Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 3030 → Rev 3031

/drivers/video/drm/i915/intel_display.c
32,13 → 32,14
#include <linux/slab.h>
//#include <linux/vgaarb.h>
#include <drm/drm_edid.h>
#include "drmP.h"
#include <drm/drmP.h>
#include "intel_drv.h"
#include "i915_drm.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "drm_dp_helper.h"
#include "drm_crtc_helper.h"
#include <drm/drm_dp_helper.h>
#include <drm/drm_crtc_helper.h>
//#include <linux/dma_remapping.h>
 
phys_addr_t get_bus_addr(void);
 
63,20 → 64,11
}
 
 
static inline int pci_read_config_word(struct pci_dev *dev, int where,
u16 *val)
{
*val = PciRead16(dev->busnr, dev->devfn, where);
return 1;
}
 
 
#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
 
bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
static void intel_update_watermarks(struct drm_device *dev);
static void intel_increase_pllclock(struct drm_crtc *crtc);
static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
//static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
 
typedef struct {
/* given values */
105,7 → 97,7
intel_range_t dot, vco, n, m, m1, m2, p, p1;
intel_p2_t p2;
bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
int, int, intel_clock_t *);
int, int, intel_clock_t *, intel_clock_t *);
};
 
/* FDI */
113,18 → 105,27
 
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
 
static bool
intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
static bool
intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock);
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
 
static bool
intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock);
 
static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_device *dev)
{
386,6 → 387,152
.find_pll = intel_find_pll_ironlake_dp,
};
 
static const intel_limit_t intel_limits_vlv_dac = {
.dot = { .min = 25000, .max = 270000 },
.vco = { .min = 4000000, .max = 6000000 },
.n = { .min = 1, .max = 7 },
.m = { .min = 22, .max = 450 }, /* guess */
.m1 = { .min = 2, .max = 3 },
.m2 = { .min = 11, .max = 156 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 2, .max = 3 },
.p2 = { .dot_limit = 270000,
.p2_slow = 2, .p2_fast = 20 },
.find_pll = intel_vlv_find_best_pll,
};
 
static const intel_limit_t intel_limits_vlv_hdmi = {
.dot = { .min = 20000, .max = 165000 },
.vco = { .min = 5994000, .max = 4000000 },
.n = { .min = 1, .max = 7 },
.m = { .min = 60, .max = 300 }, /* guess */
.m1 = { .min = 2, .max = 3 },
.m2 = { .min = 11, .max = 156 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 2, .max = 3 },
.p2 = { .dot_limit = 270000,
.p2_slow = 2, .p2_fast = 20 },
.find_pll = intel_vlv_find_best_pll,
};
 
static const intel_limit_t intel_limits_vlv_dp = {
.dot = { .min = 162000, .max = 270000 },
.vco = { .min = 5994000, .max = 4000000 },
.n = { .min = 1, .max = 7 },
.m = { .min = 60, .max = 300 }, /* guess */
.m1 = { .min = 2, .max = 3 },
.m2 = { .min = 11, .max = 156 },
.p = { .min = 10, .max = 30 },
.p1 = { .min = 2, .max = 3 },
.p2 = { .dot_limit = 270000,
.p2_slow = 2, .p2_fast = 20 },
.find_pll = intel_vlv_find_best_pll,
};
 
u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
{
unsigned long flags;
u32 val = 0;
 
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
DRM_ERROR("DPIO idle wait timed out\n");
goto out_unlock;
}
 
I915_WRITE(DPIO_REG, reg);
I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
DPIO_BYTE);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
DRM_ERROR("DPIO read wait timed out\n");
goto out_unlock;
}
val = I915_READ(DPIO_DATA);
 
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
return val;
}
 
static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
u32 val)
{
unsigned long flags;
 
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
DRM_ERROR("DPIO idle wait timed out\n");
goto out_unlock;
}
 
I915_WRITE(DPIO_DATA, val);
I915_WRITE(DPIO_REG, reg);
I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
DPIO_BYTE);
if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
DRM_ERROR("DPIO write wait timed out\n");
 
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
}
 
static void vlv_init_dpio(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
/* Reset the DPIO config */
I915_WRITE(DPIO_CTL, 0);
POSTING_READ(DPIO_CTL);
I915_WRITE(DPIO_CTL, 1);
POSTING_READ(DPIO_CTL);
}
 
static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
{
DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
return 1;
}
 
static const struct dmi_system_id intel_dual_link_lvds[] = {
{
.callback = intel_dual_link_lvds_callback,
.ident = "Apple MacBook Pro (Core i5/i7 Series)",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
},
},
{ } /* terminating entry */
};
 
static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
unsigned int reg)
{
unsigned int val;
 
/* use the module option value if specified */
if (i915_lvds_channel_mode > 0)
return i915_lvds_channel_mode == 2;
 
// if (dmi_check_system(intel_dual_link_lvds))
// return true;
 
if (dev_priv->lvds_val)
val = dev_priv->lvds_val;
else {
/* BIOS should set the proper LVDS register value at boot, but
* in reality, it doesn't set the value when the lid is closed;
* we need to check "the value to be set" in VBT when LVDS
* register is uninitialized.
*/
val = I915_READ(reg);
if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
val = dev_priv->bios_lvds_val;
dev_priv->lvds_val = val;
}
return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
}
 
static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
int refclk)
{
394,8 → 541,7
const intel_limit_t *limit;
 
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP) {
if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
/* LVDS dual channel */
if (refclk == 100000)
limit = &intel_limits_ironlake_dual_lvds_100m;
423,8 → 569,7
const intel_limit_t *limit;
 
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
if (is_dual_link_lvds(dev_priv, LVDS))
/* LVDS with dual channel */
limit = &intel_limits_g4x_dual_channel_lvds;
else
457,6 → 602,13
limit = &intel_limits_pineview_lvds;
else
limit = &intel_limits_pineview_sdvo;
} else if (IS_VALLEYVIEW(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
limit = &intel_limits_vlv_dac;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
limit = &intel_limits_vlv_hdmi;
else
limit = &intel_limits_vlv_dp;
} else if (!IS_GEN2(dev)) {
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
limit = &intel_limits_i9xx_lvds;
498,11 → 650,10
bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *encoder;
 
list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
if (encoder->base.crtc == crtc && encoder->type == type)
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->type == type)
return true;
 
return false;
545,7 → 696,8
 
static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
 
{
struct drm_device *dev = crtc->dev;
561,8 → 713,7
* reliably set up different single/dual channel state, if we
* even can.
*/
if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
LVDS_CLKB_POWER_UP)
if (is_dual_link_lvds(dev_priv, LVDS))
clock.p2 = limit->p2.p2_fast;
else
clock.p2 = limit->p2.p2_slow;
592,6 → 743,9
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
 
this_err = abs(clock.dot - target);
if (this_err < err) {
608,7 → 762,8
 
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
655,6 → 810,9
if (!intel_PLL_is_valid(dev, limit,
&clock))
continue;
if (match_clock &&
clock.p != match_clock->p)
continue;
 
this_err = abs(clock.dot - target);
if (this_err < err_most) {
672,7 → 830,8
 
static bool
intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
struct drm_device *dev = crtc->dev;
intel_clock_t clock;
698,7 → 857,8
/* DisplayPort has only two frequencies, 162MHz and 270MHz */
static bool
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *best_clock)
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
intel_clock_t clock;
if (target < 200000) {
721,7 → 881,86
memcpy(best_clock, &clock, sizeof(intel_clock_t));
return true;
}
static bool
intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
int target, int refclk, intel_clock_t *match_clock,
intel_clock_t *best_clock)
{
u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
u32 m, n, fastclk;
u32 updrate, minupdate, fracbits, p;
unsigned long bestppm, ppm, absppm;
int dotclk, flag;
 
flag = 0;
dotclk = target * 1000;
bestppm = 1000000;
ppm = absppm = 0;
fastclk = dotclk / (2*100);
updrate = 0;
minupdate = 19200;
fracbits = 1;
n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
bestm1 = bestm2 = bestp1 = bestp2 = 0;
 
/* based on hardware requirement, prefer smaller n to precision */
for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
updrate = refclk / n;
for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
if (p2 > 10)
p2 = p2 - 1;
p = p1 * p2;
/* based on hardware requirement, prefer bigger m1,m2 values */
for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
m2 = (((2*(fastclk * p * n / m1 )) +
refclk) / (2*refclk));
m = m1 * m2;
vco = updrate * m;
if (vco >= limit->vco.min && vco < limit->vco.max) {
ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
absppm = (ppm > 0) ? ppm : (-ppm);
if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
bestppm = 0;
flag = 1;
}
if (absppm < bestppm - 10) {
bestppm = absppm;
flag = 1;
}
if (flag) {
bestn = n;
bestm1 = m1;
bestm2 = m2;
bestp1 = p1;
bestp2 = p2;
flag = 0;
}
}
}
}
}
}
best_clock->n = bestn;
best_clock->m1 = bestm1;
best_clock->m2 = bestm2;
best_clock->p1 = bestp1;
best_clock->p2 = bestp2;
 
return true;
}
 
static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 frame, frame_reg = PIPEFRAME(pipe);
 
frame = I915_READ(frame_reg);
 
if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
DRM_DEBUG_KMS("vblank wait timed out\n");
}
 
/**
* intel_wait_for_vblank - wait for vblank on a given pipe
* @dev: drm device
735,6 → 974,11
struct drm_i915_private *dev_priv = dev->dev_private;
int pipestat_reg = PIPESTAT(pipe);
 
if (INTEL_INFO(dev)->gen >= 5) {
ironlake_wait_for_vblank(dev, pipe);
return;
}
 
/* Clear existing vblank status. Note this will clear any other
* sticky status fields as well.
*
785,20 → 1029,25
/* Wait for the Pipe State to go off */
if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
100))
DRM_DEBUG_KMS("pipe_off wait timed out\n");
WARN(1, "pipe_off wait timed out\n");
} else {
u32 last_line;
u32 last_line, line_mask;
int reg = PIPEDSL(pipe);
unsigned long timeout = jiffies + msecs_to_jiffies(100);
unsigned long timeout = GetTimerTicks() + msecs_to_jiffies(100);
 
if (IS_GEN2(dev))
line_mask = DSL_LINEMASK_GEN2;
else
line_mask = DSL_LINEMASK_GEN3;
 
/* Wait for the display line to settle */
do {
last_line = I915_READ(reg) & DSL_LINEMASK;
last_line = I915_READ(reg) & line_mask;
mdelay(5);
} while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
time_after(timeout, jiffies));
if (time_after(jiffies, timeout))
DRM_DEBUG_KMS("pipe_off wait timed out\n");
} while (((I915_READ(reg) & line_mask) != last_line) &&
time_after(timeout, GetTimerTicks()));
if (time_after(GetTimerTicks(), timeout))
WARN(1, "pipe_off wait timed out\n");
}
}
 
827,34 → 1076,49
 
/* For ILK+ */
static void assert_pch_pll(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
struct intel_pch_pll *pll,
struct intel_crtc *crtc,
bool state)
{
int reg;
u32 val;
bool cur_state;
 
if (HAS_PCH_CPT(dev_priv->dev)) {
u32 pch_dpll;
if (HAS_PCH_LPT(dev_priv->dev)) {
DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
return;
}
 
pch_dpll = I915_READ(PCH_DPLL_SEL);
if (WARN (!pll,
"asserting PCH PLL %s with no PLL\n", state_string(state)))
return;
 
/* Make sure the selected PLL is enabled to the transcoder */
WARN(!((pch_dpll >> (4 * pipe)) & 8),
"transcoder %d PLL not enabled\n", pipe);
val = I915_READ(pll->pll_reg);
cur_state = !!(val & DPLL_VCO_ENABLE);
WARN(cur_state != state,
"PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
pll->pll_reg, state_string(state), state_string(cur_state), val);
 
/* Convert the transcoder pipe number to a pll pipe number */
pipe = (pch_dpll >> (4 * pipe)) & 1;
}
/* Make sure the selected PLL is correctly attached to the transcoder */
if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
u32 pch_dpll;
 
reg = PCH_DPLL(pipe);
val = I915_READ(reg);
cur_state = !!(val & DPLL_VCO_ENABLE);
pch_dpll = I915_READ(PCH_DPLL_SEL);
cur_state = pll->pll_reg == _PCH_DPLL_B;
if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
"PLL[%d] not attached to this transcoder %d: %08x\n",
cur_state, crtc->pipe, pch_dpll)) {
cur_state = !!(val >> (4*crtc->pipe + 3));
WARN(cur_state != state,
"PCH PLL state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
"PLL[%d] not %s on this transcoder %d: %08x\n",
pll->pll_reg == _PCH_DPLL_B,
state_string(state),
crtc->pipe,
val);
}
#define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
#define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
}
}
#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
 
static void assert_fdi_tx(struct drm_i915_private *dev_priv,
enum pipe pipe, bool state)
863,9 → 1127,16
u32 val;
bool cur_state;
 
if (IS_HASWELL(dev_priv->dev)) {
/* On Haswell, DDI is used instead of FDI_TX_CTL */
reg = DDI_FUNC_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
} else {
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_TX_ENABLE);
}
WARN(cur_state != state,
"FDI TX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
880,9 → 1151,14
u32 val;
bool cur_state;
 
if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
return;
} else {
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
cur_state = !!(val & FDI_RX_ENABLE);
}
WARN(cur_state != state,
"FDI RX state assertion failure (expected %s, current %s)\n",
state_string(state), state_string(cur_state));
900,6 → 1176,10
if (dev_priv->info->gen == 5)
return;
 
/* On Haswell, DDI ports are responsible for the FDI PLL setup */
if (IS_HASWELL(dev_priv->dev))
return;
 
reg = FDI_TX_CTL(pipe);
val = I915_READ(reg);
WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
911,6 → 1191,10
int reg;
u32 val;
 
if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
return;
}
reg = FDI_RX_CTL(pipe);
val = I915_READ(reg);
WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
952,6 → 1236,10
u32 val;
bool cur_state;
 
/* if we need the pipe A quirk it must be always on */
if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
state = true;
 
reg = PIPECONF(pipe);
val = I915_READ(reg);
cur_state = !!(val & PIPECONF_ENABLE);
960,19 → 1248,24
pipe_name(pipe), state_string(state), state_string(cur_state));
}
 
static void assert_plane_enabled(struct drm_i915_private *dev_priv,
enum plane plane)
static void assert_plane(struct drm_i915_private *dev_priv,
enum plane plane, bool state)
{
int reg;
u32 val;
bool cur_state;
 
reg = DSPCNTR(plane);
val = I915_READ(reg);
WARN(!(val & DISPLAY_PLANE_ENABLE),
"plane %c assertion failure, should be active but is disabled\n",
plane_name(plane));
cur_state = !!(val & DISPLAY_PLANE_ENABLE);
WARN(cur_state != state,
"plane %c assertion failure (expected %s, current %s)\n",
plane_name(plane), state_string(state), state_string(cur_state));
}
 
#define assert_plane_enabled(d, p) assert_plane(d, p, true)
#define assert_plane_disabled(d, p) assert_plane(d, p, false)
 
static void assert_planes_disabled(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
981,8 → 1274,14
int cur_pipe;
 
/* Planes are fixed to pipes on ILK+ */
if (HAS_PCH_SPLIT(dev_priv->dev))
if (HAS_PCH_SPLIT(dev_priv->dev)) {
reg = DSPCNTR(pipe);
val = I915_READ(reg);
WARN((val & DISPLAY_PLANE_ENABLE),
"plane %c assertion failure, should be disabled but not\n",
plane_name(pipe));
return;
}
 
/* Need to check both planes against the pipe */
for (i = 0; i < 2; i++) {
1001,6 → 1300,11
u32 val;
bool enabled;
 
if (HAS_PCH_LPT(dev_priv->dev)) {
DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
return;
}
 
val = I915_READ(PCH_DREF_CONTROL);
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
DREF_SUPERSPREAD_SOURCE_MASK));
1094,6 → 1398,10
WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
"PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
 
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
&& (val & DP_PIPEB_SELECT),
"IBX PCH dp port still using transcoder B\n");
}
 
static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1100,9 → 1408,13
enum pipe pipe, int reg)
{
u32 val = I915_READ(reg);
WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
"PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
"PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
reg, pipe_name(pipe));
 
WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
&& (val & SDVO_PIPE_B_SELECT),
"IBX PCH hdmi port still using transcoder B\n");
}
 
static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1117,13 → 1429,13
 
reg = PCH_ADPA;
val = I915_READ(reg);
WARN(adpa_pipe_enabled(dev_priv, val, pipe),
WARN(adpa_pipe_enabled(dev_priv, pipe, val),
"PCH VGA enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
 
reg = PCH_LVDS;
val = I915_READ(reg);
WARN(lvds_pipe_enabled(dev_priv, val, pipe),
WARN(lvds_pipe_enabled(dev_priv, pipe, val),
"PCH LVDS enabled on transcoder %c, should be disabled\n",
pipe_name(pipe));
 
1142,6 → 1454,8
* protect mechanism may be enabled.
*
* Note! This is for pre-ILK only.
*
* Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
*/
static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
{
1149,7 → 1463,7
u32 val;
 
/* No really, not for ILK+ */
BUG_ON(dev_priv->info->gen >= 5);
BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
 
/* PLL is protected by panel, make sure we can write it */
if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1199,6 → 1513,69
POSTING_READ(reg);
}
 
/* SBI access */
static void
intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
{
unsigned long flags;
 
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
100)) {
DRM_ERROR("timeout waiting for SBI to become ready\n");
goto out_unlock;
}
 
I915_WRITE(SBI_ADDR,
(reg << 16));
I915_WRITE(SBI_DATA,
value);
I915_WRITE(SBI_CTL_STAT,
SBI_BUSY |
SBI_CTL_OP_CRWR);
 
if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
100)) {
DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
goto out_unlock;
}
 
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
}
 
static u32
intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
{
unsigned long flags;
u32 value = 0;
 
spin_lock_irqsave(&dev_priv->dpio_lock, flags);
if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
100)) {
DRM_ERROR("timeout waiting for SBI to become ready\n");
goto out_unlock;
}
 
I915_WRITE(SBI_ADDR,
(reg << 16));
I915_WRITE(SBI_CTL_STAT,
SBI_BUSY |
SBI_CTL_OP_CRRD);
 
if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
100)) {
DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
goto out_unlock;
}
 
value = I915_READ(SBI_DATA);
 
out_unlock:
spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
return value;
}
 
/**
* intel_enable_pch_pll - enable PCH PLL
* @dev_priv: i915 private structure
1207,60 → 1584,88
* The PCH PLL needs to be enabled before the PCH transcoder, since it
* drives the transcoder clock.
*/
static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
enum pipe pipe)
static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
struct intel_pch_pll *pll;
int reg;
u32 val;
 
if (pipe > 1)
/* PCH PLLs only available on ILK, SNB and IVB */
BUG_ON(dev_priv->info->gen < 5);
pll = intel_crtc->pch_pll;
if (pll == NULL)
return;
 
/* PCH only available on ILK+ */
BUG_ON(dev_priv->info->gen < 5);
if (WARN_ON(pll->refcount == 0))
return;
 
DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
pll->pll_reg, pll->active, pll->on,
intel_crtc->base.base.id);
 
/* PCH refclock must be enabled first */
assert_pch_refclk_enabled(dev_priv);
 
reg = PCH_DPLL(pipe);
if (pll->active++ && pll->on) {
assert_pch_pll_enabled(dev_priv, pll, NULL);
return;
}
 
DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
 
reg = pll->pll_reg;
val = I915_READ(reg);
val |= DPLL_VCO_ENABLE;
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(200);
 
pll->on = true;
}
 
static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
enum pipe pipe)
static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
struct intel_pch_pll *pll = intel_crtc->pch_pll;
int reg;
u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
pll_sel = TRANSC_DPLL_ENABLE;
u32 val;
 
if (pipe > 1)
return;
 
/* PCH only available on ILK+ */
BUG_ON(dev_priv->info->gen < 5);
if (pll == NULL)
return;
 
/* Make sure transcoder isn't still depending on us */
assert_transcoder_disabled(dev_priv, pipe);
if (WARN_ON(pll->refcount == 0))
return;
 
if (pipe == 0)
pll_sel |= TRANSC_DPLLA_SEL;
else if (pipe == 1)
pll_sel |= TRANSC_DPLLB_SEL;
DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
pll->pll_reg, pll->active, pll->on,
intel_crtc->base.base.id);
 
if (WARN_ON(pll->active == 0)) {
assert_pch_pll_disabled(dev_priv, pll, NULL);
return;
}
 
if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
if (--pll->active) {
assert_pch_pll_enabled(dev_priv, pll, NULL);
return;
}
 
reg = PCH_DPLL(pipe);
DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
 
/* Make sure transcoder isn't still depending on us */
assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
 
reg = pll->pll_reg;
val = I915_READ(reg);
val &= ~DPLL_VCO_ENABLE;
I915_WRITE(reg, val);
POSTING_READ(reg);
udelay(200);
 
pll->on = false;
}
 
static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1267,20 → 1672,28
enum pipe pipe)
{
int reg;
u32 val;
u32 val, pipeconf_val;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 
/* PCH only available on ILK+ */
BUG_ON(dev_priv->info->gen < 5);
 
/* Make sure PCH DPLL is enabled */
assert_pch_pll_enabled(dev_priv, pipe);
assert_pch_pll_enabled(dev_priv,
to_intel_crtc(crtc)->pch_pll,
to_intel_crtc(crtc));
 
/* FDI must be feeding us bits for PCH ports */
assert_fdi_tx_enabled(dev_priv, pipe);
assert_fdi_rx_enabled(dev_priv, pipe);
 
if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
return;
}
reg = TRANSCONF(pipe);
val = I915_READ(reg);
pipeconf_val = I915_READ(PIPECONF(pipe));
 
if (HAS_PCH_IBX(dev_priv->dev)) {
/*
1288,8 → 1701,19
* that in pipeconf reg.
*/
val &= ~PIPE_BPC_MASK;
val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
val |= pipeconf_val & PIPE_BPC_MASK;
}
 
val &= ~TRANS_INTERLACE_MASK;
if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
if (HAS_PCH_IBX(dev_priv->dev) &&
intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
val |= TRANS_LEGACY_INTERLACED_ILK;
else
val |= TRANS_INTERLACED;
else
val |= TRANS_PROGRESSIVE;
 
I915_WRITE(reg, val | TRANS_ENABLE);
if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
DRM_ERROR("failed to enable transcoder %d\n", pipe);
1397,6 → 1821,7
 
I915_WRITE(reg, val & ~PIPECONF_ENABLE);
intel_wait_for_pipe_off(dev_priv->dev, pipe);
 
}
 
/*
1403,7 → 1828,7
* Plane regs are double buffered, going from enabled->disabled needs a
* trigger in order to latch. The display address reg provides this.
*/
static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
void intel_flush_display_plane(struct drm_i915_private *dev_priv,
enum plane plane)
{
I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1461,500 → 1886,6
intel_wait_for_vblank(dev_priv->dev, pipe);
}
 
static void disable_pch_dp(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg, u32 port_sel)
{
u32 val = I915_READ(reg);
if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
I915_WRITE(reg, val & ~DP_PORT_EN);
}
}
 
static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
enum pipe pipe, int reg)
{
u32 val = I915_READ(reg);
if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
reg, pipe);
I915_WRITE(reg, val & ~PORT_ENABLE);
}
}
 
/* Disable any ports connected to this transcoder */
static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
u32 reg, val;
 
val = I915_READ(PCH_PP_CONTROL);
I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
 
disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
 
reg = PCH_ADPA;
val = I915_READ(reg);
if (adpa_pipe_enabled(dev_priv, val, pipe))
I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
 
reg = PCH_LVDS;
val = I915_READ(reg);
if (lvds_pipe_enabled(dev_priv, val, pipe)) {
DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
I915_WRITE(reg, val & ~LVDS_PORT_EN);
POSTING_READ(reg);
udelay(100);
}
 
disable_pch_hdmi(dev_priv, pipe, HDMIB);
disable_pch_hdmi(dev_priv, pipe, HDMIC);
disable_pch_hdmi(dev_priv, pipe, HDMID);
}
 
static void i8xx_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 fbc_ctl;
 
/* Disable compression */
fbc_ctl = I915_READ(FBC_CONTROL);
if ((fbc_ctl & FBC_CTL_EN) == 0)
return;
 
fbc_ctl &= ~FBC_CTL_EN;
I915_WRITE(FBC_CONTROL, fbc_ctl);
 
/* Wait for compressing bit to clear */
if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
DRM_DEBUG_KMS("FBC idle timed out\n");
return;
}
 
DRM_DEBUG_KMS("disabled FBC\n");
}
 
static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int cfb_pitch;
int plane, i;
u32 fbc_ctl, fbc_ctl2;
 
cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
if (fb->pitches[0] < cfb_pitch)
cfb_pitch = fb->pitches[0];
 
/* FBC_CTL wants 64B units */
cfb_pitch = (cfb_pitch / 64) - 1;
plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
 
/* Clear old tags */
for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
I915_WRITE(FBC_TAG + (i * 4), 0);
 
/* Set it up... */
fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
fbc_ctl2 |= plane;
I915_WRITE(FBC_CONTROL2, fbc_ctl2);
I915_WRITE(FBC_FENCE_OFF, crtc->y);
 
/* enable it... */
fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
if (IS_I945GM(dev))
fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
fbc_ctl |= obj->fence_reg;
I915_WRITE(FBC_CONTROL, fbc_ctl);
 
DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
cfb_pitch, crtc->y, intel_crtc->plane);
}
 
static bool i8xx_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}
 
static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
unsigned long stall_watermark = 200;
u32 dpfc_ctl;
 
dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
 
I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
(stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
(interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
 
/* enable it... */
I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
 
DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}
 
static void g4x_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpfc_ctl;
 
/* Disable compression */
dpfc_ctl = I915_READ(DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
 
DRM_DEBUG_KMS("disabled FBC\n");
}
}
 
static bool g4x_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}
 
static void sandybridge_blit_fbc_update(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 blt_ecoskpd;
 
/* Make sure blitter notifies FBC of writes */
gen6_gt_force_wake_get(dev_priv);
blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
GEN6_BLITTER_LOCK_SHIFT;
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
GEN6_BLITTER_LOCK_SHIFT);
I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
POSTING_READ(GEN6_BLITTER_ECOSKPD);
gen6_gt_force_wake_put(dev_priv);
}
 
static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_framebuffer *fb = crtc->fb;
struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
struct drm_i915_gem_object *obj = intel_fb->obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
unsigned long stall_watermark = 200;
u32 dpfc_ctl;
 
dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
dpfc_ctl &= DPFC_RESERVED;
dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
/* Set persistent mode for front-buffer rendering, ala X. */
dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
 
I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
(stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
(interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
/* enable it... */
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
 
if (IS_GEN6(dev)) {
I915_WRITE(SNB_DPFC_CTL_SA,
SNB_CPU_FENCE_ENABLE | obj->fence_reg);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
sandybridge_blit_fbc_update(dev);
}
 
DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
}
 
static void ironlake_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpfc_ctl;
 
/* Disable compression */
dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
 
DRM_DEBUG_KMS("disabled FBC\n");
}
}
 
static bool ironlake_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}
 
bool intel_fbc_enabled(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (!dev_priv->display.fbc_enabled)
return false;
 
return dev_priv->display.fbc_enabled(dev);
}
 
 
 
 
 
 
 
 
 
 
static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
{
struct intel_fbc_work *work;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (!dev_priv->display.enable_fbc)
return;
 
// intel_cancel_fbc_work(dev_priv);
 
// work = kzalloc(sizeof *work, GFP_KERNEL);
// if (work == NULL) {
// dev_priv->display.enable_fbc(crtc, interval);
// return;
// }
 
// work->crtc = crtc;
// work->fb = crtc->fb;
// work->interval = interval;
// INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
 
// dev_priv->fbc_work = work;
 
DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
 
/* Delay the actual enabling to let pageflipping cease and the
* display to settle before starting the compression. Note that
* this delay also serves a second purpose: it allows for a
* vblank to pass after disabling the FBC before we attempt
* to modify the control registers.
*
* A more complicated solution would involve tracking vblanks
* following the termination of the page-flipping sequence
* and indeed performing the enable as a co-routine and not
* waiting synchronously upon the vblank.
*/
// schedule_delayed_work(&work->work, msecs_to_jiffies(50));
}
 
void intel_disable_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
// intel_cancel_fbc_work(dev_priv);
 
if (!dev_priv->display.disable_fbc)
return;
 
dev_priv->display.disable_fbc(dev);
dev_priv->cfb_plane = -1;
}
 
/**
* intel_update_fbc - enable/disable FBC as needed
* @dev: the drm_device
*
* Set up the framebuffer compression hardware at mode set time. We
* enable it if possible:
* - plane A only (on pre-965)
* - no pixel mulitply/line duplication
* - no alpha buffer discard
* - no dual wide
* - framebuffer <= 2048 in width, 1536 in height
*
* We can't assume that any compression will take place (worst case),
* so the compressed buffer has to be the same size as the uncompressed
* one. It also must reside (along with the line length buffer) in
* stolen memory.
*
* We need to enable/disable FBC on a global basis.
*/
static void intel_update_fbc(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = NULL, *tmp_crtc;
struct intel_crtc *intel_crtc;
struct drm_framebuffer *fb;
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
int enable_fbc;
 
DRM_DEBUG_KMS("\n");
 
if (!i915_powersave)
return;
 
if (!I915_HAS_FBC(dev))
return;
 
/*
* If FBC is already on, we just have to verify that we can
* keep it that way...
* Need to disable if:
* - more than one pipe is active
* - changing FBC params (stride, fence, mode)
* - new fb is too large to fit in compressed buffer
* - going to an unsupported config (interlace, pixel multiply, etc.)
*/
list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
if (tmp_crtc->enabled && tmp_crtc->fb) {
if (crtc) {
DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
goto out_disable;
}
crtc = tmp_crtc;
}
}
 
if (!crtc || crtc->fb == NULL) {
DRM_DEBUG_KMS("no output, disabling\n");
dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
goto out_disable;
}
 
intel_crtc = to_intel_crtc(crtc);
fb = crtc->fb;
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
 
enable_fbc = i915_enable_fbc;
if (enable_fbc < 0) {
DRM_DEBUG_KMS("fbc set to per-chip default\n");
enable_fbc = 1;
if (INTEL_INFO(dev)->gen <= 6)
enable_fbc = 0;
}
if (!enable_fbc) {
DRM_DEBUG_KMS("fbc disabled per module param\n");
dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
goto out_disable;
}
if (intel_fb->obj->base.size > dev_priv->cfb_size) {
DRM_DEBUG_KMS("framebuffer too large, disabling "
"compression\n");
dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
goto out_disable;
}
if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
(crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
DRM_DEBUG_KMS("mode incompatible with compression, "
"disabling\n");
dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
goto out_disable;
}
if ((crtc->mode.hdisplay > 2048) ||
(crtc->mode.vdisplay > 1536)) {
DRM_DEBUG_KMS("mode too large for compression, disabling\n");
dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
goto out_disable;
}
if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
DRM_DEBUG_KMS("plane not 0, disabling compression\n");
dev_priv->no_fbc_reason = FBC_BAD_PLANE;
goto out_disable;
}
 
/* The use of a CPU fence is mandatory in order to detect writes
* by the CPU to the scanout and trigger updates to the FBC.
*/
// if (obj->tiling_mode != I915_TILING_X ||
// obj->fence_reg == I915_FENCE_REG_NONE) {
// DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
// dev_priv->no_fbc_reason = FBC_NOT_TILED;
// goto out_disable;
// }
 
/* If the kernel debugger is active, always disable compression */
if (in_dbg_master())
goto out_disable;
 
/* If the scanout has not changed, don't modify the FBC settings.
* Note that we make the fundamental assumption that the fb->obj
* cannot be unpinned (and have its GTT offset and fence revoked)
* without first being decoupled from the scanout and FBC disabled.
*/
if (dev_priv->cfb_plane == intel_crtc->plane &&
dev_priv->cfb_fb == fb->base.id &&
dev_priv->cfb_y == crtc->y)
return;
 
if (intel_fbc_enabled(dev)) {
/* We update FBC along two paths, after changing fb/crtc
* configuration (modeswitching) and after page-flipping
* finishes. For the latter, we know that not only did
* we disable the FBC at the start of the page-flip
* sequence, but also more than one vblank has passed.
*
* For the former case of modeswitching, it is possible
* to switch between two FBC valid configurations
* instantaneously so we do need to disable the FBC
* before we can modify its control registers. We also
* have to wait for the next vblank for that to take
* effect. However, since we delay enabling FBC we can
* assume that a vblank has passed since disabling and
* that we can safely alter the registers in the deferred
* callback.
*
* In the scenario that we go from a valid to invalid
* and then back to valid FBC configuration we have
* no strict enforcement that a vblank occurred since
* disabling the FBC. However, along all current pipe
* disabling paths we do need to wait for a vblank at
* some point. And we wait before enabling FBC anyway.
*/
DRM_DEBUG_KMS("disabling active FBC for update\n");
intel_disable_fbc(dev);
}
 
intel_enable_fbc(crtc, 500);
return;
 
out_disable:
/* Multiple disables should be harmless */
if (intel_fbc_enabled(dev)) {
DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
intel_disable_fbc(dev);
}
}
 
int
intel_pin_and_fence_fb_obj(struct drm_device *dev,
struct drm_i915_gem_object *obj,
2011,6 → 1942,28
return ret;
}
 
void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
{
// i915_gem_object_unpin_fence(obj);
// i915_gem_object_unpin(obj);
}
 
/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
* is assumed to be a power-of-two. */
static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
unsigned int bpp,
unsigned int pitch)
{
int tile_rows, tiles;
 
tile_rows = *y / 8;
*y %= 8;
tiles = *x / (512/bpp);
*x %= 512/bpp;
 
return tile_rows * pitch * 8 + tiles * 4096;
}
 
static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
int x, int y)
{
2020,7 → 1973,7
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long Start, Offset;
unsigned long linear_offset;
u32 dspcntr;
u32 reg;
 
2067,18 → 2020,28
 
I915_WRITE(reg, dspcntr);
 
Start = obj->gtt_offset;
Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
 
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
Start, Offset, x, y, fb->pitches[0]);
if (INTEL_INFO(dev)->gen >= 4) {
intel_crtc->dspaddr_offset =
gen4_compute_dspaddr_offset_xtiled(&x, &y,
fb->bits_per_pixel / 8,
fb->pitches[0]);
linear_offset -= intel_crtc->dspaddr_offset;
} else {
intel_crtc->dspaddr_offset = linear_offset;
}
 
DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
if (INTEL_INFO(dev)->gen >= 4) {
I915_WRITE(DSPSURF(plane), Start);
I915_MODIFY_DISPBASE(DSPSURF(plane),
obj->gtt_offset + intel_crtc->dspaddr_offset);
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
I915_WRITE(DSPADDR(plane), Offset);
I915_WRITE(DSPLINOFF(plane), linear_offset);
} else
I915_WRITE(DSPADDR(plane), Start + Offset);
I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
POSTING_READ(reg);
 
return 0;
2093,7 → 2056,7
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
int plane = intel_crtc->plane;
unsigned long Start, Offset;
unsigned long linear_offset;
u32 dspcntr;
u32 reg;
 
2148,15 → 2111,20
 
I915_WRITE(reg, dspcntr);
 
Start = obj->gtt_offset;
Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
intel_crtc->dspaddr_offset =
gen4_compute_dspaddr_offset_xtiled(&x, &y,
fb->bits_per_pixel / 8,
fb->pitches[0]);
linear_offset -= intel_crtc->dspaddr_offset;
 
DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
Start, Offset, x, y, fb->pitches[0]);
DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
I915_WRITE(DSPSURF(plane), Start);
I915_MODIFY_DISPBASE(DSPSURF(plane),
obj->gtt_offset + intel_crtc->dspaddr_offset);
I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
I915_WRITE(DSPADDR(plane), Offset);
I915_WRITE(DSPLINOFF(plane), linear_offset);
POSTING_READ(reg);
 
return 0;
2169,54 → 2137,83
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (dev_priv->display.disable_fbc)
dev_priv->display.disable_fbc(dev);
intel_increase_pllclock(crtc);
 
return dev_priv->display.update_plane(crtc, fb, x, y);
}
 
#if 0
static int
intel_finish_fb(struct drm_framebuffer *old_fb)
{
struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
bool was_interruptible = dev_priv->mm.interruptible;
int ret;
 
ret = dev_priv->display.update_plane(crtc, fb, x, y);
if (ret)
return ret;
wait_event(dev_priv->pending_flip_queue,
atomic_read(&dev_priv->mm.wedged) ||
atomic_read(&obj->pending_flip) == 0);
 
intel_update_fbc(dev);
intel_increase_pllclock(crtc);
/* Big Hammer, we also need to ensure that any pending
* MI_WAIT_FOR_EVENT inside a user batch buffer on the
* current scanout is retired before unpinning the old
* framebuffer.
*
* This should only fail upon a hung GPU, in which case we
* can safely continue.
*/
dev_priv->mm.interruptible = false;
ret = i915_gem_object_finish_gpu(obj);
dev_priv->mm.interruptible = was_interruptible;
 
return 0;
return ret;
}
#endif
 
static int
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_framebuffer *old_fb;
int ret;
 
ENTER();
 
/* no fb bound */
if (!crtc->fb) {
if (!fb) {
DRM_ERROR("No FB bound\n");
return 0;
}
 
switch (intel_crtc->plane) {
case 0:
case 1:
break;
case 2:
if (IS_IVYBRIDGE(dev))
break;
/* fall through otherwise */
default:
DRM_ERROR("no plane for crtc\n");
if(intel_crtc->plane > dev_priv->num_pipe) {
DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
intel_crtc->plane,
dev_priv->num_pipe);
return -EINVAL;
}
 
mutex_lock(&dev->struct_mutex);
// ret = intel_pin_and_fence_fb_obj(dev,
// to_intel_framebuffer(fb)->obj,
// NULL);
// if (ret != 0) {
// mutex_unlock(&dev->struct_mutex);
// DRM_ERROR("pin & fence failed\n");
// return ret;
// }
 
ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
LEAVE_ATOMIC_MODE_SET);
// if (crtc->fb)
// intel_finish_fb(crtc->fb);
 
ret = dev_priv->display.update_plane(crtc, fb, x, y);
if (ret) {
i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
mutex_unlock(&dev->struct_mutex);
DRM_ERROR("failed to update base address\n");
LEAVE();
2223,13 → 2220,20
return ret;
}
 
old_fb = crtc->fb;
crtc->fb = fb;
crtc->x = x;
crtc->y = y;
 
if (old_fb) {
intel_wait_for_vblank(dev, intel_crtc->pipe);
intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
}
 
intel_update_fbc(dev);
mutex_unlock(&dev->struct_mutex);
 
 
LEAVE();
return 0;
 
 
}
 
static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2433,7 → 2437,7
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, i;
u32 reg, temp, i, retry;
 
/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
for train result */
2485,16 → 2489,20
POSTING_READ(reg);
udelay(500);
 
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
 
if (temp & FDI_RX_BIT_LOCK) {
I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
DRM_DEBUG_KMS("FDI train 1 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 1 fail!\n");
 
2534,16 → 2542,20
POSTING_READ(reg);
udelay(500);
 
for (retry = 0; retry < 5; retry++) {
reg = FDI_RX_IIR(pipe);
temp = I915_READ(reg);
DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
 
if (temp & FDI_RX_SYMBOL_LOCK) {
I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
DRM_DEBUG_KMS("FDI train 2 done.\n");
break;
}
udelay(50);
}
if (retry < 5)
break;
}
if (i == 4)
DRM_ERROR("FDI train 2 fail!\n");
 
2664,11 → 2676,10
DRM_DEBUG_KMS("FDI train done.\n");
}
 
static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp;
 
2694,6 → 2705,9
POSTING_READ(reg);
udelay(200);
 
/* On Haswell, the PLL configuration for ports and pipes is handled
* separately, as part of DDI setup */
if (!IS_HASWELL(dev)) {
/* Enable CPU FDI TX PLL, always on for Ironlake */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
2704,7 → 2718,37
udelay(100);
}
}
}
 
static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
{
struct drm_device *dev = intel_crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = intel_crtc->pipe;
u32 reg, temp;
 
/* Switch from PCDclk to Rawclk */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_PCDCLK);
 
/* Disable CPU FDI TX PLL */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
 
POSTING_READ(reg);
udelay(100);
 
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
 
/* Wait for the clocks to turn off. */
POSTING_READ(reg);
udelay(100);
}
 
static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
2774,57 → 2818,71
udelay(100);
}
 
/*
* When we disable a pipe, we need to clear any pending scanline wait events
* to avoid hanging the ring, which we assume we are waiting on.
*/
static void intel_clear_scanline_wait(struct drm_device *dev)
static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
u32 tmp;
unsigned long flags;
bool pending;
 
if (IS_GEN2(dev))
/* Can't break the hang on i8xx */
return;
if (atomic_read(&dev_priv->mm.wedged))
return false;
 
ring = LP_RING(dev_priv);
tmp = I915_READ_CTL(ring);
if (tmp & RING_WAIT)
I915_WRITE_CTL(ring, tmp);
spin_lock_irqsave(&dev->event_lock, flags);
pending = to_intel_crtc(crtc)->unpin_work != NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
 
return pending;
}
 
#if 0
static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
{
struct drm_i915_gem_object *obj;
struct drm_i915_private *dev_priv;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (crtc->fb == NULL)
return;
 
obj = to_intel_framebuffer(crtc->fb)->obj;
dev_priv = crtc->dev->dev_private;
wait_event(dev_priv->pending_flip_queue,
atomic_read(&obj->pending_flip) == 0);
!intel_crtc_has_pending_flip(crtc));
 
mutex_lock(&dev->struct_mutex);
intel_finish_fb(crtc->fb);
mutex_unlock(&dev->struct_mutex);
}
#endif
 
static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *encoder;
struct intel_encoder *intel_encoder;
 
/*
* If there's a non-PCH eDP on this crtc, it must be DP_A, and that
* must be driven by its own crtc; no sharing is possible.
*/
list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
if (encoder->base.crtc != crtc)
continue;
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
 
switch (encoder->type) {
/* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
* CPU handles all others */
if (IS_HASWELL(dev)) {
/* It is still unclear how this will work on PPT, so throw up a warning */
WARN_ON(!HAS_PCH_LPT(dev));
 
if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
return true;
} else {
DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
intel_encoder->type);
return false;
}
}
 
switch (intel_encoder->type) {
case INTEL_OUTPUT_EDP:
if (!intel_encoder_is_pch_edp(&encoder->base))
if (!intel_encoder_is_pch_edp(&intel_encoder->base))
return false;
continue;
}
2833,6 → 2891,97
return true;
}
 
/* Program iCLKIP clock to the desired frequency */
static void lpt_program_iclkip(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 divsel, phaseinc, auxdiv, phasedir = 0;
u32 temp;
 
/* It is necessary to ungate the pixclk gate prior to programming
* the divisors, and gate it back when it is done.
*/
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
 
/* Disable SSCCTL */
intel_sbi_write(dev_priv, SBI_SSCCTL6,
intel_sbi_read(dev_priv, SBI_SSCCTL6) |
SBI_SSCCTL_DISABLE);
 
/* 20MHz is a corner case which is out of range for the 7-bit divisor */
if (crtc->mode.clock == 20000) {
auxdiv = 1;
divsel = 0x41;
phaseinc = 0x20;
} else {
/* The iCLK virtual clock root frequency is in MHz,
* but the crtc->mode.clock in in KHz. To get the divisors,
* it is necessary to divide one by another, so we
* convert the virtual clock precision to KHz here for higher
* precision.
*/
u32 iclk_virtual_root_freq = 172800 * 1000;
u32 iclk_pi_range = 64;
u32 desired_divisor, msb_divisor_value, pi_value;
 
desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
msb_divisor_value = desired_divisor / iclk_pi_range;
pi_value = desired_divisor % iclk_pi_range;
 
auxdiv = 0;
divsel = msb_divisor_value - 2;
phaseinc = pi_value;
}
 
/* This should not happen with any sane values */
WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
~SBI_SSCDIVINTPHASE_INCVAL_MASK);
 
DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
crtc->mode.clock,
auxdiv,
divsel,
phasedir,
phaseinc);
 
/* Program SSCDIVINTPHASE6 */
temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
 
intel_sbi_write(dev_priv,
SBI_SSCDIVINTPHASE6,
temp);
 
/* Program SSCAUXDIV */
temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
intel_sbi_write(dev_priv,
SBI_SSCAUXDIV6,
temp);
 
 
/* Enable modulator and associated divider */
temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
temp &= ~SBI_SSCCTL_DISABLE;
intel_sbi_write(dev_priv,
SBI_SSCCTL6,
temp);
 
/* Wait for initialization time */
udelay(24);
 
I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
}
 
/*
* Enable PCH resources required for PCH ports:
* - PCH PLLs
2847,29 → 2996,41
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 reg, temp, transc_sel;
u32 reg, temp;
 
assert_transcoder_disabled(dev_priv, pipe);
 
/* For PCH output, training FDI link */
dev_priv->display.fdi_link_train(crtc);
 
intel_enable_pch_pll(dev_priv, pipe);
intel_enable_pch_pll(intel_crtc);
 
if (HAS_PCH_CPT(dev)) {
transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
TRANSC_DPLLB_SEL;
if (HAS_PCH_LPT(dev)) {
DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
lpt_program_iclkip(crtc);
} else if (HAS_PCH_CPT(dev)) {
u32 sel;
 
/* Be sure PCH DPLL SEL is set */
temp = I915_READ(PCH_DPLL_SEL);
if (pipe == 0) {
temp &= ~(TRANSA_DPLLB_SEL);
temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
} else if (pipe == 1) {
temp &= ~(TRANSB_DPLLB_SEL);
temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
} else if (pipe == 2) {
temp &= ~(TRANSC_DPLLB_SEL);
temp |= (TRANSC_DPLL_ENABLE | transc_sel);
switch (pipe) {
default:
case 0:
temp |= TRANSA_DPLL_ENABLE;
sel = TRANSA_DPLLB_SEL;
break;
case 1:
temp |= TRANSB_DPLL_ENABLE;
sel = TRANSB_DPLLB_SEL;
break;
case 2:
temp |= TRANSC_DPLL_ENABLE;
sel = TRANSC_DPLLB_SEL;
break;
}
if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
temp |= sel;
else
temp &= ~sel;
I915_WRITE(PCH_DPLL_SEL, temp);
}
 
2882,7 → 3043,9
I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
 
if (!IS_HASWELL(dev))
intel_fdi_normal_train(crtc);
 
/* For PCH DP, enable TRANS_DP_CTL */
2926,6 → 3089,93
intel_enable_transcoder(dev_priv, pipe);
}
 
static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
{
struct intel_pch_pll *pll = intel_crtc->pch_pll;
 
if (pll == NULL)
return;
 
if (pll->refcount == 0) {
WARN(1, "bad PCH PLL refcount\n");
return;
}
 
--pll->refcount;
intel_crtc->pch_pll = NULL;
}
 
static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
{
struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
struct intel_pch_pll *pll;
int i;
 
pll = intel_crtc->pch_pll;
if (pll) {
DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
intel_crtc->base.base.id, pll->pll_reg);
goto prepare;
}
 
if (HAS_PCH_IBX(dev_priv->dev)) {
/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
i = intel_crtc->pipe;
pll = &dev_priv->pch_plls[i];
 
DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
intel_crtc->base.base.id, pll->pll_reg);
 
goto found;
}
 
for (i = 0; i < dev_priv->num_pch_pll; i++) {
pll = &dev_priv->pch_plls[i];
 
/* Only want to check enabled timings first */
if (pll->refcount == 0)
continue;
 
if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
fp == I915_READ(pll->fp0_reg)) {
DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
intel_crtc->base.base.id,
pll->pll_reg, pll->refcount, pll->active);
 
goto found;
}
}
 
/* Ok no matching timings, maybe there's a free one? */
for (i = 0; i < dev_priv->num_pch_pll; i++) {
pll = &dev_priv->pch_plls[i];
if (pll->refcount == 0) {
DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
intel_crtc->base.base.id, pll->pll_reg);
goto found;
}
}
 
return NULL;
 
found:
intel_crtc->pch_pll = pll;
pll->refcount++;
DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
prepare: /* separate function? */
DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
 
/* Wait for the clocks to stabilize before rewriting the regs */
I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
POSTING_READ(pll->pll_reg);
udelay(150);
 
I915_WRITE(pll->fp0_reg, fp);
I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
pll->on = false;
return pll;
}
 
void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
2949,11 → 3199,14
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
u32 temp;
bool is_pch_port;
 
WARN_ON(!crtc->enabled);
 
if (intel_crtc->active)
return;
 
2968,11 → 3221,17
 
is_pch_port = intel_crtc_driving_pch(crtc);
 
if (is_pch_port)
ironlake_fdi_pll_enable(crtc);
else
ironlake_fdi_disable(crtc);
if (is_pch_port) {
ironlake_fdi_pll_enable(intel_crtc);
} else {
assert_fdi_tx_disabled(dev_priv, pipe);
assert_fdi_rx_disabled(dev_priv, pipe);
}
 
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->pre_enable)
encoder->pre_enable(encoder);
 
/* Enable panel fitting for LVDS */
if (dev_priv->pch_pf_size &&
(intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3002,6 → 3261,22
mutex_unlock(&dev->struct_mutex);
 
// intel_crtc_update_cursor(crtc, true);
 
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
 
if (HAS_PCH_CPT(dev))
intel_cpt_verify_modeset(dev, intel_crtc->pipe);
 
/*
* There seems to be a race in PCH platform hw (at least on some
* outputs) where an enabled pipe still completes any pageflip right
* away (as if the pipe is off) instead of waiting for vblank. As soon
* as the first vblank happend, everything works as expected. Hence just
* wait for one vblank before returning to avoid strange things
* happening.
*/
intel_wait_for_vblank(dev, intel_crtc->pipe);
}
 
static void ironlake_crtc_disable(struct drm_crtc *crtc)
3009,16 → 3284,19
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
u32 reg, temp;
 
 
if (!intel_crtc->active)
return;
 
ENTER();
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->disable(encoder);
 
intel_crtc_wait_for_pending_flips(crtc);
// intel_crtc_wait_for_pending_flips(crtc);
// drm_vblank_off(dev, pipe);
// intel_crtc_update_cursor(crtc, false);
 
3033,15 → 3311,12
I915_WRITE(PF_CTL(pipe), 0);
I915_WRITE(PF_WIN_SZ(pipe), 0);
 
for_each_encoder_on_crtc(dev, crtc, encoder)
if (encoder->post_disable)
encoder->post_disable(encoder);
 
ironlake_fdi_disable(crtc);
 
/* This is a horrible layering violation; we should be doing this in
* the connector/encoder ->prepare instead, but we don't always have
* enough information there about the config to know whether it will
* actually be necessary or just cause undesired flicker.
*/
intel_disable_pch_ports(dev_priv, pipe);
 
intel_disable_transcoder(dev_priv, pipe);
 
if (HAS_PCH_CPT(dev)) {
3072,65 → 3347,24
}
 
/* disable PCH DPLL */
if (!intel_crtc->no_pll)
intel_disable_pch_pll(dev_priv, pipe);
intel_disable_pch_pll(intel_crtc);
 
/* Switch from PCDclk to Rawclk */
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_PCDCLK);
ironlake_fdi_pll_disable(intel_crtc);
 
/* Disable CPU FDI TX PLL */
reg = FDI_TX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
 
POSTING_READ(reg);
udelay(100);
 
reg = FDI_RX_CTL(pipe);
temp = I915_READ(reg);
I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
 
/* Wait for the clocks to turn off. */
POSTING_READ(reg);
udelay(100);
 
intel_crtc->active = false;
intel_update_watermarks(dev);
 
mutex_lock(&dev->struct_mutex);
intel_update_fbc(dev);
intel_clear_scanline_wait(dev);
mutex_unlock(&dev->struct_mutex);
 
LEAVE();
 
}
 
static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
static void ironlake_crtc_off(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
 
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
ironlake_crtc_enable(crtc);
break;
 
case DRM_MODE_DPMS_OFF:
DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
ironlake_crtc_disable(crtc);
break;
intel_put_pch_pll(intel_crtc);
}
}
 
static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
{
3155,9 → 3389,12
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
 
WARN_ON(!crtc->enabled);
 
if (intel_crtc->active)
return;
 
3174,6 → 3411,9
/* Give the overlay scaler a chance to enable if it's on this pipe */
intel_crtc_dpms_overlay(intel_crtc, true);
// intel_crtc_update_cursor(crtc, true);
 
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->enable(encoder);
}
 
static void i9xx_crtc_disable(struct drm_crtc *crtc)
3181,14 → 3421,19
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
 
 
if (!intel_crtc->active)
return;
 
for_each_encoder_on_crtc(dev, crtc, encoder)
encoder->disable(encoder);
 
/* Give the overlay scaler a chance to disable if it's on this pipe */
intel_crtc_wait_for_pending_flips(crtc);
// intel_crtc_wait_for_pending_flips(crtc);
// drm_vblank_off(dev, pipe);
intel_crtc_dpms_overlay(intel_crtc, false);
// intel_crtc_update_cursor(crtc, false);
3203,45 → 3448,21
intel_crtc->active = false;
intel_update_fbc(dev);
intel_update_watermarks(dev);
intel_clear_scanline_wait(dev);
}
 
static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
static void i9xx_crtc_off(struct drm_crtc *crtc)
{
/* XXX: When our outputs are all unaware of DPMS modes other than off
* and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
*/
switch (mode) {
case DRM_MODE_DPMS_ON:
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
i9xx_crtc_enable(crtc);
break;
case DRM_MODE_DPMS_OFF:
i9xx_crtc_disable(crtc);
break;
}
}
 
/**
* Sets the power management mode of the pipe and plane.
*/
static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
static void intel_crtc_update_sarea(struct drm_crtc *crtc,
bool enabled)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_master_private *master_priv;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool enabled;
 
if (intel_crtc->dpms_mode == mode)
return;
 
intel_crtc->dpms_mode = mode;
 
dev_priv->display.dpms(crtc, mode);
 
#if 0
if (!dev->primary->master)
return;
3250,8 → 3471,6
if (!master_priv->sarea_priv)
return;
 
enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
 
switch (pipe) {
case 0:
master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3269,79 → 3488,177
 
}
 
/**
* Sets the power management mode of the pipe and plane.
*/
void intel_crtc_update_dpms(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *intel_encoder;
bool enable = false;
 
for_each_encoder_on_crtc(dev, crtc, intel_encoder)
enable |= intel_encoder->connectors_active;
 
if (enable)
dev_priv->display.crtc_enable(crtc);
else
dev_priv->display.crtc_disable(crtc);
 
intel_crtc_update_sarea(crtc, enable);
}
 
static void intel_crtc_noop(struct drm_crtc *crtc)
{
}
 
static void intel_crtc_disable(struct drm_crtc *crtc)
{
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
struct drm_device *dev = crtc->dev;
struct drm_connector *connector;
struct drm_i915_private *dev_priv = dev->dev_private;
 
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
/* crtc should still be enabled when we disable it. */
WARN_ON(!crtc->enabled);
 
if (crtc->fb) {
mutex_lock(&dev->struct_mutex);
i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
mutex_unlock(&dev->struct_mutex);
dev_priv->display.crtc_disable(crtc);
intel_crtc_update_sarea(crtc, false);
dev_priv->display.off(crtc);
 
assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
 
// if (crtc->fb) {
// mutex_lock(&dev->struct_mutex);
// intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
// mutex_unlock(&dev->struct_mutex);
// crtc->fb = NULL;
// }
 
/* Update computed state. */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
if (!connector->encoder || !connector->encoder->crtc)
continue;
 
if (connector->encoder->crtc != crtc)
continue;
 
connector->dpms = DRM_MODE_DPMS_OFF;
to_intel_encoder(connector->encoder)->connectors_active = false;
}
}
 
/* Prepare for a mode set.
*
* Note we could be a lot smarter here. We need to figure out which outputs
* will be enabled, which disabled (in short, how the config will changes)
* and perform the minimum necessary steps to accomplish that, e.g. updating
* watermarks, FBC configuration, making sure PLLs are programmed correctly,
* panel fitting is in the proper state, etc.
*/
static void i9xx_crtc_prepare(struct drm_crtc *crtc)
void intel_modeset_disable(struct drm_device *dev)
{
i9xx_crtc_disable(crtc);
struct drm_crtc *crtc;
 
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (crtc->enabled)
intel_crtc_disable(crtc);
}
}
 
static void i9xx_crtc_commit(struct drm_crtc *crtc)
void intel_encoder_noop(struct drm_encoder *encoder)
{
i9xx_crtc_enable(crtc);
}
 
static void ironlake_crtc_prepare(struct drm_crtc *crtc)
void intel_encoder_destroy(struct drm_encoder *encoder)
{
ironlake_crtc_disable(crtc);
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
 
drm_encoder_cleanup(encoder);
kfree(intel_encoder);
}
 
static void ironlake_crtc_commit(struct drm_crtc *crtc)
/* Simple dpms helper for encodres with just one connector, no cloning and only
* one kind of off state. It clamps all !ON modes to fully OFF and changes the
* state of the entire output pipe. */
void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
{
ironlake_crtc_enable(crtc);
if (mode == DRM_MODE_DPMS_ON) {
encoder->connectors_active = true;
 
intel_crtc_update_dpms(encoder->base.crtc);
} else {
encoder->connectors_active = false;
 
intel_crtc_update_dpms(encoder->base.crtc);
}
}
 
void intel_encoder_prepare(struct drm_encoder *encoder)
/* Cross check the actual hw state with our own modeset state tracking (and it's
* internal consistency). */
static void intel_connector_check_state(struct intel_connector *connector)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
/* lvds has its own version of prepare see intel_lvds_prepare */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
if (connector->get_hw_state(connector)) {
struct intel_encoder *encoder = connector->encoder;
struct drm_crtc *crtc;
bool encoder_enabled;
enum pipe pipe;
 
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.base.id,
drm_get_connector_name(&connector->base));
 
WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
"wrong connector dpms state\n");
WARN(connector->base.encoder != &encoder->base,
"active connector not linked to encoder\n");
WARN(!encoder->connectors_active,
"encoder->connectors_active not set\n");
 
encoder_enabled = encoder->get_hw_state(encoder, &pipe);
WARN(!encoder_enabled, "encoder not enabled\n");
if (WARN_ON(!encoder->base.crtc))
return;
 
crtc = encoder->base.crtc;
 
WARN(!crtc->enabled, "crtc not enabled\n");
WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
WARN(pipe != to_intel_crtc(crtc)->pipe,
"encoder active on the wrong pipe\n");
}
}
 
void intel_encoder_commit(struct drm_encoder *encoder)
/* Even simpler default implementation, if there's really no special case to
* consider. */
void intel_connector_dpms(struct drm_connector *connector, int mode)
{
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
struct drm_device *dev = encoder->dev;
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
struct intel_encoder *encoder = intel_attached_encoder(connector);
 
/* lvds has its own version of commit see intel_lvds_commit */
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
/* All the simple cases only support two dpms states. */
if (mode != DRM_MODE_DPMS_ON)
mode = DRM_MODE_DPMS_OFF;
 
if (HAS_PCH_CPT(dev))
intel_cpt_verify_modeset(dev, intel_crtc->pipe);
if (mode == connector->dpms)
return;
 
connector->dpms = mode;
 
/* Only need to change hw state when actually enabled */
if (encoder->base.crtc)
intel_encoder_dpms(encoder, mode);
else
WARN_ON(encoder->connectors_active != false);
 
intel_modeset_check_state(connector->dev);
}
 
void intel_encoder_destroy(struct drm_encoder *encoder)
/* Simple connector->get_hw_state implementation for encoders that support only
* one connector and no cloning and hence the encoder state determines the state
* of the connector. */
bool intel_connector_get_hw_state(struct intel_connector *connector)
{
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
enum pipe pipe = 0;
struct intel_encoder *encoder = connector->encoder;
 
drm_encoder_cleanup(encoder);
kfree(intel_encoder);
return encoder->get_hw_state(encoder, &pipe);
}
 
static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
3352,15 → 3669,27
return false;
}
 
/* XXX some encoders set the crtcinfo, others don't.
* Obviously we need some form of conflict resolution here...
*/
if (adjusted_mode->crtc_htotal == 0)
/* All interlaced capable intel hw wants timings in frames. Note though
* that intel_lvds_mode_fixup does some funny tricks with the crtc
* timings, so we need to be careful not to clobber these.*/
if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
drm_mode_set_crtcinfo(adjusted_mode, 0);
 
/* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
* with a hsync front porch of 0.
*/
if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
adjusted_mode->hsync_start == adjusted_mode->hdisplay)
return false;
 
return true;
}
 
static int valleyview_get_display_clock_speed(struct drm_device *dev)
{
return 400000; /* FIXME */
}
 
static int i945_get_display_clock_speed(struct drm_device *dev)
{
return 400000;
3458,1323 → 3787,6
fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
 
 
struct intel_watermark_params {
unsigned long fifo_size;
unsigned long max_wm;
unsigned long default_wm;
unsigned long guard_size;
unsigned long cacheline_size;
};
 
/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
PINEVIEW_DISPLAY_FIFO,
PINEVIEW_MAX_WM,
PINEVIEW_DFT_WM,
PINEVIEW_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
PINEVIEW_DISPLAY_FIFO,
PINEVIEW_MAX_WM,
PINEVIEW_DFT_HPLLOFF_WM,
PINEVIEW_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params pineview_cursor_wm = {
PINEVIEW_CURSOR_FIFO,
PINEVIEW_CURSOR_MAX_WM,
PINEVIEW_CURSOR_DFT_WM,
PINEVIEW_CURSOR_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
PINEVIEW_CURSOR_FIFO,
PINEVIEW_CURSOR_MAX_WM,
PINEVIEW_CURSOR_DFT_WM,
PINEVIEW_CURSOR_GUARD_WM,
PINEVIEW_FIFO_LINE_SIZE
};
static const struct intel_watermark_params g4x_wm_info = {
G4X_FIFO_SIZE,
G4X_MAX_WM,
G4X_MAX_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
I965_CURSOR_FIFO,
I965_CURSOR_MAX_WM,
I965_CURSOR_DFT_WM,
2,
G4X_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
I965_CURSOR_FIFO,
I965_CURSOR_MAX_WM,
I965_CURSOR_DFT_WM,
2,
I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
I945_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i915_wm_info = {
I915_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I915_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i855_wm_info = {
I855GM_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I830_FIFO_LINE_SIZE
};
static const struct intel_watermark_params i830_wm_info = {
I830_FIFO_SIZE,
I915_MAX_WM,
1,
2,
I830_FIFO_LINE_SIZE
};
 
static const struct intel_watermark_params ironlake_display_wm_info = {
ILK_DISPLAY_FIFO,
ILK_DISPLAY_MAXWM,
ILK_DISPLAY_DFTWM,
2,
ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_wm_info = {
ILK_CURSOR_FIFO,
ILK_CURSOR_MAXWM,
ILK_CURSOR_DFTWM,
2,
ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_display_srwm_info = {
ILK_DISPLAY_SR_FIFO,
ILK_DISPLAY_MAX_SRWM,
ILK_DISPLAY_DFT_SRWM,
2,
ILK_FIFO_LINE_SIZE
};
static const struct intel_watermark_params ironlake_cursor_srwm_info = {
ILK_CURSOR_SR_FIFO,
ILK_CURSOR_MAX_SRWM,
ILK_CURSOR_DFT_SRWM,
2,
ILK_FIFO_LINE_SIZE
};
 
static const struct intel_watermark_params sandybridge_display_wm_info = {
SNB_DISPLAY_FIFO,
SNB_DISPLAY_MAXWM,
SNB_DISPLAY_DFTWM,
2,
SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_wm_info = {
SNB_CURSOR_FIFO,
SNB_CURSOR_MAXWM,
SNB_CURSOR_DFTWM,
2,
SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_display_srwm_info = {
SNB_DISPLAY_SR_FIFO,
SNB_DISPLAY_MAX_SRWM,
SNB_DISPLAY_DFT_SRWM,
2,
SNB_FIFO_LINE_SIZE
};
static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
SNB_CURSOR_SR_FIFO,
SNB_CURSOR_MAX_SRWM,
SNB_CURSOR_DFT_SRWM,
2,
SNB_FIFO_LINE_SIZE
};
 
 
/**
* intel_calculate_wm - calculate watermark level
* @clock_in_khz: pixel clock
* @wm: chip FIFO params
* @pixel_size: display pixel size
* @latency_ns: memory latency for the platform
*
* Calculate the watermark level (the level at which the display plane will
* start fetching from memory again). Each chip has a different display
* FIFO size and allocation, so the caller needs to figure that out and pass
* in the correct intel_watermark_params structure.
*
* As the pixel clock runs, the FIFO will be drained at a rate that depends
* on the pixel size. When it reaches the watermark level, it'll start
* fetching FIFO line sized based chunks from memory until the FIFO fills
* past the watermark point. If the FIFO drains completely, a FIFO underrun
* will occur, and a display engine hang could result.
*/
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
const struct intel_watermark_params *wm,
int fifo_size,
int pixel_size,
unsigned long latency_ns)
{
long entries_required, wm_size;
 
/*
* Note: we need to make sure we don't overflow for various clock &
* latency values.
* clocks go from a few thousand to several hundred thousand.
* latency is usually a few thousand
*/
entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
1000;
entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
 
DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
 
wm_size = fifo_size - (entries_required + wm->guard_size);
 
DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
 
/* Don't promote wm_size to unsigned... */
if (wm_size > (long)wm->max_wm)
wm_size = wm->max_wm;
if (wm_size <= 0)
wm_size = wm->default_wm;
return wm_size;
}
 
struct cxsr_latency {
int is_desktop;
int is_ddr3;
unsigned long fsb_freq;
unsigned long mem_freq;
unsigned long display_sr;
unsigned long display_hpll_disable;
unsigned long cursor_sr;
unsigned long cursor_hpll_disable;
};
 
static const struct cxsr_latency cxsr_latency_table[] = {
{1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
{1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
{1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
{1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
{1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
 
{1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
{1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
{1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
{1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
{1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
 
{1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
{1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
{1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
{1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
{1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
 
{0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
{0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
{0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
{0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
{0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
 
{0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
{0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
{0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
{0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
{0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
 
{0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
{0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
{0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
{0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
{0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
};
 
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
int is_ddr3,
int fsb,
int mem)
{
const struct cxsr_latency *latency;
int i;
 
if (fsb == 0 || mem == 0)
return NULL;
 
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
latency = &cxsr_latency_table[i];
if (is_desktop == latency->is_desktop &&
is_ddr3 == latency->is_ddr3 &&
fsb == latency->fsb_freq && mem == latency->mem_freq)
return latency;
}
 
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
 
return NULL;
}
 
static void pineview_disable_cxsr(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
/* deactivate cxsr */
I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
}
 
/*
* Latency for FIFO fetches is dependent on several factors:
* - memory configuration (speed, channels)
* - chipset
* - current MCH state
* It can be fairly high in some situations, so here we assume a fairly
* pessimal value. It's a tradeoff between extra memory fetches (if we
* set this value too high, the FIFO will fetch frequently to stay full)
* and power consumption (set it too low to save power and we might see
* FIFO underruns and display "flicker").
*
* A value of 5us seems to be a good balance; safe for very low end
* platforms but not overly aggressive on lower latency configs.
*/
static const int latency_ns = 5000;
 
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
 
size = dsparb & 0x7f;
if (plane)
size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
 
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
 
return size;
}
 
static int i85x_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
 
size = dsparb & 0x1ff;
if (plane)
size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
size >>= 1; /* Convert to cachelines */
 
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
 
return size;
}
 
static int i845_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
 
size = dsparb & 0x7f;
size >>= 2; /* Convert to cachelines */
 
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A",
size);
 
return size;
}
 
static int i830_get_fifo_size(struct drm_device *dev, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dsparb = I915_READ(DSPARB);
int size;
 
size = dsparb & 0x7f;
size >>= 1; /* Convert to cachelines */
 
DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
plane ? "B" : "A", size);
 
return size;
}
 
static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
struct drm_crtc *crtc, *enabled = NULL;
 
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (crtc->enabled && crtc->fb) {
if (enabled)
return NULL;
enabled = crtc;
}
}
 
return enabled;
}
 
static void pineview_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
const struct cxsr_latency *latency;
u32 reg;
unsigned long wm;
 
latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
dev_priv->fsb_freq, dev_priv->mem_freq);
if (!latency) {
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
pineview_disable_cxsr(dev);
return;
}
 
crtc = single_enabled_crtc(dev);
if (crtc) {
int clock = crtc->mode.clock;
int pixel_size = crtc->fb->bits_per_pixel / 8;
 
/* Display SR */
wm = intel_calculate_wm(clock, &pineview_display_wm,
pineview_display_wm.fifo_size,
pixel_size, latency->display_sr);
reg = I915_READ(DSPFW1);
reg &= ~DSPFW_SR_MASK;
reg |= wm << DSPFW_SR_SHIFT;
I915_WRITE(DSPFW1, reg);
DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
 
/* cursor SR */
wm = intel_calculate_wm(clock, &pineview_cursor_wm,
pineview_display_wm.fifo_size,
pixel_size, latency->cursor_sr);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_CURSOR_SR_MASK;
reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
I915_WRITE(DSPFW3, reg);
 
/* Display HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
pineview_display_hplloff_wm.fifo_size,
pixel_size, latency->display_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_SR_MASK;
reg |= wm & DSPFW_HPLL_SR_MASK;
I915_WRITE(DSPFW3, reg);
 
/* cursor HPLL off SR */
wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
pineview_display_hplloff_wm.fifo_size,
pixel_size, latency->cursor_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_CURSOR_MASK;
reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
I915_WRITE(DSPFW3, reg);
DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
 
/* activate cxsr */
I915_WRITE(DSPFW3,
I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
DRM_DEBUG_KMS("Self-refresh is enabled\n");
} else {
pineview_disable_cxsr(dev);
DRM_DEBUG_KMS("Self-refresh is disabled\n");
}
}
 
static bool g4x_compute_wm0(struct drm_device *dev,
int plane,
const struct intel_watermark_params *display,
int display_latency_ns,
const struct intel_watermark_params *cursor,
int cursor_latency_ns,
int *plane_wm,
int *cursor_wm)
{
struct drm_crtc *crtc;
int htotal, hdisplay, clock, pixel_size;
int line_time_us, line_count;
int entries, tlb_miss;
 
crtc = intel_get_crtc_for_plane(dev, plane);
if (crtc->fb == NULL || !crtc->enabled) {
*cursor_wm = cursor->guard_size;
*plane_wm = display->guard_size;
return false;
}
 
htotal = crtc->mode.htotal;
hdisplay = crtc->mode.hdisplay;
clock = crtc->mode.clock;
pixel_size = crtc->fb->bits_per_pixel / 8;
 
/* Use the small buffer method to calculate plane watermark */
entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, display->cacheline_size);
*plane_wm = entries + display->guard_size;
if (*plane_wm > (int)display->max_wm)
*plane_wm = display->max_wm;
 
/* Use the large buffer method to calculate cursor watermark */
line_time_us = ((htotal * 1000) / clock);
line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
entries = line_count * 64 * pixel_size;
tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
if (*cursor_wm > (int)cursor->max_wm)
*cursor_wm = (int)cursor->max_wm;
 
return true;
}
 
/*
* Check the wm result.
*
* If any calculated watermark values is larger than the maximum value that
* can be programmed into the associated watermark register, that watermark
* must be disabled.
*/
static bool g4x_check_srwm(struct drm_device *dev,
int display_wm, int cursor_wm,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor)
{
DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
display_wm, cursor_wm);
 
if (display_wm > display->max_wm) {
DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
display_wm, display->max_wm);
return false;
}
 
if (cursor_wm > cursor->max_wm) {
DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
cursor_wm, cursor->max_wm);
return false;
}
 
if (!(display_wm || cursor_wm)) {
DRM_DEBUG_KMS("SR latency is 0, disabling\n");
return false;
}
 
return true;
}
 
static bool g4x_compute_srwm(struct drm_device *dev,
int plane,
int latency_ns,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor,
int *display_wm, int *cursor_wm)
{
struct drm_crtc *crtc;
int hdisplay, htotal, pixel_size, clock;
unsigned long line_time_us;
int line_count, line_size;
int small, large;
int entries;
 
if (!latency_ns) {
*display_wm = *cursor_wm = 0;
return false;
}
 
crtc = intel_get_crtc_for_plane(dev, plane);
hdisplay = crtc->mode.hdisplay;
htotal = crtc->mode.htotal;
clock = crtc->mode.clock;
pixel_size = crtc->fb->bits_per_pixel / 8;
 
line_time_us = (htotal * 1000) / clock;
line_count = (latency_ns / line_time_us + 1000) / 1000;
line_size = hdisplay * pixel_size;
 
/* Use the minimum of the small and large buffer method for primary */
small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
large = line_count * line_size;
 
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
*display_wm = entries + display->guard_size;
 
/* calculate the self-refresh watermark for display cursor */
entries = line_count * pixel_size * 64;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
 
return g4x_check_srwm(dev,
*display_wm, *cursor_wm,
display, cursor);
}
 
#define single_plane_enabled(mask) is_power_of_2(mask)
 
static void g4x_update_wm(struct drm_device *dev)
{
static const int sr_latency_ns = 12000;
struct drm_i915_private *dev_priv = dev->dev_private;
int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
int plane_sr, cursor_sr;
unsigned int enabled = 0;
 
if (g4x_compute_wm0(dev, 0,
&g4x_wm_info, latency_ns,
&g4x_cursor_wm_info, latency_ns,
&planea_wm, &cursora_wm))
enabled |= 1;
 
if (g4x_compute_wm0(dev, 1,
&g4x_wm_info, latency_ns,
&g4x_cursor_wm_info, latency_ns,
&planeb_wm, &cursorb_wm))
enabled |= 2;
 
plane_sr = cursor_sr = 0;
if (single_plane_enabled(enabled) &&
g4x_compute_srwm(dev, ffs(enabled) - 1,
sr_latency_ns,
&g4x_wm_info,
&g4x_cursor_wm_info,
&plane_sr, &cursor_sr))
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
else
I915_WRITE(FW_BLC_SELF,
I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
 
DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
planea_wm, cursora_wm,
planeb_wm, cursorb_wm,
plane_sr, cursor_sr);
 
I915_WRITE(DSPFW1,
(plane_sr << DSPFW_SR_SHIFT) |
(cursorb_wm << DSPFW_CURSORB_SHIFT) |
(planeb_wm << DSPFW_PLANEB_SHIFT) |
planea_wm);
I915_WRITE(DSPFW2,
(I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
(cursora_wm << DSPFW_CURSORA_SHIFT));
/* HPLL off in SR has some issues on G4x... disable it */
I915_WRITE(DSPFW3,
(I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
(cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}
 
static void i965_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
int srwm = 1;
int cursor_sr = 16;
 
/* Calc sr entries for one plane configs */
crtc = single_enabled_crtc(dev);
if (crtc) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 12000;
int clock = crtc->mode.clock;
int htotal = crtc->mode.htotal;
int hdisplay = crtc->mode.hdisplay;
int pixel_size = crtc->fb->bits_per_pixel / 8;
unsigned long line_time_us;
int entries;
 
line_time_us = ((htotal * 1000) / clock);
 
/* Use ns/us then divide to preserve precision */
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * hdisplay;
entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
srwm = I965_FIFO_SIZE - entries;
if (srwm < 0)
srwm = 1;
srwm &= 0x1ff;
DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
entries, srwm);
 
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * 64;
entries = DIV_ROUND_UP(entries,
i965_cursor_wm_info.cacheline_size);
cursor_sr = i965_cursor_wm_info.fifo_size -
(entries + i965_cursor_wm_info.guard_size);
 
if (cursor_sr > i965_cursor_wm_info.max_wm)
cursor_sr = i965_cursor_wm_info.max_wm;
 
DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
"cursor %d\n", srwm, cursor_sr);
 
if (IS_CRESTLINE(dev))
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
} else {
/* Turn off self refresh if both pipes are enabled */
if (IS_CRESTLINE(dev))
I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
& ~FW_BLC_SELF_EN);
}
 
DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
srwm);
 
/* 965 has limitations... */
I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
(8 << 16) | (8 << 8) | (8 << 0));
I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
/* update cursor SR watermark */
I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
}
 
static void i9xx_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
const struct intel_watermark_params *wm_info;
uint32_t fwater_lo;
uint32_t fwater_hi;
int cwm, srwm = 1;
int fifo_size;
int planea_wm, planeb_wm;
struct drm_crtc *crtc, *enabled = NULL;
 
if (IS_I945GM(dev))
wm_info = &i945_wm_info;
else if (!IS_GEN2(dev))
wm_info = &i915_wm_info;
else
wm_info = &i855_wm_info;
 
fifo_size = dev_priv->display.get_fifo_size(dev, 0);
crtc = intel_get_crtc_for_plane(dev, 0);
if (crtc->enabled && crtc->fb) {
planea_wm = intel_calculate_wm(crtc->mode.clock,
wm_info, fifo_size,
crtc->fb->bits_per_pixel / 8,
latency_ns);
enabled = crtc;
} else
planea_wm = fifo_size - wm_info->guard_size;
 
fifo_size = dev_priv->display.get_fifo_size(dev, 1);
crtc = intel_get_crtc_for_plane(dev, 1);
if (crtc->enabled && crtc->fb) {
planeb_wm = intel_calculate_wm(crtc->mode.clock,
wm_info, fifo_size,
crtc->fb->bits_per_pixel / 8,
latency_ns);
if (enabled == NULL)
enabled = crtc;
else
enabled = NULL;
} else
planeb_wm = fifo_size - wm_info->guard_size;
 
DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
 
/*
* Overlay gets an aggressive default since video jitter is bad.
*/
cwm = 2;
 
/* Play safe and disable self-refresh before adjusting watermarks. */
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
else if (IS_I915GM(dev))
I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
 
/* Calc sr entries for one plane configs */
if (HAS_FW_BLC(dev) && enabled) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 6000;
int clock = enabled->mode.clock;
int htotal = enabled->mode.htotal;
int hdisplay = enabled->mode.hdisplay;
int pixel_size = enabled->fb->bits_per_pixel / 8;
unsigned long line_time_us;
int entries;
 
line_time_us = (htotal * 1000) / clock;
 
/* Use ns/us then divide to preserve precision */
entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
pixel_size * hdisplay;
entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
srwm = wm_info->fifo_size - entries;
if (srwm < 0)
srwm = 1;
 
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF,
FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
else if (IS_I915GM(dev))
I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
}
 
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
planea_wm, planeb_wm, cwm, srwm);
 
fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
fwater_hi = (cwm & 0x1f);
 
/* Set request length to 8 cachelines per fetch */
fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
fwater_hi = fwater_hi | (1 << 8);
 
I915_WRITE(FW_BLC, fwater_lo);
I915_WRITE(FW_BLC2, fwater_hi);
 
if (HAS_FW_BLC(dev)) {
if (enabled) {
if (IS_I945G(dev) || IS_I945GM(dev))
I915_WRITE(FW_BLC_SELF,
FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
else if (IS_I915GM(dev))
I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
DRM_DEBUG_KMS("memory self refresh enabled\n");
} else
DRM_DEBUG_KMS("memory self refresh disabled\n");
}
}
 
static void i830_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
uint32_t fwater_lo;
int planea_wm;
 
crtc = single_enabled_crtc(dev);
if (crtc == NULL)
return;
 
planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
dev_priv->display.get_fifo_size(dev, 0),
crtc->fb->bits_per_pixel / 8,
latency_ns);
fwater_lo = I915_READ(FW_BLC) & ~0xfff;
fwater_lo |= (3<<8) | planea_wm;
 
DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
 
I915_WRITE(FW_BLC, fwater_lo);
}
 
#define ILK_LP0_PLANE_LATENCY 700
#define ILK_LP0_CURSOR_LATENCY 1300
 
/*
* Check the wm result.
*
* If any calculated watermark values is larger than the maximum value that
* can be programmed into the associated watermark register, that watermark
* must be disabled.
*/
static bool ironlake_check_srwm(struct drm_device *dev, int level,
int fbc_wm, int display_wm, int cursor_wm,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
" cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
 
if (fbc_wm > SNB_FBC_MAX_SRWM) {
DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
fbc_wm, SNB_FBC_MAX_SRWM, level);
 
/* fbc has it's own way to disable FBC WM */
I915_WRITE(DISP_ARB_CTL,
I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
return false;
}
 
if (display_wm > display->max_wm) {
DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
display_wm, SNB_DISPLAY_MAX_SRWM, level);
return false;
}
 
if (cursor_wm > cursor->max_wm) {
DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
cursor_wm, SNB_CURSOR_MAX_SRWM, level);
return false;
}
 
if (!(fbc_wm || display_wm || cursor_wm)) {
DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
return false;
}
 
return true;
}
 
/*
* Compute watermark values of WM[1-3],
*/
static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
int latency_ns,
const struct intel_watermark_params *display,
const struct intel_watermark_params *cursor,
int *fbc_wm, int *display_wm, int *cursor_wm)
{
struct drm_crtc *crtc;
unsigned long line_time_us;
int hdisplay, htotal, pixel_size, clock;
int line_count, line_size;
int small, large;
int entries;
 
if (!latency_ns) {
*fbc_wm = *display_wm = *cursor_wm = 0;
return false;
}
 
crtc = intel_get_crtc_for_plane(dev, plane);
hdisplay = crtc->mode.hdisplay;
htotal = crtc->mode.htotal;
clock = crtc->mode.clock;
pixel_size = crtc->fb->bits_per_pixel / 8;
 
line_time_us = (htotal * 1000) / clock;
line_count = (latency_ns / line_time_us + 1000) / 1000;
line_size = hdisplay * pixel_size;
 
/* Use the minimum of the small and large buffer method for primary */
small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
large = line_count * line_size;
 
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
*display_wm = entries + display->guard_size;
 
/*
* Spec says:
* FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
*/
*fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
 
/* calculate the self-refresh watermark for display cursor */
entries = line_count * pixel_size * 64;
entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
*cursor_wm = entries + cursor->guard_size;
 
return ironlake_check_srwm(dev, level,
*fbc_wm, *display_wm, *cursor_wm,
display, cursor);
}
 
static void ironlake_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int fbc_wm, plane_wm, cursor_wm;
unsigned int enabled;
 
enabled = 0;
if (g4x_compute_wm0(dev, 0,
&ironlake_display_wm_info,
ILK_LP0_PLANE_LATENCY,
&ironlake_cursor_wm_info,
ILK_LP0_CURSOR_LATENCY,
&plane_wm, &cursor_wm)) {
I915_WRITE(WM0_PIPEA_ILK,
(plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
" plane %d, " "cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 1;
}
 
if (g4x_compute_wm0(dev, 1,
&ironlake_display_wm_info,
ILK_LP0_PLANE_LATENCY,
&ironlake_cursor_wm_info,
ILK_LP0_CURSOR_LATENCY,
&plane_wm, &cursor_wm)) {
I915_WRITE(WM0_PIPEB_ILK,
(plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
" plane %d, cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 2;
}
 
/*
* Calculate and update the self-refresh watermark only when one
* display plane is used.
*/
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
 
if (!single_plane_enabled(enabled))
return;
enabled = ffs(enabled) - 1;
 
/* WM1 */
if (!ironlake_compute_srwm(dev, 1, enabled,
ILK_READ_WM1_LATENCY() * 500,
&ironlake_display_srwm_info,
&ironlake_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
 
I915_WRITE(WM1_LP_ILK,
WM1_LP_SR_EN |
(ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
 
/* WM2 */
if (!ironlake_compute_srwm(dev, 2, enabled,
ILK_READ_WM2_LATENCY() * 500,
&ironlake_display_srwm_info,
&ironlake_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
 
I915_WRITE(WM2_LP_ILK,
WM2_LP_EN |
(ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
 
/*
* WM3 is unsupported on ILK, probably because we don't have latency
* data for that power state
*/
}
 
void sandybridge_update_wm(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
int fbc_wm, plane_wm, cursor_wm;
unsigned int enabled;
 
enabled = 0;
if (g4x_compute_wm0(dev, 0,
&sandybridge_display_wm_info, latency,
&sandybridge_cursor_wm_info, latency,
&plane_wm, &cursor_wm)) {
I915_WRITE(WM0_PIPEA_ILK,
(plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
" plane %d, " "cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 1;
}
 
if (g4x_compute_wm0(dev, 1,
&sandybridge_display_wm_info, latency,
&sandybridge_cursor_wm_info, latency,
&plane_wm, &cursor_wm)) {
I915_WRITE(WM0_PIPEB_ILK,
(plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
" plane %d, cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 2;
}
 
/* IVB has 3 pipes */
if (IS_IVYBRIDGE(dev) &&
g4x_compute_wm0(dev, 2,
&sandybridge_display_wm_info, latency,
&sandybridge_cursor_wm_info, latency,
&plane_wm, &cursor_wm)) {
I915_WRITE(WM0_PIPEC_IVB,
(plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
" plane %d, cursor: %d\n",
plane_wm, cursor_wm);
enabled |= 3;
}
 
/*
* Calculate and update the self-refresh watermark only when one
* display plane is used.
*
* SNB support 3 levels of watermark.
*
* WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
* and disabled in the descending order
*
*/
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
 
if (!single_plane_enabled(enabled) ||
dev_priv->sprite_scaling_enabled)
return;
enabled = ffs(enabled) - 1;
 
/* WM1 */
if (!ironlake_compute_srwm(dev, 1, enabled,
SNB_READ_WM1_LATENCY() * 500,
&sandybridge_display_srwm_info,
&sandybridge_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
 
I915_WRITE(WM1_LP_ILK,
WM1_LP_SR_EN |
(SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
 
/* WM2 */
if (!ironlake_compute_srwm(dev, 2, enabled,
SNB_READ_WM2_LATENCY() * 500,
&sandybridge_display_srwm_info,
&sandybridge_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
 
I915_WRITE(WM2_LP_ILK,
WM2_LP_EN |
(SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
 
/* WM3 */
if (!ironlake_compute_srwm(dev, 3, enabled,
SNB_READ_WM3_LATENCY() * 500,
&sandybridge_display_srwm_info,
&sandybridge_cursor_srwm_info,
&fbc_wm, &plane_wm, &cursor_wm))
return;
 
I915_WRITE(WM3_LP_ILK,
WM3_LP_EN |
(SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
(fbc_wm << WM1_LP_FBC_SHIFT) |
(plane_wm << WM1_LP_SR_SHIFT) |
cursor_wm);
}
 
static bool
sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
uint32_t sprite_width, int pixel_size,
const struct intel_watermark_params *display,
int display_latency_ns, int *sprite_wm)
{
struct drm_crtc *crtc;
int clock;
int entries, tlb_miss;
 
crtc = intel_get_crtc_for_plane(dev, plane);
if (crtc->fb == NULL || !crtc->enabled) {
*sprite_wm = display->guard_size;
return false;
}
 
clock = crtc->mode.clock;
 
/* Use the small buffer method to calculate the sprite watermark */
entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
tlb_miss = display->fifo_size*display->cacheline_size -
sprite_width * 8;
if (tlb_miss > 0)
entries += tlb_miss;
entries = DIV_ROUND_UP(entries, display->cacheline_size);
*sprite_wm = entries + display->guard_size;
if (*sprite_wm > (int)display->max_wm)
*sprite_wm = display->max_wm;
 
return true;
}
 
static bool
sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
uint32_t sprite_width, int pixel_size,
const struct intel_watermark_params *display,
int latency_ns, int *sprite_wm)
{
struct drm_crtc *crtc;
unsigned long line_time_us;
int clock;
int line_count, line_size;
int small, large;
int entries;
 
if (!latency_ns) {
*sprite_wm = 0;
return false;
}
 
crtc = intel_get_crtc_for_plane(dev, plane);
clock = crtc->mode.clock;
 
line_time_us = (sprite_width * 1000) / clock;
line_count = (latency_ns / line_time_us + 1000) / 1000;
line_size = sprite_width * pixel_size;
 
/* Use the minimum of the small and large buffer method for primary */
small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
large = line_count * line_size;
 
entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
*sprite_wm = entries + display->guard_size;
 
return *sprite_wm > 0x3ff ? false : true;
}
 
static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
uint32_t sprite_width, int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
int sprite_wm, reg;
int ret;
 
switch (pipe) {
case 0:
reg = WM0_PIPEA_ILK;
break;
case 1:
reg = WM0_PIPEB_ILK;
break;
case 2:
reg = WM0_PIPEC_IVB;
break;
default:
return; /* bad pipe */
}
 
ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
&sandybridge_display_wm_info,
latency, &sprite_wm);
if (!ret) {
DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
pipe);
return;
}
 
I915_WRITE(reg, I915_READ(reg) | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
 
 
ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
pixel_size,
&sandybridge_display_srwm_info,
SNB_READ_WM1_LATENCY() * 500,
&sprite_wm);
if (!ret) {
DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
pipe);
return;
}
I915_WRITE(WM1S_LP_ILK, sprite_wm);
 
/* Only IVB has two more LP watermarks for sprite */
if (!IS_IVYBRIDGE(dev))
return;
 
ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
pixel_size,
&sandybridge_display_srwm_info,
SNB_READ_WM2_LATENCY() * 500,
&sprite_wm);
if (!ret) {
DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
pipe);
return;
}
I915_WRITE(WM2S_LP_IVB, sprite_wm);
 
ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
pixel_size,
&sandybridge_display_srwm_info,
SNB_READ_WM3_LATENCY() * 500,
&sprite_wm);
if (!ret) {
DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
pipe);
return;
}
I915_WRITE(WM3S_LP_IVB, sprite_wm);
}
 
/**
* intel_update_watermarks - update FIFO watermark values based on current modes
*
* Calculate watermark values for the various WM regs based on current mode
* and plane configuration.
*
* There are several cases to deal with here:
* - normal (i.e. non-self-refresh)
* - self-refresh (SR) mode
* - lines are large relative to FIFO size (buffer can hold up to 2)
* - lines are small relative to FIFO size (buffer can hold more than 2
* lines), so need to account for TLB latency
*
* The normal calculation is:
* watermark = dotclock * bytes per pixel * latency
* where latency is platform & configuration dependent (we assume pessimal
* values here).
*
* The SR calculation is:
* watermark = (trunc(latency/line time)+1) * surface width *
* bytes per pixel
* where
* line time = htotal / dotclock
* surface width = hdisplay for normal plane and 64 for cursor
* and latency is assumed to be high, as above.
*
* The final value programmed to the register should always be rounded up,
* and include an extra 2 entries to account for clock crossings.
*
* We don't use the sprite, so we can ignore that. And on Crestline we have
* to set the non-SR watermarks to 8.
*/
static void intel_update_watermarks(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (dev_priv->display.update_wm)
dev_priv->display.update_wm(dev);
}
 
void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
uint32_t sprite_width, int pixel_size)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (dev_priv->display.update_sprite_wm)
dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
pixel_size);
}
 
static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
{
if (i915_panel_use_ssc >= 0)
4805,22 → 3817,19
* true if they don't match).
*/
static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
unsigned int *pipe_bpp,
struct drm_display_mode *mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_encoder *encoder;
struct drm_connector *connector;
struct intel_encoder *intel_encoder;
unsigned int display_bpc = UINT_MAX, bpc;
 
/* Walk the encoders & connectors on this crtc, get min bpc */
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
 
if (encoder->crtc != crtc)
continue;
 
if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
unsigned int lvds_bpc;
 
4837,21 → 3846,10
continue;
}
 
if (intel_encoder->type == INTEL_OUTPUT_EDP) {
/* Use VBT settings if we have an eDP panel */
unsigned int edp_bpc = dev_priv->edp.bpp / 3;
 
if (edp_bpc < display_bpc) {
DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
display_bpc = edp_bpc;
}
continue;
}
 
/* Not one of the known troublemakers, check the EDID */
list_for_each_entry(connector, &dev->mode_config.connector_list,
head) {
if (connector->encoder != encoder)
if (connector->encoder != &intel_encoder->base)
continue;
 
/* Don't use an invalid EDID bpc value */
4889,7 → 3887,7
* also stays within the max display bpc discovered above.
*/
 
switch (crtc->fb->depth) {
switch (fb->depth) {
case 8:
bpc = 8; /* since we go through a colormap */
break;
4922,61 → 3920,38
return display_bpc != bpc;
}
 
static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
static int vlv_get_refclk(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int refclk, num_connectors = 0;
intel_clock_t clock, reduced_clock;
u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *encoder;
const intel_limit_t *limit;
int ret;
u32 temp;
u32 lvds_sync = 0;
int refclk = 27000; /* for DP & HDMI */
 
list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
if (encoder->base.crtc != crtc)
continue;
return 100000; /* only one validated so far */
 
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
case INTEL_OUTPUT_HDMI:
is_sdvo = true;
if (encoder->needs_tv_clock)
is_tv = true;
break;
case INTEL_OUTPUT_DVO:
is_dvo = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
case INTEL_OUTPUT_ANALOG:
is_crt = true;
break;
case INTEL_OUTPUT_DISPLAYPORT:
is_dp = true;
break;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
refclk = 96000;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
if (intel_panel_use_ssc(dev_priv))
refclk = 100000;
else
refclk = 96000;
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
refclk = 100000;
}
 
num_connectors++;
return refclk;
}
 
if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int refclk;
 
if (IS_VALLEYVIEW(dev)) {
refclk = vlv_get_refclk(crtc);
} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
refclk = dev_priv->lvds_ssc_freq * 1000;
DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
refclk / 1000);
4986,74 → 3961,195
refclk = 48000;
}
 
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(crtc, refclk);
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
return refclk;
}
 
/* Ensure that the cursor is valid for the new mode before changing... */
// intel_crtc_update_cursor(crtc, true);
 
if (is_lvds && dev_priv->lvds_downclock_avail) {
has_reduced_clock = limit->find_pll(limit, crtc,
dev_priv->lvds_downclock,
refclk,
&reduced_clock);
if (has_reduced_clock && (clock.p != reduced_clock.p)) {
/*
* If the different P is found, it means that we can't
* switch the display clock by using the FP0/FP1.
* In such case we will disable the LVDS downclock
* feature.
*/
DRM_DEBUG_KMS("Different P is found for "
"LVDS clock/downclock\n");
has_reduced_clock = 0;
}
}
static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
intel_clock_t *clock)
{
/* SDVO TV has fixed PLL values depend on its clock range,
this mirrors vbios setting. */
if (is_sdvo && is_tv) {
if (adjusted_mode->clock >= 100000
&& adjusted_mode->clock < 140500) {
clock.p1 = 2;
clock.p2 = 10;
clock.n = 3;
clock.m1 = 16;
clock.m2 = 8;
clock->p1 = 2;
clock->p2 = 10;
clock->n = 3;
clock->m1 = 16;
clock->m2 = 8;
} else if (adjusted_mode->clock >= 140500
&& adjusted_mode->clock <= 200000) {
clock.p1 = 1;
clock.p2 = 10;
clock.n = 6;
clock.m1 = 12;
clock.m2 = 8;
clock->p1 = 1;
clock->p2 = 10;
clock->n = 6;
clock->m1 = 12;
clock->m2 = 8;
}
}
 
static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
intel_clock_t *clock,
intel_clock_t *reduced_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 fp, fp2 = 0;
 
if (IS_PINEVIEW(dev)) {
fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
if (has_reduced_clock)
fp2 = (1 << reduced_clock.n) << 16 |
reduced_clock.m1 << 8 | reduced_clock.m2;
fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
if (reduced_clock)
fp2 = (1 << reduced_clock->n) << 16 |
reduced_clock->m1 << 8 | reduced_clock->m2;
} else {
fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
if (has_reduced_clock)
fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
reduced_clock.m2;
fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
if (reduced_clock)
fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
reduced_clock->m2;
}
 
I915_WRITE(FP0(pipe), fp);
 
intel_crtc->lowfreq_avail = false;
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
reduced_clock && i915_powersave) {
I915_WRITE(FP1(pipe), fp2);
intel_crtc->lowfreq_avail = true;
} else {
I915_WRITE(FP1(pipe), fp);
}
}
 
static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 temp;
 
temp = I915_READ(LVDS);
temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
if (pipe == 1) {
temp |= LVDS_PIPEB_SELECT;
} else {
temp &= ~LVDS_PIPEB_SELECT;
}
/* set the corresponsding LVDS_BORDER bit */
temp |= dev_priv->lvds_border_bits;
/* Set the B0-B3 data pairs corresponding to whether we're going to
* set the DPLLs for dual-channel mode or not.
*/
if (clock->p2 == 7)
temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
else
temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
 
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
* appropriately here, but we need to look more thoroughly into how
* panels behave in the two modes.
*/
/* set the dithering flag on LVDS as needed */
if (INTEL_INFO(dev)->gen >= 4) {
if (dev_priv->lvds_dither)
temp |= LVDS_ENABLE_DITHER;
else
temp &= ~LVDS_ENABLE_DITHER;
}
temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
temp |= LVDS_HSYNC_POLARITY;
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
temp |= LVDS_VSYNC_POLARITY;
I915_WRITE(LVDS, temp);
}
 
static void vlv_update_pll(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
intel_clock_t *clock, intel_clock_t *reduced_clock,
int refclk, int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll, mdiv, pdiv;
u32 bestn, bestm1, bestm2, bestp1, bestp2;
bool is_hdmi;
 
is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
 
bestn = clock->n;
bestm1 = clock->m1;
bestm2 = clock->m2;
bestp1 = clock->p1;
bestp2 = clock->p2;
 
/* Enable DPIO clock input */
dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
I915_WRITE(DPLL(pipe), dpll);
POSTING_READ(DPLL(pipe));
 
mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
mdiv |= ((bestn << DPIO_N_SHIFT));
mdiv |= (1 << DPIO_POST_DIV_SHIFT);
mdiv |= (1 << DPIO_K_SHIFT);
mdiv |= DPIO_ENABLE_CALIBRATION;
intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
 
intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
 
pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
(3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
(8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
 
intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
 
dpll |= DPLL_VCO_ENABLE;
I915_WRITE(DPLL(pipe), dpll);
POSTING_READ(DPLL(pipe));
if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
DRM_ERROR("DPLL %d failed to lock\n", pipe);
 
if (is_hdmi) {
u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
 
if (temp > 1)
temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
else
temp = 0;
 
I915_WRITE(DPLL_MD(pipe), temp);
POSTING_READ(DPLL_MD(pipe));
}
 
intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
}
 
static void i9xx_update_pll(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
intel_clock_t *clock, intel_clock_t *reduced_clock,
int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll;
bool is_sdvo;
 
is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
 
dpll = DPLL_VGA_MODE_DIS;
 
if (!IS_GEN2(dev)) {
if (is_lvds)
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
dpll |= DPLLB_MODE_LVDS;
else
dpll |= DPLLB_MODE_DAC_SERIAL;
5065,18 → 4161,18
}
dpll |= DPLL_DVO_HIGH_SPEED;
}
if (is_dp)
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
dpll |= DPLL_DVO_HIGH_SPEED;
 
/* compute bitmask from p1 value */
if (IS_PINEVIEW(dev))
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
else {
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (IS_G4X(dev) && has_reduced_clock)
dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (IS_G4X(dev) && reduced_clock)
dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
}
switch (clock.p2) {
switch (clock->p2) {
case 5:
dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
break;
5092,30 → 4188,210
}
if (INTEL_INFO(dev)->gen >= 4)
dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
 
if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
 
dpll |= DPLL_VCO_ENABLE;
I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
POSTING_READ(DPLL(pipe));
udelay(150);
 
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
intel_update_lvds(crtc, clock, adjusted_mode);
 
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
intel_dp_set_m_n(crtc, mode, adjusted_mode);
 
I915_WRITE(DPLL(pipe), dpll);
 
/* Wait for the clocks to stabilize. */
POSTING_READ(DPLL(pipe));
udelay(150);
 
if (INTEL_INFO(dev)->gen >= 4) {
u32 temp = 0;
if (is_sdvo) {
temp = intel_mode_get_pixel_multiplier(adjusted_mode);
if (temp > 1)
temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
else
temp = 0;
}
I915_WRITE(DPLL_MD(pipe), temp);
} else {
if (is_lvds) {
dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(DPLL(pipe), dpll);
}
}
 
static void i8xx_update_pll(struct drm_crtc *crtc,
struct drm_display_mode *adjusted_mode,
intel_clock_t *clock,
int num_connectors)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
u32 dpll;
 
dpll = DPLL_VGA_MODE_DIS;
 
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
} else {
if (clock.p1 == 2)
if (clock->p1 == 2)
dpll |= PLL_P1_DIVIDE_BY_TWO;
else
dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (clock.p2 == 4)
dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
if (clock->p2 == 4)
dpll |= PLL_P2_DIVIDE_BY_4;
}
}
 
if (is_sdvo && is_tv)
dpll |= PLL_REF_INPUT_TVCLKINBC;
else if (is_tv)
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
/* XXX: just matching BIOS for now */
/* dpll |= PLL_REF_INPUT_TVCLKINBC; */
dpll |= 3;
else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
intel_panel_use_ssc(dev_priv) && num_connectors < 2)
dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
else
dpll |= PLL_REF_INPUT_DREFCLK;
 
dpll |= DPLL_VCO_ENABLE;
I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
POSTING_READ(DPLL(pipe));
udelay(150);
 
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
intel_update_lvds(crtc, clock, adjusted_mode);
 
I915_WRITE(DPLL(pipe), dpll);
 
/* Wait for the clocks to stabilize. */
POSTING_READ(DPLL(pipe));
udelay(150);
 
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(DPLL(pipe), dpll);
}
 
static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int refclk, num_connectors = 0;
intel_clock_t clock, reduced_clock;
u32 dspcntr, pipeconf, vsyncshift;
bool ok, has_reduced_clock = false, is_sdvo = false;
bool is_lvds = false, is_tv = false, is_dp = false;
struct intel_encoder *encoder;
const intel_limit_t *limit;
int ret;
 
for_each_encoder_on_crtc(dev, crtc, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
case INTEL_OUTPUT_HDMI:
is_sdvo = true;
if (encoder->needs_tv_clock)
is_tv = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
case INTEL_OUTPUT_DISPLAYPORT:
is_dp = true;
break;
}
 
num_connectors++;
}
 
refclk = i9xx_get_refclk(crtc, num_connectors);
 
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(crtc, refclk);
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
&clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
}
 
/* Ensure that the cursor is valid for the new mode before changing... */
// intel_crtc_update_cursor(crtc, true);
 
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target clock.
* If the clocks don't match, we can't switch the display clock
* by using the FP0/FP1. In such case we will disable the LVDS
* downclock feature.
*/
has_reduced_clock = limit->find_pll(limit, crtc,
dev_priv->lvds_downclock,
refclk,
&clock,
&reduced_clock);
}
 
if (is_sdvo && is_tv)
i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
 
i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
&reduced_clock : NULL);
 
if (IS_GEN2(dev))
i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
else if (IS_VALLEYVIEW(dev))
vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
refclk, num_connectors);
else
i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
has_reduced_clock ? &reduced_clock : NULL,
num_connectors);
 
/* setup pipeconf */
pipeconf = I915_READ(PIPECONF(pipe));
 
5122,8 → 4398,6
/* Set up the display plane register */
dspcntr = DISPPLANE_GAMMA_ENABLE;
 
/* Ironlake's plane is forced to pipe, bit 24 is to
enable color space conversion */
if (pipe == 0)
dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
else
5146,7 → 4420,7
/* default to 8bpc */
pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
if (is_dp) {
if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
pipeconf |= PIPECONF_BPP_6 |
PIPECONF_DITHER_EN |
PIPECONF_DITHER_TYPE_SP;
5153,109 → 4427,14
}
}
 
dpll |= DPLL_VCO_ENABLE;
 
DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
drm_mode_debug_printmodeline(mode);
 
I915_WRITE(FP0(pipe), fp);
I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
 
POSTING_READ(DPLL(pipe));
udelay(150);
 
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
* things on.
*/
if (is_lvds) {
temp = I915_READ(LVDS);
temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
if (pipe == 1) {
temp |= LVDS_PIPEB_SELECT;
} else {
temp &= ~LVDS_PIPEB_SELECT;
}
/* set the corresponsding LVDS_BORDER bit */
temp |= dev_priv->lvds_border_bits;
/* Set the B0-B3 data pairs corresponding to whether we're going to
* set the DPLLs for dual-channel mode or not.
*/
if (clock.p2 == 7)
temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
else
temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
 
/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
* appropriately here, but we need to look more thoroughly into how
* panels behave in the two modes.
*/
/* set the dithering flag on LVDS as needed */
if (INTEL_INFO(dev)->gen >= 4) {
if (dev_priv->lvds_dither)
temp |= LVDS_ENABLE_DITHER;
else
temp &= ~LVDS_ENABLE_DITHER;
}
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
lvds_sync |= LVDS_HSYNC_POLARITY;
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
lvds_sync |= LVDS_VSYNC_POLARITY;
if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
!= lvds_sync) {
char flags[2] = "-+";
DRM_INFO("Changing LVDS panel from "
"(%chsync, %cvsync) to (%chsync, %cvsync)\n",
flags[!(temp & LVDS_HSYNC_POLARITY)],
flags[!(temp & LVDS_VSYNC_POLARITY)],
flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
temp |= lvds_sync;
}
I915_WRITE(LVDS, temp);
}
 
if (is_dp) {
intel_dp_set_m_n(crtc, mode, adjusted_mode);
}
 
I915_WRITE(DPLL(pipe), dpll);
 
/* Wait for the clocks to stabilize. */
POSTING_READ(DPLL(pipe));
udelay(150);
 
if (INTEL_INFO(dev)->gen >= 4) {
temp = 0;
if (is_sdvo) {
temp = intel_mode_get_pixel_multiplier(adjusted_mode);
if (temp > 1)
temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
else
temp = 0;
}
I915_WRITE(DPLL_MD(pipe), temp);
} else {
/* The pixel multiplier can only be updated once the
* DPLL is enabled and the clocks are stable.
*
* So write it again.
*/
I915_WRITE(DPLL(pipe), dpll);
}
 
intel_crtc->lowfreq_avail = false;
if (is_lvds && has_reduced_clock && i915_powersave) {
I915_WRITE(FP1(pipe), fp2);
intel_crtc->lowfreq_avail = true;
if (HAS_PIPE_CXSR(dev)) {
if (intel_crtc->lowfreq_avail) {
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
}
} else {
I915_WRITE(FP1(pipe), fp);
if (HAS_PIPE_CXSR(dev)) {
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
}
5262,18 → 4441,22
}
 
pipeconf &= ~PIPECONF_INTERLACE_MASK;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
if (!IS_GEN2(dev) &&
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
/* the chip adds 2 halflines automatically */
adjusted_mode->crtc_vdisplay -= 1;
adjusted_mode->crtc_vtotal -= 1;
adjusted_mode->crtc_vblank_start -= 1;
adjusted_mode->crtc_vblank_end -= 1;
adjusted_mode->crtc_vsync_end -= 1;
adjusted_mode->crtc_vsync_start -= 1;
} else
vsyncshift = adjusted_mode->crtc_hsync_start
- adjusted_mode->crtc_htotal/2;
} else {
pipeconf |= PIPECONF_PROGRESSIVE;
vsyncshift = 0;
}
 
if (!IS_GEN3(dev))
I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
 
I915_WRITE(HTOTAL(pipe),
(adjusted_mode->crtc_hdisplay - 1) |
((adjusted_mode->crtc_htotal - 1) << 16));
5312,9 → 4495,8
 
I915_WRITE(DSPCNTR(plane), dspcntr);
POSTING_READ(DSPCNTR(plane));
intel_enable_plane(dev_priv, plane, pipe);
 
ret = intel_pipe_set_base(crtc, x, y, old_fb);
ret = intel_pipe_set_base(crtc, x, y, fb);
 
intel_update_watermarks(dev);
 
5389,7 → 4571,8
if (intel_panel_use_ssc(dev_priv) && can_ssc) {
DRM_DEBUG_KMS("Using SSC on panel\n");
temp |= DREF_SSC1_ENABLE;
}
} else
temp &= ~DREF_SSC1_ENABLE;
 
/* Get SSC going before enabling the outputs */
I915_WRITE(PCH_DREF_CONTROL, temp);
5442,15 → 4625,11
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *encoder;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *edp_encoder = NULL;
int num_connectors = 0;
bool is_lvds = false;
 
list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
if (encoder->base.crtc != crtc)
continue;
 
for_each_encoder_on_crtc(dev, crtc, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
5471,11 → 4650,118
return 120000;
}
 
static void ironlake_set_pipeconf(struct drm_crtc *crtc,
struct drm_display_mode *adjusted_mode,
bool dither)
{
struct drm_i915_private *dev_priv = crtc->dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
uint32_t val;
 
val = I915_READ(PIPECONF(pipe));
 
val &= ~PIPE_BPC_MASK;
switch (intel_crtc->bpp) {
case 18:
val |= PIPE_6BPC;
break;
case 24:
val |= PIPE_8BPC;
break;
case 30:
val |= PIPE_10BPC;
break;
case 36:
val |= PIPE_12BPC;
break;
default:
val |= PIPE_8BPC;
break;
}
 
val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
if (dither)
val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
 
val &= ~PIPECONF_INTERLACE_MASK;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
val |= PIPECONF_INTERLACED_ILK;
else
val |= PIPECONF_PROGRESSIVE;
 
I915_WRITE(PIPECONF(pipe), val);
POSTING_READ(PIPECONF(pipe));
}
 
static bool ironlake_compute_clocks(struct drm_crtc *crtc,
struct drm_display_mode *adjusted_mode,
intel_clock_t *clock,
bool *has_reduced_clock,
intel_clock_t *reduced_clock)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_encoder *intel_encoder;
int refclk;
const intel_limit_t *limit;
bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
 
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
switch (intel_encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
break;
case INTEL_OUTPUT_SDVO:
case INTEL_OUTPUT_HDMI:
is_sdvo = true;
if (intel_encoder->needs_tv_clock)
is_tv = true;
break;
case INTEL_OUTPUT_TVOUT:
is_tv = true;
break;
}
}
 
refclk = ironlake_get_refclk(crtc);
 
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(crtc, refclk);
ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
clock);
if (!ret)
return false;
 
if (is_lvds && dev_priv->lvds_downclock_avail) {
/*
* Ensure we match the reduced clock's P to the target clock.
* If the clocks don't match, we can't switch the display clock
* by using the FP0/FP1. In such case we will disable the LVDS
* downclock feature.
*/
*has_reduced_clock = limit->find_pll(limit, crtc,
dev_priv->lvds_downclock,
refclk,
clock,
reduced_clock);
}
 
if (is_sdvo && is_tv)
i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
 
return true;
}
 
static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
5482,29 → 4768,21
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int plane = intel_crtc->plane;
int refclk, num_connectors = 0;
int num_connectors = 0;
intel_clock_t clock, reduced_clock;
u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
u32 dpll, fp = 0, fp2 = 0;
bool ok, has_reduced_clock = false, is_sdvo = false;
bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
struct intel_encoder *has_edp_encoder = NULL;
struct drm_mode_config *mode_config = &dev->mode_config;
struct intel_encoder *encoder;
const intel_limit_t *limit;
struct intel_encoder *encoder, *edp_encoder = NULL;
int ret;
struct fdi_m_n m_n = {0};
u32 temp;
u32 lvds_sync = 0;
int target_clock, pixel_multiplier, lane, link_bw, factor;
unsigned int pipe_bpp;
bool dither;
bool is_cpu_edp = false, is_pch_edp = false;
 
ENTER();
 
list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
if (encoder->base.crtc != crtc)
continue;
 
for_each_encoder_on_crtc(dev, crtc, encoder) {
switch (encoder->type) {
case INTEL_OUTPUT_LVDS:
is_lvds = true;
5525,7 → 4803,12
is_dp = true;
break;
case INTEL_OUTPUT_EDP:
has_edp_encoder = encoder;
is_dp = true;
if (intel_encoder_is_pch_edp(&encoder->base))
is_pch_edp = true;
else
is_cpu_edp = true;
edp_encoder = encoder;
break;
}
 
5532,15 → 4815,8
num_connectors++;
}
 
refclk = ironlake_get_refclk(crtc);
 
/*
* Returns a set of divisors for the desired target clock with the given
* refclk, or FALSE. The returned values represent the clock equation:
* reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
*/
limit = intel_limit(crtc, refclk);
ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
&has_reduced_clock, &reduced_clock);
if (!ok) {
DRM_ERROR("Couldn't find PLL settings for mode!\n");
return -EINVAL;
5549,61 → 4825,14
/* Ensure that the cursor is valid for the new mode before changing... */
// intel_crtc_update_cursor(crtc, true);
 
if (is_lvds && dev_priv->lvds_downclock_avail) {
has_reduced_clock = limit->find_pll(limit, crtc,
dev_priv->lvds_downclock,
refclk,
&reduced_clock);
if (has_reduced_clock && (clock.p != reduced_clock.p)) {
/*
* If the different P is found, it means that we can't
* switch the display clock by using the FP0/FP1.
* In such case we will disable the LVDS downclock
* feature.
*/
DRM_DEBUG_KMS("Different P is found for "
"LVDS clock/downclock\n");
has_reduced_clock = 0;
}
}
/* SDVO TV has fixed PLL values depend on its clock range,
this mirrors vbios setting. */
if (is_sdvo && is_tv) {
if (adjusted_mode->clock >= 100000
&& adjusted_mode->clock < 140500) {
clock.p1 = 2;
clock.p2 = 10;
clock.n = 3;
clock.m1 = 16;
clock.m2 = 8;
} else if (adjusted_mode->clock >= 140500
&& adjusted_mode->clock <= 200000) {
clock.p1 = 1;
clock.p2 = 10;
clock.n = 6;
clock.m1 = 12;
clock.m2 = 8;
}
}
 
/* FDI link */
pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
lane = 0;
/* CPU eDP doesn't require FDI link, so just set DP M/N
according to current link config */
if (has_edp_encoder &&
!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
target_clock = mode->clock;
intel_edp_link_config(has_edp_encoder,
&lane, &link_bw);
if (is_cpu_edp) {
intel_edp_link_config(edp_encoder, &lane, &link_bw);
} else {
/* [e]DP over FDI requires target mode clock
instead of link clock */
if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
target_clock = mode->clock;
else
target_clock = adjusted_mode->clock;
 
/* FDI is a binary signal running at ~2.7GHz, encoding
* each output octet as 10 bits. The actual frequency
* is stored as a divider into a 100MHz clock, and the
5614,33 → 4843,27
link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
}
 
/* [e]DP over FDI requires target mode clock instead of link clock. */
if (edp_encoder)
target_clock = intel_edp_target_clock(edp_encoder, mode);
else if (is_dp)
target_clock = mode->clock;
else
target_clock = adjusted_mode->clock;
 
/* determine panel color depth */
temp = I915_READ(PIPECONF(pipe));
temp &= ~PIPE_BPC_MASK;
dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
switch (pipe_bpp) {
case 18:
temp |= PIPE_6BPC;
break;
case 24:
temp |= PIPE_8BPC;
break;
case 30:
temp |= PIPE_10BPC;
break;
case 36:
temp |= PIPE_12BPC;
break;
default:
dither = intel_choose_pipe_bpp_dither(crtc, fb, &pipe_bpp,
adjusted_mode);
if (is_lvds && dev_priv->lvds_dither)
dither = true;
 
if (pipe_bpp != 18 && pipe_bpp != 24 && pipe_bpp != 30 &&
pipe_bpp != 36) {
WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
pipe_bpp);
temp |= PIPE_8BPC;
pipe_bpp = 24;
break;
}
 
intel_crtc->bpp = pipe_bpp;
I915_WRITE(PIPECONF(pipe), temp);
 
if (!lane) {
/*
5690,7 → 4913,7
}
dpll |= DPLL_DVO_HIGH_SPEED;
}
if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
if (is_dp && !is_cpu_edp)
dpll |= DPLL_DVO_HIGH_SPEED;
 
/* compute bitmask from p1 value */
5724,39 → 4947,25
else
dpll |= PLL_REF_INPUT_DREFCLK;
 
/* setup pipeconf */
pipeconf = I915_READ(PIPECONF(pipe));
 
/* Set up the display plane register */
dspcntr = DISPPLANE_GAMMA_ENABLE;
 
DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
drm_mode_debug_printmodeline(mode);
 
/* PCH eDP needs FDI, but CPU eDP does not */
if (!intel_crtc->no_pll) {
if (!has_edp_encoder ||
intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
I915_WRITE(PCH_FP0(pipe), fp);
I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
/* CPU eDP is the only output that doesn't need a PCH PLL of its own on
* pre-Haswell/LPT generation */
if (HAS_PCH_LPT(dev)) {
DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
pipe);
} else if (!is_cpu_edp) {
struct intel_pch_pll *pll;
 
POSTING_READ(PCH_DPLL(pipe));
udelay(150);
}
} else {
if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
fp == I915_READ(PCH_FP0(0))) {
intel_crtc->use_pll_a = true;
DRM_DEBUG_KMS("using pipe a dpll\n");
} else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
fp == I915_READ(PCH_FP0(1))) {
intel_crtc->use_pll_a = false;
DRM_DEBUG_KMS("using pipe b dpll\n");
} else {
DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
pll = intel_get_pch_pll(intel_crtc, dpll, fp);
if (pll == NULL) {
DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
pipe);
return -EINVAL;
}
}
} else
intel_put_pch_pll(intel_crtc);
 
/* The LVDS pin pair needs to be on before the DPLLs are enabled.
* This is an exception to the general rule that mode_set doesn't turn
5789,32 → 4998,15
* appropriately here, but we need to look more thoroughly into how
* panels behave in the two modes.
*/
temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
lvds_sync |= LVDS_HSYNC_POLARITY;
temp |= LVDS_HSYNC_POLARITY;
if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
lvds_sync |= LVDS_VSYNC_POLARITY;
if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
!= lvds_sync) {
char flags[2] = "-+";
DRM_INFO("Changing LVDS panel from "
"(%chsync, %cvsync) to (%chsync, %cvsync)\n",
flags[!(temp & LVDS_HSYNC_POLARITY)],
flags[!(temp & LVDS_VSYNC_POLARITY)],
flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
temp |= lvds_sync;
}
temp |= LVDS_VSYNC_POLARITY;
I915_WRITE(PCH_LVDS, temp);
}
 
pipeconf &= ~PIPECONF_DITHER_EN;
pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
if ((is_lvds && dev_priv->lvds_dither) || dither) {
pipeconf |= PIPECONF_DITHER_EN;
pipeconf |= PIPECONF_DITHER_TYPE_SP;
}
if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
if (is_dp && !is_cpu_edp) {
intel_dp_set_m_n(crtc, mode, adjusted_mode);
} else {
/* For non-DP output, clear any trans DP clock recovery setting.*/
5824,13 → 5016,11
I915_WRITE(TRANSDPLINK_N1(pipe), 0);
}
 
if (!intel_crtc->no_pll &&
(!has_edp_encoder ||
intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
I915_WRITE(PCH_DPLL(pipe), dpll);
if (intel_crtc->pch_pll) {
I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
 
/* Wait for the clocks to stabilize. */
POSTING_READ(PCH_DPLL(pipe));
POSTING_READ(intel_crtc->pch_pll->pll_reg);
udelay(150);
 
/* The pixel multiplier can only be updated once the
5838,39 → 5028,29
*
* So write it again.
*/
I915_WRITE(PCH_DPLL(pipe), dpll);
I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
}
 
intel_crtc->lowfreq_avail = false;
if (!intel_crtc->no_pll) {
if (intel_crtc->pch_pll) {
if (is_lvds && has_reduced_clock && i915_powersave) {
I915_WRITE(PCH_FP1(pipe), fp2);
I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
intel_crtc->lowfreq_avail = true;
if (HAS_PIPE_CXSR(dev)) {
DRM_DEBUG_KMS("enabling CxSR downclocking\n");
pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
}
} else {
I915_WRITE(PCH_FP1(pipe), fp);
if (HAS_PIPE_CXSR(dev)) {
DRM_DEBUG_KMS("disabling CxSR downclocking\n");
pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
}
}
}
 
pipeconf &= ~PIPECONF_INTERLACE_MASK;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
/* the chip adds 2 halflines automatically */
adjusted_mode->crtc_vdisplay -= 1;
adjusted_mode->crtc_vtotal -= 1;
adjusted_mode->crtc_vblank_start -= 1;
adjusted_mode->crtc_vblank_end -= 1;
adjusted_mode->crtc_vsync_end -= 1;
adjusted_mode->crtc_vsync_start -= 1;
} else
pipeconf |= PIPECONF_PROGRESSIVE;
I915_WRITE(VSYNCSHIFT(pipe),
adjusted_mode->crtc_hsync_start
- adjusted_mode->crtc_htotal/2);
} else {
I915_WRITE(VSYNCSHIFT(pipe), 0);
}
 
I915_WRITE(HTOTAL(pipe),
(adjusted_mode->crtc_hdisplay - 1) |
5903,32 → 5083,22
I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
 
if (has_edp_encoder &&
!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
if (is_cpu_edp)
ironlake_set_pll_edp(crtc, adjusted_mode->clock);
}
 
I915_WRITE(PIPECONF(pipe), pipeconf);
POSTING_READ(PIPECONF(pipe));
ironlake_set_pipeconf(crtc, adjusted_mode, dither);
 
intel_wait_for_vblank(dev, pipe);
 
if (IS_GEN5(dev)) {
/* enable address swizzle for tiling buffer */
temp = I915_READ(DISP_ARB_CTL);
I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
}
 
I915_WRITE(DSPCNTR(plane), dspcntr);
/* Set up the display plane register */
I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
POSTING_READ(DSPCNTR(plane));
 
ret = intel_pipe_set_base(crtc, x, y, old_fb);
ret = intel_pipe_set_base(crtc, x, y, fb);
 
dbgprintf("Set base\n");
 
intel_update_watermarks(dev);
 
LEAVE();
intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
 
return ret;
}
5937,7 → 5107,7
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
5945,17 → 5115,12
int pipe = intel_crtc->pipe;
int ret;
 
// drm_vblank_pre_modeset(dev, pipe);
ENTER();
drm_vblank_pre_modeset(dev, pipe);
 
ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
x, y, old_fb);
x, y, fb);
drm_vblank_post_modeset(dev, pipe);
 
// drm_vblank_post_modeset(dev, pipe);
 
intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
LEAVE();
 
return ret;
}
 
6028,6 → 5193,91
I915_WRITE(G4X_AUD_CNTL_ST, i);
}
 
static void haswell_write_eld(struct drm_connector *connector,
struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
uint8_t *eld = connector->eld;
struct drm_device *dev = crtc->dev;
uint32_t eldv;
uint32_t i;
int len;
int pipe = to_intel_crtc(crtc)->pipe;
int tmp;
 
int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
int aud_config = HSW_AUD_CFG(pipe);
int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
 
 
DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
 
/* Audio output enable */
DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
tmp = I915_READ(aud_cntrl_st2);
tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
I915_WRITE(aud_cntrl_st2, tmp);
 
/* Wait for 1 vertical blank */
intel_wait_for_vblank(dev, pipe);
 
/* Set ELD valid state */
tmp = I915_READ(aud_cntrl_st2);
DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
I915_WRITE(aud_cntrl_st2, tmp);
tmp = I915_READ(aud_cntrl_st2);
DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
 
/* Enable HDMI mode */
tmp = I915_READ(aud_config);
DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
/* clear N_programing_enable and N_value_index */
tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
I915_WRITE(aud_config, tmp);
 
DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
 
eldv = AUDIO_ELD_VALID_A << (pipe * 4);
 
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
} else
I915_WRITE(aud_config, 0);
 
if (intel_eld_uptodate(connector,
aud_cntrl_st2, eldv,
aud_cntl_st, IBX_ELD_ADDRESS,
hdmiw_hdmiedid))
return;
 
i = I915_READ(aud_cntrl_st2);
i &= ~eldv;
I915_WRITE(aud_cntrl_st2, i);
 
if (!eld[0])
return;
 
i = I915_READ(aud_cntl_st);
i &= ~IBX_ELD_ADDRESS;
I915_WRITE(aud_cntl_st, i);
i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
DRM_DEBUG_DRIVER("port num:%d\n", i);
 
len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
DRM_DEBUG_DRIVER("ELD size %d\n", len);
for (i = 0; i < len; i++)
I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
 
i = I915_READ(aud_cntrl_st2);
i |= eldv;
I915_WRITE(aud_cntrl_st2, i);
 
}
 
static void ironlake_write_eld(struct drm_connector *connector,
struct drm_crtc *crtc)
{
6037,27 → 5287,27
uint32_t i;
int len;
int hdmiw_hdmiedid;
int aud_config;
int aud_cntl_st;
int aud_cntrl_st2;
int pipe = to_intel_crtc(crtc)->pipe;
 
if (HAS_PCH_IBX(connector->dev)) {
hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
aud_cntl_st = IBX_AUD_CNTL_ST_A;
hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
aud_config = IBX_AUD_CFG(pipe);
aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
} else {
hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
aud_cntl_st = CPT_AUD_CNTL_ST_A;
hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
aud_config = CPT_AUD_CFG(pipe);
aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
}
 
i = to_intel_crtc(crtc)->pipe;
hdmiw_hdmiedid += i * 0x100;
aud_cntl_st += i * 0x100;
DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
 
DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
 
i = I915_READ(aud_cntl_st);
i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
if (!i) {
DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
/* operate blindly on all ports */
6072,7 → 5322,9
if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
}
I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
} else
I915_WRITE(aud_config, 0);
 
if (intel_eld_uptodate(connector,
aud_cntrl_st2, eldv,
6135,7 → 5387,7
int i;
 
/* The clocks have to be on to load the palette. */
if (!crtc->enabled)
if (!crtc->enabled || !intel_crtc->active)
return;
 
/* use legacy palette for Ironlake */
6150,42 → 5402,263
}
}
 
#if 0
static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bool visible = base != 0;
u32 cntl;
 
if (intel_crtc->cursor_visible == visible)
return;
 
cntl = I915_READ(_CURACNTR);
if (visible) {
/* On these chipsets we can only modify the base whilst
* the cursor is disabled.
*/
I915_WRITE(_CURABASE, base);
 
cntl &= ~(CURSOR_FORMAT_MASK);
/* XXX width must be 64, stride 256 => 0x00 << 28 */
cntl |= CURSOR_ENABLE |
CURSOR_GAMMA_ENABLE |
CURSOR_FORMAT_ARGB;
} else
cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
I915_WRITE(_CURACNTR, cntl);
 
intel_crtc->cursor_visible = visible;
}
 
static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool visible = base != 0;
 
if (intel_crtc->cursor_visible != visible) {
uint32_t cntl = I915_READ(CURCNTR(pipe));
if (base) {
cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
cntl |= pipe << 28; /* Connect to correct pipe */
} else {
cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
cntl |= CURSOR_MODE_DISABLE;
}
I915_WRITE(CURCNTR(pipe), cntl);
 
intel_crtc->cursor_visible = visible;
}
/* and commit changes on next vblank */
I915_WRITE(CURBASE(pipe), base);
}
 
static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
bool visible = base != 0;
 
if (intel_crtc->cursor_visible != visible) {
uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
if (base) {
cntl &= ~CURSOR_MODE;
cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
} else {
cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
cntl |= CURSOR_MODE_DISABLE;
}
I915_WRITE(CURCNTR_IVB(pipe), cntl);
 
intel_crtc->cursor_visible = visible;
}
/* and commit changes on next vblank */
I915_WRITE(CURBASE_IVB(pipe), base);
}
 
/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
static void intel_crtc_update_cursor(struct drm_crtc *crtc,
bool on)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int pipe = intel_crtc->pipe;
int x = intel_crtc->cursor_x;
int y = intel_crtc->cursor_y;
u32 base, pos;
bool visible;
 
pos = 0;
 
if (on && crtc->enabled && crtc->fb) {
base = intel_crtc->cursor_addr;
if (x > (int) crtc->fb->width)
base = 0;
 
if (y > (int) crtc->fb->height)
base = 0;
} else
base = 0;
 
if (x < 0) {
if (x + intel_crtc->cursor_width < 0)
base = 0;
 
pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
x = -x;
}
pos |= x << CURSOR_X_SHIFT;
 
if (y < 0) {
if (y + intel_crtc->cursor_height < 0)
base = 0;
 
pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
y = -y;
}
pos |= y << CURSOR_Y_SHIFT;
 
visible = base != 0;
if (!visible && !intel_crtc->cursor_visible)
return;
 
if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
I915_WRITE(CURPOS_IVB(pipe), pos);
ivb_update_cursor(crtc, base);
} else {
I915_WRITE(CURPOS(pipe), pos);
if (IS_845G(dev) || IS_I865G(dev))
i845_update_cursor(crtc, base);
else
i9xx_update_cursor(crtc, base);
}
}
 
static int intel_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file,
uint32_t handle,
uint32_t width, uint32_t height)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_i915_gem_object *obj;
uint32_t addr;
int ret;
 
/* if we want to turn off the cursor ignore width and height */
if (!handle) {
DRM_DEBUG_KMS("cursor off\n");
addr = 0;
obj = NULL;
mutex_lock(&dev->struct_mutex);
goto finish;
}
 
/* Currently we only support 64x64 cursors */
if (width != 64 || height != 64) {
DRM_ERROR("we currently only support 64x64 cursors\n");
return -EINVAL;
}
 
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
if (&obj->base == NULL)
return -ENOENT;
 
if (obj->base.size < width * height * 4) {
DRM_ERROR("buffer is to small\n");
ret = -ENOMEM;
goto fail;
}
 
/* we only need to pin inside GTT if cursor is non-phy */
mutex_lock(&dev->struct_mutex);
if (!dev_priv->info->cursor_needs_physical) {
if (obj->tiling_mode) {
DRM_ERROR("cursor cannot be tiled\n");
ret = -EINVAL;
goto fail_locked;
}
 
ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
if (ret) {
DRM_ERROR("failed to move cursor bo into the GTT\n");
goto fail_locked;
}
 
ret = i915_gem_object_put_fence(obj);
if (ret) {
DRM_ERROR("failed to release fence for cursor");
goto fail_unpin;
}
 
addr = obj->gtt_offset;
} else {
int align = IS_I830(dev) ? 16 * 1024 : 256;
ret = i915_gem_attach_phys_object(dev, obj,
(intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
align);
if (ret) {
DRM_ERROR("failed to attach phys object\n");
goto fail_locked;
}
addr = obj->phys_obj->handle->busaddr;
}
 
if (IS_GEN2(dev))
I915_WRITE(CURSIZE, (height << 12) | width);
 
finish:
if (intel_crtc->cursor_bo) {
if (dev_priv->info->cursor_needs_physical) {
if (intel_crtc->cursor_bo != obj)
i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
} else
i915_gem_object_unpin(intel_crtc->cursor_bo);
drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
}
 
mutex_unlock(&dev->struct_mutex);
 
intel_crtc->cursor_addr = addr;
intel_crtc->cursor_bo = obj;
intel_crtc->cursor_width = width;
intel_crtc->cursor_height = height;
 
// intel_crtc_update_cursor(crtc, true);
 
return 0;
fail_unpin:
i915_gem_object_unpin(obj);
fail_locked:
mutex_unlock(&dev->struct_mutex);
fail:
drm_gem_object_unreference_unlocked(&obj->base);
return ret;
}
 
static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 
intel_crtc->cursor_x = x;
intel_crtc->cursor_y = y;
 
// intel_crtc_update_cursor(crtc, true);
 
return 0;
}
#endif
 
/** Sets the color ramps on behalf of RandR */
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
u16 blue, int regno)
6242,9 → 5715,29
704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
};
 
static struct drm_framebuffer *
intel_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
struct intel_framebuffer *intel_fb;
int ret;
 
intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
if (!intel_fb) {
drm_gem_object_unreference_unlocked(&obj->base);
return ERR_PTR(-ENOMEM);
}
 
ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
if (ret) {
drm_gem_object_unreference_unlocked(&obj->base);
kfree(intel_fb);
return ERR_PTR(ret);
}
 
return &intel_fb->base;
}
 
static u32
intel_framebuffer_pitch_for_width(int width, int bpp)
6295,30 → 5788,31
 
// obj = dev_priv->fbdev->ifb.obj;
// if (obj == NULL)
// return NULL;
 
// fb = &dev_priv->fbdev->ifb.base;
// if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
// fb->bits_per_pixel))
return NULL;
 
// if (obj->base.size < mode->vdisplay * fb->pitch)
if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
fb->bits_per_pixel))
// return NULL;
 
if (obj->base.size < mode->vdisplay * fb->pitches[0])
return NULL;
 
// return fb;
}
 
bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
struct drm_connector *connector,
bool intel_get_load_detect_pipe(struct drm_connector *connector,
struct drm_display_mode *mode,
struct intel_load_detect_pipe *old)
{
struct intel_crtc *intel_crtc;
struct intel_encoder *intel_encoder =
intel_attached_encoder(connector);
struct drm_crtc *possible_crtc;
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = NULL;
struct drm_device *dev = encoder->dev;
struct drm_framebuffer *old_fb;
struct drm_framebuffer *fb;
int i = -1;
 
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6339,22 → 5833,13
if (encoder->crtc) {
crtc = encoder->crtc;
 
intel_crtc = to_intel_crtc(crtc);
old->dpms_mode = intel_crtc->dpms_mode;
old->dpms_mode = connector->dpms;
old->load_detect_temp = false;
 
/* Make sure the crtc and connector are running */
if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
struct drm_encoder_helper_funcs *encoder_funcs;
struct drm_crtc_helper_funcs *crtc_funcs;
if (connector->dpms != DRM_MODE_DPMS_ON)
connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
 
crtc_funcs = crtc->helper_private;
crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
 
encoder_funcs = encoder->helper_private;
encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}
 
return true;
}
 
6377,11 → 5862,11
return false;
}
 
encoder->crtc = crtc;
connector->encoder = encoder;
intel_encoder->new_crtc = to_intel_crtc(crtc);
to_intel_connector(connector)->new_encoder = intel_encoder;
 
intel_crtc = to_intel_crtc(crtc);
old->dpms_mode = intel_crtc->dpms_mode;
old->dpms_mode = connector->dpms;
old->load_detect_temp = true;
old->release_fb = NULL;
 
6388,8 → 5873,6
if (!mode)
mode = &load_detect_mode;
 
old_fb = crtc->fb;
 
/* We need a framebuffer large enough to accommodate all accesses
* that the plane may generate whilst we perform load detection.
* We can not rely on the fbcon either being present (we get called
6397,25 → 5880,23
* not even exist) or that it is large enough to satisfy the
* requested mode.
*/
crtc->fb = mode_fits_in_fbdev(dev, mode);
if (crtc->fb == NULL) {
fb = mode_fits_in_fbdev(dev, mode);
if (fb == NULL) {
DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
old->release_fb = crtc->fb;
fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
old->release_fb = fb;
} else
DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
if (IS_ERR(crtc->fb)) {
if (IS_ERR(fb)) {
DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
crtc->fb = old_fb;
return false;
goto fail;
}
 
if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
if (old->release_fb)
old->release_fb->funcs->destroy(old->release_fb);
crtc->fb = old_fb;
return false;
goto fail;
}
 
/* let the connector get through one full cycle before testing */
6422,17 → 5903,18
intel_wait_for_vblank(dev, intel_crtc->pipe);
 
return true;
fail:
connector->encoder = NULL;
encoder->crtc = NULL;
return false;
}
 
void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
struct drm_connector *connector,
void intel_release_load_detect_pipe(struct drm_connector *connector,
struct intel_load_detect_pipe *old)
{
struct intel_encoder *intel_encoder =
intel_attached_encoder(connector);
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_device *dev = encoder->dev;
struct drm_crtc *crtc = encoder->crtc;
struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
 
DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
connector->base.id, drm_get_connector_name(connector),
6439,9 → 5921,12
encoder->base.id, drm_get_encoder_name(encoder));
 
if (old->load_detect_temp) {
connector->encoder = NULL;
drm_helper_disable_unused_functions(dev);
struct drm_crtc *crtc = encoder->crtc;
 
to_intel_connector(connector)->new_encoder = NULL;
intel_encoder->new_crtc = NULL;
intel_set_mode(crtc, NULL, 0, 0, NULL);
 
if (old->release_fb)
old->release_fb->funcs->destroy(old->release_fb);
 
6449,11 → 5934,9
}
 
/* Switch crtc and encoder back off if necessary */
if (old->dpms_mode != DRM_MODE_DPMS_ON) {
encoder_funcs->dpms(encoder, old->dpms_mode);
crtc_funcs->dpms(crtc, old->dpms_mode);
if (old->dpms_mode != DRM_MODE_DPMS_ON)
connector->funcs->dpms(connector, old->dpms_mode);
}
}
 
/* Returns the clock of the currently programmed mode of the given pipe. */
static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6570,21 → 6053,10
mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
 
drm_mode_set_name(mode);
drm_mode_set_crtcinfo(mode, 0);
 
return mode;
}
 
#define GPU_IDLE_TIMEOUT 500 /* ms */
 
 
 
 
#define CRTC_IDLE_TIMEOUT 1000 /* ms */
 
 
 
 
static void intel_increase_pllclock(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
6594,8 → 6066,6
int dpll_reg = DPLL(pipe);
int dpll;
 
ENTER();
 
if (HAS_PCH_SPLIT(dev))
return;
 
6606,9 → 6076,7
if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
DRM_DEBUG_DRIVER("upclocking LVDS\n");
 
/* Unlock panel regs */
I915_WRITE(PP_CONTROL,
I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
assert_panel_unlocked(dev_priv, pipe);
 
dpll &= ~DISPLAY_RATE_SELECT_FPA1;
I915_WRITE(dpll_reg, dpll);
6617,37 → 6085,88
dpll = I915_READ(dpll_reg);
if (dpll & DISPLAY_RATE_SELECT_FPA1)
DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
 
/* ...and lock them again */
I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
}
 
LEAVE();
 
/* Schedule downclock */
}
 
static void intel_decrease_pllclock(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 
if (HAS_PCH_SPLIT(dev))
return;
 
if (!dev_priv->lvds_downclock_avail)
return;
 
/*
* Since this is called by a timer, we should never get here in
* the manual case.
*/
if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
int pipe = intel_crtc->pipe;
int dpll_reg = DPLL(pipe);
int dpll;
 
DRM_DEBUG_DRIVER("downclocking LVDS\n");
 
assert_panel_unlocked(dev_priv, pipe);
 
dpll = I915_READ(dpll_reg);
dpll |= DISPLAY_RATE_SELECT_FPA1;
I915_WRITE(dpll_reg, dpll);
intel_wait_for_vblank(dev, pipe);
dpll = I915_READ(dpll_reg);
if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
}
 
}
 
void intel_mark_busy(struct drm_device *dev)
{
i915_update_gfx_val(dev->dev_private);
}
 
void intel_mark_idle(struct drm_device *dev)
{
}
 
void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_crtc *crtc;
 
if (!i915_powersave)
return;
 
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (!crtc->fb)
continue;
 
if (to_intel_framebuffer(crtc->fb)->obj == obj)
intel_increase_pllclock(crtc);
}
}
 
void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_crtc *crtc;
 
if (!i915_powersave)
return;
 
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
if (!crtc->fb)
continue;
 
if (to_intel_framebuffer(crtc->fb)->obj == obj)
intel_decrease_pllclock(crtc);
}
}
 
 
 
 
static void intel_crtc_destroy(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6670,1176 → 6189,1570
kfree(intel_crtc);
}
 
#if 0
static void intel_unpin_work_fn(struct work_struct *__work)
{
struct intel_unpin_work *work =
container_of(__work, struct intel_unpin_work, work);
 
mutex_lock(&work->dev->struct_mutex);
intel_unpin_fb_obj(work->old_fb_obj);
drm_gem_object_unreference(&work->pending_flip_obj->base);
drm_gem_object_unreference(&work->old_fb_obj->base);
 
intel_update_fbc(work->dev);
mutex_unlock(&work->dev->struct_mutex);
kfree(work);
}
 
static void do_intel_finish_page_flip(struct drm_device *dev,
struct drm_crtc *crtc)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
struct drm_i915_gem_object *obj;
struct drm_pending_vblank_event *e;
struct timeval tvbl;
unsigned long flags;
 
/* Ignore early vblank irqs */
if (intel_crtc == NULL)
return;
 
spin_lock_irqsave(&dev->event_lock, flags);
work = intel_crtc->unpin_work;
if (work == NULL || !work->pending) {
spin_unlock_irqrestore(&dev->event_lock, flags);
return;
}
 
intel_crtc->unpin_work = NULL;
 
if (work->event) {
e = work->event;
e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
 
e->event.tv_sec = tvbl.tv_sec;
e->event.tv_usec = tvbl.tv_usec;
 
list_add_tail(&e->base.link,
&e->base.file_priv->event_list);
wake_up_interruptible(&e->base.file_priv->event_wait);
}
 
drm_vblank_put(dev, intel_crtc->pipe);
 
spin_unlock_irqrestore(&dev->event_lock, flags);
 
obj = work->old_fb_obj;
 
atomic_clear_mask(1 << intel_crtc->plane,
&obj->pending_flip.counter);
 
wake_up(&dev_priv->pending_flip_queue);
schedule_work(&work->work);
 
trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
}
 
void intel_finish_page_flip(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 
do_intel_finish_page_flip(dev, crtc);
}
 
void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
 
do_intel_finish_page_flip(dev, crtc);
}
 
void intel_prepare_page_flip(struct drm_device *dev, int plane)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
unsigned long flags;
 
spin_lock_irqsave(&dev->event_lock, flags);
if (intel_crtc->unpin_work) {
if ((++intel_crtc->unpin_work->pending) > 1)
DRM_ERROR("Prepared flip multiple times\n");
} else {
DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
 
static int intel_gen2_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 flip_mask;
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
int ret;
 
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
 
ret = intel_ring_begin(ring, 6);
if (ret)
goto err_unpin;
 
/* Can't queue multiple flips, so wait for the previous
* one to finish before executing the next.
*/
if (intel_crtc->plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
intel_ring_emit(ring, 0); /* aux display base address, unused */
intel_ring_advance(ring);
return 0;
 
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
 
static int intel_gen3_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
u32 flip_mask;
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
int ret;
 
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
 
ret = intel_ring_begin(ring, 6);
if (ret)
goto err_unpin;
 
if (intel_crtc->plane)
flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
else
flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
intel_ring_emit(ring, MI_NOOP);
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
intel_ring_emit(ring, MI_NOOP);
 
intel_ring_advance(ring);
return 0;
 
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
 
static int intel_gen4_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
uint32_t pf, pipesrc;
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
int ret;
 
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
 
ret = intel_ring_begin(ring, 4);
if (ret)
goto err_unpin;
 
/* i965+ uses the linear or tiled offsets from the
* Display Registers (which do not change across a page-flip)
* so we need only reprogram the base address.
*/
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0]);
intel_ring_emit(ring,
(obj->gtt_offset + intel_crtc->dspaddr_offset) |
obj->tiling_mode);
 
/* XXX Enabling the panel-fitter across page-flip is so far
* untested on non-native modes, so ignore it for now.
* pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
*/
pf = 0;
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
intel_ring_emit(ring, pf | pipesrc);
intel_ring_advance(ring);
return 0;
 
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
 
static int intel_gen6_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
uint32_t pf, pipesrc;
int ret;
 
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
 
ret = intel_ring_begin(ring, 4);
if (ret)
goto err_unpin;
 
intel_ring_emit(ring, MI_DISPLAY_FLIP |
MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
 
/* Contrary to the suggestions in the documentation,
* "Enable Panel Fitter" does not seem to be required when page
* flipping with a non-native mode, and worse causes a normal
* modeset to fail.
* pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
*/
pf = 0;
pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
intel_ring_emit(ring, pf | pipesrc);
intel_ring_advance(ring);
return 0;
 
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
 
/*
* On gen7 we currently use the blit ring because (in early silicon at least)
* the render ring doesn't give us interrpts for page flip completion, which
* means clients will hang after the first flip is queued. Fortunately the
* blit ring generates interrupts properly, so use it instead.
*/
static int intel_gen7_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
uint32_t plane_bit = 0;
int ret;
 
ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
if (ret)
goto err;
 
switch(intel_crtc->plane) {
case PLANE_A:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
break;
case PLANE_B:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
break;
case PLANE_C:
plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
break;
default:
WARN_ONCE(1, "unknown plane in flip command\n");
ret = -ENODEV;
goto err_unpin;
}
 
ret = intel_ring_begin(ring, 4);
if (ret)
goto err_unpin;
 
intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
intel_ring_emit(ring, (MI_NOOP));
intel_ring_advance(ring);
return 0;
 
err_unpin:
intel_unpin_fb_obj(obj);
err:
return ret;
}
 
static int intel_default_queue_flip(struct drm_device *dev,
struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_i915_gem_object *obj)
{
return -ENODEV;
}
 
static int intel_crtc_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_framebuffer *intel_fb;
struct drm_i915_gem_object *obj;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_unpin_work *work;
unsigned long flags;
int ret;
 
/* Can't change pixel format via MI display flips. */
if (fb->pixel_format != crtc->fb->pixel_format)
return -EINVAL;
 
/*
* TILEOFF/LINOFF registers can't be changed via MI display flips.
* Note that pitch changes could also affect these register.
*/
if (INTEL_INFO(dev)->gen > 3 &&
(fb->offsets[0] != crtc->fb->offsets[0] ||
fb->pitches[0] != crtc->fb->pitches[0]))
return -EINVAL;
 
work = kzalloc(sizeof *work, GFP_KERNEL);
if (work == NULL)
return -ENOMEM;
 
work->event = event;
work->dev = crtc->dev;
intel_fb = to_intel_framebuffer(crtc->fb);
work->old_fb_obj = intel_fb->obj;
INIT_WORK(&work->work, intel_unpin_work_fn);
 
ret = drm_vblank_get(dev, intel_crtc->pipe);
if (ret)
goto free_work;
 
/* We borrow the event spin lock for protecting unpin_work */
spin_lock_irqsave(&dev->event_lock, flags);
if (intel_crtc->unpin_work) {
spin_unlock_irqrestore(&dev->event_lock, flags);
kfree(work);
drm_vblank_put(dev, intel_crtc->pipe);
 
DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
return -EBUSY;
}
intel_crtc->unpin_work = work;
spin_unlock_irqrestore(&dev->event_lock, flags);
 
intel_fb = to_intel_framebuffer(fb);
obj = intel_fb->obj;
 
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto cleanup;
 
/* Reference the objects for the scheduled work. */
drm_gem_object_reference(&work->old_fb_obj->base);
drm_gem_object_reference(&obj->base);
 
crtc->fb = fb;
 
work->pending_flip_obj = obj;
 
static void intel_sanitize_modesetting(struct drm_device *dev,
int pipe, int plane)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg, val;
work->enable_stall_check = true;
 
if (HAS_PCH_SPLIT(dev))
return;
 
/* Who knows what state these registers were left in by the BIOS or
* grub?
*
* If we leave the registers in a conflicting state (e.g. with the
* display plane reading from the other pipe than the one we intend
* to use) then when we attempt to teardown the active mode, we will
* not disable the pipes and planes in the correct order -- leaving
* a plane reading from a disabled pipe and possibly leading to
* undefined behaviour.
/* Block clients from rendering to the new back buffer until
* the flip occurs and the object is no longer visible.
*/
atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
 
reg = DSPCNTR(plane);
val = I915_READ(reg);
ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
if (ret)
goto cleanup_pending;
 
if ((val & DISPLAY_PLANE_ENABLE) == 0)
return;
if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
return;
intel_disable_fbc(dev);
intel_mark_fb_busy(obj);
mutex_unlock(&dev->struct_mutex);
 
/* This display plane is active and attached to the other CPU pipe. */
pipe = !pipe;
trace_i915_flip_request(intel_crtc->plane, obj);
 
/* Disable the plane and wait for it to stop reading from the pipe. */
intel_disable_plane(dev_priv, plane, pipe);
intel_disable_pipe(dev_priv, pipe);
}
return 0;
 
static void intel_crtc_reset(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cleanup_pending:
atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
drm_gem_object_unreference(&work->old_fb_obj->base);
drm_gem_object_unreference(&obj->base);
mutex_unlock(&dev->struct_mutex);
 
/* Reset flags back to the 'unknown' status so that they
* will be correctly set on the initial modeset.
*/
intel_crtc->dpms_mode = -1;
cleanup:
spin_lock_irqsave(&dev->event_lock, flags);
intel_crtc->unpin_work = NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
 
/* We need to fix up any BIOS configuration that conflicts with
* our expectations.
*/
intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
drm_vblank_put(dev, intel_crtc->pipe);
free_work:
kfree(work);
 
return ret;
}
 
#endif
 
static struct drm_crtc_helper_funcs intel_helper_funcs = {
.dpms = intel_crtc_dpms,
.mode_fixup = intel_crtc_mode_fixup,
.mode_set = intel_crtc_mode_set,
.mode_set_base = intel_pipe_set_base,
.mode_set_base_atomic = intel_pipe_set_base_atomic,
.load_lut = intel_crtc_load_lut,
.disable = intel_crtc_disable,
.disable = intel_crtc_noop,
};
 
static const struct drm_crtc_funcs intel_crtc_funcs = {
.reset = intel_crtc_reset,
// .cursor_set = intel_crtc_cursor_set,
// .cursor_move = intel_crtc_cursor_move,
.gamma_set = intel_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = intel_crtc_destroy,
// .page_flip = intel_crtc_page_flip,
};
 
static void intel_crtc_init(struct drm_device *dev, int pipe)
bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc;
int i;
struct intel_encoder *other_encoder;
struct drm_crtc *crtc = &encoder->new_crtc->base;
 
intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (intel_crtc == NULL)
return;
if (WARN_ON(!crtc))
return false;
 
drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
list_for_each_entry(other_encoder,
&crtc->dev->mode_config.encoder_list,
base.head) {
 
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = i;
intel_crtc->lut_g[i] = i;
intel_crtc->lut_b[i] = i;
if (&other_encoder->new_crtc->base != crtc ||
encoder == other_encoder)
continue;
else
return true;
}
 
/* Swap pipes & planes for FBC on pre-965 */
intel_crtc->pipe = pipe;
intel_crtc->plane = pipe;
if (IS_MOBILE(dev) && IS_GEN3(dev)) {
DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
intel_crtc->plane = !pipe;
return false;
}
 
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
struct drm_crtc *crtc)
{
struct drm_device *dev;
struct drm_crtc *tmp;
int crtc_mask = 1;
 
intel_crtc_reset(&intel_crtc->base);
intel_crtc->active = true; /* force the pipe off on setup_init_config */
intel_crtc->bpp = 24; /* default for pre-Ironlake */
WARN(!crtc, "checking null crtc?\n");
 
if (HAS_PCH_SPLIT(dev)) {
if (pipe == 2 && IS_IVYBRIDGE(dev))
intel_crtc->no_pll = true;
intel_helper_funcs.prepare = ironlake_crtc_prepare;
intel_helper_funcs.commit = ironlake_crtc_commit;
} else {
intel_helper_funcs.prepare = i9xx_crtc_prepare;
intel_helper_funcs.commit = i9xx_crtc_commit;
dev = crtc->dev;
 
list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
if (tmp == crtc)
break;
crtc_mask <<= 1;
}
 
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
if (encoder->possible_crtcs & crtc_mask)
return true;
return false;
}
 
intel_crtc->busy = false;
/**
* intel_modeset_update_staged_output_state
*
* Updates the staged output configuration state, e.g. after we've read out the
* current hw state.
*/
static void intel_modeset_update_staged_output_state(struct drm_device *dev)
{
struct intel_encoder *encoder;
struct intel_connector *connector;
 
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
connector->new_encoder =
to_intel_encoder(connector->base.encoder);
}
 
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
encoder->new_crtc =
to_intel_crtc(encoder->base.crtc);
}
}
 
 
 
 
 
 
static int intel_encoder_clones(struct drm_device *dev, int type_mask)
/**
* intel_modeset_commit_output_state
*
* This function copies the stage display pipe configuration to the real one.
*/
static void intel_modeset_commit_output_state(struct drm_device *dev)
{
struct intel_encoder *encoder;
int index_mask = 0;
int entry = 0;
struct intel_connector *connector;
 
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
if (type_mask & encoder->clone_mask)
index_mask |= (1 << entry);
entry++;
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
connector->base.encoder = &connector->new_encoder->base;
}
 
return index_mask;
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
encoder->base.crtc = &encoder->new_crtc->base;
}
}
 
static bool has_edp_a(struct drm_device *dev)
static struct drm_display_mode *
intel_modeset_adjusted_mode(struct drm_crtc *crtc,
struct drm_display_mode *mode)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_device *dev = crtc->dev;
struct drm_display_mode *adjusted_mode;
struct drm_encoder_helper_funcs *encoder_funcs;
struct intel_encoder *encoder;
 
if (!IS_MOBILE(dev))
return false;
adjusted_mode = drm_mode_duplicate(dev, mode);
if (!adjusted_mode)
return ERR_PTR(-ENOMEM);
 
if ((I915_READ(DP_A) & DP_DETECTED) == 0)
return false;
/* Pass our mode to the connectors and the CRTC to give them a chance to
* adjust it according to limitations or connector properties, and also
* a chance to reject the mode entirely.
*/
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
 
if (IS_GEN5(dev) &&
(I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
return false;
if (&encoder->new_crtc->base != crtc)
continue;
encoder_funcs = encoder->base.helper_private;
if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
adjusted_mode))) {
DRM_DEBUG_KMS("Encoder fixup failed\n");
goto fail;
}
}
 
return true;
if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
DRM_DEBUG_KMS("CRTC fixup failed\n");
goto fail;
}
DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
 
static void intel_setup_outputs(struct drm_device *dev)
return adjusted_mode;
fail:
drm_mode_destroy(dev, adjusted_mode);
return ERR_PTR(-EINVAL);
}
 
/* Computes which crtcs are affected and sets the relevant bits in the mask. For
* simplicity we use the crtc's pipe number (because it's easier to obtain). */
static void
intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
unsigned *prepare_pipes, unsigned *disable_pipes)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc;
struct drm_device *dev = crtc->dev;
struct intel_encoder *encoder;
bool dpd_is_edp = false;
bool has_lvds = false;
struct intel_connector *connector;
struct drm_crtc *tmp_crtc;
 
ENTER();
*disable_pipes = *modeset_pipes = *prepare_pipes = 0;
 
if (IS_MOBILE(dev) && !IS_I830(dev))
has_lvds = intel_lvds_init(dev);
if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
/* disable the panel fitter on everything but LVDS */
I915_WRITE(PFIT_CONTROL, 0);
}
/* Check which crtcs have changed outputs connected to them, these need
* to be part of the prepare_pipes mask. We don't (yet) support global
* modeset across multiple crtcs, so modeset_pipes will only have one
* bit set at most. */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->base.encoder == &connector->new_encoder->base)
continue;
 
if (HAS_PCH_SPLIT(dev)) {
dpd_is_edp = intel_dpd_is_edp(dev);
if (connector->base.encoder) {
tmp_crtc = connector->base.encoder->crtc;
 
if (has_edp_a(dev))
intel_dp_init(dev, DP_A);
*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
}
 
if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_D);
if (connector->new_encoder)
*prepare_pipes |=
1 << connector->new_encoder->new_crtc->pipe;
}
 
intel_crt_init(dev);
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
if (encoder->base.crtc == &encoder->new_crtc->base)
continue;
 
if (HAS_PCH_SPLIT(dev)) {
int found;
if (encoder->base.crtc) {
tmp_crtc = encoder->base.crtc;
 
if (I915_READ(HDMIB) & PORT_DETECTED) {
/* PCH SDVOB multiplex with HDMIB */
found = intel_sdvo_init(dev, PCH_SDVOB);
if (!found)
intel_hdmi_init(dev, HDMIB);
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_B);
*prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
}
 
if (I915_READ(HDMIC) & PORT_DETECTED)
intel_hdmi_init(dev, HDMIC);
if (encoder->new_crtc)
*prepare_pipes |= 1 << encoder->new_crtc->pipe;
}
 
if (I915_READ(HDMID) & PORT_DETECTED)
intel_hdmi_init(dev, HDMID);
/* Check for any pipes that will be fully disabled ... */
list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
base.head) {
bool used = false;
 
if (I915_READ(PCH_DP_C) & DP_DETECTED)
intel_dp_init(dev, PCH_DP_C);
/* Don't try to disable disabled crtcs. */
if (!intel_crtc->base.enabled)
continue;
 
if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_D);
 
} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
bool found = false;
 
if (I915_READ(SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOB\n");
found = intel_sdvo_init(dev, SDVOB);
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
intel_hdmi_init(dev, SDVOB);
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
if (encoder->new_crtc == intel_crtc)
used = true;
}
 
if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
DRM_DEBUG_KMS("probing DP_B\n");
intel_dp_init(dev, DP_B);
if (!used)
*disable_pipes |= 1 << intel_crtc->pipe;
}
}
 
/* Before G4X SDVOC doesn't have its own detect register */
 
if (I915_READ(SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOC\n");
found = intel_sdvo_init(dev, SDVOC);
}
/* set_mode is also used to update properties on life display pipes. */
intel_crtc = to_intel_crtc(crtc);
if (crtc->enabled)
*prepare_pipes |= 1 << intel_crtc->pipe;
 
if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
/* We only support modeset on one single crtc, hence we need to do that
* only for the passed in crtc iff we change anything else than just
* disable crtcs.
*
* This is actually not true, to be fully compatible with the old crtc
* helper we automatically disable _any_ output (i.e. doesn't need to be
* connected to the crtc we're modesetting on) if it's disconnected.
* Which is a rather nutty api (since changed the output configuration
* without userspace's explicit request can lead to confusion), but
* alas. Hence we currently need to modeset on all pipes we prepare. */
if (*prepare_pipes)
*modeset_pipes = *prepare_pipes;
 
if (SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
intel_hdmi_init(dev, SDVOC);
/* ... and mask these out. */
*modeset_pipes &= ~(*disable_pipes);
*prepare_pipes &= ~(*disable_pipes);
}
if (SUPPORTS_INTEGRATED_DP(dev)) {
DRM_DEBUG_KMS("probing DP_C\n");
intel_dp_init(dev, DP_C);
}
}
 
if (SUPPORTS_INTEGRATED_DP(dev) &&
(I915_READ(DP_D) & DP_DETECTED)) {
DRM_DEBUG_KMS("probing DP_D\n");
intel_dp_init(dev, DP_D);
}
} else if (IS_GEN2(dev))
intel_dvo_init(dev);
static bool intel_crtc_in_use(struct drm_crtc *crtc)
{
struct drm_encoder *encoder;
struct drm_device *dev = crtc->dev;
 
// if (SUPPORTS_TV(dev))
// intel_tv_init(dev);
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
if (encoder->crtc == crtc)
return true;
 
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
encoder->base.possible_crtcs = encoder->crtc_mask;
encoder->base.possible_clones =
intel_encoder_clones(dev, encoder->clone_mask);
return false;
}
 
/* disable all the possible outputs/crtcs before entering KMS mode */
// drm_helper_disable_unused_functions(dev);
static void
intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
{
struct intel_encoder *intel_encoder;
struct intel_crtc *intel_crtc;
struct drm_connector *connector;
 
if (HAS_PCH_SPLIT(dev))
ironlake_init_pch_refclk(dev);
list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
base.head) {
if (!intel_encoder->base.crtc)
continue;
 
LEAVE();
intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
 
if (prepare_pipes & (1 << intel_crtc->pipe))
intel_encoder->connectors_active = false;
}
 
intel_modeset_commit_output_state(dev);
 
/* Update computed state. */
list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
base.head) {
intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
}
 
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
if (!connector->encoder || !connector->encoder->crtc)
continue;
 
intel_crtc = to_intel_crtc(connector->encoder->crtc);
 
if (prepare_pipes & (1 << intel_crtc->pipe)) {
struct drm_property *dpms_property =
dev->mode_config.dpms_property;
 
connector->dpms = DRM_MODE_DPMS_ON;
drm_connector_property_set_value(connector,
dpms_property,
DRM_MODE_DPMS_ON);
 
intel_encoder = to_intel_encoder(connector->encoder);
intel_encoder->connectors_active = true;
}
}
 
static const struct drm_framebuffer_funcs intel_fb_funcs = {
// .destroy = intel_user_framebuffer_destroy,
// .create_handle = intel_user_framebuffer_create_handle,
};
}
 
int intel_framebuffer_init(struct drm_device *dev,
struct intel_framebuffer *intel_fb,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
list_for_each_entry((intel_crtc), \
&(dev)->mode_config.crtc_list, \
base.head) \
if (mask & (1 <<(intel_crtc)->pipe)) \
 
void
intel_modeset_check_state(struct drm_device *dev)
{
int ret;
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
 
if (obj->tiling_mode == I915_TILING_Y)
return -EINVAL;
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
/* This also checks the encoder/connector hw state with the
* ->get_hw_state callbacks. */
intel_connector_check_state(connector);
 
if (mode_cmd->pitches[0] & 63)
return -EINVAL;
 
switch (mode_cmd->pixel_format) {
case DRM_FORMAT_RGB332:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
/* RGB formats are common across chipsets */
break;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_VYUY:
break;
default:
DRM_ERROR("unsupported pixel format\n");
return -EINVAL;
WARN(&connector->new_encoder->base != connector->base.encoder,
"connector's staged encoder doesn't match current encoder\n");
}
 
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
if (ret) {
DRM_ERROR("framebuffer init failed %d\n", ret);
return ret;
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
bool enabled = false;
bool active = false;
enum pipe pipe, tracked_pipe;
 
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
intel_fb->obj = obj;
return 0;
DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
encoder->base.base.id,
drm_get_encoder_name(&encoder->base));
 
WARN(&encoder->new_crtc->base != encoder->base.crtc,
"encoder's stage crtc doesn't match current crtc\n");
WARN(encoder->connectors_active && !encoder->base.crtc,
"encoder's active_connectors set, but no crtc\n");
 
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->base.encoder != &encoder->base)
continue;
enabled = true;
if (connector->base.dpms != DRM_MODE_DPMS_OFF)
active = true;
}
WARN(!!encoder->base.crtc != enabled,
"encoder's enabled state mismatch "
"(expected %i, found %i)\n",
!!encoder->base.crtc, enabled);
WARN(active && !encoder->base.crtc,
"active encoder with no crtc\n");
 
WARN(encoder->connectors_active != active,
"encoder's computed active state doesn't match tracked active state "
"(expected %i, found %i)\n", active, encoder->connectors_active);
 
static const struct drm_mode_config_funcs intel_mode_funcs = {
.fb_create = NULL /*intel_user_framebuffer_create*/,
.output_poll_changed = NULL /*intel_fb_output_poll_changed*/,
};
active = encoder->get_hw_state(encoder, &pipe);
WARN(active != encoder->connectors_active,
"encoder's hw state doesn't match sw tracking "
"(expected %i, found %i)\n",
encoder->connectors_active, active);
 
if (!encoder->base.crtc)
continue;
 
tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
WARN(active && pipe != tracked_pipe,
"active encoder's pipe doesn't match"
"(expected %i, found %i)\n",
tracked_pipe, pipe);
 
}
 
list_for_each_entry(crtc, &dev->mode_config.crtc_list,
base.head) {
bool enabled = false;
bool active = false;
 
DRM_DEBUG_KMS("[CRTC:%d]\n",
crtc->base.base.id);
 
WARN(crtc->active && !crtc->base.enabled,
"active crtc, but not enabled in sw tracking\n");
 
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
if (encoder->base.crtc != &crtc->base)
continue;
enabled = true;
if (encoder->connectors_active)
active = true;
}
WARN(active != crtc->active,
"crtc's computed active state doesn't match tracked active state "
"(expected %i, found %i)\n", active, crtc->active);
WARN(enabled != crtc->base.enabled,
"crtc's computed enabled state doesn't match tracked enabled state "
"(expected %i, found %i)\n", enabled, crtc->base.enabled);
 
assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
}
}
 
bool ironlake_set_drps(struct drm_device *dev, u8 val)
bool intel_set_mode(struct drm_crtc *crtc,
struct drm_display_mode *mode,
int x, int y, struct drm_framebuffer *fb)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 rgvswctl;
struct drm_device *dev = crtc->dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
struct drm_encoder_helper_funcs *encoder_funcs;
struct drm_encoder *encoder;
struct intel_crtc *intel_crtc;
unsigned disable_pipes, prepare_pipes, modeset_pipes;
bool ret = true;
 
rgvswctl = I915_READ16(MEMSWCTL);
if (rgvswctl & MEMCTL_CMD_STS) {
DRM_DEBUG("gpu busy, RCS change rejected\n");
return false; /* still busy with another command */
}
intel_modeset_affected_pipes(crtc, &modeset_pipes,
&prepare_pipes, &disable_pipes);
 
rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
I915_WRITE16(MEMSWCTL, rgvswctl);
POSTING_READ16(MEMSWCTL);
DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
modeset_pipes, prepare_pipes, disable_pipes);
 
rgvswctl |= MEMCTL_CMD_STS;
I915_WRITE16(MEMSWCTL, rgvswctl);
for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
intel_crtc_disable(&intel_crtc->base);
 
return true;
saved_hwmode = crtc->hwmode;
saved_mode = crtc->mode;
 
/* Hack: Because we don't (yet) support global modeset on multiple
* crtcs, we don't keep track of the new mode for more than one crtc.
* Hence simply check whether any bit is set in modeset_pipes in all the
* pieces of code that are not yet converted to deal with mutliple crtcs
* changing their mode at the same time. */
adjusted_mode = NULL;
if (modeset_pipes) {
adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
if (IS_ERR(adjusted_mode)) {
return false;
}
}
 
void ironlake_enable_drps(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 rgvmodectl = I915_READ(MEMMODECTL);
u8 fmax, fmin, fstart, vstart;
for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
if (intel_crtc->base.enabled)
dev_priv->display.crtc_disable(&intel_crtc->base);
}
 
/* Enable temp reporting */
I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
/* crtc->mode is already used by the ->mode_set callbacks, hence we need
* to set it here already despite that we pass it down the callchain.
*/
if (modeset_pipes)
crtc->mode = *mode;
 
/* 100ms RC evaluation intervals */
I915_WRITE(RCUPEI, 100000);
I915_WRITE(RCDNEI, 100000);
/* Only after disabling all output pipelines that will be changed can we
* update the the output configuration. */
intel_modeset_update_state(dev, prepare_pipes);
 
/* Set max/min thresholds to 90ms and 80ms respectively */
I915_WRITE(RCBMAXAVG, 90000);
I915_WRITE(RCBMINAVG, 80000);
/* Set up the DPLL and any encoders state that needs to adjust or depend
* on the DPLL.
*/
for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
ret = !intel_crtc_mode_set(&intel_crtc->base,
mode, adjusted_mode,
x, y, fb);
if (!ret)
goto done;
 
I915_WRITE(MEMIHYST, 1);
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
 
/* Set up min, max, and cur for interrupt handling */
fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
MEMMODE_FSTART_SHIFT;
if (encoder->crtc != &intel_crtc->base)
continue;
 
vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
PXVFREQ_PX_SHIFT;
DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
encoder->base.id, drm_get_encoder_name(encoder),
mode->base.id, mode->name);
encoder_funcs = encoder->helper_private;
encoder_funcs->mode_set(encoder, mode, adjusted_mode);
}
}
 
dev_priv->fmax = fmax; /* IPS callback will increase this */
dev_priv->fstart = fstart;
/* Now enable the clocks, plane, pipe, and connectors that we set up. */
for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
dev_priv->display.crtc_enable(&intel_crtc->base);
 
dev_priv->max_delay = fstart;
dev_priv->min_delay = fmin;
dev_priv->cur_delay = fstart;
if (modeset_pipes) {
/* Store real post-adjustment hardware mode. */
crtc->hwmode = *adjusted_mode;
 
DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
fmax, fmin, fstart);
 
I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
 
/*
* Interrupts will be enabled in ironlake_irq_postinstall
/* Calculate and store various constants which
* are later needed by vblank and swap-completion
* timestamping. They are derived from true hwmode.
*/
drm_calc_timestamping_constants(crtc);
}
 
I915_WRITE(VIDSTART, vstart);
POSTING_READ(VIDSTART);
/* FIXME: add subpixel order */
done:
drm_mode_destroy(dev, adjusted_mode);
if (!ret && crtc->enabled) {
crtc->hwmode = saved_hwmode;
crtc->mode = saved_mode;
} else {
intel_modeset_check_state(dev);
}
 
rgvmodectl |= MEMMODE_SWMODE_EN;
I915_WRITE(MEMMODECTL, rgvmodectl);
return ret;
}
 
if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
DRM_ERROR("stuck trying to change perf mode\n");
msleep(1);
#undef for_each_intel_crtc_masked
 
ironlake_set_drps(dev, fstart);
static void intel_set_config_free(struct intel_set_config *config)
{
if (!config)
return;
 
dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
I915_READ(0x112e0);
// dev_priv->last_time1 = jiffies_to_msecs(jiffies);
dev_priv->last_count2 = I915_READ(0x112f4);
// getrawmonotonic(&dev_priv->last_time2);
kfree(config->save_connector_encoders);
kfree(config->save_encoder_crtcs);
kfree(config);
}
 
static int intel_set_config_save_state(struct drm_device *dev,
struct intel_set_config *config)
{
struct drm_encoder *encoder;
struct drm_connector *connector;
int count;
 
config->save_encoder_crtcs =
kcalloc(dev->mode_config.num_encoder,
sizeof(struct drm_crtc *), GFP_KERNEL);
if (!config->save_encoder_crtcs)
return -ENOMEM;
 
config->save_connector_encoders =
kcalloc(dev->mode_config.num_connector,
sizeof(struct drm_encoder *), GFP_KERNEL);
if (!config->save_connector_encoders)
return -ENOMEM;
 
/* Copy data. Note that driver private data is not affected.
* Should anything bad happen only the expected state is
* restored, not the drivers personal bookkeeping.
*/
count = 0;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
config->save_encoder_crtcs[count++] = encoder->crtc;
}
 
count = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
config->save_connector_encoders[count++] = connector->encoder;
}
 
return 0;
}
 
static void intel_set_config_restore_state(struct drm_device *dev,
struct intel_set_config *config)
{
struct intel_encoder *encoder;
struct intel_connector *connector;
int count;
 
count = 0;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
encoder->new_crtc =
to_intel_crtc(config->save_encoder_crtcs[count++]);
}
 
count = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
connector->new_encoder =
to_intel_encoder(config->save_connector_encoders[count++]);
}
}
 
 
 
static unsigned long intel_pxfreq(u32 vidfreq)
static void
intel_set_config_compute_mode_changes(struct drm_mode_set *set,
struct intel_set_config *config)
{
unsigned long freq;
int div = (vidfreq & 0x3f0000) >> 16;
int post = (vidfreq & 0x3000) >> 12;
int pre = (vidfreq & 0x7);
 
if (!pre)
return 0;
/* We should be able to check here if the fb has the same properties
* and then just flip_or_move it */
if (set->crtc->fb != set->fb) {
/* If we have no fb then treat it as a full mode set */
if (set->crtc->fb == NULL) {
DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
config->mode_changed = true;
} else if (set->fb == NULL) {
config->mode_changed = true;
} else if (set->fb->depth != set->crtc->fb->depth) {
config->mode_changed = true;
} else if (set->fb->bits_per_pixel !=
set->crtc->fb->bits_per_pixel) {
config->mode_changed = true;
} else
config->fb_changed = true;
}
 
freq = ((div * 133333) / ((1<<post) * pre));
if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
config->fb_changed = true;
 
return freq;
if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
DRM_DEBUG_KMS("modes are different, full mode set\n");
drm_mode_debug_printmodeline(&set->crtc->mode);
drm_mode_debug_printmodeline(set->mode);
config->mode_changed = true;
}
}
 
void intel_init_emon(struct drm_device *dev)
static int
intel_modeset_stage_output_state(struct drm_device *dev,
struct drm_mode_set *set,
struct intel_set_config *config)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 lcfuse;
u8 pxw[16];
int i;
struct drm_crtc *new_crtc;
struct intel_connector *connector;
struct intel_encoder *encoder;
int count, ro;
 
/* Disable to program */
I915_WRITE(ECR, 0);
POSTING_READ(ECR);
/* The upper layers ensure that we either disabl a crtc or have a list
* of connectors. For paranoia, double-check this. */
WARN_ON(!set->fb && (set->num_connectors != 0));
WARN_ON(set->fb && (set->num_connectors == 0));
 
/* Program energy weights for various events */
I915_WRITE(SDEW, 0x15040d00);
I915_WRITE(CSIEW0, 0x007f0000);
I915_WRITE(CSIEW1, 0x1e220004);
I915_WRITE(CSIEW2, 0x04000004);
count = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
/* Otherwise traverse passed in connector list and get encoders
* for them. */
for (ro = 0; ro < set->num_connectors; ro++) {
if (set->connectors[ro] == &connector->base) {
connector->new_encoder = connector->encoder;
break;
}
}
 
for (i = 0; i < 5; i++)
I915_WRITE(PEW + (i * 4), 0);
for (i = 0; i < 3; i++)
I915_WRITE(DEW + (i * 4), 0);
/* If we disable the crtc, disable all its connectors. Also, if
* the connector is on the changing crtc but not on the new
* connector list, disable it. */
if ((!set->fb || ro == set->num_connectors) &&
connector->base.encoder &&
connector->base.encoder->crtc == set->crtc) {
connector->new_encoder = NULL;
 
/* Program P-state weights to account for frequency power adjustment */
for (i = 0; i < 16; i++) {
u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
unsigned long freq = intel_pxfreq(pxvidfreq);
unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
PXVFREQ_PX_SHIFT;
unsigned long val;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
connector->base.base.id,
drm_get_connector_name(&connector->base));
}
 
val = vid * vid;
val *= (freq / 1000);
val *= 255;
val /= (127*127*900);
if (val > 0xff)
DRM_ERROR("bad pxval: %ld\n", val);
pxw[i] = val;
 
if (&connector->new_encoder->base != connector->base.encoder) {
DRM_DEBUG_KMS("encoder changed, full mode switch\n");
config->mode_changed = true;
}
/* Render standby states get 0 weight */
pxw[14] = 0;
pxw[15] = 0;
 
for (i = 0; i < 4; i++) {
u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
I915_WRITE(PXW + (i * 4), val);
/* Disable all disconnected encoders. */
if (connector->base.status == connector_status_disconnected)
connector->new_encoder = NULL;
}
/* connector->new_encoder is now updated for all connectors. */
 
/* Adjust magic regs to magic values (more experimental results) */
I915_WRITE(OGW0, 0);
I915_WRITE(OGW1, 0);
I915_WRITE(EG0, 0x00007f00);
I915_WRITE(EG1, 0x0000000e);
I915_WRITE(EG2, 0x000e0000);
I915_WRITE(EG3, 0x68000300);
I915_WRITE(EG4, 0x42000000);
I915_WRITE(EG5, 0x00140031);
I915_WRITE(EG6, 0);
I915_WRITE(EG7, 0);
/* Update crtc of enabled connectors. */
count = 0;
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (!connector->new_encoder)
continue;
 
for (i = 0; i < 8; i++)
I915_WRITE(PXWL + (i * 4), 0);
new_crtc = connector->new_encoder->base.crtc;
 
/* Enable PMON + select events */
I915_WRITE(ECR, 0x80000019);
for (ro = 0; ro < set->num_connectors; ro++) {
if (set->connectors[ro] == &connector->base)
new_crtc = set->crtc;
}
 
lcfuse = I915_READ(LCFUSE02);
/* Make sure the new CRTC will work with the encoder */
if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
new_crtc)) {
return -EINVAL;
}
connector->encoder->new_crtc = to_intel_crtc(new_crtc);
 
dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
connector->base.base.id,
drm_get_connector_name(&connector->base),
new_crtc->base.id);
}
 
static bool intel_enable_rc6(struct drm_device *dev)
{
/*
* Respect the kernel parameter if it is set
*/
if (i915_enable_rc6 >= 0)
return i915_enable_rc6;
/* Check for any encoders that needs to be disabled. */
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
list_for_each_entry(connector,
&dev->mode_config.connector_list,
base.head) {
if (connector->new_encoder == encoder) {
WARN_ON(!connector->new_encoder->new_crtc);
 
/*
* Disable RC6 on Ironlake
*/
if (INTEL_INFO(dev)->gen == 5)
return 0;
goto next_encoder;
}
}
encoder->new_crtc = NULL;
next_encoder:
/* Only now check for crtc changes so we don't miss encoders
* that will be disabled. */
if (&encoder->new_crtc->base != encoder->base.crtc) {
DRM_DEBUG_KMS("crtc changed, full mode switch\n");
config->mode_changed = true;
}
}
/* Now we've also updated encoder->new_crtc for all encoders. */
 
/*
* Disable rc6 on Sandybridge
*/
if (INTEL_INFO(dev)->gen == 6) {
DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
return 0;
}
DRM_DEBUG_DRIVER("RC6 enabled\n");
return 1;
}
 
void gen6_enable_rps(struct drm_i915_private *dev_priv)
static int intel_crtc_set_config(struct drm_mode_set *set)
{
u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
u32 pcu_mbox, rc6_mask = 0;
int cur_freq, min_freq, max_freq;
int i;
struct drm_device *dev;
struct drm_mode_set save_set;
struct intel_set_config *config;
int ret;
 
/* Here begins a magic sequence of register writes to enable
* auto-downclocking.
*
* Perhaps there might be some value in exposing these to
* userspace...
*/
I915_WRITE(GEN6_RC_STATE, 0);
mutex_lock(&dev_priv->dev->struct_mutex);
gen6_gt_force_wake_get(dev_priv);
BUG_ON(!set);
BUG_ON(!set->crtc);
BUG_ON(!set->crtc->helper_private);
 
/* disable the counters and set deterministic thresholds */
I915_WRITE(GEN6_RC_CONTROL, 0);
if (!set->mode)
set->fb = NULL;
 
I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
/* The fb helper likes to play gross jokes with ->mode_set_config.
* Unfortunately the crtc helper doesn't do much at all for this case,
* so we have to cope with this madness until the fb helper is fixed up. */
if (set->fb && set->num_connectors == 0)
return 0;
 
for (i = 0; i < I915_NUM_RINGS; i++)
I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
if (set->fb) {
DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
set->crtc->base.id, set->fb->base.id,
(int)set->num_connectors, set->x, set->y);
} else {
DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
}
 
I915_WRITE(GEN6_RC_SLEEP, 0);
I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
dev = set->crtc->dev;
 
if (intel_enable_rc6(dev_priv->dev))
rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
GEN6_RC_CTL_RC6_ENABLE;
ret = -ENOMEM;
config = kzalloc(sizeof(*config), GFP_KERNEL);
if (!config)
goto out_config;
 
I915_WRITE(GEN6_RC_CONTROL,
rc6_mask |
GEN6_RC_CTL_EI_MODE(1) |
GEN6_RC_CTL_HW_ENABLE);
ret = intel_set_config_save_state(dev, config);
if (ret)
goto out_config;
 
I915_WRITE(GEN6_RPNSWREQ,
GEN6_FREQUENCY(10) |
GEN6_OFFSET(0) |
GEN6_AGGRESSIVE_TURBO);
I915_WRITE(GEN6_RC_VIDEO_FREQ,
GEN6_FREQUENCY(12));
save_set.crtc = set->crtc;
save_set.mode = &set->crtc->mode;
save_set.x = set->crtc->x;
save_set.y = set->crtc->y;
save_set.fb = set->crtc->fb;
 
I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
18 << 24 |
6 << 16);
I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
I915_WRITE(GEN6_RP_UP_EI, 100000);
I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
I915_WRITE(GEN6_RP_CONTROL,
GEN6_RP_MEDIA_TURBO |
GEN6_RP_MEDIA_HW_MODE |
GEN6_RP_MEDIA_IS_GFX |
GEN6_RP_ENABLE |
GEN6_RP_UP_BUSY_AVG |
GEN6_RP_DOWN_IDLE_CONT);
/* Compute whether we need a full modeset, only an fb base update or no
* change at all. In the future we might also check whether only the
* mode changed, e.g. for LVDS where we only change the panel fitter in
* such cases. */
intel_set_config_compute_mode_changes(set, config);
 
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500))
DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
ret = intel_modeset_stage_output_state(dev, set, config);
if (ret)
goto fail;
 
I915_WRITE(GEN6_PCODE_DATA, 0);
I915_WRITE(GEN6_PCODE_MAILBOX,
GEN6_PCODE_READY |
GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500))
DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
if (config->mode_changed) {
if (set->mode) {
DRM_DEBUG_KMS("attempting to set mode from"
" userspace\n");
drm_mode_debug_printmodeline(set->mode);
}
 
min_freq = (rp_state_cap & 0xff0000) >> 16;
max_freq = rp_state_cap & 0xff;
cur_freq = (gt_perf_status & 0xff00) >> 8;
 
/* Check for overclock support */
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500))
DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
pcu_mbox = I915_READ(GEN6_PCODE_DATA);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
500))
DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
if (pcu_mbox & (1<<31)) { /* OC supported */
max_freq = pcu_mbox & 0xff;
DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
if (!intel_set_mode(set->crtc, set->mode,
set->x, set->y, set->fb)) {
DRM_ERROR("failed to set mode on [CRTC:%d]\n",
set->crtc->base.id);
ret = -EINVAL;
goto fail;
}
} else if (config->fb_changed) {
ret = intel_pipe_set_base(set->crtc,
set->x, set->y, set->fb);
}
 
/* In units of 100MHz */
dev_priv->max_delay = max_freq;
dev_priv->min_delay = min_freq;
dev_priv->cur_delay = cur_freq;
intel_set_config_free(config);
 
/* requires MSI enabled */
I915_WRITE(GEN6_PMIER,
GEN6_PM_MBOX_EVENT |
GEN6_PM_THERMAL_EVENT |
GEN6_PM_RP_DOWN_TIMEOUT |
GEN6_PM_RP_UP_THRESHOLD |
GEN6_PM_RP_DOWN_THRESHOLD |
GEN6_PM_RP_UP_EI_EXPIRED |
GEN6_PM_RP_DOWN_EI_EXPIRED);
// spin_lock_irq(&dev_priv->rps_lock);
// WARN_ON(dev_priv->pm_iir != 0);
I915_WRITE(GEN6_PMIMR, 0);
// spin_unlock_irq(&dev_priv->rps_lock);
/* enable all PM interrupts */
I915_WRITE(GEN6_PMINTRMSK, 0);
return 0;
 
gen6_gt_force_wake_put(dev_priv);
mutex_unlock(&dev_priv->dev->struct_mutex);
fail:
intel_set_config_restore_state(dev, config);
 
/* Try to restore the config */
if (config->mode_changed &&
!intel_set_mode(save_set.crtc, save_set.mode,
save_set.x, save_set.y, save_set.fb))
DRM_ERROR("failed to restore config after modeset failure\n");
 
out_config:
intel_set_config_free(config);
return ret;
}
 
void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
static const struct drm_crtc_funcs intel_crtc_funcs = {
// .cursor_set = intel_crtc_cursor_set,
// .cursor_move = intel_crtc_cursor_move,
.gamma_set = intel_crtc_gamma_set,
.set_config = intel_crtc_set_config,
.destroy = intel_crtc_destroy,
// .page_flip = intel_crtc_page_flip,
};
 
static void intel_pch_pll_init(struct drm_device *dev)
{
int min_freq = 15;
int gpu_freq, ia_freq, max_ia_freq;
int scaling_factor = 180;
drm_i915_private_t *dev_priv = dev->dev_private;
int i;
 
// max_ia_freq = cpufreq_quick_get_max(0);
/*
* Default to measured freq if none found, PCU will ensure we don't go
* over
*/
// if (!max_ia_freq)
max_ia_freq = 3000000; //tsc_khz;
if (dev_priv->num_pch_pll == 0) {
DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
return;
}
 
/* Convert from kHz to MHz */
max_ia_freq /= 1000;
for (i = 0; i < dev_priv->num_pch_pll; i++) {
dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
}
}
 
mutex_lock(&dev_priv->dev->struct_mutex);
static void intel_crtc_init(struct drm_device *dev, int pipe)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc;
int i;
 
/*
* For each potential GPU frequency, load a ring frequency we'd like
* to use for memory access. We do this by specifying the IA frequency
* the PCU should use as a reference to determine the ring frequency.
*/
for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
gpu_freq--) {
int diff = dev_priv->max_delay - gpu_freq;
intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (intel_crtc == NULL)
return;
 
/*
* For GPU frequencies less than 750MHz, just use the lowest
* ring freq.
*/
if (gpu_freq < min_freq)
ia_freq = 800;
else
ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
 
I915_WRITE(GEN6_PCODE_DATA,
(ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
gpu_freq);
I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
GEN6_PCODE_READY) == 0, 10)) {
DRM_ERROR("pcode write of freq table timed out\n");
continue;
drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
for (i = 0; i < 256; i++) {
intel_crtc->lut_r[i] = i;
intel_crtc->lut_g[i] = i;
intel_crtc->lut_b[i] = i;
}
}
 
mutex_unlock(&dev_priv->dev->struct_mutex);
/* Swap pipes & planes for FBC on pre-965 */
intel_crtc->pipe = pipe;
intel_crtc->plane = pipe;
if (IS_MOBILE(dev) && IS_GEN3(dev)) {
DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
intel_crtc->plane = !pipe;
}
 
static void ironlake_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
 
/* Required for FBC */
dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
DPFCRUNIT_CLOCK_GATE_DISABLE |
DPFDUNIT_CLOCK_GATE_DISABLE;
/* Required for CxSR */
dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
intel_crtc->bpp = 24; /* default for pre-Ironlake */
 
I915_WRITE(PCH_3DCGDIS0,
MARIUNIT_CLOCK_GATE_DISABLE |
SVSMUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(PCH_3DCGDIS1,
VFMUNIT_CLOCK_GATE_DISABLE);
drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
 
I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
dbgprintf("CRTC %d mode %x FB %x enable %d\n",
intel_crtc->base.base.id, intel_crtc->base.mode,
intel_crtc->base.fb, intel_crtc->base.enabled);
 
/*
* According to the spec the following bits should be set in
* order to enable memory self-refresh
* The bit 22/21 of 0x42004
* The bit 5 of 0x42020
* The bit 15 of 0x45000
*/
I915_WRITE(ILK_DISPLAY_CHICKEN2,
(I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL));
I915_WRITE(ILK_DSPCLK_GATE,
(I915_READ(ILK_DSPCLK_GATE) |
ILK_DPARB_CLK_GATE));
I915_WRITE(DISP_ARB_CTL,
(I915_READ(DISP_ARB_CTL) |
DISP_FBC_WM_DIS));
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
}
 
/*
* Based on the document from hardware guys the following bits
* should be set unconditionally in order to enable FBC.
* The bit 22 of 0x42000
* The bit 22 of 0x42004
* The bit 7,8,9 of 0x42020.
*/
if (IS_IRONLAKE_M(dev)) {
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE);
I915_WRITE(ILK_DSPCLK_GATE,
I915_READ(ILK_DSPCLK_GATE) |
ILK_DPFC_DIS1 |
ILK_DPFC_DIS2 |
ILK_CLK_FBC);
int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
struct drm_mode_object *drmmode_obj;
struct intel_crtc *crtc;
 
drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
DRM_MODE_OBJECT_CRTC);
 
if (!drmmode_obj) {
DRM_ERROR("no such CRTC id\n");
return -EINVAL;
}
 
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
I915_WRITE(_3D_CHICKEN2,
_3D_CHICKEN2_WM_READ_PIPELINED << 16 |
_3D_CHICKEN2_WM_READ_PIPELINED);
crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
pipe_from_crtc_id->pipe = crtc->pipe;
 
return 0;
}
 
static void gen6_init_clock_gating(struct drm_device *dev)
static int intel_encoder_clones(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
struct drm_device *dev = encoder->base.dev;
struct intel_encoder *source_encoder;
int index_mask = 0;
int entry = 0;
 
I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
list_for_each_entry(source_encoder,
&dev->mode_config.encoder_list, base.head) {
 
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
if (encoder == source_encoder)
index_mask |= (1 << entry);
 
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
/* Intel hw has only one MUX where enocoders could be cloned. */
if (encoder->cloneable && source_encoder->cloneable)
index_mask |= (1 << entry);
 
/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
* gating disable must be set. Failure to set it results in
* flickering pixels due to Z write ordering failures after
* some amount of runtime in the Mesa "fire" demo, and Unigine
* Sanctuary and Tropics, and apparently anything else with
* alpha test or pixel discard.
*
* According to the spec, bit 11 (RCCUNIT) must also be set,
* but we didn't debug actual testcases to find it out.
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
entry++;
}
 
/*
* According to the spec the following bits should be
* set in order to enable memory self-refresh and fbc:
* The bit21 and bit22 of 0x42000
* The bit21 and bit22 of 0x42004
* The bit5 and bit7 of 0x42020
* The bit14 of 0x70180
* The bit14 of 0x71180
*/
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL);
I915_WRITE(ILK_DSPCLK_GATE,
I915_READ(ILK_DSPCLK_GATE) |
ILK_DPARB_CLK_GATE |
ILK_DPFD_CLK_GATE);
 
for_each_pipe(pipe) {
I915_WRITE(DSPCNTR(pipe),
I915_READ(DSPCNTR(pipe)) |
DISPPLANE_TRICKLE_FEED_DISABLE);
intel_flush_display_plane(dev_priv, pipe);
return index_mask;
}
}
 
static void ivybridge_init_clock_gating(struct drm_device *dev)
static bool has_edp_a(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
 
I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
if (!IS_MOBILE(dev))
return false;
 
I915_WRITE(WM3_LP_ILK, 0);
I915_WRITE(WM2_LP_ILK, 0);
I915_WRITE(WM1_LP_ILK, 0);
if ((I915_READ(DP_A) & DP_DETECTED) == 0)
return false;
 
I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
if (IS_GEN5(dev) &&
(I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
return false;
 
I915_WRITE(IVB_CHICKEN3,
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
CHICKEN3_DGMG_DONE_FIX_DISABLE);
 
for_each_pipe(pipe) {
I915_WRITE(DSPCNTR(pipe),
I915_READ(DSPCNTR(pipe)) |
DISPPLANE_TRICKLE_FEED_DISABLE);
intel_flush_display_plane(dev_priv, pipe);
return true;
}
}
 
static void g4x_init_clock_gating(struct drm_device *dev)
static void intel_setup_outputs(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dspclk_gate;
struct intel_encoder *encoder;
bool dpd_is_edp = false;
bool has_lvds;
 
I915_WRITE(RENCLK_GATE_D1, 0);
I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
GS_UNIT_CLOCK_GATE_DISABLE |
CL_UNIT_CLOCK_GATE_DISABLE);
I915_WRITE(RAMCLK_GATE_D, 0);
dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
OVRUNIT_CLOCK_GATE_DISABLE |
OVCUNIT_CLOCK_GATE_DISABLE;
if (IS_GM45(dev))
dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
has_lvds = intel_lvds_init(dev);
if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
/* disable the panel fitter on everything but LVDS */
I915_WRITE(PFIT_CONTROL, 0);
}
 
static void crestline_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (HAS_PCH_SPLIT(dev)) {
dpd_is_edp = intel_dpd_is_edp(dev);
 
I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
I915_WRITE(RENCLK_GATE_D2, 0);
I915_WRITE(DSPCLK_GATE_D, 0);
I915_WRITE(RAMCLK_GATE_D, 0);
I915_WRITE16(DEUC, 0);
if (has_edp_a(dev))
intel_dp_init(dev, DP_A, PORT_A);
 
if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_D, PORT_D);
}
 
static void broadwater_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
intel_crt_init(dev);
 
I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
I965_RCC_CLOCK_GATE_DISABLE |
I965_RCPB_CLOCK_GATE_DISABLE |
I965_ISC_CLOCK_GATE_DISABLE |
I965_FBC_CLOCK_GATE_DISABLE);
I915_WRITE(RENCLK_GATE_D2, 0);
}
if (IS_HASWELL(dev)) {
int found;
 
static void gen3_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dstate = I915_READ(D_STATE);
/* Haswell uses DDI functions to detect digital outputs */
found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
/* DDI A only supports eDP */
if (found)
intel_ddi_init(dev, PORT_A);
 
dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
DSTATE_DOT_CLOCK_GATING;
I915_WRITE(D_STATE, dstate);
}
/* DDI B, C and D detection is indicated by the SFUSE_STRAP
* register */
found = I915_READ(SFUSE_STRAP);
 
static void i85x_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (found & SFUSE_STRAP_DDIB_DETECTED)
intel_ddi_init(dev, PORT_B);
if (found & SFUSE_STRAP_DDIC_DETECTED)
intel_ddi_init(dev, PORT_C);
if (found & SFUSE_STRAP_DDID_DETECTED)
intel_ddi_init(dev, PORT_D);
} else if (HAS_PCH_SPLIT(dev)) {
int found;
 
I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
if (I915_READ(HDMIB) & PORT_DETECTED) {
/* PCH SDVOB multiplex with HDMIB */
found = intel_sdvo_init(dev, PCH_SDVOB, true);
if (!found)
intel_hdmi_init(dev, HDMIB, PORT_B);
if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_B, PORT_B);
}
 
static void i830_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (I915_READ(HDMIC) & PORT_DETECTED)
intel_hdmi_init(dev, HDMIC, PORT_C);
 
I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
}
if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
intel_hdmi_init(dev, HDMID, PORT_D);
 
static void ibx_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (I915_READ(PCH_DP_C) & DP_DETECTED)
intel_dp_init(dev, PCH_DP_C, PORT_C);
 
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
intel_dp_init(dev, PCH_DP_D, PORT_D);
} else if (IS_VALLEYVIEW(dev)) {
int found;
 
if (I915_READ(SDVOB) & PORT_DETECTED) {
/* SDVOB multiplex with HDMIB */
found = intel_sdvo_init(dev, SDVOB, true);
if (!found)
intel_hdmi_init(dev, SDVOB, PORT_B);
if (!found && (I915_READ(DP_B) & DP_DETECTED))
intel_dp_init(dev, DP_B, PORT_B);
}
 
static void cpt_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe;
if (I915_READ(SDVOC) & PORT_DETECTED)
intel_hdmi_init(dev, SDVOC, PORT_C);
 
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
DPLS_EDP_PPS_FIX_DIS);
/* Without this, mode sets may fail silently on FDI */
for_each_pipe(pipe)
I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
}
/* Shares lanes with HDMI on SDVOC */
if (I915_READ(DP_C) & DP_DETECTED)
intel_dp_init(dev, DP_C, PORT_C);
} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
bool found = false;
 
static void ironlake_teardown_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
if (dev_priv->renderctx) {
// i915_gem_object_unpin(dev_priv->renderctx);
// drm_gem_object_unreference(&dev_priv->renderctx->base);
dev_priv->renderctx = NULL;
if (I915_READ(SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOB\n");
found = intel_sdvo_init(dev, SDVOB, true);
if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
intel_hdmi_init(dev, SDVOB, PORT_B);
}
 
if (dev_priv->pwrctx) {
// i915_gem_object_unpin(dev_priv->pwrctx);
// drm_gem_object_unreference(&dev_priv->pwrctx->base);
dev_priv->pwrctx = NULL;
if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
DRM_DEBUG_KMS("probing DP_B\n");
intel_dp_init(dev, DP_B, PORT_B);
}
}
 
static void ironlake_disable_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
/* Before G4X SDVOC doesn't have its own detect register */
 
if (I915_READ(PWRCTXA)) {
/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
50);
if (I915_READ(SDVOB) & SDVO_DETECTED) {
DRM_DEBUG_KMS("probing SDVOC\n");
found = intel_sdvo_init(dev, SDVOC, false);
}
 
I915_WRITE(PWRCTXA, 0);
POSTING_READ(PWRCTXA);
if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
 
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
POSTING_READ(RSTDBYCTL);
if (SUPPORTS_INTEGRATED_HDMI(dev)) {
DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
intel_hdmi_init(dev, SDVOC, PORT_C);
}
if (SUPPORTS_INTEGRATED_DP(dev)) {
DRM_DEBUG_KMS("probing DP_C\n");
intel_dp_init(dev, DP_C, PORT_C);
}
}
 
ironlake_teardown_rc6(dev);
if (SUPPORTS_INTEGRATED_DP(dev) &&
(I915_READ(DP_D) & DP_DETECTED)) {
DRM_DEBUG_KMS("probing DP_D\n");
intel_dp_init(dev, DP_D, PORT_D);
}
} else if (IS_GEN2(dev))
intel_dvo_init(dev);
 
static int ironlake_setup_rc6(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
// if (SUPPORTS_TV(dev))
// intel_tv_init(dev);
 
if (dev_priv->renderctx == NULL)
// dev_priv->renderctx = intel_alloc_context_page(dev);
if (!dev_priv->renderctx)
return -ENOMEM;
 
if (dev_priv->pwrctx == NULL)
// dev_priv->pwrctx = intel_alloc_context_page(dev);
if (!dev_priv->pwrctx) {
ironlake_teardown_rc6(dev);
return -ENOMEM;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
encoder->base.possible_crtcs = encoder->crtc_mask;
encoder->base.possible_clones =
intel_encoder_clones(encoder);
}
 
return 0;
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
ironlake_init_pch_refclk(dev);
}
 
void ironlake_enable_rc6(struct drm_device *dev)
 
 
static const struct drm_framebuffer_funcs intel_fb_funcs = {
// .destroy = intel_user_framebuffer_destroy,
// .create_handle = intel_user_framebuffer_create_handle,
};
 
int intel_framebuffer_init(struct drm_device *dev,
struct intel_framebuffer *intel_fb,
struct drm_mode_fb_cmd2 *mode_cmd,
struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
 
/* rc6 disabled by default due to repeated reports of hanging during
* boot and resume.
*/
if (!intel_enable_rc6(dev))
return;
if (obj->tiling_mode == I915_TILING_Y)
return -EINVAL;
 
mutex_lock(&dev->struct_mutex);
ret = ironlake_setup_rc6(dev);
if (ret) {
mutex_unlock(&dev->struct_mutex);
return;
}
if (mode_cmd->pitches[0] & 63)
return -EINVAL;
 
/*
* GPU can automatically power down the render unit if given a page
* to save state.
*/
#if 0
ret = BEGIN_LP_RING(6);
if (ret) {
ironlake_teardown_rc6(dev);
mutex_unlock(&dev->struct_mutex);
return;
switch (mode_cmd->pixel_format) {
case DRM_FORMAT_RGB332:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XRGB2101010:
case DRM_FORMAT_ARGB2101010:
/* RGB formats are common across chipsets */
break;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_YVYU:
case DRM_FORMAT_VYUY:
break;
default:
DRM_DEBUG_KMS("unsupported pixel format %u\n",
mode_cmd->pixel_format);
return -EINVAL;
}
 
OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
OUT_RING(MI_SET_CONTEXT);
OUT_RING(dev_priv->renderctx->gtt_offset |
MI_MM_SPACE_GTT |
MI_SAVE_EXT_STATE_EN |
MI_RESTORE_EXT_STATE_EN |
MI_RESTORE_INHIBIT);
OUT_RING(MI_SUSPEND_FLUSH);
OUT_RING(MI_NOOP);
OUT_RING(MI_FLUSH);
ADVANCE_LP_RING();
 
/*
* Wait for the command parser to advance past MI_SET_CONTEXT. The HW
* does an implicit flush, combined with MI_FLUSH above, it should be
* safe to assume that renderctx is valid
*/
ret = intel_wait_ring_idle(LP_RING(dev_priv));
ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
if (ret) {
DRM_ERROR("failed to enable ironlake power power savings\n");
ironlake_teardown_rc6(dev);
mutex_unlock(&dev->struct_mutex);
return;
DRM_ERROR("framebuffer init failed %d\n", ret);
return ret;
}
#endif
 
I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
mutex_unlock(&dev->struct_mutex);
drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
intel_fb->obj = obj;
return 0;
}
 
void intel_init_clock_gating(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
 
dev_priv->display.init_clock_gating(dev);
static const struct drm_mode_config_funcs intel_mode_funcs = {
.fb_create = NULL /*intel_user_framebuffer_create*/,
.output_poll_changed = NULL /*intel_fb_output_poll_changed*/,
};
 
if (dev_priv->display.init_pch_clock_gating)
dev_priv->display.init_pch_clock_gating(dev);
}
 
/* Set up chip specific display functions */
static void intel_init_display(struct drm_device *dev)
{
7847,35 → 7760,25
 
/* We always want a DPMS function */
if (HAS_PCH_SPLIT(dev)) {
dev_priv->display.dpms = ironlake_crtc_dpms;
dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
dev_priv->display.crtc_enable = ironlake_crtc_enable;
dev_priv->display.crtc_disable = ironlake_crtc_disable;
dev_priv->display.off = ironlake_crtc_off;
dev_priv->display.update_plane = ironlake_update_plane;
} else {
dev_priv->display.dpms = i9xx_crtc_dpms;
dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
dev_priv->display.crtc_enable = i9xx_crtc_enable;
dev_priv->display.crtc_disable = i9xx_crtc_disable;
dev_priv->display.off = i9xx_crtc_off;
dev_priv->display.update_plane = i9xx_update_plane;
}
 
if (I915_HAS_FBC(dev)) {
if (HAS_PCH_SPLIT(dev)) {
dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
dev_priv->display.enable_fbc = ironlake_enable_fbc;
dev_priv->display.disable_fbc = ironlake_disable_fbc;
} else if (IS_GM45(dev)) {
dev_priv->display.fbc_enabled = g4x_fbc_enabled;
dev_priv->display.enable_fbc = g4x_enable_fbc;
dev_priv->display.disable_fbc = g4x_disable_fbc;
} else if (IS_CRESTLINE(dev)) {
dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
dev_priv->display.enable_fbc = i8xx_enable_fbc;
dev_priv->display.disable_fbc = i8xx_disable_fbc;
}
/* 855GM needs testing */
}
 
/* Returns the core display clock speed */
if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
if (IS_VALLEYVIEW(dev))
dev_priv->display.get_display_clock_speed =
valleyview_get_display_clock_speed;
else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
dev_priv->display.get_display_clock_speed =
i945_get_display_clock_speed;
else if (IS_I915G(dev))
dev_priv->display.get_display_clock_speed =
7896,153 → 7799,33
dev_priv->display.get_display_clock_speed =
i830_get_display_clock_speed;
 
/* For FIFO watermark updates */
if (HAS_PCH_SPLIT(dev)) {
dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
 
/* IVB configs may use multi-threaded forcewake */
if (IS_IVYBRIDGE(dev)) {
u32 ecobus;
 
/* A small trick here - if the bios hasn't configured MT forcewake,
* and if the device is in RC6, then force_wake_mt_get will not wake
* the device and the ECOBUS read will return zero. Which will be
* (correctly) interpreted by the test below as MT forcewake being
* disabled.
*/
mutex_lock(&dev->struct_mutex);
__gen6_gt_force_wake_mt_get(dev_priv);
ecobus = I915_READ_NOTRACE(ECOBUS);
__gen6_gt_force_wake_mt_put(dev_priv);
mutex_unlock(&dev->struct_mutex);
 
if (ecobus & FORCEWAKE_MT_ENABLE) {
DRM_DEBUG_KMS("Using MT version of forcewake\n");
dev_priv->display.force_wake_get =
__gen6_gt_force_wake_mt_get;
dev_priv->display.force_wake_put =
__gen6_gt_force_wake_mt_put;
}
}
 
if (HAS_PCH_IBX(dev))
dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
else if (HAS_PCH_CPT(dev))
dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
 
if (IS_GEN5(dev)) {
if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
dev_priv->display.update_wm = ironlake_update_wm;
else {
DRM_DEBUG_KMS("Failed to get proper latency. "
"Disable CxSR\n");
dev_priv->display.update_wm = NULL;
}
dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
dev_priv->display.write_eld = ironlake_write_eld;
} else if (IS_GEN6(dev)) {
if (SNB_READ_WM0_LATENCY()) {
dev_priv->display.update_wm = sandybridge_update_wm;
dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
} else {
DRM_DEBUG_KMS("Failed to read display plane latency. "
"Disable CxSR\n");
dev_priv->display.update_wm = NULL;
}
dev_priv->display.fdi_link_train = gen6_fdi_link_train;
dev_priv->display.init_clock_gating = gen6_init_clock_gating;
dev_priv->display.write_eld = ironlake_write_eld;
} else if (IS_IVYBRIDGE(dev)) {
/* FIXME: detect B0+ stepping and use auto training */
dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
if (SNB_READ_WM0_LATENCY()) {
dev_priv->display.update_wm = sandybridge_update_wm;
dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
} else {
DRM_DEBUG_KMS("Failed to read display plane latency. "
"Disable CxSR\n");
dev_priv->display.update_wm = NULL;
}
dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
dev_priv->display.write_eld = ironlake_write_eld;
} else if (IS_HASWELL(dev)) {
dev_priv->display.fdi_link_train = hsw_fdi_link_train;
dev_priv->display.write_eld = haswell_write_eld;
} else
dev_priv->display.update_wm = NULL;
} else if (IS_PINEVIEW(dev)) {
if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
dev_priv->is_ddr3,
dev_priv->fsb_freq,
dev_priv->mem_freq)) {
DRM_INFO("failed to find known CxSR latency "
"(found ddr%s fsb freq %d, mem freq %d), "
"disabling CxSR\n",
(dev_priv->is_ddr3 == 1) ? "3" : "2",
dev_priv->fsb_freq, dev_priv->mem_freq);
/* Disable CxSR and never update its watermark again */
pineview_disable_cxsr(dev);
dev_priv->display.update_wm = NULL;
} else
dev_priv->display.update_wm = pineview_update_wm;
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
} else if (IS_G4X(dev)) {
dev_priv->display.write_eld = g4x_write_eld;
dev_priv->display.update_wm = g4x_update_wm;
dev_priv->display.init_clock_gating = g4x_init_clock_gating;
} else if (IS_GEN4(dev)) {
dev_priv->display.update_wm = i965_update_wm;
if (IS_CRESTLINE(dev))
dev_priv->display.init_clock_gating = crestline_init_clock_gating;
else if (IS_BROADWATER(dev))
dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
} else if (IS_GEN3(dev)) {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
} else if (IS_I865G(dev)) {
dev_priv->display.update_wm = i830_update_wm;
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
dev_priv->display.get_fifo_size = i830_get_fifo_size;
} else if (IS_I85X(dev)) {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i85x_get_fifo_size;
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
} else {
dev_priv->display.update_wm = i830_update_wm;
dev_priv->display.init_clock_gating = i830_init_clock_gating;
if (IS_845G(dev))
dev_priv->display.get_fifo_size = i845_get_fifo_size;
else
dev_priv->display.get_fifo_size = i830_get_fifo_size;
}
 
/* Default just returns -ENODEV to indicate unsupported */
// dev_priv->display.queue_flip = intel_default_queue_flip;
 
#if 0
switch (INTEL_INFO(dev)->gen) {
case 2:
dev_priv->display.queue_flip = intel_gen2_queue_flip;
break;
 
case 3:
dev_priv->display.queue_flip = intel_gen3_queue_flip;
break;
 
case 4:
case 5:
dev_priv->display.queue_flip = intel_gen4_queue_flip;
break;
 
case 6:
dev_priv->display.queue_flip = intel_gen6_queue_flip;
break;
case 7:
dev_priv->display.queue_flip = intel_gen7_queue_flip;
break;
}
#endif
}
 
/*
* Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8054,7 → 7837,7
struct drm_i915_private *dev_priv = dev->dev_private;
 
dev_priv->quirks |= QUIRK_PIPEA_FORCE;
DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
DRM_INFO("applying pipe a force quirk\n");
}
 
/*
8064,8 → 7847,20
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
DRM_INFO("applying lvds SSC disable quirk\n");
}
 
/*
* A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
* brightness value
*/
static void quirk_invert_brightness(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
DRM_INFO("applying inverted panel brightness quirk\n");
}
 
struct intel_quirk {
int device;
int subsystem_vendor;
8073,27 → 7868,47
void (*hook)(struct drm_device *dev);
};
 
struct intel_quirk intel_quirks[] = {
/* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
{ 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
struct intel_dmi_quirk {
void (*hook)(struct drm_device *dev);
const struct dmi_system_id (*dmi_id_list)[];
};
 
static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
{
DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
return 1;
}
 
static const struct intel_dmi_quirk intel_dmi_quirks[] = {
{
.dmi_id_list = &(const struct dmi_system_id[]) {
{
.callback = intel_dmi_reverse_brightness,
.ident = "NCR Corporation",
.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
DMI_MATCH(DMI_PRODUCT_NAME, ""),
},
},
{ } /* terminating entry */
},
.hook = quirk_invert_brightness,
},
};
 
static struct intel_quirk intel_quirks[] = {
/* HP Mini needs pipe A force quirk (LP: #322104) */
{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
 
/* Thinkpad R31 needs pipe A force quirk */
{ 0x3577, 0x1014, 0x0505, quirk_pipea_force },
/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
 
/* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
{ 0x3577, 0x1014, 0x0513, quirk_pipea_force },
/* ThinkPad X40 needs pipe A force quirk */
 
/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
 
/* 855 & before need to leave pipe A & dpll A up */
{ 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
/* 830/845 need to leave pipe A & dpll A up */
{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
 
/* Lenovo U160 cannot use SSC on LVDS */
{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8100,6 → 7915,9
 
/* Sony Vaio Y cannot use SSC on LVDS */
{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
 
/* Acer Aspire 5734Z must invert backlight brightness */
{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
};
 
static void intel_init_quirks(struct drm_device *dev)
8117,6 → 7935,10
q->subsystem_device == PCI_ANY_ID))
q->hook(dev);
}
// for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
// if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
// intel_dmi_quirks[i].hook(dev);
// }
}
 
/* Disable the VGA plane that we never use */
8132,9 → 7954,9
vga_reg = VGACNTRL;
 
// vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
out8(VGA_SR_INDEX, 1);
out8(SR01, VGA_SR_INDEX);
sr1 = in8(VGA_SR_DATA);
out8(VGA_SR_DATA,sr1 | 1<<5);
out8(sr1 | 1<<5, VGA_SR_DATA);
// vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
udelay(300);
 
8142,6 → 7964,22
POSTING_READ(vga_reg);
}
 
void intel_modeset_init_hw(struct drm_device *dev)
{
/* We attempt to init the necessary power wells early in the initialization
* time, so the subsystems that expect power to be enabled can work.
*/
intel_init_power_wells(dev);
 
intel_prepare_ddi(dev);
 
intel_init_clock_gating(dev);
 
// mutex_lock(&dev->struct_mutex);
// intel_enable_gt_powersave(dev);
// mutex_unlock(&dev->struct_mutex);
}
 
void intel_modeset_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
8152,10 → 7990,15
dev->mode_config.min_width = 0;
dev->mode_config.min_height = 0;
 
dev->mode_config.funcs = (void *)&intel_mode_funcs;
dev->mode_config.preferred_depth = 24;
dev->mode_config.prefer_shadow = 1;
 
dev->mode_config.funcs = &intel_mode_funcs;
 
intel_init_quirks(dev);
 
intel_init_pm(dev);
 
intel_init_display(dev);
 
if (IS_GEN2(dev)) {
8168,7 → 8011,7
dev->mode_config.max_width = 8192;
dev->mode_config.max_height = 8192;
}
dev->mode_config.fb_base = get_bus_addr();
dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
 
DRM_DEBUG_KMS("%d display pipe%s available.\n",
dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8180,36 → 8023,325
DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
}
 
intel_pch_pll_init(dev);
 
/* Just disable it once at startup */
i915_disable_vga(dev);
intel_setup_outputs(dev);
}
 
intel_init_clock_gating(dev);
static void
intel_connector_break_all_links(struct intel_connector *connector)
{
connector->base.dpms = DRM_MODE_DPMS_OFF;
connector->base.encoder = NULL;
connector->encoder->connectors_active = false;
connector->encoder->base.crtc = NULL;
}
 
if (IS_IRONLAKE_M(dev)) {
ironlake_enable_drps(dev);
intel_init_emon(dev);
static void intel_enable_pipe_a(struct drm_device *dev)
{
struct intel_connector *connector;
struct drm_connector *crt = NULL;
struct intel_load_detect_pipe load_detect_temp;
 
/* We can't just switch on the pipe A, we need to set things up with a
* proper mode and output configuration. As a gross hack, enable pipe A
* by enabling the load detect pipe once. */
list_for_each_entry(connector,
&dev->mode_config.connector_list,
base.head) {
if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
crt = &connector->base;
break;
}
}
 
if (IS_GEN6(dev) || IS_GEN7(dev)) {
gen6_enable_rps(dev_priv);
gen6_update_ring_freq(dev_priv);
if (!crt)
return;
 
if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
intel_release_load_detect_pipe(crt, &load_detect_temp);
 
 
}
 
// INIT_WORK(&dev_priv->idle_work, intel_idle_update);
// setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
// (unsigned long)dev);
static bool
intel_check_plane_mapping(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
u32 reg, val;
 
if (dev_priv->num_pipe == 1)
return true;
 
reg = DSPCNTR(!crtc->plane);
val = I915_READ(reg);
 
if ((val & DISPLAY_PLANE_ENABLE) &&
(!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
return false;
 
return true;
}
 
static void intel_sanitize_crtc(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 reg;
 
/* Clear any frame start delays used for debugging left by the BIOS */
reg = PIPECONF(crtc->pipe);
I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
 
/* We need to sanitize the plane -> pipe mapping first because this will
* disable the crtc (and hence change the state) if it is wrong. Note
* that gen4+ has a fixed plane -> pipe mapping. */
if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
struct intel_connector *connector;
bool plane;
 
DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
crtc->base.base.id);
 
/* Pipe has the wrong plane attached and the plane is active.
* Temporarily change the plane mapping and disable everything
* ... */
plane = crtc->plane;
crtc->plane = !plane;
dev_priv->display.crtc_disable(&crtc->base);
crtc->plane = plane;
 
/* ... and break all links. */
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->encoder->base.crtc != &crtc->base)
continue;
 
intel_connector_break_all_links(connector);
}
 
WARN_ON(crtc->active);
crtc->base.enabled = false;
}
 
if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
crtc->pipe == PIPE_A && !crtc->active) {
/* BIOS forgot to enable pipe A, this mostly happens after
* resume. Force-enable the pipe to fix this, the update_dpms
* call below we restore the pipe to the right state, but leave
* the required bits on. */
intel_enable_pipe_a(dev);
}
 
/* Adjust the state of the output pipe according to whether we
* have active connectors/encoders. */
intel_crtc_update_dpms(&crtc->base);
 
if (crtc->active != crtc->base.enabled) {
struct intel_encoder *encoder;
 
/* This can happen either due to bugs in the get_hw_state
* functions or because the pipe is force-enabled due to the
* pipe A quirk. */
DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
crtc->base.base.id,
crtc->base.enabled ? "enabled" : "disabled",
crtc->active ? "enabled" : "disabled");
 
crtc->base.enabled = crtc->active;
 
/* Because we only establish the connector -> encoder ->
* crtc links if something is active, this means the
* crtc is now deactivated. Break the links. connector
* -> encoder links are only establish when things are
* actually up, hence no need to break them. */
WARN_ON(crtc->active);
 
for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
WARN_ON(encoder->connectors_active);
encoder->base.crtc = NULL;
}
}
}
 
static void intel_sanitize_encoder(struct intel_encoder *encoder)
{
struct intel_connector *connector;
struct drm_device *dev = encoder->base.dev;
 
/* We need to check both for a crtc link (meaning that the
* encoder is active and trying to read from a pipe) and the
* pipe itself being active. */
bool has_active_crtc = encoder->base.crtc &&
to_intel_crtc(encoder->base.crtc)->active;
 
if (encoder->connectors_active && !has_active_crtc) {
DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
encoder->base.base.id,
drm_get_encoder_name(&encoder->base));
 
/* Connector is active, but has no active pipe. This is
* fallout from our resume register restoring. Disable
* the encoder manually again. */
if (encoder->base.crtc) {
DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
encoder->base.base.id,
drm_get_encoder_name(&encoder->base));
encoder->disable(encoder);
}
 
/* Inconsistent output/port/pipe state happens presumably due to
* a bug in one of the get_hw_state functions. Or someplace else
* in our code, like the register restore mess on resume. Clamp
* things to off as a safer default. */
list_for_each_entry(connector,
&dev->mode_config.connector_list,
base.head) {
if (connector->encoder != encoder)
continue;
 
intel_connector_break_all_links(connector);
}
}
/* Enabled encoders without active connectors will be fixed in
* the crtc fixup. */
}
 
/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
* and i915 state tracking structures. */
void intel_modeset_setup_hw_state(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
enum pipe pipe;
u32 tmp;
struct intel_crtc *crtc;
struct intel_encoder *encoder;
struct intel_connector *connector;
 
for_each_pipe(pipe) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
 
tmp = I915_READ(PIPECONF(pipe));
if (tmp & PIPECONF_ENABLE)
crtc->active = true;
else
crtc->active = false;
 
crtc->base.enabled = crtc->active;
 
DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
crtc->base.base.id,
crtc->active ? "enabled" : "disabled");
}
 
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
pipe = 0;
 
if (encoder->get_hw_state(encoder, &pipe)) {
encoder->base.crtc =
dev_priv->pipe_to_crtc_mapping[pipe];
} else {
encoder->base.crtc = NULL;
}
 
encoder->connectors_active = false;
DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
encoder->base.base.id,
drm_get_encoder_name(&encoder->base),
encoder->base.crtc ? "enabled" : "disabled",
pipe);
}
 
list_for_each_entry(connector, &dev->mode_config.connector_list,
base.head) {
if (connector->get_hw_state(connector)) {
connector->base.dpms = DRM_MODE_DPMS_ON;
connector->encoder->connectors_active = true;
connector->base.encoder = &connector->encoder->base;
} else {
connector->base.dpms = DRM_MODE_DPMS_OFF;
connector->base.encoder = NULL;
}
DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
connector->base.base.id,
drm_get_connector_name(&connector->base),
connector->base.encoder ? "enabled" : "disabled");
}
 
/* HW state is read out, now we need to sanitize this mess. */
list_for_each_entry(encoder, &dev->mode_config.encoder_list,
base.head) {
intel_sanitize_encoder(encoder);
}
 
for_each_pipe(pipe) {
crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
intel_sanitize_crtc(crtc);
}
 
intel_modeset_update_staged_output_state(dev);
 
intel_modeset_check_state(dev);
}
 
void intel_modeset_gem_init(struct drm_device *dev)
{
if (IS_IRONLAKE_M(dev))
ironlake_enable_rc6(dev);
intel_modeset_init_hw(dev);
 
// intel_setup_overlay(dev);
 
intel_modeset_setup_hw_state(dev);
}
 
void intel_modeset_cleanup(struct drm_device *dev)
{
#if 0
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
struct intel_crtc *intel_crtc;
 
// drm_kms_helper_poll_fini(dev);
mutex_lock(&dev->struct_mutex);
 
// intel_unregister_dsm_handler();
 
 
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
/* Skip inactive CRTCs */
if (!crtc->fb)
continue;
 
intel_crtc = to_intel_crtc(crtc);
intel_increase_pllclock(crtc);
}
 
intel_disable_fbc(dev);
 
intel_disable_gt_powersave(dev);
 
ironlake_teardown_rc6(dev);
 
if (IS_VALLEYVIEW(dev))
vlv_init_dpio(dev);
 
mutex_unlock(&dev->struct_mutex);
 
/* Disable the irq before mode object teardown, for the irq might
* enqueue unpin/hotplug work. */
// drm_irq_uninstall(dev);
// cancel_work_sync(&dev_priv->hotplug_work);
// cancel_work_sync(&dev_priv->rps.work);
 
/* flush any delayed tasks or pending work */
// flush_scheduled_work();
 
drm_mode_config_cleanup(dev);
#endif
}
 
/*
* Return which encoder is currently attached for connector.
*/
8226,4 → 8358,131
&encoder->base);
}
 
/*
* set vga decode state - true == enable VGA decode
*/
int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u16 gmch_ctrl;
 
pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
if (state)
gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
else
gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
return 0;
}
 
#ifdef CONFIG_DEBUG_FS
#include <linux/seq_file.h>
 
struct intel_display_error_state {
struct intel_cursor_error_state {
u32 control;
u32 position;
u32 base;
u32 size;
} cursor[I915_MAX_PIPES];
 
struct intel_pipe_error_state {
u32 conf;
u32 source;
 
u32 htotal;
u32 hblank;
u32 hsync;
u32 vtotal;
u32 vblank;
u32 vsync;
} pipe[I915_MAX_PIPES];
 
struct intel_plane_error_state {
u32 control;
u32 stride;
u32 size;
u32 pos;
u32 addr;
u32 surface;
u32 tile_offset;
} plane[I915_MAX_PIPES];
};
 
struct intel_display_error_state *
intel_display_capture_error_state(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_display_error_state *error;
int i;
 
error = kmalloc(sizeof(*error), GFP_ATOMIC);
if (error == NULL)
return NULL;
 
for_each_pipe(i) {
error->cursor[i].control = I915_READ(CURCNTR(i));
error->cursor[i].position = I915_READ(CURPOS(i));
error->cursor[i].base = I915_READ(CURBASE(i));
 
error->plane[i].control = I915_READ(DSPCNTR(i));
error->plane[i].stride = I915_READ(DSPSTRIDE(i));
error->plane[i].size = I915_READ(DSPSIZE(i));
error->plane[i].pos = I915_READ(DSPPOS(i));
error->plane[i].addr = I915_READ(DSPADDR(i));
if (INTEL_INFO(dev)->gen >= 4) {
error->plane[i].surface = I915_READ(DSPSURF(i));
error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
}
 
error->pipe[i].conf = I915_READ(PIPECONF(i));
error->pipe[i].source = I915_READ(PIPESRC(i));
error->pipe[i].htotal = I915_READ(HTOTAL(i));
error->pipe[i].hblank = I915_READ(HBLANK(i));
error->pipe[i].hsync = I915_READ(HSYNC(i));
error->pipe[i].vtotal = I915_READ(VTOTAL(i));
error->pipe[i].vblank = I915_READ(VBLANK(i));
error->pipe[i].vsync = I915_READ(VSYNC(i));
}
 
return error;
}
 
void
intel_display_print_error_state(struct seq_file *m,
struct drm_device *dev,
struct intel_display_error_state *error)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int i;
 
seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
for_each_pipe(i) {
seq_printf(m, "Pipe [%d]:\n", i);
seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
 
seq_printf(m, "Plane [%d]:\n", i);
seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
seq_printf(m, " POS: %08x\n", error->plane[i].pos);
seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
if (INTEL_INFO(dev)->gen >= 4) {
seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
}
 
seq_printf(m, "Cursor [%d]:\n", i);
seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
seq_printf(m, " POS: %08x\n", error->cursor[i].position);
seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
}
}
#endif