Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 4303 → Rev 4304

/drivers/video/Intel-2D/sna/kgem_debug_gen5.c
0,0 → 1,662
/*
* Copyright © 2007-2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Chris Wilson <chris@chris-wilson.co.uk>
*
*/
 
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
 
#include <assert.h>
 
#include "sna.h"
#include "sna_reg.h"
 
#include "gen5_render.h"
 
#include "kgem_debug.h"
 
static struct state {
struct vertex_buffer {
int handle;
void *base;
int size;
const char *ptr;
int pitch;
 
struct kgem_bo *current;
} vb[17];
struct vertex_elements {
int buffer;
int offset;
bool valid;
uint32_t type;
uint8_t swizzle[4];
} ve[17];
int num_ve;
 
struct dynamic_state {
struct kgem_bo *current;
void *base, *ptr;
} dynamic_state;
} state;
 
static void gen5_update_vertex_buffer(struct kgem *kgem, const uint32_t *data)
{
struct drm_i915_gem_relocation_entry *reloc;
struct kgem_bo *bo = NULL;
void *base, *ptr;
int i, size;
 
reloc = kgem_debug_get_reloc_entry(kgem, &data[1] - kgem->batch);
if (reloc->target_handle == -1) {
base = kgem->batch;
size = kgem->nbatch * sizeof(uint32_t);
} else {
bo = kgem_debug_get_bo_for_reloc_entry(kgem, reloc);
base = kgem_bo_map__debug(kgem, bo);
size = kgem_bo_size(bo);
}
ptr = (char *)base + reloc->delta;
 
i = data[0] >> 27;
 
state.vb[i].handle = reloc->target_handle;
state.vb[i].current = bo;
state.vb[i].base = base;
state.vb[i].ptr = ptr;
state.vb[i].pitch = data[0] & 0x7ff;
state.vb[i].size = size;
}
 
static uint32_t
get_ve_component(uint32_t data, int component)
{
return (data >> (16 + (3 - component) * 4)) & 0x7;
}
 
static void gen5_update_vertex_elements(struct kgem *kgem, int id, const uint32_t *data)
{
state.ve[id].buffer = data[0] >> 27;
state.ve[id].valid = !!(data[0] & (1 << 26));
state.ve[id].type = (data[0] >> 16) & 0x1ff;
state.ve[id].offset = data[0] & 0x7ff;
state.ve[id].swizzle[0] = get_ve_component(data[1], 0);
state.ve[id].swizzle[1] = get_ve_component(data[1], 1);
state.ve[id].swizzle[2] = get_ve_component(data[1], 2);
state.ve[id].swizzle[3] = get_ve_component(data[1], 3);
}
 
static void vertices_sint16_out(const struct vertex_elements *ve, const int16_t *v, int max)
{
int c, o;
 
ErrorF("(");
for (c = o = 0; c < 4 && o < max; c++) {
switch (ve->swizzle[c]) {
case 0: ErrorF("#"); break;
case 1: ErrorF("%d", v[o++]); break;
case 2: ErrorF("0.0"); break;
case 3: ErrorF("1.0"); break;
case 4: ErrorF("0x1"); break;
case 5: break;
default: ErrorF("?");
}
if (o < max)
ErrorF(", ");
}
ErrorF(")");
}
 
static void vertices_float_out(const struct vertex_elements *ve, const float *f, int max)
{
int c, o;
 
ErrorF("(");
for (c = o = 0; c < 4 && o < max; c++) {
switch (ve->swizzle[c]) {
case 0: ErrorF("#"); break;
case 1: ErrorF("%f", f[o++]); break;
case 2: ErrorF("0.0"); break;
case 3: ErrorF("1.0"); break;
case 4: ErrorF("0x1"); break;
case 5: break;
default: ErrorF("?");
}
if (o < max)
ErrorF(", ");
}
ErrorF(")");
}
 
static void ve_out(const struct vertex_elements *ve, const void *ptr)
{
switch (ve->type) {
case GEN5_SURFACEFORMAT_R32_FLOAT:
vertices_float_out(ve, ptr, 1);
break;
case GEN5_SURFACEFORMAT_R32G32_FLOAT:
vertices_float_out(ve, ptr, 2);
break;
case GEN5_SURFACEFORMAT_R32G32B32_FLOAT:
vertices_float_out(ve, ptr, 3);
break;
case GEN5_SURFACEFORMAT_R32G32B32A32_FLOAT:
vertices_float_out(ve, ptr, 4);
break;
case GEN5_SURFACEFORMAT_R16_SINT:
vertices_sint16_out(ve, ptr, 1);
break;
case GEN5_SURFACEFORMAT_R16G16_SINT:
vertices_sint16_out(ve, ptr, 2);
break;
case GEN5_SURFACEFORMAT_R16G16B16A16_SINT:
vertices_sint16_out(ve, ptr, 4);
break;
case GEN5_SURFACEFORMAT_R16_SSCALED:
vertices_sint16_out(ve, ptr, 1);
break;
case GEN5_SURFACEFORMAT_R16G16_SSCALED:
vertices_sint16_out(ve, ptr, 2);
break;
case GEN5_SURFACEFORMAT_R16G16B16A16_SSCALED:
vertices_sint16_out(ve, ptr, 4);
break;
}
}
 
static void indirect_vertex_out(struct kgem *kgem, uint32_t v)
{
int i = 1;
 
do {
const struct vertex_elements *ve = &state.ve[i];
const struct vertex_buffer *vb = &state.vb[ve->buffer];
const void *ptr = vb->ptr + v * vb->pitch + ve->offset;
 
if (!ve->valid)
continue;
 
assert(vb->pitch);
assert(ve->offset + v*vb->pitch < vb->size);
 
ve_out(ve, ptr);
 
while (++i <= state.num_ve && !state.ve[i].valid)
;
 
if (i <= state.num_ve)
ErrorF(", ");
} while (i <= state.num_ve);
}
 
static void primitive_out(struct kgem *kgem, uint32_t *data)
{
int n;
 
assert((data[0] & (1<<15)) == 0); /* XXX index buffers */
 
for (n = 0; n < data[1]; n++) {
int v = data[2] + n;
ErrorF(" [%d:%d] = ", n, v);
indirect_vertex_out(kgem, v);
ErrorF("\n");
}
}
 
static void
state_base_out(uint32_t *data, uint32_t offset, unsigned int index,
const char *name)
{
if (data[index] & 1)
kgem_debug_print(data, offset, index,
"%s state base address 0x%08x\n",
name, data[index] & ~1);
else
kgem_debug_print(data, offset, index,
"%s state base not updated\n",
name);
}
 
static void
state_max_out(uint32_t *data, uint32_t offset, unsigned int index,
const char *name)
{
if (data[index] == 1)
kgem_debug_print(data, offset, index,
"%s state upper bound disabled\n", name);
else if (data[index] & 1)
kgem_debug_print(data, offset, index,
"%s state upper bound 0x%08x\n",
name, data[index] & ~1);
else
kgem_debug_print(data, offset, index,
"%s state upper bound not updated\n",
name);
}
 
static const char *
get_965_surfacetype(unsigned int surfacetype)
{
switch (surfacetype) {
case 0: return "1D";
case 1: return "2D";
case 2: return "3D";
case 3: return "CUBE";
case 4: return "BUFFER";
case 7: return "NULL";
default: return "unknown";
}
}
 
static const char *
get_965_depthformat(unsigned int depthformat)
{
switch (depthformat) {
case 0: return "s8_z24float";
case 1: return "z32float";
case 2: return "z24s8";
case 5: return "z16";
default: return "unknown";
}
}
 
static const char *
get_965_element_component(uint32_t data, int component)
{
uint32_t component_control = (data >> (16 + (3 - component) * 4)) & 0x7;
 
switch (component_control) {
case 0:
return "nostore";
case 1:
switch (component) {
case 0: return "X";
case 1: return "Y";
case 2: return "Z";
case 3: return "W";
default: return "fail";
}
case 2:
return "0.0";
case 3:
return "1.0";
case 4:
return "0x1";
case 5:
return "VID";
default:
return "fail";
}
}
 
static const char *
get_965_prim_type(uint32_t data)
{
uint32_t primtype = (data >> 10) & 0x1f;
 
switch (primtype) {
case 0x01: return "point list";
case 0x02: return "line list";
case 0x03: return "line strip";
case 0x04: return "tri list";
case 0x05: return "tri strip";
case 0x06: return "tri fan";
case 0x07: return "quad list";
case 0x08: return "quad strip";
case 0x09: return "line list adj";
case 0x0a: return "line strip adj";
case 0x0b: return "tri list adj";
case 0x0c: return "tri strip adj";
case 0x0d: return "tri strip reverse";
case 0x0e: return "polygon";
case 0x0f: return "rect list";
case 0x10: return "line loop";
case 0x11: return "point list bf";
case 0x12: return "line strip cont";
case 0x13: return "line strip bf";
case 0x14: return "line strip cont bf";
case 0x15: return "tri fan no stipple";
default: return "fail";
}
}
 
#if 0
struct reloc {
struct kgem_bo *bo;
void *base;
};
 
static void *
get_reloc(struct kgem *kgem,
void *base, const uint32_t *reloc,
struct reloc *r)
{
uint32_t delta = *reloc;
 
memset(r, 0, sizeof(*r));
 
if (base == 0) {
uint32_t handle = sizeof(uint32_t) * (reloc - kgem->batch);
struct kgem_bo *bo = NULL;
int i;
 
for (i = 0; i < kgem->nreloc; i++)
if (kgem->reloc[i].offset == handle)
break;
assert(i < kgem->nreloc);
handle = kgem->reloc[i].target_handle;
delta = kgem->reloc[i].delta;
 
if (handle == 0) {
base = kgem->batch;
} else {
list_for_each_entry(bo, &kgem->next_request->buffers, request)
if (bo->handle == handle)
break;
assert(&bo->request != &kgem->next_request->buffers);
base = kgem_bo_map(kgem, bo, PROT_READ);
r->bo = bo;
r->base = base;
}
}
 
return (char *)base + delta;
}
#endif
 
int kgem_gen5_decode_3d(struct kgem *kgem, uint32_t offset)
{
static const struct {
uint32_t opcode;
int min_len;
int max_len;
const char *name;
} opcodes[] = {
{ 0x6000, 3, 3, "URB_FENCE" },
{ 0x6001, 2, 2, "CS_URB_FENCE" },
{ 0x6002, 2, 2, "CONSTANT_BUFFER" },
{ 0x6101, 6, 6, "STATE_BASE_ADDRESS" },
{ 0x6102, 2, 2 , "STATE_SIP" },
{ 0x6104, 1, 1, "3DSTATE_PIPELINE_SELECT" },
{ 0x680b, 1, 1, "3DSTATE_VF_STATISTICS" },
{ 0x6904, 1, 1, "3DSTATE_PIPELINE_SELECT" },
{ 0x7800, 7, 7, "3DSTATE_PIPELINED_POINTERS" },
{ 0x7801, 6, 6, "3DSTATE_BINDING_TABLE_POINTERS" },
{ 0x7808, 5, 257, "3DSTATE_VERTEX_BUFFERS" },
{ 0x7809, 3, 256, "3DSTATE_VERTEX_ELEMENTS" },
{ 0x780a, 3, 3, "3DSTATE_INDEX_BUFFER" },
{ 0x780b, 1, 1, "3DSTATE_VF_STATISTICS" },
{ 0x7900, 4, 4, "3DSTATE_DRAWING_RECTANGLE" },
{ 0x7901, 5, 5, "3DSTATE_CONSTANT_COLOR" },
{ 0x7905, 5, 7, "3DSTATE_DEPTH_BUFFER" },
{ 0x7906, 2, 2, "3DSTATE_POLY_STIPPLE_OFFSET" },
{ 0x7907, 33, 33, "3DSTATE_POLY_STIPPLE_PATTERN" },
{ 0x7908, 3, 3, "3DSTATE_LINE_STIPPLE" },
{ 0x7909, 2, 2, "3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP" },
{ 0x7909, 2, 2, "3DSTATE_CLEAR_PARAMS" },
{ 0x790a, 3, 3, "3DSTATE_AA_LINE_PARAMETERS" },
{ 0x790b, 4, 4, "3DSTATE_GS_SVB_INDEX" },
{ 0x790d, 3, 3, "3DSTATE_MULTISAMPLE" },
{ 0x7910, 2, 2, "3DSTATE_CLEAR_PARAMS" },
{ 0x7b00, 6, 6, "3DPRIMITIVE" },
{ 0x7805, 3, 3, "3DSTATE_URB" },
{ 0x7815, 5, 5, "3DSTATE_CONSTANT_VS_STATE" },
{ 0x7816, 5, 5, "3DSTATE_CONSTANT_GS_STATE" },
{ 0x7817, 5, 5, "3DSTATE_CONSTANT_PS_STATE" },
{ 0x7818, 2, 2, "3DSTATE_SAMPLE_MASK" },
};
uint32_t *data = kgem->batch + offset;
uint32_t op;
unsigned int len;
int i;
const char *desc1 = NULL;
 
len = (data[0] & 0xff) + 2;
op = (data[0] & 0xffff0000) >> 16;
switch (op) {
case 0x6000:
assert(len == 3);
 
kgem_debug_print(data, offset, 0, "URB_FENCE: %s%s%s%s%s%s\n",
(data[0] >> 13) & 1 ? "cs " : "",
(data[0] >> 12) & 1 ? "vfe " : "",
(data[0] >> 11) & 1 ? "sf " : "",
(data[0] >> 10) & 1 ? "clip " : "",
(data[0] >> 9) & 1 ? "gs " : "",
(data[0] >> 8) & 1 ? "vs " : "");
kgem_debug_print(data, offset, 1,
"vs fence: %d, gs_fence: %d, clip_fence: %d\n",
data[1] & 0x3ff,
(data[1] >> 10) & 0x3ff,
(data[1] >> 20) & 0x3ff);
kgem_debug_print(data, offset, 2,
"sf fence: %d, vfe_fence: %d, cs_fence: %d\n",
data[2] & 0x3ff,
(data[2] >> 10) & 0x3ff,
(data[2] >> 20) & 0x7ff);
return len;
 
case 0x6001:
kgem_debug_print(data, offset, 0, "CS_URB_STATE\n");
kgem_debug_print(data, offset, 1, "entry_size: %d [%d bytes], n_entries: %d\n",
(data[1] >> 4) & 0x1f,
(((data[1] >> 4) & 0x1f) + 1) * 64,
data[1] & 0x7);
return len;
case 0x6002:
kgem_debug_print(data, offset, 0, "CONSTANT_BUFFER: %s\n",
(data[0] >> 8) & 1 ? "valid" : "invalid");
kgem_debug_print(data, offset, 1, "offset: 0x%08x, length: %d bytes\n",
data[1] & ~0x3f, ((data[1] & 0x3f) + 1) * 64);
return len;
case 0x6101:
i = 0;
kgem_debug_print(data, offset, i++, "STATE_BASE_ADDRESS\n");
assert(len == 8);
 
state_base_out(data, offset, i++, "general");
state_base_out(data, offset, i++, "surface");
state_base_out(data, offset, i++, "media");
state_base_out(data, offset, i++, "instruction");
 
state_max_out(data, offset, i++, "general");
state_max_out(data, offset, i++, "media");
state_max_out(data, offset, i++, "instruction");
 
return len;
 
case 0x7801:
assert(len == 6);
 
kgem_debug_print(data, offset, 0,
"3DSTATE_BINDING_TABLE_POINTERS\n");
kgem_debug_print(data, offset, 1, "VS binding table\n");
kgem_debug_print(data, offset, 2, "GS binding table\n");
kgem_debug_print(data, offset, 3, "CLIP binding table\n");
kgem_debug_print(data, offset, 4, "SF binding table\n");
kgem_debug_print(data, offset, 5, "WM binding table\n");
 
return len;
 
case 0x7808:
assert((len - 1) % 4 == 0);
kgem_debug_print(data, offset, 0, "3DSTATE_VERTEX_BUFFERS\n");
 
for (i = 1; i < len;) {
gen5_update_vertex_buffer(kgem, data + i);
 
kgem_debug_print(data, offset, i, "buffer %d: %s, pitch %db\n",
data[i] >> 27,
data[i] & (1 << 20) ? "random" : "sequential",
data[i] & 0x07ff);
i++;
kgem_debug_print(data, offset, i++, "buffer address\n");
kgem_debug_print(data, offset, i++, "max index\n");
kgem_debug_print(data, offset, i++, "mbz\n");
}
return len;
 
case 0x7809:
assert((len + 1) % 2 == 0);
kgem_debug_print(data, offset, 0, "3DSTATE_VERTEX_ELEMENTS\n");
 
memset(state.ve, 0, sizeof(state.ve)); /* XXX? */
for (i = 1; i < len;) {
gen5_update_vertex_elements(kgem, (i - 1)/2, data + i);
 
kgem_debug_print(data, offset, i,
"buffer %d: %svalid, type 0x%04x, "
"src offset 0x%04x bytes\n",
data[i] >> 27,
data[i] & (1 << 26) ? "" : "in",
(data[i] >> 16) & 0x1ff,
data[i] & 0x07ff);
i++;
kgem_debug_print(data, offset, i, "(%s, %s, %s, %s)\n",
get_965_element_component(data[i], 0),
get_965_element_component(data[i], 1),
get_965_element_component(data[i], 2),
get_965_element_component(data[i], 3));
i++;
}
state.num_ve = (len - 1) / 2; /* XXX? */
return len;
 
case 0x780a:
assert(len == 3);
kgem_debug_print(data, offset, 0, "3DSTATE_INDEX_BUFFER\n");
kgem_debug_print(data, offset, 1, "beginning buffer address\n");
kgem_debug_print(data, offset, 2, "ending buffer address\n");
return len;
 
case 0x7900:
assert(len == 4);
kgem_debug_print(data, offset, 0,
"3DSTATE_DRAWING_RECTANGLE\n");
kgem_debug_print(data, offset, 1, "top left: %d,%d\n",
data[1] & 0xffff,
(data[1] >> 16) & 0xffff);
kgem_debug_print(data, offset, 2, "bottom right: %d,%d\n",
data[2] & 0xffff,
(data[2] >> 16) & 0xffff);
kgem_debug_print(data, offset, 3, "origin: %d,%d\n",
(int)data[3] & 0xffff,
((int)data[3] >> 16) & 0xffff);
return len;
 
case 0x7905:
assert(len == 7);
kgem_debug_print(data, offset, 0,
"3DSTATE_DEPTH_BUFFER\n");
kgem_debug_print(data, offset, 1, "%s, %s, pitch = %d bytes, %stiled, HiZ %d, Seperate Stencil %d\n",
get_965_surfacetype(data[1] >> 29),
get_965_depthformat((data[1] >> 18) & 0x7),
(data[1] & 0x0001ffff) + 1,
data[1] & (1 << 27) ? "" : "not ",
(data[1] & (1 << 22)) != 0,
(data[1] & (1 << 21)) != 0);
kgem_debug_print(data, offset, 2, "depth offset\n");
kgem_debug_print(data, offset, 3, "%dx%d\n",
((data[3] & 0x0007ffc0) >> 6) + 1,
((data[3] & 0xfff80000) >> 19) + 1);
kgem_debug_print(data, offset, 4, "volume depth\n");
kgem_debug_print(data, offset, 5, "\n");
kgem_debug_print(data, offset, 6, "\n");
return len;
 
case 0x7a00:
assert(len == 4 || len == 5);
switch ((data[1] >> 14) & 0x3) {
case 0: desc1 = "no write"; break;
case 1: desc1 = "qword write"; break;
case 2: desc1 = "PS_DEPTH_COUNT write"; break;
case 3: desc1 = "TIMESTAMP write"; break;
}
kgem_debug_print(data, offset, 0, "PIPE_CONTROL\n");
kgem_debug_print(data, offset, 1,
"%s, %scs stall, %stlb invalidate, "
"%ssync gfdt, %sdepth stall, %sRC write flush, "
"%sinst flush, %sTC flush\n",
desc1,
data[1] & (1 << 20) ? "" : "no ",
data[1] & (1 << 18) ? "" : "no ",
data[1] & (1 << 17) ? "" : "no ",
data[1] & (1 << 13) ? "" : "no ",
data[1] & (1 << 12) ? "" : "no ",
data[1] & (1 << 11) ? "" : "no ",
data[1] & (1 << 10) ? "" : "no ");
if (len == 5) {
kgem_debug_print(data, offset, 2, "destination address\n");
kgem_debug_print(data, offset, 3, "immediate dword low\n");
kgem_debug_print(data, offset, 4, "immediate dword high\n");
} else {
for (i = 2; i < len; i++) {
kgem_debug_print(data, offset, i, "\n");
}
}
return len;
 
case 0x7b00:
assert(len == 6);
kgem_debug_print(data, offset, 0,
"3DPRIMITIVE: %s %s\n",
get_965_prim_type(data[0]),
(data[0] & (1 << 15)) ? "random" : "sequential");
kgem_debug_print(data, offset, 1, "vertex count\n");
kgem_debug_print(data, offset, 2, "start vertex\n");
kgem_debug_print(data, offset, 3, "instance count\n");
kgem_debug_print(data, offset, 4, "start instance\n");
kgem_debug_print(data, offset, 5, "index bias\n");
primitive_out(kgem, data);
return len;
}
 
/* For the rest, just dump the bytes */
for (i = 0; i < ARRAY_SIZE(opcodes); i++)
if (op == opcodes[i].opcode)
break;
 
assert(i < ARRAY_SIZE(opcodes));
 
len = 1;
kgem_debug_print(data, offset, 0, "%s\n", opcodes[i].name);
if (opcodes[i].max_len > 1) {
len = (data[0] & 0xff) + 2;
assert(len >= opcodes[i].min_len &&
len <= opcodes[i].max_len);
}
 
for (i = 1; i < len; i++)
kgem_debug_print(data, offset, i, "dword %d\n", i);
 
return len;
}
 
void kgem_gen5_finish_state(struct kgem *kgem)
{
memset(&state, 0, sizeof(state));
}