_base<_Alloc,
_Alloc_traits<bool, _Alloc>::_S_instanceless>
_Base;
public:
typedef typename _Base::allocator_type allocator_type;
 
_Bvector_base(const allocator_type& __a) : _Base(__a) {}
~_Bvector_base() { _Base::_M_deallocate(); }
};
 
#else /* __STL_USE_STD_ALLOCATORS */
 
template <class _Alloc>
class _Bvector_base
{
public:
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
 
_Bvector_base(const allocator_type&)
: _M_start(), _M_finish(), _M_end_of_storage(0) {}
~_Bvector_base() { _M_deallocate(); }
 
protected:
typedef simple_alloc<unsigned int, _Alloc> _Alloc_type;
unsigned int* _M_bit_alloc(size_t __n)
{ return _Alloc_type::allocate((__n + __WORD_BIT - 1)/__WORD_BIT); }
void _M_deallocate() {
if (_M_start._M_p)
_Alloc_type::deallocate(_M_start._M_p,
_M_end_of_storage - _M_start._M_p);
}
 
_Bit_iterator _M_start;
_Bit_iterator _M_finish;
unsigned int* _M_end_of_storage;
};
 
#endif /* __STL_USE_STD_ALLOCATORS */
 
// The next few lines are confusing. What we're doing is declaring a
// partial specialization of vector<T, Alloc> if we have the necessary
// compiler support. Otherwise, we define a class bit_vector which uses
// the default allocator.
 
#if defined(__STL_CLASS_PARTIAL_SPECIALIZATION) && !defined(__STL_NO_BOOL)
# define __SGI_STL_VECBOOL_TEMPLATE
# define __BVECTOR vector<bool, _Alloc>
# define __VECTOR vector
# define __BVECTOR_BASE _Bvector_base<_Alloc>
# define __BVECTOR_TMPL_LIST template <class _Alloc>
__STL_END_NAMESPACE
# include <bits/stl_vector.h>
__STL_BEGIN_NAMESPACE
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION && !__STL_NO_BOOL */
# undef __SGI_STL_VECBOOL_TEMPLATE
# define __BVECTOR bit_vector
# define __VECTOR bit_vector
# define __BVECTOR_BASE _Bvector_base<__STL_DEFAULT_ALLOCATOR(bool) >
# define __BVECTOR_TMPL_LIST
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION && !__STL_NO_BOOL */
 
 
__BVECTOR_TMPL_LIST
class __BVECTOR : public __BVECTOR_BASE
{
public:
typedef bool value_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Bit_reference reference;
typedef bool const_reference;
typedef _Bit_reference* pointer;
typedef const bool* const_pointer;
 
typedef _Bit_iterator iterator;
typedef _Bit_const_iterator const_iterator;
 
#ifdef __STL_CLASS_PARTIAL_SPECIALIZATION
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
#else /* __STL_CLASS_PARTIAL_SPECIALIZATION */
typedef reverse_iterator<const_iterator, value_type, const_reference,
difference_type> const_reverse_iterator;
typedef reverse_iterator<iterator, value_type, reference, difference_type>
reverse_iterator;
#endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */
 
typedef typename __BVECTOR_BASE::allocator_type allocator_type;
allocator_type get_allocator() const {
return __BVECTOR_BASE::get_allocator();
}
 
protected:
#ifdef __STL_USE_NAMESPACES
using __BVECTOR_BASE::_M_bit_alloc;
using __BVECTOR_BASE::_M_deallocate;
using __BVECTOR_BASE::_M_start;
using __BVECTOR_BASE::_M_finish;
using __BVECTOR_BASE::_M_end_of_storage;
#endif /* __STL_USE_NAMESPACES */
 
protected:
void _M_initialize(size_type __n) {
unsigned int* __q = _M_bit_alloc(__n);
_M_end_of_storage = __q + (__n + __WORD_BIT - 1)/__WORD_BIT;
_M_start = iterator(__q, 0);
_M_finish = _M_start + difference_type(__n);
}
void _M_insert_aux(iterator __position, bool __x) {
if (_M_finish._M_p != _M_end_of_storage) {
copy_backward(__position, _M_finish, _M_finish + 1);
*__position = __x;
++_M_finish;
}
else {
size_type __len = size() ? 2 * size() : __WORD_BIT;
unsigned int* __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
*__i++ = __x;
_M_finish = copy(__position, end(), __i);
_M_deallocate();
_M_end_of_storage = __q + (__len + __WORD_BIT - 1)/__WORD_BIT;
_M_start = iterator(__q, 0);
}
}
 
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void _M_initialize_range(_InputIterator __first, _InputIterator __last,
input_iterator_tag) {
_M_start = iterator();
_M_finish = iterator();
_M_end_of_storage = 0;
for ( ; __first != __last; ++__first)
push_back(*__first);
}
 
template <class _ForwardIterator>
void _M_initialize_range(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag) {
size_type __n = 0;
distance(__first, __last, __n);
_M_initialize(__n);
copy(__first, __last, _M_start);
}
 
template <class _InputIterator>
void _M_insert_range(iterator __pos,
_InputIterator __first, _InputIterator __last,
input_iterator_tag) {
for ( ; __first != __last; ++__first) {
__pos = insert(__pos, *__first);
++__pos;
}
}
 
template <class _ForwardIterator>
void _M_insert_range(iterator __position,
_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag) {
if (__first != __last) {
size_type __n = 0;
distance(__first, __last, __n);
if (capacity() - size() >= __n) {
copy_backward(__position, end(), _M_finish + difference_type(__n));
copy(__first, __last, __position);
_M_finish += difference_type(__n);
}
else {
size_type __len = size() + max(size(), __n);
unsigned int* __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
__i = copy(__first, __last, __i);
_M_finish = copy(__position, end(), __i);
_M_deallocate();
_M_end_of_storage = __q + (__len + __WORD_BIT - 1)/__WORD_BIT;
_M_start = iterator(__q, 0);
}
}
}
 
#endif /* __STL_MEMBER_TEMPLATES */
 
public:
iterator begin() { return _M_start; }
const_iterator begin() const { return _M_start; }
iterator end() { return _M_finish; }
const_iterator end() const { return _M_finish; }
 
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
 
size_type size() const { return size_type(end() - begin()); }
size_type max_size() const { return size_type(-1); }
size_type capacity() const {
return size_type(const_iterator(_M_end_of_storage, 0) - begin());
}
bool empty() const { return begin() == end(); }
 
reference operator[](size_type __n)
{ return *(begin() + difference_type(__n)); }
const_reference operator[](size_type __n) const
{ return *(begin() + difference_type(__n)); }
 
#ifdef __STL_THROW_RANGE_ERRORS
void _M_range_check(size_type __n) const {
if (__n >= this->size())
__throw_range_error("vector<bool>");
}
 
reference at(size_type __n)
{ _M_range_check(__n); return (*this)[__n]; }
const_reference at(size_type __n) const
{ _M_range_check(__n); return (*this)[__n]; }
#endif /* __STL_THROW_RANGE_ERRORS */
 
explicit __VECTOR(const allocator_type& __a = allocator_type())
: __BVECTOR_BASE(__a) {}
 
__VECTOR(size_type __n, bool __value,
const allocator_type& __a = allocator_type())
: __BVECTOR_BASE(__a)
{
_M_initialize(__n);
fill(_M_start._M_p, _M_end_of_storage, __value ? ~0 : 0);
}
 
explicit __VECTOR(size_type __n)
: __BVECTOR_BASE(allocator_type())
{
_M_initialize(__n);
fill(_M_start._M_p, _M_end_of_storage, 0);
}
 
__VECTOR(const __VECTOR& __x) : __BVECTOR_BASE(__x.get_allocator()) {
_M_initialize(__x.size());
copy(__x.begin(), __x.end(), _M_start);
}
 
#ifdef __STL_MEMBER_TEMPLATES
 
// Check whether it's an integral type. If so, it's not an iterator.
 
template <class _Integer>
void _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type) {
_M_initialize(__n);
fill(_M_start._M_p, _M_end_of_storage, __x ? ~0 : 0);
}
 
template <class _InputIterator>
void _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
__false_type) {
_M_initialize_range(__first, __last, __ITERATOR_CATEGORY(__first));
}
 
template <class _InputIterator>
__VECTOR(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: __BVECTOR_BASE(__a)
{
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
#else /* __STL_MEMBER_TEMPLATES */
 
__VECTOR(const_iterator __first, const_iterator __last,
const allocator_type& __a = allocator_type())
: __BVECTOR_BASE(__a)
{
size_type __n = 0;
distance(__first, __last, __n);
_M_initialize(__n);
copy(__first, __last, _M_start);
}
__VECTOR(const bool* __first, const bool* __last,
const allocator_type& __a = allocator_type())
: __BVECTOR_BASE(__a)
{
size_type __n = 0;
distance(__first, __last, __n);
_M_initialize(__n);
copy(__first, __last, _M_start);
}
 
#endif /* __STL_MEMBER_TEMPLATES */
 
~__VECTOR() { }
 
__VECTOR& operator=(const __VECTOR& __x) {
if (&__x == this) return *this;
if (__x.size() > capacity()) {
_M_deallocate();
_M_initialize(__x.size());
}
copy(__x.begin(), __x.end(), begin());
_M_finish = begin() + difference_type(__x.size());
return *this;
}
 
// assign(), a generalized assignment member function. Two
// versions: one that takes a count, and one that takes a range.
// The range version is a member template, so we dispatch on whether
// or not the type is an integer.
 
void _M_fill_assign(size_t __n, bool __x) {
if (__n > size()) {
fill(_M_start._M_p, _M_end_of_storage, __x ? ~0 : 0);
insert(end(), __n - size(), __x);
}
else {
erase(begin() + __n, end());
fill(_M_start._M_p, _M_end_of_storage, __x ? ~0 : 0);
}
}
 
void assign(size_t __n, bool __x) { _M_fill_assign(__n, __x); }
 
#ifdef __STL_MEMBER_TEMPLATES
 
template <class _InputIterator>
void assign(_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
 
template <class _Integer>
void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{ _M_fill_assign((size_t) __n, (bool) __val); }
 
template <class _InputIter>
void _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
{ _M_assign_aux(__first, __last, __ITERATOR_CATEGORY(__first)); }
 
template <class _InputIterator>
void _M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag) {
iterator __cur = begin();
for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
*__cur = *__first;
if (__first == __last)
erase(__cur, end());
else
insert(end(), __first, __last);
}
 
template <class _ForwardIterator>
void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag) {
size_type __len = 0;
distance(__first, __last, __len);
if (__len < size())
erase(copy(__first, __last, begin()), end());
else {
_ForwardIterator __mid = __first;
advance(__mid, size());
copy(__first, __mid, begin());
insert(end(), __mid, __last);
}
}
 
#endif /* __STL_MEMBER_TEMPLATES */
 
void reserve(size_type __n) {
if (capacity() < __n) {
unsigned int* __q = _M_bit_alloc(__n);
_M_finish = copy(begin(), end(), iterator(__q, 0));
_M_deallocate();
_M_start = iterator(__q, 0);
_M_end_of_storage = __q + (__n + __WORD_BIT - 1)/__WORD_BIT;
}
}
 
reference front() { return *begin(); }
const_reference front() const { return *begin(); }
reference back() { return *(end() - 1); }
const_reference back() const { return *(end() - 1); }
void push_back(bool __x) {
if (_M_finish._M_p != _M_end_of_storage)
*_M_finish++ = __x;
else
_M_insert_aux(end(), __x);
}
void swap(__BVECTOR& __x) {
__STD::swap(_M_start, __x._M_start);
__STD::swap(_M_finish, __x._M_finish);
__STD::swap(_M_end_of_storage, __x._M_end_of_storage);
}
iterator insert(iterator __position, bool __x = bool()) {
difference_type __n = __position - begin();
if (_M_finish._M_p != _M_end_of_storage && __position == end())
*_M_finish++ = __x;
else
_M_insert_aux(__position, __x);
return begin() + __n;
}
 
#ifdef __STL_MEMBER_TEMPLATES
// Check whether it's an integral type. If so, it's not an iterator.
 
template <class _Integer>
void _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x,
__true_type) {
_M_fill_insert(__pos, __n, __x);
}
 
template <class _InputIterator>
void _M_insert_dispatch(iterator __pos,
_InputIterator __first, _InputIterator __last,
__false_type) {
_M_insert_range(__pos, __first, __last, __ITERATOR_CATEGORY(__first));
}
 
template <class _InputIterator>
void insert(iterator __position,
_InputIterator __first, _InputIterator __last) {
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__position, __first, __last, _Integral());
}
 
#else /* __STL_MEMBER_TEMPLATES */
void insert(iterator __position,
const_iterator __first, const_iterator __last) {
if (__first == __last) return;
size_type __n = 0;
distance(__first, __last, __n);
if (capacity() - size() >= __n) {
copy_backward(__position, end(), _M_finish + __n);
copy(__first, __last, __position);
_M_finish += __n;
}
else {
size_type __len = size() + max(size(), __n);
unsigned int* __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
__i = copy(__first, __last, __i);
_M_finish = copy(__position, end(), __i);
_M_deallocate();
_M_end_of_storage = __q + (__len + __WORD_BIT - 1)/__WORD_BIT;
_M_start = iterator(__q, 0);
}
}
 
void insert(iterator __position, const bool* __first, const bool* __last) {
if (__first == __last) return;
size_type __n = 0;
distance(__first, __last, __n);
if (capacity() - size() >= __n) {
copy_backward(__position, end(), _M_finish + __n);
copy(__first, __last, __position);
_M_finish += __n;
}
else {
size_type __len = size() + max(size(), __n);
unsigned int* __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
__i = copy(__first, __last, __i);
_M_finish = copy(__position, end(), __i);
_M_deallocate();
_M_end_of_storage = __q + (__len + __WORD_BIT - 1)/__WORD_BIT;
_M_start = iterator(__q, 0);
}
}
#endif /* __STL_MEMBER_TEMPLATES */
 
void _M_fill_insert(iterator __position, size_type __n, bool __x) {
if (__n == 0) return;
if (capacity() - size() >= __n) {
copy_backward(__position, end(), _M_finish + difference_type(__n));
fill(__position, __position + difference_type(__n), __x);
_M_finish += difference_type(__n);
}
else {
size_type __len = size() + max(size(), __n);
unsigned int* __q = _M_bit_alloc(__len);
iterator __i = copy(begin(), __position, iterator(__q, 0));
fill_n(__i, __n, __x);
_M_finish = copy(__position, end(), __i + difference_type(__n));
_M_deallocate();
_M_end_of_storage = __q + (__len + __WORD_BIT - 1)/__WORD_BIT;
_M_start = iterator(__q, 0);
}
}
 
void insert(iterator __position, size_type __n, bool __x) {
_M_fill_insert(__position, __n, __x);
}
 
void pop_back() { --_M_finish; }
iterator erase(iterator __position) {
if (__position + 1 != end())
copy(__position + 1, end(), __position);
--_M_finish;
return __position;
}
iterator erase(iterator __first, iterator __last) {
_M_finish = copy(__last, end(), __first);
return __first;
}
void resize(size_type __new_size, bool __x = bool()) {
if (__new_size < size())
erase(begin() + difference_type(__new_size), end());
else
insert(end(), __new_size - size(), __x);
}
void flip() {
for (unsigned int* __p = _M_start._M_p; __p != _M_end_of_storage; ++__p)
*__p = ~*__p;
}
 
void clear() { erase(begin(), end()); }
};
 
#ifdef __SGI_STL_VECBOOL_TEMPLATE
 
// This typedef is non-standard. It is provided for backward compatibility.
typedef vector<bool, alloc> bit_vector;
 
#else /* __SGI_STL_VECBOOL_TEMPLATE */
 
inline void swap(bit_vector& __x, bit_vector& __y) {
__x.swap(__y);
}
 
inline bool
operator==(const bit_vector& __x, const bit_vector& __y)
{
return (__x.size() == __y.size() &&
equal(__x.begin(), __x.end(), __y.begin()));
}
 
inline bool
operator!=(const bit_vector& __x, const bit_vector& __y)
{
return !(__x == __y);
}
 
inline bool
operator<(const bit_vector& __x, const bit_vector& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
 
inline bool operator>(const bit_vector& __x, const bit_vector& __y)
{
return __y < __x;
}
 
inline bool operator<=(const bit_vector& __x, const bit_vector& __y)
{
return !(__y < __x);
}
 
inline bool operator>=(const bit_vector& __x, const bit_vector& __y)
{
return !(__x < __y);
}
 
#endif /* __SGI_STL_VECBOOL_TEMPLATE */
 
#undef __SGI_STL_VECBOOL_TEMPLATE
#undef __BVECTOR
#undef __VECTOR
#undef __BVECTOR_BASE
#undef __BVECTOR_TMPL_LIST
 
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
 
__STL_END_NAMESPACE
 
#endif /* __SGI_STL_INTERNAL_BVECTOR_H */
 
// Local Variables:
// mode:C++
// End:
/contrib/media/updf/include/ext/stl_hash_fun.h
0,0 → 1,94
/*
* Copyright (c) 1996-1998
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
 
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
 
#ifndef _CPP_BITS_STL_HASH_FUN_H
#define _CPP_BITS_STL_HASH_FUN_H 1
 
#include <bits/std_cstddef.h>
 
namespace std
{
 
template <class _Key> struct hash { };
 
inline size_t __stl_hash_string(const char* __s)
{
unsigned long __h = 0;
for ( ; *__s; ++__s)
__h = 5*__h + *__s;
return size_t(__h);
}
 
template<> struct hash<char*>
{
size_t operator()(const char* __s) const { return __stl_hash_string(__s); }
};
 
template<> struct hash<const char*>
{
size_t operator()(const char* __s) const { return __stl_hash_string(__s); }
};
 
template<> struct hash<char> {
size_t operator()(char __x) const { return __x; }
};
template<> struct hash<unsigned char> {
size_t operator()(unsigned char __x) const { return __x; }
};
template<> struct hash<signed char> {
size_t operator()(unsigned char __x) const { return __x; }
};
template<> struct hash<short> {
size_t operator()(short __x) const { return __x; }
};
template<> struct hash<unsigned short> {
size_t operator()(unsigned short __x) const { return __x; }
};
template<> struct hash<int> {
size_t operator()(int __x) const { return __x; }
};
template<> struct hash<unsigned int> {
size_t operator()(unsigned int __x) const { return __x; }
};
template<> struct hash<long> {
size_t operator()(long __x) const { return __x; }
};
template<> struct hash<unsigned long> {
size_t operator()(unsigned long __x) const { return __x; }
};
 
} // namespace std
 
#endif /* _CPP_BITS_STL_HASH_FUN_H */
 
// Local Variables:
// mode:C++
// End:
/contrib/media/updf/include/ext/stl_hashtable.h
0,0 → 1,937
/*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
 
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
 
#ifndef __SGI_STL_INTERNAL_HASHTABLE_H
#define __SGI_STL_INTERNAL_HASHTABLE_H
 
// Hashtable class, used to implement the hashed associative containers
// hash_set, hash_map, hash_multiset, and hash_multimap.
 
#include <bits/stl_algobase.h>
#include <bits/stl_alloc.h>
#include <bits/stl_construct.h>
#include <bits/stl_tempbuf.h>
#include <bits/stl_algo.h>
#include <bits/stl_uninitialized.h>
#include <bits/stl_function.h>
#include <bits/stl_vector.h>
#include <ext/stl_hash_fun.h>
 
namespace std
{
 
template <class _Val>
struct _Hashtable_node
{
_Hashtable_node* _M_next;
_Val _M_val;
};
 
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc = alloc>
class hashtable;
 
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_iterator;
 
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_const_iterator;
 
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_iterator {
typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
_Hashtable;
typedef _Hashtable_iterator<_Val, _Key, _HashFcn,
_ExtractKey, _EqualKey, _Alloc>
iterator;
typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn,
_ExtractKey, _EqualKey, _Alloc>
const_iterator;
typedef _Hashtable_node<_Val> _Node;
 
typedef forward_iterator_tag iterator_category;
typedef _Val value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef _Val& reference;
typedef _Val* pointer;
 
_Node* _M_cur;
_Hashtable* _M_ht;
 
_Hashtable_iterator(_Node* __n, _Hashtable* __tab)
: _M_cur(__n), _M_ht(__tab) {}
_Hashtable_iterator() {}
reference operator*() const { return _M_cur->_M_val; }
pointer operator->() const { return &(operator*()); }
iterator& operator++();
iterator operator++(int);
bool operator==(const iterator& __it) const
{ return _M_cur == __it._M_cur; }
bool operator!=(const iterator& __it) const
{ return _M_cur != __it._M_cur; }
};
 
 
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
struct _Hashtable_const_iterator {
typedef hashtable<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
_Hashtable;
typedef _Hashtable_iterator<_Val,_Key,_HashFcn,
_ExtractKey,_EqualKey,_Alloc>
iterator;
typedef _Hashtable_const_iterator<_Val, _Key, _HashFcn,
_ExtractKey, _EqualKey, _Alloc>
const_iterator;
typedef _Hashtable_node<_Val> _Node;
 
typedef forward_iterator_tag iterator_category;
typedef _Val value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef const _Val& reference;
typedef const _Val* pointer;
 
const _Node* _M_cur;
const _Hashtable* _M_ht;
 
_Hashtable_const_iterator(const _Node* __n, const _Hashtable* __tab)
: _M_cur(__n), _M_ht(__tab) {}
_Hashtable_const_iterator() {}
_Hashtable_const_iterator(const iterator& __it)
: _M_cur(__it._M_cur), _M_ht(__it._M_ht) {}
reference operator*() const { return _M_cur->_M_val; }
pointer operator->() const { return &(operator*()); }
const_iterator& operator++();
const_iterator operator++(int);
bool operator==(const const_iterator& __it) const
{ return _M_cur == __it._M_cur; }
bool operator!=(const const_iterator& __it) const
{ return _M_cur != __it._M_cur; }
};
 
// Note: assumes long is at least 32 bits.
enum { __stl_num_primes = 28 };
 
static const unsigned long __stl_prime_list[__stl_num_primes] =
{
53ul, 97ul, 193ul, 389ul, 769ul,
1543ul, 3079ul, 6151ul, 12289ul, 24593ul,
49157ul, 98317ul, 196613ul, 393241ul, 786433ul,
1572869ul, 3145739ul, 6291469ul, 12582917ul, 25165843ul,
50331653ul, 100663319ul, 201326611ul, 402653189ul, 805306457ul,
1610612741ul, 3221225473ul, 4294967291ul
};
 
inline unsigned long __stl_next_prime(unsigned long __n)
{
const unsigned long* __first = __stl_prime_list;
const unsigned long* __last = __stl_prime_list + (int)__stl_num_primes;
const unsigned long* pos = lower_bound(__first, __last, __n);
return pos == __last ? *(__last - 1) : *pos;
}
 
// Forward declaration of operator==.
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
class hashtable;
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2);
 
 
// Hashtables handle allocators a bit differently than other containers
// do. If we're using standard-conforming allocators, then a hashtable
// unconditionally has a member variable to hold its allocator, even if
// it so happens that all instances of the allocator type are identical.
// This is because, for hashtables, this extra storage is negligible.
// Additionally, a base class wouldn't serve any other purposes; it
// wouldn't, for example, simplify the exception-handling code.
 
template <class _Val, class _Key, class _HashFcn,
class _ExtractKey, class _EqualKey, class _Alloc>
class hashtable {
public:
typedef _Key key_type;
typedef _Val value_type;
typedef _HashFcn hasher;
typedef _EqualKey key_equal;
 
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
 
hasher hash_funct() const { return _M_hash; }
key_equal key_eq() const { return _M_equals; }
 
private:
typedef _Hashtable_node<_Val> _Node;
 
public:
typedef typename _Alloc_traits<_Val,_Alloc>::allocator_type allocator_type;
allocator_type get_allocator() const { return _M_node_allocator; }
private:
typename _Alloc_traits<_Node, _Alloc>::allocator_type _M_node_allocator;
_Node* _M_get_node() { return _M_node_allocator.allocate(1); }
void _M_put_node(_Node* __p) { _M_node_allocator.deallocate(__p, 1); }
 
private:
hasher _M_hash;
key_equal _M_equals;
_ExtractKey _M_get_key;
vector<_Node*,_Alloc> _M_buckets;
size_type _M_num_elements;
 
public:
typedef _Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>
iterator;
typedef _Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,
_Alloc>
const_iterator;
 
friend struct
_Hashtable_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>;
friend struct
_Hashtable_const_iterator<_Val,_Key,_HashFcn,_ExtractKey,_EqualKey,_Alloc>;
 
public:
hashtable(size_type __n,
const _HashFcn& __hf,
const _EqualKey& __eql,
const _ExtractKey& __ext,
const allocator_type& __a = allocator_type())
: _M_node_allocator(__a),
_M_hash(__hf),
_M_equals(__eql),
_M_get_key(__ext),
_M_buckets(__a),
_M_num_elements(0)
{
_M_initialize_buckets(__n);
}
 
hashtable(size_type __n,
const _HashFcn& __hf,
const _EqualKey& __eql,
const allocator_type& __a = allocator_type())
: _M_node_allocator(__a),
_M_hash(__hf),
_M_equals(__eql),
_M_get_key(_ExtractKey()),
_M_buckets(__a),
_M_num_elements(0)
{
_M_initialize_buckets(__n);
}
 
hashtable(const hashtable& __ht)
: _M_node_allocator(__ht.get_allocator()),
_M_hash(__ht._M_hash),
_M_equals(__ht._M_equals),
_M_get_key(__ht._M_get_key),
_M_buckets(__ht.get_allocator()),
_M_num_elements(0)
{
_M_copy_from(__ht);
}
 
hashtable& operator= (const hashtable& __ht)
{
if (&__ht != this) {
clear();
_M_hash = __ht._M_hash;
_M_equals = __ht._M_equals;
_M_get_key = __ht._M_get_key;
_M_copy_from(__ht);
}
return *this;
}
 
~hashtable() { clear(); }
 
size_type size() const { return _M_num_elements; }
size_type max_size() const { return size_type(-1); }
bool empty() const { return size() == 0; }
 
void swap(hashtable& __ht)
{
std::swap(_M_hash, __ht._M_hash);
std::swap(_M_equals, __ht._M_equals);
std::swap(_M_get_key, __ht._M_get_key);
_M_buckets.swap(__ht._M_buckets);
std::swap(_M_num_elements, __ht._M_num_elements);
}
 
iterator begin()
{
for (size_type __n = 0; __n < _M_buckets.size(); ++__n)
if (_M_buckets[__n])
return iterator(_M_buckets[__n], this);
return end();
}
 
iterator end() { return iterator(0, this); }
 
const_iterator begin() const
{
for (size_type __n = 0; __n < _M_buckets.size(); ++__n)
if (_M_buckets[__n])
return const_iterator(_M_buckets[__n], this);
return end();
}
 
const_iterator end() const { return const_iterator(0, this); }
 
template <class _Vl, class _Ky, class _HF, class _Ex, class _Eq, class _Al>
friend bool operator== (const hashtable<_Vl, _Ky, _HF, _Ex, _Eq, _Al>&,
const hashtable<_Vl, _Ky, _HF, _Ex, _Eq, _Al>&);
public:
 
size_type bucket_count() const { return _M_buckets.size(); }
 
size_type max_bucket_count() const
{ return __stl_prime_list[(int)__stl_num_primes - 1]; }
 
size_type elems_in_bucket(size_type __bucket) const
{
size_type __result = 0;
for (_Node* __cur = _M_buckets[__bucket]; __cur; __cur = __cur->_M_next)
__result += 1;
return __result;
}
 
pair<iterator, bool> insert_unique(const value_type& __obj)
{
resize(_M_num_elements + 1);
return insert_unique_noresize(__obj);
}
 
iterator insert_equal(const value_type& __obj)
{
resize(_M_num_elements + 1);
return insert_equal_noresize(__obj);
}
 
pair<iterator, bool> insert_unique_noresize(const value_type& __obj);
iterator insert_equal_noresize(const value_type& __obj);
template <class _InputIterator>
void insert_unique(_InputIterator __f, _InputIterator __l)
{
insert_unique(__f, __l, __iterator_category(__f));
}
 
template <class _InputIterator>
void insert_equal(_InputIterator __f, _InputIterator __l)
{
insert_equal(__f, __l, __iterator_category(__f));
}
 
template <class _InputIterator>
void insert_unique(_InputIterator __f, _InputIterator __l,
input_iterator_tag)
{
for ( ; __f != __l; ++__f)
insert_unique(*__f);
}
 
template <class _InputIterator>
void insert_equal(_InputIterator __f, _InputIterator __l,
input_iterator_tag)
{
for ( ; __f != __l; ++__f)
insert_equal(*__f);
}
 
template <class _ForwardIterator>
void insert_unique(_ForwardIterator __f, _ForwardIterator __l,
forward_iterator_tag)
{
size_type __n = 0;
distance(__f, __l, __n);
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_unique_noresize(*__f);
}
 
template <class _ForwardIterator>
void insert_equal(_ForwardIterator __f, _ForwardIterator __l,
forward_iterator_tag)
{
size_type __n = 0;
distance(__f, __l, __n);
resize(_M_num_elements + __n);
for ( ; __n > 0; --__n, ++__f)
insert_equal_noresize(*__f);
}
 
reference find_or_insert(const value_type& __obj);
 
iterator find(const key_type& __key)
{
size_type __n = _M_bkt_num_key(__key);
_Node* __first;
for ( __first = _M_buckets[__n];
__first && !_M_equals(_M_get_key(__first->_M_val), __key);
__first = __first->_M_next)
{}
return iterator(__first, this);
}
 
const_iterator find(const key_type& __key) const
{
size_type __n = _M_bkt_num_key(__key);
const _Node* __first;
for ( __first = _M_buckets[__n];
__first && !_M_equals(_M_get_key(__first->_M_val), __key);
__first = __first->_M_next)
{}
return const_iterator(__first, this);
}
 
size_type count(const key_type& __key) const
{
const size_type __n = _M_bkt_num_key(__key);
size_type __result = 0;
 
for (const _Node* __cur = _M_buckets[__n]; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), __key))
++__result;
return __result;
}
 
pair<iterator, iterator>
equal_range(const key_type& __key);
 
pair<const_iterator, const_iterator>
equal_range(const key_type& __key) const;
 
size_type erase(const key_type& __key);
void erase(const iterator& __it);
void erase(iterator __first, iterator __last);
 
void erase(const const_iterator& __it);
void erase(const_iterator __first, const_iterator __last);
 
void resize(size_type __num_elements_hint);
void clear();
 
private:
size_type _M_next_size(size_type __n) const
{ return __stl_next_prime(__n); }
 
void _M_initialize_buckets(size_type __n)
{
const size_type __n_buckets = _M_next_size(__n);
_M_buckets.reserve(__n_buckets);
_M_buckets.insert(_M_buckets.end(), __n_buckets, (_Node*) 0);
_M_num_elements = 0;
}
 
size_type _M_bkt_num_key(const key_type& __key) const
{
return _M_bkt_num_key(__key, _M_buckets.size());
}
 
size_type _M_bkt_num(const value_type& __obj) const
{
return _M_bkt_num_key(_M_get_key(__obj));
}
 
size_type _M_bkt_num_key(const key_type& __key, size_t __n) const
{
return _M_hash(__key) % __n;
}
 
size_type _M_bkt_num(const value_type& __obj, size_t __n) const
{
return _M_bkt_num_key(_M_get_key(__obj), __n);
}
 
_Node* _M_new_node(const value_type& __obj)
{
_Node* __n = _M_get_node();
__n->_M_next = 0;
__STL_TRY {
construct(&__n->_M_val, __obj);
return __n;
}
__STL_UNWIND(_M_put_node(__n));
}
void _M_delete_node(_Node* __n)
{
destroy(&__n->_M_val);
_M_put_node(__n);
}
 
void _M_erase_bucket(const size_type __n, _Node* __first, _Node* __last);
void _M_erase_bucket(const size_type __n, _Node* __last);
 
void _M_copy_from(const hashtable& __ht);
 
};
 
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
_Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&
_Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++()
{
const _Node* __old = _M_cur;
_M_cur = _M_cur->_M_next;
if (!_M_cur) {
size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val);
while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size())
_M_cur = _M_ht->_M_buckets[__bucket];
}
return *this;
}
 
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline _Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>
_Hashtable_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int)
{
iterator __tmp = *this;
++*this;
return __tmp;
}
 
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
_Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>&
_Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++()
{
const _Node* __old = _M_cur;
_M_cur = _M_cur->_M_next;
if (!_M_cur) {
size_type __bucket = _M_ht->_M_bkt_num(__old->_M_val);
while (!_M_cur && ++__bucket < _M_ht->_M_buckets.size())
_M_cur = _M_ht->_M_buckets[__bucket];
}
return *this;
}
 
template <class _Val, class _Key, class _HF, class _ExK, class _EqK,
class _All>
inline _Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>
_Hashtable_const_iterator<_Val,_Key,_HF,_ExK,_EqK,_All>::operator++(int)
{
const_iterator __tmp = *this;
++*this;
return __tmp;
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
bool operator==(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2)
{
typedef typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::_Node _Node;
if (__ht1._M_buckets.size() != __ht2._M_buckets.size())
return false;
for (size_t __n = 0; __n < __ht1._M_buckets.size(); ++__n) {
_Node* __cur1 = __ht1._M_buckets[__n];
_Node* __cur2 = __ht2._M_buckets[__n];
for ( ; __cur1 && __cur2 && __cur1->_M_val == __cur2->_M_val;
__cur1 = __cur1->_M_next, __cur2 = __cur2->_M_next)
{}
if (__cur1 || __cur2)
return false;
}
return true;
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline bool operator!=(const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht1,
const hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>& __ht2) {
return !(__ht1 == __ht2);
}
 
template <class _Val, class _Key, class _HF, class _Extract, class _EqKey,
class _All>
inline void swap(hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht1,
hashtable<_Val, _Key, _HF, _Extract, _EqKey, _All>& __ht2) {
__ht1.swap(__ht2);
}
 
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
pair<typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator, bool>
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::insert_unique_noresize(const value_type& __obj)
{
const size_type __n = _M_bkt_num(__obj);
_Node* __first = _M_buckets[__n];
 
for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj)))
return pair<iterator, bool>(iterator(__cur, this), false);
 
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __first;
_M_buckets[__n] = __tmp;
++_M_num_elements;
return pair<iterator, bool>(iterator(__tmp, this), true);
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::insert_equal_noresize(const value_type& __obj)
{
const size_type __n = _M_bkt_num(__obj);
_Node* __first = _M_buckets[__n];
 
for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj))) {
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __cur->_M_next;
__cur->_M_next = __tmp;
++_M_num_elements;
return iterator(__tmp, this);
}
 
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __first;
_M_buckets[__n] = __tmp;
++_M_num_elements;
return iterator(__tmp, this);
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::reference
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::find_or_insert(const value_type& __obj)
{
resize(_M_num_elements + 1);
 
size_type __n = _M_bkt_num(__obj);
_Node* __first = _M_buckets[__n];
 
for (_Node* __cur = __first; __cur; __cur = __cur->_M_next)
if (_M_equals(_M_get_key(__cur->_M_val), _M_get_key(__obj)))
return __cur->_M_val;
 
_Node* __tmp = _M_new_node(__obj);
__tmp->_M_next = __first;
_M_buckets[__n] = __tmp;
++_M_num_elements;
return __tmp->_M_val;
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
pair<typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator,
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::iterator>
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::equal_range(const key_type& __key)
{
typedef pair<iterator, iterator> _Pii;
const size_type __n = _M_bkt_num_key(__key);
 
for (_Node* __first = _M_buckets[__n]; __first; __first = __first->_M_next)
if (_M_equals(_M_get_key(__first->_M_val), __key)) {
for (_Node* __cur = __first->_M_next; __cur; __cur = __cur->_M_next)
if (!_M_equals(_M_get_key(__cur->_M_val), __key))
return _Pii(iterator(__first, this), iterator(__cur, this));
for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
if (_M_buckets[__m])
return _Pii(iterator(__first, this),
iterator(_M_buckets[__m], this));
return _Pii(iterator(__first, this), end());
}
return _Pii(end(), end());
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
pair<typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator,
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::const_iterator>
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::equal_range(const key_type& __key) const
{
typedef pair<const_iterator, const_iterator> _Pii;
const size_type __n = _M_bkt_num_key(__key);
 
for (const _Node* __first = _M_buckets[__n] ;
__first;
__first = __first->_M_next) {
if (_M_equals(_M_get_key(__first->_M_val), __key)) {
for (const _Node* __cur = __first->_M_next;
__cur;
__cur = __cur->_M_next)
if (!_M_equals(_M_get_key(__cur->_M_val), __key))
return _Pii(const_iterator(__first, this),
const_iterator(__cur, this));
for (size_type __m = __n + 1; __m < _M_buckets.size(); ++__m)
if (_M_buckets[__m])
return _Pii(const_iterator(__first, this),
const_iterator(_M_buckets[__m], this));
return _Pii(const_iterator(__first, this), end());
}
}
return _Pii(end(), end());
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
typename hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::size_type
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const key_type& __key)
{
const size_type __n = _M_bkt_num_key(__key);
_Node* __first = _M_buckets[__n];
size_type __erased = 0;
 
if (__first) {
_Node* __cur = __first;
_Node* __next = __cur->_M_next;
while (__next) {
if (_M_equals(_M_get_key(__next->_M_val), __key)) {
__cur->_M_next = __next->_M_next;
_M_delete_node(__next);
__next = __cur->_M_next;
++__erased;
--_M_num_elements;
}
else {
__cur = __next;
__next = __cur->_M_next;
}
}
if (_M_equals(_M_get_key(__first->_M_val), __key)) {
_M_buckets[__n] = __first->_M_next;
_M_delete_node(__first);
++__erased;
--_M_num_elements;
}
}
return __erased;
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const iterator& __it)
{
_Node* __p = __it._M_cur;
if (__p) {
const size_type __n = _M_bkt_num(__p->_M_val);
_Node* __cur = _M_buckets[__n];
 
if (__cur == __p) {
_M_buckets[__n] = __cur->_M_next;
_M_delete_node(__cur);
--_M_num_elements;
}
else {
_Node* __next = __cur->_M_next;
while (__next) {
if (__next == __p) {
__cur->_M_next = __next->_M_next;
_M_delete_node(__next);
--_M_num_elements;
break;
}
else {
__cur = __next;
__next = __cur->_M_next;
}
}
}
}
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::erase(iterator __first, iterator __last)
{
size_type __f_bucket = __first._M_cur ?
_M_bkt_num(__first._M_cur->_M_val) : _M_buckets.size();
size_type __l_bucket = __last._M_cur ?
_M_bkt_num(__last._M_cur->_M_val) : _M_buckets.size();
 
if (__first._M_cur == __last._M_cur)
return;
else if (__f_bucket == __l_bucket)
_M_erase_bucket(__f_bucket, __first._M_cur, __last._M_cur);
else {
_M_erase_bucket(__f_bucket, __first._M_cur, 0);
for (size_type __n = __f_bucket + 1; __n < __l_bucket; ++__n)
_M_erase_bucket(__n, 0);
if (__l_bucket != _M_buckets.size())
_M_erase_bucket(__l_bucket, __last._M_cur);
}
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline void
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const_iterator __first,
const_iterator __last)
{
erase(iterator(const_cast<_Node*>(__first._M_cur),
const_cast<hashtable*>(__first._M_ht)),
iterator(const_cast<_Node*>(__last._M_cur),
const_cast<hashtable*>(__last._M_ht)));
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
inline void
hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::erase(const const_iterator& __it)
{
erase(iterator(const_cast<_Node*>(__it._M_cur),
const_cast<hashtable*>(__it._M_ht)));
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::resize(size_type __num_elements_hint)
{
const size_type __old_n = _M_buckets.size();
if (__num_elements_hint > __old_n) {
const size_type __n = _M_next_size(__num_elements_hint);
if (__n > __old_n) {
vector<_Node*, _All> __tmp(__n, (_Node*)(0),
_M_buckets.get_allocator());
__STL_TRY {
for (size_type __bucket = 0; __bucket < __old_n; ++__bucket) {
_Node* __first = _M_buckets[__bucket];
while (__first) {
size_type __new_bucket = _M_bkt_num(__first->_M_val, __n);
_M_buckets[__bucket] = __first->_M_next;
__first->_M_next = __tmp[__new_bucket];
__tmp[__new_bucket] = __first;
__first = _M_buckets[__bucket];
}
}
_M_buckets.swap(__tmp);
}
# ifdef __STL_USE_EXCEPTIONS
catch(...) {
for (size_type __bucket = 0; __bucket < __tmp.size(); ++__bucket) {
while (__tmp[__bucket]) {
_Node* __next = __tmp[__bucket]->_M_next;
_M_delete_node(__tmp[__bucket]);
__tmp[__bucket] = __next;
}
}
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
}
}
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::_M_erase_bucket(const size_type __n, _Node* __first, _Node* __last)
{
_Node* __cur = _M_buckets[__n];
if (__cur == __first)
_M_erase_bucket(__n, __last);
else {
_Node* __next;
for (__next = __cur->_M_next;
__next != __first;
__cur = __next, __next = __cur->_M_next)
;
while (__next != __last) {
__cur->_M_next = __next->_M_next;
_M_delete_node(__next);
__next = __cur->_M_next;
--_M_num_elements;
}
}
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::_M_erase_bucket(const size_type __n, _Node* __last)
{
_Node* __cur = _M_buckets[__n];
while (__cur != __last) {
_Node* __next = __cur->_M_next;
_M_delete_node(__cur);
__cur = __next;
_M_buckets[__n] = __cur;
--_M_num_elements;
}
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>::clear()
{
for (size_type __i = 0; __i < _M_buckets.size(); ++__i) {
_Node* __cur = _M_buckets[__i];
while (__cur != 0) {
_Node* __next = __cur->_M_next;
_M_delete_node(__cur);
__cur = __next;
}
_M_buckets[__i] = 0;
}
_M_num_elements = 0;
}
 
template <class _Val, class _Key, class _HF, class _Ex, class _Eq, class _All>
void hashtable<_Val,_Key,_HF,_Ex,_Eq,_All>
::_M_copy_from(const hashtable& __ht)
{
_M_buckets.clear();
_M_buckets.reserve(__ht._M_buckets.size());
_M_buckets.insert(_M_buckets.end(), __ht._M_buckets.size(), (_Node*) 0);
__STL_TRY {
for (size_type __i = 0; __i < __ht._M_buckets.size(); ++__i) {
const _Node* __cur = __ht._M_buckets[__i];
if (__cur) {
_Node* __local_copy = _M_new_node(__cur->_M_val);
_M_buckets[__i] = __local_copy;
 
for (_Node* __next = __cur->_M_next;
__next;
__cur = __next, __next = __cur->_M_next) {
__local_copy->_M_next = _M_new_node(__next->_M_val);
__local_copy = __local_copy->_M_next;
}
}
}
_M_num_elements = __ht._M_num_elements;
}
__STL_UNWIND(clear());
}
 
} // namespace std
 
#endif /* __SGI_STL_INTERNAL_HASHTABLE_H */
 
// Local Variables:
// mode:C++
// End:
/contrib/media/updf/include/ext/stl_rope.h
0,0 → 1,2459
/*
* Copyright (c) 1997-1998
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
 
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
 
// rope<_CharT,_Alloc> is a sequence of _CharT.
// Ropes appear to be mutable, but update operations
// really copy enough of the data structure to leave the original
// valid. Thus ropes can be logically copied by just copying
// a pointer value.
 
#ifndef __SGI_STL_INTERNAL_ROPE_H
# define __SGI_STL_INTERNAL_ROPE_H
 
# ifdef __GC
# define __GC_CONST const
# else
# include <bits/stl_threads.h>
# define __GC_CONST // constant except for deallocation
# endif
# ifdef __STL_SGI_THREADS
# include <mutex.h>
# endif
 
namespace std
{
 
// The _S_eos function is used for those functions that
// convert to/from C-like strings to detect the end of the string.
 
// The end-of-C-string character.
// This is what the draft standard says it should be.
template <class _CharT>
inline _CharT _S_eos(_CharT*) { return _CharT(); }
 
// Test for basic character types.
// For basic character types leaves having a trailing eos.
template <class _CharT>
inline bool _S_is_basic_char_type(_CharT*) { return false; }
template <class _CharT>
inline bool _S_is_one_byte_char_type(_CharT*) { return false; }
 
inline bool _S_is_basic_char_type(char*) { return true; }
inline bool _S_is_one_byte_char_type(char*) { return true; }
inline bool _S_is_basic_char_type(wchar_t*) { return true; }
 
// Store an eos iff _CharT is a basic character type.
// Do not reference _S_eos if it isn't.
template <class _CharT>
inline void _S_cond_store_eos(_CharT&) {}
 
inline void _S_cond_store_eos(char& __c) { __c = 0; }
inline void _S_cond_store_eos(wchar_t& __c) { __c = 0; }
 
// char_producers are logically functions that generate a section of
// a string. These can be convereted to ropes. The resulting rope
// invokes the char_producer on demand. This allows, for example,
// files to be viewed as ropes without reading the entire file.
template <class _CharT>
class char_producer {
public:
virtual ~char_producer() {};
virtual void operator()(size_t __start_pos, size_t __len,
_CharT* __buffer) = 0;
// Buffer should really be an arbitrary output iterator.
// That way we could flatten directly into an ostream, etc.
// This is thoroughly impossible, since iterator types don't
// have runtime descriptions.
};
 
// Sequence buffers:
//
// Sequence must provide an append operation that appends an
// array to the sequence. Sequence buffers are useful only if
// appending an entire array is cheaper than appending element by element.
// This is true for many string representations.
// This should perhaps inherit from ostream<sequence::value_type>
// and be implemented correspondingly, so that they can be used
// for formatted. For the sake of portability, we don't do this yet.
//
// For now, sequence buffers behave as output iterators. But they also
// behave a little like basic_ostringstream<sequence::value_type> and a
// little like containers.
 
template<class _Sequence, size_t _Buf_sz = 100>
class sequence_buffer : public output_iterator {
public:
typedef typename _Sequence::value_type value_type;
protected:
_Sequence* _M_prefix;
value_type _M_buffer[_Buf_sz];
size_t _M_buf_count;
public:
void flush() {
_M_prefix->append(_M_buffer, _M_buffer + _M_buf_count);
_M_buf_count = 0;
}
~sequence_buffer() { flush(); }
sequence_buffer() : _M_prefix(0), _M_buf_count(0) {}
sequence_buffer(const sequence_buffer& __x) {
_M_prefix = __x._M_prefix;
_M_buf_count = __x._M_buf_count;
copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
}
sequence_buffer(sequence_buffer& __x) {
__x.flush();
_M_prefix = __x._M_prefix;
_M_buf_count = 0;
}
sequence_buffer(_Sequence& __s) : _M_prefix(&__s), _M_buf_count(0) {}
sequence_buffer& operator= (sequence_buffer& __x) {
__x.flush();
_M_prefix = __x._M_prefix;
_M_buf_count = 0;
return *this;
}
sequence_buffer& operator= (const sequence_buffer& __x) {
_M_prefix = __x._M_prefix;
_M_buf_count = __x._M_buf_count;
copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
return *this;
}
void push_back(value_type __x)
{
if (_M_buf_count < _Buf_sz) {
_M_buffer[_M_buf_count] = __x;
++_M_buf_count;
} else {
flush();
_M_buffer[0] = __x;
_M_buf_count = 1;
}
}
void append(value_type* __s, size_t __len)
{
if (__len + _M_buf_count <= _Buf_sz) {
size_t __i = _M_buf_count;
size_t __j = 0;
for (; __j < __len; __i++, __j++) {
_M_buffer[__i] = __s[__j];
}
_M_buf_count += __len;
} else if (0 == _M_buf_count) {
_M_prefix->append(__s, __s + __len);
} else {
flush();
append(__s, __len);
}
}
sequence_buffer& write(value_type* __s, size_t __len)
{
append(__s, __len);
return *this;
}
sequence_buffer& put(value_type __x)
{
push_back(__x);
return *this;
}
sequence_buffer& operator=(const value_type& __rhs)
{
push_back(__rhs);
return *this;
}
sequence_buffer& operator*() { return *this; }
sequence_buffer& operator++() { return *this; }
sequence_buffer& operator++(int) { return *this; }
};
 
// The following should be treated as private, at least for now.
template<class _CharT>
class _Rope_char_consumer {
public:
// If we had member templates, these should not be virtual.
// For now we need to use run-time parametrization where
// compile-time would do. Hence this should all be private
// for now.
// The symmetry with char_producer is accidental and temporary.
virtual ~_Rope_char_consumer() {};
virtual bool operator()(const _CharT* __buffer, size_t __len) = 0;
};
 
// First a lot of forward declarations. The standard seems to require
// much stricter "declaration before use" than many of the implementations
// that preceded it.
template<class _CharT, class _Alloc=allocator<_CharT> > class rope;
template<class _CharT, class _Alloc> struct _Rope_RopeConcatenation;
template<class _CharT, class _Alloc> struct _Rope_RopeLeaf;
template<class _CharT, class _Alloc> struct _Rope_RopeFunction;
template<class _CharT, class _Alloc> struct _Rope_RopeSubstring;
template<class _CharT, class _Alloc> class _Rope_iterator;
template<class _CharT, class _Alloc> class _Rope_const_iterator;
template<class _CharT, class _Alloc> class _Rope_char_ref_proxy;
template<class _CharT, class _Alloc> class _Rope_char_ptr_proxy;
 
template<class _CharT, class _Alloc>
bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y);
 
template<class _CharT, class _Alloc>
_Rope_const_iterator<_CharT,_Alloc> operator-
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n);
 
template<class _CharT, class _Alloc>
_Rope_const_iterator<_CharT,_Alloc> operator+
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n);
 
template<class _CharT, class _Alloc>
_Rope_const_iterator<_CharT,_Alloc> operator+
(ptrdiff_t __n,
const _Rope_const_iterator<_CharT,_Alloc>& __x);
 
template<class _CharT, class _Alloc>
bool operator==
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y);
 
template<class _CharT, class _Alloc>
bool operator<
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y);
 
template<class _CharT, class _Alloc>
ptrdiff_t operator-
(const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y);
 
template<class _CharT, class _Alloc>
_Rope_iterator<_CharT,_Alloc> operator-
(const _Rope_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n);
 
template<class _CharT, class _Alloc>
_Rope_iterator<_CharT,_Alloc> operator+
(const _Rope_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n);
 
template<class _CharT, class _Alloc>
_Rope_iterator<_CharT,_Alloc> operator+
(ptrdiff_t __n,
const _Rope_iterator<_CharT,_Alloc>& __x);
 
template<class _CharT, class _Alloc>
bool operator==
(const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y);
 
template<class _CharT, class _Alloc>
bool operator<
(const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y);
 
template<class _CharT, class _Alloc>
ptrdiff_t operator-
(const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y);
 
template<class _CharT, class _Alloc>
rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right);
template<class _CharT, class _Alloc>
rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left,
const _CharT* __right);
template<class _CharT, class _Alloc>
rope<_CharT,_Alloc> operator+ (const rope<_CharT,_Alloc>& __left,
_CharT __right);
// Some helpers, so we can use power on ropes.
// See below for why this isn't local to the implementation.
 
// This uses a nonstandard refcount convention.
// The result has refcount 0.
template<class _CharT, class _Alloc>
struct _Rope_Concat_fn
: public binary_function<rope<_CharT,_Alloc>, rope<_CharT,_Alloc>,
rope<_CharT,_Alloc> > {
rope<_CharT,_Alloc> operator() (const rope<_CharT,_Alloc>& __x,
const rope<_CharT,_Alloc>& __y) {
return __x + __y;
}
};
 
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>
identity_element(_Rope_Concat_fn<_CharT, _Alloc>)
{
return rope<_CharT,_Alloc>();
}
 
 
//
// What follows should really be local to rope. Unfortunately,
// that doesn't work, since it makes it impossible to define generic
// equality on rope iterators. According to the draft standard, the
// template parameters for such an equality operator cannot be inferred
// from the occurence of a member class as a parameter.
// (SGI compilers in fact allow this, but the __result wouldn't be
// portable.)
// Similarly, some of the static member functions are member functions
// only to avoid polluting the global namespace, and to circumvent
// restrictions on type inference for template functions.
//
 
//
// The internal data structure for representing a rope. This is
// private to the implementation. A rope is really just a pointer
// to one of these.
//
// A few basic functions for manipulating this data structure
// are members of _RopeRep. Most of the more complex algorithms
// are implemented as rope members.
//
// Some of the static member functions of _RopeRep have identically
// named functions in rope that simply invoke the _RopeRep versions.
//
// A macro to introduce various allocation and deallocation functions
// These need to be defined differently depending on whether or not
// we are using standard conforming allocators, and whether the allocator
// instances have real state. Thus this macro is invoked repeatedly
// with different definitions of __ROPE_DEFINE_ALLOC.
// __ROPE_DEFINE_ALLOC(type,name) defines
// type * name_allocate(size_t) and
// void name_deallocate(tipe *, size_t)
// Both functions may or may not be static.
 
#define __ROPE_DEFINE_ALLOCS(__a) \
__ROPE_DEFINE_ALLOC(_CharT,_Data) /* character data */ \
typedef _Rope_RopeConcatenation<_CharT,__a> __C; \
__ROPE_DEFINE_ALLOC(__C,_C) \
typedef _Rope_RopeLeaf<_CharT,__a> __L; \
__ROPE_DEFINE_ALLOC(__L,_L) \
typedef _Rope_RopeFunction<_CharT,__a> __F; \
__ROPE_DEFINE_ALLOC(__F,_F) \
typedef _Rope_RopeSubstring<_CharT,__a> __S; \
__ROPE_DEFINE_ALLOC(__S,_S)
 
// Internal rope nodes potentially store a copy of the allocator
// instance used to allocate them. This is mostly redundant.
// But the alternative would be to pass allocator instances around
// in some form to nearly all internal functions, since any pointer
// assignment may result in a zero reference count and thus require
// deallocation.
// The _Rope_rep_base class encapsulates
// the differences between SGI-style allocators and standard-conforming
// allocators.
 
#define __STATIC_IF_SGI_ALLOC /* not static */
 
// Base class for ordinary allocators.
template <class _CharT, class _Allocator, bool _IsStatic>
class _Rope_rep_alloc_base {
public:
typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _M_data_allocator; }
_Rope_rep_alloc_base(size_t __size, const allocator_type& __a)
: _M_size(__size), _M_data_allocator(__a) {}
size_t _M_size; // This is here only to avoid wasting space
// for an otherwise empty base class.
 
protected:
allocator_type _M_data_allocator;
 
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
typedef typename \
_Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
/*static*/ _Tp * __name##_allocate(size_t __n) \
{ return __name##Allocator(_M_data_allocator).allocate(__n); } \
void __name##_deallocate(_Tp* __p, size_t __n) \
{ __name##Allocator(_M_data_allocator).deallocate(__p, __n); }
__ROPE_DEFINE_ALLOCS(_Allocator);
# undef __ROPE_DEFINE_ALLOC
};
 
// Specialization for allocators that have the property that we don't
// actually have to store an allocator object.
template <class _CharT, class _Allocator>
class _Rope_rep_alloc_base<_CharT,_Allocator,true> {
public:
typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Rope_rep_alloc_base(size_t __size, const allocator_type&)
: _M_size(__size) {}
size_t _M_size;
protected:
 
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
typedef typename \
_Alloc_traits<_Tp,_Allocator>::_Alloc_type __name##Alloc; \
typedef typename \
_Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
static _Tp* __name##_allocate(size_t __n) \
{ return __name##Alloc::allocate(__n); } \
void __name##_deallocate(_Tp *__p, size_t __n) \
{ __name##Alloc::deallocate(__p, __n); }
__ROPE_DEFINE_ALLOCS(_Allocator);
# undef __ROPE_DEFINE_ALLOC
};
 
template <class _CharT, class _Alloc>
struct _Rope_rep_base
: public _Rope_rep_alloc_base<_CharT,_Alloc,
_Alloc_traits<_CharT,_Alloc>::_S_instanceless>
{
typedef _Rope_rep_alloc_base<_CharT,_Alloc,
_Alloc_traits<_CharT,_Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
_Rope_rep_base(size_t __size, const allocator_type& __a)
: _Base(__size, __a) {}
};
 
 
template<class _CharT, class _Alloc>
struct _Rope_RopeRep : public _Rope_rep_base<_CharT,_Alloc>
# ifndef __GC
, _Refcount_Base
# endif
{
public:
enum { _S_max_rope_depth = 45 };
enum _Tag {_S_leaf, _S_concat, _S_substringfn, _S_function};
_Tag _M_tag:8;
bool _M_is_balanced:8;
unsigned char _M_depth;
__GC_CONST _CharT* _M_c_string;
/* Flattened version of string, if needed. */
/* typically 0. */
/* If it's not 0, then the memory is owned */
/* by this node. */
/* In the case of a leaf, this may point to */
/* the same memory as the data field. */
typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
allocator_type;
_Rope_RopeRep(_Tag __t, int __d, bool __b, size_t __size,
allocator_type __a)
: _Rope_rep_base<_CharT,_Alloc>(__size, __a),
# ifndef __GC
_Refcount_Base(1),
# endif
_M_tag(__t), _M_is_balanced(__b), _M_depth(__d), _M_c_string(0)
{ }
# ifdef __GC
void _M_incr () {}
# endif
static void _S_free_string(__GC_CONST _CharT*, size_t __len,
allocator_type __a);
# define __STL_FREE_STRING(__s, __l, __a) _S_free_string(__s, __l, __a);
// Deallocate data section of a leaf.
// This shouldn't be a member function.
// But its hard to do anything else at the
// moment, because it's templatized w.r.t.
// an allocator.
// Does nothing if __GC is defined.
# ifndef __GC
void _M_free_c_string();
void _M_free_tree();
// Deallocate t. Assumes t is not 0.
void _M_unref_nonnil()
{
if (0 == _M_decr()) _M_free_tree();
}
void _M_ref_nonnil()
{
_M_incr();
}
static void _S_unref(_Rope_RopeRep* __t)
{
if (0 != __t) {
__t->_M_unref_nonnil();
}
}
static void _S_ref(_Rope_RopeRep* __t)
{
if (0 != __t) __t->_M_incr();
}
static void _S_free_if_unref(_Rope_RopeRep* __t)
{
if (0 != __t && 0 == __t->_M_ref_count) __t->_M_free_tree();
}
# else /* __GC */
void _M_unref_nonnil() {}
void _M_ref_nonnil() {}
static void _S_unref(_Rope_RopeRep*) {}
static void _S_ref(_Rope_RopeRep*) {}
static void _S_free_if_unref(_Rope_RopeRep*) {}
# endif
 
};
 
template<class _CharT, class _Alloc>
struct _Rope_RopeLeaf : public _Rope_RopeRep<_CharT,_Alloc> {
public:
// Apparently needed by VC++
// The data fields of leaves are allocated with some
// extra space, to accomodate future growth and for basic
// character types, to hold a trailing eos character.
enum { _S_alloc_granularity = 8 };
static size_t _S_rounded_up_size(size_t __n) {
size_t __size_with_eos;
if (_S_is_basic_char_type((_CharT*)0)) {
__size_with_eos = __n + 1;
} else {
__size_with_eos = __n;
}
# ifdef __GC
return __size_with_eos;
# else
// Allow slop for in-place expansion.
return (__size_with_eos + _S_alloc_granularity-1)
&~ (_S_alloc_granularity-1);
# endif
}
__GC_CONST _CharT* _M_data; /* Not necessarily 0 terminated. */
/* The allocated size is */
/* _S_rounded_up_size(size), except */
/* in the GC case, in which it */
/* doesn't matter. */
typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
allocator_type;
_Rope_RopeLeaf(__GC_CONST _CharT* __d, size_t __size, allocator_type __a)
: _Rope_RopeRep<_CharT,_Alloc>(_S_leaf, 0, true, __size, __a),
_M_data(__d)
{
__stl_assert(__size > 0);
if (_S_is_basic_char_type((_CharT *)0)) {
// already eos terminated.
_M_c_string = __d;
}
}
// The constructor assumes that d has been allocated with
// the proper allocator and the properly padded size.
// In contrast, the destructor deallocates the data:
# ifndef __GC
~_Rope_RopeLeaf() {
if (_M_data != _M_c_string) {
_M_free_c_string();
}
__STL_FREE_STRING(_M_data, _M_size, get_allocator());
}
# endif
};
 
template<class _CharT, class _Alloc>
struct _Rope_RopeConcatenation : public _Rope_RopeRep<_CharT,_Alloc> {
public:
_Rope_RopeRep<_CharT,_Alloc>* _M_left;
_Rope_RopeRep<_CharT,_Alloc>* _M_right;
typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
allocator_type;
_Rope_RopeConcatenation(_Rope_RopeRep<_CharT,_Alloc>* __l,
_Rope_RopeRep<_CharT,_Alloc>* __r,
allocator_type __a)
 
: _Rope_RopeRep<_CharT,_Alloc>(_S_concat,
max(__l->_M_depth, __r->_M_depth) + 1,
false,
__l->_M_size + __r->_M_size, __a),
_M_left(__l), _M_right(__r)
{}
# ifndef __GC
~_Rope_RopeConcatenation() {
_M_free_c_string();
_M_left->_M_unref_nonnil();
_M_right->_M_unref_nonnil();
}
# endif
};
 
template<class _CharT, class _Alloc>
struct _Rope_RopeFunction : public _Rope_RopeRep<_CharT,_Alloc> {
public:
char_producer<_CharT>* _M_fn;
# ifndef __GC
bool _M_delete_when_done; // Char_producer is owned by the
// rope and should be explicitly
// deleted when the rope becomes
// inaccessible.
# else
// In the GC case, we either register the rope for
// finalization, or not. Thus the field is unnecessary;
// the information is stored in the collector data structures.
// We do need a finalization procedure to be invoked by the
// collector.
static void _S_fn_finalization_proc(void * __tree, void *) {
delete ((_Rope_RopeFunction *)__tree) -> _M_fn;
}
# endif
typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
allocator_type;
_Rope_RopeFunction(char_producer<_CharT>* __f, size_t __size,
bool __d, allocator_type __a)
: _Rope_RopeRep<_CharT,_Alloc>(_S_function, 0, true, __size, __a)
, _M_fn(__f)
# ifndef __GC
, _M_delete_when_done(__d)
# endif
{
__stl_assert(__size > 0);
# ifdef __GC
if (__d) {
GC_REGISTER_FINALIZER(
this, _Rope_RopeFunction::_S_fn_finalization_proc, 0, 0, 0);
}
# endif
}
# ifndef __GC
~_Rope_RopeFunction() {
_M_free_c_string();
if (_M_delete_when_done) {
delete _M_fn;
}
}
# endif
};
// Substring results are usually represented using just
// concatenation nodes. But in the case of very long flat ropes
// or ropes with a functional representation that isn't practical.
// In that case, we represent the __result as a special case of
// RopeFunction, whose char_producer points back to the rope itself.
// In all cases except repeated substring operations and
// deallocation, we treat the __result as a RopeFunction.
template<class _CharT, class _Alloc>
struct _Rope_RopeSubstring : public _Rope_RopeFunction<_CharT,_Alloc>,
public char_producer<_CharT> {
public:
// XXX this whole class should be rewritten.
_Rope_RopeRep<_CharT,_Alloc>* _M_base; // not 0
size_t _M_start;
virtual void operator()(size_t __start_pos, size_t __req_len,
_CharT* __buffer) {
switch(_M_base->_M_tag) {
case _S_function:
case _S_substringfn:
{
char_producer<_CharT>* __fn =
((_Rope_RopeFunction<_CharT,_Alloc>*)_M_base)->_M_fn;
__stl_assert(__start_pos + __req_len <= _M_size);
__stl_assert(_M_start + _M_size <= _M_base->_M_size);
(*__fn)(__start_pos + _M_start, __req_len, __buffer);
}
break;
case _S_leaf:
{
__GC_CONST _CharT* __s =
((_Rope_RopeLeaf<_CharT,_Alloc>*)_M_base)->_M_data;
uninitialized_copy_n(__s + __start_pos + _M_start, __req_len,
__buffer);
}
break;
default:
__stl_assert(false);
}
}
typedef typename _Rope_rep_base<_CharT,_Alloc>::allocator_type
allocator_type;
_Rope_RopeSubstring(_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
size_t __l, allocator_type __a)
: _Rope_RopeFunction<_CharT,_Alloc>(this, __l, false, __a),
char_producer<_CharT>(),
_M_base(__b),
_M_start(__s)
{
__stl_assert(__l > 0);
__stl_assert(__s + __l <= __b->_M_size);
# ifndef __GC
_M_base->_M_ref_nonnil();
# endif
_M_tag = _S_substringfn;
}
virtual ~_Rope_RopeSubstring()
{
# ifndef __GC
_M_base->_M_unref_nonnil();
// _M_free_c_string(); -- done by parent class
# endif
}
};
 
 
// Self-destructing pointers to Rope_rep.
// These are not conventional smart pointers. Their
// only purpose in life is to ensure that unref is called
// on the pointer either at normal exit or if an exception
// is raised. It is the caller's responsibility to
// adjust reference counts when these pointers are initialized
// or assigned to. (This convention significantly reduces
// the number of potentially expensive reference count
// updates.)
#ifndef __GC
template<class _CharT, class _Alloc>
struct _Rope_self_destruct_ptr {
_Rope_RopeRep<_CharT,_Alloc>* _M_ptr;
~_Rope_self_destruct_ptr()
{ _Rope_RopeRep<_CharT,_Alloc>::_S_unref(_M_ptr); }
# ifdef __STL_USE_EXCEPTIONS
_Rope_self_destruct_ptr() : _M_ptr(0) {};
# else
_Rope_self_destruct_ptr() {};
# endif
_Rope_self_destruct_ptr(_Rope_RopeRep<_CharT,_Alloc>* __p) : _M_ptr(__p) {}
_Rope_RopeRep<_CharT,_Alloc>& operator*() { return *_M_ptr; }
_Rope_RopeRep<_CharT,_Alloc>* operator->() { return _M_ptr; }
operator _Rope_RopeRep<_CharT,_Alloc>*() { return _M_ptr; }
_Rope_self_destruct_ptr& operator= (_Rope_RopeRep<_CharT,_Alloc>* __x)
{ _M_ptr = __x; return *this; }
};
#endif
 
// Dereferencing a nonconst iterator has to return something
// that behaves almost like a reference. It's not possible to
// return an actual reference since assignment requires extra
// work. And we would get into the same problems as with the
// CD2 version of basic_string.
template<class _CharT, class _Alloc>
class _Rope_char_ref_proxy {
friend class rope<_CharT,_Alloc>;
friend class _Rope_iterator<_CharT,_Alloc>;
friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
# ifdef __GC
typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr;
# else
typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
# endif
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
typedef rope<_CharT,_Alloc> _My_rope;
size_t _M_pos;
_CharT _M_current;
bool _M_current_valid;
_My_rope* _M_root; // The whole rope.
public:
_Rope_char_ref_proxy(_My_rope* __r, size_t __p)
: _M_pos(__p), _M_current_valid(false), _M_root(__r) {}
_Rope_char_ref_proxy(const _Rope_char_ref_proxy& __x)
: _M_pos(__x._M_pos), _M_current_valid(false), _M_root(__x._M_root) {}
// Don't preserve cache if the reference can outlive the
// expression. We claim that's not possible without calling
// a copy constructor or generating reference to a proxy
// reference. We declare the latter to have undefined semantics.
_Rope_char_ref_proxy(_My_rope* __r, size_t __p, _CharT __c)
: _M_pos(__p), _M_current(__c), _M_current_valid(true), _M_root(__r) {}
inline operator _CharT () const;
_Rope_char_ref_proxy& operator= (_CharT __c);
_Rope_char_ptr_proxy<_CharT,_Alloc> operator& () const;
_Rope_char_ref_proxy& operator= (const _Rope_char_ref_proxy& __c) {
return operator=((_CharT)__c);
}
};
 
template<class _CharT, class __Alloc>
inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a,
_Rope_char_ref_proxy <_CharT, __Alloc > __b) {
_CharT __tmp = __a;
__a = __b;
__b = __tmp;
}
 
template<class _CharT, class _Alloc>
class _Rope_char_ptr_proxy {
// XXX this class should be rewritten.
friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
size_t _M_pos;
rope<_CharT,_Alloc>* _M_root; // The whole rope.
public:
_Rope_char_ptr_proxy(const _Rope_char_ref_proxy<_CharT,_Alloc>& __x)
: _M_pos(__x._M_pos), _M_root(__x._M_root) {}
_Rope_char_ptr_proxy(const _Rope_char_ptr_proxy& __x)
: _M_pos(__x._M_pos), _M_root(__x._M_root) {}
_Rope_char_ptr_proxy() {}
_Rope_char_ptr_proxy(_CharT* __x) : _M_root(0), _M_pos(0) {
__stl_assert(0 == __x);
}
_Rope_char_ptr_proxy&
operator= (const _Rope_char_ptr_proxy& __x) {
_M_pos = __x._M_pos;
_M_root = __x._M_root;
return *this;
}
template<class _CharT2, class _Alloc2>
friend bool operator== (const _Rope_char_ptr_proxy<_CharT2,_Alloc2>& __x,
const _Rope_char_ptr_proxy<_CharT2,_Alloc2>& __y);
_Rope_char_ref_proxy<_CharT,_Alloc> operator*() const {
return _Rope_char_ref_proxy<_CharT,_Alloc>(_M_root, _M_pos);
}
};
 
 
// Rope iterators:
// Unlike in the C version, we cache only part of the stack
// for rope iterators, since they must be efficiently copyable.
// When we run out of cache, we have to reconstruct the iterator
// value.
// Pointers from iterators are not included in reference counts.
// Iterators are assumed to be thread private. Ropes can
// be shared.
 
template<class _CharT, class _Alloc>
class _Rope_iterator_base
: public random_access_iterator<_CharT, ptrdiff_t> {
friend class rope<_CharT,_Alloc>;
public:
typedef _Alloc _allocator_type; // used in _Rope_rotate, VC++ workaround
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
// Borland doesnt want this to be protected.
protected:
enum { _S_path_cache_len = 4 }; // Must be <= 9.
enum { _S_iterator_buf_len = 15 };
size_t _M_current_pos;
_RopeRep* _M_root; // The whole rope.
size_t _M_leaf_pos; // Starting position for current leaf
__GC_CONST _CharT* _M_buf_start;
// Buffer possibly
// containing current char.
__GC_CONST _CharT* _M_buf_ptr;
// Pointer to current char in buffer.
// != 0 ==> buffer valid.
__GC_CONST _CharT* _M_buf_end;
// One past __last valid char in buffer.
// What follows is the path cache. We go out of our
// way to make this compact.
// Path_end contains the bottom section of the path from
// the root to the current leaf.
const _RopeRep* _M_path_end[_S_path_cache_len];
int _M_leaf_index; // Last valid __pos in path_end;
// _M_path_end[0] ... _M_path_end[leaf_index-1]
// point to concatenation nodes.
unsigned char _M_path_directions;
// (path_directions >> __i) & 1 is 1
// iff we got from _M_path_end[leaf_index - __i - 1]
// to _M_path_end[leaf_index - __i] by going to the
// __right. Assumes path_cache_len <= 9.
_CharT _M_tmp_buf[_S_iterator_buf_len];
// Short buffer for surrounding chars.
// This is useful primarily for
// RopeFunctions. We put the buffer
// here to avoid locking in the
// multithreaded case.
// The cached path is generally assumed to be valid
// only if the buffer is valid.
static void _S_setbuf(_Rope_iterator_base& __x);
// Set buffer contents given
// path cache.
static void _S_setcache(_Rope_iterator_base& __x);
// Set buffer contents and
// path cache.
static void _S_setcache_for_incr(_Rope_iterator_base& __x);
// As above, but assumes path
// cache is valid for previous posn.
_Rope_iterator_base() {}
_Rope_iterator_base(_RopeRep* __root, size_t __pos)
: _M_current_pos(__pos), _M_root(__root), _M_buf_ptr(0) {}
void _M_incr(size_t __n);
void _M_decr(size_t __n);
public:
size_t index() const { return _M_current_pos; }
_Rope_iterator_base(const _Rope_iterator_base& __x) {
if (0 != __x._M_buf_ptr) {
*this = __x;
} else {
_M_current_pos = __x._M_current_pos;
_M_root = __x._M_root;
_M_buf_ptr = 0;
}
}
};
 
template<class _CharT, class _Alloc> class _Rope_iterator;
 
template<class _CharT, class _Alloc>
class _Rope_const_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
friend class rope<_CharT,_Alloc>;
protected:
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
// The one from the base class may not be directly visible.
_Rope_const_iterator(const _RopeRep* __root, size_t __pos):
_Rope_iterator_base<_CharT,_Alloc>(
const_cast<_RopeRep*>(__root), __pos)
// Only nonconst iterators modify root ref count
{}
public:
typedef _CharT reference; // Really a value. Returning a reference
// Would be a mess, since it would have
// to be included in refcount.
typedef const _CharT* pointer;
 
public:
_Rope_const_iterator() {};
_Rope_const_iterator(const _Rope_const_iterator& __x) :
_Rope_iterator_base<_CharT,_Alloc>(__x) { }
_Rope_const_iterator(const _Rope_iterator<_CharT,_Alloc>& __x);
_Rope_const_iterator(const rope<_CharT,_Alloc>& __r, size_t __pos) :
_Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr, __pos) {}
_Rope_const_iterator& operator= (const _Rope_const_iterator& __x) {
if (0 != __x._M_buf_ptr) {
*(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x;
} else {
_M_current_pos = __x._M_current_pos;
_M_root = __x._M_root;
_M_buf_ptr = 0;
}
return(*this);
}
reference operator*() {
if (0 == _M_buf_ptr) _S_setcache(*this);
return *_M_buf_ptr;
}
_Rope_const_iterator& operator++() {
__GC_CONST _CharT* __next;
if (0 != _M_buf_ptr && (__next = _M_buf_ptr + 1) < _M_buf_end) {
_M_buf_ptr = __next;
++_M_current_pos;
} else {
_M_incr(1);
}
return *this;
}
_Rope_const_iterator& operator+=(ptrdiff_t __n) {
if (__n >= 0) {
_M_incr(__n);
} else {
_M_decr(-__n);
}
return *this;
}
_Rope_const_iterator& operator--() {
_M_decr(1);
return *this;
}
_Rope_const_iterator& operator-=(ptrdiff_t __n) {
if (__n >= 0) {
_M_decr(__n);
} else {
_M_incr(-__n);
}
return *this;
}
_Rope_const_iterator operator++(int) {
size_t __old_pos = _M_current_pos;
_M_incr(1);
return _Rope_const_iterator<_CharT,_Alloc>(_M_root, __old_pos);
// This makes a subsequent dereference expensive.
// Perhaps we should instead copy the iterator
// if it has a valid cache?
}
_Rope_const_iterator operator--(int) {
size_t __old_pos = _M_current_pos;
_M_decr(1);
return _Rope_const_iterator<_CharT,_Alloc>(_M_root, __old_pos);
}
template<class _CharT2, class _Alloc2>
friend _Rope_const_iterator<_CharT2,_Alloc2> operator-
(const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
ptrdiff_t __n);
template<class _CharT2, class _Alloc2>
friend _Rope_const_iterator<_CharT2,_Alloc2> operator+
(const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
ptrdiff_t __n);
template<class _CharT2, class _Alloc2>
friend _Rope_const_iterator<_CharT2,_Alloc2> operator+
(ptrdiff_t __n,
const _Rope_const_iterator<_CharT2,_Alloc2>& __x);
reference operator[](size_t __n) {
return rope<_CharT,_Alloc>::_S_fetch(_M_root, _M_current_pos + __n);
}
 
template<class _CharT2, class _Alloc2>
friend bool operator==
(const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
const _Rope_const_iterator<_CharT2,_Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend bool operator<
(const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
const _Rope_const_iterator<_CharT2,_Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend ptrdiff_t operator-
(const _Rope_const_iterator<_CharT2,_Alloc2>& __x,
const _Rope_const_iterator<_CharT2,_Alloc2>& __y);
};
 
template<class _CharT, class _Alloc>
class _Rope_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
friend class rope<_CharT,_Alloc>;
protected:
rope<_CharT,_Alloc>* _M_root_rope;
// root is treated as a cached version of this,
// and is used to detect changes to the underlying
// rope.
// Root is included in the reference count.
// This is necessary so that we can detect changes reliably.
// Unfortunately, it requires careful bookkeeping for the
// nonGC case.
_Rope_iterator(rope<_CharT,_Alloc>* __r, size_t __pos)
: _Rope_iterator_base<_CharT,_Alloc>(__r->_M_tree_ptr, __pos),
_M_root_rope(__r)
{ _RopeRep::_S_ref(_M_root); if (!(__r -> empty()))_S_setcache(*this); }
 
void _M_check();
public:
typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference;
typedef _Rope_char_ref_proxy<_CharT,_Alloc>* pointer;
 
public:
rope<_CharT,_Alloc>& container() { return *_M_root_rope; }
_Rope_iterator() {
_M_root = 0; // Needed for reference counting.
};
_Rope_iterator(const _Rope_iterator& __x) :
_Rope_iterator_base<_CharT,_Alloc>(__x) {
_M_root_rope = __x._M_root_rope;
_RopeRep::_S_ref(_M_root);
}
_Rope_iterator(rope<_CharT,_Alloc>& __r, size_t __pos);
~_Rope_iterator() {
_RopeRep::_S_unref(_M_root);
}
_Rope_iterator& operator= (const _Rope_iterator& __x) {
_RopeRep* __old = _M_root;
 
_RopeRep::_S_ref(__x._M_root);
if (0 != __x._M_buf_ptr) {
_M_root_rope = __x._M_root_rope;
*(static_cast<_Rope_iterator_base<_CharT,_Alloc>*>(this)) = __x;
} else {
_M_current_pos = __x._M_current_pos;
_M_root = __x._M_root;
_M_root_rope = __x._M_root_rope;
_M_buf_ptr = 0;
}
_RopeRep::_S_unref(__old);
return(*this);
}
reference operator*() {
_M_check();
if (0 == _M_buf_ptr) {
return _Rope_char_ref_proxy<_CharT,_Alloc>(
_M_root_rope, _M_current_pos);
} else {
return _Rope_char_ref_proxy<_CharT,_Alloc>(
_M_root_rope, _M_current_pos, *_M_buf_ptr);
}
}
_Rope_iterator& operator++() {
_M_incr(1);
return *this;
}
_Rope_iterator& operator+=(ptrdiff_t __n) {
if (__n >= 0) {
_M_incr(__n);
} else {
_M_decr(-__n);
}
return *this;
}
_Rope_iterator& operator--() {
_M_decr(1);
return *this;
}
_Rope_iterator& operator-=(ptrdiff_t __n) {
if (__n >= 0) {
_M_decr(__n);
} else {
_M_incr(-__n);
}
return *this;
}
_Rope_iterator operator++(int) {
size_t __old_pos = _M_current_pos;
_M_incr(1);
return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
}
_Rope_iterator operator--(int) {
size_t __old_pos = _M_current_pos;
_M_decr(1);
return _Rope_iterator<_CharT,_Alloc>(_M_root_rope, __old_pos);
}
reference operator[](ptrdiff_t __n) {
return _Rope_char_ref_proxy<_CharT,_Alloc>(
_M_root_rope, _M_current_pos + __n);
}
 
template<class _CharT2, class _Alloc2>
friend bool operator==
(const _Rope_iterator<_CharT2,_Alloc2>& __x,
const _Rope_iterator<_CharT2,_Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend bool operator<
(const _Rope_iterator<_CharT2,_Alloc2>& __x,
const _Rope_iterator<_CharT2,_Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend ptrdiff_t operator-
(const _Rope_iterator<_CharT2,_Alloc2>& __x,
const _Rope_iterator<_CharT2,_Alloc2>& __y);
template<class _CharT2, class _Alloc2>
friend _Rope_iterator<_CharT2,_Alloc2> operator-
(const _Rope_iterator<_CharT2,_Alloc2>& __x,
ptrdiff_t __n);
template<class _CharT2, class _Alloc2>
friend _Rope_iterator<_CharT2,_Alloc2> operator+
(const _Rope_iterator<_CharT2,_Alloc2>& __x,
ptrdiff_t __n);
template<class _CharT2, class _Alloc2>
friend _Rope_iterator<_CharT2,_Alloc2> operator+
(ptrdiff_t __n,
const _Rope_iterator<_CharT2,_Alloc2>& __x);
};
 
// The rope base class encapsulates
// the differences between SGI-style allocators and standard-conforming
// allocators.
 
// Base class for ordinary allocators.
template <class _CharT, class _Allocator, bool _IsStatic>
class _Rope_alloc_base {
public:
typedef _Rope_RopeRep<_CharT,_Allocator> _RopeRep;
typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return _M_data_allocator; }
_Rope_alloc_base(_RopeRep *__t, const allocator_type& __a)
: _M_tree_ptr(__t), _M_data_allocator(__a) {}
_Rope_alloc_base(const allocator_type& __a)
: _M_data_allocator(__a) {}
protected:
// The only data members of a rope:
allocator_type _M_data_allocator;
_RopeRep* _M_tree_ptr;
 
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
typedef typename \
_Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
_Tp* __name##_allocate(size_t __n) const \
{ return __name##Allocator(_M_data_allocator).allocate(__n); } \
void __name##_deallocate(_Tp *__p, size_t __n) const \
{ __name##Allocator(_M_data_allocator).deallocate(__p, __n); }
__ROPE_DEFINE_ALLOCS(_Allocator)
# undef __ROPE_DEFINE_ALLOC
};
 
// Specialization for allocators that have the property that we don't
// actually have to store an allocator object.
template <class _CharT, class _Allocator>
class _Rope_alloc_base<_CharT,_Allocator,true> {
public:
typedef _Rope_RopeRep<_CharT,_Allocator> _RopeRep;
typedef typename _Alloc_traits<_CharT,_Allocator>::allocator_type
allocator_type;
allocator_type get_allocator() const { return allocator_type(); }
_Rope_alloc_base(_RopeRep *__t, const allocator_type&)
: _M_tree_ptr(__t) {}
_Rope_alloc_base(const allocator_type&) {}
protected:
// The only data member of a rope:
_RopeRep *_M_tree_ptr;
 
# define __ROPE_DEFINE_ALLOC(_Tp, __name) \
typedef typename \
_Alloc_traits<_Tp,_Allocator>::_Alloc_type __name##Alloc; \
typedef typename \
_Alloc_traits<_Tp,_Allocator>::allocator_type __name##Allocator; \
static _Tp* __name##_allocate(size_t __n) \
{ return __name##Alloc::allocate(__n); } \
static void __name##_deallocate(_Tp *__p, size_t __n) \
{ __name##Alloc::deallocate(__p, __n); }
__ROPE_DEFINE_ALLOCS(_Allocator)
# undef __ROPE_DEFINE_ALLOC
};
 
template <class _CharT, class _Alloc>
struct _Rope_base
: public _Rope_alloc_base<_CharT,_Alloc,
_Alloc_traits<_CharT,_Alloc>::_S_instanceless>
{
typedef _Rope_alloc_base<_CharT,_Alloc,
_Alloc_traits<_CharT,_Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
// The one in _Base may not be visible due to template rules.
_Rope_base(_RopeRep* __t, const allocator_type& __a) : _Base(__t, __a) {}
_Rope_base(const allocator_type& __a) : _Base(__a) {}
};
 
 
template <class _CharT, class _Alloc>
class rope : public _Rope_base<_CharT,_Alloc> {
public:
typedef _CharT value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef _CharT const_reference;
typedef const _CharT* const_pointer;
typedef _Rope_iterator<_CharT,_Alloc> iterator;
typedef _Rope_const_iterator<_CharT,_Alloc> const_iterator;
typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference;
typedef _Rope_char_ptr_proxy<_CharT,_Alloc> pointer;
 
friend class _Rope_iterator<_CharT,_Alloc>;
friend class _Rope_const_iterator<_CharT,_Alloc>;
friend struct _Rope_RopeRep<_CharT,_Alloc>;
friend class _Rope_iterator_base<_CharT,_Alloc>;
friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
friend struct _Rope_RopeSubstring<_CharT,_Alloc>;
 
protected:
typedef _Rope_base<_CharT,_Alloc> _Base;
typedef typename _Base::allocator_type allocator_type;
using _Base::_M_tree_ptr;
typedef __GC_CONST _CharT* _Cstrptr;
 
static _CharT _S_empty_c_str[1];
 
static bool _S_is0(_CharT __c) { return __c == _S_eos((_CharT*)0); }
enum { _S_copy_max = 23 };
// For strings shorter than _S_copy_max, we copy to
// concatenate.
 
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcatenation;
typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf;
typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction;
typedef _Rope_RopeSubstring<_CharT,_Alloc> _RopeSubstring;
 
// Retrieve a character at the indicated position.
static _CharT _S_fetch(_RopeRep* __r, size_type __pos);
 
# ifndef __GC
// Obtain a pointer to the character at the indicated position.
// The pointer can be used to change the character.
// If such a pointer cannot be produced, as is frequently the
// case, 0 is returned instead.
// (Returns nonzero only if all nodes in the path have a refcount
// of 1.)
static _CharT* _S_fetch_ptr(_RopeRep* __r, size_type __pos);
# endif
 
static bool _S_apply_to_pieces(
// should be template parameter
_Rope_char_consumer<_CharT>& __c,
const _RopeRep* __r,
size_t __begin, size_t __end);
// begin and end are assumed to be in range.
 
# ifndef __GC
static void _S_unref(_RopeRep* __t)
{
_RopeRep::_S_unref(__t);
}
static void _S_ref(_RopeRep* __t)
{
_RopeRep::_S_ref(__t);
}
# else /* __GC */
static void _S_unref(_RopeRep*) {}
static void _S_ref(_RopeRep*) {}
# endif
 
 
# ifdef __GC
typedef _Rope_RopeRep<_CharT,_Alloc>* _Self_destruct_ptr;
# else
typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
# endif
 
// _Result is counted in refcount.
static _RopeRep* _S_substring(_RopeRep* __base,
size_t __start, size_t __endp1);
 
static _RopeRep* _S_concat_char_iter(_RopeRep* __r,
const _CharT* __iter, size_t __slen);
// Concatenate rope and char ptr, copying __s.
// Should really take an arbitrary iterator.
// Result is counted in refcount.
static _RopeRep* _S_destr_concat_char_iter(_RopeRep* __r,
const _CharT* __iter, size_t __slen)
// As above, but one reference to __r is about to be
// destroyed. Thus the pieces may be recycled if all
// relevent reference counts are 1.
# ifdef __GC
// We can't really do anything since refcounts are unavailable.
{ return _S_concat_char_iter(__r, __iter, __slen); }
# else
;
# endif
 
static _RopeRep* _S_concat(_RopeRep* __left, _RopeRep* __right);
// General concatenation on _RopeRep. _Result
// has refcount of 1. Adjusts argument refcounts.
 
public:
void apply_to_pieces( size_t __begin, size_t __end,
_Rope_char_consumer<_CharT>& __c) const {
_S_apply_to_pieces(__c, _M_tree_ptr, __begin, __end);
}
 
 
protected:
 
static size_t _S_rounded_up_size(size_t __n) {
return _RopeLeaf::_S_rounded_up_size(__n);
}
 
static size_t _S_allocated_capacity(size_t __n) {
if (_S_is_basic_char_type((_CharT*)0)) {
return _S_rounded_up_size(__n) - 1;
} else {
return _S_rounded_up_size(__n);
}
}
// Allocate and construct a RopeLeaf using the supplied allocator
// Takes ownership of s instead of copying.
static _RopeLeaf* _S_new_RopeLeaf(__GC_CONST _CharT *__s,
size_t __size, allocator_type __a)
{
_RopeLeaf* __space = _LAllocator(__a).allocate(1);
return new(__space) _RopeLeaf(__s, __size, __a);
}
 
static _RopeConcatenation* _S_new_RopeConcatenation(
_RopeRep* __left, _RopeRep* __right,
allocator_type __a)
{
_RopeConcatenation* __space = _CAllocator(__a).allocate(1);
return new(__space) _RopeConcatenation(__left, __right, __a);
}
 
static _RopeFunction* _S_new_RopeFunction(char_producer<_CharT>* __f,
size_t __size, bool __d, allocator_type __a)
{
_RopeFunction* __space = _FAllocator(__a).allocate(1);
return new(__space) _RopeFunction(__f, __size, __d, __a);
}
 
static _RopeSubstring* _S_new_RopeSubstring(
_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
size_t __l, allocator_type __a)
{
_RopeSubstring* __space = _SAllocator(__a).allocate(1);
return new(__space) _RopeSubstring(__b, __s, __l, __a);
}
 
static
_RopeLeaf* _S_RopeLeaf_from_unowned_char_ptr(const _CharT *__s,
size_t __size, allocator_type __a)
# define __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __size, __a) \
_S_RopeLeaf_from_unowned_char_ptr(__s, __size, __a)
{
if (0 == __size) return 0;
_CharT* __buf = __a.allocate(_S_rounded_up_size(__size));
 
uninitialized_copy_n(__s, __size, __buf);
_S_cond_store_eos(__buf[__size]);
__STL_TRY {
return _S_new_RopeLeaf(__buf, __size, __a);
}
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(__buf, __size, __a))
}
 
// Concatenation of nonempty strings.
// Always builds a concatenation node.
// Rebalances if the result is too deep.
// Result has refcount 1.
// Does not increment left and right ref counts even though
// they are referenced.
static _RopeRep*
_S_tree_concat(_RopeRep* __left, _RopeRep* __right);
 
// Concatenation helper functions
static _RopeLeaf*
_S_leaf_concat_char_iter(_RopeLeaf* __r,
const _CharT* __iter, size_t __slen);
// Concatenate by copying leaf.
// should take an arbitrary iterator
// result has refcount 1.
# ifndef __GC
static _RopeLeaf* _S_destr_leaf_concat_char_iter
(_RopeLeaf* __r, const _CharT* __iter, size_t __slen);
// A version that potentially clobbers __r if __r->_M_ref_count == 1.
# endif
 
private:
 
static size_t _S_char_ptr_len(const _CharT* __s);
// slightly generalized strlen
 
rope(_RopeRep* __t, const allocator_type& __a = allocator_type())
: _Base(__t,__a) { }
 
 
// Copy __r to the _CharT buffer.
// Returns __buffer + __r->_M_size.
// Assumes that buffer is uninitialized.
static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer);
 
// Again, with explicit starting position and length.
// Assumes that buffer is uninitialized.
static _CharT* _S_flatten(_RopeRep* __r,
size_t __start, size_t __len,
_CharT* __buffer);
 
static const unsigned long
_S_min_len[_RopeRep::_S_max_rope_depth + 1];
 
static bool _S_is_balanced(_RopeRep* __r)
{ return (__r->_M_size >= _S_min_len[__r->_M_depth]); }
 
static bool _S_is_almost_balanced(_RopeRep* __r)
{ return (__r->_M_depth == 0 ||
__r->_M_size >= _S_min_len[__r->_M_depth - 1]); }
 
static bool _S_is_roughly_balanced(_RopeRep* __r)
{ return (__r->_M_depth <= 1 ||
__r->_M_size >= _S_min_len[__r->_M_depth - 2]); }
 
// Assumes the result is not empty.
static _RopeRep* _S_concat_and_set_balanced(_RopeRep* __left,
_RopeRep* __right)
{
_RopeRep* __result = _S_concat(__left, __right);
if (_S_is_balanced(__result)) __result->_M_is_balanced = true;
return __result;
}
 
// The basic rebalancing operation. Logically copies the
// rope. The result has refcount of 1. The client will
// usually decrement the reference count of __r.
// The result is within height 2 of balanced by the above
// definition.
static _RopeRep* _S_balance(_RopeRep* __r);
 
// Add all unbalanced subtrees to the forest of balanceed trees.
// Used only by balance.
static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest);
// Add __r to forest, assuming __r is already balanced.
static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest);
 
// Print to stdout, exposing structure
static void _S_dump(_RopeRep* __r, int __indent = 0);
 
// Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp.
static int _S_compare(const _RopeRep* __x, const _RopeRep* __y);
 
public:
bool empty() const { return 0 == _M_tree_ptr; }
 
// Comparison member function. This is public only for those
// clients that need a ternary comparison. Others
// should use the comparison operators below.
int compare(const rope& __y) const {
return _S_compare(_M_tree_ptr, __y._M_tree_ptr);
}
 
rope(const _CharT* __s, const allocator_type& __a = allocator_type())
: _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, _S_char_ptr_len(__s),
__a),__a)
{ }
 
rope(const _CharT* __s, size_t __len,
const allocator_type& __a = allocator_type())
: _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __len, __a), __a)
{ }
 
// Should perhaps be templatized with respect to the iterator type
// and use Sequence_buffer. (It should perhaps use sequence_buffer
// even now.)
rope(const _CharT *__s, const _CharT *__e,
const allocator_type& __a = allocator_type())
: _Base(__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __e - __s, __a), __a)
{ }
 
rope(const const_iterator& __s, const const_iterator& __e,
const allocator_type& __a = allocator_type())
: _Base(_S_substring(__s._M_root, __s._M_current_pos,
__e._M_current_pos), __a)
{ }
 
rope(const iterator& __s, const iterator& __e,
const allocator_type& __a = allocator_type())
: _Base(_S_substring(__s._M_root, __s._M_current_pos,
__e._M_current_pos), __a)
{ }
 
rope(_CharT __c, const allocator_type& __a = allocator_type())
: _Base(__a)
{
_CharT* __buf = _Data_allocate(_S_rounded_up_size(1));
 
construct(__buf, __c);
__STL_TRY {
_M_tree_ptr = _S_new_RopeLeaf(__buf, 1, __a);
}
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(__buf, 1, __a))
}
 
rope(size_t __n, _CharT __c,
const allocator_type& __a = allocator_type());
 
rope(const allocator_type& __a = allocator_type())
: _Base(0, __a) {}
 
// Construct a rope from a function that can compute its members
rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
_M_tree_ptr = (0 == __len) ?
0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a);
}
 
rope(const rope& __x, const allocator_type& __a = allocator_type())
: _Base(__x._M_tree_ptr, __a)
{
_S_ref(_M_tree_ptr);
}
 
~rope()
{
_S_unref(_M_tree_ptr);
}
 
rope& operator=(const rope& __x)
{
_RopeRep* __old = _M_tree_ptr;
__stl_assert(get_allocator() == __x.get_allocator());
_M_tree_ptr = __x._M_tree_ptr;
_S_ref(_M_tree_ptr);
_S_unref(__old);
return(*this);
}
 
void clear()
{
_S_unref(_M_tree_ptr);
_M_tree_ptr = 0;
}
 
void push_back(_CharT __x)
{
_RopeRep* __old = _M_tree_ptr;
_M_tree_ptr = _S_destr_concat_char_iter(_M_tree_ptr, &__x, 1);
_S_unref(__old);
}
 
void pop_back()
{
_RopeRep* __old = _M_tree_ptr;
_M_tree_ptr =
_S_substring(_M_tree_ptr, 0, _M_tree_ptr->_M_size - 1);
_S_unref(__old);
}
 
_CharT back() const
{
return _S_fetch(_M_tree_ptr, _M_tree_ptr->_M_size - 1);
}
 
void push_front(_CharT __x)
{
_RopeRep* __old = _M_tree_ptr;
_RopeRep* __left =
__STL_ROPE_FROM_UNOWNED_CHAR_PTR(&__x, 1, get_allocator());
__STL_TRY {
_M_tree_ptr = _S_concat(__left, _M_tree_ptr);
_S_unref(__old);
_S_unref(__left);
}
__STL_UNWIND(_S_unref(__left))
}
 
void pop_front()
{
_RopeRep* __old = _M_tree_ptr;
_M_tree_ptr = _S_substring(_M_tree_ptr, 1, _M_tree_ptr->_M_size);
_S_unref(__old);
}
 
_CharT front() const
{
return _S_fetch(_M_tree_ptr, 0);
}
 
void balance()
{
_RopeRep* __old = _M_tree_ptr;
_M_tree_ptr = _S_balance(_M_tree_ptr);
_S_unref(__old);
}
 
void copy(_CharT* __buffer) const {
destroy(__buffer, __buffer + size());
_S_flatten(_M_tree_ptr, __buffer);
}
 
// This is the copy function from the standard, but
// with the arguments reordered to make it consistent with the
// rest of the interface.
// Note that this guaranteed not to compile if the draft standard
// order is assumed.
size_type copy(size_type __pos, size_type __n, _CharT* __buffer) const
{
size_t __size = size();
size_t __len = (__pos + __n > __size? __size - __pos : __n);
 
destroy(__buffer, __buffer + __len);
_S_flatten(_M_tree_ptr, __pos, __len, __buffer);
return __len;
}
 
// Print to stdout, exposing structure. May be useful for
// performance debugging.
void dump() {
_S_dump(_M_tree_ptr);
}
 
// Convert to 0 terminated string in new allocated memory.
// Embedded 0s in the input do not terminate the copy.
const _CharT* c_str() const;
 
// As above, but lso use the flattened representation as the
// the new rope representation.
const _CharT* replace_with_c_str();
 
// Reclaim memory for the c_str generated flattened string.
// Intentionally undocumented, since it's hard to say when this
// is safe for multiple threads.
void delete_c_str () {
if (0 == _M_tree_ptr) return;
if (_RopeRep::_S_leaf == _M_tree_ptr->_M_tag &&
((_RopeLeaf*)_M_tree_ptr)->_M_data ==
_M_tree_ptr->_M_c_string) {
// Representation shared
return;
}
# ifndef __GC
_M_tree_ptr->_M_free_c_string();
# endif
_M_tree_ptr->_M_c_string = 0;
}
 
_CharT operator[] (size_type __pos) const {
return _S_fetch(_M_tree_ptr, __pos);
}
 
_CharT at(size_type __pos) const {
// if (__pos >= size()) throw out_of_range; // XXX
return (*this)[__pos];
}
 
const_iterator begin() const {
return(const_iterator(_M_tree_ptr, 0));
}
 
// An easy way to get a const iterator from a non-const container.
const_iterator const_begin() const {
return(const_iterator(_M_tree_ptr, 0));
}
 
const_iterator end() const {
return(const_iterator(_M_tree_ptr, size()));
}
 
const_iterator const_end() const {
return(const_iterator(_M_tree_ptr, size()));
}
 
size_type size() const {
return(0 == _M_tree_ptr? 0 : _M_tree_ptr->_M_size);
}
 
size_type length() const {
return size();
}
 
size_type max_size() const {
return _S_min_len[_RopeRep::_S_max_rope_depth-1] - 1;
// Guarantees that the result can be sufficirntly
// balanced. Longer ropes will probably still work,
// but it's harder to make guarantees.
}
 
typedef reverse_iterator<const_iterator> const_reverse_iterator;
 
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
 
const_reverse_iterator const_rbegin() const {
return const_reverse_iterator(end());
}
 
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
 
const_reverse_iterator const_rend() const {
return const_reverse_iterator(begin());
}
 
template<class _CharT2, class _Alloc2>
friend rope<_CharT2,_Alloc2>
operator+ (const rope<_CharT2,_Alloc2>& __left,
const rope<_CharT2,_Alloc2>& __right);
template<class _CharT2, class _Alloc2>
friend rope<_CharT2,_Alloc2>
operator+ (const rope<_CharT2,_Alloc2>& __left,
const _CharT2* __right);
template<class _CharT2, class _Alloc2>
friend rope<_CharT2,_Alloc2>
operator+ (const rope<_CharT2,_Alloc2>& __left, _CharT2 __right);
// The symmetric cases are intentionally omitted, since they're presumed
// to be less common, and we don't handle them as well.
 
// The following should really be templatized.
// The first argument should be an input iterator or
// forward iterator with value_type _CharT.
rope& append(const _CharT* __iter, size_t __n) {
_RopeRep* __result =
_S_destr_concat_char_iter(_M_tree_ptr, __iter, __n);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
return *this;
}
 
rope& append(const _CharT* __c_string) {
size_t __len = _S_char_ptr_len(__c_string);
append(__c_string, __len);
return(*this);
}
 
rope& append(const _CharT* __s, const _CharT* __e) {
_RopeRep* __result =
_S_destr_concat_char_iter(_M_tree_ptr, __s, __e - __s);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
return *this;
}
 
rope& append(const_iterator __s, const_iterator __e) {
__stl_assert(__s._M_root == __e._M_root);
__stl_assert(get_allocator() == __s._M_root->get_allocator());
_Self_destruct_ptr __appendee(_S_substring(
__s._M_root, __s._M_current_pos, __e._M_current_pos));
_RopeRep* __result =
_S_concat(_M_tree_ptr, (_RopeRep*)__appendee);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
return *this;
}
 
rope& append(_CharT __c) {
_RopeRep* __result =
_S_destr_concat_char_iter(_M_tree_ptr, &__c, 1);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
return *this;
}
 
rope& append() { return append(_CharT()); } // XXX why?
 
rope& append(const rope& __y) {
__stl_assert(__y.get_allocator() == get_allocator());
_RopeRep* __result = _S_concat(_M_tree_ptr, __y._M_tree_ptr);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
return *this;
}
 
rope& append(size_t __n, _CharT __c) {
rope<_CharT,_Alloc> __last(__n, __c);
return append(__last);
}
 
void swap(rope& __b) {
__stl_assert(get_allocator() == __b.get_allocator());
_RopeRep* __tmp = _M_tree_ptr;
_M_tree_ptr = __b._M_tree_ptr;
__b._M_tree_ptr = __tmp;
}
 
 
protected:
// Result is included in refcount.
static _RopeRep* replace(_RopeRep* __old, size_t __pos1,
size_t __pos2, _RopeRep* __r) {
if (0 == __old) { _S_ref(__r); return __r; }
_Self_destruct_ptr __left(
_S_substring(__old, 0, __pos1));
_Self_destruct_ptr __right(
_S_substring(__old, __pos2, __old->_M_size));
_RopeRep* __result;
 
__stl_assert(__old->get_allocator() == __r->get_allocator());
if (0 == __r) {
__result = _S_concat(__left, __right);
} else {
_Self_destruct_ptr __left_result(_S_concat(__left, __r));
__result = _S_concat(__left_result, __right);
}
return __result;
}
 
public:
void insert(size_t __p, const rope& __r) {
_RopeRep* __result =
replace(_M_tree_ptr, __p, __p, __r._M_tree_ptr);
__stl_assert(get_allocator() == __r.get_allocator());
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
}
 
void insert(size_t __p, size_t __n, _CharT __c) {
rope<_CharT,_Alloc> __r(__n,__c);
insert(__p, __r);
}
 
void insert(size_t __p, const _CharT* __i, size_t __n) {
_Self_destruct_ptr __left(_S_substring(_M_tree_ptr, 0, __p));
_Self_destruct_ptr __right(_S_substring(_M_tree_ptr, __p, size()));
_Self_destruct_ptr __left_result(
_S_concat_char_iter(__left, __i, __n));
// _S_ destr_concat_char_iter should be safe here.
// But as it stands it's probably not a win, since __left
// is likely to have additional references.
_RopeRep* __result = _S_concat(__left_result, __right);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
}
 
void insert(size_t __p, const _CharT* __c_string) {
insert(__p, __c_string, _S_char_ptr_len(__c_string));
}
 
void insert(size_t __p, _CharT __c) {
insert(__p, &__c, 1);
}
 
void insert(size_t __p) {
_CharT __c = _CharT();
insert(__p, &__c, 1);
}
 
void insert(size_t __p, const _CharT* __i, const _CharT* __j) {
rope __r(__i, __j);
insert(__p, __r);
}
 
void insert(size_t __p, const const_iterator& __i,
const const_iterator& __j) {
rope __r(__i, __j);
insert(__p, __r);
}
 
void insert(size_t __p, const iterator& __i,
const iterator& __j) {
rope __r(__i, __j);
insert(__p, __r);
}
 
// (position, length) versions of replace operations:
 
void replace(size_t __p, size_t __n, const rope& __r) {
_RopeRep* __result =
replace(_M_tree_ptr, __p, __p + __n, __r._M_tree_ptr);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
}
 
void replace(size_t __p, size_t __n,
const _CharT* __i, size_t __i_len) {
rope __r(__i, __i_len);
replace(__p, __n, __r);
}
 
void replace(size_t __p, size_t __n, _CharT __c) {
rope __r(__c);
replace(__p, __n, __r);
}
 
void replace(size_t __p, size_t __n, const _CharT* __c_string) {
rope __r(__c_string);
replace(__p, __n, __r);
}
 
void replace(size_t __p, size_t __n,
const _CharT* __i, const _CharT* __j) {
rope __r(__i, __j);
replace(__p, __n, __r);
}
 
void replace(size_t __p, size_t __n,
const const_iterator& __i, const const_iterator& __j) {
rope __r(__i, __j);
replace(__p, __n, __r);
}
 
void replace(size_t __p, size_t __n,
const iterator& __i, const iterator& __j) {
rope __r(__i, __j);
replace(__p, __n, __r);
}
 
// Single character variants:
void replace(size_t __p, _CharT __c) {
iterator __i(this, __p);
*__i = __c;
}
 
void replace(size_t __p, const rope& __r) {
replace(__p, 1, __r);
}
 
void replace(size_t __p, const _CharT* __i, size_t __i_len) {
replace(__p, 1, __i, __i_len);
}
 
void replace(size_t __p, const _CharT* __c_string) {
replace(__p, 1, __c_string);
}
 
void replace(size_t __p, const _CharT* __i, const _CharT* __j) {
replace(__p, 1, __i, __j);
}
 
void replace(size_t __p, const const_iterator& __i,
const const_iterator& __j) {
replace(__p, 1, __i, __j);
}
 
void replace(size_t __p, const iterator& __i,
const iterator& __j) {
replace(__p, 1, __i, __j);
}
 
// Erase, (position, size) variant.
void erase(size_t __p, size_t __n) {
_RopeRep* __result = replace(_M_tree_ptr, __p, __p + __n, 0);
_S_unref(_M_tree_ptr);
_M_tree_ptr = __result;
}
 
// Erase, single character
void erase(size_t __p) {
erase(__p, __p + 1);
}
 
// Insert, iterator variants.
iterator insert(const iterator& __p, const rope& __r)
{ insert(__p.index(), __r); return __p; }
iterator insert(const iterator& __p, size_t __n, _CharT __c)
{ insert(__p.index(), __n, __c); return __p; }
iterator insert(const iterator& __p, _CharT __c)
{ insert(__p.index(), __c); return __p; }
iterator insert(const iterator& __p )
{ insert(__p.index()); return __p; }
iterator insert(const iterator& __p, const _CharT* c_string)
{ insert(__p.index(), c_string); return __p; }
iterator insert(const iterator& __p, const _CharT* __i, size_t __n)
{ insert(__p.index(), __i, __n); return __p; }
iterator insert(const iterator& __p, const _CharT* __i,
const _CharT* __j)
{ insert(__p.index(), __i, __j); return __p; }
iterator insert(const iterator& __p,
const const_iterator& __i, const const_iterator& __j)
{ insert(__p.index(), __i, __j); return __p; }
iterator insert(const iterator& __p,
const iterator& __i, const iterator& __j)
{ insert(__p.index(), __i, __j); return __p; }
 
// Replace, range variants.
void replace(const iterator& __p, const iterator& __q,
const rope& __r)
{ replace(__p.index(), __q.index() - __p.index(), __r); }
void replace(const iterator& __p, const iterator& __q, _CharT __c)
{ replace(__p.index(), __q.index() - __p.index(), __c); }
void replace(const iterator& __p, const iterator& __q,
const _CharT* __c_string)
{ replace(__p.index(), __q.index() - __p.index(), __c_string); }
void replace(const iterator& __p, const iterator& __q,
const _CharT* __i, size_t __n)
{ replace(__p.index(), __q.index() - __p.index(), __i, __n); }
void replace(const iterator& __p, const iterator& __q,
const _CharT* __i, const _CharT* __j)
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
void replace(const iterator& __p, const iterator& __q,
const const_iterator& __i, const const_iterator& __j)
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
void replace(const iterator& __p, const iterator& __q,
const iterator& __i, const iterator& __j)
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
 
// Replace, iterator variants.
void replace(const iterator& __p, const rope& __r)
{ replace(__p.index(), __r); }
void replace(const iterator& __p, _CharT __c)
{ replace(__p.index(), __c); }
void replace(const iterator& __p, const _CharT* __c_string)
{ replace(__p.index(), __c_string); }
void replace(const iterator& __p, const _CharT* __i, size_t __n)
{ replace(__p.index(), __i, __n); }
void replace(const iterator& __p, const _CharT* __i, const _CharT* __j)
{ replace(__p.index(), __i, __j); }
void replace(const iterator& __p, const_iterator __i,
const_iterator __j)
{ replace(__p.index(), __i, __j); }
void replace(const iterator& __p, iterator __i, iterator __j)
{ replace(__p.index(), __i, __j); }
 
// Iterator and range variants of erase
iterator erase(const iterator& __p, const iterator& __q) {
size_t __p_index = __p.index();
erase(__p_index, __q.index() - __p_index);
return iterator(this, __p_index);
}
iterator erase(const iterator& __p) {
size_t __p_index = __p.index();
erase(__p_index, 1);
return iterator(this, __p_index);
}
 
rope substr(size_t __start, size_t __len = 1) const {
return rope<_CharT,_Alloc>(
_S_substring(_M_tree_ptr, __start, __start + __len));
}
 
rope substr(iterator __start, iterator __end) const {
return rope<_CharT,_Alloc>(
_S_substring(_M_tree_ptr, __start.index(), __end.index()));
}
rope substr(iterator __start) const {
size_t __pos = __start.index();
return rope<_CharT,_Alloc>(
_S_substring(_M_tree_ptr, __pos, __pos + 1));
}
rope substr(const_iterator __start, const_iterator __end) const {
// This might eventually take advantage of the cache in the
// iterator.
return rope<_CharT,_Alloc>(
_S_substring(_M_tree_ptr, __start.index(), __end.index()));
}
 
rope<_CharT,_Alloc> substr(const_iterator __start) {
size_t __pos = __start.index();
return rope<_CharT,_Alloc>(
_S_substring(_M_tree_ptr, __pos, __pos + 1));
}
 
static const size_type npos;
 
size_type find(_CharT __c, size_type __pos = 0) const;
size_type find(const _CharT* __s, size_type __pos = 0) const {
size_type __result_pos;
const_iterator __result = search(const_begin() + __pos, const_end(),
__s, __s + _S_char_ptr_len(__s));
__result_pos = __result.index();
# ifndef __STL_OLD_ROPE_SEMANTICS
if (__result_pos == size()) __result_pos = npos;
# endif
return __result_pos;
}
 
iterator mutable_begin() {
return(iterator(this, 0));
}
 
iterator mutable_end() {
return(iterator(this, size()));
}
 
typedef reverse_iterator<iterator> reverse_iterator;
 
reverse_iterator mutable_rbegin() {
return reverse_iterator(mutable_end());
}
 
reverse_iterator mutable_rend() {
return reverse_iterator(mutable_begin());
}
 
reference mutable_reference_at(size_type __pos) {
return reference(this, __pos);
}
 
# ifdef __STD_STUFF
reference operator[] (size_type __pos) {
return _char_ref_proxy(this, __pos);
}
 
reference at(size_type __pos) {
// if (__pos >= size()) throw out_of_range; // XXX
return (*this)[__pos];
}
 
void resize(size_type __n, _CharT __c) {}
void resize(size_type __n) {}
void reserve(size_type __res_arg = 0) {}
size_type capacity() const {
return max_size();
}
 
// Stuff below this line is dangerous because it's error prone.
// I would really like to get rid of it.
// copy function with funny arg ordering.
size_type copy(_CharT* __buffer, size_type __n,
size_type __pos = 0) const {
return copy(__pos, __n, __buffer);
}
 
iterator end() { return mutable_end(); }
 
iterator begin() { return mutable_begin(); }
 
reverse_iterator rend() { return mutable_rend(); }
 
reverse_iterator rbegin() { return mutable_rbegin(); }
 
# else
 
const_iterator end() { return const_end(); }
 
const_iterator begin() { return const_begin(); }
 
const_reverse_iterator rend() { return const_rend(); }
const_reverse_iterator rbegin() { return const_rbegin(); }
 
# endif
};
 
template <class _CharT, class _Alloc>
const rope<_CharT, _Alloc>::size_type rope<_CharT, _Alloc>::npos =
(size_type)(-1);
 
template <class _CharT, class _Alloc>
inline bool operator== (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return (__x._M_current_pos == __y._M_current_pos &&
__x._M_root == __y._M_root);
}
 
template <class _CharT, class _Alloc>
inline bool operator< (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return (__x._M_current_pos < __y._M_current_pos);
}
 
template <class _CharT, class _Alloc>
inline bool operator!= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return !(__x == __y);
}
 
template <class _CharT, class _Alloc>
inline bool operator> (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return __y < __x;
}
 
template <class _CharT, class _Alloc>
inline bool operator<= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return !(__y < __x);
}
 
template <class _CharT, class _Alloc>
inline bool operator>= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return !(__x < __y);
}
 
template <class _CharT, class _Alloc>
inline ptrdiff_t operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos;
}
 
template <class _CharT, class _Alloc>
inline _Rope_const_iterator<_CharT,_Alloc>
operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) {
return _Rope_const_iterator<_CharT,_Alloc>(
__x._M_root, __x._M_current_pos - __n);
}
 
template <class _CharT, class _Alloc>
inline _Rope_const_iterator<_CharT,_Alloc>
operator+(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) {
return _Rope_const_iterator<_CharT,_Alloc>(
__x._M_root, __x._M_current_pos + __n);
}
 
template <class _CharT, class _Alloc>
inline _Rope_const_iterator<_CharT,_Alloc>
operator+(ptrdiff_t __n, const _Rope_const_iterator<_CharT,_Alloc>& __x) {
return _Rope_const_iterator<_CharT,_Alloc>(
__x._M_root, __x._M_current_pos + __n);
}
 
template <class _CharT, class _Alloc>
inline bool operator== (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return (__x._M_current_pos == __y._M_current_pos &&
__x._M_root_rope == __y._M_root_rope);
}
 
template <class _CharT, class _Alloc>
inline bool operator< (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return (__x._M_current_pos < __y._M_current_pos);
}
 
template <class _CharT, class _Alloc>
inline bool operator!= (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return !(__x == __y);
}
 
template <class _CharT, class _Alloc>
inline bool operator> (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return __y < __x;
}
 
template <class _CharT, class _Alloc>
inline bool operator<= (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return !(__y < __x);
}
 
template <class _CharT, class _Alloc>
inline bool operator>= (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return !(__x < __y);
}
 
template <class _CharT, class _Alloc>
inline ptrdiff_t operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos;
}
 
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT,_Alloc>
operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n) {
return _Rope_iterator<_CharT,_Alloc>(
__x._M_root_rope, __x._M_current_pos - __n);
}
 
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT,_Alloc>
operator+(const _Rope_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n) {
return _Rope_iterator<_CharT,_Alloc>(
__x._M_root_rope, __x._M_current_pos + __n);
}
 
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT,_Alloc>
operator+(ptrdiff_t __n, const _Rope_iterator<_CharT,_Alloc>& __x) {
return _Rope_iterator<_CharT,_Alloc>(
__x._M_root_rope, __x._M_current_pos + __n);
}
 
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>
operator+ (const rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right)
{
__stl_assert(__left.get_allocator() == __right.get_allocator());
return rope<_CharT,_Alloc>(
rope<_CharT,_Alloc>::_S_concat(__left._M_tree_ptr, __right._M_tree_ptr));
// Inlining this should make it possible to keep __left and
// __right in registers.
}
 
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>&
operator+= (rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right)
{
__left.append(__right);
return __left;
}
 
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>
operator+ (const rope<_CharT,_Alloc>& __left,
const _CharT* __right) {
size_t __rlen = rope<_CharT,_Alloc>::_S_char_ptr_len(__right);
return rope<_CharT,_Alloc>(
rope<_CharT,_Alloc>::_S_concat_char_iter(
__left._M_tree_ptr, __right, __rlen));
}
 
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>&
operator+= (rope<_CharT,_Alloc>& __left,
const _CharT* __right) {
__left.append(__right);
return __left;
}
 
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>
operator+ (const rope<_CharT,_Alloc>& __left, _CharT __right) {
return rope<_CharT,_Alloc>(
rope<_CharT,_Alloc>::_S_concat_char_iter(
__left._M_tree_ptr, &__right, 1));
}
 
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>&
operator+= (rope<_CharT,_Alloc>& __left, _CharT __right) {
__left.append(__right);
return __left;
}
 
template <class _CharT, class _Alloc>
bool
operator< (const rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right) {
return __left.compare(__right) < 0;
}
template <class _CharT, class _Alloc>
bool
operator== (const rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right) {
return __left.compare(__right) == 0;
}
 
template <class _CharT, class _Alloc>
inline bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) {
return (__x._M_pos == __y._M_pos && __x._M_root == __y._M_root);
}
 
template <class _CharT, class _Alloc>
inline bool
operator!= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
return !(__x == __y);
}
 
template <class _CharT, class _Alloc>
inline bool
operator> (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
return __y < __x;
}
 
template <class _CharT, class _Alloc>
inline bool
operator<= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
return !(__y < __x);
}
 
template <class _CharT, class _Alloc>
inline bool
operator>= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
return !(__x < __y);
}
 
template <class _CharT, class _Alloc>
inline bool operator!= (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) {
return !(__x == __y);
}
 
template<class _CharT, class _Traits, class _Alloc>
basic_ostream<_CharT, _Traits>& operator<<
(basic_ostream<_CharT, _Traits>& __o,
const rope<_CharT, _Alloc>& __r);
 
typedef rope<char> crope;
typedef rope<wchar_t> wrope;
 
inline crope::reference __mutable_reference_at(crope& __c, size_t __i)
{
return __c.mutable_reference_at(__i);
}
 
inline wrope::reference __mutable_reference_at(wrope& __c, size_t __i)
{
return __c.mutable_reference_at(__i);
}
 
template <class _CharT, class _Alloc>
inline void swap(rope<_CharT,_Alloc>& __x, rope<_CharT,_Alloc>& __y) {
__x.swap(__y);
}
 
// Hash functions should probably be revisited later:
template<> struct hash<crope>
{
size_t operator()(const crope& __str) const
{
size_t __size = __str.size();
 
if (0 == __size) return 0;
return 13*__str[0] + 5*__str[__size - 1] + __size;
}
};
 
 
template<> struct hash<wrope>
{
size_t operator()(const wrope& __str) const
{
size_t __size = __str.size();
 
if (0 == __size) return 0;
return 13*__str[0] + 5*__str[__size - 1] + __size;
}
};
 
} // namespace std
 
# include <ext/ropeimpl.h>
 
# endif /* __SGI_STL_INTERNAL_ROPE_H */
 
// Local Variables:
// mode:C++
// End:
/contrib/media/updf/include/ext/tree
0,0 → 1,23
 
/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
 
#ifndef _CPP_EXT_TREE
#define _CPP_EXT_TREE 1
#include <bits/stl_tree.h>
#endif
 
// Local Variables:
// mode:C++
// End: