Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 4314 → Rev 4315

/drivers/video/Intel-2D/uxa/i965_render.c
0,0 → 1,3049
/*
* Copyright © 2006,2008 Intel Corporation
* Copyright © 2007 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Wang Zhenyu <zhenyu.z.wang@intel.com>
* Eric Anholt <eric@anholt.net>
* Carl Worth <cworth@redhat.com>
* Keith Packard <keithp@keithp.com>
*
*/
 
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
 
#include <assert.h>
#include <stdlib.h>
#include <memory.h>
 
#include <intel_bufmgr.h>
//#include "xf86.h"
#include "intel.h"
#include "i830_reg.h"
#include "i965_reg.h"
 
/* bring in brw structs */
#include "brw_defines.h"
#include "brw_structs.h"
 
#define intel_debug_fallback printf
 
 
// refer vol2, 3d rasterization 3.8.1
 
/* defined in brw_defines.h */
static const struct blendinfo {
Bool dst_alpha;
Bool src_alpha;
uint32_t src_blend;
uint32_t dst_blend;
} i965_blend_op[] = {
/* Clear */
{0, 0, BRW_BLENDFACTOR_ZERO, BRW_BLENDFACTOR_ZERO},
/* Src */
{0, 0, BRW_BLENDFACTOR_ONE, BRW_BLENDFACTOR_ZERO},
/* Dst */
{0, 0, BRW_BLENDFACTOR_ZERO, BRW_BLENDFACTOR_ONE},
/* Over */
{0, 1, BRW_BLENDFACTOR_ONE, BRW_BLENDFACTOR_INV_SRC_ALPHA},
/* OverReverse */
{1, 0, BRW_BLENDFACTOR_INV_DST_ALPHA, BRW_BLENDFACTOR_ONE},
/* In */
{1, 0, BRW_BLENDFACTOR_DST_ALPHA, BRW_BLENDFACTOR_ZERO},
/* InReverse */
{0, 1, BRW_BLENDFACTOR_ZERO, BRW_BLENDFACTOR_SRC_ALPHA},
/* Out */
{1, 0, BRW_BLENDFACTOR_INV_DST_ALPHA, BRW_BLENDFACTOR_ZERO},
/* OutReverse */
{0, 1, BRW_BLENDFACTOR_ZERO, BRW_BLENDFACTOR_INV_SRC_ALPHA},
/* Atop */
{1, 1, BRW_BLENDFACTOR_DST_ALPHA, BRW_BLENDFACTOR_INV_SRC_ALPHA},
/* AtopReverse */
{1, 1, BRW_BLENDFACTOR_INV_DST_ALPHA, BRW_BLENDFACTOR_SRC_ALPHA},
/* Xor */
{1, 1, BRW_BLENDFACTOR_INV_DST_ALPHA, BRW_BLENDFACTOR_INV_SRC_ALPHA},
/* Add */
{0, 0, BRW_BLENDFACTOR_ONE, BRW_BLENDFACTOR_ONE},
};
 
/**
* Highest-valued BLENDFACTOR used in i965_blend_op.
*
* This leaves out BRW_BLENDFACTOR_INV_DST_COLOR,
* BRW_BLENDFACTOR_INV_CONST_{COLOR,ALPHA},
* BRW_BLENDFACTOR_INV_SRC1_{COLOR,ALPHA}
*/
#define BRW_BLENDFACTOR_COUNT (BRW_BLENDFACTOR_INV_DST_ALPHA + 1)
 
/* FIXME: surface format defined in brw_defines.h, shared Sampling engine
* 1.7.2
*/
static const struct formatinfo {
int fmt;
uint32_t card_fmt;
} i965_tex_formats[] = {
{PICT_a8, BRW_SURFACEFORMAT_A8_UNORM},
{PICT_a8r8g8b8, BRW_SURFACEFORMAT_B8G8R8A8_UNORM},
{PICT_x8r8g8b8, BRW_SURFACEFORMAT_B8G8R8X8_UNORM},
{PICT_a8b8g8r8, BRW_SURFACEFORMAT_R8G8B8A8_UNORM},
{PICT_x8b8g8r8, BRW_SURFACEFORMAT_R8G8B8X8_UNORM},
{PICT_r8g8b8, BRW_SURFACEFORMAT_R8G8B8_UNORM},
{PICT_r5g6b5, BRW_SURFACEFORMAT_B5G6R5_UNORM},
{PICT_a1r5g5b5, BRW_SURFACEFORMAT_B5G5R5A1_UNORM},
#if XORG_VERSION_CURRENT >= 10699900
{PICT_a2r10g10b10, BRW_SURFACEFORMAT_B10G10R10A2_UNORM},
{PICT_x2r10g10b10, BRW_SURFACEFORMAT_B10G10R10X2_UNORM},
{PICT_a2b10g10r10, BRW_SURFACEFORMAT_R10G10B10A2_UNORM},
{PICT_x2r10g10b10, BRW_SURFACEFORMAT_B10G10R10X2_UNORM},
#endif
{PICT_a4r4g4b4, BRW_SURFACEFORMAT_B4G4R4A4_UNORM},
};
 
static void i965_get_blend_cntl(int op, PicturePtr mask, uint32_t dst_format,
uint32_t * sblend, uint32_t * dblend)
{
 
*sblend = i965_blend_op[op].src_blend;
*dblend = i965_blend_op[op].dst_blend;
 
/* If there's no dst alpha channel, adjust the blend op so that we'll treat
* it as always 1.
*/
if (PICT_FORMAT_A(dst_format) == 0 && i965_blend_op[op].dst_alpha) {
if (*sblend == BRW_BLENDFACTOR_DST_ALPHA)
*sblend = BRW_BLENDFACTOR_ONE;
else if (*sblend == BRW_BLENDFACTOR_INV_DST_ALPHA)
*sblend = BRW_BLENDFACTOR_ZERO;
}
 
/* If the source alpha is being used, then we should only be in a case where
* the source blend factor is 0, and the source blend value is the mask
* channels multiplied by the source picture's alpha.
*/
if (mask && mask->componentAlpha && PICT_FORMAT_RGB(mask->format)
&& i965_blend_op[op].src_alpha) {
if (*dblend == BRW_BLENDFACTOR_SRC_ALPHA) {
*dblend = BRW_BLENDFACTOR_SRC_COLOR;
} else if (*dblend == BRW_BLENDFACTOR_INV_SRC_ALPHA) {
*dblend = BRW_BLENDFACTOR_INV_SRC_COLOR;
}
}
 
}
 
static uint32_t i965_get_dest_format(PicturePtr dest_picture)
{
switch (dest_picture->format) {
case PICT_a8r8g8b8:
case PICT_x8r8g8b8:
return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
case PICT_a8b8g8r8:
case PICT_x8b8g8r8:
return BRW_SURFACEFORMAT_R8G8B8A8_UNORM;
#if XORG_VERSION_CURRENT >= 10699900
case PICT_a2r10g10b10:
case PICT_x2r10g10b10:
return BRW_SURFACEFORMAT_B10G10R10A2_UNORM;
#endif
case PICT_r5g6b5:
return BRW_SURFACEFORMAT_B5G6R5_UNORM;
case PICT_x1r5g5b5:
case PICT_a1r5g5b5:
return BRW_SURFACEFORMAT_B5G5R5A1_UNORM;
case PICT_a8:
return BRW_SURFACEFORMAT_A8_UNORM;
case PICT_a4r4g4b4:
case PICT_x4r4g4b4:
return BRW_SURFACEFORMAT_B4G4R4A4_UNORM;
default:
return -1;
}
}
 
Bool
i965_check_composite(int op,
PicturePtr source_picture,
PicturePtr mask_picture,
PicturePtr dest_picture,
int width, int height)
{
/* Check for unsupported compositing operations. */
if (op >= sizeof(i965_blend_op) / sizeof(i965_blend_op[0])) {
intel_debug_fallback("Unsupported Composite op 0x%x\n", op);
return FALSE;
}
 
if (mask_picture && mask_picture->componentAlpha &&
PICT_FORMAT_RGB(mask_picture->format)) {
/* Check if it's component alpha that relies on a source alpha and on
* the source value. We can only get one of those into the single
* source value that we get to blend with.
*/
if (i965_blend_op[op].src_alpha &&
(i965_blend_op[op].src_blend != BRW_BLENDFACTOR_ZERO)) {
intel_debug_fallback("Component alpha not supported "
"with source alpha and source "
"value blending.\n");
return FALSE;
}
}
 
if (i965_get_dest_format(dest_picture) == -1) {
intel_debug_fallback("Usupported Color buffer format 0x%x\n",
(int)dest_picture->format);
return FALSE;
}
 
return TRUE;
}
 
Bool
i965_check_composite_texture(ScreenPtr screen, PicturePtr picture)
{
if (picture->repeatType > RepeatReflect) {
intel_debug_fallback("extended repeat (%d) not supported\n",
picture->repeatType);
return FALSE;
}
 
if (picture->filter != PictFilterNearest &&
picture->filter != PictFilterBilinear) {
intel_debug_fallback("Unsupported filter 0x%x\n", picture->filter);
return FALSE;
}
 
if (picture->pDrawable) {
int w, h, i;
 
w = picture->pDrawable->width;
h = picture->pDrawable->height;
if ((w > 8192) || (h > 8192)) {
intel_debug_fallback( "Picture w/h too large (%dx%d)\n",w, h);
return FALSE;
}
 
for (i = 0;
i < sizeof(i965_tex_formats) / sizeof(i965_tex_formats[0]);
i++) {
if (i965_tex_formats[i].fmt == picture->format)
break;
}
if (i == sizeof(i965_tex_formats) / sizeof(i965_tex_formats[0]))
{
intel_debug_fallback("Unsupported picture format "
"0x%x\n", (int)picture->format);
return FALSE;
}
 
return TRUE;
}
 
return FALSE;
}
 
 
#define BRW_GRF_BLOCKS(nreg) ((nreg + 15) / 16 - 1)
 
/* Set up a default static partitioning of the URB, which is supposed to
* allow anything we would want to do, at potentially lower performance.
*/
#define URB_CS_ENTRY_SIZE 0
#define URB_CS_ENTRIES 0
 
#define URB_VS_ENTRY_SIZE 1 // each 512-bit row
#define URB_VS_ENTRIES 8 // we needs at least 8 entries
 
#define URB_GS_ENTRY_SIZE 0
#define URB_GS_ENTRIES 0
 
#define URB_CLIP_ENTRY_SIZE 0
#define URB_CLIP_ENTRIES 0
 
#define URB_SF_ENTRY_SIZE 2
#define URB_SF_ENTRIES 1
 
/*
* this program computes dA/dx and dA/dy for the texture coordinates along
* with the base texture coordinate. It was extracted from the Mesa driver
*/
 
#define SF_KERNEL_NUM_GRF 16
#define SF_MAX_THREADS 2
 
static const uint32_t sf_kernel_static[][4] = {
#include "exa_sf.g4b"
};
 
static const uint32_t sf_kernel_mask_static[][4] = {
#include "exa_sf_mask.g4b"
};
 
/* ps kernels */
#define PS_KERNEL_NUM_GRF 32
#define PS_MAX_THREADS 48
 
static const uint32_t ps_kernel_nomask_affine_static[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_affine.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_write.g4b"
};
 
static const uint32_t ps_kernel_nomask_projective_static[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_projective.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_write.g4b"
};
 
static const uint32_t ps_kernel_maskca_affine_static[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_affine.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_mask_affine.g4b"
#include "exa_wm_mask_sample_argb.g4b"
#include "exa_wm_ca.g4b"
#include "exa_wm_write.g4b"
};
 
static const uint32_t ps_kernel_maskca_projective_static[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_projective.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_mask_projective.g4b"
#include "exa_wm_mask_sample_argb.g4b"
#include "exa_wm_ca.g4b"
#include "exa_wm_write.g4b"
};
 
static const uint32_t ps_kernel_maskca_srcalpha_affine_static[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_affine.g4b"
#include "exa_wm_src_sample_a.g4b"
#include "exa_wm_mask_affine.g4b"
#include "exa_wm_mask_sample_argb.g4b"
#include "exa_wm_ca_srcalpha.g4b"
#include "exa_wm_write.g4b"
};
 
static const uint32_t ps_kernel_maskca_srcalpha_projective_static[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_projective.g4b"
#include "exa_wm_src_sample_a.g4b"
#include "exa_wm_mask_projective.g4b"
#include "exa_wm_mask_sample_argb.g4b"
#include "exa_wm_ca_srcalpha.g4b"
#include "exa_wm_write.g4b"
};
 
static const uint32_t ps_kernel_masknoca_affine_static[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_affine.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_mask_affine.g4b"
#include "exa_wm_mask_sample_a.g4b"
#include "exa_wm_noca.g4b"
#include "exa_wm_write.g4b"
};
 
static const uint32_t ps_kernel_masknoca_projective_static[][4] = {
#include "exa_wm_xy.g4b"
#include "exa_wm_src_projective.g4b"
#include "exa_wm_src_sample_argb.g4b"
#include "exa_wm_mask_projective.g4b"
#include "exa_wm_mask_sample_a.g4b"
#include "exa_wm_noca.g4b"
#include "exa_wm_write.g4b"
};
 
/* new programs for Ironlake */
static const uint32_t sf_kernel_static_gen5[][4] = {
#include "exa_sf.g4b.gen5"
};
 
static const uint32_t sf_kernel_mask_static_gen5[][4] = {
#include "exa_sf_mask.g4b.gen5"
};
 
static const uint32_t ps_kernel_nomask_affine_static_gen5[][4] = {
#include "exa_wm_xy.g4b.gen5"
#include "exa_wm_src_affine.g4b.gen5"
#include "exa_wm_src_sample_argb.g4b.gen5"
#include "exa_wm_write.g4b.gen5"
};
 
static const uint32_t ps_kernel_nomask_projective_static_gen5[][4] = {
#include "exa_wm_xy.g4b.gen5"
#include "exa_wm_src_projective.g4b.gen5"
#include "exa_wm_src_sample_argb.g4b.gen5"
#include "exa_wm_write.g4b.gen5"
};
 
static const uint32_t ps_kernel_maskca_affine_static_gen5[][4] = {
#include "exa_wm_xy.g4b.gen5"
#include "exa_wm_src_affine.g4b.gen5"
#include "exa_wm_src_sample_argb.g4b.gen5"
#include "exa_wm_mask_affine.g4b.gen5"
#include "exa_wm_mask_sample_argb.g4b.gen5"
#include "exa_wm_ca.g4b.gen5"
#include "exa_wm_write.g4b.gen5"
};
 
static const uint32_t ps_kernel_maskca_projective_static_gen5[][4] = {
#include "exa_wm_xy.g4b.gen5"
#include "exa_wm_src_projective.g4b.gen5"
#include "exa_wm_src_sample_argb.g4b.gen5"
#include "exa_wm_mask_projective.g4b.gen5"
#include "exa_wm_mask_sample_argb.g4b.gen5"
#include "exa_wm_ca.g4b.gen5"
#include "exa_wm_write.g4b.gen5"
};
 
static const uint32_t ps_kernel_maskca_srcalpha_affine_static_gen5[][4] = {
#include "exa_wm_xy.g4b.gen5"
#include "exa_wm_src_affine.g4b.gen5"
#include "exa_wm_src_sample_a.g4b.gen5"
#include "exa_wm_mask_affine.g4b.gen5"
#include "exa_wm_mask_sample_argb.g4b.gen5"
#include "exa_wm_ca_srcalpha.g4b.gen5"
#include "exa_wm_write.g4b.gen5"
};
 
static const uint32_t ps_kernel_maskca_srcalpha_projective_static_gen5[][4] = {
#include "exa_wm_xy.g4b.gen5"
#include "exa_wm_src_projective.g4b.gen5"
#include "exa_wm_src_sample_a.g4b.gen5"
#include "exa_wm_mask_projective.g4b.gen5"
#include "exa_wm_mask_sample_argb.g4b.gen5"
#include "exa_wm_ca_srcalpha.g4b.gen5"
#include "exa_wm_write.g4b.gen5"
};
 
static const uint32_t ps_kernel_masknoca_affine_static_gen5[][4] = {
#include "exa_wm_xy.g4b.gen5"
#include "exa_wm_src_affine.g4b.gen5"
#include "exa_wm_src_sample_argb.g4b.gen5"
#include "exa_wm_mask_affine.g4b.gen5"
#include "exa_wm_mask_sample_a.g4b.gen5"
#include "exa_wm_noca.g4b.gen5"
#include "exa_wm_write.g4b.gen5"
};
 
static const uint32_t ps_kernel_masknoca_projective_static_gen5[][4] = {
#include "exa_wm_xy.g4b.gen5"
#include "exa_wm_src_projective.g4b.gen5"
#include "exa_wm_src_sample_argb.g4b.gen5"
#include "exa_wm_mask_projective.g4b.gen5"
#include "exa_wm_mask_sample_a.g4b.gen5"
#include "exa_wm_noca.g4b.gen5"
#include "exa_wm_write.g4b.gen5"
};
 
/* programs for GEN6 */
static const uint32_t ps_kernel_nomask_affine_static_gen6[][4] = {
#include "exa_wm_src_affine.g6b"
#include "exa_wm_src_sample_argb.g6b"
#include "exa_wm_write.g6b"
};
 
static const uint32_t ps_kernel_nomask_projective_static_gen6[][4] = {
#include "exa_wm_src_projective.g6b"
#include "exa_wm_src_sample_argb.g6b"
#include "exa_wm_write.g6b"
};
 
static const uint32_t ps_kernel_maskca_affine_static_gen6[][4] = {
#include "exa_wm_src_affine.g6b"
#include "exa_wm_src_sample_argb.g6b"
#include "exa_wm_mask_affine.g6b"
#include "exa_wm_mask_sample_argb.g6b"
#include "exa_wm_ca.g6b"
#include "exa_wm_write.g6b"
};
 
static const uint32_t ps_kernel_maskca_projective_static_gen6[][4] = {
#include "exa_wm_src_projective.g6b"
#include "exa_wm_src_sample_argb.g6b"
#include "exa_wm_mask_projective.g6b"
#include "exa_wm_mask_sample_argb.g6b"
#include "exa_wm_ca.g4b.gen5"
#include "exa_wm_write.g6b"
};
 
static const uint32_t ps_kernel_maskca_srcalpha_affine_static_gen6[][4] = {
#include "exa_wm_src_affine.g6b"
#include "exa_wm_src_sample_a.g6b"
#include "exa_wm_mask_affine.g6b"
#include "exa_wm_mask_sample_argb.g6b"
#include "exa_wm_ca_srcalpha.g6b"
#include "exa_wm_write.g6b"
};
 
static const uint32_t ps_kernel_maskca_srcalpha_projective_static_gen6[][4] = {
#include "exa_wm_src_projective.g6b"
#include "exa_wm_src_sample_a.g6b"
#include "exa_wm_mask_projective.g6b"
#include "exa_wm_mask_sample_argb.g6b"
#include "exa_wm_ca_srcalpha.g6b"
#include "exa_wm_write.g6b"
};
 
static const uint32_t ps_kernel_masknoca_affine_static_gen6[][4] = {
#include "exa_wm_src_affine.g6b"
#include "exa_wm_src_sample_argb.g6b"
#include "exa_wm_mask_affine.g6b"
#include "exa_wm_mask_sample_a.g6b"
#include "exa_wm_noca.g6b"
#include "exa_wm_write.g6b"
};
 
static const uint32_t ps_kernel_masknoca_projective_static_gen6[][4] = {
#include "exa_wm_src_projective.g6b"
#include "exa_wm_src_sample_argb.g6b"
#include "exa_wm_mask_projective.g6b"
#include "exa_wm_mask_sample_a.g6b"
#include "exa_wm_noca.g6b"
#include "exa_wm_write.g6b"
};
 
/* programs for GEN7 */
static const uint32_t ps_kernel_nomask_affine_static_gen7[][4] = {
#include "exa_wm_src_affine.g7b"
#include "exa_wm_src_sample_argb.g7b"
#include "exa_wm_write.g7b"
};
 
static const uint32_t ps_kernel_nomask_projective_static_gen7[][4] = {
#include "exa_wm_src_projective.g7b"
#include "exa_wm_src_sample_argb.g7b"
#include "exa_wm_write.g7b"
};
 
static const uint32_t ps_kernel_maskca_affine_static_gen7[][4] = {
#include "exa_wm_src_affine.g7b"
#include "exa_wm_src_sample_argb.g7b"
#include "exa_wm_mask_affine.g7b"
#include "exa_wm_mask_sample_argb.g7b"
#include "exa_wm_ca.g6b"
#include "exa_wm_write.g7b"
};
 
static const uint32_t ps_kernel_maskca_projective_static_gen7[][4] = {
#include "exa_wm_src_projective.g7b"
#include "exa_wm_src_sample_argb.g7b"
#include "exa_wm_mask_projective.g7b"
#include "exa_wm_mask_sample_argb.g7b"
#include "exa_wm_ca.g4b.gen5"
#include "exa_wm_write.g7b"
};
 
static const uint32_t ps_kernel_maskca_srcalpha_affine_static_gen7[][4] = {
#include "exa_wm_src_affine.g7b"
#include "exa_wm_src_sample_a.g7b"
#include "exa_wm_mask_affine.g7b"
#include "exa_wm_mask_sample_argb.g7b"
#include "exa_wm_ca_srcalpha.g6b"
#include "exa_wm_write.g7b"
};
 
static const uint32_t ps_kernel_maskca_srcalpha_projective_static_gen7[][4] = {
#include "exa_wm_src_projective.g7b"
#include "exa_wm_src_sample_a.g7b"
#include "exa_wm_mask_projective.g7b"
#include "exa_wm_mask_sample_argb.g7b"
#include "exa_wm_ca_srcalpha.g6b"
#include "exa_wm_write.g7b"
};
 
static const uint32_t ps_kernel_masknoca_affine_static_gen7[][4] = {
#include "exa_wm_src_affine.g7b"
#include "exa_wm_src_sample_argb.g7b"
#include "exa_wm_mask_affine.g7b"
#include "exa_wm_mask_sample_a.g7b"
#include "exa_wm_noca.g6b"
#include "exa_wm_write.g7b"
};
 
static const uint32_t ps_kernel_masknoca_projective_static_gen7[][4] = {
#include "exa_wm_src_projective.g7b"
#include "exa_wm_src_sample_argb.g7b"
#include "exa_wm_mask_projective.g7b"
#include "exa_wm_mask_sample_a.g7b"
#include "exa_wm_noca.g6b"
#include "exa_wm_write.g7b"
};
 
 
typedef enum {
SS_INVALID_FILTER = -1,
SS_FILTER_NEAREST,
SS_FILTER_BILINEAR,
FILTER_COUNT,
} sampler_state_filter_t;
 
typedef enum {
SS_INVALID_EXTEND = -1,
SS_EXTEND_NONE,
SS_EXTEND_REPEAT,
SS_EXTEND_PAD,
SS_EXTEND_REFLECT,
EXTEND_COUNT,
} sampler_state_extend_t;
 
typedef enum {
WM_KERNEL_NOMASK_AFFINE,
WM_KERNEL_NOMASK_PROJECTIVE,
WM_KERNEL_MASKCA_AFFINE,
WM_KERNEL_MASKCA_PROJECTIVE,
WM_KERNEL_MASKCA_SRCALPHA_AFFINE,
WM_KERNEL_MASKCA_SRCALPHA_PROJECTIVE,
WM_KERNEL_MASKNOCA_AFFINE,
WM_KERNEL_MASKNOCA_PROJECTIVE,
KERNEL_COUNT
} wm_kernel_t;
 
#define KERNEL(kernel_enum, kernel, masked) \
[kernel_enum] = {&kernel, sizeof(kernel), masked}
struct wm_kernel_info {
const void *data;
unsigned int size;
Bool has_mask;
};
 
static const struct wm_kernel_info wm_kernels_gen4[] = {
KERNEL(WM_KERNEL_NOMASK_AFFINE,
ps_kernel_nomask_affine_static, FALSE),
KERNEL(WM_KERNEL_NOMASK_PROJECTIVE,
ps_kernel_nomask_projective_static, FALSE),
KERNEL(WM_KERNEL_MASKCA_AFFINE,
ps_kernel_maskca_affine_static, TRUE),
KERNEL(WM_KERNEL_MASKCA_PROJECTIVE,
ps_kernel_maskca_projective_static, TRUE),
KERNEL(WM_KERNEL_MASKCA_SRCALPHA_AFFINE,
ps_kernel_maskca_srcalpha_affine_static, TRUE),
KERNEL(WM_KERNEL_MASKCA_SRCALPHA_PROJECTIVE,
ps_kernel_maskca_srcalpha_projective_static, TRUE),
KERNEL(WM_KERNEL_MASKNOCA_AFFINE,
ps_kernel_masknoca_affine_static, TRUE),
KERNEL(WM_KERNEL_MASKNOCA_PROJECTIVE,
ps_kernel_masknoca_projective_static, TRUE),
};
 
static const struct wm_kernel_info wm_kernels_gen5[] = {
KERNEL(WM_KERNEL_NOMASK_AFFINE,
ps_kernel_nomask_affine_static_gen5, FALSE),
KERNEL(WM_KERNEL_NOMASK_PROJECTIVE,
ps_kernel_nomask_projective_static_gen5, FALSE),
KERNEL(WM_KERNEL_MASKCA_AFFINE,
ps_kernel_maskca_affine_static_gen5, TRUE),
KERNEL(WM_KERNEL_MASKCA_PROJECTIVE,
ps_kernel_maskca_projective_static_gen5, TRUE),
KERNEL(WM_KERNEL_MASKCA_SRCALPHA_AFFINE,
ps_kernel_maskca_srcalpha_affine_static_gen5, TRUE),
KERNEL(WM_KERNEL_MASKCA_SRCALPHA_PROJECTIVE,
ps_kernel_maskca_srcalpha_projective_static_gen5, TRUE),
KERNEL(WM_KERNEL_MASKNOCA_AFFINE,
ps_kernel_masknoca_affine_static_gen5, TRUE),
KERNEL(WM_KERNEL_MASKNOCA_PROJECTIVE,
ps_kernel_masknoca_projective_static_gen5, TRUE),
};
 
static const struct wm_kernel_info wm_kernels_gen6[] = {
KERNEL(WM_KERNEL_NOMASK_AFFINE,
ps_kernel_nomask_affine_static_gen6, FALSE),
KERNEL(WM_KERNEL_NOMASK_PROJECTIVE,
ps_kernel_nomask_projective_static_gen6, FALSE),
KERNEL(WM_KERNEL_MASKCA_AFFINE,
ps_kernel_maskca_affine_static_gen6, TRUE),
KERNEL(WM_KERNEL_MASKCA_PROJECTIVE,
ps_kernel_maskca_projective_static_gen6, TRUE),
KERNEL(WM_KERNEL_MASKCA_SRCALPHA_AFFINE,
ps_kernel_maskca_srcalpha_affine_static_gen6, TRUE),
KERNEL(WM_KERNEL_MASKCA_SRCALPHA_PROJECTIVE,
ps_kernel_maskca_srcalpha_projective_static_gen6, TRUE),
KERNEL(WM_KERNEL_MASKNOCA_AFFINE,
ps_kernel_masknoca_affine_static_gen6, TRUE),
KERNEL(WM_KERNEL_MASKNOCA_PROJECTIVE,
ps_kernel_masknoca_projective_static_gen6, TRUE),
};
 
static const struct wm_kernel_info wm_kernels_gen7[] = {
KERNEL(WM_KERNEL_NOMASK_AFFINE,
ps_kernel_nomask_affine_static_gen7, FALSE),
KERNEL(WM_KERNEL_NOMASK_PROJECTIVE,
ps_kernel_nomask_projective_static_gen7, FALSE),
KERNEL(WM_KERNEL_MASKCA_AFFINE,
ps_kernel_maskca_affine_static_gen7, TRUE),
KERNEL(WM_KERNEL_MASKCA_PROJECTIVE,
ps_kernel_maskca_projective_static_gen7, TRUE),
KERNEL(WM_KERNEL_MASKCA_SRCALPHA_AFFINE,
ps_kernel_maskca_srcalpha_affine_static_gen7, TRUE),
KERNEL(WM_KERNEL_MASKCA_SRCALPHA_PROJECTIVE,
ps_kernel_maskca_srcalpha_projective_static_gen7, TRUE),
KERNEL(WM_KERNEL_MASKNOCA_AFFINE,
ps_kernel_masknoca_affine_static_gen7, TRUE),
KERNEL(WM_KERNEL_MASKNOCA_PROJECTIVE,
ps_kernel_masknoca_projective_static_gen7, TRUE),
};
 
#undef KERNEL
 
typedef struct _brw_cc_unit_state_padded {
struct brw_cc_unit_state state;
char pad[64 - sizeof(struct brw_cc_unit_state)];
} brw_cc_unit_state_padded;
 
#ifndef MAX
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#endif
#define SURFACE_STATE_PADDED_SIZE ALIGN(MAX(sizeof(struct brw_surface_state), sizeof(struct gen7_surface_state)), 32)
 
struct gen4_cc_unit_state {
/* Index by [src_blend][dst_blend] */
brw_cc_unit_state_padded cc_state[BRW_BLENDFACTOR_COUNT][BRW_BLENDFACTOR_COUNT];
};
 
typedef struct gen4_composite_op {
int op;
sampler_state_filter_t src_filter;
sampler_state_filter_t mask_filter;
sampler_state_extend_t src_extend;
sampler_state_extend_t mask_extend;
Bool is_affine;
wm_kernel_t wm_kernel;
int vertex_id;
} gen4_composite_op;
 
/** Private data for gen4 render accel implementation. */
struct gen4_render_state {
drm_intel_bo *vs_state_bo;
drm_intel_bo *sf_state_bo;
drm_intel_bo *sf_mask_state_bo;
drm_intel_bo *cc_state_bo;
drm_intel_bo *wm_state_bo[KERNEL_COUNT]
[FILTER_COUNT] [EXTEND_COUNT]
[FILTER_COUNT] [EXTEND_COUNT];
drm_intel_bo *wm_kernel_bo[KERNEL_COUNT];
 
drm_intel_bo *cc_vp_bo;
drm_intel_bo *gen6_blend_bo;
drm_intel_bo *gen6_depth_stencil_bo;
drm_intel_bo *ps_sampler_state_bo[FILTER_COUNT]
[EXTEND_COUNT]
[FILTER_COUNT]
[EXTEND_COUNT];
gen4_composite_op composite_op;
};
 
static void gen6_emit_composite_state(struct intel_screen_private *intel);
static void gen6_render_state_init();
 
/**
* Sets up the SF state pointing at an SF kernel.
*
* The SF kernel does coord interp: for each attribute,
* calculate dA/dx and dA/dy. Hand these interpolation coefficients
* back to SF which then hands pixels off to WM.
*/
static drm_intel_bo *gen4_create_sf_state(intel_screen_private *intel,
drm_intel_bo * kernel_bo)
{
struct brw_sf_unit_state *sf_state;
drm_intel_bo *sf_state_bo;
int ret;
 
sf_state_bo = drm_intel_bo_alloc(intel->bufmgr, "gen4 SF state",
sizeof(*sf_state), 4096);
assert(sf_state_bo);
 
ret = drm_intel_bo_map(sf_state_bo, TRUE);
assert(ret == 0);
 
sf_state = memset(sf_state_bo->virtual, 0, sizeof(*sf_state));
sf_state->thread0.grf_reg_count = BRW_GRF_BLOCKS(SF_KERNEL_NUM_GRF);
sf_state->thread0.kernel_start_pointer =
intel_emit_reloc(sf_state_bo,
offsetof(struct brw_sf_unit_state, thread0),
kernel_bo, sf_state->thread0.grf_reg_count << 1,
I915_GEM_DOMAIN_INSTRUCTION, 0) >> 6;
sf_state->sf1.single_program_flow = 1;
sf_state->sf1.binding_table_entry_count = 0;
sf_state->sf1.thread_priority = 0;
sf_state->sf1.floating_point_mode = 0; /* Mesa does this */
sf_state->sf1.illegal_op_exception_enable = 1;
sf_state->sf1.mask_stack_exception_enable = 1;
sf_state->sf1.sw_exception_enable = 1;
sf_state->thread2.per_thread_scratch_space = 0;
/* scratch space is not used in our kernel */
sf_state->thread2.scratch_space_base_pointer = 0;
sf_state->thread3.const_urb_entry_read_length = 0; /* no const URBs */
sf_state->thread3.const_urb_entry_read_offset = 0; /* no const URBs */
sf_state->thread3.urb_entry_read_length = 1; /* 1 URB per vertex */
/* don't smash vertex header, read start from dw8 */
sf_state->thread3.urb_entry_read_offset = 1;
sf_state->thread3.dispatch_grf_start_reg = 3;
sf_state->thread4.max_threads = SF_MAX_THREADS - 1;
sf_state->thread4.urb_entry_allocation_size = URB_SF_ENTRY_SIZE - 1;
sf_state->thread4.nr_urb_entries = URB_SF_ENTRIES;
sf_state->sf5.viewport_transform = FALSE; /* skip viewport */
sf_state->sf6.cull_mode = BRW_CULLMODE_NONE;
sf_state->sf6.scissor = 0;
sf_state->sf7.trifan_pv = 2;
sf_state->sf6.dest_org_vbias = 0x8;
sf_state->sf6.dest_org_hbias = 0x8;
 
drm_intel_bo_unmap(sf_state_bo);
 
return sf_state_bo;
(void)ret;
}
 
static drm_intel_bo *sampler_border_color_create(intel_screen_private *intel)
{
struct brw_sampler_legacy_border_color sampler_border_color;
 
/* Set up the sampler border color (always transparent black) */
memset(&sampler_border_color, 0, sizeof(sampler_border_color));
sampler_border_color.color[0] = 0; /* R */
sampler_border_color.color[1] = 0; /* G */
sampler_border_color.color[2] = 0; /* B */
sampler_border_color.color[3] = 0; /* A */
 
return intel_bo_alloc_for_data(intel,
&sampler_border_color,
sizeof(sampler_border_color),
"gen4 render sampler border color");
}
 
static void
gen4_sampler_state_init(drm_intel_bo * sampler_state_bo,
struct brw_sampler_state *sampler_state,
sampler_state_filter_t filter,
sampler_state_extend_t extend,
drm_intel_bo * border_color_bo)
{
uint32_t sampler_state_offset;
 
sampler_state_offset = (char *)sampler_state -
(char *)sampler_state_bo->virtual;
 
/* PS kernel use this sampler */
memset(sampler_state, 0, sizeof(*sampler_state));
 
sampler_state->ss0.lod_preclamp = 1; /* GL mode */
 
/* We use the legacy mode to get the semantics specified by
* the Render extension. */
sampler_state->ss0.border_color_mode = BRW_BORDER_COLOR_MODE_LEGACY;
 
switch (filter) {
default:
case SS_FILTER_NEAREST:
sampler_state->ss0.min_filter = BRW_MAPFILTER_NEAREST;
sampler_state->ss0.mag_filter = BRW_MAPFILTER_NEAREST;
break;
case SS_FILTER_BILINEAR:
sampler_state->ss0.min_filter = BRW_MAPFILTER_LINEAR;
sampler_state->ss0.mag_filter = BRW_MAPFILTER_LINEAR;
break;
}
 
switch (extend) {
default:
case SS_EXTEND_NONE:
sampler_state->ss1.r_wrap_mode = BRW_TEXCOORDMODE_CLAMP_BORDER;
sampler_state->ss1.s_wrap_mode = BRW_TEXCOORDMODE_CLAMP_BORDER;
sampler_state->ss1.t_wrap_mode = BRW_TEXCOORDMODE_CLAMP_BORDER;
break;
case SS_EXTEND_REPEAT:
sampler_state->ss1.r_wrap_mode = BRW_TEXCOORDMODE_WRAP;
sampler_state->ss1.s_wrap_mode = BRW_TEXCOORDMODE_WRAP;
sampler_state->ss1.t_wrap_mode = BRW_TEXCOORDMODE_WRAP;
break;
case SS_EXTEND_PAD:
sampler_state->ss1.r_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
sampler_state->ss1.s_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
sampler_state->ss1.t_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
break;
case SS_EXTEND_REFLECT:
sampler_state->ss1.r_wrap_mode = BRW_TEXCOORDMODE_MIRROR;
sampler_state->ss1.s_wrap_mode = BRW_TEXCOORDMODE_MIRROR;
sampler_state->ss1.t_wrap_mode = BRW_TEXCOORDMODE_MIRROR;
break;
}
 
sampler_state->ss2.border_color_pointer =
intel_emit_reloc(sampler_state_bo, sampler_state_offset +
offsetof(struct brw_sampler_state, ss2),
border_color_bo, 0,
I915_GEM_DOMAIN_SAMPLER, 0) >> 5;
 
sampler_state->ss3.chroma_key_enable = 0; /* disable chromakey */
}
 
static void
gen7_sampler_state_init(drm_intel_bo * sampler_state_bo,
struct gen7_sampler_state *sampler_state,
sampler_state_filter_t filter,
sampler_state_extend_t extend,
drm_intel_bo * border_color_bo)
{
uint32_t sampler_state_offset;
 
sampler_state_offset = (char *)sampler_state -
(char *)sampler_state_bo->virtual;
 
/* PS kernel use this sampler */
memset(sampler_state, 0, sizeof(*sampler_state));
 
sampler_state->ss0.lod_preclamp = 1; /* GL mode */
 
/* We use the legacy mode to get the semantics specified by
* the Render extension. */
sampler_state->ss0.default_color_mode = BRW_BORDER_COLOR_MODE_LEGACY;
 
switch (filter) {
default:
case SS_FILTER_NEAREST:
sampler_state->ss0.min_filter = BRW_MAPFILTER_NEAREST;
sampler_state->ss0.mag_filter = BRW_MAPFILTER_NEAREST;
break;
case SS_FILTER_BILINEAR:
sampler_state->ss0.min_filter = BRW_MAPFILTER_LINEAR;
sampler_state->ss0.mag_filter = BRW_MAPFILTER_LINEAR;
break;
}
 
switch (extend) {
default:
case SS_EXTEND_NONE:
sampler_state->ss3.r_wrap_mode = BRW_TEXCOORDMODE_CLAMP_BORDER;
sampler_state->ss3.s_wrap_mode = BRW_TEXCOORDMODE_CLAMP_BORDER;
sampler_state->ss3.t_wrap_mode = BRW_TEXCOORDMODE_CLAMP_BORDER;
break;
case SS_EXTEND_REPEAT:
sampler_state->ss3.r_wrap_mode = BRW_TEXCOORDMODE_WRAP;
sampler_state->ss3.s_wrap_mode = BRW_TEXCOORDMODE_WRAP;
sampler_state->ss3.t_wrap_mode = BRW_TEXCOORDMODE_WRAP;
break;
case SS_EXTEND_PAD:
sampler_state->ss3.r_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
sampler_state->ss3.s_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
sampler_state->ss3.t_wrap_mode = BRW_TEXCOORDMODE_CLAMP;
break;
case SS_EXTEND_REFLECT:
sampler_state->ss3.r_wrap_mode = BRW_TEXCOORDMODE_MIRROR;
sampler_state->ss3.s_wrap_mode = BRW_TEXCOORDMODE_MIRROR;
sampler_state->ss3.t_wrap_mode = BRW_TEXCOORDMODE_MIRROR;
break;
}
 
sampler_state->ss2.default_color_pointer =
intel_emit_reloc(sampler_state_bo, sampler_state_offset +
offsetof(struct gen7_sampler_state, ss2),
border_color_bo, 0,
I915_GEM_DOMAIN_SAMPLER, 0) >> 5;
 
sampler_state->ss3.chroma_key_enable = 0; /* disable chromakey */
}
 
 
 
static drm_intel_bo *gen4_create_sampler_state(intel_screen_private *intel,
sampler_state_filter_t src_filter,
sampler_state_extend_t src_extend,
sampler_state_filter_t mask_filter,
sampler_state_extend_t mask_extend,
drm_intel_bo * border_color_bo)
{
drm_intel_bo *sampler_state_bo;
struct brw_sampler_state *sampler_state;
int ret;
 
sampler_state_bo =
drm_intel_bo_alloc(intel->bufmgr, "gen4 sampler state",
sizeof(struct brw_sampler_state) * 2, 4096);
assert(sampler_state_bo);
 
ret = drm_intel_bo_map(sampler_state_bo, TRUE);
assert(ret == 0);
 
sampler_state = sampler_state_bo->virtual;
 
gen4_sampler_state_init(sampler_state_bo,
&sampler_state[0],
src_filter, src_extend, border_color_bo);
gen4_sampler_state_init(sampler_state_bo,
&sampler_state[1],
mask_filter, mask_extend, border_color_bo);
 
drm_intel_bo_unmap(sampler_state_bo);
 
return sampler_state_bo;
(void)ret;
}
 
static drm_intel_bo *
gen7_create_sampler_state(intel_screen_private *intel,
sampler_state_filter_t src_filter,
sampler_state_extend_t src_extend,
sampler_state_filter_t mask_filter,
sampler_state_extend_t mask_extend,
drm_intel_bo * border_color_bo)
{
drm_intel_bo *sampler_state_bo;
struct gen7_sampler_state *sampler_state;
int ret;
 
sampler_state_bo =
drm_intel_bo_alloc(intel->bufmgr, "gen7 sampler state",
sizeof(struct gen7_sampler_state) * 2, 4096);
assert(sampler_state_bo);
 
ret = drm_intel_bo_map(sampler_state_bo, TRUE);
assert(ret == 0);
 
sampler_state = sampler_state_bo->virtual;
 
gen7_sampler_state_init(sampler_state_bo,
&sampler_state[0],
src_filter, src_extend, border_color_bo);
gen7_sampler_state_init(sampler_state_bo,
&sampler_state[1],
mask_filter, mask_extend, border_color_bo);
 
drm_intel_bo_unmap(sampler_state_bo);
 
return sampler_state_bo;
(void)ret;
}
 
static inline drm_intel_bo *
i965_create_sampler_state(intel_screen_private *intel,
sampler_state_filter_t src_filter,
sampler_state_extend_t src_extend,
sampler_state_filter_t mask_filter,
sampler_state_extend_t mask_extend,
drm_intel_bo * border_color_bo)
{
if (INTEL_INFO(intel)->gen < 070)
return gen4_create_sampler_state(intel, src_filter, src_extend,
mask_filter, mask_extend,
border_color_bo);
return gen7_create_sampler_state(intel, src_filter, src_extend,
mask_filter, mask_extend,
border_color_bo);
}
 
 
static void
cc_state_init(drm_intel_bo * cc_state_bo,
uint32_t cc_state_offset,
int src_blend, int dst_blend, drm_intel_bo * cc_vp_bo)
{
struct brw_cc_unit_state *cc_state;
 
cc_state = (struct brw_cc_unit_state *)((char *)cc_state_bo->virtual +
cc_state_offset);
 
memset(cc_state, 0, sizeof(*cc_state));
cc_state->cc0.stencil_enable = 0; /* disable stencil */
cc_state->cc2.depth_test = 0; /* disable depth test */
cc_state->cc2.logicop_enable = 0; /* disable logic op */
cc_state->cc3.ia_blend_enable = 0; /* blend alpha same as colors */
cc_state->cc3.blend_enable = 1; /* enable color blend */
cc_state->cc3.alpha_test = 0; /* disable alpha test */
 
cc_state->cc4.cc_viewport_state_offset =
intel_emit_reloc(cc_state_bo, cc_state_offset +
offsetof(struct brw_cc_unit_state, cc4),
cc_vp_bo, 0, I915_GEM_DOMAIN_INSTRUCTION, 0) >> 5;
 
cc_state->cc5.dither_enable = 0; /* disable dither */
cc_state->cc5.logicop_func = 0xc; /* COPY */
cc_state->cc5.statistics_enable = 1;
cc_state->cc5.ia_blend_function = BRW_BLENDFUNCTION_ADD;
 
/* Fill in alpha blend factors same as color, for the future. */
cc_state->cc5.ia_src_blend_factor = src_blend;
cc_state->cc5.ia_dest_blend_factor = dst_blend;
 
cc_state->cc6.blend_function = BRW_BLENDFUNCTION_ADD;
cc_state->cc6.clamp_post_alpha_blend = 1;
cc_state->cc6.clamp_pre_alpha_blend = 1;
cc_state->cc6.clamp_range = 0; /* clamp range [0,1] */
 
cc_state->cc6.src_blend_factor = src_blend;
cc_state->cc6.dest_blend_factor = dst_blend;
}
 
static drm_intel_bo *gen4_create_wm_state(intel_screen_private *intel,
Bool has_mask,
drm_intel_bo * kernel_bo,
drm_intel_bo * sampler_bo)
{
struct brw_wm_unit_state *state;
drm_intel_bo *wm_state_bo;
int ret;
 
wm_state_bo = drm_intel_bo_alloc(intel->bufmgr, "gen4 WM state",
sizeof(*state), 4096);
assert(wm_state_bo);
 
ret = drm_intel_bo_map(wm_state_bo, TRUE);
assert(ret == 0);
 
state = memset(wm_state_bo->virtual, 0, sizeof(*state));
state->thread0.grf_reg_count = BRW_GRF_BLOCKS(PS_KERNEL_NUM_GRF);
state->thread0.kernel_start_pointer =
intel_emit_reloc(wm_state_bo,
offsetof(struct brw_wm_unit_state, thread0),
kernel_bo, state->thread0.grf_reg_count << 1,
I915_GEM_DOMAIN_INSTRUCTION, 0) >> 6;
 
state->thread1.single_program_flow = 0;
 
/* scratch space is not used in our kernel */
state->thread2.scratch_space_base_pointer = 0;
state->thread2.per_thread_scratch_space = 0;
 
state->thread3.const_urb_entry_read_length = 0;
state->thread3.const_urb_entry_read_offset = 0;
 
state->thread3.urb_entry_read_offset = 0;
/* wm kernel use urb from 3, see wm_program in compiler module */
state->thread3.dispatch_grf_start_reg = 3; /* must match kernel */
 
if (IS_GEN5(intel))
state->wm4.sampler_count = 0; /* hardware requirement */
else
state->wm4.sampler_count = 1; /* 1-4 samplers used */
 
state->wm4.sampler_state_pointer =
intel_emit_reloc(wm_state_bo,
offsetof(struct brw_wm_unit_state, wm4),
sampler_bo,
state->wm4.sampler_count << 2,
I915_GEM_DOMAIN_INSTRUCTION, 0) >> 5;
state->wm5.max_threads = PS_MAX_THREADS - 1;
state->wm5.transposed_urb_read = 0;
state->wm5.thread_dispatch_enable = 1;
/* just use 16-pixel dispatch (4 subspans), don't need to change kernel
* start point
*/
state->wm5.enable_16_pix = 1;
state->wm5.enable_8_pix = 0;
state->wm5.early_depth_test = 1;
 
/* Each pair of attributes (src/mask coords) is two URB entries */
if (has_mask) {
state->thread1.binding_table_entry_count = 3; /* 2 tex and fb */
state->thread3.urb_entry_read_length = 4;
} else {
state->thread1.binding_table_entry_count = 2; /* 1 tex and fb */
state->thread3.urb_entry_read_length = 2;
}
 
/* binding table entry count is only used for prefetching, and it has to
* be set 0 for Ironlake
*/
if (IS_GEN5(intel))
state->thread1.binding_table_entry_count = 0;
 
drm_intel_bo_unmap(wm_state_bo);
 
return wm_state_bo;
(void)ret;
}
 
static drm_intel_bo *gen4_create_cc_viewport(intel_screen_private *intel)
{
drm_intel_bo *bo;
struct brw_cc_viewport vp;
int ret;
 
vp.min_depth = -1.e35;
vp.max_depth = 1.e35;
 
bo = drm_intel_bo_alloc(intel->bufmgr, "gen4 render unit state",
sizeof(vp), 4096);
assert(bo);
 
ret = drm_intel_bo_subdata(bo, 0, sizeof(vp), &vp);
assert(ret == 0);
 
return bo;
(void)ret;
}
 
static drm_intel_bo *gen4_create_vs_unit_state(intel_screen_private *intel)
{
struct brw_vs_unit_state vs_state;
memset(&vs_state, 0, sizeof(vs_state));
 
/* Set up the vertex shader to be disabled (passthrough) */
if (IS_GEN5(intel))
vs_state.thread4.nr_urb_entries = URB_VS_ENTRIES >> 2; /* hardware requirement */
else
vs_state.thread4.nr_urb_entries = URB_VS_ENTRIES;
vs_state.thread4.urb_entry_allocation_size = URB_VS_ENTRY_SIZE - 1;
vs_state.vs6.vs_enable = 0;
vs_state.vs6.vert_cache_disable = 1;
 
return intel_bo_alloc_for_data(intel, &vs_state, sizeof(vs_state),
"gen4 render VS state");
}
 
/**
* Set up all combinations of cc state: each blendfactor for source and
* dest.
*/
static drm_intel_bo *gen4_create_cc_unit_state(intel_screen_private *intel)
{
drm_intel_bo *cc_state_bo, *cc_vp_bo;
int i, j, ret;
 
cc_vp_bo = gen4_create_cc_viewport(intel);
 
cc_state_bo = drm_intel_bo_alloc(intel->bufmgr, "gen4 CC state",
sizeof(struct gen4_cc_unit_state),
4096);
assert(cc_state_bo);
 
ret = drm_intel_bo_map(cc_state_bo, TRUE);
assert(ret == 0);
 
for (i = 0; i < BRW_BLENDFACTOR_COUNT; i++) {
for (j = 0; j < BRW_BLENDFACTOR_COUNT; j++) {
cc_state_init(cc_state_bo,
offsetof(struct gen4_cc_unit_state,
cc_state[i][j].state),
i, j, cc_vp_bo);
}
}
drm_intel_bo_unmap(cc_state_bo);
 
drm_intel_bo_unreference(cc_vp_bo);
 
return cc_state_bo;
(void)ret;
}
 
static uint32_t i965_get_card_format(PicturePtr picture)
{
int i;
 
for (i = 0; i < sizeof(i965_tex_formats) / sizeof(i965_tex_formats[0]);
i++) {
if (i965_tex_formats[i].fmt == picture->format)
break;
}
assert(i != sizeof(i965_tex_formats) / sizeof(i965_tex_formats[0]));
 
return i965_tex_formats[i].card_fmt;
}
 
static sampler_state_filter_t sampler_state_filter_from_picture(int filter)
{
switch (filter) {
case PictFilterNearest:
return SS_FILTER_NEAREST;
case PictFilterBilinear:
return SS_FILTER_BILINEAR;
default:
return SS_INVALID_FILTER;
}
}
 
static sampler_state_extend_t sampler_state_extend_from_picture(int repeat_type)
{
switch (repeat_type) {
case RepeatNone:
return SS_EXTEND_NONE;
case RepeatNormal:
return SS_EXTEND_REPEAT;
case RepeatPad:
return SS_EXTEND_PAD;
case RepeatReflect:
return SS_EXTEND_REFLECT;
default:
return SS_INVALID_EXTEND;
}
}
 
/**
* Sets up the common fields for a surface state buffer for the given
* picture in the given surface state buffer.
*/
static int
gen4_set_picture_surface_state(intel_screen_private *intel,
PicturePtr picture, PixmapPtr pixmap,
Bool is_dst)
{
struct intel_pixmap *priv = pixmap->private;
struct brw_surface_state *ss;
uint32_t write_domain, read_domains;
int offset;
 
if (is_dst) {
write_domain = I915_GEM_DOMAIN_RENDER;
read_domains = I915_GEM_DOMAIN_RENDER;
} else {
write_domain = 0;
read_domains = I915_GEM_DOMAIN_SAMPLER;
}
intel_batch_mark_pixmap_domains(intel, priv,
read_domains, write_domain);
ss = (struct brw_surface_state *)
(intel->surface_data + intel->surface_used);
 
memset(ss, 0, sizeof(*ss));
ss->ss0.surface_type = BRW_SURFACE_2D;
if (is_dst)
ss->ss0.surface_format = i965_get_dest_format(picture);
else
ss->ss0.surface_format = i965_get_card_format(picture);
 
ss->ss0.data_return_format = BRW_SURFACERETURNFORMAT_FLOAT32;
ss->ss0.color_blend = 1;
ss->ss1.base_addr = priv->bo->offset;
 
ss->ss2.height = pixmap->drawable.height - 1;
ss->ss2.width = pixmap->drawable.width - 1;
ss->ss3.pitch = intel_pixmap_pitch(pixmap) - 1;
ss->ss3.tile_walk = 0; /* Tiled X */
ss->ss3.tiled_surface = intel_pixmap_tiled(pixmap) ? 1 : 0;
 
dri_bo_emit_reloc(intel->surface_bo,
read_domains, write_domain,
0,
intel->surface_used +
offsetof(struct brw_surface_state, ss1),
priv->bo);
 
offset = intel->surface_used;
intel->surface_used += SURFACE_STATE_PADDED_SIZE;
 
return offset;
}
 
static int
gen7_set_picture_surface_state(intel_screen_private *intel,
PicturePtr picture, PixmapPtr pixmap,
Bool is_dst)
{
struct intel_pixmap *priv = pixmap->private;
struct gen7_surface_state *ss;
uint32_t write_domain, read_domains;
int offset;
 
if (is_dst) {
write_domain = I915_GEM_DOMAIN_RENDER;
read_domains = I915_GEM_DOMAIN_RENDER;
} else {
write_domain = 0;
read_domains = I915_GEM_DOMAIN_SAMPLER;
}
intel_batch_mark_pixmap_domains(intel, priv,
read_domains, write_domain);
ss = (struct gen7_surface_state *)
(intel->surface_data + intel->surface_used);
 
memset(ss, 0, sizeof(*ss));
ss->ss0.surface_type = BRW_SURFACE_2D;
if (is_dst)
ss->ss0.surface_format = i965_get_dest_format(picture);
else
ss->ss0.surface_format = i965_get_card_format(picture);
 
ss->ss0.tile_walk = 0; /* Tiled X */
ss->ss0.tiled_surface = intel_pixmap_tiled(pixmap) ? 1 : 0;
ss->ss1.base_addr = priv->bo->offset;
 
ss->ss2.height = pixmap->drawable.height - 1;
ss->ss2.width = pixmap->drawable.width - 1;
ss->ss3.pitch = intel_pixmap_pitch(pixmap) - 1;
 
if (IS_HSW(intel)) {
ss->ss7.shader_chanel_select_r = HSW_SCS_RED;
ss->ss7.shader_chanel_select_g = HSW_SCS_GREEN;
ss->ss7.shader_chanel_select_b = HSW_SCS_BLUE;
ss->ss7.shader_chanel_select_a = HSW_SCS_ALPHA;
}
 
dri_bo_emit_reloc(intel->surface_bo,
read_domains, write_domain,
0,
intel->surface_used +
offsetof(struct gen7_surface_state, ss1),
priv->bo);
 
offset = intel->surface_used;
intel->surface_used += SURFACE_STATE_PADDED_SIZE;
 
return offset;
}
 
static inline int
i965_set_picture_surface_state(intel_screen_private *intel,
PicturePtr picture, PixmapPtr pixmap,
Bool is_dst)
{
if (INTEL_INFO(intel)->gen < 070)
return gen4_set_picture_surface_state(intel, picture, pixmap, is_dst);
return gen7_set_picture_surface_state(intel, picture, pixmap, is_dst);
}
 
static void gen4_composite_vertex_elements(struct intel_screen_private *intel)
{
struct gen4_render_state *render_state = intel->gen4_render_state;
gen4_composite_op *composite_op = &render_state->composite_op;
Bool has_mask = intel->render_mask != NULL;
Bool is_affine = composite_op->is_affine;
/*
* number of extra parameters per vertex
*/
int nelem = has_mask ? 2 : 1;
/*
* size of extra parameters:
* 3 for homogenous (xyzw)
* 2 for cartesian (xy)
*/
int selem = is_affine ? 2 : 3;
uint32_t w_component;
uint32_t src_format;
int id;
 
id = has_mask << 1 | is_affine;
 
if (composite_op->vertex_id == id)
return;
 
composite_op->vertex_id = id;
 
if (is_affine) {
src_format = BRW_SURFACEFORMAT_R32G32_FLOAT;
w_component = BRW_VFCOMPONENT_STORE_1_FLT;
} else {
src_format = BRW_SURFACEFORMAT_R32G32B32_FLOAT;
w_component = BRW_VFCOMPONENT_STORE_SRC;
}
 
if (IS_GEN5(intel)) {
/*
* The reason to add this extra vertex element in the header is that
* Ironlake has different vertex header definition and origin method to
* set destination element offset doesn't exist anymore, which means
* hardware requires a predefined vertex element layout.
*
* haihao proposed this approach to fill the first vertex element, so
* origin layout for Gen4 doesn't need to change, and origin shader
* programs behavior is also kept.
*
* I think this is not bad. - zhenyu
*/
 
OUT_BATCH(BRW_3DSTATE_VERTEX_ELEMENTS |
((2 * (2 + nelem)) - 1));
OUT_BATCH((id << VE0_VERTEX_BUFFER_INDEX_SHIFT) | VE0_VALID |
(BRW_SURFACEFORMAT_R32G32_FLOAT << VE0_FORMAT_SHIFT) |
(0 << VE0_OFFSET_SHIFT));
 
OUT_BATCH((BRW_VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_0_SHIFT) |
(BRW_VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_1_SHIFT) |
(BRW_VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_2_SHIFT) |
(BRW_VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_3_SHIFT));
} else {
/* Set up our vertex elements, sourced from the single vertex buffer.
* that will be set up later.
*/
OUT_BATCH(BRW_3DSTATE_VERTEX_ELEMENTS |
((2 * (1 + nelem)) - 1));
}
 
/* x,y */
OUT_BATCH((id << VE0_VERTEX_BUFFER_INDEX_SHIFT) | VE0_VALID |
(BRW_SURFACEFORMAT_R32G32_FLOAT << VE0_FORMAT_SHIFT) |
(0 << VE0_OFFSET_SHIFT));
 
if (IS_GEN5(intel))
OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) |
(BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT));
else
OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) |
(BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT) |
(4 << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT));
/* u0, v0, w0 */
OUT_BATCH((id << VE0_VERTEX_BUFFER_INDEX_SHIFT) | VE0_VALID |
(src_format << VE0_FORMAT_SHIFT) |
((2 * 4) << VE0_OFFSET_SHIFT)); /* offset vb in bytes */
 
if (IS_GEN5(intel))
OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) |
(BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) |
(w_component << VE1_VFCOMPONENT_2_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT));
else
OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) |
(BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) |
(w_component << VE1_VFCOMPONENT_2_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT) |
((4 + 4) << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT)); /* VUE offset in dwords */
/* u1, v1, w1 */
if (has_mask) {
OUT_BATCH((id << VE0_VERTEX_BUFFER_INDEX_SHIFT) | VE0_VALID |
(src_format << VE0_FORMAT_SHIFT) |
(((2 + selem) * 4) << VE0_OFFSET_SHIFT)); /* vb offset in bytes */
 
if (IS_GEN5(intel))
OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) |
(BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) |
(w_component << VE1_VFCOMPONENT_2_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT));
else
OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) |
(BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) |
(w_component << VE1_VFCOMPONENT_2_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT) |
((4 + 4 + 4) << VE1_DESTINATION_ELEMENT_OFFSET_SHIFT)); /* VUE offset in dwords */
}
}
 
static void i965_emit_composite_state(struct intel_screen_private *intel)
{
struct gen4_render_state *render_state = intel->gen4_render_state;
gen4_composite_op *composite_op = &render_state->composite_op;
int op = composite_op->op;
PicturePtr mask_picture = intel->render_mask_picture;
PicturePtr dest_picture = intel->render_dest_picture;
PixmapPtr mask = intel->render_mask;
PixmapPtr dest = intel->render_dest;
sampler_state_filter_t src_filter = composite_op->src_filter;
sampler_state_filter_t mask_filter = composite_op->mask_filter;
sampler_state_extend_t src_extend = composite_op->src_extend;
sampler_state_extend_t mask_extend = composite_op->mask_extend;
uint32_t src_blend, dst_blend;
 
intel->needs_render_state_emit = FALSE;
 
/* Begin the long sequence of commands needed to set up the 3D
* rendering pipe
*/
 
if (intel->needs_3d_invariant) {
if (IS_GEN5(intel)) {
/* Ironlake errata workaround: Before disabling the clipper,
* you have to MI_FLUSH to get the pipeline idle.
*/
OUT_BATCH(MI_FLUSH | MI_INHIBIT_RENDER_CACHE_FLUSH);
}
 
/* Match Mesa driver setup */
if (INTEL_INFO(intel)->gen >= 045)
OUT_BATCH(NEW_PIPELINE_SELECT | PIPELINE_SELECT_3D);
else
OUT_BATCH(BRW_PIPELINE_SELECT | PIPELINE_SELECT_3D);
 
/* Set system instruction pointer */
OUT_BATCH(BRW_STATE_SIP | 0);
OUT_BATCH(0);
 
intel->needs_3d_invariant = FALSE;
}
 
if (intel->surface_reloc == 0) {
/* Zero out the two base address registers so all offsets are
* absolute.
*/
if (IS_GEN5(intel)) {
OUT_BATCH(BRW_STATE_BASE_ADDRESS | 6);
OUT_BATCH(0 | BASE_ADDRESS_MODIFY); /* Generate state base address */
intel->surface_reloc = intel->batch_used;
intel_batch_emit_dword(intel,
intel->surface_bo->offset | BASE_ADDRESS_MODIFY);
OUT_BATCH(0 | BASE_ADDRESS_MODIFY); /* media base addr, don't care */
OUT_BATCH(0 | BASE_ADDRESS_MODIFY); /* Instruction base address */
/* general state max addr, disabled */
OUT_BATCH(0 | BASE_ADDRESS_MODIFY);
/* media object state max addr, disabled */
OUT_BATCH(0 | BASE_ADDRESS_MODIFY);
/* Instruction max addr, disabled */
OUT_BATCH(0 | BASE_ADDRESS_MODIFY);
} else {
OUT_BATCH(BRW_STATE_BASE_ADDRESS | 4);
OUT_BATCH(0 | BASE_ADDRESS_MODIFY); /* Generate state base address */
intel->surface_reloc = intel->batch_used;
intel_batch_emit_dword(intel,
intel->surface_bo->offset | BASE_ADDRESS_MODIFY);
OUT_BATCH(0 | BASE_ADDRESS_MODIFY); /* media base addr, don't care */
/* general state max addr, disabled */
OUT_BATCH(0 | BASE_ADDRESS_MODIFY);
/* media object state max addr, disabled */
OUT_BATCH(0 | BASE_ADDRESS_MODIFY);
}
}
 
i965_get_blend_cntl(op, mask_picture, dest_picture->format,
&src_blend, &dst_blend);
 
/* Binding table pointers */
OUT_BATCH(BRW_3DSTATE_BINDING_TABLE_POINTERS | 4);
OUT_BATCH(0); /* vs */
OUT_BATCH(0); /* gs */
OUT_BATCH(0); /* clip */
OUT_BATCH(0); /* sf */
/* Only the PS uses the binding table */
OUT_BATCH(intel->surface_table);
 
/* The drawing rectangle clipping is always on. Set it to values that
* shouldn't do any clipping.
*/
OUT_BATCH(BRW_3DSTATE_DRAWING_RECTANGLE | 2);
OUT_BATCH(0x00000000); /* ymin, xmin */
OUT_BATCH(DRAW_YMAX(dest->drawable.height - 1) |
DRAW_XMAX(dest->drawable.width - 1)); /* ymax, xmax */
OUT_BATCH(0x00000000); /* yorigin, xorigin */
 
/* skip the depth buffer */
/* skip the polygon stipple */
/* skip the polygon stipple offset */
/* skip the line stipple */
 
/* Set the pointers to the 3d pipeline state */
OUT_BATCH(BRW_3DSTATE_PIPELINED_POINTERS | 5);
OUT_RELOC(render_state->vs_state_bo,
I915_GEM_DOMAIN_INSTRUCTION, 0, 0);
OUT_BATCH(BRW_GS_DISABLE); /* disable GS, resulting in passthrough */
OUT_BATCH(BRW_CLIP_DISABLE); /* disable CLIP, resulting in passthrough */
if (mask) {
OUT_RELOC(render_state->sf_mask_state_bo,
I915_GEM_DOMAIN_INSTRUCTION, 0, 0);
} else {
OUT_RELOC(render_state->sf_state_bo,
I915_GEM_DOMAIN_INSTRUCTION, 0, 0);
}
 
OUT_RELOC(render_state->wm_state_bo[composite_op->wm_kernel]
[src_filter][src_extend]
[mask_filter][mask_extend],
I915_GEM_DOMAIN_INSTRUCTION, 0, 0);
 
OUT_RELOC(render_state->cc_state_bo,
I915_GEM_DOMAIN_INSTRUCTION, 0,
offsetof(struct gen4_cc_unit_state,
cc_state[src_blend][dst_blend]));
 
{
int urb_vs_start, urb_vs_size;
int urb_gs_start, urb_gs_size;
int urb_clip_start, urb_clip_size;
int urb_sf_start, urb_sf_size;
int urb_cs_start, urb_cs_size;
 
urb_vs_start = 0;
urb_vs_size = URB_VS_ENTRIES * URB_VS_ENTRY_SIZE;
urb_gs_start = urb_vs_start + urb_vs_size;
urb_gs_size = URB_GS_ENTRIES * URB_GS_ENTRY_SIZE;
urb_clip_start = urb_gs_start + urb_gs_size;
urb_clip_size = URB_CLIP_ENTRIES * URB_CLIP_ENTRY_SIZE;
urb_sf_start = urb_clip_start + urb_clip_size;
urb_sf_size = URB_SF_ENTRIES * URB_SF_ENTRY_SIZE;
urb_cs_start = urb_sf_start + urb_sf_size;
urb_cs_size = URB_CS_ENTRIES * URB_CS_ENTRY_SIZE;
 
/* Erratum (Vol 1a, p32):
* URB_FENCE must not cross a cache-line (64 bytes).
*/
if ((intel->batch_used & 15) > (16 - 3)) {
int cnt = 16 - (intel->batch_used & 15);
while (cnt--)
OUT_BATCH(MI_NOOP);
}
 
OUT_BATCH(BRW_URB_FENCE |
UF0_CS_REALLOC |
UF0_SF_REALLOC |
UF0_CLIP_REALLOC |
UF0_GS_REALLOC |
UF0_VS_REALLOC |
1);
OUT_BATCH(((urb_clip_start + urb_clip_size) << UF1_CLIP_FENCE_SHIFT) |
((urb_gs_start + urb_gs_size) << UF1_GS_FENCE_SHIFT) |
((urb_vs_start + urb_vs_size) << UF1_VS_FENCE_SHIFT));
OUT_BATCH(((urb_cs_start + urb_cs_size) << UF2_CS_FENCE_SHIFT) |
((urb_sf_start + urb_sf_size) << UF2_SF_FENCE_SHIFT));
 
/* Constant buffer state */
OUT_BATCH(BRW_CS_URB_STATE | 0);
OUT_BATCH(((URB_CS_ENTRY_SIZE - 1) << 4) |
(URB_CS_ENTRIES << 0));
}
 
gen4_composite_vertex_elements(intel);
}
 
/**
* Returns whether the current set of composite state plus vertex buffer is
* expected to fit in the aperture.
*/
static Bool i965_composite_check_aperture(intel_screen_private *intel)
{
struct gen4_render_state *render_state = intel->gen4_render_state;
gen4_composite_op *composite_op = &render_state->composite_op;
drm_intel_bo *bo_table[] = {
intel->batch_bo,
intel->vertex_bo,
intel->surface_bo,
render_state->vs_state_bo,
render_state->sf_state_bo,
render_state->sf_mask_state_bo,
render_state->wm_state_bo[composite_op->wm_kernel]
[composite_op->src_filter]
[composite_op->src_extend]
[composite_op->mask_filter]
[composite_op->mask_extend],
render_state->cc_state_bo,
};
drm_intel_bo *gen6_bo_table[] = {
intel->batch_bo,
intel->vertex_bo,
intel->surface_bo,
render_state->wm_kernel_bo[composite_op->wm_kernel],
render_state->ps_sampler_state_bo[composite_op->src_filter]
[composite_op->src_extend]
[composite_op->mask_filter]
[composite_op->mask_extend],
render_state->cc_vp_bo,
render_state->cc_state_bo,
render_state->gen6_blend_bo,
render_state->gen6_depth_stencil_bo,
};
 
if (INTEL_INFO(intel)->gen >= 060)
return drm_intel_bufmgr_check_aperture_space(gen6_bo_table,
ARRAY_SIZE(gen6_bo_table)) == 0;
else
return drm_intel_bufmgr_check_aperture_space(bo_table,
ARRAY_SIZE(bo_table)) == 0;
}
 
static void i965_surface_flush(struct intel_screen_private *intel)
{
int ret;
 
ret = drm_intel_bo_subdata(intel->surface_bo,
0, intel->surface_used,
intel->surface_data);
assert(ret == 0);
intel->surface_used = 0;
 
assert (intel->surface_reloc != 0);
drm_intel_bo_emit_reloc(intel->batch_bo,
intel->surface_reloc * 4,
intel->surface_bo, BASE_ADDRESS_MODIFY,
I915_GEM_DOMAIN_INSTRUCTION, 0);
intel->surface_reloc = 0;
 
drm_intel_bo_unreference(intel->surface_bo);
intel->surface_bo =
drm_intel_bo_alloc(intel->bufmgr, "surface data",
sizeof(intel->surface_data), 4096);
assert(intel->surface_bo);
 
return;
(void)ret;
}
 
static void
i965_emit_composite_primitive_identity_source(intel_screen_private *intel,
int srcX, int srcY,
int maskX, int maskY,
int dstX, int dstY,
int w, int h)
{
OUT_VERTEX(dstX + w);
OUT_VERTEX(dstY + h);
OUT_VERTEX((srcX + w) * intel->scale_units[0][0]);
OUT_VERTEX((srcY + h) * intel->scale_units[0][1]);
 
OUT_VERTEX(dstX);
OUT_VERTEX(dstY + h);
OUT_VERTEX(srcX * intel->scale_units[0][0]);
OUT_VERTEX((srcY + h) * intel->scale_units[0][1]);
 
OUT_VERTEX(dstX);
OUT_VERTEX(dstY);
OUT_VERTEX(srcX * intel->scale_units[0][0]);
OUT_VERTEX(srcY * intel->scale_units[0][1]);
}
 
static void
i965_emit_composite_primitive_affine_source(intel_screen_private *intel,
int srcX, int srcY,
int maskX, int maskY,
int dstX, int dstY,
int w, int h)
{
float src_x[3], src_y[3];
 
if (!intel_get_transformed_coordinates(srcX, srcY,
intel->transform[0],
&src_x[0],
&src_y[0]))
return;
 
if (!intel_get_transformed_coordinates(srcX, srcY + h,
intel->transform[0],
&src_x[1],
&src_y[1]))
return;
 
if (!intel_get_transformed_coordinates(srcX + w, srcY + h,
intel->transform[0],
&src_x[2],
&src_y[2]))
return;
 
OUT_VERTEX(dstX + w);
OUT_VERTEX(dstY + h);
OUT_VERTEX(src_x[2] * intel->scale_units[0][0]);
OUT_VERTEX(src_y[2] * intel->scale_units[0][1]);
 
OUT_VERTEX(dstX);
OUT_VERTEX(dstY + h);
OUT_VERTEX(src_x[1] * intel->scale_units[0][0]);
OUT_VERTEX(src_y[1] * intel->scale_units[0][1]);
 
OUT_VERTEX(dstX);
OUT_VERTEX(dstY);
OUT_VERTEX(src_x[0] * intel->scale_units[0][0]);
OUT_VERTEX(src_y[0] * intel->scale_units[0][1]);
}
 
static void
i965_emit_composite_primitive_identity_source_mask(intel_screen_private *intel,
int srcX, int srcY,
int maskX, int maskY,
int dstX, int dstY,
int w, int h)
{
OUT_VERTEX(dstX + w);
OUT_VERTEX(dstY + h);
OUT_VERTEX((srcX + w) * intel->scale_units[0][0]);
OUT_VERTEX((srcY + h) * intel->scale_units[0][1]);
OUT_VERTEX((maskX + w) * intel->scale_units[1][0]);
OUT_VERTEX((maskY + h) * intel->scale_units[1][1]);
 
OUT_VERTEX(dstX);
OUT_VERTEX(dstY + h);
OUT_VERTEX(srcX * intel->scale_units[0][0]);
OUT_VERTEX((srcY + h) * intel->scale_units[0][1]);
OUT_VERTEX(maskX * intel->scale_units[1][0]);
OUT_VERTEX((maskY + h) * intel->scale_units[1][1]);
 
OUT_VERTEX(dstX);
OUT_VERTEX(dstY);
OUT_VERTEX(srcX * intel->scale_units[0][0]);
OUT_VERTEX(srcY * intel->scale_units[0][1]);
OUT_VERTEX(maskX * intel->scale_units[1][0]);
OUT_VERTEX(maskY * intel->scale_units[1][1]);
}
 
static void
i965_emit_composite_primitive(intel_screen_private *intel,
int srcX, int srcY,
int maskX, int maskY,
int dstX, int dstY,
int w, int h)
{
float src_x[3], src_y[3], src_w[3], mask_x[3], mask_y[3], mask_w[3];
Bool is_affine = intel->gen4_render_state->composite_op.is_affine;
 
if (is_affine) {
if (!intel_get_transformed_coordinates(srcX, srcY,
intel->transform[0],
&src_x[0],
&src_y[0]))
return;
 
if (!intel_get_transformed_coordinates(srcX, srcY + h,
intel->transform[0],
&src_x[1],
&src_y[1]))
return;
 
if (!intel_get_transformed_coordinates(srcX + w, srcY + h,
intel->transform[0],
&src_x[2],
&src_y[2]))
return;
} else {
if (!intel_get_transformed_coordinates_3d(srcX, srcY,
intel->transform[0],
&src_x[0],
&src_y[0],
&src_w[0]))
return;
 
if (!intel_get_transformed_coordinates_3d(srcX, srcY + h,
intel->transform[0],
&src_x[1],
&src_y[1],
&src_w[1]))
return;
 
if (!intel_get_transformed_coordinates_3d(srcX + w, srcY + h,
intel->transform[0],
&src_x[2],
&src_y[2],
&src_w[2]))
return;
}
 
if (intel->render_mask) {
if (is_affine) {
if (!intel_get_transformed_coordinates(maskX, maskY,
intel->transform[1],
&mask_x[0],
&mask_y[0]))
return;
 
if (!intel_get_transformed_coordinates(maskX, maskY + h,
intel->transform[1],
&mask_x[1],
&mask_y[1]))
return;
 
if (!intel_get_transformed_coordinates(maskX + w, maskY + h,
intel->transform[1],
&mask_x[2],
&mask_y[2]))
return;
} else {
if (!intel_get_transformed_coordinates_3d(maskX, maskY,
intel->transform[1],
&mask_x[0],
&mask_y[0],
&mask_w[0]))
return;
 
if (!intel_get_transformed_coordinates_3d(maskX, maskY + h,
intel->transform[1],
&mask_x[1],
&mask_y[1],
&mask_w[1]))
return;
 
if (!intel_get_transformed_coordinates_3d(maskX + w, maskY + h,
intel->transform[1],
&mask_x[2],
&mask_y[2],
&mask_w[2]))
return;
}
}
 
OUT_VERTEX(dstX + w);
OUT_VERTEX(dstY + h);
OUT_VERTEX(src_x[2] * intel->scale_units[0][0]);
OUT_VERTEX(src_y[2] * intel->scale_units[0][1]);
if (!is_affine)
OUT_VERTEX(src_w[2]);
if (intel->render_mask) {
OUT_VERTEX(mask_x[2] * intel->scale_units[1][0]);
OUT_VERTEX(mask_y[2] * intel->scale_units[1][1]);
if (!is_affine)
OUT_VERTEX(mask_w[2]);
}
 
OUT_VERTEX(dstX);
OUT_VERTEX(dstY + h);
OUT_VERTEX(src_x[1] * intel->scale_units[0][0]);
OUT_VERTEX(src_y[1] * intel->scale_units[0][1]);
if (!is_affine)
OUT_VERTEX(src_w[1]);
if (intel->render_mask) {
OUT_VERTEX(mask_x[1] * intel->scale_units[1][0]);
OUT_VERTEX(mask_y[1] * intel->scale_units[1][1]);
if (!is_affine)
OUT_VERTEX(mask_w[1]);
}
 
OUT_VERTEX(dstX);
OUT_VERTEX(dstY);
OUT_VERTEX(src_x[0] * intel->scale_units[0][0]);
OUT_VERTEX(src_y[0] * intel->scale_units[0][1]);
if (!is_affine)
OUT_VERTEX(src_w[0]);
if (intel->render_mask) {
OUT_VERTEX(mask_x[0] * intel->scale_units[1][0]);
OUT_VERTEX(mask_y[0] * intel->scale_units[1][1]);
if (!is_affine)
OUT_VERTEX(mask_w[0]);
}
}
 
Bool
i965_prepare_composite(int op, PicturePtr source_picture,
PicturePtr mask_picture, PicturePtr dest_picture,
PixmapPtr source, PixmapPtr mask, PixmapPtr dest)
{
intel_screen_private *intel = intel_get_screen_private();
struct gen4_render_state *render_state = intel->gen4_render_state;
gen4_composite_op *composite_op = &render_state->composite_op;
 
composite_op->src_filter =
sampler_state_filter_from_picture(source_picture->filter);
if (composite_op->src_filter == SS_INVALID_FILTER) {
intel_debug_fallback("Bad src filter 0x%x\n",
source_picture->filter);
return FALSE;
}
composite_op->src_extend =
sampler_state_extend_from_picture(source_picture->repeatType);
if (composite_op->src_extend == SS_INVALID_EXTEND) {
intel_debug_fallback("Bad src repeat 0x%x\n",
source_picture->repeatType);
return FALSE;
}
 
if (mask_picture) {
if (mask_picture->componentAlpha &&
PICT_FORMAT_RGB(mask_picture->format)) {
/* Check if it's component alpha that relies on a source alpha and on
* the source value. We can only get one of those into the single
* source value that we get to blend with.
*/
if (i965_blend_op[op].src_alpha &&
(i965_blend_op[op].src_blend != BRW_BLENDFACTOR_ZERO)) {
intel_debug_fallback("Component alpha not supported "
"with source alpha and source "
"value blending.\n");
return FALSE;
}
}
 
composite_op->mask_filter =
sampler_state_filter_from_picture(mask_picture->filter);
if (composite_op->mask_filter == SS_INVALID_FILTER) {
intel_debug_fallback("Bad mask filter 0x%x\n",
mask_picture->filter);
return FALSE;
}
composite_op->mask_extend =
sampler_state_extend_from_picture(mask_picture->repeatType);
if (composite_op->mask_extend == SS_INVALID_EXTEND) {
intel_debug_fallback("Bad mask repeat 0x%x\n",
mask_picture->repeatType);
return FALSE;
}
} else {
composite_op->mask_filter = SS_FILTER_NEAREST;
composite_op->mask_extend = SS_EXTEND_NONE;
}
 
/* Flush any pending writes prior to relocating the textures. */
if (intel_pixmap_is_dirty(source) || intel_pixmap_is_dirty(mask))
intel_batch_emit_flush();
 
composite_op->op = op;
intel->render_source_picture = source_picture;
intel->render_mask_picture = mask_picture;
intel->render_dest_picture = dest_picture;
intel->render_source = source;
intel->render_mask = mask;
intel->render_dest = dest;
 
intel->scale_units[0][0] = 1. / source->drawable.width;
intel->scale_units[0][1] = 1. / source->drawable.height;
 
intel->transform[0] = source_picture->transform;
composite_op->is_affine = intel_transform_is_affine(intel->transform[0]);
 
if (mask_picture == NULL) {
intel->transform[1] = NULL;
intel->scale_units[1][0] = -1;
intel->scale_units[1][1] = -1;
} else {
assert(mask != NULL);
intel->transform[1] = mask_picture->transform;
intel->scale_units[1][0] = 1. / mask->drawable.width;
intel->scale_units[1][1] = 1. / mask->drawable.height;
composite_op->is_affine &=
intel_transform_is_affine(intel->transform[1]);
}
 
if (mask) {
if (mask_picture->componentAlpha &&
PICT_FORMAT_RGB(mask_picture->format)) {
if (i965_blend_op[op].src_alpha) {
if (composite_op->is_affine)
composite_op->wm_kernel =
WM_KERNEL_MASKCA_SRCALPHA_AFFINE;
else
composite_op->wm_kernel =
WM_KERNEL_MASKCA_SRCALPHA_PROJECTIVE;
} else {
if (composite_op->is_affine)
composite_op->wm_kernel =
WM_KERNEL_MASKCA_AFFINE;
else
composite_op->wm_kernel =
WM_KERNEL_MASKCA_PROJECTIVE;
}
} else {
if (composite_op->is_affine)
composite_op->wm_kernel =
WM_KERNEL_MASKNOCA_AFFINE;
else
composite_op->wm_kernel =
WM_KERNEL_MASKNOCA_PROJECTIVE;
}
} else {
if (composite_op->is_affine)
composite_op->wm_kernel = WM_KERNEL_NOMASK_AFFINE;
else
composite_op->wm_kernel = WM_KERNEL_NOMASK_PROJECTIVE;
}
 
intel->prim_emit = i965_emit_composite_primitive;
if (!mask) {
if (intel->transform[0] == NULL)
intel->prim_emit = i965_emit_composite_primitive_identity_source;
else if (composite_op->is_affine)
intel->prim_emit = i965_emit_composite_primitive_affine_source;
} else {
if (intel->transform[0] == NULL && intel->transform[1] == NULL)
intel->prim_emit = i965_emit_composite_primitive_identity_source_mask;
}
 
intel->floats_per_vertex =
2 + (mask ? 2 : 1) * (composite_op->is_affine ? 2: 3);
 
if (!i965_composite_check_aperture(intel)) {
intel_batch_submit();
if (!i965_composite_check_aperture(intel)) {
intel_debug_fallback("Couldn't fit render operation "
"in aperture\n");
return FALSE;
}
}
 
if (sizeof(intel->surface_data) - intel->surface_used <
4 * SURFACE_STATE_PADDED_SIZE)
i965_surface_flush(intel);
 
intel->needs_render_state_emit = TRUE;
 
return TRUE;
}
 
static void i965_select_vertex_buffer(struct intel_screen_private *intel)
{
int id = intel->gen4_render_state->composite_op.vertex_id;
int modifyenable = 0;
 
if (intel->vertex_id & (1 << id))
return;
 
if (INTEL_INFO(intel)->gen >= 070)
modifyenable = GEN7_VB0_ADDRESS_MODIFYENABLE;
 
/* Set up the pointer to our (single) vertex buffer */
OUT_BATCH(BRW_3DSTATE_VERTEX_BUFFERS | 3);
 
/* XXX could use multiple vbo to reduce relocations if
* frequently switching between vertex sizes, like rgb10text.
*/
if (INTEL_INFO(intel)->gen >= 060) {
OUT_BATCH((id << GEN6_VB0_BUFFER_INDEX_SHIFT) |
GEN6_VB0_VERTEXDATA |
modifyenable |
(4*intel->floats_per_vertex << VB0_BUFFER_PITCH_SHIFT));
} else {
OUT_BATCH((id << VB0_BUFFER_INDEX_SHIFT) |
VB0_VERTEXDATA |
(4*intel->floats_per_vertex << VB0_BUFFER_PITCH_SHIFT));
}
OUT_RELOC(intel->vertex_bo, I915_GEM_DOMAIN_VERTEX, 0, 0);
if (INTEL_INFO(intel)->gen >= 050)
OUT_RELOC(intel->vertex_bo,
I915_GEM_DOMAIN_VERTEX, 0,
sizeof(intel->vertex_ptr) - 1);
else
OUT_BATCH(0);
OUT_BATCH(0); // ignore for VERTEXDATA, but still there
 
intel->vertex_id |= 1 << id;
}
 
static void i965_bind_surfaces(struct intel_screen_private *intel)
{
uint32_t *binding_table;
 
assert(intel->surface_used + 4 * SURFACE_STATE_PADDED_SIZE <= sizeof(intel->surface_data));
 
binding_table = (uint32_t*) (intel->surface_data + intel->surface_used);
intel->surface_table = intel->surface_used;
intel->surface_used += SURFACE_STATE_PADDED_SIZE;
 
binding_table[0] =
i965_set_picture_surface_state(intel,
intel->render_dest_picture,
intel->render_dest,
TRUE);
binding_table[1] =
i965_set_picture_surface_state(intel,
intel->render_source_picture,
intel->render_source,
FALSE);
if (intel->render_mask) {
binding_table[2] =
i965_set_picture_surface_state(intel,
intel->render_mask_picture,
intel->render_mask,
FALSE);
}
}
 
void
i965_composite(PixmapPtr dest, int srcX, int srcY, int maskX, int maskY,
int dstX, int dstY, int w, int h)
{
intel_screen_private *intel = intel_get_screen_private();
 
intel_batch_start_atomic(200);
if (intel->needs_render_state_emit) {
i965_bind_surfaces(intel);
 
if (INTEL_INFO(intel)->gen >= 060)
gen6_emit_composite_state(intel);
else
i965_emit_composite_state(intel);
}
 
if (intel->floats_per_vertex != intel->last_floats_per_vertex) {
intel->vertex_index = (intel->vertex_used + intel->floats_per_vertex - 1) / intel->floats_per_vertex;
intel->vertex_used = intel->vertex_index * intel->floats_per_vertex;
intel->last_floats_per_vertex = intel->floats_per_vertex;
}
if (intel_vertex_space(intel) < 3*4*intel->floats_per_vertex) {
i965_vertex_flush(intel);
intel_next_vertex(intel);
intel->vertex_index = 0;
}
i965_select_vertex_buffer(intel);
 
if (intel->vertex_offset == 0) {
if (INTEL_INFO(intel)->gen >= 070) {
OUT_BATCH(BRW_3DPRIMITIVE | (7 - 2));
OUT_BATCH(BRW_3DPRIMITIVE_VERTEX_SEQUENTIAL |
_3DPRIM_RECTLIST);
} else {
OUT_BATCH(BRW_3DPRIMITIVE |
BRW_3DPRIMITIVE_VERTEX_SEQUENTIAL |
(_3DPRIM_RECTLIST << BRW_3DPRIMITIVE_TOPOLOGY_SHIFT) |
(0 << 9) |
4);
}
intel->vertex_offset = intel->batch_used;
OUT_BATCH(0); /* vertex count, to be filled in later */
OUT_BATCH(intel->vertex_index);
OUT_BATCH(1); /* single instance */
OUT_BATCH(0); /* start instance location */
OUT_BATCH(0); /* index buffer offset, ignored */
intel->vertex_count = intel->vertex_index;
}
 
intel->prim_emit(intel,
srcX, srcY,
maskX, maskY,
dstX, dstY,
w, h);
intel->vertex_index += 3;
 
if (INTEL_INFO(intel)->gen < 050) {
/* XXX OMG! */
i965_vertex_flush(intel);
OUT_BATCH(MI_FLUSH | MI_INHIBIT_RENDER_CACHE_FLUSH);
}
 
intel_batch_end_atomic();
}
 
void i965_batch_commit_notify(intel_screen_private *intel)
{
intel->needs_render_state_emit = TRUE;
intel->needs_3d_invariant = TRUE;
intel->last_floats_per_vertex = 0;
intel->vertex_index = 0;
 
intel->gen4_render_state->composite_op.vertex_id = -1;
 
intel->gen6_render_state.num_sf_outputs = 0;
intel->gen6_render_state.samplers = NULL;
intel->gen6_render_state.blend = -1;
intel->gen6_render_state.kernel = NULL;
intel->gen6_render_state.drawrect = -1;
 
assert(intel->surface_reloc == 0);
}
 
/**
* Called at EnterVT so we can set up our offsets into the state buffer.
*/
void gen4_render_state_init()
{
ENTER();
 
intel_screen_private *intel = intel_get_screen_private();
struct gen4_render_state *render;
const struct wm_kernel_info *wm_kernels;
sampler_state_filter_t src_filter;
sampler_state_extend_t src_extend;
sampler_state_filter_t mask_filter;
sampler_state_extend_t mask_extend;
drm_intel_bo *sf_kernel_bo, *sf_kernel_mask_bo;
drm_intel_bo *border_color_bo;
int m;
 
intel->needs_3d_invariant = TRUE;
 
intel->surface_bo =
drm_intel_bo_alloc(intel->bufmgr, "surface data",
sizeof(intel->surface_data), 4096);
assert(intel->surface_bo);
 
intel->surface_used = 0;
 
if (intel->gen4_render_state == NULL) {
intel->gen4_render_state = calloc(1, sizeof(*render));
assert(intel->gen4_render_state != NULL);
}
 
if (INTEL_INFO(intel)->gen >= 060)
return gen6_render_state_init();
 
render = intel->gen4_render_state;
render->composite_op.vertex_id = -1;
 
render->vs_state_bo = gen4_create_vs_unit_state(intel);
 
/* Set up the two SF states (one for blending with a mask, one without) */
if (IS_GEN5(intel)) {
sf_kernel_bo = intel_bo_alloc_for_data(intel,
sf_kernel_static_gen5,
sizeof
(sf_kernel_static_gen5),
"sf kernel gen5");
sf_kernel_mask_bo =
intel_bo_alloc_for_data(intel, sf_kernel_mask_static_gen5,
sizeof(sf_kernel_mask_static_gen5),
"sf mask kernel");
} else {
sf_kernel_bo = intel_bo_alloc_for_data(intel,
sf_kernel_static,
sizeof(sf_kernel_static),
"sf kernel");
sf_kernel_mask_bo = intel_bo_alloc_for_data(intel,
sf_kernel_mask_static,
sizeof
(sf_kernel_mask_static),
"sf mask kernel");
}
render->sf_state_bo = gen4_create_sf_state(intel, sf_kernel_bo);
render->sf_mask_state_bo = gen4_create_sf_state(intel, sf_kernel_mask_bo);
drm_intel_bo_unreference(sf_kernel_bo);
drm_intel_bo_unreference(sf_kernel_mask_bo);
 
wm_kernels = IS_GEN5(intel) ? wm_kernels_gen5 : wm_kernels_gen4;
for (m = 0; m < KERNEL_COUNT; m++) {
render->wm_kernel_bo[m] =
intel_bo_alloc_for_data(intel,
wm_kernels[m].data,
wm_kernels[m].size,
"WM kernel");
}
 
/* Set up the WM states: each filter/extend type for source and mask, per
* kernel.
*/
border_color_bo = sampler_border_color_create(intel);
for (src_filter = 0; src_filter < FILTER_COUNT; src_filter++) {
for (src_extend = 0; src_extend < EXTEND_COUNT; src_extend++) {
for (mask_filter = 0; mask_filter < FILTER_COUNT; mask_filter++) {
for (mask_extend = 0; mask_extend < EXTEND_COUNT; mask_extend++) {
drm_intel_bo *sampler_state_bo;
 
sampler_state_bo =
i965_create_sampler_state(intel,
src_filter, src_extend,
mask_filter, mask_extend,
border_color_bo);
 
for (m = 0; m < KERNEL_COUNT; m++) {
render->wm_state_bo[m][src_filter][src_extend][mask_filter][mask_extend] =
gen4_create_wm_state
(intel,
wm_kernels[m]. has_mask,
render->wm_kernel_bo[m],
sampler_state_bo);
}
drm_intel_bo_unreference(sampler_state_bo);
}
}
}
}
drm_intel_bo_unreference(border_color_bo);
 
render->cc_state_bo = gen4_create_cc_unit_state(intel);
 
LEAVE();
}
 
/**
* Called at LeaveVT.
*/
void gen4_render_state_cleanup(ScrnInfoPtr scrn)
{
intel_screen_private *intel = intel_get_screen_private(scrn);
struct gen4_render_state *render_state = intel->gen4_render_state;
int i, j, k, l, m;
 
drm_intel_bo_unreference(intel->surface_bo);
drm_intel_bo_unreference(render_state->vs_state_bo);
drm_intel_bo_unreference(render_state->sf_state_bo);
drm_intel_bo_unreference(render_state->sf_mask_state_bo);
 
for (i = 0; i < KERNEL_COUNT; i++)
drm_intel_bo_unreference(render_state->wm_kernel_bo[i]);
 
for (i = 0; i < FILTER_COUNT; i++)
for (j = 0; j < EXTEND_COUNT; j++)
for (k = 0; k < FILTER_COUNT; k++)
for (l = 0; l < EXTEND_COUNT; l++)
for (m = 0; m < KERNEL_COUNT; m++)
drm_intel_bo_unreference
(render_state->
wm_state_bo[m][i][j][k]
[l]);
 
for (i = 0; i < FILTER_COUNT; i++)
for (j = 0; j < EXTEND_COUNT; j++)
for (k = 0; k < FILTER_COUNT; k++)
for (l = 0; l < EXTEND_COUNT; l++)
drm_intel_bo_unreference(render_state->ps_sampler_state_bo[i][j][k][l]);
 
drm_intel_bo_unreference(render_state->cc_state_bo);
 
drm_intel_bo_unreference(render_state->cc_vp_bo);
drm_intel_bo_unreference(render_state->gen6_blend_bo);
drm_intel_bo_unreference(render_state->gen6_depth_stencil_bo);
 
free(intel->gen4_render_state);
intel->gen4_render_state = NULL;
}
 
/*
* for GEN6+
*/
#define GEN6_BLEND_STATE_PADDED_SIZE ALIGN(sizeof(struct gen6_blend_state), 64)
 
static drm_intel_bo *
gen6_composite_create_cc_state(intel_screen_private *intel)
{
struct gen6_color_calc_state *state;
drm_intel_bo *cc_bo;
int ret;
 
cc_bo = drm_intel_bo_alloc(intel->bufmgr,
"gen6 CC state",
sizeof(*state),
4096);
assert(cc_bo);
 
ret = drm_intel_bo_map(cc_bo, TRUE);
assert(ret == 0);
 
state = memset(cc_bo->virtual, 0, sizeof(*state));
state->constant_r = 1.0;
state->constant_g = 0.0;
state->constant_b = 1.0;
state->constant_a = 1.0;
drm_intel_bo_unmap(cc_bo);
 
return cc_bo;
(void)ret;
}
 
static drm_intel_bo *
gen6_composite_create_blend_state(intel_screen_private *intel)
{
drm_intel_bo *blend_bo;
int src, dst, ret;
 
blend_bo = drm_intel_bo_alloc(intel->bufmgr,
"gen6 BLEND state",
BRW_BLENDFACTOR_COUNT * BRW_BLENDFACTOR_COUNT * GEN6_BLEND_STATE_PADDED_SIZE,
4096);
assert(blend_bo);
 
ret = drm_intel_bo_map(blend_bo, TRUE);
assert(ret == 0);
 
memset(blend_bo->virtual, 0, blend_bo->size);
for (src = 0; src < BRW_BLENDFACTOR_COUNT; src++) {
for (dst = 0; dst < BRW_BLENDFACTOR_COUNT; dst++) {
uint32_t blend_state_offset = (src * BRW_BLENDFACTOR_COUNT + dst) * GEN6_BLEND_STATE_PADDED_SIZE;
struct gen6_blend_state *blend;
 
blend = (struct gen6_blend_state *)((char *)blend_bo->virtual + blend_state_offset);
blend->blend0.dest_blend_factor = dst;
blend->blend0.source_blend_factor = src;
blend->blend0.blend_func = BRW_BLENDFUNCTION_ADD;
blend->blend0.blend_enable = 1;
 
blend->blend1.post_blend_clamp_enable = 1;
blend->blend1.pre_blend_clamp_enable = 1;
}
}
 
drm_intel_bo_unmap(blend_bo);
return blend_bo;
(void)ret;
}
 
static drm_intel_bo *
gen6_composite_create_depth_stencil_state(intel_screen_private *intel)
{
drm_intel_bo *depth_stencil_bo;
int ret;
 
depth_stencil_bo =
drm_intel_bo_alloc(intel->bufmgr,
"gen6 DEPTH_STENCIL state",
sizeof(struct gen6_depth_stencil_state),
4096);
assert(depth_stencil_bo);
 
ret = drm_intel_bo_map(depth_stencil_bo, TRUE);
assert(ret == 0);
 
memset(depth_stencil_bo->virtual, 0,
sizeof(struct gen6_depth_stencil_state));
drm_intel_bo_unmap(depth_stencil_bo);
 
return depth_stencil_bo;
(void)ret;
}
 
static void
gen6_composite_state_base_address(intel_screen_private *intel)
{
OUT_BATCH(BRW_STATE_BASE_ADDRESS | (10 - 2));
OUT_BATCH(BASE_ADDRESS_MODIFY); /* General state base address */
intel->surface_reloc = intel->batch_used;
intel_batch_emit_dword(intel,
intel->surface_bo->offset | BASE_ADDRESS_MODIFY);
OUT_BATCH(BASE_ADDRESS_MODIFY); /* Dynamic state base address */
OUT_BATCH(BASE_ADDRESS_MODIFY); /* Indirect object base address */
OUT_BATCH(BASE_ADDRESS_MODIFY); /* Instruction base address */
OUT_BATCH(BASE_ADDRESS_MODIFY); /* General state upper bound */
OUT_BATCH(BASE_ADDRESS_MODIFY); /* Dynamic state upper bound */
OUT_BATCH(BASE_ADDRESS_MODIFY); /* Indirect object upper bound */
OUT_BATCH(BASE_ADDRESS_MODIFY); /* Instruction access upper bound */
}
 
static void
gen6_composite_cc_state_pointers(intel_screen_private *intel,
uint32_t blend_offset)
{
struct gen4_render_state *render_state = intel->gen4_render_state;
drm_intel_bo *cc_bo = NULL;
drm_intel_bo *depth_stencil_bo = NULL;
 
if (intel->gen6_render_state.blend == blend_offset)
return;
 
if (intel->gen6_render_state.blend == -1) {
cc_bo = render_state->cc_state_bo;
depth_stencil_bo = render_state->gen6_depth_stencil_bo;
}
if (INTEL_INFO(intel)->gen >= 070) {
gen7_upload_cc_state_pointers(intel, render_state->gen6_blend_bo, cc_bo, depth_stencil_bo, blend_offset);
} else {
gen6_upload_cc_state_pointers(intel, render_state->gen6_blend_bo, cc_bo, depth_stencil_bo, blend_offset);
}
 
intel->gen6_render_state.blend = blend_offset;
}
 
static void
gen6_composite_sampler_state_pointers(intel_screen_private *intel,
drm_intel_bo *bo)
{
if (intel->gen6_render_state.samplers == bo)
return;
 
intel->gen6_render_state.samplers = bo;
 
if (INTEL_INFO(intel)->gen >= 070)
gen7_upload_sampler_state_pointers(intel, bo);
else
gen6_upload_sampler_state_pointers(intel, bo);
}
 
static void
gen6_composite_wm_constants(intel_screen_private *intel)
{
Bool ivb = INTEL_INFO(intel)->gen >= 070;
/* disable WM constant buffer */
OUT_BATCH(GEN6_3DSTATE_CONSTANT_PS | ((ivb ? 7 : 5) - 2));
OUT_BATCH(0);
OUT_BATCH(0);
OUT_BATCH(0);
OUT_BATCH(0);
if (ivb) {
OUT_BATCH(0);
OUT_BATCH(0);
}
}
 
static void
gen6_composite_sf_state(intel_screen_private *intel,
Bool has_mask)
{
int num_sf_outputs = has_mask ? 2 : 1;
 
if (intel->gen6_render_state.num_sf_outputs == num_sf_outputs)
return;
 
intel->gen6_render_state.num_sf_outputs = num_sf_outputs;
 
if (INTEL_INFO(intel)->gen >= 070)
gen7_upload_sf_state(intel, num_sf_outputs, 1);
else
gen6_upload_sf_state(intel, num_sf_outputs, 1);
}
 
static void
gen6_composite_wm_state(intel_screen_private *intel,
Bool has_mask,
drm_intel_bo *bo)
{
int num_surfaces = has_mask ? 3 : 2;
int num_sf_outputs = has_mask ? 2 : 1;
 
if (intel->gen6_render_state.kernel == bo)
return;
 
intel->gen6_render_state.kernel = bo;
 
OUT_BATCH(GEN6_3DSTATE_WM | (9 - 2));
OUT_RELOC(bo,
I915_GEM_DOMAIN_INSTRUCTION, 0,
0);
OUT_BATCH((1 << GEN6_3DSTATE_WM_SAMPLER_COUNT_SHITF) |
(num_surfaces << GEN6_3DSTATE_WM_BINDING_TABLE_ENTRY_COUNT_SHIFT));
OUT_BATCH(0);
OUT_BATCH((6 << GEN6_3DSTATE_WM_DISPATCH_START_GRF_0_SHIFT)); /* DW4 */
OUT_BATCH(((40 - 1) << GEN6_3DSTATE_WM_MAX_THREADS_SHIFT) |
GEN6_3DSTATE_WM_DISPATCH_ENABLE |
GEN6_3DSTATE_WM_16_DISPATCH_ENABLE);
OUT_BATCH((num_sf_outputs << GEN6_3DSTATE_WM_NUM_SF_OUTPUTS_SHIFT) |
GEN6_3DSTATE_WM_PERSPECTIVE_PIXEL_BARYCENTRIC);
OUT_BATCH(0);
OUT_BATCH(0);
}
 
static void
gen7_composite_wm_state(intel_screen_private *intel,
Bool has_mask,
drm_intel_bo *bo)
{
int num_surfaces = has_mask ? 3 : 2;
unsigned int max_threads_shift = GEN7_PS_MAX_THREADS_SHIFT_IVB;
unsigned int num_samples = 0;
 
if (IS_HSW(intel)) {
max_threads_shift = GEN7_PS_MAX_THREADS_SHIFT_HSW;
num_samples = 1 << GEN7_PS_SAMPLE_MASK_SHIFT_HSW;
}
 
if (intel->gen6_render_state.kernel == bo)
return;
 
intel->gen6_render_state.kernel = bo;
 
OUT_BATCH(GEN6_3DSTATE_WM | (3 - 2));
OUT_BATCH(GEN7_WM_DISPATCH_ENABLE |
GEN7_WM_PERSPECTIVE_PIXEL_BARYCENTRIC);
OUT_BATCH(0);
 
OUT_BATCH(GEN7_3DSTATE_PS | (8 - 2));
OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, 0, 0);
OUT_BATCH((1 << GEN7_PS_SAMPLER_COUNT_SHIFT) |
(num_surfaces << GEN7_PS_BINDING_TABLE_ENTRY_COUNT_SHIFT));
OUT_BATCH(0); /* scratch space base offset */
OUT_BATCH(((48 - 1) << max_threads_shift) | num_samples |
GEN7_PS_ATTRIBUTE_ENABLE |
GEN7_PS_16_DISPATCH_ENABLE);
OUT_BATCH((6 << GEN7_PS_DISPATCH_START_GRF_SHIFT_0));
OUT_BATCH(0); /* kernel 1 pointer */
OUT_BATCH(0); /* kernel 2 pointer */
}
 
 
static void
gen6_composite_drawing_rectangle(intel_screen_private *intel,
PixmapPtr dest)
{
uint32_t dw =
DRAW_YMAX(dest->drawable.height - 1) |
DRAW_XMAX(dest->drawable.width - 1);
 
/* XXX cacomposite depends upon the implicit non-pipelined flush */
if (0 && intel->gen6_render_state.drawrect == dw)
return;
intel->gen6_render_state.drawrect = dw;
 
OUT_BATCH(BRW_3DSTATE_DRAWING_RECTANGLE | (4 - 2));
OUT_BATCH(0x00000000); /* ymin, xmin */
OUT_BATCH(dw); /* ymax, xmax */
OUT_BATCH(0x00000000); /* yorigin, xorigin */
}
 
static void
gen6_composite_vertex_element_state(intel_screen_private *intel,
Bool has_mask,
Bool is_affine)
{
/*
* vertex data in vertex buffer
* position: (x, y)
* texture coordinate 0: (u0, v0) if (is_affine is TRUE) else (u0, v0, w0)
* texture coordinate 1 if (has_mask is TRUE): same as above
*/
gen4_composite_op *composite_op = &intel->gen4_render_state->composite_op;
int nelem = has_mask ? 2 : 1;
int selem = is_affine ? 2 : 3;
uint32_t w_component;
uint32_t src_format;
int id;
 
id = has_mask << 1 | is_affine;
 
if (composite_op->vertex_id == id)
return;
 
composite_op->vertex_id = id;
 
if (is_affine) {
src_format = BRW_SURFACEFORMAT_R32G32_FLOAT;
w_component = BRW_VFCOMPONENT_STORE_1_FLT;
} else {
src_format = BRW_SURFACEFORMAT_R32G32B32_FLOAT;
w_component = BRW_VFCOMPONENT_STORE_SRC;
}
 
/* The VUE layout
* dword 0-3: pad (0.0, 0.0, 0.0. 0.0)
* dword 4-7: position (x, y, 1.0, 1.0),
* dword 8-11: texture coordinate 0 (u0, v0, w0, 1.0)
* dword 12-15: texture coordinate 1 (u1, v1, w1, 1.0)
*
* dword 4-15 are fetched from vertex buffer
*/
OUT_BATCH(BRW_3DSTATE_VERTEX_ELEMENTS |
((2 * (2 + nelem)) + 1 - 2));
 
OUT_BATCH((id << GEN6_VE0_VERTEX_BUFFER_INDEX_SHIFT) | GEN6_VE0_VALID |
(BRW_SURFACEFORMAT_R32G32_FLOAT << VE0_FORMAT_SHIFT) |
(0 << VE0_OFFSET_SHIFT));
OUT_BATCH((BRW_VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_0_SHIFT) |
(BRW_VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_1_SHIFT) |
(BRW_VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_2_SHIFT) |
(BRW_VFCOMPONENT_STORE_0 << VE1_VFCOMPONENT_3_SHIFT));
 
/* x,y */
OUT_BATCH((id << GEN6_VE0_VERTEX_BUFFER_INDEX_SHIFT) | GEN6_VE0_VALID |
(BRW_SURFACEFORMAT_R32G32_FLOAT << VE0_FORMAT_SHIFT) |
(0 << VE0_OFFSET_SHIFT)); /* offsets vb in bytes */
OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) |
(BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_2_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT));
 
/* u0, v0, w0 */
OUT_BATCH((id << GEN6_VE0_VERTEX_BUFFER_INDEX_SHIFT) | GEN6_VE0_VALID |
(src_format << VE0_FORMAT_SHIFT) |
((2 * 4) << VE0_OFFSET_SHIFT)); /* offset vb in bytes */
OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) |
(BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) |
(w_component << VE1_VFCOMPONENT_2_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT));
 
/* u1, v1, w1 */
if (has_mask) {
OUT_BATCH((id << GEN6_VE0_VERTEX_BUFFER_INDEX_SHIFT) |
GEN6_VE0_VALID |
(src_format << VE0_FORMAT_SHIFT) |
(((2 + selem) * 4) << VE0_OFFSET_SHIFT)); /* vb offset in bytes */
OUT_BATCH((BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_0_SHIFT) |
(BRW_VFCOMPONENT_STORE_SRC << VE1_VFCOMPONENT_1_SHIFT) |
(w_component << VE1_VFCOMPONENT_2_SHIFT) |
(BRW_VFCOMPONENT_STORE_1_FLT << VE1_VFCOMPONENT_3_SHIFT));
}
}
 
static void
gen6_emit_composite_state(struct intel_screen_private *intel)
{
struct gen4_render_state *render = intel->gen4_render_state;
gen4_composite_op *composite_op = &render->composite_op;
sampler_state_filter_t src_filter = composite_op->src_filter;
sampler_state_filter_t mask_filter = composite_op->mask_filter;
sampler_state_extend_t src_extend = composite_op->src_extend;
sampler_state_extend_t mask_extend = composite_op->mask_extend;
Bool is_affine = composite_op->is_affine;
Bool has_mask = intel->render_mask != NULL;
Bool ivb = INTEL_INFO(intel)->gen >= 070;
uint32_t src, dst;
drm_intel_bo *ps_sampler_state_bo = render->ps_sampler_state_bo[src_filter][src_extend][mask_filter][mask_extend];
 
intel->needs_render_state_emit = FALSE;
if (intel->needs_3d_invariant) {
gen6_upload_invariant_states(intel);
 
if (ivb) {
gen7_upload_viewport_state_pointers(intel, render->cc_vp_bo);
gen7_upload_urb(intel);
gen7_upload_bypass_states(intel);
gen7_upload_depth_buffer_state(intel);
} else {
gen6_upload_invariant_states(intel);
gen6_upload_viewport_state_pointers(intel, render->cc_vp_bo);
gen6_upload_urb(intel);
 
gen6_upload_gs_state(intel);
gen6_upload_depth_buffer_state(intel);
}
gen6_composite_wm_constants(intel);
gen6_upload_vs_state(intel);
gen6_upload_clip_state(intel);
 
intel->needs_3d_invariant = FALSE;
}
 
i965_get_blend_cntl(composite_op->op,
intel->render_mask_picture,
intel->render_dest_picture->format,
&src, &dst);
 
if (intel->surface_reloc == 0)
gen6_composite_state_base_address(intel);
 
gen6_composite_cc_state_pointers(intel,
(src * BRW_BLENDFACTOR_COUNT + dst) * GEN6_BLEND_STATE_PADDED_SIZE);
gen6_composite_sampler_state_pointers(intel, ps_sampler_state_bo);
gen6_composite_sf_state(intel, has_mask);
if (ivb) {
gen7_composite_wm_state(intel, has_mask,
render->wm_kernel_bo[composite_op->wm_kernel]);
gen7_upload_binding_table(intel, intel->surface_table);
} else {
gen6_composite_wm_state(intel, has_mask,
render->wm_kernel_bo[composite_op->wm_kernel]);
gen6_upload_binding_table(intel, intel->surface_table);
}
gen6_composite_drawing_rectangle(intel, intel->render_dest);
gen6_composite_vertex_element_state(intel, has_mask, is_affine);
}
 
static void
gen6_render_state_init()
{
ENTER();
 
intel_screen_private *intel = intel_get_screen_private();
struct gen4_render_state *render;
sampler_state_filter_t src_filter;
sampler_state_filter_t mask_filter;
sampler_state_extend_t src_extend;
sampler_state_extend_t mask_extend;
int m;
drm_intel_bo *border_color_bo;
const struct wm_kernel_info *wm_kernels;
 
render= intel->gen4_render_state;
render->composite_op.vertex_id = -1;
 
intel->gen6_render_state.num_sf_outputs = 0;
intel->gen6_render_state.samplers = NULL;
intel->gen6_render_state.blend = -1;
intel->gen6_render_state.kernel = NULL;
intel->gen6_render_state.drawrect = -1;
 
wm_kernels = IS_GEN7(intel) ? wm_kernels_gen7 : wm_kernels_gen6;
for (m = 0; m < KERNEL_COUNT; m++) {
render->wm_kernel_bo[m] =
intel_bo_alloc_for_data(intel,
wm_kernels[m].data,
wm_kernels[m].size,
"WM kernel gen6/7");
}
 
border_color_bo = sampler_border_color_create(intel);
 
for (src_filter = 0; src_filter < FILTER_COUNT; src_filter++) {
for (src_extend = 0; src_extend < EXTEND_COUNT; src_extend++) {
for (mask_filter = 0; mask_filter < FILTER_COUNT; mask_filter++) {
for (mask_extend = 0; mask_extend < EXTEND_COUNT; mask_extend++) {
render->ps_sampler_state_bo[src_filter][src_extend][mask_filter][mask_extend] =
i965_create_sampler_state(intel,
src_filter, src_extend,
mask_filter, mask_extend,
border_color_bo);
}
}
}
}
 
drm_intel_bo_unreference(border_color_bo);
render->cc_vp_bo = gen4_create_cc_viewport(intel);
render->cc_state_bo = gen6_composite_create_cc_state(intel);
render->gen6_blend_bo = gen6_composite_create_blend_state(intel);
render->gen6_depth_stencil_bo = gen6_composite_create_depth_stencil_state(intel);
 
LEAVE();
}
 
void i965_vertex_flush(struct intel_screen_private *intel)
{
if (intel->vertex_offset) {
intel->batch_ptr[intel->vertex_offset] =
intel->vertex_index - intel->vertex_count;
intel->vertex_offset = 0;
}
}
 
void i965_batch_flush(struct intel_screen_private *intel)
{
if (intel->surface_used)
i965_surface_flush(intel);
}
 
 
#if HAS_DEVPRIVATEKEYREC
DevPrivateKeyRec uxa_pixmap_index;
#else
int uxa_pixmap_index;
#endif
 
#define xFixedToFloat(val) \
((float)xFixedToInt(val) + ((float)xFixedFrac(val) / 65536.0))
 
static Bool
_intel_transform_point(PictTransformPtr transform,
float x, float y, float result[3])
{
int j;
 
for (j = 0; j < 3; j++) {
result[j] = (xFixedToFloat(transform->matrix[j][0]) * x +
xFixedToFloat(transform->matrix[j][1]) * y +
xFixedToFloat(transform->matrix[j][2]));
}
if (!result[2])
return FALSE;
return TRUE;
}
 
/**
* Returns the floating-point coordinates transformed by the given transform.
*
* transform may be null.
*/
Bool
intel_get_transformed_coordinates(int x, int y, PictTransformPtr transform,
float *x_out, float *y_out)
{
if (transform == NULL) {
*x_out = x;
*y_out = y;
} else {
float result[3];
 
if (!_intel_transform_point(transform,
x, y,
result))
return FALSE;
*x_out = result[0] / result[2];
*y_out = result[1] / result[2];
}
return TRUE;
}
 
/**
* Returns the un-normalized floating-point coordinates transformed by the given transform.
*
* transform may be null.
*/
Bool
intel_get_transformed_coordinates_3d(int x, int y, PictTransformPtr transform,
float *x_out, float *y_out, float *w_out)
{
if (transform == NULL) {
*x_out = x;
*y_out = y;
*w_out = 1;
} else {
float result[3];
 
if (!_intel_transform_point(transform,
x, y,
result))
return FALSE;
*x_out = result[0];
*y_out = result[1];
*w_out = result[2];
}
return TRUE;
}
 
/**
* Returns whether the provided transform is affine.
*
* transform may be null.
*/
Bool intel_transform_is_affine(PictTransformPtr t)
{
if (t == NULL)
return TRUE;
return t->matrix[2][0] == 0 && t->matrix[2][1] == 0;
}