Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 1900 → Rev 1901

/programs/develop/libraries/Mesa/src/mesa/main/enable.c
0,0 → 1,1491
/**
* \file enable.c
* Enable/disable/query GL capabilities.
*/
 
/*
* Mesa 3-D graphics library
* Version: 7.0.3
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
 
 
#include "glheader.h"
#include "context.h"
#include "enable.h"
#include "light.h"
#include "simple_list.h"
#include "mtypes.h"
#include "enums.h"
#include "api_arrayelt.h"
#include "texstate.h"
 
 
 
#define CHECK_EXTENSION(EXTNAME, CAP) \
if (!ctx->Extensions.EXTNAME) { \
goto invalid_enum_error; \
}
 
 
/**
* Helper to enable/disable client-side state.
*/
static void
client_state(struct gl_context *ctx, GLenum cap, GLboolean state)
{
struct gl_array_object *arrayObj = ctx->Array.ArrayObj;
GLuint flag;
GLboolean *var;
 
switch (cap) {
case GL_VERTEX_ARRAY:
var = &arrayObj->Vertex.Enabled;
flag = _NEW_ARRAY_VERTEX;
break;
case GL_NORMAL_ARRAY:
var = &arrayObj->Normal.Enabled;
flag = _NEW_ARRAY_NORMAL;
break;
case GL_COLOR_ARRAY:
var = &arrayObj->Color.Enabled;
flag = _NEW_ARRAY_COLOR0;
break;
case GL_INDEX_ARRAY:
var = &arrayObj->Index.Enabled;
flag = _NEW_ARRAY_INDEX;
break;
case GL_TEXTURE_COORD_ARRAY:
var = &arrayObj->TexCoord[ctx->Array.ActiveTexture].Enabled;
flag = _NEW_ARRAY_TEXCOORD(ctx->Array.ActiveTexture);
break;
case GL_EDGE_FLAG_ARRAY:
var = &arrayObj->EdgeFlag.Enabled;
flag = _NEW_ARRAY_EDGEFLAG;
break;
case GL_FOG_COORDINATE_ARRAY_EXT:
var = &arrayObj->FogCoord.Enabled;
flag = _NEW_ARRAY_FOGCOORD;
break;
case GL_SECONDARY_COLOR_ARRAY_EXT:
var = &arrayObj->SecondaryColor.Enabled;
flag = _NEW_ARRAY_COLOR1;
break;
 
#if FEATURE_point_size_array
case GL_POINT_SIZE_ARRAY_OES:
var = &arrayObj->PointSize.Enabled;
flag = _NEW_ARRAY_POINT_SIZE;
break;
#endif
 
#if FEATURE_NV_vertex_program
case GL_VERTEX_ATTRIB_ARRAY0_NV:
case GL_VERTEX_ATTRIB_ARRAY1_NV:
case GL_VERTEX_ATTRIB_ARRAY2_NV:
case GL_VERTEX_ATTRIB_ARRAY3_NV:
case GL_VERTEX_ATTRIB_ARRAY4_NV:
case GL_VERTEX_ATTRIB_ARRAY5_NV:
case GL_VERTEX_ATTRIB_ARRAY6_NV:
case GL_VERTEX_ATTRIB_ARRAY7_NV:
case GL_VERTEX_ATTRIB_ARRAY8_NV:
case GL_VERTEX_ATTRIB_ARRAY9_NV:
case GL_VERTEX_ATTRIB_ARRAY10_NV:
case GL_VERTEX_ATTRIB_ARRAY11_NV:
case GL_VERTEX_ATTRIB_ARRAY12_NV:
case GL_VERTEX_ATTRIB_ARRAY13_NV:
case GL_VERTEX_ATTRIB_ARRAY14_NV:
case GL_VERTEX_ATTRIB_ARRAY15_NV:
CHECK_EXTENSION(NV_vertex_program, cap);
{
GLint n = (GLint) cap - GL_VERTEX_ATTRIB_ARRAY0_NV;
ASSERT(n < Elements(ctx->Array.ArrayObj->VertexAttrib));
var = &arrayObj->VertexAttrib[n].Enabled;
flag = _NEW_ARRAY_ATTRIB(n);
}
break;
#endif /* FEATURE_NV_vertex_program */
 
/* GL_NV_primitive_restart */
case GL_PRIMITIVE_RESTART_NV:
if (!ctx->Extensions.NV_primitive_restart) {
goto invalid_enum_error;
}
var = &ctx->Array.PrimitiveRestart;
flag = 0;
break;
 
default:
goto invalid_enum_error;
}
 
if (*var == state)
return;
 
FLUSH_VERTICES(ctx, _NEW_ARRAY);
ctx->Array.NewState |= flag;
 
_ae_invalidate_state(ctx, _NEW_ARRAY);
 
*var = state;
 
if (state)
ctx->Array.ArrayObj->_Enabled |= flag;
else
ctx->Array.ArrayObj->_Enabled &= ~flag;
 
if (ctx->Driver.Enable) {
ctx->Driver.Enable( ctx, cap, state );
}
 
return;
 
invalid_enum_error:
_mesa_error(ctx, GL_INVALID_ENUM, "gl%sClientState(0x%x)",
state ? "Enable" : "Disable", cap);
}
 
 
/**
* Enable GL capability.
* \param cap state to enable/disable.
*
* Get's the current context, assures that we're outside glBegin()/glEnd() and
* calls client_state().
*/
void GLAPIENTRY
_mesa_EnableClientState( GLenum cap )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
client_state( ctx, cap, GL_TRUE );
}
 
 
/**
* Disable GL capability.
* \param cap state to enable/disable.
*
* Get's the current context, assures that we're outside glBegin()/glEnd() and
* calls client_state().
*/
void GLAPIENTRY
_mesa_DisableClientState( GLenum cap )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
client_state( ctx, cap, GL_FALSE );
}
 
 
#undef CHECK_EXTENSION
#define CHECK_EXTENSION(EXTNAME, CAP) \
if (!ctx->Extensions.EXTNAME) { \
goto invalid_enum_error; \
}
 
#define CHECK_EXTENSION2(EXT1, EXT2, CAP) \
if (!ctx->Extensions.EXT1 && !ctx->Extensions.EXT2) { \
goto invalid_enum_error; \
}
 
 
 
/**
* Return pointer to current texture unit for setting/getting coordinate
* state.
* Note that we'll set GL_INVALID_OPERATION if the active texture unit is
* higher than the number of supported coordinate units. And we'll return NULL.
*/
static struct gl_texture_unit *
get_texcoord_unit(struct gl_context *ctx)
{
if (ctx->Texture.CurrentUnit >= ctx->Const.MaxTextureCoordUnits) {
_mesa_error(ctx, GL_INVALID_OPERATION, "glEnable/Disable(texcoord unit)");
return NULL;
}
else {
return &ctx->Texture.Unit[ctx->Texture.CurrentUnit];
}
}
 
 
/**
* Helper function to enable or disable a texture target.
* \param bit one of the TEXTURE_x_BIT values
* \return GL_TRUE if state is changing or GL_FALSE if no change
*/
static GLboolean
enable_texture(struct gl_context *ctx, GLboolean state, GLbitfield texBit)
{
struct gl_texture_unit *texUnit = _mesa_get_current_tex_unit(ctx);
const GLbitfield newenabled = state
? (texUnit->Enabled | texBit) : (texUnit->Enabled & ~texBit);
 
if (texUnit->Enabled == newenabled)
return GL_FALSE;
 
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
texUnit->Enabled = newenabled;
return GL_TRUE;
}
 
 
/**
* Helper function to enable or disable state.
*
* \param ctx GL context.
* \param cap the state to enable/disable
* \param state whether to enable or disable the specified capability.
*
* Updates the current context and flushes the vertices as needed. For
* capabilities associated with extensions it verifies that those extensions
* are effectivly present before updating. Notifies the driver via
* dd_function_table::Enable.
*/
void
_mesa_set_enable(struct gl_context *ctx, GLenum cap, GLboolean state)
{
if (MESA_VERBOSE & VERBOSE_API)
_mesa_debug(ctx, "%s %s (newstate is %x)\n",
state ? "glEnable" : "glDisable",
_mesa_lookup_enum_by_nr(cap),
ctx->NewState);
 
switch (cap) {
case GL_ALPHA_TEST:
if (ctx->Color.AlphaEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_COLOR);
ctx->Color.AlphaEnabled = state;
break;
case GL_AUTO_NORMAL:
if (ctx->Eval.AutoNormal == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.AutoNormal = state;
break;
case GL_BLEND:
{
GLbitfield newEnabled = state * ((1 << ctx->Const.MaxDrawBuffers) - 1);
if (newEnabled != ctx->Color.BlendEnabled) {
FLUSH_VERTICES(ctx, _NEW_COLOR);
ctx->Color.BlendEnabled = newEnabled;
}
}
break;
#if FEATURE_userclip
case GL_CLIP_PLANE0:
case GL_CLIP_PLANE1:
case GL_CLIP_PLANE2:
case GL_CLIP_PLANE3:
case GL_CLIP_PLANE4:
case GL_CLIP_PLANE5:
{
const GLuint p = cap - GL_CLIP_PLANE0;
 
if ((ctx->Transform.ClipPlanesEnabled & (1 << p)) == ((GLuint) state << p))
return;
 
FLUSH_VERTICES(ctx, _NEW_TRANSFORM);
 
if (state) {
ctx->Transform.ClipPlanesEnabled |= (1 << p);
 
if (_math_matrix_is_dirty(ctx->ProjectionMatrixStack.Top))
_math_matrix_analyse( ctx->ProjectionMatrixStack.Top );
 
/* This derived state also calculated in clip.c and
* from _mesa_update_state() on changes to EyeUserPlane
* and ctx->ProjectionMatrix respectively.
*/
_mesa_transform_vector( ctx->Transform._ClipUserPlane[p],
ctx->Transform.EyeUserPlane[p],
ctx->ProjectionMatrixStack.Top->inv );
}
else {
ctx->Transform.ClipPlanesEnabled &= ~(1 << p);
}
}
break;
#endif
case GL_COLOR_MATERIAL:
if (ctx->Light.ColorMaterialEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
FLUSH_CURRENT(ctx, 0);
ctx->Light.ColorMaterialEnabled = state;
if (state) {
_mesa_update_color_material( ctx,
ctx->Current.Attrib[VERT_ATTRIB_COLOR0] );
}
break;
case GL_CULL_FACE:
if (ctx->Polygon.CullFlag == state)
return;
FLUSH_VERTICES(ctx, _NEW_POLYGON);
ctx->Polygon.CullFlag = state;
break;
case GL_DEPTH_TEST:
if (ctx->Depth.Test == state)
return;
FLUSH_VERTICES(ctx, _NEW_DEPTH);
ctx->Depth.Test = state;
break;
case GL_DITHER:
if (ctx->NoDither) {
state = GL_FALSE; /* MESA_NO_DITHER env var */
}
if (ctx->Color.DitherFlag == state)
return;
FLUSH_VERTICES(ctx, _NEW_COLOR);
ctx->Color.DitherFlag = state;
break;
case GL_FOG:
if (ctx->Fog.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_FOG);
ctx->Fog.Enabled = state;
break;
case GL_LIGHT0:
case GL_LIGHT1:
case GL_LIGHT2:
case GL_LIGHT3:
case GL_LIGHT4:
case GL_LIGHT5:
case GL_LIGHT6:
case GL_LIGHT7:
if (ctx->Light.Light[cap-GL_LIGHT0].Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
ctx->Light.Light[cap-GL_LIGHT0].Enabled = state;
if (state) {
insert_at_tail(&ctx->Light.EnabledList,
&ctx->Light.Light[cap-GL_LIGHT0]);
}
else {
remove_from_list(&ctx->Light.Light[cap-GL_LIGHT0]);
}
break;
case GL_LIGHTING:
if (ctx->Light.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_LIGHT);
ctx->Light.Enabled = state;
if (ctx->Light.Enabled && ctx->Light.Model.TwoSide)
ctx->_TriangleCaps |= DD_TRI_LIGHT_TWOSIDE;
else
ctx->_TriangleCaps &= ~DD_TRI_LIGHT_TWOSIDE;
break;
case GL_LINE_SMOOTH:
if (ctx->Line.SmoothFlag == state)
return;
FLUSH_VERTICES(ctx, _NEW_LINE);
ctx->Line.SmoothFlag = state;
ctx->_TriangleCaps ^= DD_LINE_SMOOTH;
break;
case GL_LINE_STIPPLE:
if (ctx->Line.StippleFlag == state)
return;
FLUSH_VERTICES(ctx, _NEW_LINE);
ctx->Line.StippleFlag = state;
ctx->_TriangleCaps ^= DD_LINE_STIPPLE;
break;
case GL_INDEX_LOGIC_OP:
if (ctx->Color.IndexLogicOpEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_COLOR);
ctx->Color.IndexLogicOpEnabled = state;
break;
case GL_COLOR_LOGIC_OP:
if (ctx->Color.ColorLogicOpEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_COLOR);
ctx->Color.ColorLogicOpEnabled = state;
break;
case GL_MAP1_COLOR_4:
if (ctx->Eval.Map1Color4 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map1Color4 = state;
break;
case GL_MAP1_INDEX:
if (ctx->Eval.Map1Index == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map1Index = state;
break;
case GL_MAP1_NORMAL:
if (ctx->Eval.Map1Normal == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map1Normal = state;
break;
case GL_MAP1_TEXTURE_COORD_1:
if (ctx->Eval.Map1TextureCoord1 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map1TextureCoord1 = state;
break;
case GL_MAP1_TEXTURE_COORD_2:
if (ctx->Eval.Map1TextureCoord2 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map1TextureCoord2 = state;
break;
case GL_MAP1_TEXTURE_COORD_3:
if (ctx->Eval.Map1TextureCoord3 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map1TextureCoord3 = state;
break;
case GL_MAP1_TEXTURE_COORD_4:
if (ctx->Eval.Map1TextureCoord4 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map1TextureCoord4 = state;
break;
case GL_MAP1_VERTEX_3:
if (ctx->Eval.Map1Vertex3 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map1Vertex3 = state;
break;
case GL_MAP1_VERTEX_4:
if (ctx->Eval.Map1Vertex4 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map1Vertex4 = state;
break;
case GL_MAP2_COLOR_4:
if (ctx->Eval.Map2Color4 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map2Color4 = state;
break;
case GL_MAP2_INDEX:
if (ctx->Eval.Map2Index == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map2Index = state;
break;
case GL_MAP2_NORMAL:
if (ctx->Eval.Map2Normal == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map2Normal = state;
break;
case GL_MAP2_TEXTURE_COORD_1:
if (ctx->Eval.Map2TextureCoord1 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map2TextureCoord1 = state;
break;
case GL_MAP2_TEXTURE_COORD_2:
if (ctx->Eval.Map2TextureCoord2 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map2TextureCoord2 = state;
break;
case GL_MAP2_TEXTURE_COORD_3:
if (ctx->Eval.Map2TextureCoord3 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map2TextureCoord3 = state;
break;
case GL_MAP2_TEXTURE_COORD_4:
if (ctx->Eval.Map2TextureCoord4 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map2TextureCoord4 = state;
break;
case GL_MAP2_VERTEX_3:
if (ctx->Eval.Map2Vertex3 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map2Vertex3 = state;
break;
case GL_MAP2_VERTEX_4:
if (ctx->Eval.Map2Vertex4 == state)
return;
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map2Vertex4 = state;
break;
case GL_NORMALIZE:
if (ctx->Transform.Normalize == state)
return;
FLUSH_VERTICES(ctx, _NEW_TRANSFORM);
ctx->Transform.Normalize = state;
break;
case GL_POINT_SMOOTH:
if (ctx->Point.SmoothFlag == state)
return;
FLUSH_VERTICES(ctx, _NEW_POINT);
ctx->Point.SmoothFlag = state;
ctx->_TriangleCaps ^= DD_POINT_SMOOTH;
break;
case GL_POLYGON_SMOOTH:
if (ctx->Polygon.SmoothFlag == state)
return;
FLUSH_VERTICES(ctx, _NEW_POLYGON);
ctx->Polygon.SmoothFlag = state;
ctx->_TriangleCaps ^= DD_TRI_SMOOTH;
break;
case GL_POLYGON_STIPPLE:
if (ctx->Polygon.StippleFlag == state)
return;
FLUSH_VERTICES(ctx, _NEW_POLYGON);
ctx->Polygon.StippleFlag = state;
ctx->_TriangleCaps ^= DD_TRI_STIPPLE;
break;
case GL_POLYGON_OFFSET_POINT:
if (ctx->Polygon.OffsetPoint == state)
return;
FLUSH_VERTICES(ctx, _NEW_POLYGON);
ctx->Polygon.OffsetPoint = state;
break;
case GL_POLYGON_OFFSET_LINE:
if (ctx->Polygon.OffsetLine == state)
return;
FLUSH_VERTICES(ctx, _NEW_POLYGON);
ctx->Polygon.OffsetLine = state;
break;
case GL_POLYGON_OFFSET_FILL:
/*case GL_POLYGON_OFFSET_EXT:*/
if (ctx->Polygon.OffsetFill == state)
return;
FLUSH_VERTICES(ctx, _NEW_POLYGON);
ctx->Polygon.OffsetFill = state;
break;
case GL_RESCALE_NORMAL_EXT:
if (ctx->Transform.RescaleNormals == state)
return;
FLUSH_VERTICES(ctx, _NEW_TRANSFORM);
ctx->Transform.RescaleNormals = state;
break;
case GL_SCISSOR_TEST:
if (ctx->Scissor.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_SCISSOR);
ctx->Scissor.Enabled = state;
break;
case GL_SHARED_TEXTURE_PALETTE_EXT:
if (ctx->Texture.SharedPalette == state)
return;
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
ctx->Texture.SharedPalette = state;
break;
case GL_STENCIL_TEST:
if (ctx->Stencil.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_STENCIL);
ctx->Stencil.Enabled = state;
break;
case GL_TEXTURE_1D:
if (!enable_texture(ctx, state, TEXTURE_1D_BIT)) {
return;
}
break;
case GL_TEXTURE_2D:
if (!enable_texture(ctx, state, TEXTURE_2D_BIT)) {
return;
}
break;
case GL_TEXTURE_3D:
if (!enable_texture(ctx, state, TEXTURE_3D_BIT)) {
return;
}
break;
case GL_TEXTURE_GEN_Q:
{
struct gl_texture_unit *texUnit = get_texcoord_unit(ctx);
if (texUnit) {
GLuint newenabled = texUnit->TexGenEnabled & ~Q_BIT;
if (state)
newenabled |= Q_BIT;
if (texUnit->TexGenEnabled == newenabled)
return;
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
texUnit->TexGenEnabled = newenabled;
}
}
break;
case GL_TEXTURE_GEN_R:
{
struct gl_texture_unit *texUnit = get_texcoord_unit(ctx);
if (texUnit) {
GLuint newenabled = texUnit->TexGenEnabled & ~R_BIT;
if (state)
newenabled |= R_BIT;
if (texUnit->TexGenEnabled == newenabled)
return;
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
texUnit->TexGenEnabled = newenabled;
}
}
break;
case GL_TEXTURE_GEN_S:
{
struct gl_texture_unit *texUnit = get_texcoord_unit(ctx);
if (texUnit) {
GLuint newenabled = texUnit->TexGenEnabled & ~S_BIT;
if (state)
newenabled |= S_BIT;
if (texUnit->TexGenEnabled == newenabled)
return;
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
texUnit->TexGenEnabled = newenabled;
}
}
break;
case GL_TEXTURE_GEN_T:
{
struct gl_texture_unit *texUnit = get_texcoord_unit(ctx);
if (texUnit) {
GLuint newenabled = texUnit->TexGenEnabled & ~T_BIT;
if (state)
newenabled |= T_BIT;
if (texUnit->TexGenEnabled == newenabled)
return;
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
texUnit->TexGenEnabled = newenabled;
}
}
break;
 
#if FEATURE_ES1
case GL_TEXTURE_GEN_STR_OES:
/* disable S, T, and R at the same time */
{
struct gl_texture_unit *texUnit = get_texcoord_unit(ctx);
if (texUnit) {
GLuint newenabled =
texUnit->TexGenEnabled & ~STR_BITS;
if (state)
newenabled |= STR_BITS;
if (texUnit->TexGenEnabled == newenabled)
return;
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
texUnit->TexGenEnabled = newenabled;
}
}
break;
#endif
 
/*
* CLIENT STATE!!!
*/
case GL_VERTEX_ARRAY:
case GL_NORMAL_ARRAY:
case GL_COLOR_ARRAY:
case GL_INDEX_ARRAY:
case GL_TEXTURE_COORD_ARRAY:
case GL_EDGE_FLAG_ARRAY:
case GL_FOG_COORDINATE_ARRAY_EXT:
case GL_SECONDARY_COLOR_ARRAY_EXT:
case GL_POINT_SIZE_ARRAY_OES:
client_state( ctx, cap, state );
return;
 
/* GL_SGI_texture_color_table */
case GL_TEXTURE_COLOR_TABLE_SGI:
CHECK_EXTENSION(SGI_texture_color_table, cap);
if (ctx->Texture.Unit[ctx->Texture.CurrentUnit].ColorTableEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
ctx->Texture.Unit[ctx->Texture.CurrentUnit].ColorTableEnabled = state;
break;
 
/* GL_ARB_texture_cube_map */
case GL_TEXTURE_CUBE_MAP_ARB:
CHECK_EXTENSION(ARB_texture_cube_map, cap);
if (!enable_texture(ctx, state, TEXTURE_CUBE_BIT)) {
return;
}
break;
 
/* GL_EXT_secondary_color */
case GL_COLOR_SUM_EXT:
CHECK_EXTENSION2(EXT_secondary_color, ARB_vertex_program, cap);
if (ctx->Fog.ColorSumEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_FOG);
ctx->Fog.ColorSumEnabled = state;
break;
 
/* GL_ARB_multisample */
case GL_MULTISAMPLE_ARB:
if (ctx->Multisample.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE);
ctx->Multisample.Enabled = state;
break;
case GL_SAMPLE_ALPHA_TO_COVERAGE_ARB:
if (ctx->Multisample.SampleAlphaToCoverage == state)
return;
FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE);
ctx->Multisample.SampleAlphaToCoverage = state;
break;
case GL_SAMPLE_ALPHA_TO_ONE_ARB:
if (ctx->Multisample.SampleAlphaToOne == state)
return;
FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE);
ctx->Multisample.SampleAlphaToOne = state;
break;
case GL_SAMPLE_COVERAGE_ARB:
if (ctx->Multisample.SampleCoverage == state)
return;
FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE);
ctx->Multisample.SampleCoverage = state;
break;
case GL_SAMPLE_COVERAGE_INVERT_ARB:
if (ctx->Multisample.SampleCoverageInvert == state)
return;
FLUSH_VERTICES(ctx, _NEW_MULTISAMPLE);
ctx->Multisample.SampleCoverageInvert = state;
break;
 
/* GL_IBM_rasterpos_clip */
case GL_RASTER_POSITION_UNCLIPPED_IBM:
CHECK_EXTENSION(IBM_rasterpos_clip, cap);
if (ctx->Transform.RasterPositionUnclipped == state)
return;
FLUSH_VERTICES(ctx, _NEW_TRANSFORM);
ctx->Transform.RasterPositionUnclipped = state;
break;
 
/* GL_NV_point_sprite */
case GL_POINT_SPRITE_NV:
CHECK_EXTENSION2(NV_point_sprite, ARB_point_sprite, cap);
if (ctx->Point.PointSprite == state)
return;
FLUSH_VERTICES(ctx, _NEW_POINT);
ctx->Point.PointSprite = state;
break;
 
#if FEATURE_NV_vertex_program || FEATURE_ARB_vertex_program
case GL_VERTEX_PROGRAM_ARB:
CHECK_EXTENSION2(ARB_vertex_program, NV_vertex_program, cap);
if (ctx->VertexProgram.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PROGRAM);
ctx->VertexProgram.Enabled = state;
break;
case GL_VERTEX_PROGRAM_POINT_SIZE_ARB:
CHECK_EXTENSION2(ARB_vertex_program, NV_vertex_program, cap);
if (ctx->VertexProgram.PointSizeEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PROGRAM);
ctx->VertexProgram.PointSizeEnabled = state;
break;
case GL_VERTEX_PROGRAM_TWO_SIDE_ARB:
CHECK_EXTENSION2(ARB_vertex_program, NV_vertex_program, cap);
if (ctx->VertexProgram.TwoSideEnabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PROGRAM);
ctx->VertexProgram.TwoSideEnabled = state;
break;
#endif
#if FEATURE_NV_vertex_program
case GL_MAP1_VERTEX_ATTRIB0_4_NV:
case GL_MAP1_VERTEX_ATTRIB1_4_NV:
case GL_MAP1_VERTEX_ATTRIB2_4_NV:
case GL_MAP1_VERTEX_ATTRIB3_4_NV:
case GL_MAP1_VERTEX_ATTRIB4_4_NV:
case GL_MAP1_VERTEX_ATTRIB5_4_NV:
case GL_MAP1_VERTEX_ATTRIB6_4_NV:
case GL_MAP1_VERTEX_ATTRIB7_4_NV:
case GL_MAP1_VERTEX_ATTRIB8_4_NV:
case GL_MAP1_VERTEX_ATTRIB9_4_NV:
case GL_MAP1_VERTEX_ATTRIB10_4_NV:
case GL_MAP1_VERTEX_ATTRIB11_4_NV:
case GL_MAP1_VERTEX_ATTRIB12_4_NV:
case GL_MAP1_VERTEX_ATTRIB13_4_NV:
case GL_MAP1_VERTEX_ATTRIB14_4_NV:
case GL_MAP1_VERTEX_ATTRIB15_4_NV:
CHECK_EXTENSION(NV_vertex_program, cap);
{
const GLuint map = (GLuint) (cap - GL_MAP1_VERTEX_ATTRIB0_4_NV);
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map1Attrib[map] = state;
}
break;
case GL_MAP2_VERTEX_ATTRIB0_4_NV:
case GL_MAP2_VERTEX_ATTRIB1_4_NV:
case GL_MAP2_VERTEX_ATTRIB2_4_NV:
case GL_MAP2_VERTEX_ATTRIB3_4_NV:
case GL_MAP2_VERTEX_ATTRIB4_4_NV:
case GL_MAP2_VERTEX_ATTRIB5_4_NV:
case GL_MAP2_VERTEX_ATTRIB6_4_NV:
case GL_MAP2_VERTEX_ATTRIB7_4_NV:
case GL_MAP2_VERTEX_ATTRIB8_4_NV:
case GL_MAP2_VERTEX_ATTRIB9_4_NV:
case GL_MAP2_VERTEX_ATTRIB10_4_NV:
case GL_MAP2_VERTEX_ATTRIB11_4_NV:
case GL_MAP2_VERTEX_ATTRIB12_4_NV:
case GL_MAP2_VERTEX_ATTRIB13_4_NV:
case GL_MAP2_VERTEX_ATTRIB14_4_NV:
case GL_MAP2_VERTEX_ATTRIB15_4_NV:
CHECK_EXTENSION(NV_vertex_program, cap);
{
const GLuint map = (GLuint) (cap - GL_MAP2_VERTEX_ATTRIB0_4_NV);
FLUSH_VERTICES(ctx, _NEW_EVAL);
ctx->Eval.Map2Attrib[map] = state;
}
break;
#endif /* FEATURE_NV_vertex_program */
 
#if FEATURE_NV_fragment_program
case GL_FRAGMENT_PROGRAM_NV:
CHECK_EXTENSION(NV_fragment_program, cap);
if (ctx->FragmentProgram.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PROGRAM);
ctx->FragmentProgram.Enabled = state;
break;
#endif /* FEATURE_NV_fragment_program */
 
/* GL_NV_texture_rectangle */
case GL_TEXTURE_RECTANGLE_NV:
CHECK_EXTENSION(NV_texture_rectangle, cap);
if (!enable_texture(ctx, state, TEXTURE_RECT_BIT)) {
return;
}
break;
 
/* GL_EXT_stencil_two_side */
case GL_STENCIL_TEST_TWO_SIDE_EXT:
CHECK_EXTENSION(EXT_stencil_two_side, cap);
if (ctx->Stencil.TestTwoSide == state)
return;
FLUSH_VERTICES(ctx, _NEW_STENCIL);
ctx->Stencil.TestTwoSide = state;
if (state) {
ctx->Stencil._BackFace = 2;
ctx->_TriangleCaps |= DD_TRI_TWOSTENCIL;
} else {
ctx->Stencil._BackFace = 1;
ctx->_TriangleCaps &= ~DD_TRI_TWOSTENCIL;
}
break;
 
#if FEATURE_ARB_fragment_program
case GL_FRAGMENT_PROGRAM_ARB:
CHECK_EXTENSION(ARB_fragment_program, cap);
if (ctx->FragmentProgram.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PROGRAM);
ctx->FragmentProgram.Enabled = state;
break;
#endif /* FEATURE_ARB_fragment_program */
 
/* GL_EXT_depth_bounds_test */
case GL_DEPTH_BOUNDS_TEST_EXT:
CHECK_EXTENSION(EXT_depth_bounds_test, cap);
if (ctx->Depth.BoundsTest == state)
return;
FLUSH_VERTICES(ctx, _NEW_DEPTH);
ctx->Depth.BoundsTest = state;
break;
 
case GL_DEPTH_CLAMP:
if (ctx->Transform.DepthClamp == state)
return;
CHECK_EXTENSION(ARB_depth_clamp, cap);
FLUSH_VERTICES(ctx, _NEW_TRANSFORM);
ctx->Transform.DepthClamp = state;
break;
 
#if FEATURE_ATI_fragment_shader
case GL_FRAGMENT_SHADER_ATI:
CHECK_EXTENSION(ATI_fragment_shader, cap);
if (ctx->ATIFragmentShader.Enabled == state)
return;
FLUSH_VERTICES(ctx, _NEW_PROGRAM);
ctx->ATIFragmentShader.Enabled = state;
break;
#endif
 
/* GL_MESA_texture_array */
case GL_TEXTURE_1D_ARRAY_EXT:
CHECK_EXTENSION(MESA_texture_array, cap);
if (!enable_texture(ctx, state, TEXTURE_1D_ARRAY_BIT)) {
return;
}
break;
 
case GL_TEXTURE_2D_ARRAY_EXT:
CHECK_EXTENSION(MESA_texture_array, cap);
if (!enable_texture(ctx, state, TEXTURE_2D_ARRAY_BIT)) {
return;
}
break;
 
case GL_TEXTURE_CUBE_MAP_SEAMLESS:
CHECK_EXTENSION(ARB_seamless_cube_map, cap);
ctx->Texture.CubeMapSeamless = state;
break;
 
#if FEATURE_EXT_transform_feedback
case GL_RASTERIZER_DISCARD:
CHECK_EXTENSION(EXT_transform_feedback, cap);
if (ctx->TransformFeedback.RasterDiscard != state) {
ctx->TransformFeedback.RasterDiscard = state;
FLUSH_VERTICES(ctx, _NEW_TRANSFORM);
}
break;
#endif
 
/* GL 3.1 primitive restart. Note: this enum is different from
* GL_PRIMITIVE_RESTART_NV (which is client state).
*/
case GL_PRIMITIVE_RESTART:
if (ctx->VersionMajor * 10 + ctx->VersionMinor < 31) {
goto invalid_enum_error;
}
if (ctx->Array.PrimitiveRestart != state) {
FLUSH_VERTICES(ctx, _NEW_TRANSFORM);
ctx->Array.PrimitiveRestart = state;
}
break;
 
default:
goto invalid_enum_error;
}
 
if (ctx->Driver.Enable) {
ctx->Driver.Enable( ctx, cap, state );
}
 
return;
 
invalid_enum_error:
_mesa_error(ctx, GL_INVALID_ENUM, "gl%s(0x%x)",
state ? "Enable" : "Disable", cap);
}
 
 
/**
* Enable GL capability. Called by glEnable()
* \param cap state to enable.
*/
void GLAPIENTRY
_mesa_Enable( GLenum cap )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
 
_mesa_set_enable( ctx, cap, GL_TRUE );
}
 
 
/**
* Disable GL capability. Called by glDisable()
* \param cap state to disable.
*/
void GLAPIENTRY
_mesa_Disable( GLenum cap )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
 
_mesa_set_enable( ctx, cap, GL_FALSE );
}
 
 
 
/**
* Enable/disable an indexed state var.
*/
void
_mesa_set_enablei(struct gl_context *ctx, GLenum cap, GLuint index, GLboolean state)
{
ASSERT(state == 0 || state == 1);
switch (cap) {
case GL_BLEND:
if (!ctx->Extensions.EXT_draw_buffers2) {
goto invalid_enum_error;
}
if (index >= ctx->Const.MaxDrawBuffers) {
_mesa_error(ctx, GL_INVALID_VALUE, "%s(index=%u)",
state ? "glEnableIndexed" : "glDisableIndexed", index);
return;
}
if (((ctx->Color.BlendEnabled >> index) & 1) != state) {
FLUSH_VERTICES(ctx, _NEW_COLOR);
if (state)
ctx->Color.BlendEnabled |= (1 << index);
else
ctx->Color.BlendEnabled &= ~(1 << index);
}
break;
default:
goto invalid_enum_error;
}
return;
 
invalid_enum_error:
_mesa_error(ctx, GL_INVALID_ENUM, "%s(cap=%s)",
state ? "glEnablei" : "glDisablei",
_mesa_lookup_enum_by_nr(cap));
}
 
 
void GLAPIENTRY
_mesa_DisableIndexed( GLenum cap, GLuint index )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
_mesa_set_enablei(ctx, cap, index, GL_FALSE);
}
 
 
void GLAPIENTRY
_mesa_EnableIndexed( GLenum cap, GLuint index )
{
GET_CURRENT_CONTEXT(ctx);
ASSERT_OUTSIDE_BEGIN_END(ctx);
_mesa_set_enablei(ctx, cap, index, GL_TRUE);
}
 
 
GLboolean GLAPIENTRY
_mesa_IsEnabledIndexed( GLenum cap, GLuint index )
{
GET_CURRENT_CONTEXT(ctx);
switch (cap) {
case GL_BLEND:
if (index >= ctx->Const.MaxDrawBuffers) {
_mesa_error(ctx, GL_INVALID_VALUE, "glIsEnabledIndexed(index=%u)",
index);
return GL_FALSE;
}
return (ctx->Color.BlendEnabled >> index) & 1;
default:
_mesa_error(ctx, GL_INVALID_ENUM, "glIsEnabledIndexed(cap=%s)",
_mesa_lookup_enum_by_nr(cap));
return GL_FALSE;
}
}
 
 
 
 
#undef CHECK_EXTENSION
#define CHECK_EXTENSION(EXTNAME) \
if (!ctx->Extensions.EXTNAME) { \
goto invalid_enum_error; \
}
 
#undef CHECK_EXTENSION2
#define CHECK_EXTENSION2(EXT1, EXT2) \
if (!ctx->Extensions.EXT1 && !ctx->Extensions.EXT2) { \
goto invalid_enum_error; \
}
 
 
/**
* Helper function to determine whether a texture target is enabled.
*/
static GLboolean
is_texture_enabled(struct gl_context *ctx, GLbitfield bit)
{
const struct gl_texture_unit *const texUnit =
&ctx->Texture.Unit[ctx->Texture.CurrentUnit];
return (texUnit->Enabled & bit) ? GL_TRUE : GL_FALSE;
}
 
 
/**
* Return simple enable/disable state.
*
* \param cap state variable to query.
*
* Returns the state of the specified capability from the current GL context.
* For the capabilities associated with extensions verifies that those
* extensions are effectively present before reporting.
*/
GLboolean GLAPIENTRY
_mesa_IsEnabled( GLenum cap )
{
GET_CURRENT_CONTEXT(ctx);
switch (cap) {
case GL_ALPHA_TEST:
return ctx->Color.AlphaEnabled;
case GL_AUTO_NORMAL:
return ctx->Eval.AutoNormal;
case GL_BLEND:
return ctx->Color.BlendEnabled & 1; /* return state for buffer[0] */
case GL_CLIP_PLANE0:
case GL_CLIP_PLANE1:
case GL_CLIP_PLANE2:
case GL_CLIP_PLANE3:
case GL_CLIP_PLANE4:
case GL_CLIP_PLANE5:
return (ctx->Transform.ClipPlanesEnabled >> (cap - GL_CLIP_PLANE0)) & 1;
case GL_COLOR_MATERIAL:
return ctx->Light.ColorMaterialEnabled;
case GL_CULL_FACE:
return ctx->Polygon.CullFlag;
case GL_DEPTH_TEST:
return ctx->Depth.Test;
case GL_DITHER:
return ctx->Color.DitherFlag;
case GL_FOG:
return ctx->Fog.Enabled;
case GL_LIGHTING:
return ctx->Light.Enabled;
case GL_LIGHT0:
case GL_LIGHT1:
case GL_LIGHT2:
case GL_LIGHT3:
case GL_LIGHT4:
case GL_LIGHT5:
case GL_LIGHT6:
case GL_LIGHT7:
return ctx->Light.Light[cap-GL_LIGHT0].Enabled;
case GL_LINE_SMOOTH:
return ctx->Line.SmoothFlag;
case GL_LINE_STIPPLE:
return ctx->Line.StippleFlag;
case GL_INDEX_LOGIC_OP:
return ctx->Color.IndexLogicOpEnabled;
case GL_COLOR_LOGIC_OP:
return ctx->Color.ColorLogicOpEnabled;
case GL_MAP1_COLOR_4:
return ctx->Eval.Map1Color4;
case GL_MAP1_INDEX:
return ctx->Eval.Map1Index;
case GL_MAP1_NORMAL:
return ctx->Eval.Map1Normal;
case GL_MAP1_TEXTURE_COORD_1:
return ctx->Eval.Map1TextureCoord1;
case GL_MAP1_TEXTURE_COORD_2:
return ctx->Eval.Map1TextureCoord2;
case GL_MAP1_TEXTURE_COORD_3:
return ctx->Eval.Map1TextureCoord3;
case GL_MAP1_TEXTURE_COORD_4:
return ctx->Eval.Map1TextureCoord4;
case GL_MAP1_VERTEX_3:
return ctx->Eval.Map1Vertex3;
case GL_MAP1_VERTEX_4:
return ctx->Eval.Map1Vertex4;
case GL_MAP2_COLOR_4:
return ctx->Eval.Map2Color4;
case GL_MAP2_INDEX:
return ctx->Eval.Map2Index;
case GL_MAP2_NORMAL:
return ctx->Eval.Map2Normal;
case GL_MAP2_TEXTURE_COORD_1:
return ctx->Eval.Map2TextureCoord1;
case GL_MAP2_TEXTURE_COORD_2:
return ctx->Eval.Map2TextureCoord2;
case GL_MAP2_TEXTURE_COORD_3:
return ctx->Eval.Map2TextureCoord3;
case GL_MAP2_TEXTURE_COORD_4:
return ctx->Eval.Map2TextureCoord4;
case GL_MAP2_VERTEX_3:
return ctx->Eval.Map2Vertex3;
case GL_MAP2_VERTEX_4:
return ctx->Eval.Map2Vertex4;
case GL_NORMALIZE:
return ctx->Transform.Normalize;
case GL_POINT_SMOOTH:
return ctx->Point.SmoothFlag;
case GL_POLYGON_SMOOTH:
return ctx->Polygon.SmoothFlag;
case GL_POLYGON_STIPPLE:
return ctx->Polygon.StippleFlag;
case GL_POLYGON_OFFSET_POINT:
return ctx->Polygon.OffsetPoint;
case GL_POLYGON_OFFSET_LINE:
return ctx->Polygon.OffsetLine;
case GL_POLYGON_OFFSET_FILL:
/*case GL_POLYGON_OFFSET_EXT:*/
return ctx->Polygon.OffsetFill;
case GL_RESCALE_NORMAL_EXT:
return ctx->Transform.RescaleNormals;
case GL_SCISSOR_TEST:
return ctx->Scissor.Enabled;
case GL_SHARED_TEXTURE_PALETTE_EXT:
return ctx->Texture.SharedPalette;
case GL_STENCIL_TEST:
return ctx->Stencil.Enabled;
case GL_TEXTURE_1D:
return is_texture_enabled(ctx, TEXTURE_1D_BIT);
case GL_TEXTURE_2D:
return is_texture_enabled(ctx, TEXTURE_2D_BIT);
case GL_TEXTURE_3D:
return is_texture_enabled(ctx, TEXTURE_3D_BIT);
case GL_TEXTURE_GEN_Q:
{
const struct gl_texture_unit *texUnit = get_texcoord_unit(ctx);
if (texUnit) {
return (texUnit->TexGenEnabled & Q_BIT) ? GL_TRUE : GL_FALSE;
}
}
return GL_FALSE;
case GL_TEXTURE_GEN_R:
{
const struct gl_texture_unit *texUnit = get_texcoord_unit(ctx);
if (texUnit) {
return (texUnit->TexGenEnabled & R_BIT) ? GL_TRUE : GL_FALSE;
}
}
return GL_FALSE;
case GL_TEXTURE_GEN_S:
{
const struct gl_texture_unit *texUnit = get_texcoord_unit(ctx);
if (texUnit) {
return (texUnit->TexGenEnabled & S_BIT) ? GL_TRUE : GL_FALSE;
}
}
return GL_FALSE;
case GL_TEXTURE_GEN_T:
{
const struct gl_texture_unit *texUnit = get_texcoord_unit(ctx);
if (texUnit) {
return (texUnit->TexGenEnabled & T_BIT) ? GL_TRUE : GL_FALSE;
}
}
return GL_FALSE;
#if FEATURE_ES1
case GL_TEXTURE_GEN_STR_OES:
{
const struct gl_texture_unit *texUnit = get_texcoord_unit(ctx);
if (texUnit) {
return (texUnit->TexGenEnabled & STR_BITS) == STR_BITS ? GL_TRUE : GL_FALSE;
}
}
#endif
 
/*
* CLIENT STATE!!!
*/
case GL_VERTEX_ARRAY:
return (ctx->Array.ArrayObj->Vertex.Enabled != 0);
case GL_NORMAL_ARRAY:
return (ctx->Array.ArrayObj->Normal.Enabled != 0);
case GL_COLOR_ARRAY:
return (ctx->Array.ArrayObj->Color.Enabled != 0);
case GL_INDEX_ARRAY:
return (ctx->Array.ArrayObj->Index.Enabled != 0);
case GL_TEXTURE_COORD_ARRAY:
return (ctx->Array.ArrayObj->TexCoord[ctx->Array.ActiveTexture].Enabled != 0);
case GL_EDGE_FLAG_ARRAY:
return (ctx->Array.ArrayObj->EdgeFlag.Enabled != 0);
case GL_FOG_COORDINATE_ARRAY_EXT:
CHECK_EXTENSION(EXT_fog_coord);
return (ctx->Array.ArrayObj->FogCoord.Enabled != 0);
case GL_SECONDARY_COLOR_ARRAY_EXT:
CHECK_EXTENSION(EXT_secondary_color);
return (ctx->Array.ArrayObj->SecondaryColor.Enabled != 0);
#if FEATURE_point_size_array
case GL_POINT_SIZE_ARRAY_OES:
return (ctx->Array.ArrayObj->PointSize.Enabled != 0);
#endif
 
/* GL_SGI_texture_color_table */
case GL_TEXTURE_COLOR_TABLE_SGI:
CHECK_EXTENSION(SGI_texture_color_table);
return ctx->Texture.Unit[ctx->Texture.CurrentUnit].ColorTableEnabled;
 
/* GL_ARB_texture_cube_map */
case GL_TEXTURE_CUBE_MAP_ARB:
CHECK_EXTENSION(ARB_texture_cube_map);
return is_texture_enabled(ctx, TEXTURE_CUBE_BIT);
 
/* GL_EXT_secondary_color */
case GL_COLOR_SUM_EXT:
CHECK_EXTENSION2(EXT_secondary_color, ARB_vertex_program);
return ctx->Fog.ColorSumEnabled;
 
/* GL_ARB_multisample */
case GL_MULTISAMPLE_ARB:
return ctx->Multisample.Enabled;
case GL_SAMPLE_ALPHA_TO_COVERAGE_ARB:
return ctx->Multisample.SampleAlphaToCoverage;
case GL_SAMPLE_ALPHA_TO_ONE_ARB:
return ctx->Multisample.SampleAlphaToOne;
case GL_SAMPLE_COVERAGE_ARB:
return ctx->Multisample.SampleCoverage;
case GL_SAMPLE_COVERAGE_INVERT_ARB:
return ctx->Multisample.SampleCoverageInvert;
 
/* GL_IBM_rasterpos_clip */
case GL_RASTER_POSITION_UNCLIPPED_IBM:
CHECK_EXTENSION(IBM_rasterpos_clip);
return ctx->Transform.RasterPositionUnclipped;
 
/* GL_NV_point_sprite */
case GL_POINT_SPRITE_NV:
CHECK_EXTENSION2(NV_point_sprite, ARB_point_sprite)
return ctx->Point.PointSprite;
 
#if FEATURE_NV_vertex_program || FEATURE_ARB_vertex_program
case GL_VERTEX_PROGRAM_ARB:
CHECK_EXTENSION2(ARB_vertex_program, NV_vertex_program);
return ctx->VertexProgram.Enabled;
case GL_VERTEX_PROGRAM_POINT_SIZE_ARB:
CHECK_EXTENSION2(ARB_vertex_program, NV_vertex_program);
return ctx->VertexProgram.PointSizeEnabled;
case GL_VERTEX_PROGRAM_TWO_SIDE_ARB:
CHECK_EXTENSION2(ARB_vertex_program, NV_vertex_program);
return ctx->VertexProgram.TwoSideEnabled;
#endif
#if FEATURE_NV_vertex_program
case GL_VERTEX_ATTRIB_ARRAY0_NV:
case GL_VERTEX_ATTRIB_ARRAY1_NV:
case GL_VERTEX_ATTRIB_ARRAY2_NV:
case GL_VERTEX_ATTRIB_ARRAY3_NV:
case GL_VERTEX_ATTRIB_ARRAY4_NV:
case GL_VERTEX_ATTRIB_ARRAY5_NV:
case GL_VERTEX_ATTRIB_ARRAY6_NV:
case GL_VERTEX_ATTRIB_ARRAY7_NV:
case GL_VERTEX_ATTRIB_ARRAY8_NV:
case GL_VERTEX_ATTRIB_ARRAY9_NV:
case GL_VERTEX_ATTRIB_ARRAY10_NV:
case GL_VERTEX_ATTRIB_ARRAY11_NV:
case GL_VERTEX_ATTRIB_ARRAY12_NV:
case GL_VERTEX_ATTRIB_ARRAY13_NV:
case GL_VERTEX_ATTRIB_ARRAY14_NV:
case GL_VERTEX_ATTRIB_ARRAY15_NV:
CHECK_EXTENSION(NV_vertex_program);
{
GLint n = (GLint) cap - GL_VERTEX_ATTRIB_ARRAY0_NV;
ASSERT(n < Elements(ctx->Array.ArrayObj->VertexAttrib));
return (ctx->Array.ArrayObj->VertexAttrib[n].Enabled != 0);
}
case GL_MAP1_VERTEX_ATTRIB0_4_NV:
case GL_MAP1_VERTEX_ATTRIB1_4_NV:
case GL_MAP1_VERTEX_ATTRIB2_4_NV:
case GL_MAP1_VERTEX_ATTRIB3_4_NV:
case GL_MAP1_VERTEX_ATTRIB4_4_NV:
case GL_MAP1_VERTEX_ATTRIB5_4_NV:
case GL_MAP1_VERTEX_ATTRIB6_4_NV:
case GL_MAP1_VERTEX_ATTRIB7_4_NV:
case GL_MAP1_VERTEX_ATTRIB8_4_NV:
case GL_MAP1_VERTEX_ATTRIB9_4_NV:
case GL_MAP1_VERTEX_ATTRIB10_4_NV:
case GL_MAP1_VERTEX_ATTRIB11_4_NV:
case GL_MAP1_VERTEX_ATTRIB12_4_NV:
case GL_MAP1_VERTEX_ATTRIB13_4_NV:
case GL_MAP1_VERTEX_ATTRIB14_4_NV:
case GL_MAP1_VERTEX_ATTRIB15_4_NV:
CHECK_EXTENSION(NV_vertex_program);
{
const GLuint map = (GLuint) (cap - GL_MAP1_VERTEX_ATTRIB0_4_NV);
return ctx->Eval.Map1Attrib[map];
}
case GL_MAP2_VERTEX_ATTRIB0_4_NV:
case GL_MAP2_VERTEX_ATTRIB1_4_NV:
case GL_MAP2_VERTEX_ATTRIB2_4_NV:
case GL_MAP2_VERTEX_ATTRIB3_4_NV:
case GL_MAP2_VERTEX_ATTRIB4_4_NV:
case GL_MAP2_VERTEX_ATTRIB5_4_NV:
case GL_MAP2_VERTEX_ATTRIB6_4_NV:
case GL_MAP2_VERTEX_ATTRIB7_4_NV:
case GL_MAP2_VERTEX_ATTRIB8_4_NV:
case GL_MAP2_VERTEX_ATTRIB9_4_NV:
case GL_MAP2_VERTEX_ATTRIB10_4_NV:
case GL_MAP2_VERTEX_ATTRIB11_4_NV:
case GL_MAP2_VERTEX_ATTRIB12_4_NV:
case GL_MAP2_VERTEX_ATTRIB13_4_NV:
case GL_MAP2_VERTEX_ATTRIB14_4_NV:
case GL_MAP2_VERTEX_ATTRIB15_4_NV:
CHECK_EXTENSION(NV_vertex_program);
{
const GLuint map = (GLuint) (cap - GL_MAP2_VERTEX_ATTRIB0_4_NV);
return ctx->Eval.Map2Attrib[map];
}
#endif /* FEATURE_NV_vertex_program */
 
#if FEATURE_NV_fragment_program
case GL_FRAGMENT_PROGRAM_NV:
CHECK_EXTENSION(NV_fragment_program);
return ctx->FragmentProgram.Enabled;
#endif /* FEATURE_NV_fragment_program */
 
/* GL_NV_texture_rectangle */
case GL_TEXTURE_RECTANGLE_NV:
CHECK_EXTENSION(NV_texture_rectangle);
return is_texture_enabled(ctx, TEXTURE_RECT_BIT);
 
/* GL_EXT_stencil_two_side */
case GL_STENCIL_TEST_TWO_SIDE_EXT:
CHECK_EXTENSION(EXT_stencil_two_side);
return ctx->Stencil.TestTwoSide;
 
#if FEATURE_ARB_fragment_program
case GL_FRAGMENT_PROGRAM_ARB:
return ctx->FragmentProgram.Enabled;
#endif /* FEATURE_ARB_fragment_program */
 
/* GL_EXT_depth_bounds_test */
case GL_DEPTH_BOUNDS_TEST_EXT:
CHECK_EXTENSION(EXT_depth_bounds_test);
return ctx->Depth.BoundsTest;
 
/* GL_ARB_depth_clamp */
case GL_DEPTH_CLAMP:
CHECK_EXTENSION(ARB_depth_clamp);
return ctx->Transform.DepthClamp;
 
#if FEATURE_ATI_fragment_shader
case GL_FRAGMENT_SHADER_ATI:
CHECK_EXTENSION(ATI_fragment_shader);
return ctx->ATIFragmentShader.Enabled;
#endif /* FEATURE_ATI_fragment_shader */
 
case GL_TEXTURE_CUBE_MAP_SEAMLESS:
CHECK_EXTENSION(ARB_seamless_cube_map);
return ctx->Texture.CubeMapSeamless;
 
#if FEATURE_EXT_transform_feedback
case GL_RASTERIZER_DISCARD:
CHECK_EXTENSION(EXT_transform_feedback);
return ctx->TransformFeedback.RasterDiscard;
#endif
 
/* GL_NV_primitive_restart */
case GL_PRIMITIVE_RESTART_NV:
if (!ctx->Extensions.NV_primitive_restart) {
goto invalid_enum_error;
}
return ctx->Array.PrimitiveRestart;
 
/* GL 3.1 primitive restart */
case GL_PRIMITIVE_RESTART:
if (ctx->VersionMajor * 10 + ctx->VersionMinor < 31) {
goto invalid_enum_error;
}
return ctx->Array.PrimitiveRestart;
 
default:
goto invalid_enum_error;
}
 
return GL_FALSE;
 
invalid_enum_error:
_mesa_error(ctx, GL_INVALID_ENUM, "glIsEnabled(0x%x)", (int) cap);
return GL_FALSE;
}