Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 1900 → Rev 1901

/programs/develop/libraries/Mesa/src/glsl/ir_reader.cpp
0,0 → 1,1137
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
 
#include <stdarg.h>
 
#include "ir_reader.h"
#include "glsl_parser_extras.h"
#include "glsl_types.h"
#include "s_expression.h"
 
const static bool debug = false;
 
static void ir_read_error(_mesa_glsl_parse_state *, s_expression *,
const char *fmt, ...);
static const glsl_type *read_type(_mesa_glsl_parse_state *, s_expression *);
 
static void scan_for_prototypes(_mesa_glsl_parse_state *, exec_list *,
s_expression *);
static ir_function *read_function(_mesa_glsl_parse_state *, s_list *,
bool skip_body);
static void read_function_sig(_mesa_glsl_parse_state *, ir_function *,
s_list *, bool skip_body);
 
static void read_instructions(_mesa_glsl_parse_state *, exec_list *,
s_expression *, ir_loop *);
static ir_instruction *read_instruction(_mesa_glsl_parse_state *,
s_expression *, ir_loop *);
static ir_variable *read_declaration(_mesa_glsl_parse_state *, s_list *);
static ir_if *read_if(_mesa_glsl_parse_state *, s_list *, ir_loop *);
static ir_loop *read_loop(_mesa_glsl_parse_state *st, s_list *list);
static ir_return *read_return(_mesa_glsl_parse_state *, s_list *);
 
static ir_rvalue *read_rvalue(_mesa_glsl_parse_state *, s_expression *);
static ir_assignment *read_assignment(_mesa_glsl_parse_state *, s_list *);
static ir_expression *read_expression(_mesa_glsl_parse_state *, s_list *);
static ir_call *read_call(_mesa_glsl_parse_state *, s_list *);
static ir_swizzle *read_swizzle(_mesa_glsl_parse_state *, s_list *);
static ir_constant *read_constant(_mesa_glsl_parse_state *, s_list *);
static ir_texture *read_texture(_mesa_glsl_parse_state *, s_list *);
 
static ir_dereference *read_dereference(_mesa_glsl_parse_state *,
s_expression *);
static ir_dereference_variable *
read_var_ref(_mesa_glsl_parse_state *, s_list *);
static ir_dereference_array *
read_array_ref(_mesa_glsl_parse_state *, s_list *);
static ir_dereference_record *
read_record_ref(_mesa_glsl_parse_state *, s_list *);
 
void
_mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions,
const char *src, bool scan_for_protos)
{
s_expression *expr = s_expression::read_expression(state, src);
if (expr == NULL) {
ir_read_error(state, NULL, "couldn't parse S-Expression.");
return;
}
if (scan_for_protos) {
scan_for_prototypes(state, instructions, expr);
if (state->error)
return;
}
 
read_instructions(state, instructions, expr, NULL);
ralloc_free(expr);
 
if (debug)
validate_ir_tree(instructions);
}
 
static void
ir_read_error(_mesa_glsl_parse_state *state, s_expression *expr,
const char *fmt, ...)
{
va_list ap;
 
state->error = true;
 
if (state->current_function != NULL)
ralloc_asprintf_append(&state->info_log, "In function %s:\n",
state->current_function->function_name());
ralloc_strcat(&state->info_log, "error: ");
 
va_start(ap, fmt);
ralloc_vasprintf_append(&state->info_log, fmt, ap);
va_end(ap);
ralloc_strcat(&state->info_log, "\n");
 
if (expr != NULL) {
ralloc_strcat(&state->info_log, "...in this context:\n ");
expr->print();
ralloc_strcat(&state->info_log, "\n\n");
}
}
 
static const glsl_type *
read_type(_mesa_glsl_parse_state *st, s_expression *expr)
{
s_list *list = SX_AS_LIST(expr);
if (list != NULL) {
s_symbol *type_sym = SX_AS_SYMBOL(list->subexpressions.get_head());
if (type_sym == NULL) {
ir_read_error(st, expr, "expected type (array ...) or (struct ...)");
return NULL;
}
if (strcmp(type_sym->value(), "array") == 0) {
if (list->length() != 3) {
ir_read_error(st, expr, "expected type (array <type> <int>)");
return NULL;
}
 
// Read base type
s_expression *base_expr = (s_expression*) type_sym->next;
const glsl_type *base_type = read_type(st, base_expr);
if (base_type == NULL) {
ir_read_error(st, NULL, "when reading base type of array");
return NULL;
}
 
// Read array size
s_int *size = SX_AS_INT(base_expr->next);
if (size == NULL) {
ir_read_error(st, expr, "found non-integer array size");
return NULL;
}
 
return glsl_type::get_array_instance(base_type, size->value());
} else if (strcmp(type_sym->value(), "struct") == 0) {
assert(false); // FINISHME
} else {
ir_read_error(st, expr, "expected (array ...) or (struct ...); "
"found (%s ...)", type_sym->value());
return NULL;
}
}
s_symbol *type_sym = SX_AS_SYMBOL(expr);
if (type_sym == NULL) {
ir_read_error(st, expr, "expected <type> (symbol or list)");
return NULL;
}
 
const glsl_type *type = st->symbols->get_type(type_sym->value());
if (type == NULL)
ir_read_error(st, expr, "invalid type: %s", type_sym->value());
 
return type;
}
 
 
static void
scan_for_prototypes(_mesa_glsl_parse_state *st, exec_list *instructions,
s_expression *expr)
{
s_list *list = SX_AS_LIST(expr);
if (list == NULL) {
ir_read_error(st, expr, "Expected (<instruction> ...); found an atom.");
return;
}
 
foreach_iter(exec_list_iterator, it, list->subexpressions) {
s_list *sub = SX_AS_LIST(it.get());
if (sub == NULL)
continue; // not a (function ...); ignore it.
 
s_symbol *tag = SX_AS_SYMBOL(sub->subexpressions.get_head());
if (tag == NULL || strcmp(tag->value(), "function") != 0)
continue; // not a (function ...); ignore it.
 
ir_function *f = read_function(st, sub, true);
if (f == NULL)
return;
instructions->push_tail(f);
}
}
 
static ir_function *
read_function(_mesa_glsl_parse_state *st, s_list *list, bool skip_body)
{
void *ctx = st;
bool added = false;
if (list->length() < 3) {
ir_read_error(st, list, "Expected (function <name> (signature ...) ...)");
return NULL;
}
 
s_symbol *name = SX_AS_SYMBOL(list->subexpressions.head->next);
if (name == NULL) {
ir_read_error(st, list, "Expected (function <name> ...)");
return NULL;
}
 
ir_function *f = st->symbols->get_function(name->value());
if (f == NULL) {
f = new(ctx) ir_function(name->value());
added = st->symbols->add_function(f);
assert(added);
}
 
exec_list_iterator it = list->subexpressions.iterator();
it.next(); // skip "function" tag
it.next(); // skip function name
for (/* nothing */; it.has_next(); it.next()) {
s_list *siglist = SX_AS_LIST(it.get());
if (siglist == NULL) {
ir_read_error(st, list, "Expected (function (signature ...) ...)");
return NULL;
}
 
s_symbol *tag = SX_AS_SYMBOL(siglist->subexpressions.get_head());
if (tag == NULL || strcmp(tag->value(), "signature") != 0) {
ir_read_error(st, siglist, "Expected (signature ...)");
return NULL;
}
 
read_function_sig(st, f, siglist, skip_body);
}
return added ? f : NULL;
}
 
static void
read_function_sig(_mesa_glsl_parse_state *st, ir_function *f, s_list *list,
bool skip_body)
{
void *ctx = st;
if (list->length() != 4) {
ir_read_error(st, list, "Expected (signature <type> (parameters ...) "
"(<instruction> ...))");
return;
}
 
s_expression *type_expr = (s_expression*) list->subexpressions.head->next;
const glsl_type *return_type = read_type(st, type_expr);
if (return_type == NULL)
return;
 
s_list *paramlist = SX_AS_LIST(type_expr->next);
s_list *body_list = SX_AS_LIST(type_expr->next->next);
if (paramlist == NULL || body_list == NULL) {
ir_read_error(st, list, "Expected (signature <type> (parameters ...) "
"(<instruction> ...))");
return;
}
s_symbol *paramtag = SX_AS_SYMBOL(paramlist->subexpressions.get_head());
if (paramtag == NULL || strcmp(paramtag->value(), "parameters") != 0) {
ir_read_error(st, paramlist, "Expected (parameters ...)");
return;
}
 
// Read the parameters list into a temporary place.
exec_list hir_parameters;
st->symbols->push_scope();
 
exec_list_iterator it = paramlist->subexpressions.iterator();
for (it.next() /* skip "parameters" */; it.has_next(); it.next()) {
s_list *decl = SX_AS_LIST(it.get());
ir_variable *var = read_declaration(st, decl);
if (var == NULL)
return;
 
hir_parameters.push_tail(var);
}
 
ir_function_signature *sig = f->exact_matching_signature(&hir_parameters);
if (sig == NULL && skip_body) {
/* If scanning for prototypes, generate a new signature. */
sig = new(ctx) ir_function_signature(return_type);
sig->is_builtin = true;
f->add_signature(sig);
} else if (sig != NULL) {
const char *badvar = sig->qualifiers_match(&hir_parameters);
if (badvar != NULL) {
ir_read_error(st, list, "function `%s' parameter `%s' qualifiers "
"don't match prototype", f->name, badvar);
return;
}
 
if (sig->return_type != return_type) {
ir_read_error(st, list, "function `%s' return type doesn't "
"match prototype", f->name);
return;
}
} else {
/* No prototype for this body exists - skip it. */
st->symbols->pop_scope();
return;
}
assert(sig != NULL);
 
sig->replace_parameters(&hir_parameters);
 
if (!skip_body && !body_list->subexpressions.is_empty()) {
if (sig->is_defined) {
ir_read_error(st, list, "function %s redefined", f->name);
return;
}
st->current_function = sig;
read_instructions(st, &sig->body, body_list, NULL);
st->current_function = NULL;
sig->is_defined = true;
}
 
st->symbols->pop_scope();
}
 
static void
read_instructions(_mesa_glsl_parse_state *st, exec_list *instructions,
s_expression *expr, ir_loop *loop_ctx)
{
// Read in a list of instructions
s_list *list = SX_AS_LIST(expr);
if (list == NULL) {
ir_read_error(st, expr, "Expected (<instruction> ...); found an atom.");
return;
}
 
foreach_iter(exec_list_iterator, it, list->subexpressions) {
s_expression *sub = (s_expression*) it.get();
ir_instruction *ir = read_instruction(st, sub, loop_ctx);
if (ir != NULL) {
/* Global variable declarations should be moved to the top, before
* any functions that might use them. Functions are added to the
* instruction stream when scanning for prototypes, so without this
* hack, they always appear before variable declarations.
*/
if (st->current_function == NULL && ir->as_variable() != NULL)
instructions->push_head(ir);
else
instructions->push_tail(ir);
}
}
}
 
 
static ir_instruction *
read_instruction(_mesa_glsl_parse_state *st, s_expression *expr,
ir_loop *loop_ctx)
{
void *ctx = st;
s_symbol *symbol = SX_AS_SYMBOL(expr);
if (symbol != NULL) {
if (strcmp(symbol->value(), "break") == 0 && loop_ctx != NULL)
return new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
if (strcmp(symbol->value(), "continue") == 0 && loop_ctx != NULL)
return new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
}
 
s_list *list = SX_AS_LIST(expr);
if (list == NULL || list->subexpressions.is_empty()) {
ir_read_error(st, expr, "Invalid instruction.\n");
return NULL;
}
 
s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
if (tag == NULL) {
ir_read_error(st, expr, "expected instruction tag");
return NULL;
}
 
ir_instruction *inst = NULL;
if (strcmp(tag->value(), "declare") == 0) {
inst = read_declaration(st, list);
} else if (strcmp(tag->value(), "assign") == 0) {
inst = read_assignment(st, list);
} else if (strcmp(tag->value(), "if") == 0) {
inst = read_if(st, list, loop_ctx);
} else if (strcmp(tag->value(), "loop") == 0) {
inst = read_loop(st, list);
} else if (strcmp(tag->value(), "return") == 0) {
inst = read_return(st, list);
} else if (strcmp(tag->value(), "function") == 0) {
inst = read_function(st, list, false);
} else {
inst = read_rvalue(st, list);
if (inst == NULL)
ir_read_error(st, NULL, "when reading instruction");
}
return inst;
}
 
 
static ir_variable *
read_declaration(_mesa_glsl_parse_state *st, s_list *list)
{
void *ctx = st;
if (list->length() != 4) {
ir_read_error(st, list, "expected (declare (<qualifiers>) <type> "
"<name>)");
return NULL;
}
 
s_list *quals = SX_AS_LIST(list->subexpressions.head->next);
if (quals == NULL) {
ir_read_error(st, list, "expected a list of variable qualifiers");
return NULL;
}
 
s_expression *type_expr = (s_expression*) quals->next;
const glsl_type *type = read_type(st, type_expr);
if (type == NULL)
return NULL;
 
s_symbol *var_name = SX_AS_SYMBOL(type_expr->next);
if (var_name == NULL) {
ir_read_error(st, list, "expected variable name, found non-symbol");
return NULL;
}
 
ir_variable *var = new(ctx) ir_variable(type, var_name->value(),
ir_var_auto);
 
foreach_iter(exec_list_iterator, it, quals->subexpressions) {
s_symbol *qualifier = SX_AS_SYMBOL(it.get());
if (qualifier == NULL) {
ir_read_error(st, list, "qualifier list must contain only symbols");
delete var;
return NULL;
}
 
// FINISHME: Check for duplicate/conflicting qualifiers.
if (strcmp(qualifier->value(), "centroid") == 0) {
var->centroid = 1;
} else if (strcmp(qualifier->value(), "invariant") == 0) {
var->invariant = 1;
} else if (strcmp(qualifier->value(), "uniform") == 0) {
var->mode = ir_var_uniform;
} else if (strcmp(qualifier->value(), "auto") == 0) {
var->mode = ir_var_auto;
} else if (strcmp(qualifier->value(), "in") == 0) {
var->mode = ir_var_in;
} else if (strcmp(qualifier->value(), "out") == 0) {
var->mode = ir_var_out;
} else if (strcmp(qualifier->value(), "inout") == 0) {
var->mode = ir_var_inout;
} else if (strcmp(qualifier->value(), "smooth") == 0) {
var->interpolation = ir_var_smooth;
} else if (strcmp(qualifier->value(), "flat") == 0) {
var->interpolation = ir_var_flat;
} else if (strcmp(qualifier->value(), "noperspective") == 0) {
var->interpolation = ir_var_noperspective;
} else {
ir_read_error(st, list, "unknown qualifier: %s", qualifier->value());
delete var;
return NULL;
}
}
 
// Add the variable to the symbol table
st->symbols->add_variable(var);
 
return var;
}
 
 
static ir_if *
read_if(_mesa_glsl_parse_state *st, s_list *list, ir_loop *loop_ctx)
{
void *ctx = st;
if (list->length() != 4) {
ir_read_error(st, list, "expected (if <condition> (<then> ...) "
"(<else> ...))");
return NULL;
}
 
s_expression *cond_expr = (s_expression*) list->subexpressions.head->next;
ir_rvalue *condition = read_rvalue(st, cond_expr);
if (condition == NULL) {
ir_read_error(st, NULL, "when reading condition of (if ...)");
return NULL;
}
 
s_expression *then_expr = (s_expression*) cond_expr->next;
s_expression *else_expr = (s_expression*) then_expr->next;
 
ir_if *iff = new(ctx) ir_if(condition);
 
read_instructions(st, &iff->then_instructions, then_expr, loop_ctx);
read_instructions(st, &iff->else_instructions, else_expr, loop_ctx);
if (st->error) {
delete iff;
iff = NULL;
}
return iff;
}
 
 
static ir_loop *
read_loop(_mesa_glsl_parse_state *st, s_list *list)
{
void *ctx = st;
if (list->length() != 6) {
ir_read_error(st, list, "expected (loop <counter> <from> <to> "
"<increment> <body>)");
return NULL;
}
 
s_expression *count_expr = (s_expression*) list->subexpressions.head->next;
s_expression *from_expr = (s_expression*) count_expr->next;
s_expression *to_expr = (s_expression*) from_expr->next;
s_expression *inc_expr = (s_expression*) to_expr->next;
s_expression *body_expr = (s_expression*) inc_expr->next;
 
// FINISHME: actually read the count/from/to fields.
 
ir_loop *loop = new(ctx) ir_loop;
read_instructions(st, &loop->body_instructions, body_expr, loop);
if (st->error) {
delete loop;
loop = NULL;
}
return loop;
}
 
 
static ir_return *
read_return(_mesa_glsl_parse_state *st, s_list *list)
{
void *ctx = st;
if (list->length() != 2) {
ir_read_error(st, list, "expected (return <rvalue>)");
return NULL;
}
 
s_expression *expr = (s_expression*) list->subexpressions.head->next;
 
ir_rvalue *retval = read_rvalue(st, expr);
if (retval == NULL) {
ir_read_error(st, NULL, "when reading return value");
return NULL;
}
 
return new(ctx) ir_return(retval);
}
 
 
static ir_rvalue *
read_rvalue(_mesa_glsl_parse_state *st, s_expression *expr)
{
s_list *list = SX_AS_LIST(expr);
if (list == NULL || list->subexpressions.is_empty())
return NULL;
 
s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head());
if (tag == NULL) {
ir_read_error(st, expr, "expected rvalue tag");
return NULL;
}
 
ir_rvalue *rvalue = read_dereference(st, list);
if (rvalue != NULL || st->error)
return rvalue;
else if (strcmp(tag->value(), "swiz") == 0) {
rvalue = read_swizzle(st, list);
} else if (strcmp(tag->value(), "expression") == 0) {
rvalue = read_expression(st, list);
} else if (strcmp(tag->value(), "call") == 0) {
rvalue = read_call(st, list);
} else if (strcmp(tag->value(), "constant") == 0) {
rvalue = read_constant(st, list);
} else {
rvalue = read_texture(st, list);
if (rvalue == NULL && !st->error)
ir_read_error(st, expr, "unrecognized rvalue tag: %s", tag->value());
}
 
return rvalue;
}
 
static ir_assignment *
read_assignment(_mesa_glsl_parse_state *st, s_list *list)
{
void *ctx = st;
if (list->length() != 5) {
ir_read_error(st, list, "expected (assign <condition> (<write mask>) "
"<lhs> <rhs>)");
return NULL;
}
 
s_expression *cond_expr = (s_expression*) list->subexpressions.head->next;
s_list *mask_list = SX_AS_LIST(cond_expr->next);
s_expression *lhs_expr = (s_expression*) cond_expr->next->next;
s_expression *rhs_expr = (s_expression*) lhs_expr->next;
 
ir_rvalue *condition = read_rvalue(st, cond_expr);
if (condition == NULL) {
ir_read_error(st, NULL, "when reading condition of assignment");
return NULL;
}
 
if (mask_list == NULL || mask_list->length() > 1) {
ir_read_error(st, mask_list, "expected () or (<write mask>)");
return NULL;
}
 
unsigned mask = 0;
if (mask_list->length() == 1) {
s_symbol *mask_symbol = SX_AS_SYMBOL(mask_list->subexpressions.head);
if (mask_symbol == NULL) {
ir_read_error(st, list, "expected a write mask; found non-symbol");
return NULL;
}
 
const char *mask_str = mask_symbol->value();
unsigned mask_length = strlen(mask_str);
if (mask_length > 4) {
ir_read_error(st, list, "invalid write mask: %s", mask_str);
return NULL;
}
 
const unsigned idx_map[] = { 3, 0, 1, 2 }; /* w=bit 3, x=0, y=1, z=2 */
 
for (unsigned i = 0; i < mask_length; i++) {
if (mask_str[i] < 'w' || mask_str[i] > 'z') {
ir_read_error(st, list, "write mask contains invalid character: %c",
mask_str[i]);
return NULL;
}
mask |= 1 << idx_map[mask_str[i] - 'w'];
}
}
 
ir_dereference *lhs = read_dereference(st, lhs_expr);
if (lhs == NULL) {
ir_read_error(st, NULL, "when reading left-hand side of assignment");
return NULL;
}
 
ir_rvalue *rhs = read_rvalue(st, rhs_expr);
if (rhs == NULL) {
ir_read_error(st, NULL, "when reading right-hand side of assignment");
return NULL;
}
 
if (mask == 0 && (lhs->type->is_vector() || lhs->type->is_scalar())) {
ir_read_error(st, list, "non-zero write mask required.");
return NULL;
}
 
return new(ctx) ir_assignment(lhs, rhs, condition, mask);
}
 
static ir_call *
read_call(_mesa_glsl_parse_state *st, s_list *list)
{
void *ctx = st;
if (list->length() != 3) {
ir_read_error(st, list, "expected (call <name> (<param> ...))");
return NULL;
}
 
s_symbol *name = SX_AS_SYMBOL(list->subexpressions.head->next);
s_list *params = SX_AS_LIST(list->subexpressions.head->next->next);
if (name == NULL || params == NULL) {
ir_read_error(st, list, "expected (call <name> (<param> ...))");
return NULL;
}
 
exec_list parameters;
 
foreach_iter(exec_list_iterator, it, params->subexpressions) {
s_expression *expr = (s_expression*) it.get();
ir_rvalue *param = read_rvalue(st, expr);
if (param == NULL) {
ir_read_error(st, list, "when reading parameter to function call");
return NULL;
}
parameters.push_tail(param);
}
 
ir_function *f = st->symbols->get_function(name->value());
if (f == NULL) {
ir_read_error(st, list, "found call to undefined function %s",
name->value());
return NULL;
}
 
ir_function_signature *callee = f->matching_signature(&parameters);
if (callee == NULL) {
ir_read_error(st, list, "couldn't find matching signature for function "
"%s", name->value());
return NULL;
}
 
return new(ctx) ir_call(callee, &parameters);
}
 
static ir_expression *
read_expression(_mesa_glsl_parse_state *st, s_list *list)
{
void *ctx = st;
const unsigned list_length = list->length();
if (list_length < 4) {
ir_read_error(st, list, "expected (expression <type> <operator> "
"<operand> [<operand>])");
return NULL;
}
 
s_expression *type_expr = (s_expression*) list->subexpressions.head->next;
const glsl_type *type = read_type(st, type_expr);
if (type == NULL)
return NULL;
 
/* Read the operator */
s_symbol *op_sym = SX_AS_SYMBOL(type_expr->next);
if (op_sym == NULL) {
ir_read_error(st, list, "expected operator, found non-symbol");
return NULL;
}
 
ir_expression_operation op = ir_expression::get_operator(op_sym->value());
if (op == (ir_expression_operation) -1) {
ir_read_error(st, list, "invalid operator: %s", op_sym->value());
return NULL;
}
/* Now that we know the operator, check for the right number of operands */
if (ir_expression::get_num_operands(op) == 2) {
if (list_length != 5) {
ir_read_error(st, list, "expected (expression <type> %s <operand> "
" <operand>)", op_sym->value());
return NULL;
}
} else {
if (list_length != 4) {
ir_read_error(st, list, "expected (expression <type> %s <operand>)",
op_sym->value());
return NULL;
}
}
 
s_expression *exp1 = (s_expression*) (op_sym->next);
ir_rvalue *arg1 = read_rvalue(st, exp1);
if (arg1 == NULL) {
ir_read_error(st, NULL, "when reading first operand of %s",
op_sym->value());
return NULL;
}
 
ir_rvalue *arg2 = NULL;
if (ir_expression::get_num_operands(op) == 2) {
s_expression *exp2 = (s_expression*) (exp1->next);
arg2 = read_rvalue(st, exp2);
if (arg2 == NULL) {
ir_read_error(st, NULL, "when reading second operand of %s",
op_sym->value());
return NULL;
}
}
 
return new(ctx) ir_expression(op, type, arg1, arg2);
}
 
static ir_swizzle *
read_swizzle(_mesa_glsl_parse_state *st, s_list *list)
{
if (list->length() != 3) {
ir_read_error(st, list, "expected (swiz <swizzle> <rvalue>)");
return NULL;
}
 
s_symbol *swiz = SX_AS_SYMBOL(list->subexpressions.head->next);
if (swiz == NULL) {
ir_read_error(st, list, "expected a valid swizzle; found non-symbol");
return NULL;
}
 
if (strlen(swiz->value()) > 4) {
ir_read_error(st, list, "expected a valid swizzle; found %s",
swiz->value());
return NULL;
}
 
s_expression *sub = (s_expression*) swiz->next;
ir_rvalue *rvalue = read_rvalue(st, sub);
if (rvalue == NULL)
return NULL;
 
ir_swizzle *ir = ir_swizzle::create(rvalue, swiz->value(),
rvalue->type->vector_elements);
if (ir == NULL)
ir_read_error(st, list, "invalid swizzle");
 
return ir;
}
 
static ir_constant *
read_constant(_mesa_glsl_parse_state *st, s_list *list)
{
void *ctx = st;
if (list->length() != 3) {
ir_read_error(st, list, "expected (constant <type> (...))");
return NULL;
}
 
s_expression *type_expr = (s_expression*) list->subexpressions.head->next;
const glsl_type *type = read_type(st, type_expr);
if (type == NULL)
return NULL;
 
s_list *values = SX_AS_LIST(type_expr->next);
if (values == NULL) {
ir_read_error(st, list, "expected (constant <type> (...))");
return NULL;
}
 
if (type->is_array()) {
const unsigned elements_supplied = values->length();
if (elements_supplied != type->length) {
ir_read_error(st, values, "expected exactly %u array elements, "
"given %u", type->length, elements_supplied);
return NULL;
}
 
exec_list elements;
foreach_iter(exec_list_iterator, it, values->subexpressions) {
s_expression *expr = (s_expression *) it.get();
s_list *elt = SX_AS_LIST(expr);
if (elt == NULL) {
ir_read_error(st, expr, "expected (constant ...) array element");
return NULL;
}
 
ir_constant *ir_elt = read_constant(st, elt);
if (ir_elt == NULL)
return NULL;
elements.push_tail(ir_elt);
}
return new(ctx) ir_constant(type, &elements);
}
 
const glsl_type *const base_type = type->get_base_type();
 
ir_constant_data data = { { 0 } };
 
// Read in list of values (at most 16).
int k = 0;
foreach_iter(exec_list_iterator, it, values->subexpressions) {
if (k >= 16) {
ir_read_error(st, values, "expected at most 16 numbers");
return NULL;
}
 
s_expression *expr = (s_expression*) it.get();
 
if (base_type->base_type == GLSL_TYPE_FLOAT) {
s_number *value = SX_AS_NUMBER(expr);
if (value == NULL) {
ir_read_error(st, values, "expected numbers");
return NULL;
}
data.f[k] = value->fvalue();
} else {
s_int *value = SX_AS_INT(expr);
if (value == NULL) {
ir_read_error(st, values, "expected integers");
return NULL;
}
 
switch (base_type->base_type) {
case GLSL_TYPE_UINT: {
data.u[k] = value->value();
break;
}
case GLSL_TYPE_INT: {
data.i[k] = value->value();
break;
}
case GLSL_TYPE_BOOL: {
data.b[k] = value->value();
break;
}
default:
ir_read_error(st, values, "unsupported constant type");
return NULL;
}
}
++k;
}
 
return new(ctx) ir_constant(type, &data);
}
 
static ir_dereference *
read_dereference(_mesa_glsl_parse_state *st, s_expression *expr)
{
s_list *list = SX_AS_LIST(expr);
if (list == NULL || list->subexpressions.is_empty())
return NULL;
 
s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.head);
assert(tag != NULL);
 
if (strcmp(tag->value(), "var_ref") == 0)
return read_var_ref(st, list);
if (strcmp(tag->value(), "array_ref") == 0)
return read_array_ref(st, list);
if (strcmp(tag->value(), "record_ref") == 0)
return read_record_ref(st, list);
return NULL;
}
 
static ir_dereference_variable *
read_var_ref(_mesa_glsl_parse_state *st, s_list *list)
{
void *ctx = st;
if (list->length() != 2) {
ir_read_error(st, list, "expected (var_ref <variable name>)");
return NULL;
}
s_symbol *var_name = SX_AS_SYMBOL(list->subexpressions.head->next);
if (var_name == NULL) {
ir_read_error(st, list, "expected (var_ref <variable name>)");
return NULL;
}
 
ir_variable *var = st->symbols->get_variable(var_name->value());
if (var == NULL) {
ir_read_error(st, list, "undeclared variable: %s", var_name->value());
return NULL;
}
 
return new(ctx) ir_dereference_variable(var);
}
 
static ir_dereference_array *
read_array_ref(_mesa_glsl_parse_state *st, s_list *list)
{
void *ctx = st;
if (list->length() != 3) {
ir_read_error(st, list, "expected (array_ref <rvalue> <index>)");
return NULL;
}
 
s_expression *subj_expr = (s_expression*) list->subexpressions.head->next;
ir_rvalue *subject = read_rvalue(st, subj_expr);
if (subject == NULL) {
ir_read_error(st, NULL, "when reading the subject of an array_ref");
return NULL;
}
 
s_expression *idx_expr = (s_expression*) subj_expr->next;
ir_rvalue *idx = read_rvalue(st, idx_expr);
return new(ctx) ir_dereference_array(subject, idx);
}
 
static ir_dereference_record *
read_record_ref(_mesa_glsl_parse_state *st, s_list *list)
{
void *ctx = st;
if (list->length() != 3) {
ir_read_error(st, list, "expected (record_ref <rvalue> <field>)");
return NULL;
}
 
s_expression *subj_expr = (s_expression*) list->subexpressions.head->next;
ir_rvalue *subject = read_rvalue(st, subj_expr);
if (subject == NULL) {
ir_read_error(st, NULL, "when reading the subject of a record_ref");
return NULL;
}
 
s_symbol *field = SX_AS_SYMBOL(subj_expr->next);
if (field == NULL) {
ir_read_error(st, list, "expected (record_ref ... <field name>)");
return NULL;
}
return new(ctx) ir_dereference_record(subject, field->value());
}
 
static bool
valid_texture_list_length(ir_texture_opcode op, s_list *list)
{
unsigned required_length = 7;
if (op == ir_txf)
required_length = 5;
else if (op == ir_tex)
required_length = 6;
 
return list->length() == required_length;
}
 
static ir_texture *
read_texture(_mesa_glsl_parse_state *st, s_list *list)
{
void *ctx = st;
s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.head);
assert(tag != NULL);
 
ir_texture_opcode op = ir_texture::get_opcode(tag->value());
if (op == (ir_texture_opcode) -1)
return NULL;
 
if (!valid_texture_list_length(op, list)) {
ir_read_error(st, NULL, "invalid list size in (%s ...)", tag->value());
return NULL;
}
 
ir_texture *tex = new(ctx) ir_texture(op);
 
// Read sampler (must be a deref)
s_expression *sampler_expr = (s_expression *) tag->next;
ir_dereference *sampler = read_dereference(st, sampler_expr);
if (sampler == NULL) {
ir_read_error(st, NULL, "when reading sampler in (%s ...)", tag->value());
return NULL;
}
tex->set_sampler(sampler);
 
// Read coordinate (any rvalue)
s_expression *coordinate_expr = (s_expression *) sampler_expr->next;
tex->coordinate = read_rvalue(st, coordinate_expr);
if (tex->coordinate == NULL) {
ir_read_error(st, NULL, "when reading coordinate in (%s ...)",
tag->value());
return NULL;
}
 
// Read texel offset, i.e. (0 0 0)
s_list *offset_list = SX_AS_LIST(coordinate_expr->next);
if (offset_list == NULL || offset_list->length() != 3) {
ir_read_error(st, offset_list, "expected (<int> <int> <int>)");
return NULL;
}
s_int *offset_x = SX_AS_INT(offset_list->subexpressions.head);
s_int *offset_y = SX_AS_INT(offset_list->subexpressions.head->next);
s_int *offset_z = SX_AS_INT(offset_list->subexpressions.head->next->next);
if (offset_x == NULL || offset_y == NULL || offset_z == NULL) {
ir_read_error(st, offset_list, "expected (<int> <int> <int>)");
return NULL;
}
tex->offsets[0] = offset_x->value();
tex->offsets[1] = offset_y->value();
tex->offsets[2] = offset_z->value();
 
if (op == ir_txf) {
s_expression *lod_expr = (s_expression *) offset_list->next;
tex->lod_info.lod = read_rvalue(st, lod_expr);
if (tex->lod_info.lod == NULL) {
ir_read_error(st, NULL, "when reading LOD in (txf ...)");
return NULL;
}
} else {
s_expression *proj_expr = (s_expression *) offset_list->next;
s_int *proj_as_int = SX_AS_INT(proj_expr);
if (proj_as_int && proj_as_int->value() == 1) {
tex->projector = NULL;
} else {
tex->projector = read_rvalue(st, proj_expr);
if (tex->projector == NULL) {
ir_read_error(st, NULL, "when reading projective divide in (%s ..)",
tag->value());
return NULL;
}
}
 
s_list *shadow_list = SX_AS_LIST(proj_expr->next);
if (shadow_list == NULL) {
ir_read_error(st, NULL, "shadow comparitor must be a list");
return NULL;
}
if (shadow_list->subexpressions.is_empty()) {
tex->shadow_comparitor= NULL;
} else {
tex->shadow_comparitor = read_rvalue(st, shadow_list);
if (tex->shadow_comparitor == NULL) {
ir_read_error(st, NULL, "when reading shadow comparitor in (%s ..)",
tag->value());
return NULL;
}
}
s_expression *lod_expr = (s_expression *) shadow_list->next;
 
switch (op) {
case ir_txb:
tex->lod_info.bias = read_rvalue(st, lod_expr);
if (tex->lod_info.bias == NULL) {
ir_read_error(st, NULL, "when reading LOD bias in (txb ...)");
return NULL;
}
break;
case ir_txl:
tex->lod_info.lod = read_rvalue(st, lod_expr);
if (tex->lod_info.lod == NULL) {
ir_read_error(st, NULL, "when reading LOD in (txl ...)");
return NULL;
}
break;
case ir_txd: {
s_list *lod_list = SX_AS_LIST(lod_expr);
if (lod_list->length() != 2) {
ir_read_error(st, lod_expr, "expected (dPdx dPdy) in (txd ...)");
return NULL;
}
s_expression *dx_expr = (s_expression *) lod_list->subexpressions.head;
s_expression *dy_expr = (s_expression *) dx_expr->next;
 
tex->lod_info.grad.dPdx = read_rvalue(st, dx_expr);
if (tex->lod_info.grad.dPdx == NULL) {
ir_read_error(st, NULL, "when reading dPdx in (txd ...)");
return NULL;
}
tex->lod_info.grad.dPdy = read_rvalue(st, dy_expr);
if (tex->lod_info.grad.dPdy == NULL) {
ir_read_error(st, NULL, "when reading dPdy in (txd ...)");
return NULL;
}
break;
}
default:
// tex doesn't have any extra parameters and txf was handled earlier.
break;
};
}
return tex;
}