Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 1897 → Rev 3928

/programs/develop/libraries/libpng/pngrutil.c
1,8 → 1,8
 
/* pngrutil.c - utilities to read a PNG file
*
* Last changed in libpng 1.5.1 [February 3, 2011]
* Copyright (c) 1998-2011 Glenn Randers-Pehrson
* Last changed in libpng 1.6.4 [September 14, 2013]
* Copyright (c) 1998-2013 Glenn Randers-Pehrson
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
*
18,10 → 18,8
 
#ifdef PNG_READ_SUPPORTED
 
#define png_strtod(p,a,b) strtod(a,b)
 
png_uint_32 PNGAPI
png_get_uint_31(png_structp png_ptr, png_const_bytep buf)
png_get_uint_31(png_const_structrp png_ptr, png_const_bytep buf)
{
png_uint_32 uval = png_get_uint_32(buf);
 
40,7 → 38,7
#define PNG_FIXED_ERROR (-1)
 
static png_fixed_point /* PRIVATE */
png_get_fixed_point(png_structp png_ptr, png_const_bytep buf)
png_get_fixed_point(png_structrp png_ptr, png_const_bytep buf)
{
png_uint_32 uval = png_get_uint_32(buf);
 
87,10 → 85,10
png_get_int_32)(png_const_bytep buf)
{
png_uint_32 uval = png_get_uint_32(buf);
if ((uval & 0x80000000L) == 0) /* non-negative */
if ((uval & 0x80000000) == 0) /* non-negative */
return uval;
 
uval = (uval ^ 0xffffffffL) + 1; /* 2's complement: -x = ~x+1 */
uval = (uval ^ 0xffffffff) + 1; /* 2's complement: -x = ~x+1 */
return -(png_int_32)uval;
}
 
114,7 → 112,7
 
/* Read and check the PNG file signature */
void /* PRIVATE */
png_read_sig(png_structp png_ptr, png_infop info_ptr)
png_read_sig(png_structrp png_ptr, png_inforp info_ptr)
{
png_size_t num_checked, num_to_check;
 
149,7 → 147,7
* Put the type name into png_ptr->chunk_name, and return the length.
*/
png_uint_32 /* PRIVATE */
png_read_chunk_header(png_structp png_ptr)
png_read_chunk_header(png_structrp png_ptr)
{
png_byte buf[8];
png_uint_32 length;
165,14 → 163,14
length = png_get_uint_31(png_ptr, buf);
 
/* Put the chunk name into png_ptr->chunk_name. */
png_memcpy(png_ptr->chunk_name, buf + 4, 4);
png_ptr->chunk_name = PNG_CHUNK_FROM_STRING(buf+4);
 
png_debug2(0, "Reading %s chunk, length = %u",
png_ptr->chunk_name, length);
png_debug2(0, "Reading %lx chunk, length = %lu",
(unsigned long)png_ptr->chunk_name, (unsigned long)length);
 
/* Reset the crc and run it over the chunk name. */
png_reset_crc(png_ptr);
png_calculate_crc(png_ptr, png_ptr->chunk_name, 4);
png_calculate_crc(png_ptr, buf + 4, 4);
 
/* Check to see if chunk name is valid. */
png_check_chunk_name(png_ptr, png_ptr->chunk_name);
186,7 → 184,7
 
/* Read data, and (optionally) run it through the CRC. */
void /* PRIVATE */
png_crc_read(png_structp png_ptr, png_bytep buf, png_size_t length)
png_crc_read(png_structrp png_ptr, png_bytep buf, png_uint_32 length)
{
if (png_ptr == NULL)
return;
196,32 → 194,34
}
 
/* Optionally skip data and then check the CRC. Depending on whether we
* are reading a ancillary or critical chunk, and how the program has set
* are reading an ancillary or critical chunk, and how the program has set
* things up, we may calculate the CRC on the data and print a message.
* Returns '1' if there was a CRC error, '0' otherwise.
*/
int /* PRIVATE */
png_crc_finish(png_structp png_ptr, png_uint_32 skip)
png_crc_finish(png_structrp png_ptr, png_uint_32 skip)
{
png_size_t i;
png_size_t istop = png_ptr->zbuf_size;
 
for (i = (png_size_t)skip; i > istop; i -= istop)
/* The size of the local buffer for inflate is a good guess as to a
* reasonable size to use for buffering reads from the application.
*/
while (skip > 0)
{
png_crc_read(png_ptr, png_ptr->zbuf, png_ptr->zbuf_size);
}
png_uint_32 len;
png_byte tmpbuf[PNG_INFLATE_BUF_SIZE];
 
if (i)
{
png_crc_read(png_ptr, png_ptr->zbuf, i);
len = (sizeof tmpbuf);
if (len > skip)
len = skip;
skip -= len;
 
png_crc_read(png_ptr, tmpbuf, len);
}
 
if (png_crc_error(png_ptr))
{
if (((png_ptr->chunk_name[0] & 0x20) && /* Ancillary */
!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN)) ||
(!(png_ptr->chunk_name[0] & 0x20) && /* Critical */
(png_ptr->flags & PNG_FLAG_CRC_CRITICAL_USE)))
if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name) ?
!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_NOWARN) :
(png_ptr->flags & PNG_FLAG_CRC_CRITICAL_USE))
{
png_chunk_warning(png_ptr, "CRC error");
}
242,13 → 242,13
* the data it has read thus far.
*/
int /* PRIVATE */
png_crc_error(png_structp png_ptr)
png_crc_error(png_structrp png_ptr)
{
png_byte crc_bytes[4];
png_uint_32 crc;
int need_crc = 1;
 
if (png_ptr->chunk_name[0] & 0x20) /* ancillary */
if (PNG_CHUNK_ANCILLARY(png_ptr->chunk_name))
{
if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
(PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
278,269 → 278,521
return (0);
}
 
#if defined(PNG_READ_zTXt_SUPPORTED) || defined(PNG_READ_iTXt_SUPPORTED) || \
defined(PNG_READ_iCCP_SUPPORTED)
static png_size_t
png_inflate(png_structp png_ptr, png_bytep data, png_size_t size,
png_bytep output, png_size_t output_size)
/* Manage the read buffer; this simply reallocates the buffer if it is not small
* enough (or if it is not allocated). The routine returns a pointer to the
* buffer; if an error occurs and 'warn' is set the routine returns NULL, else
* it will call png_error (via png_malloc) on failure. (warn == 2 means
* 'silent').
*/
static png_bytep
png_read_buffer(png_structrp png_ptr, png_alloc_size_t new_size, int warn)
{
png_size_t count = 0;
png_bytep buffer = png_ptr->read_buffer;
 
/* zlib can't necessarily handle more than 65535 bytes at once (i.e. it can't
* even necessarily handle 65536 bytes) because the type uInt is "16 bits or
* more". Consequently it is necessary to chunk the input to zlib. This
* code uses ZLIB_IO_MAX, from pngpriv.h, as the maximum (the maximum value
* that can be stored in a uInt.) It is possible to set ZLIB_IO_MAX to a
* lower value in pngpriv.h and this may sometimes have a performance
* advantage, because it forces access of the input data to be separated from
* at least some of the use by some period of time.
*/
png_ptr->zstream.next_in = data;
/* avail_in is set below from 'size' */
png_ptr->zstream.avail_in = 0;
if (buffer != NULL && new_size > png_ptr->read_buffer_size)
{
png_ptr->read_buffer = NULL;
png_ptr->read_buffer = NULL;
png_ptr->read_buffer_size = 0;
png_free(png_ptr, buffer);
buffer = NULL;
}
 
while (1)
if (buffer == NULL)
{
int ret, avail;
buffer = png_voidcast(png_bytep, png_malloc_base(png_ptr, new_size));
 
/* The setting of 'avail_in' used to be outside the loop, by setting it
* inside it is possible to chunk the input to zlib and simply rely on
* zlib to advance the 'next_in' pointer. This allows arbitrary amounts o
* data to be passed through zlib at the unavoidable cost of requiring a
* window save (memcpy of up to 32768 output bytes) every ZLIB_IO_MAX
* input bytes.
*/
if (png_ptr->zstream.avail_in == 0 && size > 0)
if (buffer != NULL)
{
if (size <= ZLIB_IO_MAX)
{
/* The value is less than ZLIB_IO_MAX so the cast is safe: */
png_ptr->zstream.avail_in = (uInt)size;
size = 0;
png_ptr->read_buffer = buffer;
png_ptr->read_buffer_size = new_size;
}
 
else if (warn < 2) /* else silent */
{
#ifdef PNG_WARNINGS_SUPPORTED
if (warn)
png_chunk_warning(png_ptr, "insufficient memory to read chunk");
else
#endif
{
png_ptr->zstream.avail_in = ZLIB_IO_MAX;
size -= ZLIB_IO_MAX;
#ifdef PNG_ERROR_TEXT_SUPPORTED
png_chunk_error(png_ptr, "insufficient memory to read chunk");
#endif
}
}
}
 
/* Reset the output buffer each time round - we empty it
* after every inflate call.
return buffer;
}
 
/* png_inflate_claim: claim the zstream for some nefarious purpose that involves
* decompression. Returns Z_OK on success, else a zlib error code. It checks
* the owner but, in final release builds, just issues a warning if some other
* chunk apparently owns the stream. Prior to release it does a png_error.
*/
png_ptr->zstream.next_out = png_ptr->zbuf;
png_ptr->zstream.avail_out = png_ptr->zbuf_size;
static int
png_inflate_claim(png_structrp png_ptr, png_uint_32 owner)
{
if (png_ptr->zowner != 0)
{
char msg[64];
 
ret = inflate(&png_ptr->zstream, Z_NO_FLUSH);
avail = png_ptr->zbuf_size - png_ptr->zstream.avail_out;
PNG_STRING_FROM_CHUNK(msg, png_ptr->zowner);
/* So the message that results is "<chunk> using zstream"; this is an
* internal error, but is very useful for debugging. i18n requirements
* are minimal.
*/
(void)png_safecat(msg, (sizeof msg), 4, " using zstream");
# if PNG_LIBPNG_BUILD_BASE_TYPE >= PNG_LIBPNG_BUILD_RC
png_chunk_warning(png_ptr, msg);
png_ptr->zowner = 0;
# else
png_chunk_error(png_ptr, msg);
# endif
}
 
/* First copy/count any new output - but only if we didn't
* get an error code.
/* Implementation note: unlike 'png_deflate_claim' this internal function
* does not take the size of the data as an argument. Some efficiency could
* be gained by using this when it is known *if* the zlib stream itself does
* not record the number; however, this is an illusion: the original writer
* of the PNG may have selected a lower window size, and we really must
* follow that because, for systems with with limited capabilities, we
* would otherwise reject the application's attempts to use a smaller window
* size (zlib doesn't have an interface to say "this or lower"!).
*
* inflateReset2 was added to zlib 1.2.4; before this the window could not be
* reset, therefore it is necessary to always allocate the maximum window
* size with earlier zlibs just in case later compressed chunks need it.
*/
if ((ret == Z_OK || ret == Z_STREAM_END) && avail > 0)
{
png_size_t space = avail; /* > 0, see above */
int ret; /* zlib return code */
# if PNG_ZLIB_VERNUM >= 0x1240
 
if (output != 0 && output_size > count)
{
png_size_t copy = output_size - count;
# if defined(PNG_SET_OPTION_SUPPORTED) && \
defined(PNG_MAXIMUM_INFLATE_WINDOW)
int window_bits;
 
if (space < copy)
copy = space;
if (((png_ptr->options >> PNG_MAXIMUM_INFLATE_WINDOW) & 3) ==
PNG_OPTION_ON)
window_bits = 15;
 
png_memcpy(output + count, png_ptr->zbuf, copy);
}
count += space;
}
else
window_bits = 0;
# else
# define window_bits 0
# endif
# endif
 
if (ret == Z_OK)
continue;
 
/* Termination conditions - always reset the zstream, it
* must be left in inflateInit state.
/* Set this for safety, just in case the previous owner left pointers to
* memory allocations.
*/
png_ptr->zstream.next_in = NULL;
png_ptr->zstream.avail_in = 0;
inflateReset(&png_ptr->zstream);
png_ptr->zstream.next_out = NULL;
png_ptr->zstream.avail_out = 0;
 
if (ret == Z_STREAM_END)
return count; /* NOTE: may be zero. */
 
/* Now handle the error codes - the API always returns 0
* and the error message is dumped into the uncompressed
* buffer if available.
*/
if (png_ptr->flags & PNG_FLAG_ZSTREAM_INITIALIZED)
{
PNG_CONST char *msg;
#ifdef PNG_CONSOLE_IO_SUPPORTED
char umsg[52];
# if PNG_ZLIB_VERNUM < 0x1240
ret = inflateReset(&png_ptr->zstream);
# else
ret = inflateReset2(&png_ptr->zstream, window_bits);
#endif
if (png_ptr->zstream.msg != 0)
msg = png_ptr->zstream.msg;
}
 
else
{
#ifdef PNG_CONSOLE_IO_SUPPORTED
switch (ret)
{
case Z_BUF_ERROR:
msg = "Buffer error in compressed datastream in %s chunk";
break;
# if PNG_ZLIB_VERNUM < 0x1240
ret = inflateInit(&png_ptr->zstream);
# else
ret = inflateInit2(&png_ptr->zstream, window_bits);
# endif
 
case Z_DATA_ERROR:
msg = "Data error in compressed datastream in %s chunk";
break;
if (ret == Z_OK)
png_ptr->flags |= PNG_FLAG_ZSTREAM_INITIALIZED;
}
 
default:
msg = "Incomplete compressed datastream in %s chunk";
break;
if (ret == Z_OK)
png_ptr->zowner = owner;
 
else
png_zstream_error(png_ptr, ret);
 
return ret;
}
 
png_snprintf(umsg, sizeof umsg, msg, png_ptr->chunk_name);
msg = umsg;
#else
msg = "Damaged compressed datastream in chunk other than IDAT";
# ifdef window_bits
# undef window_bits
#endif
}
 
png_warning(png_ptr, msg);
#ifdef PNG_READ_COMPRESSED_TEXT_SUPPORTED
/* png_inflate now returns zlib error codes including Z_OK and Z_STREAM_END to
* allow the caller to do multiple calls if required. If the 'finish' flag is
* set Z_FINISH will be passed to the final inflate() call and Z_STREAM_END must
* be returned or there has been a problem, otherwise Z_SYNC_FLUSH is used and
* Z_OK or Z_STREAM_END will be returned on success.
*
* The input and output sizes are updated to the actual amounts of data consumed
* or written, not the amount available (as in a z_stream). The data pointers
* are not changed, so the next input is (data+input_size) and the next
* available output is (output+output_size).
*/
static int
png_inflate(png_structrp png_ptr, png_uint_32 owner, int finish,
/* INPUT: */ png_const_bytep input, png_uint_32p input_size_ptr,
/* OUTPUT: */ png_bytep output, png_alloc_size_t *output_size_ptr)
{
if (png_ptr->zowner == owner) /* Else not claimed */
{
int ret;
png_alloc_size_t avail_out = *output_size_ptr;
png_uint_32 avail_in = *input_size_ptr;
 
/* zlib can't necessarily handle more than 65535 bytes at once (i.e. it
* can't even necessarily handle 65536 bytes) because the type uInt is
* "16 bits or more". Consequently it is necessary to chunk the input to
* zlib. This code uses ZLIB_IO_MAX, from pngpriv.h, as the maximum (the
* maximum value that can be stored in a uInt.) It is possible to set
* ZLIB_IO_MAX to a lower value in pngpriv.h and this may sometimes have
* a performance advantage, because it reduces the amount of data accessed
* at each step and that may give the OS more time to page it in.
*/
png_ptr->zstream.next_in = PNGZ_INPUT_CAST(input);
/* avail_in and avail_out are set below from 'size' */
png_ptr->zstream.avail_in = 0;
png_ptr->zstream.avail_out = 0;
 
/* Read directly into the output if it is available (this is set to
* a local buffer below if output is NULL).
*/
if (output != NULL)
png_ptr->zstream.next_out = output;
 
do
{
uInt avail;
Byte local_buffer[PNG_INFLATE_BUF_SIZE];
 
/* zlib INPUT BUFFER */
/* The setting of 'avail_in' used to be outside the loop; by setting it
* inside it is possible to chunk the input to zlib and simply rely on
* zlib to advance the 'next_in' pointer. This allows arbitrary
* amounts of data to be passed through zlib at the unavoidable cost of
* requiring a window save (memcpy of up to 32768 output bytes)
* every ZLIB_IO_MAX input bytes.
*/
avail_in += png_ptr->zstream.avail_in; /* not consumed last time */
 
avail = ZLIB_IO_MAX;
 
if (avail_in < avail)
avail = (uInt)avail_in; /* safe: < than ZLIB_IO_MAX */
 
avail_in -= avail;
png_ptr->zstream.avail_in = avail;
 
/* zlib OUTPUT BUFFER */
avail_out += png_ptr->zstream.avail_out; /* not written last time */
 
avail = ZLIB_IO_MAX; /* maximum zlib can process */
 
if (output == NULL)
{
/* Reset the output buffer each time round if output is NULL and
* make available the full buffer, up to 'remaining_space'
*/
png_ptr->zstream.next_out = local_buffer;
if ((sizeof local_buffer) < avail)
avail = (sizeof local_buffer);
}
 
/* 0 means an error - notice that this code simply ignores
* zero length compressed chunks as a result.
if (avail_out < avail)
avail = (uInt)avail_out; /* safe: < ZLIB_IO_MAX */
 
png_ptr->zstream.avail_out = avail;
avail_out -= avail;
 
/* zlib inflate call */
/* In fact 'avail_out' may be 0 at this point, that happens at the end
* of the read when the final LZ end code was not passed at the end of
* the previous chunk of input data. Tell zlib if we have reached the
* end of the output buffer.
*/
return 0;
ret = inflate(&png_ptr->zstream, avail_out > 0 ? Z_NO_FLUSH :
(finish ? Z_FINISH : Z_SYNC_FLUSH));
} while (ret == Z_OK);
 
/* For safety kill the local buffer pointer now */
if (output == NULL)
png_ptr->zstream.next_out = NULL;
 
/* Claw back the 'size' and 'remaining_space' byte counts. */
avail_in += png_ptr->zstream.avail_in;
avail_out += png_ptr->zstream.avail_out;
 
/* Update the input and output sizes; the updated values are the amount
* consumed or written, effectively the inverse of what zlib uses.
*/
if (avail_out > 0)
*output_size_ptr -= avail_out;
 
if (avail_in > 0)
*input_size_ptr -= avail_in;
 
/* Ensure png_ptr->zstream.msg is set (even in the success case!) */
png_zstream_error(png_ptr, ret);
return ret;
}
 
else
{
/* This is a bad internal error. The recovery assigns to the zstream msg
* pointer, which is not owned by the caller, but this is safe; it's only
* used on errors!
*/
png_ptr->zstream.msg = PNGZ_MSG_CAST("zstream unclaimed");
return Z_STREAM_ERROR;
}
}
 
/*
* Decompress trailing data in a chunk. The assumption is that chunkdata
* Decompress trailing data in a chunk. The assumption is that read_buffer
* points at an allocated area holding the contents of a chunk with a
* trailing compressed part. What we get back is an allocated area
* holding the original prefix part and an uncompressed version of the
* trailing part (the malloc area passed in is freed).
*/
void /* PRIVATE */
png_decompress_chunk(png_structp png_ptr, int comp_type,
png_size_t chunklength,
png_size_t prefix_size, png_size_t *newlength)
static int
png_decompress_chunk(png_structrp png_ptr,
png_uint_32 chunklength, png_uint_32 prefix_size,
png_alloc_size_t *newlength /* must be initialized to the maximum! */,
int terminate /*add a '\0' to the end of the uncompressed data*/)
{
/* The caller should guarantee this */
if (prefix_size > chunklength)
/* TODO: implement different limits for different types of chunk.
*
* The caller supplies *newlength set to the maximum length of the
* uncompressed data, but this routine allocates space for the prefix and
* maybe a '\0' terminator too. We have to assume that 'prefix_size' is
* limited only by the maximum chunk size.
*/
png_alloc_size_t limit = PNG_SIZE_MAX;
 
# ifdef PNG_SET_CHUNK_MALLOC_LIMIT_SUPPORTED
if (png_ptr->user_chunk_malloc_max > 0 &&
png_ptr->user_chunk_malloc_max < limit)
limit = png_ptr->user_chunk_malloc_max;
# elif PNG_USER_CHUNK_MALLOC_MAX > 0
if (PNG_USER_CHUNK_MALLOC_MAX < limit)
limit = PNG_USER_CHUNK_MALLOC_MAX;
# endif
 
if (limit >= prefix_size + (terminate != 0))
{
/* The recovery is to delete the chunk. */
png_warning(png_ptr, "invalid chunklength");
prefix_size = 0; /* To delete everything */
}
int ret;
 
else if (comp_type == PNG_COMPRESSION_TYPE_BASE)
limit -= prefix_size + (terminate != 0);
 
if (limit < *newlength)
*newlength = limit;
 
/* Now try to claim the stream. */
ret = png_inflate_claim(png_ptr, png_ptr->chunk_name);
 
if (ret == Z_OK)
{
png_size_t expanded_size = png_inflate(png_ptr,
(png_bytep)(png_ptr->chunkdata + prefix_size),
chunklength - prefix_size,
0, /*output*/
0); /*output size*/
png_uint_32 lzsize = chunklength - prefix_size;
 
/* Now check the limits on this chunk - if the limit fails the
* compressed data will be removed, the prefix will remain.
*/
#ifdef PNG_SET_CHUNK_MALLOC_LIMIT_SUPPORTED
if (png_ptr->user_chunk_malloc_max &&
(prefix_size + expanded_size >= png_ptr->user_chunk_malloc_max - 1))
#else
# ifdef PNG_USER_CHUNK_MALLOC_MAX
if ((PNG_USER_CHUNK_MALLOC_MAX > 0) &&
prefix_size + expanded_size >= PNG_USER_CHUNK_MALLOC_MAX - 1)
# endif
#endif
png_warning(png_ptr, "Exceeded size limit while expanding chunk");
ret = png_inflate(png_ptr, png_ptr->chunk_name, 1/*finish*/,
/* input: */ png_ptr->read_buffer + prefix_size, &lzsize,
/* output: */ NULL, newlength);
 
/* If the size is zero either there was an error and a message
* has already been output (warning) or the size really is zero
* and we have nothing to do - the code will exit through the
* error case below.
if (ret == Z_STREAM_END)
{
/* Use 'inflateReset' here, not 'inflateReset2' because this
* preserves the previously decided window size (otherwise it would
* be necessary to store the previous window size.) In practice
* this doesn't matter anyway, because png_inflate will call inflate
* with Z_FINISH in almost all cases, so the window will not be
* maintained.
*/
#if defined(PNG_SET_CHUNK_MALLOC_LIMIT_SUPPORTED) || \
defined(PNG_USER_CHUNK_MALLOC_MAX)
else if (expanded_size > 0)
#else
if (expanded_size > 0)
#endif
if (inflateReset(&png_ptr->zstream) == Z_OK)
{
/* Success (maybe) - really uncompress the chunk. */
png_size_t new_size = 0;
png_charp text = png_malloc_warn(png_ptr,
prefix_size + expanded_size + 1);
/* Because of the limit checks above we know that the new,
* expanded, size will fit in a size_t (let alone an
* png_alloc_size_t). Use png_malloc_base here to avoid an
* extra OOM message.
*/
png_alloc_size_t new_size = *newlength;
png_alloc_size_t buffer_size = prefix_size + new_size +
(terminate != 0);
png_bytep text = png_voidcast(png_bytep, png_malloc_base(png_ptr,
buffer_size));
 
if (text != NULL)
{
png_memcpy(text, png_ptr->chunkdata, prefix_size);
new_size = png_inflate(png_ptr,
(png_bytep)(png_ptr->chunkdata + prefix_size),
chunklength - prefix_size,
(png_bytep)(text + prefix_size), expanded_size);
text[prefix_size + expanded_size] = 0; /* just in case */
ret = png_inflate(png_ptr, png_ptr->chunk_name, 1/*finish*/,
png_ptr->read_buffer + prefix_size, &lzsize,
text + prefix_size, newlength);
 
if (new_size == expanded_size)
if (ret == Z_STREAM_END)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = text;
*newlength = prefix_size + expanded_size;
return; /* The success return! */
if (new_size == *newlength)
{
if (terminate)
text[prefix_size + *newlength] = 0;
 
if (prefix_size > 0)
memcpy(text, png_ptr->read_buffer, prefix_size);
 
{
png_bytep old_ptr = png_ptr->read_buffer;
 
png_ptr->read_buffer = text;
png_ptr->read_buffer_size = buffer_size;
text = old_ptr; /* freed below */
}
}
 
png_warning(png_ptr, "png_inflate logic error");
else
{
/* The size changed on the second read, there can be no
* guarantee that anything is correct at this point.
* The 'msg' pointer has been set to "unexpected end of
* LZ stream", which is fine, but return an error code
* that the caller won't accept.
*/
ret = PNG_UNEXPECTED_ZLIB_RETURN;
}
}
 
else if (ret == Z_OK)
ret = PNG_UNEXPECTED_ZLIB_RETURN; /* for safety */
 
/* Free the text pointer (this is the old read_buffer on
* success)
*/
png_free(png_ptr, text);
 
/* This really is very benign, but it's still an error because
* the extra space may otherwise be used as a Trojan Horse.
*/
if (ret == Z_STREAM_END &&
chunklength - prefix_size != lzsize)
png_chunk_benign_error(png_ptr, "extra compressed data");
}
 
else
png_warning(png_ptr, "Not enough memory to decompress chunk");
{
/* Out of memory allocating the buffer */
ret = Z_MEM_ERROR;
png_zstream_error(png_ptr, Z_MEM_ERROR);
}
}
 
else /* if (comp_type != PNG_COMPRESSION_TYPE_BASE) */
else
{
#ifdef PNG_STDIO_SUPPORTED
char umsg[50];
/* inflateReset failed, store the error message */
png_zstream_error(png_ptr, ret);
 
png_snprintf(umsg, sizeof umsg,
"Unknown zTXt compression type %d", comp_type);
png_warning(png_ptr, umsg);
#else
png_warning(png_ptr, "Unknown zTXt compression type");
#endif
if (ret == Z_STREAM_END)
ret = PNG_UNEXPECTED_ZLIB_RETURN;
}
}
 
/* The recovery is to simply drop the data. */
else if (ret == Z_OK)
ret = PNG_UNEXPECTED_ZLIB_RETURN;
 
/* Release the claimed stream */
png_ptr->zowner = 0;
}
 
/* Generic error return - leave the prefix, delete the compressed
* data, reallocate the chunkdata to remove the potentially large
* amount of compressed data.
else /* the claim failed */ if (ret == Z_STREAM_END) /* impossible! */
ret = PNG_UNEXPECTED_ZLIB_RETURN;
 
return ret;
}
 
else
{
/* Application/configuration limits exceeded */
png_zstream_error(png_ptr, Z_MEM_ERROR);
return Z_MEM_ERROR;
}
}
#endif /* PNG_READ_COMPRESSED_TEXT_SUPPORTED */
 
#ifdef PNG_READ_iCCP_SUPPORTED
/* Perform a partial read and decompress, producing 'avail_out' bytes and
* reading from the current chunk as required.
*/
static int
png_inflate_read(png_structrp png_ptr, png_bytep read_buffer, uInt read_size,
png_uint_32p chunk_bytes, png_bytep next_out, png_alloc_size_t *out_size,
int finish)
{
png_charp text = png_malloc_warn(png_ptr, prefix_size + 1);
if (png_ptr->zowner == png_ptr->chunk_name)
{
int ret;
 
if (text != NULL)
/* next_in and avail_in must have been initialized by the caller. */
png_ptr->zstream.next_out = next_out;
png_ptr->zstream.avail_out = 0; /* set in the loop */
 
do
{
if (prefix_size > 0)
png_memcpy(text, png_ptr->chunkdata, prefix_size);
if (png_ptr->zstream.avail_in == 0)
{
if (read_size > *chunk_bytes)
read_size = (uInt)*chunk_bytes;
*chunk_bytes -= read_size;
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = text;
if (read_size > 0)
png_crc_read(png_ptr, read_buffer, read_size);
 
/* This is an extra zero in the 'uncompressed' part. */
*(png_ptr->chunkdata + prefix_size) = 0x00;
png_ptr->zstream.next_in = read_buffer;
png_ptr->zstream.avail_in = read_size;
}
/* Ignore a malloc error here - it is safe. */
 
if (png_ptr->zstream.avail_out == 0)
{
uInt avail = ZLIB_IO_MAX;
if (avail > *out_size)
avail = (uInt)*out_size;
*out_size -= avail;
 
png_ptr->zstream.avail_out = avail;
}
 
*newlength = prefix_size;
/* Use Z_SYNC_FLUSH when there is no more chunk data to ensure that all
* the available output is produced; this allows reading of truncated
* streams.
*/
ret = inflate(&png_ptr->zstream,
*chunk_bytes > 0 ? Z_NO_FLUSH : (finish ? Z_FINISH : Z_SYNC_FLUSH));
}
while (ret == Z_OK && (*out_size > 0 || png_ptr->zstream.avail_out > 0));
 
*out_size += png_ptr->zstream.avail_out;
png_ptr->zstream.avail_out = 0; /* Should not be required, but is safe */
 
/* Ensure the error message pointer is always set: */
png_zstream_error(png_ptr, ret);
return ret;
}
 
else
{
png_ptr->zstream.msg = PNGZ_MSG_CAST("zstream unclaimed");
return Z_STREAM_ERROR;
}
}
#endif
 
/* Read and check the IDHR chunk */
void /* PRIVATE */
png_handle_IHDR(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_IHDR(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_byte buf[13];
png_uint_32 width, height;
550,11 → 802,11
png_debug(1, "in png_handle_IHDR");
 
if (png_ptr->mode & PNG_HAVE_IHDR)
png_error(png_ptr, "Out of place IHDR");
png_chunk_error(png_ptr, "out of place");
 
/* Check the length */
if (length != 13)
png_error(png_ptr, "Invalid IHDR chunk");
png_chunk_error(png_ptr, "invalid");
 
png_ptr->mode |= PNG_HAVE_IHDR;
 
615,7 → 867,7
 
/* Read and check the palette */
void /* PRIVATE */
png_handle_PLTE(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_PLTE(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_color palette[PNG_MAX_PALETTE_LENGTH];
int num, i;
626,25 → 878,32
png_debug(1, "in png_handle_PLTE");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before PLTE");
png_chunk_error(png_ptr, "missing IHDR");
 
/* Moved to before the 'after IDAT' check below because otherwise duplicate
* PLTE chunks are potentially ignored (the spec says there shall not be more
* than one PLTE, the error is not treated as benign, so this check trumps
* the requirement that PLTE appears before IDAT.)
*/
else if (png_ptr->mode & PNG_HAVE_PLTE)
png_chunk_error(png_ptr, "duplicate");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid PLTE after IDAT");
/* This is benign because the non-benign error happened before, when an
* IDAT was encountered in a color-mapped image with no PLTE.
*/
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
else if (png_ptr->mode & PNG_HAVE_PLTE)
png_error(png_ptr, "Duplicate PLTE chunk");
 
png_ptr->mode |= PNG_HAVE_PLTE;
 
if (!(png_ptr->color_type&PNG_COLOR_MASK_COLOR))
{
png_warning(png_ptr,
"Ignoring PLTE chunk in grayscale PNG");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "ignored in grayscale PNG");
return;
}
 
658,19 → 917,18
 
if (length > 3*PNG_MAX_PALETTE_LENGTH || length % 3)
{
if (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE)
{
png_warning(png_ptr, "Invalid palette chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (png_ptr->color_type != PNG_COLOR_TYPE_PALETTE)
png_chunk_benign_error(png_ptr, "invalid");
 
else
{
png_error(png_ptr, "Invalid palette chunk");
png_chunk_error(png_ptr, "invalid");
 
return;
}
}
 
/* The cast is safe because 'length' is less than 3*PNG_MAX_PALETTE_LENGTH */
num = (int)length / 3;
 
#ifdef PNG_POINTER_INDEXING_SUPPORTED
715,6 → 973,10
* we have two options: an error abort, or a warning and we
* ignore the data in this chunk (which should be OK, since
* it's considered ancillary for a RGB or RGBA image).
*
* IMPLEMENTATION NOTE: this is only here because png_crc_finish uses the
* chunk type to determine whether to check the ancillary or the critical
* flags.
*/
if (!(png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_USE))
{
738,55 → 1000,74
}
#endif
 
/* TODO: png_set_PLTE has the side effect of setting png_ptr->palette to its
* own copy of the palette. This has the side effect that when png_start_row
* is called (this happens after any call to png_read_update_info) the
* info_ptr palette gets changed. This is extremely unexpected and
* confusing.
*
* Fix this by not sharing the palette in this way.
*/
png_set_PLTE(png_ptr, info_ptr, palette, num);
 
/* The three chunks, bKGD, hIST and tRNS *must* appear after PLTE and before
* IDAT. Prior to 1.6.0 this was not checked; instead the code merely
* checked the apparent validity of a tRNS chunk inserted before PLTE on a
* palette PNG. 1.6.0 attempts to rigorously follow the standard and
* therefore does a benign error if the erroneous condition is detected *and*
* cancels the tRNS if the benign error returns. The alternative is to
* amend the standard since it would be rather hypocritical of the standards
* maintainers to ignore it.
*/
#ifdef PNG_READ_tRNS_SUPPORTED
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
if (png_ptr->num_trans > 0 ||
(info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS) != 0))
{
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS))
{
if (png_ptr->num_trans > (png_uint_16)num)
{
png_warning(png_ptr, "Truncating incorrect tRNS chunk length");
png_ptr->num_trans = (png_uint_16)num;
}
/* Cancel this because otherwise it would be used if the transforms
* require it. Don't cancel the 'valid' flag because this would prevent
* detection of duplicate chunks.
*/
png_ptr->num_trans = 0;
 
if (info_ptr->num_trans > (png_uint_16)num)
{
png_warning(png_ptr, "Truncating incorrect info tRNS chunk length");
info_ptr->num_trans = (png_uint_16)num;
if (info_ptr != NULL)
info_ptr->num_trans = 0;
 
png_chunk_benign_error(png_ptr, "tRNS must be after");
}
}
}
#endif
 
#ifdef PNG_READ_hIST_SUPPORTED
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_hIST) != 0)
png_chunk_benign_error(png_ptr, "hIST must be after");
#endif
 
#ifdef PNG_READ_bKGD_SUPPORTED
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_bKGD) != 0)
png_chunk_benign_error(png_ptr, "bKGD must be after");
#endif
}
 
void /* PRIVATE */
png_handle_IEND(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_IEND(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_debug(1, "in png_handle_IEND");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR) || !(png_ptr->mode & PNG_HAVE_IDAT))
{
png_error(png_ptr, "No image in file");
}
png_chunk_error(png_ptr, "out of place");
 
png_ptr->mode |= (PNG_AFTER_IDAT | PNG_HAVE_IEND);
 
png_crc_finish(png_ptr, length);
 
if (length != 0)
{
png_warning(png_ptr, "Incorrect IEND chunk length");
}
png_chunk_benign_error(png_ptr, "invalid");
 
png_crc_finish(png_ptr, length);
 
PNG_UNUSED(info_ptr) /* Quiet compiler warnings about unused info_ptr */
PNG_UNUSED(info_ptr)
}
 
#ifdef PNG_READ_gAMA_SUPPORTED
void /* PRIVATE */
png_handle_gAMA(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_gAMA(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_fixed_point igamma;
png_byte buf[4];
794,34 → 1075,19
png_debug(1, "in png_handle_gAMA");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before gAMA");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
else if (png_ptr->mode & (PNG_HAVE_IDAT|PNG_HAVE_PLTE))
{
png_warning(png_ptr, "Invalid gAMA after IDAT");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
else if (png_ptr->mode & PNG_HAVE_PLTE)
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Out of place gAMA chunk");
 
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA)
#ifdef PNG_READ_sRGB_SUPPORTED
&& !(info_ptr->valid & PNG_INFO_sRGB)
#endif
)
{
png_warning(png_ptr, "Duplicate gAMA chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (length != 4)
{
png_warning(png_ptr, "Incorrect gAMA chunk length");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "invalid");
return;
}
 
832,45 → 1098,16
 
igamma = png_get_fixed_point(NULL, buf);
 
/* Check for zero gamma or an error. */
if (igamma <= 0)
{
png_warning(png_ptr,
"Ignoring gAMA chunk with out of range gamma");
 
return;
png_colorspace_set_gamma(png_ptr, &png_ptr->colorspace, igamma);
png_colorspace_sync(png_ptr, info_ptr);
}
 
# ifdef PNG_READ_sRGB_SUPPORTED
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sRGB))
{
if (PNG_OUT_OF_RANGE(igamma, 45500L, 500))
{
png_warning(png_ptr,
"Ignoring incorrect gAMA value when sRGB is also present");
 
# ifdef PNG_CONSOLE_IO_SUPPORTED
fprintf(stderr, "gamma = (%d/100000)", (int)igamma);
# endif
return;
}
}
# endif /* PNG_READ_sRGB_SUPPORTED */
 
# ifdef PNG_READ_GAMMA_SUPPORTED
/* Gamma correction on read is supported. */
png_ptr->gamma = igamma;
# endif
/* And set the 'info' structure members. */
png_set_gAMA_fixed(png_ptr, info_ptr, igamma);
}
#endif
 
#ifdef PNG_READ_sBIT_SUPPORTED
void /* PRIVATE */
png_handle_sBIT(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_sBIT(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_size_t truelen;
unsigned int truelen;
png_byte buf[4];
 
png_debug(1, "in png_handle_sBIT");
878,25 → 1115,19
buf[0] = buf[1] = buf[2] = buf[3] = 0;
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before sBIT");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
else if (png_ptr->mode & (PNG_HAVE_IDAT|PNG_HAVE_PLTE))
{
png_warning(png_ptr, "Invalid sBIT after IDAT");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
else if (png_ptr->mode & PNG_HAVE_PLTE)
{
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Out of place sBIT chunk");
}
 
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sBIT))
{
png_warning(png_ptr, "Duplicate sBIT chunk");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "duplicate");
return;
}
 
904,11 → 1135,11
truelen = 3;
 
else
truelen = (png_size_t)png_ptr->channels;
truelen = png_ptr->channels;
 
if (length != truelen || length > 4)
{
png_warning(png_ptr, "Incorrect sBIT chunk length");
png_chunk_benign_error(png_ptr, "invalid");
png_crc_finish(png_ptr, length);
return;
}
941,43 → 1172,27
 
#ifdef PNG_READ_cHRM_SUPPORTED
void /* PRIVATE */
png_handle_cHRM(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_cHRM(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_byte buf[32];
png_fixed_point x_white, y_white, x_red, y_red, x_green, y_green, x_blue,
y_blue;
png_xy xy;
 
png_debug(1, "in png_handle_cHRM");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before cHRM");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
else if (png_ptr->mode & (PNG_HAVE_IDAT|PNG_HAVE_PLTE))
{
png_warning(png_ptr, "Invalid cHRM after IDAT");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
else if (png_ptr->mode & PNG_HAVE_PLTE)
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Missing PLTE before cHRM");
 
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM)
# ifdef PNG_READ_sRGB_SUPPORTED
&& !(info_ptr->valid & PNG_INFO_sRGB)
# endif
)
{
png_warning(png_ptr, "Duplicate cHRM chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (length != 32)
{
png_warning(png_ptr, "Incorrect cHRM chunk length");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "invalid");
return;
}
 
986,302 → 1201,381
if (png_crc_finish(png_ptr, 0))
return;
 
x_white = png_get_fixed_point(NULL, buf);
y_white = png_get_fixed_point(NULL, buf + 4);
x_red = png_get_fixed_point(NULL, buf + 8);
y_red = png_get_fixed_point(NULL, buf + 12);
x_green = png_get_fixed_point(NULL, buf + 16);
y_green = png_get_fixed_point(NULL, buf + 20);
x_blue = png_get_fixed_point(NULL, buf + 24);
y_blue = png_get_fixed_point(NULL, buf + 28);
xy.whitex = png_get_fixed_point(NULL, buf);
xy.whitey = png_get_fixed_point(NULL, buf + 4);
xy.redx = png_get_fixed_point(NULL, buf + 8);
xy.redy = png_get_fixed_point(NULL, buf + 12);
xy.greenx = png_get_fixed_point(NULL, buf + 16);
xy.greeny = png_get_fixed_point(NULL, buf + 20);
xy.bluex = png_get_fixed_point(NULL, buf + 24);
xy.bluey = png_get_fixed_point(NULL, buf + 28);
 
if (x_white == PNG_FIXED_ERROR ||
y_white == PNG_FIXED_ERROR ||
x_red == PNG_FIXED_ERROR ||
y_red == PNG_FIXED_ERROR ||
x_green == PNG_FIXED_ERROR ||
y_green == PNG_FIXED_ERROR ||
x_blue == PNG_FIXED_ERROR ||
y_blue == PNG_FIXED_ERROR)
if (xy.whitex == PNG_FIXED_ERROR ||
xy.whitey == PNG_FIXED_ERROR ||
xy.redx == PNG_FIXED_ERROR ||
xy.redy == PNG_FIXED_ERROR ||
xy.greenx == PNG_FIXED_ERROR ||
xy.greeny == PNG_FIXED_ERROR ||
xy.bluex == PNG_FIXED_ERROR ||
xy.bluey == PNG_FIXED_ERROR)
{
png_warning(png_ptr, "Ignoring cHRM chunk with negative chromaticities");
png_chunk_benign_error(png_ptr, "invalid values");
return;
}
 
#ifdef PNG_READ_sRGB_SUPPORTED
if ((info_ptr != NULL) && (info_ptr->valid & PNG_INFO_sRGB))
/* If a colorspace error has already been output skip this chunk */
if (png_ptr->colorspace.flags & PNG_COLORSPACE_INVALID)
return;
 
if (png_ptr->colorspace.flags & PNG_COLORSPACE_FROM_cHRM)
{
if (PNG_OUT_OF_RANGE(x_white, 31270, 1000) ||
PNG_OUT_OF_RANGE(y_white, 32900, 1000) ||
PNG_OUT_OF_RANGE(x_red, 64000L, 1000) ||
PNG_OUT_OF_RANGE(y_red, 33000, 1000) ||
PNG_OUT_OF_RANGE(x_green, 30000, 1000) ||
PNG_OUT_OF_RANGE(y_green, 60000L, 1000) ||
PNG_OUT_OF_RANGE(x_blue, 15000, 1000) ||
PNG_OUT_OF_RANGE(y_blue, 6000, 1000))
{
png_warning(png_ptr,
"Ignoring incorrect cHRM value when sRGB is also present");
 
#ifdef PNG_CONSOLE_IO_SUPPORTED
fprintf(stderr, "wx=%d, wy=%d, rx=%d, ry=%d\n",
x_white, y_white, x_red, y_red);
 
fprintf(stderr, "gx=%d, gy=%d, bx=%d, by=%d\n",
x_green, y_green, x_blue, y_blue);
#endif /* PNG_CONSOLE_IO_SUPPORTED */
}
png_ptr->colorspace.flags |= PNG_COLORSPACE_INVALID;
png_colorspace_sync(png_ptr, info_ptr);
png_chunk_benign_error(png_ptr, "duplicate");
return;
}
#endif /* PNG_READ_sRGB_SUPPORTED */
 
png_set_cHRM_fixed(png_ptr, info_ptr, x_white, y_white, x_red, y_red,
x_green, y_green, x_blue, y_blue);
png_ptr->colorspace.flags |= PNG_COLORSPACE_FROM_cHRM;
(void)png_colorspace_set_chromaticities(png_ptr, &png_ptr->colorspace, &xy,
1/*prefer cHRM values*/);
png_colorspace_sync(png_ptr, info_ptr);
}
#endif
 
#ifdef PNG_READ_sRGB_SUPPORTED
void /* PRIVATE */
png_handle_sRGB(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_sRGB(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
int intent;
png_byte buf[1];
png_byte intent;
 
png_debug(1, "in png_handle_sRGB");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before sRGB");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
else if (png_ptr->mode & (PNG_HAVE_IDAT|PNG_HAVE_PLTE))
{
png_warning(png_ptr, "Invalid sRGB after IDAT");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
else if (png_ptr->mode & PNG_HAVE_PLTE)
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Out of place sRGB chunk");
 
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sRGB))
{
png_warning(png_ptr, "Duplicate sRGB chunk");
png_crc_finish(png_ptr, length);
return;
}
 
if (length != 1)
{
png_warning(png_ptr, "Incorrect sRGB chunk length");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "invalid");
return;
}
 
png_crc_read(png_ptr, buf, 1);
png_crc_read(png_ptr, &intent, 1);
 
if (png_crc_finish(png_ptr, 0))
return;
 
intent = buf[0];
/* If a colorspace error has already been output skip this chunk */
if (png_ptr->colorspace.flags & PNG_COLORSPACE_INVALID)
return;
 
/* Check for bad intent */
if (intent >= PNG_sRGB_INTENT_LAST)
/* Only one sRGB or iCCP chunk is allowed, use the HAVE_INTENT flag to detect
* this.
*/
if (png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_INTENT)
{
png_warning(png_ptr, "Unknown sRGB intent");
png_ptr->colorspace.flags |= PNG_COLORSPACE_INVALID;
png_colorspace_sync(png_ptr, info_ptr);
png_chunk_benign_error(png_ptr, "too many profiles");
return;
}
 
#if defined(PNG_READ_gAMA_SUPPORTED) && defined(PNG_READ_GAMMA_SUPPORTED)
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_gAMA))
{
if (PNG_OUT_OF_RANGE(info_ptr->gamma, 45500L, 500))
{
png_warning(png_ptr,
"Ignoring incorrect gAMA value when sRGB is also present");
#ifdef PNG_CONSOLE_IO_SUPPORTED
fprintf(stderr, "incorrect gamma=(%d/100000)\n", info_ptr->gamma);
#endif
(void)png_colorspace_set_sRGB(png_ptr, &png_ptr->colorspace, intent);
png_colorspace_sync(png_ptr, info_ptr);
}
}
#endif /* PNG_READ_gAMA_SUPPORTED */
 
#ifdef PNG_READ_cHRM_SUPPORTED
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_cHRM))
if (PNG_OUT_OF_RANGE(info_ptr->x_white, 31270, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->y_white, 32900, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->x_red, 64000L, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->y_red, 33000, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->x_green, 30000, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->y_green, 60000L, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->x_blue, 15000, 1000) ||
PNG_OUT_OF_RANGE(info_ptr->y_blue, 6000, 1000))
{
png_warning(png_ptr,
"Ignoring incorrect cHRM value when sRGB is also present");
}
#endif /* PNG_READ_cHRM_SUPPORTED */
 
png_set_sRGB_gAMA_and_cHRM(png_ptr, info_ptr, intent);
}
#endif /* PNG_READ_sRGB_SUPPORTED */
 
#ifdef PNG_READ_iCCP_SUPPORTED
void /* PRIVATE */
png_handle_iCCP(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
/* Note: this does not properly handle chunks that are > 64K under DOS */
png_handle_iCCP(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
/* Note: this does not properly handle profiles that are > 64K under DOS */
{
png_byte compression_type;
png_bytep pC;
png_charp profile;
png_uint_32 skip = 0;
png_uint_32 profile_size;
png_alloc_size_t profile_length;
png_size_t slength, prefix_length, data_length;
png_const_charp errmsg = NULL; /* error message output, or no error */
int finished = 0; /* crc checked */
 
png_debug(1, "in png_handle_iCCP");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before iCCP");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
else if (png_ptr->mode & (PNG_HAVE_IDAT|PNG_HAVE_PLTE))
{
png_warning(png_ptr, "Invalid iCCP after IDAT");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
else if (png_ptr->mode & PNG_HAVE_PLTE)
/* Should be an error, but we can cope with it */
png_warning(png_ptr, "Out of place iCCP chunk");
 
if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_iCCP))
/* Consistent with all the above colorspace handling an obviously *invalid*
* chunk is just ignored, so does not invalidate the color space. An
* alternative is to set the 'invalid' flags at the start of this routine
* and only clear them in they were not set before and all the tests pass.
* The minimum 'deflate' stream is assumed to be just the 2 byte header and 4
* byte checksum. The keyword must be one character and there is a
* terminator (0) byte and the compression method.
*/
if (length < 9)
{
png_warning(png_ptr, "Duplicate iCCP chunk");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "too short");
return;
}
 
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
/* If a colorspace error has already been output skip this chunk */
if (png_ptr->colorspace.flags & PNG_COLORSPACE_INVALID)
{
png_warning(png_ptr, "iCCP chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
png_crc_finish(png_ptr, length);
return;
}
#endif
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = (png_charp)png_malloc(png_ptr, length + 1);
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
/* Only one sRGB or iCCP chunk is allowed, use the HAVE_INTENT flag to detect
* this.
*/
if ((png_ptr->colorspace.flags & PNG_COLORSPACE_HAVE_INTENT) == 0)
{
uInt read_length, keyword_length;
char keyword[81];
 
if (png_crc_finish(png_ptr, skip))
/* Find the keyword; the keyword plus separator and compression method
* bytes can be at most 81 characters long.
*/
read_length = 81; /* maximum */
if (read_length > length)
read_length = (uInt)length;
 
png_crc_read(png_ptr, (png_bytep)keyword, read_length);
length -= read_length;
 
keyword_length = 0;
while (keyword_length < 80 && keyword_length < read_length &&
keyword[keyword_length] != 0)
++keyword_length;
 
/* TODO: make the keyword checking common */
if (keyword_length >= 1 && keyword_length <= 79)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
/* We only understand '0' compression - deflate - so if we get a
* different value we can't safely decode the chunk.
*/
if (keyword_length+1 < read_length &&
keyword[keyword_length+1] == PNG_COMPRESSION_TYPE_BASE)
{
read_length -= keyword_length+2;
 
png_ptr->chunkdata[slength] = 0x00;
if (png_inflate_claim(png_ptr, png_iCCP) == Z_OK)
{
Byte profile_header[132];
Byte local_buffer[PNG_INFLATE_BUF_SIZE];
png_alloc_size_t size = (sizeof profile_header);
 
for (profile = png_ptr->chunkdata; *profile; profile++)
/* Empty loop to find end of name */ ;
png_ptr->zstream.next_in = (Bytef*)keyword + (keyword_length+2);
png_ptr->zstream.avail_in = read_length;
(void)png_inflate_read(png_ptr, local_buffer,
(sizeof local_buffer), &length, profile_header, &size,
0/*finish: don't, because the output is too small*/);
 
++profile;
if (size == 0)
{
/* We have the ICC profile header; do the basic header checks.
*/
const png_uint_32 profile_length =
png_get_uint_32(profile_header);
 
/* There should be at least one zero (the compression type byte)
* following the separator, and we should be on it
if (png_icc_check_length(png_ptr, &png_ptr->colorspace,
keyword, profile_length))
{
/* The length is apparently ok, so we can check the 132
* byte header.
*/
if (profile >= png_ptr->chunkdata + slength - 1)
if (png_icc_check_header(png_ptr, &png_ptr->colorspace,
keyword, profile_length, profile_header,
png_ptr->color_type))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_warning(png_ptr, "Malformed iCCP chunk");
return;
}
/* Now read the tag table; a variable size buffer is
* needed at this point, allocate one for the whole
* profile. The header check has already validated
* that none of these stuff will overflow.
*/
const png_uint_32 tag_count = png_get_uint_32(
profile_header+128);
png_bytep profile = png_read_buffer(png_ptr,
profile_length, 2/*silent*/);
 
/* Compression_type should always be zero */
compression_type = *profile++;
if (profile != NULL)
{
memcpy(profile, profile_header,
(sizeof profile_header));
 
if (compression_type)
size = 12 * tag_count;
 
(void)png_inflate_read(png_ptr, local_buffer,
(sizeof local_buffer), &length,
profile + (sizeof profile_header), &size, 0);
 
/* Still expect a a buffer error because we expect
* there to be some tag data!
*/
if (size == 0)
{
png_warning(png_ptr, "Ignoring nonzero compression type in iCCP chunk");
compression_type = 0x00; /* Reset it to zero (libpng-1.0.6 through 1.0.8
wrote nonzero) */
}
if (png_icc_check_tag_table(png_ptr,
&png_ptr->colorspace, keyword, profile_length,
profile))
{
/* The profile has been validated for basic
* security issues, so read the whole thing in.
*/
size = profile_length - (sizeof profile_header)
- 12 * tag_count;
 
prefix_length = profile - png_ptr->chunkdata;
png_decompress_chunk(png_ptr, compression_type,
slength, prefix_length, &data_length);
(void)png_inflate_read(png_ptr, local_buffer,
(sizeof local_buffer), &length,
profile + (sizeof profile_header) +
12 * tag_count, &size, 1/*finish*/);
 
profile_length = data_length - prefix_length;
if (length > 0 && !(png_ptr->flags &
PNG_FLAG_BENIGN_ERRORS_WARN))
errmsg = "extra compressed data";
 
if (prefix_length > data_length || profile_length < 4)
/* But otherwise allow extra data: */
else if (size == 0)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_warning(png_ptr, "Profile size field missing from iCCP chunk");
return;
if (length > 0)
{
/* This can be handled completely, so
* keep going.
*/
png_chunk_warning(png_ptr,
"extra compressed data");
}
 
/* Check the profile_size recorded in the first 32 bits of the ICC profile */
pC = (png_bytep)(png_ptr->chunkdata + prefix_length);
profile_size = ((*(pC )) << 24) |
((*(pC + 1)) << 16) |
((*(pC + 2)) << 8) |
((*(pC + 3)) );
png_crc_finish(png_ptr, length);
finished = 1;
 
/* NOTE: the following guarantees that 'profile_length' fits into 32 bits,
* because profile_size is a 32 bit value.
*/
if (profile_size < profile_length)
profile_length = profile_size;
# ifdef PNG_sRGB_SUPPORTED
/* Check for a match against sRGB */
png_icc_set_sRGB(png_ptr,
&png_ptr->colorspace, profile,
png_ptr->zstream.adler);
# endif
 
/* And the following guarantees that profile_size == profile_length. */
if (profile_size > profile_length)
/* Steal the profile for info_ptr. */
if (info_ptr != NULL)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
#ifdef PNG_STDIO_SUPPORTED
png_free_data(png_ptr, info_ptr,
PNG_FREE_ICCP, 0);
 
info_ptr->iccp_name = png_voidcast(char*,
png_malloc_base(png_ptr,
keyword_length+1));
if (info_ptr->iccp_name != NULL)
{
char umsg[80];
memcpy(info_ptr->iccp_name, keyword,
keyword_length+1);
info_ptr->iccp_proflen =
profile_length;
info_ptr->iccp_profile = profile;
png_ptr->read_buffer = NULL; /*steal*/
info_ptr->free_me |= PNG_FREE_ICCP;
info_ptr->valid |= PNG_INFO_iCCP;
}
 
png_snprintf2(umsg, 80,
"Ignoring iCCP chunk with declared size = %u "
"and actual length = %u",
(unsigned int) profile_size,
(unsigned int) profile_length);
png_warning(png_ptr, umsg);
else
{
png_ptr->colorspace.flags |=
PNG_COLORSPACE_INVALID;
errmsg = "out of memory";
}
#else
png_warning(png_ptr,
"Ignoring iCCP chunk with uncompressed size mismatch");
#endif
}
 
/* else the profile remains in the read
* buffer which gets reused for subsequent
* chunks.
*/
 
if (info_ptr != NULL)
png_colorspace_sync(png_ptr, info_ptr);
 
if (errmsg == NULL)
{
png_ptr->zowner = 0;
return;
}
}
 
png_set_iCCP(png_ptr, info_ptr, png_ptr->chunkdata,
compression_type, (png_bytep)png_ptr->chunkdata + prefix_length,
profile_size);
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
else if (size > 0)
errmsg = "truncated";
 
else
errmsg = png_ptr->zstream.msg;
}
 
/* else png_icc_check_tag_table output an error */
}
 
else /* profile truncated */
errmsg = png_ptr->zstream.msg;
}
 
else
errmsg = "out of memory";
}
 
/* else png_icc_check_header output an error */
}
 
/* else png_icc_check_length output an error */
}
 
else /* profile truncated */
errmsg = png_ptr->zstream.msg;
 
/* Release the stream */
png_ptr->zowner = 0;
}
 
else /* png_inflate_claim failed */
errmsg = png_ptr->zstream.msg;
}
 
else
errmsg = "bad compression method"; /* or missing */
}
 
else
errmsg = "bad keyword";
}
 
else
errmsg = "too many profiles";
 
/* Failure: the reason is in 'errmsg' */
if (!finished)
png_crc_finish(png_ptr, length);
 
png_ptr->colorspace.flags |= PNG_COLORSPACE_INVALID;
png_colorspace_sync(png_ptr, info_ptr);
if (errmsg != NULL) /* else already output */
png_chunk_benign_error(png_ptr, errmsg);
}
#endif /* PNG_READ_iCCP_SUPPORTED */
 
#ifdef PNG_READ_sPLT_SUPPORTED
void /* PRIVATE */
png_handle_sPLT(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_sPLT(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
/* Note: this does not properly handle chunks that are > 64K under DOS */
{
png_bytep entry_start;
png_bytep entry_start, buffer;
png_sPLT_t new_palette;
#ifdef PNG_POINTER_INDEXING_SUPPORTED
png_sPLT_entryp pp;
#endif
png_uint_32 data_length;
int entry_size, i;
png_uint_32 skip = 0;
png_size_t slength;
png_uint_32 dl;
png_size_t max_dl;
 
1288,7 → 1582,6
png_debug(1, "in png_handle_sPLT");
 
#ifdef PNG_USER_LIMITS_SUPPORTED
 
if (png_ptr->user_chunk_cache_max != 0)
{
if (png_ptr->user_chunk_cache_max == 1)
1307,54 → 1600,52
#endif
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before sPLT");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid sPLT after IDAT");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
if (length > 65535U)
{
png_warning(png_ptr, "sPLT chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "too large to fit in memory");
return;
}
#endif
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = (png_charp)png_malloc(png_ptr, length + 1);
buffer = png_read_buffer(png_ptr, length+1, 2/*silent*/);
if (buffer == NULL)
{
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of memory");
return;
}
 
 
/* WARNING: this may break if size_t is less than 32 bits; it is assumed
* that the PNG_MAX_MALLOC_64K test is enabled in this case, but this is a
* potential breakage point if the types in pngconf.h aren't exactly right.
*/
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
png_crc_read(png_ptr, buffer, length);
 
if (png_crc_finish(png_ptr, skip))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
png_ptr->chunkdata[slength] = 0x00;
buffer[length] = 0;
 
for (entry_start = (png_bytep)png_ptr->chunkdata; *entry_start;
entry_start++)
for (entry_start = buffer; *entry_start; entry_start++)
/* Empty loop to find end of name */ ;
 
++entry_start;
 
/* A sample depth should follow the separator, and we should be on it */
if (entry_start > (png_bytep)png_ptr->chunkdata + slength - 2)
if (entry_start > buffer + length - 2)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_warning(png_ptr, "malformed sPLT chunk");
return;
}
1362,23 → 1653,19
new_palette.depth = *entry_start++;
entry_size = (new_palette.depth == 8 ? 6 : 10);
/* This must fit in a png_uint_32 because it is derived from the original
* chunk data length (and use 'length', not 'slength' here for clarity -
* they are guaranteed to be the same, see the tests above.)
* chunk data length.
*/
data_length = length - (png_uint_32)(entry_start -
(png_bytep)png_ptr->chunkdata);
data_length = length - (png_uint_32)(entry_start - buffer);
 
/* Integrity-check the data length */
if (data_length % entry_size)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_warning(png_ptr, "sPLT chunk has bad length");
return;
}
 
dl = (png_int_32)(data_length / entry_size);
max_dl = PNG_SIZE_MAX / png_sizeof(png_sPLT_entry);
max_dl = PNG_SIZE_MAX / (sizeof (png_sPLT_entry));
 
if (dl > max_dl)
{
1389,7 → 1676,7
new_palette.nentries = (png_int_32)(data_length / entry_size);
 
new_palette.entries = (png_sPLT_entryp)png_malloc_warn(
png_ptr, new_palette.nentries * png_sizeof(png_sPLT_entry));
png_ptr, new_palette.nentries * (sizeof (png_sPLT_entry)));
 
if (new_palette.entries == NULL)
{
1442,17 → 1729,15
pp[i].alpha = png_get_uint_16(entry_start); entry_start += 2;
}
 
pp->frequency = png_get_uint_16(entry_start); entry_start += 2;
pp[i].frequency = png_get_uint_16(entry_start); entry_start += 2;
}
#endif
 
/* Discard all chunk data except the name and stash that */
new_palette.name = png_ptr->chunkdata;
new_palette.name = (png_charp)buffer;
 
png_set_sPLT(png_ptr, info_ptr, &new_palette, 1);
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_free(png_ptr, new_palette.entries);
}
#endif /* PNG_READ_sPLT_SUPPORTED */
1459,7 → 1744,7
 
#ifdef PNG_READ_tRNS_SUPPORTED
void /* PRIVATE */
png_handle_tRNS(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_tRNS(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_byte readbuf[PNG_MAX_PALETTE_LENGTH];
 
1466,19 → 1751,19
png_debug(1, "in png_handle_tRNS");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before tRNS");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid tRNS after IDAT");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tRNS))
{
png_warning(png_ptr, "Duplicate tRNS chunk");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "duplicate");
return;
}
 
1488,8 → 1773,8
 
if (length != 2)
{
png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "invalid");
return;
}
 
1504,12 → 1789,12
 
if (length != 6)
{
png_warning(png_ptr, "Incorrect tRNS chunk length");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "invalid");
return;
}
 
png_crc_read(png_ptr, buf, (png_size_t)length);
png_crc_read(png_ptr, buf, length);
png_ptr->num_trans = 1;
png_ptr->trans_color.red = png_get_uint_16(buf);
png_ptr->trans_color.green = png_get_uint_16(buf + 2);
1520,33 → 1805,28
{
if (!(png_ptr->mode & PNG_HAVE_PLTE))
{
/* Should be an error, but we can cope with it. */
png_warning(png_ptr, "Missing PLTE before tRNS");
}
 
if (length > (png_uint_32)png_ptr->num_palette ||
length > PNG_MAX_PALETTE_LENGTH)
{
png_warning(png_ptr, "Incorrect tRNS chunk length");
/* TODO: is this actually an error in the ISO spec? */
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
if (length == 0)
if (length > png_ptr->num_palette || length > PNG_MAX_PALETTE_LENGTH ||
length == 0)
{
png_warning(png_ptr, "Zero length tRNS chunk");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "invalid");
return;
}
 
png_crc_read(png_ptr, readbuf, (png_size_t)length);
png_crc_read(png_ptr, readbuf, length);
png_ptr->num_trans = (png_uint_16)length;
}
 
else
{
png_warning(png_ptr, "tRNS chunk not allowed with alpha channel");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "invalid with alpha channel");
return;
}
 
1556,6 → 1836,10
return;
}
 
/* TODO: this is a horrible side effect in the palette case because the
* png_struct ends up with a pointer to the tRNS buffer owned by the
* png_info. Fix this.
*/
png_set_tRNS(png_ptr, info_ptr, readbuf, png_ptr->num_trans,
&(png_ptr->trans_color));
}
1563,35 → 1847,30
 
#ifdef PNG_READ_bKGD_SUPPORTED
void /* PRIVATE */
png_handle_bKGD(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_bKGD(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_size_t truelen;
unsigned int truelen;
png_byte buf[6];
png_color_16 background;
 
png_debug(1, "in png_handle_bKGD");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before bKGD");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
else if ((png_ptr->mode & PNG_HAVE_IDAT) ||
(png_ptr->color_type == PNG_COLOR_TYPE_PALETTE &&
!(png_ptr->mode & PNG_HAVE_PLTE)))
{
png_warning(png_ptr, "Invalid bKGD after IDAT");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE &&
!(png_ptr->mode & PNG_HAVE_PLTE))
{
png_warning(png_ptr, "Missing PLTE before bKGD");
png_crc_finish(png_ptr, length);
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_bKGD))
{
png_warning(png_ptr, "Duplicate bKGD chunk");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "duplicate");
return;
}
 
1606,8 → 1885,8
 
if (length != truelen)
{
png_warning(png_ptr, "Incorrect bKGD chunk length");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "invalid");
return;
}
 
1623,49 → 1902,52
*/
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
png_ptr->background.index = buf[0];
background.index = buf[0];
 
if (info_ptr && info_ptr->num_palette)
{
if (buf[0] >= info_ptr->num_palette)
{
png_warning(png_ptr, "Incorrect bKGD chunk index value");
png_chunk_benign_error(png_ptr, "invalid index");
return;
}
 
png_ptr->background.red =
(png_uint_16)png_ptr->palette[buf[0]].red;
background.red = (png_uint_16)png_ptr->palette[buf[0]].red;
background.green = (png_uint_16)png_ptr->palette[buf[0]].green;
background.blue = (png_uint_16)png_ptr->palette[buf[0]].blue;
}
 
png_ptr->background.green =
(png_uint_16)png_ptr->palette[buf[0]].green;
else
background.red = background.green = background.blue = 0;
 
png_ptr->background.blue =
(png_uint_16)png_ptr->palette[buf[0]].blue;
background.gray = 0;
}
}
 
else if (!(png_ptr->color_type & PNG_COLOR_MASK_COLOR)) /* GRAY */
{
png_ptr->background.red =
png_ptr->background.green =
png_ptr->background.blue =
png_ptr->background.gray = png_get_uint_16(buf);
background.index = 0;
background.red =
background.green =
background.blue =
background.gray = png_get_uint_16(buf);
}
 
else
{
png_ptr->background.red = png_get_uint_16(buf);
png_ptr->background.green = png_get_uint_16(buf + 2);
png_ptr->background.blue = png_get_uint_16(buf + 4);
background.index = 0;
background.red = png_get_uint_16(buf);
background.green = png_get_uint_16(buf + 2);
background.blue = png_get_uint_16(buf + 4);
background.gray = 0;
}
 
png_set_bKGD(png_ptr, info_ptr, &(png_ptr->background));
png_set_bKGD(png_ptr, info_ptr, &background);
}
#endif
 
#ifdef PNG_READ_hIST_SUPPORTED
void /* PRIVATE */
png_handle_hIST(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_hIST(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
unsigned int num, i;
png_uint_16 readbuf[PNG_MAX_PALETTE_LENGTH];
1673,36 → 1955,28
png_debug(1, "in png_handle_hIST");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before hIST");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
else if ((png_ptr->mode & PNG_HAVE_IDAT) || !(png_ptr->mode & PNG_HAVE_PLTE))
{
png_warning(png_ptr, "Invalid hIST after IDAT");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
else if (!(png_ptr->mode & PNG_HAVE_PLTE))
{
png_warning(png_ptr, "Missing PLTE before hIST");
png_crc_finish(png_ptr, length);
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_hIST))
{
png_warning(png_ptr, "Duplicate hIST chunk");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "duplicate");
return;
}
 
num = length / 2 ;
 
if (num != (unsigned int)png_ptr->num_palette || num >
(unsigned int)PNG_MAX_PALETTE_LENGTH)
if (num != png_ptr->num_palette || num > PNG_MAX_PALETTE_LENGTH)
{
png_warning(png_ptr, "Incorrect hIST chunk length");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "invalid");
return;
}
 
1723,7 → 1997,7
 
#ifdef PNG_READ_pHYs_SUPPORTED
void /* PRIVATE */
png_handle_pHYs(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_pHYs(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_byte buf[9];
png_uint_32 res_x, res_y;
1732,26 → 2006,26
png_debug(1, "in png_handle_pHYs");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before pHYs");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid pHYs after IDAT");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_pHYs))
{
png_warning(png_ptr, "Duplicate pHYs chunk");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "duplicate");
return;
}
 
if (length != 9)
{
png_warning(png_ptr, "Incorrect pHYs chunk length");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "invalid");
return;
}
 
1769,7 → 2043,7
 
#ifdef PNG_READ_oFFs_SUPPORTED
void /* PRIVATE */
png_handle_oFFs(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_oFFs(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_byte buf[9];
png_int_32 offset_x, offset_y;
1778,26 → 2052,26
png_debug(1, "in png_handle_oFFs");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before oFFs");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid oFFs after IDAT");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_oFFs))
{
png_warning(png_ptr, "Duplicate oFFs chunk");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "duplicate");
return;
}
 
if (length != 9)
{
png_warning(png_ptr, "Incorrect oFFs chunk length");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "invalid");
return;
}
 
1816,62 → 2090,57
#ifdef PNG_READ_pCAL_SUPPORTED
/* Read the pCAL chunk (described in the PNG Extensions document) */
void /* PRIVATE */
png_handle_pCAL(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_pCAL(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_int_32 X0, X1;
png_byte type, nparams;
png_charp buf, units, endptr;
png_bytep buffer, buf, units, endptr;
png_charpp params;
png_size_t slength;
int i;
 
png_debug(1, "in png_handle_pCAL");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before pCAL");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid pCAL after IDAT");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_pCAL))
{
png_warning(png_ptr, "Duplicate pCAL chunk");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "duplicate");
return;
}
 
png_debug1(2, "Allocating and reading pCAL chunk data (%u bytes)",
length + 1);
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1);
 
if (png_ptr->chunkdata == NULL)
buffer = png_read_buffer(png_ptr, length+1, 2/*silent*/);
 
if (buffer == NULL)
{
png_warning(png_ptr, "No memory for pCAL purpose");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of memory");
return;
}
 
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
png_crc_read(png_ptr, buffer, length);
 
if (png_crc_finish(png_ptr, 0))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
png_ptr->chunkdata[slength] = 0x00; /* Null terminate the last string */
buffer[length] = 0; /* Null terminate the last string */
 
png_debug(3, "Finding end of pCAL purpose string");
for (buf = png_ptr->chunkdata; *buf; buf++)
for (buf = buffer; *buf; buf++)
/* Empty loop */ ;
 
endptr = png_ptr->chunkdata + slength;
endptr = buffer + length;
 
/* We need to have at least 12 bytes after the purpose string
* in order to get the parameter information.
1878,9 → 2147,7
*/
if (endptr <= buf + 12)
{
png_warning(png_ptr, "Invalid pCAL data");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_chunk_benign_error(png_ptr, "invalid");
return;
}
 
1900,15 → 2167,13
(type == PNG_EQUATION_ARBITRARY && nparams != 3) ||
(type == PNG_EQUATION_HYPERBOLIC && nparams != 4))
{
png_warning(png_ptr, "Invalid pCAL parameters for equation type");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_chunk_benign_error(png_ptr, "invalid parameter count");
return;
}
 
else if (type >= PNG_EQUATION_LAST)
{
png_warning(png_ptr, "Unrecognized equation type for pCAL chunk");
png_chunk_benign_error(png_ptr, "unrecognized equation type");
}
 
for (buf = units; *buf; buf++)
1916,43 → 2181,37
 
png_debug(3, "Allocating pCAL parameters array");
 
params = (png_charpp)png_malloc_warn(png_ptr,
(png_size_t)(nparams * png_sizeof(png_charp)));
params = png_voidcast(png_charpp, png_malloc_warn(png_ptr,
nparams * (sizeof (png_charp))));
 
if (params == NULL)
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_warning(png_ptr, "No memory for pCAL params");
png_chunk_benign_error(png_ptr, "out of memory");
return;
}
 
/* Get pointers to the start of each parameter string. */
for (i = 0; i < (int)nparams; i++)
for (i = 0; i < nparams; i++)
{
buf++; /* Skip the null string terminator from previous parameter. */
 
png_debug1(3, "Reading pCAL parameter %d", i);
 
for (params[i] = buf; buf <= endptr && *buf != 0x00; buf++)
for (params[i] = (png_charp)buf; buf <= endptr && *buf != 0; buf++)
/* Empty loop to move past each parameter string */ ;
 
/* Make sure we haven't run out of data yet */
if (buf > endptr)
{
png_warning(png_ptr, "Invalid pCAL data");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_free(png_ptr, params);
png_chunk_benign_error(png_ptr, "invalid data");
return;
}
}
 
png_set_pCAL(png_ptr, info_ptr, png_ptr->chunkdata, X0, X1, type, nparams,
units, params);
png_set_pCAL(png_ptr, info_ptr, (png_charp)buffer, X0, X1, type, nparams,
(png_charp)units, params);
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_free(png_ptr, params);
}
#endif
1960,59 → 2219,61
#ifdef PNG_READ_sCAL_SUPPORTED
/* Read the sCAL chunk */
void /* PRIVATE */
png_handle_sCAL(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_sCAL(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_size_t slength, i;
png_bytep buffer;
png_size_t i;
int state;
 
png_debug(1, "in png_handle_sCAL");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before sCAL");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (png_ptr->mode & PNG_HAVE_IDAT)
{
png_warning(png_ptr, "Invalid sCAL after IDAT");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of place");
return;
}
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_sCAL))
{
png_warning(png_ptr, "Duplicate sCAL chunk");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "duplicate");
return;
}
 
/* Need unit type, width, \0, height: minimum 4 bytes */
else if (length < 4)
{
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "invalid");
return;
}
 
png_debug1(2, "Allocating and reading sCAL chunk data (%u bytes)",
length + 1);
 
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1);
buffer = png_read_buffer(png_ptr, length+1, 2/*silent*/);
 
if (png_ptr->chunkdata == NULL)
if (buffer == NULL)
{
png_warning(png_ptr, "Out of memory while processing sCAL chunk");
png_chunk_benign_error(png_ptr, "out of memory");
png_crc_finish(png_ptr, length);
return;
}
 
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
png_ptr->chunkdata[slength] = 0x00; /* Null terminate the last string */
png_crc_read(png_ptr, buffer, length);
buffer[length] = 0; /* Null terminate the last string */
 
if (png_crc_finish(png_ptr, 0))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
/* Validate the unit. */
if (png_ptr->chunkdata[0] != 1 && png_ptr->chunkdata[0] != 2)
if (buffer[0] != 1 && buffer[0] != 2)
{
png_warning(png_ptr, "Invalid sCAL ignored: invalid unit");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_chunk_benign_error(png_ptr, "invalid unit");
return;
}
 
2019,38 → 2280,39
/* Validate the ASCII numbers, need two ASCII numbers separated by
* a '\0' and they need to fit exactly in the chunk data.
*/
i = 0;
i = 1;
state = 0;
 
if (png_ptr->chunkdata[1] == 45 /* negative width */ ||
!png_check_fp_number(png_ptr->chunkdata, slength, &state, &i) ||
i >= slength || png_ptr->chunkdata[i++] != 0)
png_warning(png_ptr, "Invalid sCAL chunk ignored: bad width format");
if (!png_check_fp_number((png_const_charp)buffer, length, &state, &i) ||
i >= length || buffer[i++] != 0)
png_chunk_benign_error(png_ptr, "bad width format");
 
else if (!PNG_FP_IS_POSITIVE(state))
png_chunk_benign_error(png_ptr, "non-positive width");
 
else
{
png_size_t heighti = i;
 
if (png_ptr->chunkdata[i] == 45 /* negative height */ ||
!png_check_fp_number(png_ptr->chunkdata, slength, &state, &i) ||
i != slength)
png_warning(png_ptr, "Invalid sCAL chunk ignored: bad height format");
state = 0;
if (!png_check_fp_number((png_const_charp)buffer, length, &state, &i) ||
i != length)
png_chunk_benign_error(png_ptr, "bad height format");
 
else if (!PNG_FP_IS_POSITIVE(state))
png_chunk_benign_error(png_ptr, "non-positive height");
 
else
/* This is the (only) success case. */
png_set_sCAL_s(png_ptr, info_ptr, png_ptr->chunkdata[0],
png_ptr->chunkdata+1, png_ptr->chunkdata+heighti);
png_set_sCAL_s(png_ptr, info_ptr, buffer[0],
(png_charp)buffer+1, (png_charp)buffer+heighti);
}
 
/* Clean up - just free the temporarily allocated buffer. */
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
}
#endif
 
#ifdef PNG_READ_tIME_SUPPORTED
void /* PRIVATE */
png_handle_tIME(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_tIME(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_byte buf[7];
png_time mod_time;
2058,12 → 2320,12
png_debug(1, "in png_handle_tIME");
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Out of place tIME chunk");
png_chunk_error(png_ptr, "missing IHDR");
 
else if (info_ptr != NULL && (info_ptr->valid & PNG_INFO_tIME))
{
png_warning(png_ptr, "Duplicate tIME chunk");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "duplicate");
return;
}
 
2072,8 → 2334,8
 
if (length != 7)
{
png_warning(png_ptr, "Incorrect tIME chunk length");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "invalid");
return;
}
 
2096,14 → 2358,13
#ifdef PNG_READ_tEXt_SUPPORTED
/* Note: this does not properly handle chunks that are > 64K under DOS */
void /* PRIVATE */
png_handle_tEXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_tEXt(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_textp text_ptr;
png_text text_info;
png_bytep buffer;
png_charp key;
png_charp text;
png_uint_32 skip = 0;
png_size_t slength;
int ret;
 
png_debug(1, "in png_handle_tEXt");
 
2118,8 → 2379,8
 
if (--png_ptr->user_chunk_cache_max == 1)
{
png_warning(png_ptr, "No space in chunk cache for tEXt");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "no space in chunk cache");
return;
}
}
2126,76 → 2387,51
#endif
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before tEXt");
png_chunk_error(png_ptr, "missing IHDR");
 
if (png_ptr->mode & PNG_HAVE_IDAT)
png_ptr->mode |= PNG_AFTER_IDAT;
 
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
if (length > 65535U)
{
png_warning(png_ptr, "tEXt chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "too large to fit in memory");
return;
}
#endif
 
png_free(png_ptr, png_ptr->chunkdata);
buffer = png_read_buffer(png_ptr, length+1, 1/*warn*/);
 
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1);
 
if (png_ptr->chunkdata == NULL)
if (buffer == NULL)
{
png_warning(png_ptr, "No memory to process text chunk");
png_chunk_benign_error(png_ptr, "out of memory");
return;
}
 
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
png_crc_read(png_ptr, buffer, length);
 
if (png_crc_finish(png_ptr, skip))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
key = png_ptr->chunkdata;
key = (png_charp)buffer;
key[length] = 0;
 
key[slength] = 0x00;
 
for (text = key; *text; text++)
/* Empty loop to find end of key */ ;
 
if (text != key + slength)
if (text != key + length)
text++;
 
text_ptr = (png_textp)png_malloc_warn(png_ptr,
png_sizeof(png_text));
text_info.compression = PNG_TEXT_COMPRESSION_NONE;
text_info.key = key;
text_info.lang = NULL;
text_info.lang_key = NULL;
text_info.itxt_length = 0;
text_info.text = text;
text_info.text_length = strlen(text);
 
if (text_ptr == NULL)
{
png_warning(png_ptr, "Not enough memory to process text chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
text_ptr->compression = PNG_TEXT_COMPRESSION_NONE;
text_ptr->key = key;
text_ptr->lang = NULL;
text_ptr->lang_key = NULL;
text_ptr->itxt_length = 0;
text_ptr->text = text;
text_ptr->text_length = png_strlen(text);
 
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
png_free(png_ptr, text_ptr);
 
if (ret)
if (png_set_text_2(png_ptr, info_ptr, &text_info, 1))
png_warning(png_ptr, "Insufficient memory to process text chunk");
}
#endif
2203,13 → 2439,11
#ifdef PNG_READ_zTXt_SUPPORTED
/* Note: this does not correctly handle chunks that are > 64K under DOS */
void /* PRIVATE */
png_handle_zTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_zTXt(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_textp text_ptr;
png_charp text;
int comp_type;
int ret;
png_size_t slength, prefix_len, data_len;
png_const_charp errmsg = NULL;
png_bytep buffer;
png_uint_32 keyword_length;
 
png_debug(1, "in png_handle_zTXt");
 
2224,8 → 2458,8
 
if (--png_ptr->user_chunk_cache_max == 1)
{
png_warning(png_ptr, "No space in chunk cache for zTXt");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "no space in chunk cache");
return;
}
}
2232,101 → 2466,82
#endif
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before zTXt");
png_chunk_error(png_ptr, "missing IHDR");
 
if (png_ptr->mode & PNG_HAVE_IDAT)
png_ptr->mode |= PNG_AFTER_IDAT;
 
#ifdef PNG_MAX_MALLOC_64K
/* We will no doubt have problems with chunks even half this size, but
* there is no hard and fast rule to tell us where to stop.
*/
if (length > (png_uint_32)65535L)
buffer = png_read_buffer(png_ptr, length, 2/*silent*/);
 
if (buffer == NULL)
{
png_warning(png_ptr, "zTXt chunk too large to fit in memory");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of memory");
return;
}
#endif
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1);
png_crc_read(png_ptr, buffer, length);
 
if (png_ptr->chunkdata == NULL)
{
png_warning(png_ptr, "Out of memory processing zTXt chunk");
if (png_crc_finish(png_ptr, 0))
return;
}
 
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
/* TODO: also check that the keyword contents match the spec! */
for (keyword_length = 0;
keyword_length < length && buffer[keyword_length] != 0;
++keyword_length)
/* Empty loop to find end of name */ ;
 
if (png_crc_finish(png_ptr, 0))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
if (keyword_length > 79 || keyword_length < 1)
errmsg = "bad keyword";
 
png_ptr->chunkdata[slength] = 0x00;
/* zTXt must have some LZ data after the keyword, although it may expand to
* zero bytes; we need a '\0' at the end of the keyword, the compression type
* then the LZ data:
*/
else if (keyword_length + 3 > length)
errmsg = "truncated";
 
for (text = png_ptr->chunkdata; *text; text++)
/* Empty loop */ ;
else if (buffer[keyword_length+1] != PNG_COMPRESSION_TYPE_BASE)
errmsg = "unknown compression type";
 
/* zTXt must have some text after the chunkdataword */
if (text >= png_ptr->chunkdata + slength - 2)
{
png_warning(png_ptr, "Truncated zTXt chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
else
{
comp_type = *(++text);
png_alloc_size_t uncompressed_length = PNG_SIZE_MAX;
 
if (comp_type != PNG_TEXT_COMPRESSION_zTXt)
/* TODO: at present png_decompress_chunk imposes a single application
* level memory limit, this should be split to different values for iCCP
* and text chunks.
*/
if (png_decompress_chunk(png_ptr, length, keyword_length+2,
&uncompressed_length, 1/*terminate*/) == Z_STREAM_END)
{
png_warning(png_ptr, "Unknown compression type in zTXt chunk");
comp_type = PNG_TEXT_COMPRESSION_zTXt;
}
png_text text;
 
text++; /* Skip the compression_method byte */
}
/* It worked; png_ptr->read_buffer now looks like a tEXt chunk except
* for the extra compression type byte and the fact that it isn't
* necessarily '\0' terminated.
*/
buffer = png_ptr->read_buffer;
buffer[uncompressed_length+(keyword_length+2)] = 0;
 
prefix_len = text - png_ptr->chunkdata;
text.compression = PNG_TEXT_COMPRESSION_zTXt;
text.key = (png_charp)buffer;
text.text = (png_charp)(buffer + keyword_length+2);
text.text_length = uncompressed_length;
text.itxt_length = 0;
text.lang = NULL;
text.lang_key = NULL;
 
png_decompress_chunk(png_ptr, comp_type,
(png_size_t)length, prefix_len, &data_len);
if (png_set_text_2(png_ptr, info_ptr, &text, 1))
errmsg = "insufficient memory";
}
 
text_ptr = (png_textp)png_malloc_warn(png_ptr,
png_sizeof(png_text));
 
if (text_ptr == NULL)
{
png_warning(png_ptr, "Not enough memory to process zTXt chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
else
errmsg = png_ptr->zstream.msg;
}
 
text_ptr->compression = comp_type;
text_ptr->key = png_ptr->chunkdata;
text_ptr->lang = NULL;
text_ptr->lang_key = NULL;
text_ptr->itxt_length = 0;
text_ptr->text = png_ptr->chunkdata + prefix_len;
text_ptr->text_length = data_len;
 
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
 
png_free(png_ptr, text_ptr);
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
 
if (ret)
png_error(png_ptr, "Insufficient memory to store zTXt chunk");
if (errmsg != NULL)
png_chunk_benign_error(png_ptr, errmsg);
}
#endif
 
2333,14 → 2548,11
#ifdef PNG_READ_iTXt_SUPPORTED
/* Note: this does not correctly handle chunks that are > 64K under DOS */
void /* PRIVATE */
png_handle_iTXt(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
png_handle_iTXt(png_structrp png_ptr, png_inforp info_ptr, png_uint_32 length)
{
png_textp text_ptr;
png_charp key, lang, text, lang_key;
int comp_flag;
int comp_type = 0;
int ret;
png_size_t slength, prefix_len, data_len;
png_const_charp errmsg = NULL;
png_bytep buffer;
png_uint_32 prefix_length;
 
png_debug(1, "in png_handle_iTXt");
 
2355,8 → 2567,8
 
if (--png_ptr->user_chunk_cache_max == 1)
{
png_warning(png_ptr, "No space in chunk cache for iTXt");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "no space in chunk cache");
return;
}
}
2363,266 → 2575,384
#endif
 
if (!(png_ptr->mode & PNG_HAVE_IHDR))
png_error(png_ptr, "Missing IHDR before iTXt");
png_chunk_error(png_ptr, "missing IHDR");
 
if (png_ptr->mode & PNG_HAVE_IDAT)
png_ptr->mode |= PNG_AFTER_IDAT;
 
#ifdef PNG_MAX_MALLOC_64K
/* We will no doubt have problems with chunks even half this size, but
* there is no hard and fast rule to tell us where to stop.
*/
if (length > (png_uint_32)65535L)
buffer = png_read_buffer(png_ptr, length+1, 1/*warn*/);
 
if (buffer == NULL)
{
png_warning(png_ptr, "iTXt chunk too large to fit in memory");
png_crc_finish(png_ptr, length);
png_chunk_benign_error(png_ptr, "out of memory");
return;
}
#endif
 
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = (png_charp)png_malloc_warn(png_ptr, length + 1);
png_crc_read(png_ptr, buffer, length);
 
if (png_ptr->chunkdata == NULL)
{
png_warning(png_ptr, "No memory to process iTXt chunk");
return;
}
 
slength = (png_size_t)length;
png_crc_read(png_ptr, (png_bytep)png_ptr->chunkdata, slength);
 
if (png_crc_finish(png_ptr, 0))
{
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
png_ptr->chunkdata[slength] = 0x00;
 
for (lang = png_ptr->chunkdata; *lang; lang++)
/* First the keyword. */
for (prefix_length=0;
prefix_length < length && buffer[prefix_length] != 0;
++prefix_length)
/* Empty loop */ ;
 
lang++; /* Skip NUL separator */
/* Perform a basic check on the keyword length here. */
if (prefix_length > 79 || prefix_length < 1)
errmsg = "bad keyword";
 
/* iTXt must have a language tag (possibly empty), two compression bytes,
* translated keyword (possibly empty), and possibly some text after the
* keyword
/* Expect keyword, compression flag, compression type, language, translated
* keyword (both may be empty but are 0 terminated) then the text, which may
* be empty.
*/
else if (prefix_length + 5 > length)
errmsg = "truncated";
 
if (lang >= png_ptr->chunkdata + slength - 3)
else if (buffer[prefix_length+1] == 0 ||
(buffer[prefix_length+1] == 1 &&
buffer[prefix_length+2] == PNG_COMPRESSION_TYPE_BASE))
{
png_warning(png_ptr, "Truncated iTXt chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
int compressed = buffer[prefix_length+1] != 0;
png_uint_32 language_offset, translated_keyword_offset;
png_alloc_size_t uncompressed_length = 0;
 
else
{
comp_flag = *lang++;
comp_type = *lang++;
}
/* Now the language tag */
prefix_length += 3;
language_offset = prefix_length;
 
for (lang_key = lang; *lang_key; lang_key++)
for (; prefix_length < length && buffer[prefix_length] != 0;
++prefix_length)
/* Empty loop */ ;
 
lang_key++; /* Skip NUL separator */
/* WARNING: the length may be invalid here, this is checked below. */
translated_keyword_offset = ++prefix_length;
 
if (lang_key >= png_ptr->chunkdata + slength)
{
png_warning(png_ptr, "Truncated iTXt chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
}
 
for (text = lang_key; *text; text++)
for (; prefix_length < length && buffer[prefix_length] != 0;
++prefix_length)
/* Empty loop */ ;
 
text++; /* Skip NUL separator */
/* prefix_length should now be at the trailing '\0' of the translated
* keyword, but it may already be over the end. None of this arithmetic
* can overflow because chunks are at most 2^31 bytes long, but on 16-bit
* systems the available allocaton may overflow.
*/
++prefix_length;
 
if (text >= png_ptr->chunkdata + slength)
if (!compressed && prefix_length <= length)
uncompressed_length = length - prefix_length;
 
else if (compressed && prefix_length < length)
{
png_warning(png_ptr, "Malformed iTXt chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
uncompressed_length = PNG_SIZE_MAX;
 
/* TODO: at present png_decompress_chunk imposes a single application
* level memory limit, this should be split to different values for
* iCCP and text chunks.
*/
if (png_decompress_chunk(png_ptr, length, prefix_length,
&uncompressed_length, 1/*terminate*/) == Z_STREAM_END)
buffer = png_ptr->read_buffer;
 
else
errmsg = png_ptr->zstream.msg;
}
 
prefix_len = text - png_ptr->chunkdata;
else
errmsg = "truncated";
 
key=png_ptr->chunkdata;
if (errmsg == NULL)
{
png_text text;
 
if (comp_flag)
png_decompress_chunk(png_ptr, comp_type,
(size_t)length, prefix_len, &data_len);
buffer[uncompressed_length+prefix_length] = 0;
 
if (compressed)
text.compression = PNG_ITXT_COMPRESSION_NONE;
 
else
data_len = png_strlen(png_ptr->chunkdata + prefix_len);
text.compression = PNG_ITXT_COMPRESSION_zTXt;
 
text_ptr = (png_textp)png_malloc_warn(png_ptr,
png_sizeof(png_text));
text.key = (png_charp)buffer;
text.lang = (png_charp)buffer + language_offset;
text.lang_key = (png_charp)buffer + translated_keyword_offset;
text.text = (png_charp)buffer + prefix_length;
text.text_length = 0;
text.itxt_length = uncompressed_length;
 
if (text_ptr == NULL)
{
png_warning(png_ptr, "Not enough memory to process iTXt chunk");
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
return;
if (png_set_text_2(png_ptr, info_ptr, &text, 1))
errmsg = "insufficient memory";
}
}
 
text_ptr->compression = (int)comp_flag + 1;
text_ptr->lang_key = png_ptr->chunkdata + (lang_key - key);
text_ptr->lang = png_ptr->chunkdata + (lang - key);
text_ptr->itxt_length = data_len;
text_ptr->text_length = 0;
text_ptr->key = png_ptr->chunkdata;
text_ptr->text = png_ptr->chunkdata + prefix_len;
else
errmsg = "bad compression info";
 
ret = png_set_text_2(png_ptr, info_ptr, text_ptr, 1);
if (errmsg != NULL)
png_chunk_benign_error(png_ptr, errmsg);
}
#endif
 
png_free(png_ptr, text_ptr);
png_free(png_ptr, png_ptr->chunkdata);
png_ptr->chunkdata = NULL;
#ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED
/* Utility function for png_handle_unknown; set up png_ptr::unknown_chunk */
static int
png_cache_unknown_chunk(png_structrp png_ptr, png_uint_32 length)
{
png_alloc_size_t limit = PNG_SIZE_MAX;
 
if (ret)
png_error(png_ptr, "Insufficient memory to store iTXt chunk");
if (png_ptr->unknown_chunk.data != NULL)
{
png_free(png_ptr, png_ptr->unknown_chunk.data);
png_ptr->unknown_chunk.data = NULL;
}
 
# ifdef PNG_SET_CHUNK_MALLOC_LIMIT_SUPPORTED
if (png_ptr->user_chunk_malloc_max > 0 &&
png_ptr->user_chunk_malloc_max < limit)
limit = png_ptr->user_chunk_malloc_max;
 
# elif PNG_USER_CHUNK_MALLOC_MAX > 0
if (PNG_USER_CHUNK_MALLOC_MAX < limit)
limit = PNG_USER_CHUNK_MALLOC_MAX;
#endif
 
/* This function is called when we haven't found a handler for a
* chunk. If there isn't a problem with the chunk itself (ie bad
* chunk name, CRC, or a critical chunk), the chunk is silently ignored
* -- unless the PNG_FLAG_UNKNOWN_CHUNKS_SUPPORTED flag is on in which
* case it will be saved away to be written out later.
*/
void /* PRIVATE */
png_handle_unknown(png_structp png_ptr, png_infop info_ptr, png_uint_32 length)
if (length <= limit)
{
png_uint_32 skip = 0;
PNG_CSTRING_FROM_CHUNK(png_ptr->unknown_chunk.name, png_ptr->chunk_name);
/* The following is safe because of the PNG_SIZE_MAX init above */
png_ptr->unknown_chunk.size = (png_size_t)length/*SAFE*/;
/* 'mode' is a flag array, only the bottom four bits matter here */
png_ptr->unknown_chunk.location = (png_byte)png_ptr->mode/*SAFE*/;
 
png_debug(1, "in png_handle_unknown");
if (length == 0)
png_ptr->unknown_chunk.data = NULL;
 
#ifdef PNG_USER_LIMITS_SUPPORTED
if (png_ptr->user_chunk_cache_max != 0)
else
{
if (png_ptr->user_chunk_cache_max == 1)
/* Do a 'warn' here - it is handled below. */
png_ptr->unknown_chunk.data = png_voidcast(png_bytep,
png_malloc_warn(png_ptr, length));
}
}
 
if (png_ptr->unknown_chunk.data == NULL && length > 0)
{
/* This is benign because we clean up correctly */
png_crc_finish(png_ptr, length);
return;
png_chunk_benign_error(png_ptr, "unknown chunk exceeds memory limits");
return 0;
}
 
if (--png_ptr->user_chunk_cache_max == 1)
else
{
png_warning(png_ptr, "No space in chunk cache for unknown chunk");
png_crc_finish(png_ptr, length);
return;
if (length > 0)
png_crc_read(png_ptr, png_ptr->unknown_chunk.data, length);
png_crc_finish(png_ptr, 0);
return 1;
}
}
#endif
#endif /* PNG_READ_UNKNOWN_CHUNKS_SUPPORTED */
 
if (png_ptr->mode & PNG_HAVE_IDAT)
/* Handle an unknown, or known but disabled, chunk */
void /* PRIVATE */
png_handle_unknown(png_structrp png_ptr, png_inforp info_ptr,
png_uint_32 length, int keep)
{
PNG_IDAT;
int handled = 0; /* the chunk was handled */
 
if (png_memcmp(png_ptr->chunk_name, png_IDAT, 4)) /* Not an IDAT */
png_ptr->mode |= PNG_AFTER_IDAT;
}
png_debug(1, "in png_handle_unknown");
 
if (!(png_ptr->chunk_name[0] & 0x20))
{
/* NOTE: this code is based on the code in libpng-1.4.12 except for fixing
* the bug which meant that setting a non-default behavior for a specific
* chunk would be ignored (the default was always used unless a user
* callback was installed).
*
* 'keep' is the value from the png_chunk_unknown_handling, the setting for
* this specific chunk_name, if PNG_HANDLE_AS_UNKNOWN_SUPPORTED, if not it
* will always be PNG_HANDLE_CHUNK_AS_DEFAULT and it needs to be set here.
* This is just an optimization to avoid multiple calls to the lookup
* function.
*/
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
if (png_handle_as_unknown(png_ptr, png_ptr->chunk_name) !=
PNG_HANDLE_CHUNK_ALWAYS
#ifdef PNG_READ_USER_CHUNKS_SUPPORTED
&& png_ptr->read_user_chunk_fn == NULL
keep = png_chunk_unknown_handling(png_ptr, png_ptr->chunk_name);
#endif
)
#endif
png_chunk_error(png_ptr, "unknown critical chunk");
}
 
/* One of the following methods will read the chunk or skip it (at least one
* of these is always defined because this is the only way to switch on
* PNG_READ_UNKNOWN_CHUNKS_SUPPORTED)
*/
#ifdef PNG_READ_UNKNOWN_CHUNKS_SUPPORTED
if ((png_ptr->flags & PNG_FLAG_KEEP_UNKNOWN_CHUNKS)
#ifdef PNG_READ_USER_CHUNKS_SUPPORTED
|| (png_ptr->read_user_chunk_fn != NULL)
#endif
)
/* The user callback takes precedence over the chunk keep value, but the
* keep value is still required to validate a save of a critical chunk.
*/
if (png_ptr->read_user_chunk_fn != NULL)
{
#ifdef PNG_MAX_MALLOC_64K
if (length > (png_uint_32)65535L)
if (png_cache_unknown_chunk(png_ptr, length))
{
png_warning(png_ptr, "unknown chunk too large to fit in memory");
skip = length - (png_uint_32)65535L;
length = (png_uint_32)65535L;
/* Callback to user unknown chunk handler */
int ret = (*(png_ptr->read_user_chunk_fn))(png_ptr,
&png_ptr->unknown_chunk);
 
/* ret is:
* negative: An error occured, png_chunk_error will be called.
* zero: The chunk was not handled, the chunk will be discarded
* unless png_set_keep_unknown_chunks has been used to set
* a 'keep' behavior for this particular chunk, in which
* case that will be used. A critical chunk will cause an
* error at this point unless it is to be saved.
* positive: The chunk was handled, libpng will ignore/discard it.
*/
if (ret < 0)
png_chunk_error(png_ptr, "error in user chunk");
 
else if (ret == 0)
{
/* If the keep value is 'default' or 'never' override it, but
* still error out on critical chunks unless the keep value is
* 'always' While this is weird it is the behavior in 1.4.12.
* A possible improvement would be to obey the value set for the
* chunk, but this would be an API change that would probably
* damage some applications.
*
* The png_app_warning below catches the case that matters, where
* the application has not set specific save or ignore for this
* chunk or global save or ignore.
*/
if (keep < PNG_HANDLE_CHUNK_IF_SAFE)
{
# ifdef PNG_SET_UNKNOWN_CHUNKS_SUPPORTED
if (png_ptr->unknown_default < PNG_HANDLE_CHUNK_IF_SAFE)
{
png_chunk_warning(png_ptr, "Saving unknown chunk:");
png_app_warning(png_ptr,
"forcing save of an unhandled chunk;"
" please call png_set_keep_unknown_chunks");
/* with keep = PNG_HANDLE_CHUNK_IF_SAFE */
}
#endif
keep = PNG_HANDLE_CHUNK_IF_SAFE;
}
}
 
png_memcpy((png_charp)png_ptr->unknown_chunk.name,
(png_charp)png_ptr->chunk_name,
png_sizeof(png_ptr->unknown_chunk.name));
else /* chunk was handled */
{
handled = 1;
/* Critical chunks can be safely discarded at this point. */
keep = PNG_HANDLE_CHUNK_NEVER;
}
}
 
png_ptr->unknown_chunk.name[png_sizeof(png_ptr->unknown_chunk.name)-1]
= '\0';
else
keep = PNG_HANDLE_CHUNK_NEVER; /* insufficient memory */
}
 
png_ptr->unknown_chunk.size = (png_size_t)length;
else
/* Use the SAVE_UNKNOWN_CHUNKS code or skip the chunk */
# endif /* PNG_READ_USER_CHUNKS_SUPPORTED */
 
if (length == 0)
png_ptr->unknown_chunk.data = NULL;
# ifdef PNG_SAVE_UNKNOWN_CHUNKS_SUPPORTED
{
/* keep is currently just the per-chunk setting, if there was no
* setting change it to the global default now (not that this may
* still be AS_DEFAULT) then obtain the cache of the chunk if required,
* if not simply skip the chunk.
*/
if (keep == PNG_HANDLE_CHUNK_AS_DEFAULT)
keep = png_ptr->unknown_default;
 
else
if (keep == PNG_HANDLE_CHUNK_ALWAYS ||
(keep == PNG_HANDLE_CHUNK_IF_SAFE &&
PNG_CHUNK_ANCILLARY(png_ptr->chunk_name)))
{
png_ptr->unknown_chunk.data = (png_bytep)png_malloc(png_ptr, length);
png_crc_read(png_ptr, (png_bytep)png_ptr->unknown_chunk.data, length);
if (!png_cache_unknown_chunk(png_ptr, length))
keep = PNG_HANDLE_CHUNK_NEVER;
}
 
#ifdef PNG_READ_USER_CHUNKS_SUPPORTED
if (png_ptr->read_user_chunk_fn != NULL)
else
png_crc_finish(png_ptr, length);
}
# else
# ifndef PNG_READ_USER_CHUNKS_SUPPORTED
# error no method to support READ_UNKNOWN_CHUNKS
# endif
 
{
/* Callback to user unknown chunk handler */
int ret;
/* If here there is no read callback pointer set and no support is
* compiled in to just save the unknown chunks, so simply skip this
* chunk. If 'keep' is something other than AS_DEFAULT or NEVER then
* the app has erroneously asked for unknown chunk saving when there
* is no support.
*/
if (keep > PNG_HANDLE_CHUNK_NEVER)
png_app_error(png_ptr, "no unknown chunk support available");
 
ret = (*(png_ptr->read_user_chunk_fn))
(png_ptr, &png_ptr->unknown_chunk);
png_crc_finish(png_ptr, length);
}
# endif /* PNG_SAVE_UNKNOWN_CHUNKS_SUPPORTED */
 
if (ret < 0)
png_chunk_error(png_ptr, "error in user chunk");
 
if (ret == 0)
# ifdef PNG_STORE_UNKNOWN_CHUNKS_SUPPORTED
/* Now store the chunk in the chunk list if appropriate, and if the limits
* permit it.
*/
if (keep == PNG_HANDLE_CHUNK_ALWAYS ||
(keep == PNG_HANDLE_CHUNK_IF_SAFE &&
PNG_CHUNK_ANCILLARY(png_ptr->chunk_name)))
{
if (!(png_ptr->chunk_name[0] & 0x20))
# ifdef PNG_USER_LIMITS_SUPPORTED
switch (png_ptr->user_chunk_cache_max)
{
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
if (png_handle_as_unknown(png_ptr, png_ptr->chunk_name) !=
PNG_HANDLE_CHUNK_ALWAYS)
#endif
png_chunk_error(png_ptr, "unknown critical chunk");
}
case 2:
png_ptr->user_chunk_cache_max = 1;
png_chunk_benign_error(png_ptr, "no space in chunk cache");
/* FALL THROUGH */
case 1:
/* NOTE: prior to 1.6.0 this case resulted in an unknown critical
* chunk being skipped, now there will be a hard error below.
*/
break;
 
default: /* not at limit */
--(png_ptr->user_chunk_cache_max);
/* FALL THROUGH */
case 0: /* no limit */
# endif /* PNG_USER_LIMITS_SUPPORTED */
/* Here when the limit isn't reached or when limits are compiled
* out; store the chunk.
*/
png_set_unknown_chunks(png_ptr, info_ptr,
&png_ptr->unknown_chunk, 1);
handled = 1;
# ifdef PNG_USER_LIMITS_SUPPORTED
break;
}
# endif
}
 
else
# else /* no store support! */
PNG_UNUSED(info_ptr)
# error untested code (reading unknown chunks with no store support)
#endif
png_set_unknown_chunks(png_ptr, info_ptr, &png_ptr->unknown_chunk, 1);
 
/* Regardless of the error handling below the cached data (if any) can be
* freed now. Notice that the data is not freed if there is a png_error, but
* it will be freed by destroy_read_struct.
*/
if (png_ptr->unknown_chunk.data != NULL)
png_free(png_ptr, png_ptr->unknown_chunk.data);
png_ptr->unknown_chunk.data = NULL;
}
 
else
#endif
skip = length;
#else /* !PNG_READ_UNKNOWN_CHUNKS_SUPPORTED */
/* There is no support to read an unknown chunk, so just skip it. */
png_crc_finish(png_ptr, length);
PNG_UNUSED(info_ptr)
PNG_UNUSED(keep)
#endif /* !PNG_READ_UNKNOWN_CHUNKS_SUPPORTED */
 
png_crc_finish(png_ptr, skip);
 
#ifndef PNG_READ_USER_CHUNKS_SUPPORTED
PNG_UNUSED(info_ptr) /* Quiet compiler warnings about unused info_ptr */
#endif
/* Check for unhandled critical chunks */
if (!handled && PNG_CHUNK_CRITICAL(png_ptr->chunk_name))
png_chunk_error(png_ptr, "unhandled critical chunk");
}
 
/* This function is called to verify that a chunk name is valid.
2632,259 → 2962,525
* the chunk name itself is valid.
*/
 
#define isnonalpha(c) ((c) < 65 || (c) > 122 || ((c) > 90 && (c) < 97))
/* Bit hacking: the test for an invalid byte in the 4 byte chunk name is:
*
* ((c) < 65 || (c) > 122 || ((c) > 90 && (c) < 97))
*/
 
void /* PRIVATE */
png_check_chunk_name(png_structp png_ptr, png_const_bytep chunk_name)
png_check_chunk_name(png_structrp png_ptr, png_uint_32 chunk_name)
{
int i;
 
png_debug(1, "in png_check_chunk_name");
if (isnonalpha(chunk_name[0]) || isnonalpha(chunk_name[1]) ||
isnonalpha(chunk_name[2]) || isnonalpha(chunk_name[3]))
 
for (i=1; i<=4; ++i)
{
int c = chunk_name & 0xff;
 
if (c < 65 || c > 122 || (c > 90 && c < 97))
png_chunk_error(png_ptr, "invalid chunk type");
 
chunk_name >>= 8;
}
}
 
/* Combines the row recently read in with the existing pixels in the
* row. This routine takes care of alpha and transparency if requested.
* This routine also handles the two methods of progressive display
* of interlaced images, depending on the mask value.
* The mask value describes which pixels are to be combined with
* the row. The pattern always repeats every 8 pixels, so just 8
* bits are needed. A one indicates the pixel is to be combined,
* a zero indicates the pixel is to be skipped. This is in addition
* to any alpha or transparency value associated with the pixel. If
* you want all pixels to be combined, pass 0xff (255) in mask.
/* Combines the row recently read in with the existing pixels in the row. This
* routine takes care of alpha and transparency if requested. This routine also
* handles the two methods of progressive display of interlaced images,
* depending on the 'display' value; if 'display' is true then the whole row
* (dp) is filled from the start by replicating the available pixels. If
* 'display' is false only those pixels present in the pass are filled in.
*/
 
void /* PRIVATE */
png_combine_row(png_structp png_ptr, png_bytep row, int mask)
png_combine_row(png_const_structrp png_ptr, png_bytep dp, int display)
{
unsigned int pixel_depth = png_ptr->transformed_pixel_depth;
png_const_bytep sp = png_ptr->row_buf + 1;
png_uint_32 row_width = png_ptr->width;
unsigned int pass = png_ptr->pass;
png_bytep end_ptr = 0;
png_byte end_byte = 0;
unsigned int end_mask;
 
png_debug(1, "in png_combine_row");
 
if (mask == 0xff)
/* Added in 1.5.6: it should not be possible to enter this routine until at
* least one row has been read from the PNG data and transformed.
*/
if (pixel_depth == 0)
png_error(png_ptr, "internal row logic error");
 
/* Added in 1.5.4: the pixel depth should match the information returned by
* any call to png_read_update_info at this point. Do not continue if we got
* this wrong.
*/
if (png_ptr->info_rowbytes != 0 && png_ptr->info_rowbytes !=
PNG_ROWBYTES(pixel_depth, row_width))
png_error(png_ptr, "internal row size calculation error");
 
/* Don't expect this to ever happen: */
if (row_width == 0)
png_error(png_ptr, "internal row width error");
 
/* Preserve the last byte in cases where only part of it will be overwritten,
* the multiply below may overflow, we don't care because ANSI-C guarantees
* we get the low bits.
*/
end_mask = (pixel_depth * row_width) & 7;
if (end_mask != 0)
{
png_memcpy(row, png_ptr->row_buf + 1,
PNG_ROWBYTES(png_ptr->row_info.pixel_depth, png_ptr->width));
/* end_ptr == NULL is a flag to say do nothing */
end_ptr = dp + PNG_ROWBYTES(pixel_depth, row_width) - 1;
end_byte = *end_ptr;
# ifdef PNG_READ_PACKSWAP_SUPPORTED
if (png_ptr->transformations & PNG_PACKSWAP) /* little-endian byte */
end_mask = 0xff << end_mask;
 
else /* big-endian byte */
# endif
end_mask = 0xff >> end_mask;
/* end_mask is now the bits to *keep* from the destination row */
}
 
else
/* For non-interlaced images this reduces to a memcpy(). A memcpy()
* will also happen if interlacing isn't supported or if the application
* does not call png_set_interlace_handling(). In the latter cases the
* caller just gets a sequence of the unexpanded rows from each interlace
* pass.
*/
#ifdef PNG_READ_INTERLACING_SUPPORTED
if (png_ptr->interlaced && (png_ptr->transformations & PNG_INTERLACE) &&
pass < 6 && (display == 0 ||
/* The following copies everything for 'display' on passes 0, 2 and 4. */
(display == 1 && (pass & 1) != 0)))
{
switch (png_ptr->row_info.pixel_depth)
/* Narrow images may have no bits in a pass; the caller should handle
* this, but this test is cheap:
*/
if (row_width <= PNG_PASS_START_COL(pass))
return;
 
if (pixel_depth < 8)
{
case 1:
/* For pixel depths up to 4 bpp the 8-pixel mask can be expanded to fit
* into 32 bits, then a single loop over the bytes using the four byte
* values in the 32-bit mask can be used. For the 'display' option the
* expanded mask may also not require any masking within a byte. To
* make this work the PACKSWAP option must be taken into account - it
* simply requires the pixels to be reversed in each byte.
*
* The 'regular' case requires a mask for each of the first 6 passes,
* the 'display' case does a copy for the even passes in the range
* 0..6. This has already been handled in the test above.
*
* The masks are arranged as four bytes with the first byte to use in
* the lowest bits (little-endian) regardless of the order (PACKSWAP or
* not) of the pixels in each byte.
*
* NOTE: the whole of this logic depends on the caller of this function
* only calling it on rows appropriate to the pass. This function only
* understands the 'x' logic; the 'y' logic is handled by the caller.
*
* The following defines allow generation of compile time constant bit
* masks for each pixel depth and each possibility of swapped or not
* swapped bytes. Pass 'p' is in the range 0..6; 'x', a pixel index,
* is in the range 0..7; and the result is 1 if the pixel is to be
* copied in the pass, 0 if not. 'S' is for the sparkle method, 'B'
* for the block method.
*
* With some compilers a compile time expression of the general form:
*
* (shift >= 32) ? (a >> (shift-32)) : (b >> shift)
*
* Produces warnings with values of 'shift' in the range 33 to 63
* because the right hand side of the ?: expression is evaluated by
* the compiler even though it isn't used. Microsoft Visual C (various
* versions) and the Intel C compiler are known to do this. To avoid
* this the following macros are used in 1.5.6. This is a temporary
* solution to avoid destabilizing the code during the release process.
*/
# if PNG_USE_COMPILE_TIME_MASKS
# define PNG_LSR(x,s) ((x)>>((s) & 0x1f))
# define PNG_LSL(x,s) ((x)<<((s) & 0x1f))
# else
# define PNG_LSR(x,s) ((x)>>(s))
# define PNG_LSL(x,s) ((x)<<(s))
# endif
# define S_COPY(p,x) (((p)<4 ? PNG_LSR(0x80088822,(3-(p))*8+(7-(x))) :\
PNG_LSR(0xaa55ff00,(7-(p))*8+(7-(x)))) & 1)
# define B_COPY(p,x) (((p)<4 ? PNG_LSR(0xff0fff33,(3-(p))*8+(7-(x))) :\
PNG_LSR(0xff55ff00,(7-(p))*8+(7-(x)))) & 1)
 
/* Return a mask for pass 'p' pixel 'x' at depth 'd'. The mask is
* little endian - the first pixel is at bit 0 - however the extra
* parameter 's' can be set to cause the mask position to be swapped
* within each byte, to match the PNG format. This is done by XOR of
* the shift with 7, 6 or 4 for bit depths 1, 2 and 4.
*/
# define PIXEL_MASK(p,x,d,s) \
(PNG_LSL(((PNG_LSL(1U,(d)))-1),(((x)*(d))^((s)?8-(d):0))))
 
/* Hence generate the appropriate 'block' or 'sparkle' pixel copy mask.
*/
# define S_MASKx(p,x,d,s) (S_COPY(p,x)?PIXEL_MASK(p,x,d,s):0)
# define B_MASKx(p,x,d,s) (B_COPY(p,x)?PIXEL_MASK(p,x,d,s):0)
 
/* Combine 8 of these to get the full mask. For the 1-bpp and 2-bpp
* cases the result needs replicating, for the 4-bpp case the above
* generates a full 32 bits.
*/
# define MASK_EXPAND(m,d) ((m)*((d)==1?0x01010101:((d)==2?0x00010001:1)))
 
# define S_MASK(p,d,s) MASK_EXPAND(S_MASKx(p,0,d,s) + S_MASKx(p,1,d,s) +\
S_MASKx(p,2,d,s) + S_MASKx(p,3,d,s) + S_MASKx(p,4,d,s) +\
S_MASKx(p,5,d,s) + S_MASKx(p,6,d,s) + S_MASKx(p,7,d,s), d)
 
# define B_MASK(p,d,s) MASK_EXPAND(B_MASKx(p,0,d,s) + B_MASKx(p,1,d,s) +\
B_MASKx(p,2,d,s) + B_MASKx(p,3,d,s) + B_MASKx(p,4,d,s) +\
B_MASKx(p,5,d,s) + B_MASKx(p,6,d,s) + B_MASKx(p,7,d,s), d)
 
#if PNG_USE_COMPILE_TIME_MASKS
/* Utility macros to construct all the masks for a depth/swap
* combination. The 's' parameter says whether the format is PNG
* (big endian bytes) or not. Only the three odd-numbered passes are
* required for the display/block algorithm.
*/
# define S_MASKS(d,s) { S_MASK(0,d,s), S_MASK(1,d,s), S_MASK(2,d,s),\
S_MASK(3,d,s), S_MASK(4,d,s), S_MASK(5,d,s) }
 
# define B_MASKS(d,s) { B_MASK(1,d,s), S_MASK(3,d,s), S_MASK(5,d,s) }
 
# define DEPTH_INDEX(d) ((d)==1?0:((d)==2?1:2))
 
/* Hence the pre-compiled masks indexed by PACKSWAP (or not), depth and
* then pass:
*/
static PNG_CONST png_uint_32 row_mask[2/*PACKSWAP*/][3/*depth*/][6] =
{
png_bytep sp = png_ptr->row_buf + 1;
png_bytep dp = row;
int s_inc, s_start, s_end;
int m = 0x80;
int shift;
png_uint_32 i;
png_uint_32 row_width = png_ptr->width;
/* Little-endian byte masks for PACKSWAP */
{ S_MASKS(1,0), S_MASKS(2,0), S_MASKS(4,0) },
/* Normal (big-endian byte) masks - PNG format */
{ S_MASKS(1,1), S_MASKS(2,1), S_MASKS(4,1) }
};
 
/* display_mask has only three entries for the odd passes, so index by
* pass>>1.
*/
static PNG_CONST png_uint_32 display_mask[2][3][3] =
{
/* Little-endian byte masks for PACKSWAP */
{ B_MASKS(1,0), B_MASKS(2,0), B_MASKS(4,0) },
/* Normal (big-endian byte) masks - PNG format */
{ B_MASKS(1,1), B_MASKS(2,1), B_MASKS(4,1) }
};
 
# define MASK(pass,depth,display,png)\
((display)?display_mask[png][DEPTH_INDEX(depth)][pass>>1]:\
row_mask[png][DEPTH_INDEX(depth)][pass])
 
#else /* !PNG_USE_COMPILE_TIME_MASKS */
/* This is the runtime alternative: it seems unlikely that this will
* ever be either smaller or faster than the compile time approach.
*/
# define MASK(pass,depth,display,png)\
((display)?B_MASK(pass,depth,png):S_MASK(pass,depth,png))
#endif /* !PNG_USE_COMPILE_TIME_MASKS */
 
/* Use the appropriate mask to copy the required bits. In some cases
* the byte mask will be 0 or 0xff, optimize these cases. row_width is
* the number of pixels, but the code copies bytes, so it is necessary
* to special case the end.
*/
png_uint_32 pixels_per_byte = 8 / pixel_depth;
png_uint_32 mask;
 
#ifdef PNG_READ_PACKSWAP_SUPPORTED
if (png_ptr->transformations & PNG_PACKSWAP)
{
s_start = 0;
s_end = 7;
s_inc = 1;
}
mask = MASK(pass, pixel_depth, display, 0);
 
else
#endif
{
s_start = 7;
s_end = 0;
s_inc = -1;
}
mask = MASK(pass, pixel_depth, display, 1);
 
shift = s_start;
 
for (i = 0; i < row_width; i++)
for (;;)
{
if (m & mask)
{
int value;
png_uint_32 m;
 
value = (*sp >> shift) & 0x01;
*dp &= (png_byte)((0x7f7f >> (7 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
/* It doesn't matter in the following if png_uint_32 has more than
* 32 bits because the high bits always match those in m<<24; it is,
* however, essential to use OR here, not +, because of this.
*/
m = mask;
mask = (m >> 8) | (m << 24); /* rotate right to good compilers */
m &= 0xff;
 
if (shift == s_end)
if (m != 0) /* something to copy */
{
shift = s_start;
sp++;
dp++;
if (m != 0xff)
*dp = (png_byte)((*dp & ~m) | (*sp & m));
else
*dp = *sp;
}
 
else
shift += s_inc;
/* NOTE: this may overwrite the last byte with garbage if the image
* is not an exact number of bytes wide; libpng has always done
* this.
*/
if (row_width <= pixels_per_byte)
break; /* May need to restore part of the last byte */
 
if (m == 1)
m = 0x80;
 
else
m >>= 1;
row_width -= pixels_per_byte;
++dp;
++sp;
}
break;
}
 
case 2:
else /* pixel_depth >= 8 */
{
png_bytep sp = png_ptr->row_buf + 1;
png_bytep dp = row;
int s_start, s_end, s_inc;
int m = 0x80;
int shift;
png_uint_32 i;
png_uint_32 row_width = png_ptr->width;
int value;
unsigned int bytes_to_copy, bytes_to_jump;
 
#ifdef PNG_READ_PACKSWAP_SUPPORTED
if (png_ptr->transformations & PNG_PACKSWAP)
/* Validate the depth - it must be a multiple of 8 */
if (pixel_depth & 7)
png_error(png_ptr, "invalid user transform pixel depth");
 
pixel_depth >>= 3; /* now in bytes */
row_width *= pixel_depth;
 
/* Regardless of pass number the Adam 7 interlace always results in a
* fixed number of pixels to copy then to skip. There may be a
* different number of pixels to skip at the start though.
*/
{
s_start = 0;
s_end = 6;
s_inc = 2;
unsigned int offset = PNG_PASS_START_COL(pass) * pixel_depth;
 
row_width -= offset;
dp += offset;
sp += offset;
}
 
else
#endif
/* Work out the bytes to copy. */
if (display)
{
s_start = 6;
s_end = 0;
s_inc = -2;
/* When doing the 'block' algorithm the pixel in the pass gets
* replicated to adjacent pixels. This is why the even (0,2,4,6)
* passes are skipped above - the entire expanded row is copied.
*/
bytes_to_copy = (1<<((6-pass)>>1)) * pixel_depth;
 
/* But don't allow this number to exceed the actual row width. */
if (bytes_to_copy > row_width)
bytes_to_copy = row_width;
}
 
shift = s_start;
else /* normal row; Adam7 only ever gives us one pixel to copy. */
bytes_to_copy = pixel_depth;
 
for (i = 0; i < row_width; i++)
/* In Adam7 there is a constant offset between where the pixels go. */
bytes_to_jump = PNG_PASS_COL_OFFSET(pass) * pixel_depth;
 
/* And simply copy these bytes. Some optimization is possible here,
* depending on the value of 'bytes_to_copy'. Special case the low
* byte counts, which we know to be frequent.
*
* Notice that these cases all 'return' rather than 'break' - this
* avoids an unnecessary test on whether to restore the last byte
* below.
*/
switch (bytes_to_copy)
{
if (m & mask)
case 1:
for (;;)
{
value = (*sp >> shift) & 0x03;
*dp &= (png_byte)((0x3f3f >> (6 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
*dp = *sp;
 
if (row_width <= bytes_to_jump)
return;
 
dp += bytes_to_jump;
sp += bytes_to_jump;
row_width -= bytes_to_jump;
}
 
if (shift == s_end)
case 2:
/* There is a possibility of a partial copy at the end here; this
* slows the code down somewhat.
*/
do
{
shift = s_start;
sp++;
dp++;
}
dp[0] = sp[0], dp[1] = sp[1];
 
else
shift += s_inc;
if (row_width <= bytes_to_jump)
return;
 
if (m == 1)
m = 0x80;
 
else
m >>= 1;
sp += bytes_to_jump;
dp += bytes_to_jump;
row_width -= bytes_to_jump;
}
break;
}
while (row_width > 1);
 
case 4:
{
png_bytep sp = png_ptr->row_buf + 1;
png_bytep dp = row;
int s_start, s_end, s_inc;
int m = 0x80;
int shift;
png_uint_32 i;
png_uint_32 row_width = png_ptr->width;
int value;
/* And there can only be one byte left at this point: */
*dp = *sp;
return;
 
#ifdef PNG_READ_PACKSWAP_SUPPORTED
if (png_ptr->transformations & PNG_PACKSWAP)
case 3:
/* This can only be the RGB case, so each copy is exactly one
* pixel and it is not necessary to check for a partial copy.
*/
for(;;)
{
s_start = 0;
s_end = 4;
s_inc = 4;
}
dp[0] = sp[0], dp[1] = sp[1], dp[2] = sp[2];
 
else
#endif
{
s_start = 4;
s_end = 0;
s_inc = -4;
if (row_width <= bytes_to_jump)
return;
 
sp += bytes_to_jump;
dp += bytes_to_jump;
row_width -= bytes_to_jump;
}
shift = s_start;
 
for (i = 0; i < row_width; i++)
default:
#if PNG_ALIGN_TYPE != PNG_ALIGN_NONE
/* Check for double byte alignment and, if possible, use a
* 16-bit copy. Don't attempt this for narrow images - ones that
* are less than an interlace panel wide. Don't attempt it for
* wide bytes_to_copy either - use the memcpy there.
*/
if (bytes_to_copy < 16 /*else use memcpy*/ &&
png_isaligned(dp, png_uint_16) &&
png_isaligned(sp, png_uint_16) &&
bytes_to_copy % (sizeof (png_uint_16)) == 0 &&
bytes_to_jump % (sizeof (png_uint_16)) == 0)
{
if (m & mask)
/* Everything is aligned for png_uint_16 copies, but try for
* png_uint_32 first.
*/
if (png_isaligned(dp, png_uint_32) &&
png_isaligned(sp, png_uint_32) &&
bytes_to_copy % (sizeof (png_uint_32)) == 0 &&
bytes_to_jump % (sizeof (png_uint_32)) == 0)
{
value = (*sp >> shift) & 0xf;
*dp &= (png_byte)((0xf0f >> (4 - shift)) & 0xff);
*dp |= (png_byte)(value << shift);
}
png_uint_32p dp32 = png_aligncast(png_uint_32p,dp);
png_const_uint_32p sp32 = png_aligncastconst(
png_const_uint_32p, sp);
size_t skip = (bytes_to_jump-bytes_to_copy) /
(sizeof (png_uint_32));
 
if (shift == s_end)
do
{
shift = s_start;
sp++;
dp++;
size_t c = bytes_to_copy;
do
{
*dp32++ = *sp32++;
c -= (sizeof (png_uint_32));
}
while (c > 0);
 
else
shift += s_inc;
if (row_width <= bytes_to_jump)
return;
 
if (m == 1)
m = 0x80;
dp32 += skip;
sp32 += skip;
row_width -= bytes_to_jump;
}
while (bytes_to_copy <= row_width);
 
else
m >>= 1;
/* Get to here when the row_width truncates the final copy.
* There will be 1-3 bytes left to copy, so don't try the
* 16-bit loop below.
*/
dp = (png_bytep)dp32;
sp = (png_const_bytep)sp32;
do
*dp++ = *sp++;
while (--row_width > 0);
return;
}
break;
}
 
default:
/* Else do it in 16-bit quantities, but only if the size is
* not too large.
*/
else
{
png_bytep sp = png_ptr->row_buf + 1;
png_bytep dp = row;
png_size_t pixel_bytes = (png_ptr->row_info.pixel_depth >> 3);
png_uint_32 i;
png_uint_32 row_width = png_ptr->width;
png_byte m = 0x80;
png_uint_16p dp16 = png_aligncast(png_uint_16p, dp);
png_const_uint_16p sp16 = png_aligncastconst(
png_const_uint_16p, sp);
size_t skip = (bytes_to_jump-bytes_to_copy) /
(sizeof (png_uint_16));
 
for (i = 0; i < row_width; i++)
do
{
if (m & mask)
size_t c = bytes_to_copy;
do
{
png_memcpy(dp, sp, pixel_bytes);
*dp16++ = *sp16++;
c -= (sizeof (png_uint_16));
}
while (c > 0);
 
sp += pixel_bytes;
dp += pixel_bytes;
if (row_width <= bytes_to_jump)
return;
 
if (m == 1)
m = 0x80;
dp16 += skip;
sp16 += skip;
row_width -= bytes_to_jump;
}
while (bytes_to_copy <= row_width);
 
else
m >>= 1;
/* End of row - 1 byte left, bytes_to_copy > row_width: */
dp = (png_bytep)dp16;
sp = (png_const_bytep)sp16;
do
*dp++ = *sp++;
while (--row_width > 0);
return;
}
break;
}
#endif /* PNG_ALIGN_ code */
 
/* The true default - use a memcpy: */
for (;;)
{
memcpy(dp, sp, bytes_to_copy);
 
if (row_width <= bytes_to_jump)
return;
 
sp += bytes_to_jump;
dp += bytes_to_jump;
row_width -= bytes_to_jump;
if (bytes_to_copy > row_width)
bytes_to_copy = row_width;
}
}
 
/* NOT REACHED*/
} /* pixel_depth >= 8 */
 
/* Here if pixel_depth < 8 to check 'end_ptr' below. */
}
else
#endif
 
/* If here then the switch above wasn't used so just memcpy the whole row
* from the temporary row buffer (notice that this overwrites the end of the
* destination row if it is a partial byte.)
*/
memcpy(dp, sp, PNG_ROWBYTES(pixel_depth, row_width));
 
/* Restore the overwritten bits from the last byte if necessary. */
if (end_ptr != NULL)
*end_ptr = (png_byte)((end_byte & end_mask) | (*end_ptr & ~end_mask));
}
 
#ifdef PNG_READ_INTERLACING_SUPPORTED
void /* PRIVATE */
png_do_read_interlace(png_structp png_ptr)
png_do_read_interlace(png_row_infop row_info, png_bytep row, int pass,
png_uint_32 transformations /* Because these may affect the byte layout */)
{
png_row_infop row_info = &(png_ptr->row_info);
png_bytep row = png_ptr->row_buf + 1;
int pass = png_ptr->pass;
png_uint_32 transformations = png_ptr->transformations;
/* Arrays to facilitate easy interlacing - use pass (0 - 6) as index */
/* Offset to next interlace block */
PNG_CONST int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
static PNG_CONST int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
 
png_debug(1, "in png_do_read_interlace");
if (row != NULL && row_info != NULL)
2931,8 → 3527,9
v = (png_byte)((*sp >> sshift) & 0x01);
for (j = 0; j < jstop; j++)
{
*dp &= (png_byte)((0x7f7f >> (7 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
unsigned int tmp = *dp & (0x7f7f >> (7 - dshift));
tmp |= v << dshift;
*dp = (png_byte)(tmp & 0xff);
 
if (dshift == s_end)
{
2993,8 → 3590,9
v = (png_byte)((*sp >> sshift) & 0x03);
for (j = 0; j < jstop; j++)
{
*dp &= (png_byte)((0x3f3f >> (6 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
unsigned int tmp = *dp & (0x3f3f >> (6 - dshift));
tmp |= v << dshift;
*dp = (png_byte)(tmp & 0xff);
 
if (dshift == s_end)
{
3049,13 → 3647,14
 
for (i = 0; i < row_info->width; i++)
{
png_byte v = (png_byte)((*sp >> sshift) & 0xf);
png_byte v = (png_byte)((*sp >> sshift) & 0x0f);
int j;
 
for (j = 0; j < jstop; j++)
{
*dp &= (png_byte)((0xf0f >> (4 - dshift)) & 0xff);
*dp |= (png_byte)(v << dshift);
unsigned int tmp = *dp & (0xf0f >> (4 - dshift));
tmp |= v << dshift;
*dp = (png_byte)(tmp & 0xff);
 
if (dshift == s_end)
{
3078,6 → 3677,7
}
break;
}
 
default:
{
png_size_t pixel_bytes = (row_info->pixel_depth >> 3);
3092,14 → 3692,14
 
for (i = 0; i < row_info->width; i++)
{
png_byte v[8];
png_byte v[8]; /* SAFE; pixel_depth does not exceed 64 */
int j;
 
png_memcpy(v, sp, pixel_bytes);
memcpy(v, sp, pixel_bytes);
 
for (j = 0; j < jstop; j++)
{
png_memcpy(dp, v, pixel_bytes);
memcpy(dp, v, pixel_bytes);
dp -= pixel_bytes;
}
 
3108,6 → 3708,7
break;
}
}
 
row_info->width = final_width;
row_info->rowbytes = PNG_ROWBYTES(row_info->pixel_depth, final_width);
}
3117,33 → 3718,27
}
#endif /* PNG_READ_INTERLACING_SUPPORTED */
 
void /* PRIVATE */
png_read_filter_row(png_structp png_ptr, png_row_infop row_info, png_bytep row,
png_const_bytep prev_row, int filter)
static void
png_read_filter_row_sub(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
png_debug(1, "in png_read_filter_row");
png_debug2(2, "row = %u, filter = %d", png_ptr->row_number, filter);
switch (filter)
{
case PNG_FILTER_VALUE_NONE:
break;
 
case PNG_FILTER_VALUE_SUB:
{
png_size_t i;
png_size_t istop = row_info->rowbytes;
unsigned int bpp = (row_info->pixel_depth + 7) >> 3;
png_bytep rp = row + bpp;
png_bytep lp = row;
 
PNG_UNUSED(prev_row)
 
for (i = bpp; i < istop; i++)
{
*rp = (png_byte)(((int)(*rp) + (int)(*lp++)) & 0xff);
*rp = (png_byte)(((int)(*rp) + (int)(*(rp-bpp))) & 0xff);
rp++;
}
break;
}
case PNG_FILTER_VALUE_UP:
 
static void
png_read_filter_row_up(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
png_size_t i;
png_size_t istop = row_info->rowbytes;
3155,14 → 3750,15
*rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff);
rp++;
}
break;
}
case PNG_FILTER_VALUE_AVG:
 
static void
png_read_filter_row_avg(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
png_size_t i;
png_bytep rp = row;
png_const_bytep pp = prev_row;
png_bytep lp = row;
unsigned int bpp = (row_info->pixel_depth + 7) >> 3;
png_size_t istop = row_info->rowbytes - bpp;
 
3177,35 → 3773,86
for (i = 0; i < istop; i++)
{
*rp = (png_byte)(((int)(*rp) +
(int)(*pp++ + *lp++) / 2 ) & 0xff);
(int)(*pp++ + *(rp-bpp)) / 2 ) & 0xff);
 
rp++;
}
break;
}
case PNG_FILTER_VALUE_PAETH:
 
static void
png_read_filter_row_paeth_1byte_pixel(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
png_size_t i;
png_bytep rp = row;
png_const_bytep pp = prev_row;
png_bytep lp = row;
png_const_bytep cp = prev_row;
unsigned int bpp = (row_info->pixel_depth + 7) >> 3;
png_size_t istop=row_info->rowbytes - bpp;
png_bytep rp_end = row + row_info->rowbytes;
int a, c;
 
for (i = 0; i < bpp; i++)
/* First pixel/byte */
c = *prev_row++;
a = *row + c;
*row++ = (png_byte)a;
 
/* Remainder */
while (row < rp_end)
{
*rp = (png_byte)(((int)(*rp) + (int)(*pp++)) & 0xff);
rp++;
int b, pa, pb, pc, p;
 
a &= 0xff; /* From previous iteration or start */
b = *prev_row++;
 
p = b - c;
pc = a - c;
 
# ifdef PNG_USE_ABS
pa = abs(p);
pb = abs(pc);
pc = abs(p + pc);
# else
pa = p < 0 ? -p : p;
pb = pc < 0 ? -pc : pc;
pc = (p + pc) < 0 ? -(p + pc) : p + pc;
# endif
 
/* Find the best predictor, the least of pa, pb, pc favoring the earlier
* ones in the case of a tie.
*/
if (pb < pa) pa = pb, a = b;
if (pc < pa) a = c;
 
/* Calculate the current pixel in a, and move the previous row pixel to c
* for the next time round the loop
*/
c = b;
a += *row;
*row++ = (png_byte)a;
}
}
 
for (i = 0; i < istop; i++) /* Use leftover rp,pp */
static void
png_read_filter_row_paeth_multibyte_pixel(png_row_infop row_info, png_bytep row,
png_const_bytep prev_row)
{
int bpp = (row_info->pixel_depth + 7) >> 3;
png_bytep rp_end = row + bpp;
 
/* Process the first pixel in the row completely (this is the same as 'up'
* because there is only one candidate predictor for the first row).
*/
while (row < rp_end)
{
int a = *row + *prev_row++;
*row++ = (png_byte)a;
}
 
/* Remainder */
rp_end += row_info->rowbytes - bpp;
 
while (row < rp_end)
{
int a, b, c, pa, pb, pc, p;
 
a = *lp++;
b = *pp++;
c = *cp++;
c = *(prev_row - bpp);
a = *(row - bpp);
b = *prev_row++;
 
p = b - c;
pc = a - c;
3220,49 → 3867,264
pc = (p + pc) < 0 ? -(p + pc) : p + pc;
#endif
 
/*
if (pa <= pb && pa <= pc)
p = a;
if (pb < pa) pa = pb, a = b;
if (pc < pa) a = c;
 
else if (pb <= pc)
p = b;
c = b;
a += *row;
*row++ = (png_byte)a;
}
}
 
static void
png_init_filter_functions(png_structrp pp)
/* This function is called once for every PNG image (except for PNG images
* that only use PNG_FILTER_VALUE_NONE for all rows) to set the
* implementations required to reverse the filtering of PNG rows. Reversing
* the filter is the first transformation performed on the row data. It is
* performed in place, therefore an implementation can be selected based on
* the image pixel format. If the implementation depends on image width then
* take care to ensure that it works correctly if the image is interlaced -
* interlacing causes the actual row width to vary.
*/
{
unsigned int bpp = (pp->pixel_depth + 7) >> 3;
 
pp->read_filter[PNG_FILTER_VALUE_SUB-1] = png_read_filter_row_sub;
pp->read_filter[PNG_FILTER_VALUE_UP-1] = png_read_filter_row_up;
pp->read_filter[PNG_FILTER_VALUE_AVG-1] = png_read_filter_row_avg;
if (bpp == 1)
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] =
png_read_filter_row_paeth_1byte_pixel;
else
p = c;
pp->read_filter[PNG_FILTER_VALUE_PAETH-1] =
png_read_filter_row_paeth_multibyte_pixel;
 
#ifdef PNG_FILTER_OPTIMIZATIONS
/* To use this define PNG_FILTER_OPTIMIZATIONS as the name of a function to
* call to install hardware optimizations for the above functions; simply
* replace whatever elements of the pp->read_filter[] array with a hardware
* specific (or, for that matter, generic) optimization.
*
* To see an example of this examine what configure.ac does when
* --enable-arm-neon is specified on the command line.
*/
PNG_FILTER_OPTIMIZATIONS(pp, bpp);
#endif
}
 
p = (pa <= pb && pa <= pc) ? a : (pb <= pc) ? b : c;
void /* PRIVATE */
png_read_filter_row(png_structrp pp, png_row_infop row_info, png_bytep row,
png_const_bytep prev_row, int filter)
{
/* OPTIMIZATION: DO NOT MODIFY THIS FUNCTION, instead #define
* PNG_FILTER_OPTIMIZATIONS to a function that overrides the generic
* implementations. See png_init_filter_functions above.
*/
if (filter > PNG_FILTER_VALUE_NONE && filter < PNG_FILTER_VALUE_LAST)
{
if (pp->read_filter[0] == NULL)
png_init_filter_functions(pp);
 
*rp = (png_byte)(((int)(*rp) + p) & 0xff);
rp++;
pp->read_filter[filter-1](row_info, row, prev_row);
}
break;
}
default:
png_error(png_ptr, "Ignoring bad adaptive filter type");
/*NOT REACHED */
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
void /* PRIVATE */
png_read_IDAT_data(png_structrp png_ptr, png_bytep output,
png_alloc_size_t avail_out)
{
/* Loop reading IDATs and decompressing the result into output[avail_out] */
png_ptr->zstream.next_out = output;
png_ptr->zstream.avail_out = 0; /* safety: set below */
 
if (output == NULL)
avail_out = 0;
 
do
{
int ret;
png_byte tmpbuf[PNG_INFLATE_BUF_SIZE];
 
if (png_ptr->zstream.avail_in == 0)
{
uInt avail_in;
png_bytep buffer;
 
while (png_ptr->idat_size == 0)
{
png_crc_finish(png_ptr, 0);
 
png_ptr->idat_size = png_read_chunk_header(png_ptr);
/* This is an error even in the 'check' case because the code just
* consumed a non-IDAT header.
*/
if (png_ptr->chunk_name != png_IDAT)
png_error(png_ptr, "Not enough image data");
}
 
avail_in = png_ptr->IDAT_read_size;
 
if (avail_in > png_ptr->idat_size)
avail_in = (uInt)png_ptr->idat_size;
 
/* A PNG with a gradually increasing IDAT size will defeat this attempt
* to minimize memory usage by causing lots of re-allocs, but
* realistically doing IDAT_read_size re-allocs is not likely to be a
* big problem.
*/
buffer = png_read_buffer(png_ptr, avail_in, 0/*error*/);
 
png_crc_read(png_ptr, buffer, avail_in);
png_ptr->idat_size -= avail_in;
 
png_ptr->zstream.next_in = buffer;
png_ptr->zstream.avail_in = avail_in;
}
 
/* And set up the output side. */
if (output != NULL) /* standard read */
{
uInt out = ZLIB_IO_MAX;
 
if (out > avail_out)
out = (uInt)avail_out;
 
avail_out -= out;
png_ptr->zstream.avail_out = out;
}
 
else /* after last row, checking for end */
{
png_ptr->zstream.next_out = tmpbuf;
png_ptr->zstream.avail_out = (sizeof tmpbuf);
}
 
/* Use NO_FLUSH; this gives zlib the maximum opportunity to optimize the
* process. If the LZ stream is truncated the sequential reader will
* terminally damage the stream, above, by reading the chunk header of the
* following chunk (it then exits with png_error).
*
* TODO: deal more elegantly with truncated IDAT lists.
*/
ret = inflate(&png_ptr->zstream, Z_NO_FLUSH);
 
/* Take the unconsumed output back. */
if (output != NULL)
avail_out += png_ptr->zstream.avail_out;
 
else /* avail_out counts the extra bytes */
avail_out += (sizeof tmpbuf) - png_ptr->zstream.avail_out;
 
png_ptr->zstream.avail_out = 0;
 
if (ret == Z_STREAM_END)
{
/* Do this for safety; we won't read any more into this row. */
png_ptr->zstream.next_out = NULL;
 
png_ptr->mode |= PNG_AFTER_IDAT;
png_ptr->flags |= PNG_FLAG_ZSTREAM_ENDED;
 
if (png_ptr->zstream.avail_in > 0 || png_ptr->idat_size > 0)
png_chunk_benign_error(png_ptr, "Extra compressed data");
break;
}
 
if (ret != Z_OK)
{
png_zstream_error(png_ptr, ret);
 
if (output != NULL)
png_chunk_error(png_ptr, png_ptr->zstream.msg);
 
else /* checking */
{
png_chunk_benign_error(png_ptr, png_ptr->zstream.msg);
return;
}
}
} while (avail_out > 0);
 
#ifdef PNG_SEQUENTIAL_READ_SUPPORTED
if (avail_out > 0)
{
/* The stream ended before the image; this is the same as too few IDATs so
* should be handled the same way.
*/
if (output != NULL)
png_error(png_ptr, "Not enough image data");
 
else /* the deflate stream contained extra data */
png_chunk_benign_error(png_ptr, "Too much image data");
}
}
 
void /* PRIVATE */
png_read_finish_row(png_structp png_ptr)
png_read_finish_IDAT(png_structrp png_ptr)
{
/* We don't need any more data and the stream should have ended, however the
* LZ end code may actually not have been processed. In this case we must
* read it otherwise stray unread IDAT data or, more likely, an IDAT chunk
* may still remain to be consumed.
*/
if (!(png_ptr->flags & PNG_FLAG_ZSTREAM_ENDED))
{
/* The NULL causes png_read_IDAT_data to swallow any remaining bytes in
* the compressed stream, but the stream may be damaged too, so even after
* this call we may need to terminate the zstream ownership.
*/
png_read_IDAT_data(png_ptr, NULL, 0);
png_ptr->zstream.next_out = NULL; /* safety */
 
/* Now clear everything out for safety; the following may not have been
* done.
*/
if (!(png_ptr->flags & PNG_FLAG_ZSTREAM_ENDED))
{
png_ptr->mode |= PNG_AFTER_IDAT;
png_ptr->flags |= PNG_FLAG_ZSTREAM_ENDED;
}
}
 
/* If the zstream has not been released do it now *and* terminate the reading
* of the final IDAT chunk.
*/
if (png_ptr->zowner == png_IDAT)
{
/* Always do this; the pointers otherwise point into the read buffer. */
png_ptr->zstream.next_in = NULL;
png_ptr->zstream.avail_in = 0;
 
/* Now we no longer own the zstream. */
png_ptr->zowner = 0;
 
/* The slightly weird semantics of the sequential IDAT reading is that we
* are always in or at the end of an IDAT chunk, so we always need to do a
* crc_finish here. If idat_size is non-zero we also need to read the
* spurious bytes at the end of the chunk now.
*/
(void)png_crc_finish(png_ptr, png_ptr->idat_size);
}
}
 
void /* PRIVATE */
png_read_finish_row(png_structrp png_ptr)
{
#ifdef PNG_READ_INTERLACING_SUPPORTED
/* Arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* Start of interlace block */
PNG_CONST int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
static PNG_CONST png_byte png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
 
/* Offset to next interlace block */
PNG_CONST int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
static PNG_CONST png_byte png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
 
/* Start of interlace block in the y direction */
PNG_CONST int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};
static PNG_CONST png_byte png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};
 
/* Offset to next interlace block in the y direction */
PNG_CONST int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
static PNG_CONST png_byte png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
#endif /* PNG_READ_INTERLACING_SUPPORTED */
 
png_debug(1, "in png_read_finish_row");
3275,7 → 4137,10
{
png_ptr->row_number = 0;
 
png_memset(png_ptr->prev_row, 0, png_ptr->rowbytes + 1);
/* TO DO: don't do this if prev_row isn't needed (requires
* read-ahead of the next row's filter byte.
*/
memset(png_ptr->prev_row, 0, png_ptr->rowbytes + 1);
 
do
{
3307,92 → 4172,28
}
#endif /* PNG_READ_INTERLACING_SUPPORTED */
 
if (!(png_ptr->flags & PNG_FLAG_ZLIB_FINISHED))
{
PNG_IDAT;
char extra;
int ret;
 
png_ptr->zstream.next_out = (Byte *)&extra;
png_ptr->zstream.avail_out = (uInt)1;
 
for (;;)
{
if (!(png_ptr->zstream.avail_in))
{
while (!png_ptr->idat_size)
{
png_crc_finish(png_ptr, 0);
png_ptr->idat_size = png_read_chunk_header(png_ptr);
if (png_memcmp(png_ptr->chunk_name, png_IDAT, 4))
png_error(png_ptr, "Not enough image data");
/* Here after at the end of the last row of the last pass. */
png_read_finish_IDAT(png_ptr);
}
 
png_ptr->zstream.avail_in = (uInt)png_ptr->zbuf_size;
png_ptr->zstream.next_in = png_ptr->zbuf;
 
if (png_ptr->zbuf_size > png_ptr->idat_size)
png_ptr->zstream.avail_in = (uInt)png_ptr->idat_size;
 
png_crc_read(png_ptr, png_ptr->zbuf, png_ptr->zstream.avail_in);
png_ptr->idat_size -= png_ptr->zstream.avail_in;
}
 
ret = inflate(&png_ptr->zstream, Z_PARTIAL_FLUSH);
 
if (ret == Z_STREAM_END)
{
if (!(png_ptr->zstream.avail_out) || png_ptr->zstream.avail_in ||
png_ptr->idat_size)
png_warning(png_ptr, "Extra compressed data");
 
png_ptr->mode |= PNG_AFTER_IDAT;
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED;
break;
}
 
if (ret != Z_OK)
png_error(png_ptr, png_ptr->zstream.msg ? png_ptr->zstream.msg :
"Decompression Error");
 
if (!(png_ptr->zstream.avail_out))
{
png_warning(png_ptr, "Extra compressed data");
png_ptr->mode |= PNG_AFTER_IDAT;
png_ptr->flags |= PNG_FLAG_ZLIB_FINISHED;
break;
}
 
}
png_ptr->zstream.avail_out = 0;
}
 
if (png_ptr->idat_size || png_ptr->zstream.avail_in)
png_warning(png_ptr, "Extra compression data");
 
inflateReset(&png_ptr->zstream);
 
png_ptr->mode |= PNG_AFTER_IDAT;
}
#endif /* PNG_SEQUENTIAL_READ_SUPPORTED */
 
void /* PRIVATE */
png_read_start_row(png_structp png_ptr)
png_read_start_row(png_structrp png_ptr)
{
#ifdef PNG_READ_INTERLACING_SUPPORTED
/* Arrays to facilitate easy interlacing - use pass (0 - 6) as index */
 
/* Start of interlace block */
PNG_CONST int png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
static PNG_CONST png_byte png_pass_start[7] = {0, 4, 0, 2, 0, 1, 0};
 
/* Offset to next interlace block */
PNG_CONST int png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
static PNG_CONST png_byte png_pass_inc[7] = {8, 8, 4, 4, 2, 2, 1};
 
/* Start of interlace block in the y direction */
PNG_CONST int png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};
static PNG_CONST png_byte png_pass_ystart[7] = {0, 0, 4, 0, 2, 0, 1};
 
/* Offset to next interlace block in the y direction */
PNG_CONST int png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
static PNG_CONST png_byte png_pass_yinc[7] = {8, 8, 8, 4, 4, 2, 2};
#endif
 
int max_pixel_depth;
3399,8 → 4200,10
png_size_t row_bytes;
 
png_debug(1, "in png_read_start_row");
png_ptr->zstream.avail_in = 0;
 
#ifdef PNG_READ_TRANSFORMS_SUPPORTED
png_init_read_transformations(png_ptr);
#endif
#ifdef PNG_READ_INTERLACING_SUPPORTED
if (png_ptr->interlaced)
{
3426,6 → 4229,16
 
max_pixel_depth = png_ptr->pixel_depth;
 
/* WARNING: * png_read_transform_info (pngrtran.c) performs a simpliar set of
* calculations to calculate the final pixel depth, then
* png_do_read_transforms actually does the transforms. This means that the
* code which effectively calculates this value is actually repeated in three
* separate places. They must all match. Innocent changes to the order of
* transformations can and will break libpng in a way that causes memory
* overwrites.
*
* TODO: fix this.
*/
#ifdef PNG_READ_PACK_SUPPORTED
if ((png_ptr->transformations & PNG_PACK) && png_ptr->bit_depth < 8)
max_pixel_depth = 8;
3463,13 → 4276,28
}
#endif
 
#ifdef PNG_READ_EXPAND_16_SUPPORTED
if (png_ptr->transformations & PNG_EXPAND_16)
{
# ifdef PNG_READ_EXPAND_SUPPORTED
/* In fact it is an error if it isn't supported, but checking is
* the safe way.
*/
if (png_ptr->transformations & PNG_EXPAND)
{
if (png_ptr->bit_depth < 16)
max_pixel_depth *= 2;
}
else
# endif
png_ptr->transformations &= ~PNG_EXPAND_16;
}
#endif
 
#ifdef PNG_READ_FILLER_SUPPORTED
if (png_ptr->transformations & (PNG_FILLER))
{
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
max_pixel_depth = 32;
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY)
if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY)
{
if (max_pixel_depth <= 8)
max_pixel_depth = 16;
3478,7 → 4306,8
max_pixel_depth = 32;
}
 
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB)
else if (png_ptr->color_type == PNG_COLOR_TYPE_RGB ||
png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
if (max_pixel_depth <= 32)
max_pixel_depth = 32;
3540,6 → 4369,12
}
#endif
 
/* This value is stored in png_struct and double checked in the row read
* code.
*/
png_ptr->maximum_pixel_depth = (png_byte)max_pixel_depth;
png_ptr->transformed_pixel_depth = 0; /* calculated on demand */
 
/* Align the width on the next larger 8 pixels. Mainly used
* for interlacing
*/
3558,6 → 4393,7
if (row_bytes + 48 > png_ptr->old_big_row_buf_size)
{
png_free(png_ptr, png_ptr->big_row_buf);
png_free(png_ptr, png_ptr->big_prev_row);
 
if (png_ptr->interlaced)
png_ptr->big_row_buf = (png_bytep)png_calloc(png_ptr,
3564,22 → 4400,32
row_bytes + 48);
 
else
png_ptr->big_row_buf = (png_bytep)png_malloc(png_ptr,
row_bytes + 48);
png_ptr->big_row_buf = (png_bytep)png_malloc(png_ptr, row_bytes + 48);
 
png_ptr->old_big_row_buf_size = row_bytes + 48;
png_ptr->big_prev_row = (png_bytep)png_malloc(png_ptr, row_bytes + 48);
 
#ifdef PNG_ALIGNED_MEMORY_SUPPORTED
/* Use 16-byte aligned memory for row_buf with at least 16 bytes
* of padding before and after row_buf.
* of padding before and after row_buf; treat prev_row similarly.
* NOTE: the alignment is to the start of the pixels, one beyond the start
* of the buffer, because of the filter byte. Prior to libpng 1.5.6 this
* was incorrect; the filter byte was aligned, which had the exact
* opposite effect of that intended.
*/
png_ptr->row_buf = png_ptr->big_row_buf + 32 -
(((png_alloc_size_t)png_ptr->big_row_buf + 15) & 0x0F);
{
png_bytep temp = png_ptr->big_row_buf + 32;
int extra = (int)((temp - (png_bytep)0) & 0x0f);
png_ptr->row_buf = temp - extra - 1/*filter byte*/;
 
png_ptr->old_big_row_buf_size = row_bytes + 48;
temp = png_ptr->big_prev_row + 32;
extra = (int)((temp - (png_bytep)0) & 0x0f);
png_ptr->prev_row = temp - extra - 1/*filter byte*/;
}
 
#else
/* Use 32 bytes of padding before and 16 bytes after row_buf. */
png_ptr->row_buf = png_ptr->big_row_buf + 32;
/* Use 31 bytes of padding before and 17 bytes after row_buf. */
png_ptr->row_buf = png_ptr->big_row_buf + 31;
png_ptr->prev_row = png_ptr->big_prev_row + 31;
#endif
png_ptr->old_big_row_buf_size = row_bytes + 48;
}
3592,17 → 4438,8
if (png_ptr->rowbytes > (PNG_SIZE_MAX - 1))
png_error(png_ptr, "Row has too many bytes to allocate in memory");
 
if (png_ptr->rowbytes + 1 > png_ptr->old_prev_row_size)
{
png_free(png_ptr, png_ptr->prev_row);
memset(png_ptr->prev_row, 0, png_ptr->rowbytes + 1);
 
png_ptr->prev_row = (png_bytep)png_malloc(png_ptr, png_ptr->rowbytes + 1);
 
png_ptr->old_prev_row_size = png_ptr->rowbytes + 1;
}
 
png_memset(png_ptr->prev_row, 0, png_ptr->rowbytes + 1);
 
png_debug1(3, "width = %u,", png_ptr->width);
png_debug1(3, "height = %u,", png_ptr->height);
png_debug1(3, "iwidth = %u,", png_ptr->iwidth);
3611,6 → 4448,27
png_debug1(3, "irowbytes = %lu",
(unsigned long)PNG_ROWBYTES(png_ptr->pixel_depth, png_ptr->iwidth) + 1);
 
/* The sequential reader needs a buffer for IDAT, but the progressive reader
* does not, so free the read buffer now regardless; the sequential reader
* reallocates it on demand.
*/
if (png_ptr->read_buffer)
{
png_bytep buffer = png_ptr->read_buffer;
 
png_ptr->read_buffer_size = 0;
png_ptr->read_buffer = NULL;
png_free(png_ptr, buffer);
}
 
/* Finally claim the zstream for the inflate of the IDAT data, use the bits
* value from the stream (note that this will result in a fatal error if the
* IDAT stream has a bogus deflate header window_bits value, but this should
* not be happening any longer!)
*/
if (png_inflate_claim(png_ptr, png_IDAT) != Z_OK)
png_error(png_ptr, png_ptr->zstream.msg);
 
png_ptr->flags |= PNG_FLAG_ROW_INIT;
}
#endif /* PNG_READ_SUPPORTED */