Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 4126 → Rev 4245

/drivers/video/Intel-2D/drm.h
File deleted
/drivers/video/Intel-2D/i915_drm.h
File deleted
/drivers/video/Intel-2D/gen3_render.c
1912,11 → 1912,11
tmp->floats_per_vertex += tmp->src.is_affine ? 2 : 4;
if (!is_constant_ps(tmp->mask.u.gen3.type))
tmp->floats_per_vertex += tmp->mask.is_affine ? 2 : 4;
DBG(("%s: floats_per_vertex = 2 + %d + %d = %d [specialised emitter? %d]\n", __FUNCTION__,
!is_constant_ps(tmp->src.u.gen3.type) ? tmp->src.is_affine ? 2 : 4 : 0,
!is_constant_ps(tmp->mask.u.gen3.type) ? tmp->mask.is_affine ? 2 : 4 : 0,
tmp->floats_per_vertex,
tmp->prim_emit != gen3_emit_composite_primitive));
// DBG(("%s: floats_per_vertex = 2 + %d + %d = %d [specialised emitter? %d]\n", __FUNCTION__,
// !is_constant_ps(tmp->src.u.gen3.type) ? tmp->src.is_affine ? 2 : 4 : 0,
// !is_constant_ps(tmp->mask.u.gen3.type) ? tmp->mask.is_affine ? 2 : 4 : 0,
// tmp->floats_per_vertex,
// tmp->prim_emit != gen3_emit_composite_primitive));
tmp->floats_per_rect = 3 * tmp->floats_per_vertex;
 
tmp->blt = gen3_render_composite_blt;
/drivers/video/Intel-2D/kgem-sna.c
75,7 → 75,7
#define DEBUG_SYNC 0
#endif
 
#define SHOW_BATCH 0
#define SHOW_BATCH 1
 
#if 0
#define ASSERT_IDLE(kgem__, handle__) assert(!__kgem_busy(kgem__, handle__))
136,7 → 136,7
uint32_t cacheing;
};
 
#define LOCAL_IOCTL_I915_GEM_SET_CACHEING SRV_I915_GEM_SET_CACHEING
#define LOCAL_IOCTL_I915_GEM_SET_CACHEING SRV_I915_GEM_SET_CACHING
 
struct local_fbinfo {
int width;
3913,7 → 3913,49
}
}
 
void *kgem_bo_map__async(struct kgem *kgem, struct kgem_bo *bo)
{
void *ptr;
 
DBG(("%s: handle=%d, offset=%d, tiling=%d, map=%p, domain=%d\n", __FUNCTION__,
bo->handle, bo->presumed_offset, bo->tiling, bo->map, bo->domain));
 
assert(!bo->purged);
assert(bo->proxy == NULL);
assert(list_is_empty(&bo->list));
 
if (bo->tiling == I915_TILING_NONE && !bo->scanout && kgem->has_llc) {
DBG(("%s: converting request for GTT map into CPU map\n",
__FUNCTION__));
return kgem_bo_map__cpu(kgem, bo);
}
 
if (IS_CPU_MAP(bo->map))
kgem_bo_release_map(kgem, bo);
 
ptr = bo->map;
if (ptr == NULL) {
assert(kgem_bo_size(bo) <= kgem->aperture_mappable / 2);
 
kgem_trim_vma_cache(kgem, MAP_GTT, bucket(bo));
 
ptr = __kgem_bo_map__gtt(kgem, bo);
if (ptr == NULL)
return NULL;
 
/* Cache this mapping to avoid the overhead of an
* excruciatingly slow GTT pagefault. This is more an
* issue with compositing managers which need to frequently
* flush CPU damage to their GPU bo.
*/
bo->map = ptr;
DBG(("%s: caching GTT vma for %d\n", __FUNCTION__, bo->handle));
}
 
return ptr;
}
 
 
void *kgem_bo_map(struct kgem *kgem, struct kgem_bo *bo)
{
void *ptr;
4015,6 → 4057,10
return ptr;
}
 
void *kgem_bo_map__debug(struct kgem *kgem, struct kgem_bo *bo)
{
return kgem_bo_map__async(kgem, bo);
}
 
void *kgem_bo_map__cpu(struct kgem *kgem, struct kgem_bo *bo)
{
/drivers/video/Intel-2D/kgem.h
28,7 → 28,7
#ifndef KGEM_H
#define KGEM_H
 
#define HAS_DEBUG_FULL 0
#define HAS_DEBUG_FULL 1
 
#include <stdint.h>
#include <stdbool.h>
40,14 → 40,6
#include "compiler.h"
#include "intel_list.h"
 
static inline void delay(uint32_t time)
{
__asm__ __volatile__(
"int $0x40"
::"a"(5), "b"(time)
:"memory");
};
 
#undef DBG
 
#if HAS_DEBUG_FULL
/drivers/video/Intel-2D/kgem_debug.c
0,0 → 1,451
/*
* Copyright © 2007-2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
 
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
 
//#include <sys/mman.h>
#include <assert.h>
 
#include "sna.h"
#include "sna_reg.h"
 
#include "kgem_debug.h"
 
#include <kos32sys.h>
 
/*
void
ErrorF(const char *f, ...)
{
va_list args;
 
va_start(args, f);
VErrorF(f, args);
va_end(args);
}
*/
 
#define ErrorF printf
 
struct drm_i915_gem_relocation_entry *
kgem_debug_get_reloc_entry(struct kgem *kgem, uint32_t offset)
{
int i;
 
offset *= sizeof(uint32_t);
 
for (i = 0; i < kgem->nreloc; i++)
if (kgem->reloc[i].offset == offset)
return kgem->reloc+i;
 
assert(!"valid relocation entry, unknown batch offset");
return NULL;
}
 
struct kgem_bo *
kgem_debug_get_bo_for_reloc_entry(struct kgem *kgem,
struct drm_i915_gem_relocation_entry *reloc)
{
struct kgem_bo *bo;
 
if (reloc == NULL)
return NULL;
 
list_for_each_entry(bo, &kgem->next_request->buffers, request)
if (bo->target_handle == reloc->target_handle && bo->proxy == NULL)
break;
 
assert(&bo->request != &kgem->next_request->buffers);
 
return bo;
}
 
static int kgem_debug_handle_is_fenced(struct kgem *kgem, uint32_t handle)
{
int i;
 
if (kgem->has_handle_lut)
return kgem->exec[handle].flags & EXEC_OBJECT_NEEDS_FENCE;
 
for (i = 0; i < kgem->nexec; i++)
if (kgem->exec[i].handle == handle)
return kgem->exec[i].flags & EXEC_OBJECT_NEEDS_FENCE;
 
return 0;
}
 
static int kgem_debug_handle_tiling(struct kgem *kgem, uint32_t handle)
{
struct kgem_bo *bo;
 
list_for_each_entry(bo, &kgem->next_request->buffers, request)
if (bo->target_handle == handle)
return bo->tiling;
 
return 0;
}
 
void
kgem_debug_print(const uint32_t *data,
uint32_t offset, unsigned int index,
const char *fmt, ...)
{
va_list va;
char buf[240];
int len;
 
len = snprintf(buf, sizeof(buf),
"0x%08x: 0x%08x: %s",
(offset + index) * 4,
data[index],
index == 0 ? "" : " ");
 
va_start(va, fmt);
vsnprintf(buf + len, sizeof(buf) - len, fmt, va);
va_end(va);
 
ErrorF("%s", buf);
delay(1);
}
 
static int
decode_nop(struct kgem *kgem, uint32_t offset)
{
uint32_t *data = kgem->batch + offset;
kgem_debug_print(data, offset, 0, "UNKNOWN\n");
assert(0);
return 1;
}
 
static int
decode_mi(struct kgem *kgem, uint32_t offset)
{
static const struct {
uint32_t opcode;
int len_mask;
int min_len;
int max_len;
const char *name;
} opcodes[] = {
{ 0x08, 0, 1, 1, "MI_ARB_ON_OFF" },
{ 0x0a, 0, 1, 1, "MI_BATCH_BUFFER_END" },
{ 0x30, 0x3f, 3, 3, "MI_BATCH_BUFFER" },
{ 0x31, 0x3f, 2, 2, "MI_BATCH_BUFFER_START" },
{ 0x14, 0x3f, 3, 3, "MI_DISPLAY_BUFFER_INFO" },
{ 0x04, 0, 1, 1, "MI_FLUSH" },
{ 0x22, 0x1f, 3, 3, "MI_LOAD_REGISTER_IMM" },
{ 0x13, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_EXCL" },
{ 0x12, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_INCL" },
{ 0x00, 0, 1, 1, "MI_NOOP" },
{ 0x11, 0x3f, 2, 2, "MI_OVERLAY_FLIP" },
{ 0x07, 0, 1, 1, "MI_REPORT_HEAD" },
{ 0x18, 0x3f, 2, 2, "MI_SET_CONTEXT" },
{ 0x20, 0x3f, 3, 4, "MI_STORE_DATA_IMM" },
{ 0x21, 0x3f, 3, 4, "MI_STORE_DATA_INDEX" },
{ 0x24, 0x3f, 3, 3, "MI_STORE_REGISTER_MEM" },
{ 0x02, 0, 1, 1, "MI_USER_INTERRUPT" },
{ 0x03, 0, 1, 1, "MI_WAIT_FOR_EVENT" },
{ 0x16, 0x7f, 3, 3, "MI_SEMAPHORE_MBOX" },
{ 0x26, 0x1f, 3, 4, "MI_FLUSH_DW" },
{ 0x0b, 0, 1, 1, "MI_SUSPEND_FLUSH" },
};
uint32_t *data = kgem->batch + offset;
int op;
 
for (op = 0; op < ARRAY_SIZE(opcodes); op++) {
if ((data[0] & 0x1f800000) >> 23 == opcodes[op].opcode) {
unsigned int len = 1, i;
 
kgem_debug_print(data, offset, 0, "%s\n", opcodes[op].name);
if (opcodes[op].max_len > 1) {
len = (data[0] & opcodes[op].len_mask) + 2;
if (len < opcodes[op].min_len ||
len > opcodes[op].max_len)
{
ErrorF("Bad length (%d) in %s, [%d, %d]\n",
len, opcodes[op].name,
opcodes[op].min_len,
opcodes[op].max_len);
assert(0);
}
}
 
for (i = 1; i < len; i++)
kgem_debug_print(data, offset, i, "dword %d\n", i);
 
return len;
}
}
 
kgem_debug_print(data, offset, 0, "MI UNKNOWN\n");
assert(0);
return 1;
}
 
static int
decode_2d(struct kgem *kgem, uint32_t offset)
{
static const struct {
uint32_t opcode;
int min_len;
int max_len;
const char *name;
} opcodes[] = {
{ 0x40, 5, 5, "COLOR_BLT" },
{ 0x43, 6, 6, "SRC_COPY_BLT" },
{ 0x01, 8, 8, "XY_SETUP_BLT" },
{ 0x11, 9, 9, "XY_SETUP_MONO_PATTERN_SL_BLT" },
{ 0x03, 3, 3, "XY_SETUP_CLIP_BLT" },
{ 0x24, 2, 2, "XY_PIXEL_BLT" },
{ 0x25, 3, 3, "XY_SCANLINES_BLT" },
{ 0x26, 4, 4, "Y_TEXT_BLT" },
{ 0x31, 5, 134, "XY_TEXT_IMMEDIATE_BLT" },
{ 0x50, 6, 6, "XY_COLOR_BLT" },
{ 0x51, 6, 6, "XY_PAT_BLT" },
{ 0x76, 8, 8, "XY_PAT_CHROMA_BLT" },
{ 0x72, 7, 135, "XY_PAT_BLT_IMMEDIATE" },
{ 0x77, 9, 137, "XY_PAT_CHROMA_BLT_IMMEDIATE" },
{ 0x52, 9, 9, "XY_MONO_PAT_BLT" },
{ 0x59, 7, 7, "XY_MONO_PAT_FIXED_BLT" },
{ 0x53, 8, 8, "XY_SRC_COPY_BLT" },
{ 0x54, 8, 8, "XY_MONO_SRC_COPY_BLT" },
{ 0x71, 9, 137, "XY_MONO_SRC_COPY_IMMEDIATE_BLT" },
{ 0x55, 9, 9, "XY_FULL_BLT" },
{ 0x55, 9, 137, "XY_FULL_IMMEDIATE_PATTERN_BLT" },
{ 0x56, 9, 9, "XY_FULL_MONO_SRC_BLT" },
{ 0x75, 10, 138, "XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT" },
{ 0x57, 12, 12, "XY_FULL_MONO_PATTERN_BLT" },
{ 0x58, 12, 12, "XY_FULL_MONO_PATTERN_MONO_SRC_BLT" },
};
 
unsigned int op, len;
const char *format = NULL;
uint32_t *data = kgem->batch + offset;
struct drm_i915_gem_relocation_entry *reloc;
 
/* Special case the two most common ops that we detail in full */
switch ((data[0] & 0x1fc00000) >> 22) {
case 0x50:
kgem_debug_print(data, offset, 0,
"XY_COLOR_BLT (rgb %sabled, alpha %sabled, dst tile %d)\n",
(data[0] & (1 << 20)) ? "en" : "dis",
(data[0] & (1 << 21)) ? "en" : "dis",
(data[0] >> 11) & 1);
 
len = (data[0] & 0x000000ff) + 2;
assert(len == 6);
 
switch ((data[1] >> 24) & 0x3) {
case 0:
format="8";
break;
case 1:
format="565";
break;
case 2:
format="1555";
break;
case 3:
format="8888";
break;
}
 
kgem_debug_print(data, offset, 1, "format %s, rop %x, pitch %d, "
"clipping %sabled\n", format,
(data[1] >> 16) & 0xff,
(short)(data[1] & 0xffff),
data[1] & (1 << 30) ? "en" : "dis");
kgem_debug_print(data, offset, 2, "(%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
kgem_debug_print(data, offset, 3, "(%d,%d)\n",
data[3] & 0xffff, data[3] >> 16);
reloc = kgem_debug_get_reloc_entry(kgem, offset+4);
kgem_debug_print(data, offset, 4, "dst offset 0x%08x [handle=%d, delta=%d, read=%x, write=%x (fenced? %d, tiling? %d)]\n",
data[4],
reloc->target_handle, reloc->delta,
reloc->read_domains, reloc->write_domain,
kgem_debug_handle_is_fenced(kgem, reloc->target_handle),
kgem_debug_handle_tiling(kgem, reloc->target_handle));
kgem_debug_print(data, offset, 5, "color\n");
assert(kgem->gen >= 040 ||
kgem_debug_handle_is_fenced(kgem, reloc->target_handle));
return len;
 
case 0x53:
kgem_debug_print(data, offset, 0,
"XY_SRC_COPY_BLT (rgb %sabled, alpha %sabled, "
"src tile %d, dst tile %d)\n",
(data[0] & (1 << 20)) ? "en" : "dis",
(data[0] & (1 << 21)) ? "en" : "dis",
(data[0] >> 15) & 1,
(data[0] >> 11) & 1);
 
len = (data[0] & 0x000000ff) + 2;
assert(len == 8);
 
switch ((data[1] >> 24) & 0x3) {
case 0:
format="8";
break;
case 1:
format="565";
break;
case 2:
format="1555";
break;
case 3:
format="8888";
break;
}
 
kgem_debug_print(data, offset, 1, "format %s, rop %x, dst pitch %d, "
"clipping %sabled\n", format,
(data[1] >> 16) & 0xff,
(short)(data[1] & 0xffff),
data[1] & (1 << 30) ? "en" : "dis");
kgem_debug_print(data, offset, 2, "dst (%d,%d)\n",
data[2] & 0xffff, data[2] >> 16);
kgem_debug_print(data, offset, 3, "dst (%d,%d)\n",
data[3] & 0xffff, data[3] >> 16);
reloc = kgem_debug_get_reloc_entry(kgem, offset+4);
assert(reloc);
kgem_debug_print(data, offset, 4, "dst offset 0x%08x [handle=%d, delta=%d, read=%x, write=%x, (fenced? %d, tiling? %d)]\n",
data[4],
reloc->target_handle, reloc->delta,
reloc->read_domains, reloc->write_domain,
kgem_debug_handle_is_fenced(kgem, reloc->target_handle),
kgem_debug_handle_tiling(kgem, reloc->target_handle));
assert(kgem->gen >= 040 ||
kgem_debug_handle_is_fenced(kgem, reloc->target_handle));
 
kgem_debug_print(data, offset, 5, "src (%d,%d)\n",
data[5] & 0xffff, data[5] >> 16);
kgem_debug_print(data, offset, 6, "src pitch %d\n",
(short)(data[6] & 0xffff));
reloc = kgem_debug_get_reloc_entry(kgem, offset+7);
assert(reloc);
kgem_debug_print(data, offset, 7, "src offset 0x%08x [handle=%d, delta=%d, read=%x, write=%x (fenced? %d, tiling? %d)]\n",
data[7],
reloc->target_handle, reloc->delta,
reloc->read_domains, reloc->write_domain,
kgem_debug_handle_is_fenced(kgem, reloc->target_handle),
kgem_debug_handle_tiling(kgem, reloc->target_handle));
assert(kgem->gen >= 040 ||
kgem_debug_handle_is_fenced(kgem, reloc->target_handle));
 
return len;
}
 
for (op = 0; op < ARRAY_SIZE(opcodes); op++) {
if ((data[0] & 0x1fc00000) >> 22 == opcodes[op].opcode) {
unsigned int i;
 
len = 1;
kgem_debug_print(data, offset, 0, "%s\n", opcodes[op].name);
if (opcodes[op].max_len > 1) {
len = (data[0] & 0x000000ff) + 2;
assert(len >= opcodes[op].min_len &&
len <= opcodes[op].max_len);
}
 
for (i = 1; i < len; i++)
kgem_debug_print(data, offset, i, "dword %d\n", i);
 
return len;
}
}
 
kgem_debug_print(data, offset, 0, "2D UNKNOWN\n");
assert(0);
return 1;
}
 
static int (*decode_3d(int gen))(struct kgem*, uint32_t)
{
return kgem_gen6_decode_3d;
/*
if (gen >= 0100) {
} else if (gen >= 070) {
return kgem_gen7_decode_3d;
} else if (gen >= 060) {
return kgem_gen6_decode_3d;
} else if (gen >= 050) {
return kgem_gen5_decode_3d;
} else if (gen >= 040) {
return kgem_gen4_decode_3d;
} else if (gen >= 030) {
return kgem_gen3_decode_3d;
} else if (gen >= 020) {
return kgem_gen2_decode_3d;
}
assert(0);
*/
}
 
static void (*finish_state(int gen))(struct kgem*)
{
 
return kgem_gen6_finish_state;
/*
if (gen >= 0100) {
} else if (gen >= 070) {
return kgem_gen7_finish_state;
} else if (gen >= 060) {
return kgem_gen6_finish_state;
} else if (gen >= 050) {
return kgem_gen5_finish_state;
} else if (gen >= 040) {
return kgem_gen4_finish_state;
} else if (gen >= 030) {
return kgem_gen3_finish_state;
} else if (gen >= 020) {
return kgem_gen2_finish_state;
}
assert(0);
*/
}
 
void __kgem_batch_debug(struct kgem *kgem, uint32_t nbatch)
{
int (*const decode[])(struct kgem *, uint32_t) = {
decode_mi,
decode_nop,
decode_2d,
decode_3d(kgem->gen),
};
uint32_t offset = 0;
 
while (offset < nbatch) {
int class = (kgem->batch[offset] & 0xe0000000) >> 29;
assert(class < ARRAY_SIZE(decode));
offset += decode[class](kgem, offset);
}
 
finish_state(kgem->gen)(kgem);
}
/drivers/video/Intel-2D/kgem_debug.h
0,0 → 1,34
#ifndef KGEM_DEBUG_H
#define KGEM_DEBUG_H
 
void
kgem_debug_print(const uint32_t *data,
uint32_t offset, unsigned int index,
const char *fmt, ...);
 
struct drm_i915_gem_relocation_entry *
kgem_debug_get_reloc_entry(struct kgem *kgem, uint32_t offset);
 
struct kgem_bo *
kgem_debug_get_bo_for_reloc_entry(struct kgem *kgem,
struct drm_i915_gem_relocation_entry *reloc);
 
int kgem_gen7_decode_3d(struct kgem *kgem, uint32_t offset);
void kgem_gen7_finish_state(struct kgem *kgem);
 
int kgem_gen6_decode_3d(struct kgem *kgem, uint32_t offset);
void kgem_gen6_finish_state(struct kgem *kgem);
 
int kgem_gen5_decode_3d(struct kgem *kgem, uint32_t offset);
void kgem_gen5_finish_state(struct kgem *kgem);
 
int kgem_gen4_decode_3d(struct kgem *kgem, uint32_t offset);
void kgem_gen4_finish_state(struct kgem *kgem);
 
int kgem_gen3_decode_3d(struct kgem *kgem, uint32_t offset);
void kgem_gen3_finish_state(struct kgem *kgem);
 
int kgem_gen2_decode_3d(struct kgem *kgem, uint32_t offset);
void kgem_gen2_finish_state(struct kgem *kgem);
 
#endif
/drivers/video/Intel-2D/kgem_debug_gen6.c
0,0 → 1,1077
/*
* Copyright © 2007-2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Chris Wilson <chris"chris-wilson.co.uk>
*
*/
 
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
 
//#include <sys/mman.h>
#include <assert.h>
 
#include "sna.h"
#include "sna_reg.h"
#include "gen6_render.h"
 
#include "kgem_debug.h"
 
#define ErrorF printf
 
static struct state {
struct vertex_buffer {
int handle;
const char *ptr;
int pitch;
 
struct kgem_bo *current;
} vb[33];
struct vertex_elements {
int buffer;
int offset;
bool valid;
uint32_t type;
uint8_t swizzle[4];
} ve[33];
int num_ve;
 
struct dynamic_state {
struct kgem_bo *current;
void *base, *ptr;
} dynamic_state;
} state;
 
static void gen6_update_vertex_buffer(struct kgem *kgem, const uint32_t *data)
{
uint32_t reloc = sizeof(uint32_t) * (&data[1] - kgem->batch);
struct kgem_bo *bo = NULL;
void *base;
int i;
 
for (i = 0; i < kgem->nreloc; i++)
if (kgem->reloc[i].offset == reloc)
break;
assert(i < kgem->nreloc);
reloc = kgem->reloc[i].target_handle;
 
if (reloc == -1) {
base = kgem->batch;
} else {
list_for_each_entry(bo, &kgem->next_request->buffers, request)
if (bo->target_handle == reloc)
break;
assert(&bo->request != &kgem->next_request->buffers);
base = kgem_bo_map__debug(kgem, bo);
}
 
base = (char *)base + kgem->reloc[i].delta;
i = data[0] >> 26;
 
state.vb[i].current = bo;
state.vb[i].ptr = base;
state.vb[i].pitch = data[0] & 0x7ff;
}
 
static void gen6_update_dynamic_buffer(struct kgem *kgem, const uint32_t offset)
{
uint32_t reloc = sizeof(uint32_t) * offset;
struct kgem_bo *bo = NULL;
void *base, *ptr;
int i;
 
if ((kgem->batch[offset] & 1) == 0)
return;
 
for (i = 0; i < kgem->nreloc; i++)
if (kgem->reloc[i].offset == reloc)
break;
if(i < kgem->nreloc) {
reloc = kgem->reloc[i].target_handle;
 
if (reloc == 0) {
base = kgem->batch;
} else {
list_for_each_entry(bo, &kgem->next_request->buffers, request)
if (bo->handle == reloc)
break;
assert(&bo->request != &kgem->next_request->buffers);
base = kgem_bo_map__debug(kgem, bo);
}
ptr = (char *)base + (kgem->reloc[i].delta & ~1);
} else {
bo = NULL;
base = NULL;
ptr = NULL;
}
 
state.dynamic_state.current = bo;
state.dynamic_state.base = base;
state.dynamic_state.ptr = ptr;
}
 
static uint32_t
get_ve_component(uint32_t data, int component)
{
return (data >> (16 + (3 - component) * 4)) & 0x7;
}
 
static void gen6_update_vertex_elements(struct kgem *kgem, int id, const uint32_t *data)
{
state.ve[id].buffer = data[0] >> 26;
state.ve[id].valid = !!(data[0] & (1 << 25));
state.ve[id].type = (data[0] >> 16) & 0x1ff;
state.ve[id].offset = data[0] & 0x7ff;
state.ve[id].swizzle[0] = get_ve_component(data[1], 0);
state.ve[id].swizzle[1] = get_ve_component(data[1], 1);
state.ve[id].swizzle[2] = get_ve_component(data[1], 2);
state.ve[id].swizzle[3] = get_ve_component(data[1], 3);
}
 
static void gen6_update_sf_state(struct kgem *kgem, uint32_t *data)
{
state.num_ve = 1 + ((data[1] >> 22) & 0x3f);
}
 
static void vertices_sint16_out(const struct vertex_elements *ve, const int16_t *v, int max)
{
int c;
 
ErrorF("(");
for (c = 0; c < max; c++) {
switch (ve->swizzle[c]) {
case 0: ErrorF("#"); break;
case 1: ErrorF("%d", v[c]); break;
case 2: ErrorF("0.0"); break;
case 3: ErrorF("1.0"); break;
case 4: ErrorF("0x1"); break;
case 5: break;
default: ErrorF("?");
}
if (c < 3)
ErrorF(", ");
}
for (; c < 4; c++) {
switch (ve->swizzle[c]) {
case 0: ErrorF("#"); break;
case 1: ErrorF("1.0"); break;
case 2: ErrorF("0.0"); break;
case 3: ErrorF("1.0"); break;
case 4: ErrorF("0x1"); break;
case 5: break;
default: ErrorF("?");
}
if (c < 3)
ErrorF(", ");
}
ErrorF(")");
}
 
static void vertices_float_out(const struct vertex_elements *ve, const float *f, int max)
{
int c, o;
 
ErrorF("(");
for (c = o = 0; c < 4 && o < max; c++) {
switch (ve->swizzle[c]) {
case 0: ErrorF("#"); break;
case 1: ErrorF("%f", f[o++]); break;
case 2: ErrorF("0.0"); break;
case 3: ErrorF("1.0"); break;
case 4: ErrorF("0x1"); break;
case 5: break;
default: ErrorF("?");
}
if (c < 3)
ErrorF(", ");
}
for (; c < 4; c++) {
switch (ve->swizzle[c]) {
case 0: ErrorF("#"); break;
case 1: ErrorF("1.0"); break;
case 2: ErrorF("0.0"); break;
case 3: ErrorF("1.0"); break;
case 4: ErrorF("0x1"); break;
case 5: break;
default: ErrorF("?");
}
if (c < 3)
ErrorF(", ");
}
ErrorF(")");
}
 
static void ve_out(const struct vertex_elements *ve, const void *ptr)
{
switch (ve->type) {
case GEN6_SURFACEFORMAT_R32_FLOAT:
vertices_float_out(ve, ptr, 1);
break;
case GEN6_SURFACEFORMAT_R32G32_FLOAT:
vertices_float_out(ve, ptr, 2);
break;
case GEN6_SURFACEFORMAT_R32G32B32_FLOAT:
vertices_float_out(ve, ptr, 3);
break;
case GEN6_SURFACEFORMAT_R32G32B32A32_FLOAT:
vertices_float_out(ve, ptr, 4);
break;
case GEN6_SURFACEFORMAT_R16_SINT:
vertices_sint16_out(ve, ptr, 1);
break;
case GEN6_SURFACEFORMAT_R16G16_SINT:
vertices_sint16_out(ve, ptr, 2);
break;
case GEN6_SURFACEFORMAT_R16G16B16A16_SINT:
vertices_sint16_out(ve, ptr, 4);
break;
case GEN6_SURFACEFORMAT_R16_SSCALED:
vertices_sint16_out(ve, ptr, 1);
break;
case GEN6_SURFACEFORMAT_R16G16_SSCALED:
vertices_sint16_out(ve, ptr, 2);
break;
case GEN6_SURFACEFORMAT_R16G16B16A16_SSCALED:
vertices_sint16_out(ve, ptr, 4);
break;
}
}
 
static void indirect_vertex_out(struct kgem *kgem, uint32_t v)
{
int i = 1;
 
do {
const struct vertex_elements *ve = &state.ve[i];
const struct vertex_buffer *vb = &state.vb[ve->buffer];
const void *ptr = vb->ptr + v * vb->pitch + ve->offset;
 
if (ve->valid)
ve_out(ve, ptr);
 
while (++i <= state.num_ve && !state.ve[i].valid)
;
 
if (i <= state.num_ve)
ErrorF(", ");
} while (i <= state.num_ve);
}
 
static void primitive_out(struct kgem *kgem, uint32_t *data)
{
int n;
 
assert((data[0] & (1<<15)) == 0); /* XXX index buffers */
 
for (n = 0; n < data[1]; n++) {
int v = data[2] + n;
ErrorF(" [%d:%d] = ", n, v);
indirect_vertex_out(kgem, v);
ErrorF("\n");
}
}
 
static void finish_state(struct kgem *kgem)
{
memset(&state, 0, sizeof(state));
}
 
static void
state_base_out(uint32_t *data, uint32_t offset, unsigned int index,
const char *name)
{
if (data[index] & 1)
kgem_debug_print(data, offset, index,
"%s state base address 0x%08x\n",
name, data[index] & ~1);
else
kgem_debug_print(data, offset, index,
"%s state base not updated\n",
name);
}
 
static void
state_max_out(uint32_t *data, uint32_t offset, unsigned int index,
const char *name)
{
if (data[index] == 1)
kgem_debug_print(data, offset, index,
"%s state upper bound disabled\n", name);
else if (data[index] & 1)
kgem_debug_print(data, offset, index,
"%s state upper bound 0x%08x\n",
name, data[index] & ~1);
else
kgem_debug_print(data, offset, index,
"%s state upper bound not updated\n",
name);
}
 
static const char *
get_965_surfacetype(unsigned int surfacetype)
{
switch (surfacetype) {
case 0: return "1D";
case 1: return "2D";
case 2: return "3D";
case 3: return "CUBE";
case 4: return "BUFFER";
case 7: return "NULL";
default: return "unknown";
}
}
 
static const char *
get_965_depthformat(unsigned int depthformat)
{
switch (depthformat) {
case 0: return "s8_z24float";
case 1: return "z32float";
case 2: return "z24s8";
case 5: return "z16";
default: return "unknown";
}
}
 
static const char *
get_965_element_component(uint32_t data, int component)
{
uint32_t component_control = (data >> (16 + (3 - component) * 4)) & 0x7;
 
switch (component_control) {
case 0:
return "nostore";
case 1:
switch (component) {
case 0: return "X";
case 1: return "Y";
case 2: return "Z";
case 3: return "W";
default: return "fail";
}
case 2:
return "0.0";
case 3:
return "1.0";
case 4:
return "0x1";
case 5:
return "VID";
default:
return "fail";
}
}
 
static const char *
get_965_prim_type(uint32_t data)
{
uint32_t primtype = (data >> 10) & 0x1f;
 
switch (primtype) {
case 0x01: return "point list";
case 0x02: return "line list";
case 0x03: return "line strip";
case 0x04: return "tri list";
case 0x05: return "tri strip";
case 0x06: return "tri fan";
case 0x07: return "quad list";
case 0x08: return "quad strip";
case 0x09: return "line list adj";
case 0x0a: return "line strip adj";
case 0x0b: return "tri list adj";
case 0x0c: return "tri strip adj";
case 0x0d: return "tri strip reverse";
case 0x0e: return "polygon";
case 0x0f: return "rect list";
case 0x10: return "line loop";
case 0x11: return "point list bf";
case 0x12: return "line strip cont";
case 0x13: return "line strip bf";
case 0x14: return "line strip cont bf";
case 0x15: return "tri fan no stipple";
default: return "fail";
}
}
 
struct reloc {
struct kgem_bo *bo;
void *base;
};
 
static void *
get_reloc(struct kgem *kgem,
void *base, const uint32_t *reloc,
struct reloc *r)
{
uint32_t delta = *reloc;
 
memset(r, 0, sizeof(*r));
 
if (base == 0) {
uint32_t handle = sizeof(uint32_t) * (reloc - kgem->batch);
struct kgem_bo *bo = NULL;
int i;
 
for (i = 0; i < kgem->nreloc; i++)
if (kgem->reloc[i].offset == handle)
break;
assert(i < kgem->nreloc);
handle = kgem->reloc[i].target_handle;
delta = kgem->reloc[i].delta;
 
if (handle == 0) {
base = kgem->batch;
} else {
list_for_each_entry(bo, &kgem->next_request->buffers, request)
if (bo->handle == handle)
break;
assert(&bo->request != &kgem->next_request->buffers);
base = kgem_bo_map__debug(kgem, bo);
r->bo = bo;
r->base = base;
}
}
 
return (char *)base + (delta & ~3);
}
 
static const char *
gen6_filter_to_string(uint32_t filter)
{
switch (filter) {
default:
case GEN6_MAPFILTER_NEAREST: return "nearest";
case GEN6_MAPFILTER_LINEAR: return "linear";
}
}
 
static const char *
gen6_repeat_to_string(uint32_t repeat)
{
switch (repeat) {
default:
case GEN6_TEXCOORDMODE_CLAMP_BORDER: return "border";
case GEN6_TEXCOORDMODE_WRAP: return "wrap";
case GEN6_TEXCOORDMODE_CLAMP: return "clamp";
case GEN6_TEXCOORDMODE_MIRROR: return "mirror";
}
}
 
static void
gen6_decode_sampler_state(struct kgem *kgem, const uint32_t *reloc)
{
const struct gen6_sampler_state *ss;
struct reloc r;
const char *min, *mag;
const char *s_wrap, *t_wrap, *r_wrap;
 
ss = get_reloc(kgem, state.dynamic_state.ptr, reloc, &r);
 
min = gen6_filter_to_string(ss->ss0.min_filter);
mag = gen6_filter_to_string(ss->ss0.mag_filter);
 
s_wrap = gen6_repeat_to_string(ss->ss1.s_wrap_mode);
t_wrap = gen6_repeat_to_string(ss->ss1.t_wrap_mode);
r_wrap = gen6_repeat_to_string(ss->ss1.r_wrap_mode);
 
ErrorF(" Sampler 0:\n");
ErrorF(" filter: min=%s, mag=%s\n", min, mag);
ErrorF(" wrap: s=%s, t=%s, r=%s\n", s_wrap, t_wrap, r_wrap);
 
ss++;
min = gen6_filter_to_string(ss->ss0.min_filter);
mag = gen6_filter_to_string(ss->ss0.mag_filter);
 
s_wrap = gen6_repeat_to_string(ss->ss1.s_wrap_mode);
t_wrap = gen6_repeat_to_string(ss->ss1.t_wrap_mode);
r_wrap = gen6_repeat_to_string(ss->ss1.r_wrap_mode);
 
ErrorF(" Sampler 1:\n");
ErrorF(" filter: min=%s, mag=%s\n", min, mag);
ErrorF(" wrap: s=%s, t=%s, r=%s\n", s_wrap, t_wrap, r_wrap);
}
 
static const char *
gen6_blend_factor_to_string(uint32_t v)
{
switch (v) {
#define C(x) case GEN6_BLENDFACTOR_##x: return #x;
C(ONE);
C(SRC_COLOR);
C(SRC_ALPHA);
C(DST_ALPHA);
C(DST_COLOR);
C(SRC_ALPHA_SATURATE);
C(CONST_COLOR);
C(CONST_ALPHA);
C(SRC1_COLOR);
C(SRC1_ALPHA);
C(ZERO);
C(INV_SRC_COLOR);
C(INV_SRC_ALPHA);
C(INV_DST_ALPHA);
C(INV_DST_COLOR);
C(INV_CONST_COLOR);
C(INV_CONST_ALPHA);
C(INV_SRC1_COLOR);
C(INV_SRC1_ALPHA);
#undef C
default: return "???";
}
}
 
static const char *
gen6_blend_function_to_string(uint32_t v)
{
switch (v) {
#define C(x) case GEN6_BLENDFUNCTION_##x: return #x;
C(ADD);
C(SUBTRACT);
C(REVERSE_SUBTRACT);
C(MIN);
C(MAX);
#undef C
default: return "???";
}
}
 
static float unpack_float(uint32_t dw)
{
union {
float f;
uint32_t dw;
} u;
u.dw = dw;
return u.f;
}
 
static void
gen6_decode_blend(struct kgem *kgem, const uint32_t *reloc)
{
const struct gen6_blend_state *blend;
struct reloc r;
const char *dst, *src;
const char *func;
 
blend = get_reloc(kgem, state.dynamic_state.ptr, reloc, &r);
 
dst = gen6_blend_factor_to_string(blend->blend0.dest_blend_factor);
src = gen6_blend_factor_to_string(blend->blend0.source_blend_factor);
func = gen6_blend_function_to_string(blend->blend0.blend_func);
 
ErrorF(" Blend (%s): function %s, src=%s, dst=%s\n",
blend->blend0.blend_enable ? "enabled" : "disabled",
func, src, dst);
}
 
int kgem_gen6_decode_3d(struct kgem *kgem, uint32_t offset)
{
static const struct {
uint32_t opcode;
int min_len;
int max_len;
const char *name;
} opcodes[] = {
{ 0x6101, 6, 6, "STATE_BASE_ADDRESS" },
{ 0x6102, 2, 2 , "STATE_SIP" },
{ 0x6104, 1, 1, "3DSTATE_PIPELINE_SELECT" },
{ 0x680b, 1, 1, "3DSTATE_VF_STATISTICS" },
{ 0x6904, 1, 1, "3DSTATE_PIPELINE_SELECT" },
{ 0x7800, 7, 7, "3DSTATE_PIPELINED_POINTERS" },
{ 0x7801, 6, 6, "3DSTATE_BINDING_TABLE_POINTERS" },
{ 0x7808, 5, 257, "3DSTATE_VERTEX_BUFFERS" },
{ 0x7809, 3, 256, "3DSTATE_VERTEX_ELEMENTS" },
{ 0x780a, 3, 3, "3DSTATE_INDEX_BUFFER" },
{ 0x780b, 1, 1, "3DSTATE_VF_STATISTICS" },
{ 0x7900, 4, 4, "3DSTATE_DRAWING_RECTANGLE" },
{ 0x7901, 5, 5, "3DSTATE_CONSTANT_COLOR" },
{ 0x7905, 5, 7, "3DSTATE_DEPTH_BUFFER" },
{ 0x7906, 2, 2, "3DSTATE_POLY_STIPPLE_OFFSET" },
{ 0x7907, 33, 33, "3DSTATE_POLY_STIPPLE_PATTERN" },
{ 0x7908, 3, 3, "3DSTATE_LINE_STIPPLE" },
{ 0x7909, 2, 2, "3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP" },
{ 0x7909, 2, 2, "3DSTATE_CLEAR_PARAMS" },
{ 0x790a, 3, 3, "3DSTATE_AA_LINE_PARAMETERS" },
{ 0x790b, 4, 4, "3DSTATE_GS_SVB_INDEX" },
{ 0x790d, 3, 3, "3DSTATE_MULTISAMPLE" },
{ 0x7910, 2, 2, "3DSTATE_CLEAR_PARAMS" },
{ 0x7b00, 6, 6, "3DPRIMITIVE" },
{ 0x7802, 4, 4, "3DSTATE_SAMPLER_STATE_POINTERS" },
{ 0x7805, 3, 3, "3DSTATE_URB" },
{ 0x780d, 4, 4, "3DSTATE_VIEWPORT_STATE_POINTERS" },
{ 0x780e, 4, 4, "3DSTATE_CC_STATE_POINTERS" },
{ 0x780f, 2, 2, "3DSTATE_SCISSOR_STATE_POINTERS" },
{ 0x7810, 6, 6, "3DSTATE_VS_STATE" },
{ 0x7811, 7, 7, "3DSTATE_GS_STATE" },
{ 0x7812, 4, 4, "3DSTATE_CLIP_STATE" },
{ 0x7813, 20, 20, "3DSTATE_SF_STATE" },
{ 0x7814, 9, 9, "3DSTATE_WM_STATE" },
{ 0x7815, 5, 5, "3DSTATE_CONSTANT_VS_STATE" },
{ 0x7816, 5, 5, "3DSTATE_CONSTANT_GS_STATE" },
{ 0x7817, 5, 5, "3DSTATE_CONSTANT_WM_STATE" },
{ 0x7818, 2, 2, "3DSTATE_SAMPLE_MASK" },
};
uint32_t *data = kgem->batch + offset;
uint32_t op;
unsigned int len;
int i, j;
const char *desc1 = NULL;
 
len = (data[0] & 0xff) + 2;
op = (data[0] & 0xffff0000) >> 16;
switch (op) {
case 0x6101:
i = 0;
kgem_debug_print(data, offset, i++, "STATE_BASE_ADDRESS\n");
if (kgem->gen >= 060) {
assert(len == 10);
 
state_base_out(data, offset, i++, "general");
state_base_out(data, offset, i++, "surface");
state_base_out(data, offset, i++, "dynamic");
state_base_out(data, offset, i++, "indirect");
state_base_out(data, offset, i++, "instruction");
 
state_max_out(data, offset, i++, "general");
state_max_out(data, offset, i++, "dynamic");
state_max_out(data, offset, i++, "indirect");
state_max_out(data, offset, i++, "instruction");
 
gen6_update_dynamic_buffer(kgem, offset + 3);
} else if (kgem->gen >= 050) {
assert(len == 8);
 
state_base_out(data, offset, i++, "general");
state_base_out(data, offset, i++, "surface");
state_base_out(data, offset, i++, "media");
state_base_out(data, offset, i++, "instruction");
 
state_max_out(data, offset, i++, "general");
state_max_out(data, offset, i++, "media");
state_max_out(data, offset, i++, "instruction");
}
 
return len;
 
case 0x7801:
if (kgem->gen >= 060) {
assert(len == 4);
 
kgem_debug_print(data, offset, 0,
"3DSTATE_BINDING_TABLE_POINTERS: VS mod %d, "
"GS mod %d, WM mod %d\n",
(data[0] & (1 << 8)) != 0,
(data[0] & (1 << 9)) != 0,
(data[0] & (1 << 12)) != 0);
kgem_debug_print(data, offset, 1, "VS binding table\n");
kgem_debug_print(data, offset, 2, "GS binding table\n");
kgem_debug_print(data, offset, 3, "WM binding table\n");
} else if (kgem->gen >= 040) {
assert(len == 6);
 
kgem_debug_print(data, offset, 0,
"3DSTATE_BINDING_TABLE_POINTERS\n");
kgem_debug_print(data, offset, 1, "VS binding table\n");
kgem_debug_print(data, offset, 2, "GS binding table\n");
kgem_debug_print(data, offset, 3, "CLIP binding table\n");
kgem_debug_print(data, offset, 4, "SF binding table\n");
kgem_debug_print(data, offset, 5, "WM binding table\n");
}
 
return len;
 
case 0x7802:
assert(len == 4);
kgem_debug_print(data, offset, 0, "3DSTATE_SAMPLER_STATE_POINTERS: VS mod %d, "
"GS mod %d, WM mod %d\n",
(data[0] & (1 << 8)) != 0,
(data[0] & (1 << 9)) != 0,
(data[0] & (1 << 12)) != 0);
kgem_debug_print(data, offset, 1, "VS sampler state\n");
kgem_debug_print(data, offset, 2, "GS sampler state\n");
kgem_debug_print(data, offset, 3, "WM sampler state\n");
gen6_decode_sampler_state(kgem, &data[3]);
return len;
 
case 0x7808:
assert((len - 1) % 4 == 0);
kgem_debug_print(data, offset, 0, "3DSTATE_VERTEX_BUFFERS\n");
 
for (i = 1; i < len;) {
gen6_update_vertex_buffer(kgem, data + i);
 
kgem_debug_print(data, offset, i, "buffer %d: %s, pitch %db\n",
data[i] >> 26,
data[i] & (1 << 20) ? "random" : "sequential",
data[i] & 0x07ff);
i++;
kgem_debug_print(data, offset, i++, "buffer address\n");
kgem_debug_print(data, offset, i++, "max index\n");
kgem_debug_print(data, offset, i++, "mbz\n");
}
return len;
 
case 0x7809:
assert((len + 1) % 2 == 0);
kgem_debug_print(data, offset, 0, "3DSTATE_VERTEX_ELEMENTS\n");
 
for (i = 1; i < len;) {
gen6_update_vertex_elements(kgem, (i - 1)/2, data + i);
 
kgem_debug_print(data, offset, i, "buffer %d: %svalid, type 0x%04x, "
"src offset 0x%04x bytes\n",
data[i] >> 26,
data[i] & (1 << 25) ? "" : "in",
(data[i] >> 16) & 0x1ff,
data[i] & 0x07ff);
i++;
kgem_debug_print(data, offset, i, "(%s, %s, %s, %s), "
"dst offset 0x%02x bytes\n",
get_965_element_component(data[i], 0),
get_965_element_component(data[i], 1),
get_965_element_component(data[i], 2),
get_965_element_component(data[i], 3),
(data[i] & 0xff) * 4);
i++;
}
return len;
 
case 0x780d:
assert(len == 4);
kgem_debug_print(data, offset, 0, "3DSTATE_VIEWPORT_STATE_POINTERS\n");
kgem_debug_print(data, offset, 1, "clip\n");
kgem_debug_print(data, offset, 2, "sf\n");
kgem_debug_print(data, offset, 3, "cc\n");
return len;
 
case 0x780a:
assert(len == 3);
kgem_debug_print(data, offset, 0, "3DSTATE_INDEX_BUFFER\n");
kgem_debug_print(data, offset, 1, "beginning buffer address\n");
kgem_debug_print(data, offset, 2, "ending buffer address\n");
return len;
 
case 0x780e:
assert(len == 4);
kgem_debug_print(data, offset, 0, "3DSTATE_CC_STATE_POINTERS\n");
kgem_debug_print(data, offset, 1, "blend%s\n",
data[1] & 1 ? " update" : "");
if (data[1] & 1)
gen6_decode_blend(kgem, data+1);
kgem_debug_print(data, offset, 2, "depth+stencil%s\n",
data[2] & 1 ? " update" : "");
kgem_debug_print(data, offset, 3, "cc%s\n",
data[3] & 1 ? " update" : "");
return len;
 
case 0x780f:
assert(len == 2);
kgem_debug_print(data, offset, 0, "3DSTATE_SCISSOR_POINTERS\n");
kgem_debug_print(data, offset, 1, "scissor rect offset\n");
return len;
 
case 0x7810:
assert(len == 6);
kgem_debug_print(data, offset, 0, "3DSTATE_VS\n");
kgem_debug_print(data, offset, 1, "kernel pointer\n");
kgem_debug_print(data, offset, 2, "SPF=%d, VME=%d, Sampler Count %d, "
"Binding table count %d\n",
(data[2] >> 31) & 1,
(data[2] >> 30) & 1,
(data[2] >> 27) & 7,
(data[2] >> 18) & 0xff);
kgem_debug_print(data, offset, 3, "scratch offset\n");
kgem_debug_print(data, offset, 4, "Dispatch GRF start %d, VUE read length %d, "
"VUE read offset %d\n",
(data[4] >> 20) & 0x1f,
(data[4] >> 11) & 0x3f,
(data[4] >> 4) & 0x3f);
kgem_debug_print(data, offset, 5, "Max Threads %d, Vertex Cache %sable, "
"VS func %sable\n",
((data[5] >> 25) & 0x7f) + 1,
(data[5] & (1 << 1)) != 0 ? "dis" : "en",
(data[5] & 1) != 0 ? "en" : "dis");
return len;
 
case 0x7811:
assert(len == 7);
kgem_debug_print(data, offset, 0, "3DSTATE_GS\n");
kgem_debug_print(data, offset, 1, "kernel pointer\n");
kgem_debug_print(data, offset, 2, "SPF=%d, VME=%d, Sampler Count %d, "
"Binding table count %d\n",
(data[2] >> 31) & 1,
(data[2] >> 30) & 1,
(data[2] >> 27) & 7,
(data[2] >> 18) & 0xff);
kgem_debug_print(data, offset, 3, "scratch offset\n");
kgem_debug_print(data, offset, 4, "Dispatch GRF start %d, VUE read length %d, "
"VUE read offset %d\n",
(data[4] & 0xf),
(data[4] >> 11) & 0x3f,
(data[4] >> 4) & 0x3f);
kgem_debug_print(data, offset, 5, "Max Threads %d, Rendering %sable\n",
((data[5] >> 25) & 0x7f) + 1,
(data[5] & (1 << 8)) != 0 ? "en" : "dis");
kgem_debug_print(data, offset, 6, "Reorder %sable, Discard Adjaceny %sable, "
"GS %sable\n",
(data[6] & (1 << 30)) != 0 ? "en" : "dis",
(data[6] & (1 << 29)) != 0 ? "en" : "dis",
(data[6] & (1 << 15)) != 0 ? "en" : "dis");
return len;
 
case 0x7812:
assert(len == 4);
kgem_debug_print(data, offset, 0, "3DSTATE_CLIP\n");
kgem_debug_print(data, offset, 1, "UserClip distance cull test mask 0x%x\n",
data[1] & 0xff);
kgem_debug_print(data, offset, 2, "Clip %sable, API mode %s, Viewport XY test %sable, "
"Viewport Z test %sable, Guardband test %sable, Clip mode %d, "
"Perspective Divide %sable, Non-Perspective Barycentric %sable, "
"Tri Provoking %d, Line Provoking %d, Trifan Provoking %d\n",
(data[2] & (1 << 31)) != 0 ? "en" : "dis",
(data[2] & (1 << 30)) != 0 ? "D3D" : "OGL",
(data[2] & (1 << 28)) != 0 ? "en" : "dis",
(data[2] & (1 << 27)) != 0 ? "en" : "dis",
(data[2] & (1 << 26)) != 0 ? "en" : "dis",
(data[2] >> 13) & 7,
(data[2] & (1 << 9)) != 0 ? "dis" : "en",
(data[2] & (1 << 8)) != 0 ? "en" : "dis",
(data[2] >> 4) & 3,
(data[2] >> 2) & 3,
(data[2] & 3));
kgem_debug_print(data, offset, 3, "Min PointWidth %d, Max PointWidth %d, "
"Force Zero RTAIndex %sable, Max VPIndex %d\n",
(data[3] >> 17) & 0x7ff,
(data[3] >> 6) & 0x7ff,
(data[3] & (1 << 5)) != 0 ? "en" : "dis",
(data[3] & 0xf));
return len;
 
case 0x7813:
gen6_update_sf_state(kgem, data);
assert(len == 20);
kgem_debug_print(data, offset, 0, "3DSTATE_SF\n");
kgem_debug_print(data, offset, 1, "Attrib Out %d, Attrib Swizzle %sable, VUE read length %d, "
"VUE read offset %d\n",
(data[1] >> 22) & 0x3f,
(data[1] & (1 << 21)) != 0 ? "en" : "dis",
(data[1] >> 11) & 0x1f,
(data[1] >> 4) & 0x3f);
kgem_debug_print(data, offset, 2, "Legacy Global DepthBias %sable, FrontFace fill %d, BF fill %d, "
"VP transform %sable, FrontWinding_%s\n",
(data[2] & (1 << 11)) != 0 ? "en" : "dis",
(data[2] >> 5) & 3,
(data[2] >> 3) & 3,
(data[2] & (1 << 1)) != 0 ? "en" : "dis",
(data[2] & 1) != 0 ? "CCW" : "CW");
kgem_debug_print(data, offset, 3, "AA %sable, CullMode %d, Scissor %sable, Multisample m ode %d\n",
(data[3] & (1 << 31)) != 0 ? "en" : "dis",
(data[3] >> 29) & 3,
(data[3] & (1 << 11)) != 0 ? "en" : "dis",
(data[3] >> 8) & 3);
kgem_debug_print(data, offset, 4, "Last Pixel %sable, SubPixel Precision %d, Use PixelWidth %d\n",
(data[4] & (1 << 31)) != 0 ? "en" : "dis",
(data[4] & (1 << 12)) != 0 ? 4 : 8,
(data[4] & (1 << 11)) != 0);
kgem_debug_print(data, offset, 5, "Global Depth Offset Constant %f\n", unpack_float(data[5]));
kgem_debug_print(data, offset, 6, "Global Depth Offset Scale %f\n", unpack_float(data[6]));
kgem_debug_print(data, offset, 7, "Global Depth Offset Clamp %f\n", unpack_float(data[7]));
for (i = 0, j = 0; i < 8; i++, j+=2)
kgem_debug_print(data, offset, i+8, "Attrib %d (Override %s%s%s%s, Const Source %d, Swizzle Select %d, "
"Source %d); Attrib %d (Override %s%s%s%s, Const Source %d, Swizzle Select %d, Source %d)\n",
j+1,
(data[8+i] & (1 << 31)) != 0 ? "W":"",
(data[8+i] & (1 << 30)) != 0 ? "Z":"",
(data[8+i] & (1 << 29)) != 0 ? "Y":"",
(data[8+i] & (1 << 28)) != 0 ? "X":"",
(data[8+i] >> 25) & 3, (data[8+i] >> 22) & 3,
(data[8+i] >> 16) & 0x1f,
j,
(data[8+i] & (1 << 15)) != 0 ? "W":"",
(data[8+i] & (1 << 14)) != 0 ? "Z":"",
(data[8+i] & (1 << 13)) != 0 ? "Y":"",
(data[8+i] & (1 << 12)) != 0 ? "X":"",
(data[8+i] >> 9) & 3, (data[8+i] >> 6) & 3,
(data[8+i] & 0x1f));
kgem_debug_print(data, offset, 16, "Point Sprite TexCoord Enable\n");
kgem_debug_print(data, offset, 17, "Const Interp Enable\n");
kgem_debug_print(data, offset, 18, "Attrib 7-0 WrapShortest Enable\n");
kgem_debug_print(data, offset, 19, "Attrib 15-8 WrapShortest Enable\n");
 
return len;
 
case 0x7814:
assert(len == 9);
kgem_debug_print(data, offset, 0, "3DSTATE_WM\n");
kgem_debug_print(data, offset, 1, "kernel start pointer 0\n");
kgem_debug_print(data, offset, 2, "SPF=%d, VME=%d, Sampler Count %d, "
"Binding table count %d\n",
(data[2] >> 31) & 1,
(data[2] >> 30) & 1,
(data[2] >> 27) & 7,
(data[2] >> 18) & 0xff);
kgem_debug_print(data, offset, 3, "scratch offset\n");
kgem_debug_print(data, offset, 4, "Depth Clear %d, Depth Resolve %d, HiZ Resolve %d, "
"Dispatch GRF start[0] %d, start[1] %d, start[2] %d\n",
(data[4] & (1 << 30)) != 0,
(data[4] & (1 << 28)) != 0,
(data[4] & (1 << 27)) != 0,
(data[4] >> 16) & 0x7f,
(data[4] >> 8) & 0x7f,
(data[4] & 0x7f));
kgem_debug_print(data, offset, 5, "MaxThreads %d, PS KillPixel %d, PS computed Z %d, "
"PS use sourceZ %d, Thread Dispatch %d, PS use sourceW %d, Dispatch32 %d, "
"Dispatch16 %d, Dispatch8 %d\n",
((data[5] >> 25) & 0x7f) + 1,
(data[5] & (1 << 22)) != 0,
(data[5] & (1 << 21)) != 0,
(data[5] & (1 << 20)) != 0,
(data[5] & (1 << 19)) != 0,
(data[5] & (1 << 8)) != 0,
(data[5] & (1 << 2)) != 0,
(data[5] & (1 << 1)) != 0,
(data[5] & (1 << 0)) != 0);
kgem_debug_print(data, offset, 6, "Num SF output %d, Pos XY offset %d, ZW interp mode %d , "
"Barycentric interp mode 0x%x, Point raster rule %d, Multisample mode %d, "
"Multisample Dispatch mode %d\n",
(data[6] >> 20) & 0x3f,
(data[6] >> 18) & 3,
(data[6] >> 16) & 3,
(data[6] >> 10) & 0x3f,
(data[6] & (1 << 9)) != 0,
(data[6] >> 1) & 3,
(data[6] & 1));
kgem_debug_print(data, offset, 7, "kernel start pointer 1\n");
kgem_debug_print(data, offset, 8, "kernel start pointer 2\n");
 
return len;
 
case 0x7900:
assert(len == 4);
kgem_debug_print(data, offset, 0,
"3DSTATE_DRAWING_RECTANGLE\n");
kgem_debug_print(data, offset, 1, "top left: %d, %d\n",
(uint16_t)(data[1] & 0xffff),
(uint16_t)(data[1] >> 16));
kgem_debug_print(data, offset, 2, "bottom right: %d, %d\n",
(uint16_t)(data[2] & 0xffff),
(uint16_t)(data[2] >> 16));
kgem_debug_print(data, offset, 3, "origin: %d, %d\n",
(int16_t)(data[3] & 0xffff),
(int16_t)(data[3] >> 16));
return len;
 
case 0x7905:
assert(len == 7);
kgem_debug_print(data, offset, 0,
"3DSTATE_DEPTH_BUFFER\n");
kgem_debug_print(data, offset, 1, "%s, %s, pitch = %d bytes, %stiled, HiZ %d, Seperate Stencil %d\n",
get_965_surfacetype(data[1] >> 29),
get_965_depthformat((data[1] >> 18) & 0x7),
(data[1] & 0x0001ffff) + 1,
data[1] & (1 << 27) ? "" : "not ",
(data[1] & (1 << 22)) != 0,
(data[1] & (1 << 21)) != 0);
kgem_debug_print(data, offset, 2, "depth offset\n");
kgem_debug_print(data, offset, 3, "%dx%d\n",
((data[3] & 0x0007ffc0) >> 6) + 1,
((data[3] & 0xfff80000) >> 19) + 1);
kgem_debug_print(data, offset, 4, "volume depth\n");
kgem_debug_print(data, offset, 5, "\n");
kgem_debug_print(data, offset, 6, "\n");
return len;
 
case 0x7a00:
assert(len == 4 || len == 5);
switch ((data[1] >> 14) & 0x3) {
case 0: desc1 = "no write"; break;
case 1: desc1 = "qword write"; break;
case 2: desc1 = "PS_DEPTH_COUNT write"; break;
case 3: desc1 = "TIMESTAMP write"; break;
}
kgem_debug_print(data, offset, 0, "PIPE_CONTROL\n");
kgem_debug_print(data, offset, 1,
"%s, %scs stall, %stlb invalidate, "
"%ssync gfdt, %sdepth stall, %sRC write flush, "
"%sinst flush, %sTC flush\n",
desc1,
data[1] & (1 << 20) ? "" : "no ",
data[1] & (1 << 18) ? "" : "no ",
data[1] & (1 << 17) ? "" : "no ",
data[1] & (1 << 13) ? "" : "no ",
data[1] & (1 << 12) ? "" : "no ",
data[1] & (1 << 11) ? "" : "no ",
data[1] & (1 << 10) ? "" : "no ");
if (len == 5) {
kgem_debug_print(data, offset, 2, "destination address\n");
kgem_debug_print(data, offset, 3, "immediate dword low\n");
kgem_debug_print(data, offset, 4, "immediate dword high\n");
} else {
for (i = 2; i < len; i++) {
kgem_debug_print(data, offset, i, "\n");
}
}
return len;
 
case 0x7b00:
assert(len == 6);
kgem_debug_print(data, offset, 0,
"3DPRIMITIVE: %s %s\n",
get_965_prim_type(data[0]),
(data[0] & (1 << 15)) ? "random" : "sequential");
kgem_debug_print(data, offset, 1, "vertex count\n");
kgem_debug_print(data, offset, 2, "start vertex\n");
kgem_debug_print(data, offset, 3, "instance count\n");
kgem_debug_print(data, offset, 4, "start instance\n");
kgem_debug_print(data, offset, 5, "index bias\n");
primitive_out(kgem, data);
return len;
}
 
/* For the rest, just dump the bytes */
for (i = 0; i < ARRAY_SIZE(opcodes); i++)
if (op == opcodes[i].opcode)
break;
 
assert(i < ARRAY_SIZE(opcodes));
 
len = 1;
kgem_debug_print(data, offset, 0, "%s\n", opcodes[i].name);
if (opcodes[i].max_len > 1) {
len = (data[0] & 0xff) + 2;
assert(len >= opcodes[i].min_len &&
len <= opcodes[i].max_len);
}
 
for (i = 1; i < len; i++)
kgem_debug_print(data, offset, i, "dword %d\n", i);
 
return len;
}
 
void kgem_gen6_finish_state(struct kgem *kgem)
{
finish_state(kgem);
}
/drivers/video/Intel-2D/pixlib2.c
0,0 → 1,282
 
// -kr -i4 -ts4 -bls -bl -bli0
 
#include <stdio.h>
#include <malloc.h>
#include <stdbool.h>
#include <pixlib2.h>
#include <kos32sys.h>
 
 
#define DISPLAY_VERSION 0x0200 /* 2.00 */
 
#define SRV_GETVERSION 0
#define SRV_GET_CAPS 3
 
 
#define BUFFER_SIZE(n) ((n)*sizeof(uint32_t))
#define __ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))
#define ALIGN(x,a) __ALIGN_MASK(x,(typeof(x))(a)-1)
 
#define to_surface(x) (surface_t*)((x)->handle)
 
typedef struct
{
uint32_t width;
uint32_t height;
void *data;
uint32_t pitch;
uint32_t bo;
uint32_t bo_size;
uint32_t flags;
} surface_t;
 
 
int sna_init(uint32_t service);
void sna_fini();
 
int sna_create_bitmap(bitmap_t * bitmap);
int sna_destroy_bitmap(bitmap_t * bitmap);
int sna_lock_bitmap(bitmap_t * bitmap);
int sna_resize_bitmap(bitmap_t *bitmap);
//int sna_blit_copy(bitmap_t * src_bitmap, int dst_x, int dst_y,
// int w, int h, int src_x, int src_y);
int sna_blit_tex(bitmap_t * src_bitmap, bool scale, int dst_x, int dst_y,
int w, int h, int src_x, int src_y);
 
 
static uint32_t service;
static uint32_t hw_caps;
 
 
uint32_t init_pixlib(uint32_t caps)
{
uint32_t api_version;
ioctl_t io;
 
if (service != 0)
return caps & hw_caps;
 
service = get_service("DISPLAY");
if (service == 0)
goto fail;
 
io.handle = service;
io.io_code = SRV_GETVERSION;
io.input = NULL;
io.inp_size = 0;
io.output = &api_version;
io.out_size = BUFFER_SIZE(1);
 
if (call_service(&io) != 0)
goto fail;
 
if ((DISPLAY_VERSION > (api_version & 0xFFFF)) ||
(DISPLAY_VERSION < (api_version >> 16)))
goto fail;
 
hw_caps = sna_init(service);
 
if (hw_caps)
printf("2D caps %s%s%s\n",
(hw_caps & HW_BIT_BLIT) != 0 ? "HW_BIT_BLIT " : "",
(hw_caps & HW_TEX_BLIT) != 0 ? "HW_TEX_BLIT " : "",
(hw_caps & HW_VID_BLIT) != 0 ? "HW_VID_BLIT " : "");
 
return caps & hw_caps;
 
fail:
service = 0;
return 0;
};
 
void done_pixlib()
{
if (hw_caps != 0)
sna_fini();
};
 
 
int create_bitmap(bitmap_t * bitmap)
{
uint32_t size, bo_size;
uint32_t pitch, max_pitch;
void *buffer;
surface_t *sf;
 
bitmap->handle = -1;
bitmap->data = (void *) -1;
bitmap->pitch = -1;
 
if (bitmap->flags &= hw_caps)
return sna_create_bitmap(bitmap);
 
pitch = ALIGN(bitmap->width * 4, 16);
max_pitch = ALIGN(bitmap->max_width * 4, 16);
 
size = ALIGN(pitch * bitmap->height, 4096);
bo_size = ALIGN(max_pitch * bitmap->max_height, 4096);
 
if (bo_size < size)
bo_size = size;
 
sf = malloc(sizeof(*sf));
if (sf == NULL)
return -1;
 
buffer = user_alloc(bo_size);
 
if (buffer == NULL)
{
free(sf);
return -1;
};
 
sf->width = bitmap->width;
sf->height = bitmap->height;
sf->data = buffer;
sf->pitch = pitch;
sf->bo = 0;
sf->bo_size = bo_size;
sf->flags = bitmap->flags;
 
bitmap->handle = (uint32_t) sf;
 
// printf("create bitmap %p handle %p data %p w %d h%d\n",
// bitmap, bitmap->handle, bitmap->data, bitmap->width, bitmap->height);
 
return 0;
};
 
int destroy_bitmap(bitmap_t * bitmap)
{
surface_t *sf = to_surface(bitmap);
 
if (sf->flags & hw_caps)
return sna_destroy_bitmap(bitmap);
 
user_free(sf->data);
free(sf);
 
bitmap->handle = -1;
bitmap->data = (void *) -1;
bitmap->pitch = -1;
 
return 0;
};
 
int lock_bitmap(bitmap_t * bitmap)
{
surface_t *sf = to_surface(bitmap);
 
if (bitmap->data != (void *) -1)
return 0;
 
if (sf->flags & hw_caps)
return sna_lock_bitmap(bitmap);
 
bitmap->data = sf->data;
bitmap->pitch = sf->pitch;
 
return 0;
};
 
int blit_bitmap(bitmap_t * bitmap, int dst_x, int dst_y,
int w, int h, int src_x, int src_y)
{
struct blit_call bc;
int ret;
 
surface_t *sf = to_surface(bitmap);
 
if (sf->flags & hw_caps & HW_BIT_BLIT)
return sna_blit_tex(bitmap, false, dst_x, dst_y, w, h, src_x, src_y);
 
bc.dstx = dst_x;
bc.dsty = dst_y;
bc.w = w;
bc.h = h;
bc.srcx = 0;
bc.srcy = 0;
bc.srcw = w;
bc.srch = h;
bc.stride = sf->pitch;
bc.bitmap = sf->data;
 
__asm__ __volatile__(
"int $0x40":"=a"(ret):"a"(73), "b"(0x00),
"c"(&bc):"memory");
 
bitmap->data = (void *) -1;
bitmap->pitch = -1;
 
return ret;
};
 
int fplay_blit_bitmap(bitmap_t * bitmap, int dst_x, int dst_y, int w, int h)
{
struct blit_call bc;
int ret;
 
surface_t *sf = to_surface(bitmap);
 
if (sf->flags & hw_caps & HW_TEX_BLIT)
return sna_blit_tex(bitmap, true, dst_x, dst_y, w, h, 0, 0);
 
bc.dstx = dst_x;
bc.dsty = dst_y;
bc.w = w;
bc.h = h;
bc.srcx = 0;
bc.srcy = 0;
bc.srcw = w;
bc.srch = h;
bc.stride = sf->pitch;
bc.bitmap = sf->data;
 
__asm__ __volatile__(
"int $0x40":"=a"(ret):"a"(73), "b"(0x00),
"c"(&bc):"memory");
 
bitmap->data = (void *) -1;
bitmap->pitch = -1;
 
return ret;
};
 
int resize_bitmap(bitmap_t * bitmap)
{
uint32_t size;
uint32_t pitch;
 
// printf("%s\n", __FUNCTION__);
 
surface_t *sf = to_surface(bitmap);
 
if (sf->flags & hw_caps)
{
return sna_resize_bitmap(bitmap);
};
 
pitch = ALIGN(bitmap->width * 4, 16);
size = ALIGN(pitch * bitmap->height, 4096);
 
bitmap->pitch = -1;
bitmap->data = (void *) -1;
 
if (size > sf->bo_size)
{
sf->data = user_realloc(sf->data, size); /* grow buffer */
if (sf->data == NULL)
return -1;
 
sf->bo_size = size;
} else if (size < sf->bo_size)
user_unmap(sf->data, size, sf->bo_size - size); /* unmap unused pages */
 
sf->width = bitmap->width;
sf->height = bitmap->height;
sf->pitch = pitch;
 
return 0;
};