Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 5270 → Rev 5271

/drivers/video/drm/drm_plane_helper.c
27,10 → 27,38
#include <drm/drmP.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_rect.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_atomic.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_atomic_helper.h>
 
#define SUBPIXEL_MASK 0xffff
 
/**
* DOC: overview
*
* This helper library has two parts. The first part has support to implement
* primary plane support on top of the normal CRTC configuration interface.
* Since the legacy ->set_config interface ties the primary plane together with
* the CRTC state this does not allow userspace to disable the primary plane
* itself. To avoid too much duplicated code use
* drm_plane_helper_check_update() which can be used to enforce the same
* restrictions as primary planes had thus. The default primary plane only
* expose XRBG8888 and ARGB8888 as valid pixel formats for the attached
* framebuffer.
*
* Drivers are highly recommended to implement proper support for primary
* planes, and newly merged drivers must not rely upon these transitional
* helpers.
*
* The second part also implements transitional helpers which allow drivers to
* gradually switch to the atomic helper infrastructure for plane updates. Once
* that switch is complete drivers shouldn't use these any longer, instead using
* the proper legacy implementations for update and disable plane hooks provided
* by the atomic helpers.
*
* Again drivers are strongly urged to switch to the new interfaces.
*/
 
/*
* This is the minimal list of formats that seem to be safe for modeset use
* with all current DRM drivers. Most hardware can actually support more
127,6 → 155,11
return -ERANGE;
}
 
if (!fb) {
*visible = false;
return 0;
}
 
*visible = drm_rect_clip_scaled(src, dest, clip, hscale, vscale);
if (!*visible)
/*
369,3 → 402,171
return drm_crtc_init_with_planes(dev, crtc, primary, NULL, funcs);
}
EXPORT_SYMBOL(drm_crtc_init);
 
int drm_plane_helper_commit(struct drm_plane *plane,
struct drm_plane_state *plane_state,
struct drm_framebuffer *old_fb)
{
struct drm_plane_helper_funcs *plane_funcs;
struct drm_crtc *crtc[2];
struct drm_crtc_helper_funcs *crtc_funcs[2];
int i, ret = 0;
 
plane_funcs = plane->helper_private;
 
/* Since this is a transitional helper we can't assume that plane->state
* is always valid. Hence we need to use plane->crtc instead of
* plane->state->crtc as the old crtc. */
crtc[0] = plane->crtc;
crtc[1] = crtc[0] != plane_state->crtc ? plane_state->crtc : NULL;
 
for (i = 0; i < 2; i++)
crtc_funcs[i] = crtc[i] ? crtc[i]->helper_private : NULL;
 
if (plane_funcs->atomic_check) {
ret = plane_funcs->atomic_check(plane, plane_state);
if (ret)
goto out;
}
 
if (plane_funcs->prepare_fb && plane_state->fb) {
ret = plane_funcs->prepare_fb(plane, plane_state->fb);
if (ret)
goto out;
}
 
/* Point of no return, commit sw state. */
swap(plane->state, plane_state);
 
for (i = 0; i < 2; i++) {
if (crtc_funcs[i] && crtc_funcs[i]->atomic_begin)
crtc_funcs[i]->atomic_begin(crtc[i]);
}
 
plane_funcs->atomic_update(plane, plane_state);
 
for (i = 0; i < 2; i++) {
if (crtc_funcs[i] && crtc_funcs[i]->atomic_flush)
crtc_funcs[i]->atomic_flush(crtc[i]);
}
 
for (i = 0; i < 2; i++) {
if (!crtc[i])
continue;
 
/* There's no other way to figure out whether the crtc is running. */
ret = drm_crtc_vblank_get(crtc[i]);
if (ret == 0) {
drm_crtc_wait_one_vblank(crtc[i]);
drm_crtc_vblank_put(crtc[i]);
}
 
ret = 0;
}
 
if (plane_funcs->cleanup_fb && old_fb)
plane_funcs->cleanup_fb(plane, old_fb);
out:
if (plane_state) {
if (plane->funcs->atomic_destroy_state)
plane->funcs->atomic_destroy_state(plane, plane_state);
else
drm_atomic_helper_plane_destroy_state(plane, plane_state);
}
 
return ret;
}
 
/**
* drm_plane_helper_update() - Helper for primary plane update
* @plane: plane object to update
* @crtc: owning CRTC of owning plane
* @fb: framebuffer to flip onto plane
* @crtc_x: x offset of primary plane on crtc
* @crtc_y: y offset of primary plane on crtc
* @crtc_w: width of primary plane rectangle on crtc
* @crtc_h: height of primary plane rectangle on crtc
* @src_x: x offset of @fb for panning
* @src_y: y offset of @fb for panning
* @src_w: width of source rectangle in @fb
* @src_h: height of source rectangle in @fb
*
* Provides a default plane update handler using the atomic plane update
* functions. It is fully left to the driver to check plane constraints and
* handle corner-cases like a fully occluded or otherwise invisible plane.
*
* This is useful for piecewise transitioning of a driver to the atomic helpers.
*
* RETURNS:
* Zero on success, error code on failure
*/
int drm_plane_helper_update(struct drm_plane *plane, struct drm_crtc *crtc,
struct drm_framebuffer *fb,
int crtc_x, int crtc_y,
unsigned int crtc_w, unsigned int crtc_h,
uint32_t src_x, uint32_t src_y,
uint32_t src_w, uint32_t src_h)
{
struct drm_plane_state *plane_state;
 
if (plane->funcs->atomic_duplicate_state)
plane_state = plane->funcs->atomic_duplicate_state(plane);
else if (plane->state)
plane_state = drm_atomic_helper_plane_duplicate_state(plane);
else
plane_state = kzalloc(sizeof(*plane_state), GFP_KERNEL);
if (!plane_state)
return -ENOMEM;
 
plane_state->crtc = crtc;
drm_atomic_set_fb_for_plane(plane_state, fb);
plane_state->crtc_x = crtc_x;
plane_state->crtc_y = crtc_y;
plane_state->crtc_h = crtc_h;
plane_state->crtc_w = crtc_w;
plane_state->src_x = src_x;
plane_state->src_y = src_y;
plane_state->src_h = src_h;
plane_state->src_w = src_w;
 
return drm_plane_helper_commit(plane, plane_state, plane->fb);
}
EXPORT_SYMBOL(drm_plane_helper_update);
 
/**
* drm_plane_helper_disable() - Helper for primary plane disable
* @plane: plane to disable
*
* Provides a default plane disable handler using the atomic plane update
* functions. It is fully left to the driver to check plane constraints and
* handle corner-cases like a fully occluded or otherwise invisible plane.
*
* This is useful for piecewise transitioning of a driver to the atomic helpers.
*
* RETURNS:
* Zero on success, error code on failure
*/
int drm_plane_helper_disable(struct drm_plane *plane)
{
struct drm_plane_state *plane_state;
 
/* crtc helpers love to call disable functions for already disabled hw
* functions. So cope with that. */
if (!plane->crtc)
return 0;
 
if (plane->funcs->atomic_duplicate_state)
plane_state = plane->funcs->atomic_duplicate_state(plane);
else if (plane->state)
plane_state = drm_atomic_helper_plane_duplicate_state(plane);
else
plane_state = kzalloc(sizeof(*plane_state), GFP_KERNEL);
if (!plane_state)
return -ENOMEM;
 
plane_state->crtc = NULL;
drm_atomic_set_fb_for_plane(plane_state, NULL);
 
return drm_plane_helper_commit(plane, plane_state, plane->fb);
}
EXPORT_SYMBOL(drm_plane_helper_disable);