Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 3930 → Rev 3931

/programs/develop/libraries/pixman/pixman-image.c
30,8 → 30,51
#include <assert.h>
 
#include "pixman-private.h"
#include "pixman-combine32.h"
 
static const pixman_color_t transparent_black = { 0, 0, 0, 0 };
 
static void
gradient_property_changed (pixman_image_t *image)
{
gradient_t *gradient = &image->gradient;
int n = gradient->n_stops;
pixman_gradient_stop_t *stops = gradient->stops;
pixman_gradient_stop_t *begin = &(gradient->stops[-1]);
pixman_gradient_stop_t *end = &(gradient->stops[n]);
 
switch (gradient->common.repeat)
{
default:
case PIXMAN_REPEAT_NONE:
begin->x = INT32_MIN;
begin->color = transparent_black;
end->x = INT32_MAX;
end->color = transparent_black;
break;
 
case PIXMAN_REPEAT_NORMAL:
begin->x = stops[n - 1].x - pixman_fixed_1;
begin->color = stops[n - 1].color;
end->x = stops[0].x + pixman_fixed_1;
end->color = stops[0].color;
break;
 
case PIXMAN_REPEAT_REFLECT:
begin->x = - stops[0].x;
begin->color = stops[0].color;
end->x = pixman_int_to_fixed (2) - stops[n - 1].x;
end->color = stops[n - 1].color;
break;
 
case PIXMAN_REPEAT_PAD:
begin->x = INT32_MIN;
begin->color = stops[0].color;
end->x = INT32_MAX;
end->color = stops[n - 1].color;
break;
}
}
 
pixman_bool_t
_pixman_init_gradient (gradient_t * gradient,
const pixman_gradient_stop_t *stops,
39,63 → 82,33
{
return_val_if_fail (n_stops > 0, FALSE);
 
gradient->stops = pixman_malloc_ab (n_stops, sizeof (pixman_gradient_stop_t));
/* We allocate two extra stops, one before the beginning of the stop list,
* and one after the end. These stops are initialized to whatever color
* would be used for positions outside the range of the stop list.
*
* This saves a bit of computation in the gradient walker.
*
* The pointer we store in the gradient_t struct still points to the
* first user-supplied struct, so when freeing, we will have to
* subtract one.
*/
gradient->stops =
pixman_malloc_ab (n_stops + 2, sizeof (pixman_gradient_stop_t));
if (!gradient->stops)
return FALSE;
 
gradient->stops += 1;
memcpy (gradient->stops, stops, n_stops * sizeof (pixman_gradient_stop_t));
 
gradient->n_stops = n_stops;
 
gradient->stop_range = 0xffff;
gradient->common.property_changed = gradient_property_changed;
 
return TRUE;
}
 
/*
* By default, just evaluate the image at 32bpp and expand. Individual image
* types can plug in a better scanline getter if they want to. For example
* we could produce smoother gradients by evaluating them at higher color
* depth, but that's a project for the future.
*/
void
_pixman_image_get_scanline_generic_64 (pixman_image_t * image,
int x,
int y,
int width,
uint32_t * buffer,
const uint32_t * mask)
_pixman_image_init (pixman_image_t *image)
{
uint32_t *mask8 = NULL;
 
/* Contract the mask image, if one exists, so that the 32-bit fetch
* function can use it.
*/
if (mask)
{
mask8 = pixman_malloc_ab (width, sizeof(uint32_t));
if (!mask8)
return;
 
pixman_contract (mask8, (uint64_t *)mask, width);
}
 
/* Fetch the source image into the first half of buffer. */
_pixman_image_get_scanline_32 (image, x, y, width, (uint32_t*)buffer, mask8);
 
/* Expand from 32bpp to 64bpp in place. */
pixman_expand ((uint64_t *)buffer, buffer, PIXMAN_a8r8g8b8, width);
 
free (mask8);
}
 
pixman_image_t *
_pixman_image_allocate (void)
{
pixman_image_t *image = malloc (sizeof (pixman_image_t));
 
if (image)
{
image_common_t *common = &image->common;
 
pixman_region32_init (&common->clip_region);
111,7 → 124,7
common->alpha_map = NULL;
common->component_alpha = FALSE;
common->ref_count = 1;
common->classify = NULL;
common->property_changed = NULL;
common->client_clip = FALSE;
common->destroy_func = NULL;
common->destroy_data = NULL;
118,45 → 131,62
common->dirty = TRUE;
}
 
return image;
}
pixman_bool_t
_pixman_image_fini (pixman_image_t *image)
{
image_common_t *common = (image_common_t *)image;
 
source_image_class_t
_pixman_image_classify (pixman_image_t *image,
int x,
int y,
int width,
int height)
common->ref_count--;
 
if (common->ref_count == 0)
{
if (image->common.classify)
return image->common.classify (image, x, y, width, height);
else
return SOURCE_IMAGE_CLASS_UNKNOWN;
}
if (image->common.destroy_func)
image->common.destroy_func (image, image->common.destroy_data);
 
void
_pixman_image_get_scanline_32 (pixman_image_t *image,
int x,
int y,
int width,
uint32_t * buffer,
const uint32_t *mask)
pixman_region32_fini (&common->clip_region);
 
free (common->transform);
free (common->filter_params);
 
if (common->alpha_map)
pixman_image_unref ((pixman_image_t *)common->alpha_map);
 
if (image->type == LINEAR ||
image->type == RADIAL ||
image->type == CONICAL)
{
image->common.get_scanline_32 (image, x, y, width, buffer, mask);
if (image->gradient.stops)
{
/* See _pixman_init_gradient() for an explanation of the - 1 */
free (image->gradient.stops - 1);
}
 
/* Even thought the type of buffer is uint32_t *, the function actually expects
* a uint64_t *buffer.
/* This will trigger if someone adds a property_changed
* method to the linear/radial/conical gradient overwriting
* the general one.
*/
void
_pixman_image_get_scanline_64 (pixman_image_t *image,
int x,
int y,
int width,
uint32_t * buffer,
const uint32_t *unused)
assert (
image->common.property_changed == gradient_property_changed);
}
 
if (image->type == BITS && image->bits.free_me)
free (image->bits.free_me);
 
return TRUE;
}
 
return FALSE;
}
 
pixman_image_t *
_pixman_image_allocate (void)
{
image->common.get_scanline_64 (image, x, y, width, buffer, unused);
pixman_image_t *image = malloc (sizeof (pixman_image_t));
 
if (image)
_pixman_image_init (image);
 
return image;
}
 
static void
178,39 → 208,9
PIXMAN_EXPORT pixman_bool_t
pixman_image_unref (pixman_image_t *image)
{
image_common_t *common = (image_common_t *)image;
 
common->ref_count--;
 
if (common->ref_count == 0)
if (_pixman_image_fini (image))
{
if (image->common.destroy_func)
image->common.destroy_func (image, image->common.destroy_data);
 
pixman_region32_fini (&common->clip_region);
 
if (common->transform)
free (common->transform);
 
if (common->filter_params)
free (common->filter_params);
 
if (common->alpha_map)
pixman_image_unref ((pixman_image_t *)common->alpha_map);
 
if (image->type == LINEAR ||
image->type == RADIAL ||
image->type == CONICAL)
{
if (image->gradient.stops)
free (image->gradient.stops);
}
 
if (image->type == BITS && image->bits.free_me)
free (image->bits.free_me);
 
free (image);
 
return TRUE;
}
 
238,56 → 238,29
image->common.have_clip_region = FALSE;
}
 
static pixman_bool_t out_of_bounds_workaround = TRUE;
 
/* Old X servers rely on out-of-bounds accesses when they are asked
* to composite with a window as the source. They create a pixman image
* pointing to some bogus position in memory, but then they set a clip
* region to the position where the actual bits are.
/* Executive Summary: This function is a no-op that only exists
* for historical reasons.
*
* There used to be a bug in the X server where it would rely on
* out-of-bounds accesses when it was asked to composite with a
* window as the source. It would create a pixman image pointing
* to some bogus position in memory, but then set a clip region
* to the position where the actual bits were.
*
* Due to a bug in old versions of pixman, where it would not clip
* against the image bounds when a clip region was set, this would
* actually work. So by default we allow certain out-of-bound access
* to happen unless explicitly disabled.
* actually work. So when the pixman bug was fixed, a workaround was
* added to allow certain out-of-bound accesses. This function disabled
* those workarounds.
*
* Fixed X servers should call this function to disable the workaround.
* Since 0.21.2, pixman doesn't do these workarounds anymore, so now
* this function is a no-op.
*/
PIXMAN_EXPORT void
pixman_disable_out_of_bounds_workaround (void)
{
out_of_bounds_workaround = FALSE;
}
 
static pixman_bool_t
source_image_needs_out_of_bounds_workaround (bits_image_t *image)
{
if (image->common.clip_sources &&
image->common.repeat == PIXMAN_REPEAT_NONE &&
image->common.have_clip_region &&
out_of_bounds_workaround)
{
if (!image->common.client_clip)
{
/* There is no client clip, so if the clip region extends beyond the
* drawable geometry, it must be because the X server generated the
* bogus clip region.
*/
const pixman_box32_t *extents =
pixman_region32_extents (&image->common.clip_region);
 
if (extents->x1 >= 0 && extents->x2 <= image->width &&
extents->y1 >= 0 && extents->y2 <= image->height)
{
return FALSE;
}
}
 
return TRUE;
}
 
return FALSE;
}
 
static void
compute_image_info (pixman_image_t *image)
{
315,9 → 288,25
if (image->common.transform->matrix[0][1] == 0 &&
image->common.transform->matrix[1][0] == 0)
{
if (image->common.transform->matrix[0][0] == -pixman_fixed_1 &&
image->common.transform->matrix[1][1] == -pixman_fixed_1)
{
flags |= FAST_PATH_ROTATE_180_TRANSFORM;
}
flags |= FAST_PATH_SCALE_TRANSFORM;
}
else if (image->common.transform->matrix[0][0] == 0 &&
image->common.transform->matrix[1][1] == 0)
{
pixman_fixed_t m01 = image->common.transform->matrix[0][1];
pixman_fixed_t m10 = image->common.transform->matrix[1][0];
 
if (m01 == -pixman_fixed_1 && m10 == pixman_fixed_1)
flags |= FAST_PATH_ROTATE_90_TRANSFORM;
else if (m01 == pixman_fixed_1 && m10 == -pixman_fixed_1)
flags |= FAST_PATH_ROTATE_270_TRANSFORM;
}
}
 
if (image->common.transform->matrix[0][0] > 0)
flags |= FAST_PATH_X_UNIT_POSITIVE;
338,11 → 327,56
case PIXMAN_FILTER_GOOD:
case PIXMAN_FILTER_BEST:
flags |= (FAST_PATH_BILINEAR_FILTER | FAST_PATH_NO_CONVOLUTION_FILTER);
 
/* Here we have a chance to optimize BILINEAR filter to NEAREST if
* they are equivalent for the currently used transformation matrix.
*/
if (flags & FAST_PATH_ID_TRANSFORM)
{
flags |= FAST_PATH_NEAREST_FILTER;
}
else if (
/* affine and integer translation components in matrix ... */
((flags & FAST_PATH_AFFINE_TRANSFORM) &&
!pixman_fixed_frac (image->common.transform->matrix[0][2] |
image->common.transform->matrix[1][2])) &&
(
/* ... combined with a simple rotation */
(flags & (FAST_PATH_ROTATE_90_TRANSFORM |
FAST_PATH_ROTATE_180_TRANSFORM |
FAST_PATH_ROTATE_270_TRANSFORM)) ||
/* ... or combined with a simple non-rotated translation */
(image->common.transform->matrix[0][0] == pixman_fixed_1 &&
image->common.transform->matrix[1][1] == pixman_fixed_1 &&
image->common.transform->matrix[0][1] == 0 &&
image->common.transform->matrix[1][0] == 0)
)
)
{
/* FIXME: there are some affine-test failures, showing that
* handling of BILINEAR and NEAREST filter is not quite
* equivalent when getting close to 32K for the translation
* components of the matrix. That's likely some bug, but for
* now just skip BILINEAR->NEAREST optimization in this case.
*/
pixman_fixed_t magic_limit = pixman_int_to_fixed (30000);
if (image->common.transform->matrix[0][2] <= magic_limit &&
image->common.transform->matrix[1][2] <= magic_limit &&
image->common.transform->matrix[0][2] >= -magic_limit &&
image->common.transform->matrix[1][2] >= -magic_limit)
{
flags |= FAST_PATH_NEAREST_FILTER;
}
}
break;
 
case PIXMAN_FILTER_CONVOLUTION:
break;
 
case PIXMAN_FILTER_SEPARABLE_CONVOLUTION:
flags |= FAST_PATH_SEPARABLE_CONVOLUTION_FILTER;
break;
 
default:
flags |= FAST_PATH_NO_CONVOLUTION_FILTER;
break;
408,6 → 442,7
else
{
code = image->bits.format;
flags |= FAST_PATH_BITS_IMAGE;
}
 
if (!PIXMAN_FORMAT_A (image->bits.format) &&
420,9 → 455,6
flags |= FAST_PATH_IS_OPAQUE;
}
 
if (source_image_needs_out_of_bounds_workaround (&image->bits))
flags |= FAST_PATH_NEEDS_WORKAROUND;
 
if (image->bits.read_func || image->bits.write_func)
flags &= ~FAST_PATH_NO_ACCESSORS;
 
445,6 → 477,7
 
/* Fall through */
 
case CONICAL:
case LINEAR:
code = PIXMAN_unknown;
 
488,6 → 521,7
*/
if (image->common.alpha_map ||
image->common.filter == PIXMAN_FILTER_CONVOLUTION ||
image->common.filter == PIXMAN_FILTER_SEPARABLE_CONVOLUTION ||
image->common.component_alpha)
{
flags &= ~(FAST_PATH_IS_OPAQUE | FAST_PATH_SAMPLES_OPAQUE);
509,6 → 543,7
* property_changed() can make use of the flags
* to set up accessors etc.
*/
if (image->common.property_changed)
image->common.property_changed (image);
 
image->common.dirty = FALSE;
590,7 → 625,7
if (common->transform == transform)
return TRUE;
 
if (memcmp (&id, transform, sizeof (pixman_transform_t)) == 0)
if (!transform || memcmp (&id, transform, sizeof (pixman_transform_t)) == 0)
{
free (common->transform);
common->transform = NULL;
599,6 → 634,12
goto out;
}
 
if (common->transform &&
memcmp (common->transform, transform, sizeof (pixman_transform_t)) == 0)
{
return TRUE;
}
 
if (common->transform == NULL)
common->transform = malloc (sizeof (pixman_transform_t));
 
623,6 → 664,9
pixman_image_set_repeat (pixman_image_t *image,
pixman_repeat_t repeat)
{
if (image->common.repeat == repeat)
return;
 
image->common.repeat = repeat;
 
image_property_changed (image);
640,6 → 684,19
if (params == common->filter_params && filter == common->filter)
return TRUE;
 
if (filter == PIXMAN_FILTER_SEPARABLE_CONVOLUTION)
{
int width = pixman_fixed_to_int (params[0]);
int height = pixman_fixed_to_int (params[1]);
int x_phase_bits = pixman_fixed_to_int (params[2]);
int y_phase_bits = pixman_fixed_to_int (params[3]);
int n_x_phases = (1 << x_phase_bits);
int n_y_phases = (1 << y_phase_bits);
 
return_val_if_fail (
n_params == 4 + n_x_phases * width + n_y_phases * height, FALSE);
}
new_params = NULL;
if (params)
{
667,6 → 724,9
pixman_image_set_source_clipping (pixman_image_t *image,
pixman_bool_t clip_sources)
{
if (image->common.clip_sources == clip_sources)
return;
 
image->common.clip_sources = clip_sources;
 
image_property_changed (image);
682,6 → 742,9
{
bits_image_t *bits = (bits_image_t *)image;
 
if (bits->indexed == indexed)
return;
 
bits->indexed = indexed;
 
image_property_changed (image);
744,6 → 807,9
pixman_image_set_component_alpha (pixman_image_t *image,
pixman_bool_t component_alpha)
{
if (image->common.component_alpha == component_alpha)
return;
 
image->common.component_alpha = component_alpha;
 
image_property_changed (image);
822,19 → 888,47
if (image->type == BITS)
return image->bits.format;
 
return 0;
return PIXMAN_null;
}
 
uint32_t
_pixman_image_get_solid (pixman_image_t * image,
_pixman_image_get_solid (pixman_implementation_t *imp,
pixman_image_t * image,
pixman_format_code_t format)
{
uint32_t result;
 
_pixman_image_get_scanline_32 (image, 0, 0, 1, &result, NULL);
if (image->type == SOLID)
{
result = image->solid.color_32;
}
else if (image->type == BITS)
{
if (image->bits.format == PIXMAN_a8r8g8b8)
result = image->bits.bits[0];
else if (image->bits.format == PIXMAN_x8r8g8b8)
result = image->bits.bits[0] | 0xff000000;
else if (image->bits.format == PIXMAN_a8)
result = (*(uint8_t *)image->bits.bits) << 24;
else
goto otherwise;
}
else
{
pixman_iter_t iter;
 
otherwise:
_pixman_implementation_src_iter_init (
imp, &iter, image, 0, 0, 1, 1,
(uint8_t *)&result,
ITER_NARROW, image->common.flags);
result = *iter.get_scanline (&iter, NULL);
}
 
/* If necessary, convert RGB <--> BGR. */
if (PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB)
if (PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB
&& PIXMAN_FORMAT_TYPE (format) != PIXMAN_TYPE_ARGB_SRGB)
{
result = (((result & 0xff000000) >> 0) |
((result & 0x00ff0000) >> 16) |