Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 1406 → Rev 1407

/drivers/old/radeonhd/rhd_dig.c
0,0 → 1,1869
/*
* Copyright 2007, 2008 Luc Verhaegen <lverhaegen@novell.com>
* Copyright 2007, 2008 Matthias Hopf <mhopf@novell.com>
* Copyright 2007, 2008 Egbert Eich <eich@novell.com>
* Copyright 2007, 2008 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
 
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
 
#include "xf86.h"
 
/* for usleep */
#if HAVE_XF86_ANSIC_H
# include "xf86_ansic.h"
#else
# include <unistd.h>
#endif
 
#include "rhd.h"
#include "rhd_crtc.h"
#include "rhd_connector.h"
#include "rhd_output.h"
#include "rhd_regs.h"
#include "rhd_hdmi.h"
#ifdef ATOM_BIOS
#include "rhd_atombios.h"
#include "rhd_atomout.h"
#endif
 
#define FMT2_OFFSET 0x800
#define DIG1_OFFSET 0x000
#define DIG2_OFFSET 0x400
 
/*
* Transmitter
*/
struct transmitter {
enum rhdSensedOutput (*Sense) (struct rhdOutput *Output,
enum rhdConnectorType Type);
ModeStatus (*ModeValid) (struct rhdOutput *Output, DisplayModePtr Mode);
void (*Mode) (struct rhdOutput *Output, struct rhdCrtc *Crtc, DisplayModePtr Mode);
void (*Power) (struct rhdOutput *Output, int Power);
void (*Save) (struct rhdOutput *Output);
void (*Restore) (struct rhdOutput *Output);
void (*Destroy) (struct rhdOutput *Output);
Bool (*Property) (struct rhdOutput *Output,
enum rhdPropertyAction Action, enum rhdOutputProperty Property, union rhdPropertyData *val);
#ifdef NOT_YET
Bool (*WrappedPropertyCallback) (struct rhdOutput *Output,
enum rhdPropertyAction Action, enum rhdOutputProperty Property, union rhdPropertyData *val);
void *PropertyPrivate;
#endif
void *Private;
};
 
/*
* Encoder
*/
struct encoder {
ModeStatus (*ModeValid) (struct rhdOutput *Output, DisplayModePtr Mode);
void (*Mode) (struct rhdOutput *Output, struct rhdCrtc *Crtc, DisplayModePtr Mode);
void (*Power) (struct rhdOutput *Output, int Power);
void (*Save) (struct rhdOutput *Output);
void (*Restore) (struct rhdOutput *Output);
void (*Destroy) (struct rhdOutput *Output);
void *Private;
};
 
/*
*
*/
enum encoderMode {
DISPLAYPORT = 0,
LVDS = 1,
TMDS_DVI = 2,
TMDS_HDMI = 3,
SDVO = 4
};
 
enum encoderID {
ENCODER_NONE,
ENCODER_DIG1,
ENCODER_DIG2
};
 
struct DIGPrivate
{
struct encoder Encoder;
struct transmitter Transmitter;
enum encoderID EncoderID;
enum encoderMode EncoderMode;
Bool Coherent;
Bool RunDualLink;
DisplayModePtr Mode;
struct rhdHdmi *Hdmi;
 
/* LVDS */
Bool FPDI;
CARD32 PowerSequenceDe2Bl;
CARD32 PowerSequenceDig2De;
CARD32 OffDelay;
struct rhdFMTDither FMTDither;
int BlLevel;
};
 
/*
* LVTMA Transmitter
*/
 
struct LVTMATransmitterPrivate
{
Bool Stored;
 
CARD32 StoredTransmitterControl;
CARD32 StoredTransmitterAdjust;
CARD32 StoredPreemphasisControl;
CARD32 StoredMacroControl;
CARD32 StoredLVTMADataSynchronization;
CARD32 StoredTransmiterEnable;
CARD32 StoredPwrSeqCntl;
CARD32 StoredPwrSeqRevDiv;
CARD32 StoredPwrSeqDelay1;
CARD32 StoredPwrSeqDelay2;
};
 
/*
*
*/
static ModeStatus
LVTMATransmitterModeValid(struct rhdOutput *Output, DisplayModePtr Mode)
{
RHDFUNC(Output);
 
if (Mode->Flags & V_INTERLACE)
return MODE_NO_INTERLACE;
 
if (Output->Connector->Type == RHD_CONNECTOR_DVI_SINGLE
&& Mode->SynthClock > 165000)
return MODE_CLOCK_HIGH;
 
return MODE_OK;
}
 
static void
LVDSSetBacklight(struct rhdOutput *Output, int level)
{
struct DIGPrivate *Private = (struct DIGPrivate *) Output->Private;
 
RHDFUNC(Output);
 
Private->BlLevel = level;
 
RHDRegMask(Output, RV620_LVTMA_PWRSEQ_REF_DIV,
0x144 << LVTMA_BL_MOD_REF_DI_SHIFT,
0x7ff << LVTMA_BL_MOD_REF_DI_SHIFT);
RHDRegWrite(Output, RV620_LVTMA_BL_MOD_CNTL,
0xff << LVTMA_BL_MOD_RES_SHIFT
| level << LVTMA_BL_MOD_LEVEL_SHIFT
| LVTMA_BL_MOD_EN);
}
 
/*
*
*/
static Bool
LVDSTransmitterPropertyControl(struct rhdOutput *Output,
enum rhdPropertyAction Action, enum rhdOutputProperty Property, union rhdPropertyData *val)
{
struct DIGPrivate *Private = (struct DIGPrivate *) Output->Private;
 
RHDFUNC(Output);
switch (Action) {
case rhdPropertyCheck:
if (Private->BlLevel < 0)
return FALSE;
switch (Property) {
case RHD_OUTPUT_BACKLIGHT:
return TRUE;
default:
return FALSE;
}
case rhdPropertyGet:
if (Private->BlLevel < 0)
return FALSE;
switch (Property) {
case RHD_OUTPUT_BACKLIGHT:
val->integer = Private->BlLevel;
return TRUE;
default:
return FALSE;
}
break;
case rhdPropertySet:
if (Private->BlLevel < 0)
return FALSE;
switch (Property) {
case RHD_OUTPUT_BACKLIGHT:
LVDSSetBacklight(Output, val->integer);
return TRUE;
default:
return FALSE;
}
break;
}
return TRUE;
}
 
/*
*
*/
static Bool
TMDSTransmitterPropertyControl(struct rhdOutput *Output,
enum rhdPropertyAction Action, enum rhdOutputProperty Property, union rhdPropertyData *val)
{
struct DIGPrivate *Private = (struct DIGPrivate *) Output->Private;
 
RHDFUNC(Output);
switch (Action) {
case rhdPropertyCheck:
switch (Property) {
case RHD_OUTPUT_COHERENT:
return TRUE;
default:
return FALSE;
}
case rhdPropertyGet:
switch (Property) {
case RHD_OUTPUT_COHERENT:
val->Bool = Private->Coherent;
return TRUE;
default:
return FALSE;
}
break;
case rhdPropertySet:
switch (Property) {
case RHD_OUTPUT_COHERENT:
Private->Coherent = val->Bool;
Output->Mode(Output, Private->Mode);
Output->Power(Output, RHD_POWER_ON);
break;
default:
return FALSE;
}
break;
}
return TRUE;
}
 
/*
*
*/
static void
LVTMATransmitterSet(struct rhdOutput *Output, struct rhdCrtc *Crtc, DisplayModePtr Mode)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
CARD32 value = 0;
#ifdef ATOM_BIOS
AtomBiosArgRec data;
#endif
RHDPtr rhdPtr = RHDPTRI(Output);
Bool doCoherent = Private->Coherent;
RHDFUNC(Output);
 
/* set coherent / not coherent mode; whatever that is */
if (Output->Connector->Type != RHD_CONNECTOR_PANEL)
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
doCoherent ? 0 : RV62_LVTMA_BYPASS_PLL, RV62_LVTMA_BYPASS_PLL);
 
Private->Mode = Mode;
#ifdef ATOM_BIOS
RHDDebug(Output->scrnIndex, "%s: SynthClock: %i Hex: %x EncoderMode: %x\n",__func__,
(Mode->SynthClock),(Mode->SynthClock / 10), Private->EncoderMode);
 
/* Set up magic value that's used for list lookup */
value = ((Mode->SynthClock / 10 / ((Private->RunDualLink) ? 2 : 1)) & 0xffff)
| (Private->EncoderMode << 16)
| ((doCoherent ? 0x2 : 0) << 24);
 
RHDDebug(Output->scrnIndex, "%s: GetConditionalGoldenSettings for: %x\n", __func__, value);
 
/* Get data from DIG2TransmitterControl table */
data.val = 0x4d;
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS, ATOMBIOS_GET_CODE_DATA_TABLE,
&data) == ATOM_SUCCESS) {
AtomBiosArgRec data1;
CARD32 *d_p = NULL;
 
data1.GoldenSettings.BIOSPtr = data.CommandDataTable.loc;
data1.GoldenSettings.End = data1.GoldenSettings.BIOSPtr + data.CommandDataTable.size;
data1.GoldenSettings.value = value;
 
/* now find pointer */
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS,
ATOM_GET_CONDITIONAL_GOLDEN_SETTINGS, &data1) == ATOM_SUCCESS) {
d_p = (CARD32*)data1.GoldenSettings.BIOSPtr;
} else {
/* nothing found, now try toggling the coherent setting */
doCoherent = !doCoherent;
value = (value & ~(0x2 << 24)) | ((doCoherent ? 0x2 : 0) << 24);
data1.GoldenSettings.value = value;
 
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS,
ATOM_GET_CONDITIONAL_GOLDEN_SETTINGS, &data1) == ATOM_SUCCESS) {
d_p = (CARD32*)data1.GoldenSettings.BIOSPtr;
/* set coherent / not coherent mode; whatever that is */
xf86DrvMsg(Output->scrnIndex, X_INFO, "%s: %soherent Mode not supported, switching to %soherent.\n",
__func__, doCoherent ? "Inc" : "C", doCoherent ? "C" : "Inc");
if (Output->Connector->Type != RHD_CONNECTOR_PANEL)
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
doCoherent ? 0 : RV62_LVTMA_BYPASS_PLL, RV62_LVTMA_BYPASS_PLL);
} else
doCoherent = Private->Coherent; /* reset old value if nothing found either */
}
if (d_p) {
RHDDebug(Output->scrnIndex, "TransmitterAdjust: 0x%8.8x\n",d_p[0]);
RHDRegWrite(Output, RV620_LVTMA_TRANSMITTER_ADJUST, d_p[0]);
 
RHDDebug(Output->scrnIndex, "PreemphasisControl: 0x%8.8x\n",d_p[1]);
RHDRegWrite(Output, RV620_LVTMA_PREEMPHASIS_CONTROL, d_p[1]);
 
RHDDebug(Output->scrnIndex, "MacroControl: 0x%8.8x\n",d_p[2]);
RHDRegWrite(Output, RV620_LVTMA_MACRO_CONTROL, d_p[2]);
} else
xf86DrvMsg(Output->scrnIndex, X_WARNING, "%s: cannot get golden settings\n",__func__);
} else
#endif
{
xf86DrvMsg(Output->scrnIndex, X_WARNING, "%s: No AtomBIOS supplied "
"electrical parameters available\n", __func__);
}
}
 
/*
*
*/
static void
LVTMATransmitterSave(struct rhdOutput *Output)
{
struct DIGPrivate *digPrivate = (struct DIGPrivate *)Output->Private;
struct LVTMATransmitterPrivate *Private = (struct LVTMATransmitterPrivate*)digPrivate->Transmitter.Private;
 
Private->StoredTransmitterControl = RHDRegRead(Output, RV620_LVTMA_TRANSMITTER_CONTROL);
Private->StoredTransmitterAdjust = RHDRegRead(Output, RV620_LVTMA_TRANSMITTER_ADJUST);
Private->StoredPreemphasisControl = RHDRegRead(Output, RV620_LVTMA_PREEMPHASIS_CONTROL);
Private->StoredMacroControl = RHDRegRead(Output, RV620_LVTMA_MACRO_CONTROL);
Private->StoredLVTMADataSynchronization = RHDRegRead(Output, RV620_LVTMA_DATA_SYNCHRONIZATION);
Private->StoredTransmiterEnable = RHDRegRead(Output, RV620_LVTMA_TRANSMITTER_ENABLE);
}
 
/*
*
*/
static void
LVTMATransmitterRestore(struct rhdOutput *Output)
{
struct DIGPrivate *digPrivate = (struct DIGPrivate *)Output->Private;
struct LVTMATransmitterPrivate *Private = (struct LVTMATransmitterPrivate*)digPrivate->Transmitter.Private;
 
RHDFUNC(Output);
 
/* write control values back */
RHDRegWrite(Output, RV620_LVTMA_TRANSMITTER_CONTROL,Private->StoredTransmitterControl);
usleep (14);
/* reset PLL */
RHDRegWrite(Output, RV620_LVTMA_TRANSMITTER_CONTROL,Private->StoredTransmitterControl
| RV62_LVTMA_PLL_RESET);
usleep (10);
/* unreset PLL */
RHDRegWrite(Output, RV620_LVTMA_TRANSMITTER_CONTROL,Private->StoredTransmitterControl);
usleep(1000);
RHDRegWrite(Output, RV620_LVTMA_TRANSMITTER_ADJUST, Private->StoredTransmitterAdjust);
RHDRegWrite(Output, RV620_LVTMA_PREEMPHASIS_CONTROL, Private->StoredPreemphasisControl);
RHDRegWrite(Output, RV620_LVTMA_MACRO_CONTROL, Private->StoredMacroControl);
/* start data synchronization */
RHDRegWrite(Output, RV620_LVTMA_DATA_SYNCHRONIZATION, (Private->StoredLVTMADataSynchronization
& ~(CARD32)RV62_LVTMA_DSYNSEL)
| RV62_LVTMA_PFREQCHG);
usleep (1);
RHDRegWrite(Output, RV620_LVTMA_DATA_SYNCHRONIZATION, Private->StoredLVTMADataSynchronization);
usleep(10);
RHDRegWrite(Output, RV620_LVTMA_DATA_SYNCHRONIZATION, Private->StoredLVTMADataSynchronization);
RHDRegWrite(Output, RV620_LVTMA_TRANSMITTER_ENABLE, Private->StoredTransmiterEnable);
}
 
/*
*
*/
static void
LVTMA_TMDSTransmitterSet(struct rhdOutput *Output, struct rhdCrtc *Crtc, DisplayModePtr Mode)
{
RHDFUNC(Output);
 
/* TMDS Mode */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
RV62_LVTMA_USE_CLK_DATA, RV62_LVTMA_USE_CLK_DATA);
 
LVTMATransmitterSet(Output, Crtc, Mode);
 
/* use differential post divider input */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
RV62_LVTMA_IDSCKSEL, RV62_LVTMA_IDSCKSEL);
}
 
/*
*
*/
static void
LVTMA_TMDSTransmitterPower(struct rhdOutput *Output, int Power)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
 
RHDFUNC(Output);
 
switch (Power) {
case RHD_POWER_ON:
/* enable PLL */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
RV62_LVTMA_PLL_ENABLE, RV62_LVTMA_PLL_ENABLE);
usleep(14);
/* PLL reset on */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
RV62_LVTMA_PLL_RESET, RV62_LVTMA_PLL_RESET);
usleep(10);
/* PLL reset off */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
0, RV62_LVTMA_PLL_RESET);
usleep(1000);
/* start data synchronization */
RHDRegMask(Output, RV620_LVTMA_DATA_SYNCHRONIZATION,
RV62_LVTMA_PFREQCHG, RV62_LVTMA_PFREQCHG);
usleep(1);
/* restart write address logic */
RHDRegMask(Output, RV620_LVTMA_DATA_SYNCHRONIZATION,
RV62_LVTMA_DSYNSEL, RV62_LVTMA_DSYNSEL);
#if 1
/* TMDS Mode ?? */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
RV62_LVTMA_MODE, RV62_LVTMA_MODE);
#endif
/* enable lower link */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_ENABLE,
RV62_LVTMA_LNKL,
RV62_LVTMA_LNK_ALL);
if (Private->RunDualLink) {
usleep (28);
/* enable upper link */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_ENABLE,
RV62_LVTMA_LNKU,
RV62_LVTMA_LNKU);
}
return;
case RHD_POWER_RESET:
/* disable all links */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_ENABLE,
0, RV62_LVTMA_LNK_ALL);
return;
case RHD_POWER_SHUTDOWN:
default:
/* disable transmitter */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_ENABLE,
0, RV62_LVTMA_LNK_ALL);
/* PLL reset */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
RV62_LVTMA_PLL_RESET, RV62_LVTMA_PLL_RESET);
usleep(10);
/* end PLL reset */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
0, RV62_LVTMA_PLL_RESET);
/* disable data synchronization */
RHDRegMask(Output, RV620_LVTMA_DATA_SYNCHRONIZATION,
0, RV62_LVTMA_DSYNSEL);
/* reset macro control */
RHDRegWrite(Output, RV620_LVTMA_TRANSMITTER_ADJUST, 0);
 
return;
}
}
 
/*
*
*/
static void
LVTMA_TMDSTransmitterSave(struct rhdOutput *Output)
{
struct DIGPrivate *digPrivate = (struct DIGPrivate *)Output->Private;
struct LVTMATransmitterPrivate *Private = (struct LVTMATransmitterPrivate*)digPrivate->Transmitter.Private;
 
RHDFUNC(Output);
 
LVTMATransmitterSave(Output);
 
Private->Stored = TRUE;
}
 
/*
*
*/
static void
LVTMA_TMDSTransmitterRestore(struct rhdOutput *Output)
{
struct DIGPrivate *digPrivate = (struct DIGPrivate *)Output->Private;
struct LVTMATransmitterPrivate *Private = (struct LVTMATransmitterPrivate*)digPrivate->Transmitter.Private;
 
RHDFUNC(Output);
 
if (!Private->Stored) {
xf86DrvMsg(Output->scrnIndex, X_ERROR,
"%s: No registers stored.\n", __func__);
return;
}
 
LVTMATransmitterRestore(Output);
}
 
/*
*
*/
static void
LVTMA_LVDSTransmitterSet(struct rhdOutput *Output, struct rhdCrtc *Crtc, DisplayModePtr Mode)
{
RHDFUNC(Output);
 
/* LVDS Mode */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
0, RV62_LVTMA_USE_CLK_DATA);
 
LVTMATransmitterSet(Output, Crtc, Mode);
 
/* use IDCLK */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL, RV62_LVTMA_IDSCKSEL, RV62_LVTMA_IDSCKSEL);
/* enable pwrseq, pwrseq overwrite PPL enable, reset */
RHDRegMask(Output, RV620_LVTMA_PWRSEQ_CNTL,
RV62_LVTMA_PWRSEQ_EN
| RV62_LVTMA_PLL_ENABLE_PWRSEQ_MASK
| RV62_LVTMA_PLL_RESET_PWRSEQ_MASK,
RV62_LVTMA_PWRSEQ_EN
| RV62_LVTMA_PLL_ENABLE_PWRSEQ_MASK
| RV62_LVTMA_PLL_RESET_PWRSEQ_MASK
);
 
}
 
/*
*
*/
static void
LVTMA_LVDSTransmitterPower(struct rhdOutput *Output, int Power)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
CARD32 tmp, tmp1;
int i;
 
RHDFUNC(Output);
 
switch (Power) {
case RHD_POWER_ON:
/* enable PLL */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
RV62_LVTMA_PLL_ENABLE, RV62_LVTMA_PLL_ENABLE);
usleep(14);
/* PLL reset on */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
RV62_LVTMA_PLL_RESET, RV62_LVTMA_PLL_RESET);
usleep(10);
/* PLL reset off */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
0, RV62_LVTMA_PLL_RESET);
usleep(1000);
/* start data synchronization */
RHDRegMask(Output, RV620_LVTMA_DATA_SYNCHRONIZATION,
RV62_LVTMA_PFREQCHG, RV62_LVTMA_PFREQCHG);
usleep(1);
/* restart write address logic */
RHDRegMask(Output, RV620_LVTMA_DATA_SYNCHRONIZATION,
RV62_LVTMA_DSYNSEL, RV62_LVTMA_DSYNSEL);
/* SYNCEN disables pwrseq ?? */
RHDRegMask(Output, RV620_LVTMA_PWRSEQ_CNTL,
RV62_LVTMA_PWRSEQ_DISABLE_SYNCEN_CONTROL_OF_TX_EN,
RV62_LVTMA_PWRSEQ_DISABLE_SYNCEN_CONTROL_OF_TX_EN);
/* LVDS Mode ?? */
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_CONTROL,
0, RV62_LVTMA_MODE);
/* enable links */
if (Private->RunDualLink) {
if (Private->FMTDither.LVDS24Bit)
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_ENABLE, 0x3ff, 0x3ff);
else
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_ENABLE, 0x1ef, 0x3ff);
} else {
if (Private->FMTDither.LVDS24Bit)
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_ENABLE, 0x1f, 0x3ff);
else
RHDRegMask(Output, RV620_LVTMA_TRANSMITTER_ENABLE, 0x0f, 0x3ff);
}
RHDRegMask(Output, RV620_LVTMA_PWRSEQ_CNTL, 0,
RV62_LVTMA_DIGON_OVRD | RV62_LVTMA_BLON_OVRD);
RHDRegMask(Output, RV620_LVTMA_PWRSEQ_REF_DIV, 3999, 0xffff); /* 4000 - 1 */
tmp = Private->PowerSequenceDe2Bl * 10 / 4;
tmp1 = Private->PowerSequenceDig2De * 10 / 4;
/* power sequencing delay for on / off between DIGON and SYNCEN, and SYNCEN and BLON */
RHDRegWrite(Output, RV620_LVTMA_PWRSEQ_DELAY1, (tmp1 << 24) | tmp1 | (tmp << 8) | (tmp << 16));
RHDRegWrite(Output, RV620_LVTMA_PWRSEQ_DELAY2, Private->OffDelay / 4);
RHDRegMask(Output, RV620_LVTMA_PWRSEQ_CNTL, 0, RV62_LVTMA_PWRSEQ_DISABLE_SYNCEN_CONTROL_OF_TX_EN);
for (i = 0; i < 500; i++) {
CARD32 tmp;
 
usleep(1000);
tmp = RHDRegRead(Output, RV620_LVTMA_PWRSEQ_STATE);
tmp >>= RV62_LVTMA_PWRSEQ_STATE_SHIFT;
tmp &= 0xff;
if (tmp <= RV62_POWERUP_DONE)
break;
if (tmp >= RV62_POWERDOWN_DONE)
break;
}
/* LCD on */
RHDRegMask(Output, RV620_LVTMA_PWRSEQ_CNTL, RV62_LVTMA_PWRSEQ_TARGET_STATE,
RV62_LVTMA_PWRSEQ_TARGET_STATE);
return;
 
case RHD_POWER_RESET:
/* Disable LCD and BL */
RHDRegMask(Output, RV620_LVTMA_PWRSEQ_CNTL, 0,
RV62_LVTMA_PWRSEQ_TARGET_STATE
| RV62_LVTMA_DIGON_OVRD
| RV62_LVTMA_BLON_OVRD);
for (i = 0; i < 500; i++) {
CARD32 tmp;
 
usleep(1000);
tmp = RHDRegRead(Output, RV620_LVTMA_PWRSEQ_STATE);
tmp >>= RV62_LVTMA_PWRSEQ_STATE_SHIFT;
tmp &= 0xff;
if (tmp >= RV62_POWERDOWN_DONE)
break;
}
return;
case RHD_POWER_SHUTDOWN:
LVTMA_LVDSTransmitterPower(Output, RHD_POWER_RESET);
/* op-amp down, bias current for output driver down, shunt resistor down */
RHDRegWrite(Output, RV620_LVTMA_TRANSMITTER_ADJUST, 0x00e00000);
/* set macro control */
RHDRegWrite(Output, RV620_LVTMA_MACRO_CONTROL, 0x07430408);
default:
return;
}
}
 
/*
*
*/
static void
LVTMA_LVDSTransmitterSave(struct rhdOutput *Output)
{
struct DIGPrivate *digPrivate = (struct DIGPrivate *)Output->Private;
struct LVTMATransmitterPrivate *Private = (struct LVTMATransmitterPrivate*)digPrivate->Transmitter.Private;
 
RHDFUNC(Output);
 
LVTMATransmitterSave(Output);
 
Private->StoredPwrSeqCntl = RHDRegRead(Output, RV620_LVTMA_PWRSEQ_CNTL);
Private->StoredPwrSeqRevDiv = RHDRegRead(Output, RV620_LVTMA_PWRSEQ_REF_DIV);
Private->StoredPwrSeqDelay1 = RHDRegRead(Output, RV620_LVTMA_PWRSEQ_DELAY1);
Private->StoredPwrSeqDelay2 = RHDRegRead(Output, RV620_LVTMA_PWRSEQ_DELAY2);
 
Private->Stored = TRUE;
}
 
/*
*
*/
static void
LVTMA_LVDSTransmitterRestore(struct rhdOutput *Output)
{
struct DIGPrivate *digPrivate = (struct DIGPrivate *)Output->Private;
struct LVTMATransmitterPrivate *Private = (struct LVTMATransmitterPrivate*)digPrivate->Transmitter.Private;
 
RHDFUNC(Output);
 
if (!Private->Stored) {
xf86DrvMsg(Output->scrnIndex, X_ERROR,
"%s: No registers stored.\n", __func__);
return;
}
 
LVTMATransmitterRestore(Output);
 
RHDRegWrite(Output, RV620_LVTMA_PWRSEQ_REF_DIV, Private->StoredPwrSeqRevDiv);
RHDRegWrite(Output, RV620_LVTMA_PWRSEQ_DELAY1, Private->StoredPwrSeqDelay1);
RHDRegWrite(Output, RV620_LVTMA_PWRSEQ_DELAY2, Private->StoredPwrSeqDelay2);
RHDRegWrite(Output, RV620_LVTMA_PWRSEQ_CNTL, Private->StoredPwrSeqCntl);
}
 
/*
*
*/
static void
LVTMATransmitterDestroy(struct rhdOutput *Output)
{
struct DIGPrivate *digPrivate = (struct DIGPrivate *)Output->Private;
 
RHDFUNC(Output);
 
if (!digPrivate)
return;
 
xfree(digPrivate->Transmitter.Private);
}
 
#if defined(ATOM_BIOS) && defined(ATOM_BIOS_PARSER)
 
struct ATOMTransmitterPrivate
{
struct atomTransmitterConfig atomTransmitterConfig;
enum atomTransmitter atomTransmitterID;
};
 
/*
*
*/
static ModeStatus
ATOMTransmitterModeValid(struct rhdOutput *Output, DisplayModePtr Mode)
{
 
RHDFUNC(Output);
 
if (Output->Connector->Type == RHD_CONNECTOR_DVI_SINGLE
&& Mode->SynthClock > 165000)
return MODE_CLOCK_HIGH;
 
return MODE_OK;
}
 
/*
*
*/
void
rhdPrintDigDebug(RHDPtr rhdPtr, const char *name)
{
xf86DrvMsgVerb(rhdPtr->scrnIndex, X_INFO, 7, "%s: DIGn_CNTL: n=1: 0x%x n=2: 0x%x\n",
name, RHDRegRead(rhdPtr, RV620_DIG1_CNTL),
RHDRegRead(rhdPtr, DIG2_OFFSET + RV620_DIG1_CNTL));
}
 
/*
*
*/
static void
ATOMTransmitterSet(struct rhdOutput *Output, struct rhdCrtc *Crtc, DisplayModePtr Mode)
{
RHDPtr rhdPtr = RHDPTRI(Output);
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
struct ATOMTransmitterPrivate *transPrivate
= (struct ATOMTransmitterPrivate*) Private->Transmitter.Private;
struct atomTransmitterConfig *atc = &transPrivate->atomTransmitterConfig;
 
RHDFUNC(Output);
 
atc->Coherent = Private->Coherent;
atc->PixelClock = Mode->SynthClock;
 
rhdPrintDigDebug(rhdPtr,__func__);
 
if (Private->RunDualLink) {
atc->Mode = atomDualLink;
 
if (atc->Link == atomTransLinkA)
atc->Link = atomTransLinkAB;
else if (atc->Link == atomTransLinkB)
atc->Link = atomTransLinkBA;
 
} else {
atc->Mode = atomSingleLink;
 
if (atc->Link == atomTransLinkAB)
atc->Link = atomTransLinkA;
else if (atc->Link == atomTransLinkBA)
atc->Link = atomTransLinkB;
 
}
 
atc->PixelClock = Mode->SynthClock;
 
rhdAtomDigTransmitterControl(rhdPtr->atomBIOS, transPrivate->atomTransmitterID,
atomTransSetup, atc);
rhdPrintDigDebug(rhdPtr,__func__);
}
 
/*
*
*/
static CARD32
digProbeEncoder(struct rhdOutput *Output)
{
if (Output->Id == RHD_OUTPUT_KLDSKP_LVTMA) {
return ENCODER_DIG2;
} else {
Bool swap = (RHDRegRead(Output, RV620_DCIO_LINK_STEER_CNTL)
& RV62_LINK_STEER_SWAP) == RV62_LINK_STEER_SWAP;
 
switch (Output->Id) {
case RHD_OUTPUT_UNIPHYA:
if (swap) {
RHDDebug(Output->scrnIndex, "%s: detected ENCODER_DIG2 for UNIPHYA\n",__func__);
return ENCODER_DIG2;
} else {
RHDDebug(Output->scrnIndex, "%s: detected ENCODER_DIG1 for UNIPHYA\n",__func__);
return ENCODER_DIG1;
}
break;
case RHD_OUTPUT_UNIPHYB:
if (swap) {
RHDDebug(Output->scrnIndex, "%s: detected ENCODER_DIG1 for UNIPHYB\n",__func__);
return ENCODER_DIG1;
} else {
RHDDebug(Output->scrnIndex, "%s: detected ENCODER_DIG2 for UNIPHYB\n",__func__);
return ENCODER_DIG2;
}
break;
default:
return ENCODER_NONE; /* should not get here */
}
}
return ENCODER_NONE;
}
 
/*
*
*/
static void
ATOMTransmitterPower(struct rhdOutput *Output, int Power)
{
RHDPtr rhdPtr = RHDPTRI(Output);
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
struct ATOMTransmitterPrivate *transPrivate
= (struct ATOMTransmitterPrivate*) Private->Transmitter.Private;
struct atomTransmitterConfig *atc = &transPrivate->atomTransmitterConfig;
 
RHDFUNC(Output);
 
rhdPrintDigDebug(rhdPtr,__func__);
 
if (Private->RunDualLink)
atc->LinkCnt = atomDualLink;
else
atc->LinkCnt = atomSingleLink;
 
atc->Coherent = Private->Coherent;
 
if (atc->Encoder == atomEncoderNone) {
switch (digProbeEncoder(Output)) {
case ENCODER_DIG1:
if (rhdPtr->DigEncoderOutput[0]) {
RHDDebug(Output->scrnIndex,"%s: DIG1 for %s already taken\n",__func__,Output->Name);
return;
}
atc->Encoder = atomEncoderDIG1;
break;
case ENCODER_DIG2:
if (rhdPtr->DigEncoderOutput[1]) {
RHDDebug(Output->scrnIndex,"%s: DIG2 for %s already taken\n",__func__,Output->Name);
return;
}
atc->Encoder = atomEncoderDIG2;
break;
default:
return;
}
}
 
switch (Power) {
case RHD_POWER_ON:
rhdAtomDigTransmitterControl(rhdPtr->atomBIOS, transPrivate->atomTransmitterID,
atomTransEnable, atc);
rhdAtomDigTransmitterControl(rhdPtr->atomBIOS, transPrivate->atomTransmitterID,
atomTransEnableOutput, atc);
break;
case RHD_POWER_RESET:
rhdAtomDigTransmitterControl(rhdPtr->atomBIOS, transPrivate->atomTransmitterID,
atomTransDisableOutput, atc);
break;
case RHD_POWER_SHUTDOWN:
if (!Output->Connector || Output->Connector->Type == RHD_CONNECTOR_DVI)
atc->Mode = atomDVI;
 
rhdAtomDigTransmitterControl(rhdPtr->atomBIOS, transPrivate->atomTransmitterID,
atomTransDisableOutput, atc);
rhdAtomDigTransmitterControl(rhdPtr->atomBIOS, transPrivate->atomTransmitterID,
atomTransDisable, atc);
break;
}
rhdPrintDigDebug(rhdPtr,__func__);
}
 
/*
*
*/
static void
ATOMTransmitterSave(struct rhdOutput *Output)
{
RHDFUNC(Output);
}
 
/*
*
*/
static void
ATOMTransmitterRestore(struct rhdOutput *Output)
{
RHDFUNC(Output);
}
 
/*
*
*/
static void
ATOMTransmitterDestroy(struct rhdOutput *Output)
{
struct DIGPrivate *digPrivate = (struct DIGPrivate *)Output->Private;
 
RHDFUNC(Output);
 
if (!digPrivate)
return;
 
xfree(digPrivate->Transmitter.Private);
}
 
#endif /* ATOM_BIOS && ATOM_BIOS_PASER */
 
/*
* Encoder
*/
 
struct DIGEncoder
{
Bool Stored;
 
CARD32 StoredOff;
 
CARD32 StoredRegExt1DiffPostDivCntl;
CARD32 StoredRegExt2DiffPostDivCntl;
CARD32 StoredDIGClockPattern;
CARD32 StoredLVDSDataCntl;
CARD32 StoredTMDSPixelEncoding;
CARD32 StoredTMDSCntl;
CARD32 StoredDIGCntl;
CARD32 StoredDIGMisc1;
CARD32 StoredDIGMisc2;
CARD32 StoredDIGMisc3;
CARD32 StoredDCCGPclkDigCntl;
CARD32 StoredDCCGSymclkCntl;
CARD32 StoredDCIOLinkSteerCntl;
CARD32 StoredBlModCntl;
};
 
/*
*
*/
static ModeStatus
EncoderModeValid(struct rhdOutput *Output, DisplayModePtr Mode)
{
RHDFUNC(Output);
 
return MODE_OK;
}
 
/*
*
*/
static void
LVDSEncoder(struct rhdOutput *Output)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
CARD32 off;
 
RHDFUNC(Output);
 
 
off = (Private->EncoderID == ENCODER_DIG2) ? DIG2_OFFSET : DIG1_OFFSET;
/* Clock pattern ? */
RHDRegMask(Output, off + RV620_DIG1_CLOCK_PATTERN, 0x0063, 0xFFFF);
/* set panel type: 18/24 bit mode */
RHDRegMask(Output, off + RV620_LVDS1_DATA_CNTL,
(Private->FMTDither.LVDS24Bit ? RV62_LVDS_24BIT_ENABLE : 0)
| (Private->FPDI ? RV62_LVDS_24BIT_FORMAT : 0),
RV62_LVDS_24BIT_ENABLE | RV62_LVDS_24BIT_FORMAT);
 
Output->Crtc->FMTModeSet(Output->Crtc, &Private->FMTDither);
}
 
/*
*
*/
static void
TMDSEncoder(struct rhdOutput *Output)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
CARD32 off;
 
RHDFUNC(Output);
 
off = (Private->EncoderID == ENCODER_DIG2) ? DIG2_OFFSET : DIG1_OFFSET;
/* clock pattern ? */
RHDRegMask(Output, off + RV620_DIG1_CLOCK_PATTERN, 0x001F, 0xFFFF);
/* color format RGB - normal color format 24bpp, Twin-Single 30bpp or Dual 48bpp*/
RHDRegMask(Output, off + RV620_TMDS1_CNTL, 0x0,
RV62_TMDS_PIXEL_ENCODING | RV62_TMDS_COLOR_FORMAT);
/* no dithering */
Output->Crtc->FMTModeSet(Output->Crtc, NULL);
}
 
/*
*
*/
static void
EncoderSet(struct rhdOutput *Output, struct rhdCrtc *Crtc, DisplayModePtr Mode)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
RHDPtr rhdPtr = RHDPTRI(Output);
CARD32 off;
 
RHDFUNC(Output);
 
off = (Private->EncoderID == ENCODER_DIG2) ? DIG2_OFFSET : DIG1_OFFSET;
 
rhdPrintDigDebug(rhdPtr,__func__);
 
RHDRegMask(Output, off + RV620_DIG1_CNTL, Output->Crtc->Id,
RV62_DIG_SOURCE_SELECT);
 
if (Output->Id == RHD_OUTPUT_UNIPHYA) {
/* select LinkA ?? */
RHDRegMask(Output, RV620_DCIO_LINK_STEER_CNTL,
((Private->EncoderID == ENCODER_DIG2)
? RV62_LINK_STEER_SWAP
: 0), RV62_LINK_STEER_SWAP); /* swap if DIG2 */
if (!Private->RunDualLink) {
RHDRegMask(Output, off + RV620_DIG1_CNTL,
0,
RV62_DIG_SWAP |RV62_DIG_DUAL_LINK_ENABLE);
} else {
RHDRegMask(Output, off + RV620_DIG1_CNTL,
RV62_DIG_DUAL_LINK_ENABLE,
RV62_DIG_SWAP | RV62_DIG_DUAL_LINK_ENABLE);
}
} else if (Output->Id == RHD_OUTPUT_UNIPHYB) {
/* select LinkB ?? */
RHDRegMask(Output, RV620_DCIO_LINK_STEER_CNTL,
((Private->EncoderID == ENCODER_DIG2)
? 0
: RV62_LINK_STEER_SWAP), RV62_LINK_STEER_SWAP);
if (!Private->RunDualLink)
RHDRegMask(Output, off + RV620_DIG1_CNTL,
0,
RV62_DIG_SWAP | RV62_DIG_DUAL_LINK_ENABLE);
else
RHDRegMask(Output, off + RV620_DIG1_CNTL,
RV62_DIG_SWAP | RV62_DIG_DUAL_LINK_ENABLE,
RV62_DIG_SWAP | RV62_DIG_DUAL_LINK_ENABLE);
} else { /* LVTMA */
RHDRegMask(Output, RV620_EXT2_DIFF_POST_DIV_CNTL, 0, RV62_EXT2_DIFF_DRIVER_ENABLE);
}
 
if (Private->EncoderMode == LVDS)
LVDSEncoder(Output);
else if (Private->EncoderMode == DISPLAYPORT)
dbgprintf("No displayport support yet!",__FILE__, __LINE__, __func__); /* bugger ! */
else
TMDSEncoder(Output);
 
/* Start DIG, set links, disable stereo sync, select FMT source */
RHDRegMask(Output, off + RV620_DIG1_CNTL,
(Private->EncoderMode & 0x7) << 8
| RV62_DIG_START
| (Private->RunDualLink ? RV62_DIG_DUAL_LINK_ENABLE : 0)
| Output->Crtc->Id,
RV62_DIG_MODE
| RV62_DIG_START
| RV62_DIG_DUAL_LINK_ENABLE
| RV62_DIG_STEREOSYNC_SELECT
| RV62_DIG_SOURCE_SELECT);
rhdPrintDigDebug(rhdPtr,__func__);
}
 
/*
*
*/
static void
EncoderPower(struct rhdOutput *Output, int Power)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
CARD32 off;
enum encoderID EncoderID = Private->EncoderID;
RHDPtr rhdPtr = Output->rhdPtr;
 
RHDFUNC(Output);
 
if (EncoderID == ENCODER_NONE) {
EncoderID = digProbeEncoder(Output);
switch (EncoderID) {
case ENCODER_DIG1:
if (rhdPtr->DigEncoderOutput[0]) {
RHDDebug(Output->scrnIndex,"%s: DIG1 for %s already taken\n",__func__,Output->Name);
return;
}
break;
case ENCODER_DIG2:
if (rhdPtr->DigEncoderOutput[1]) {
RHDDebug(Output->scrnIndex,"%s: DIG2 for %s already taken\n",__func__,Output->Name);
return;
}
break;
default:
return;
}
}
 
off = (EncoderID == ENCODER_DIG2) ? DIG2_OFFSET : DIG1_OFFSET;
 
/* clock src is pixel PLL */
RHDRegMask(Output, RV620_DCCG_SYMCLK_CNTL, 0x0,
0x3 << ((EncoderID == ENCODER_DIG2)
? RV62_SYMCLKB_SRC_SHIFT
: RV62_SYMCLKA_SRC_SHIFT));
 
rhdPrintDigDebug(rhdPtr,__func__);
switch (Power) {
case RHD_POWER_ON:
RHDDebug(Output->scrnIndex,"%s(RHD_POWER_ON, %i)\n",__func__,
EncoderID);
/* enable DIG */
RHDRegMask(Output, off + RV620_DIG1_CNTL, 0x10, 0x10);
RHDRegMask(Output, (EncoderID == ENCODER_DIG2)
? RV620_DCCG_PCLK_DIGB_CNTL
: RV620_DCCG_PCLK_DIGA_CNTL,
RV62_PCLK_DIGA_ON, RV62_PCLK_DIGA_ON); /* @@@ */
rhdPrintDigDebug(rhdPtr,__func__);
return;
case RHD_POWER_RESET:
case RHD_POWER_SHUTDOWN:
default:
RHDDebug(Output->scrnIndex,"%s(RHD_POWER_SHUTDOWN, %i)\n",__func__,
EncoderID);
/* disable differential clock driver */
if (EncoderID == ENCODER_DIG1)
RHDRegMask(Output, RV620_EXT1_DIFF_POST_DIV_CNTL,
0,
RV62_EXT1_DIFF_DRIVER_ENABLE);
else
RHDRegMask(Output, RV620_EXT2_DIFF_POST_DIV_CNTL,
0,
RV62_EXT2_DIFF_DRIVER_ENABLE);
/* disable DIG */
RHDRegMask(Output, off + RV620_DIG1_CNTL, 0x0, 0x10);
RHDRegMask(Output, (EncoderID == ENCODER_DIG2)
? RV620_DCCG_PCLK_DIGB_CNTL
: RV620_DCCG_PCLK_DIGA_CNTL,
0, RV62_PCLK_DIGA_ON); /* @@@ */
rhdPrintDigDebug(rhdPtr,__func__);
return;
}
}
 
/*
*
*/
static void
EncoderSave(struct rhdOutput *Output)
{
struct DIGPrivate *digPrivate = (struct DIGPrivate *)Output->Private;
struct DIGEncoder *Private = (struct DIGEncoder *)(digPrivate->Encoder.Private);
CARD32 off;
enum encoderID EncoderID;
 
RHDFUNC(Output);
 
EncoderID = digProbeEncoder(Output);
off = (EncoderID == ENCODER_DIG2) ? DIG2_OFFSET : DIG1_OFFSET;
Private->StoredOff = off;
 
Private->StoredRegExt1DiffPostDivCntl = RHDRegRead(Output, off + RV620_EXT1_DIFF_POST_DIV_CNTL);
Private->StoredRegExt2DiffPostDivCntl = RHDRegRead(Output, off + RV620_EXT2_DIFF_POST_DIV_CNTL);
Private->StoredDIGClockPattern = RHDRegRead(Output, off + RV620_DIG1_CLOCK_PATTERN);
Private->StoredLVDSDataCntl = RHDRegRead(Output, off + RV620_LVDS1_DATA_CNTL);
Private->StoredDIGCntl = RHDRegRead(Output, off + RV620_DIG1_CNTL);
Private->StoredTMDSCntl = RHDRegRead(Output, off + RV620_TMDS1_CNTL);
Private->StoredDCIOLinkSteerCntl = RHDRegRead(Output, RV620_DCIO_LINK_STEER_CNTL);
Private->StoredDCCGPclkDigCntl = RHDRegRead(Output,
(off == DIG2_OFFSET)
? RV620_DCCG_PCLK_DIGB_CNTL
: RV620_DCCG_PCLK_DIGA_CNTL);
Private->StoredDCCGSymclkCntl = RHDRegRead(Output, RV620_DCCG_SYMCLK_CNTL);
Private->StoredBlModCntl = RHDRegRead(Output, RV620_LVTMA_BL_MOD_CNTL);
 
Private->Stored = TRUE;
}
 
/*
*
*/
static void
EncoderRestore(struct rhdOutput *Output)
{
struct DIGPrivate *digPrivate = (struct DIGPrivate *)Output->Private;
struct DIGEncoder *Private = (struct DIGEncoder *)(digPrivate->Encoder.Private);
CARD32 off;
 
RHDFUNC(Output);
 
if (!Private->Stored) {
xf86DrvMsg(Output->scrnIndex, X_ERROR,
"%s: No registers stored.\n", __func__);
return;
}
off = Private->StoredOff;
 
RHDRegWrite(Output, off + RV620_EXT1_DIFF_POST_DIV_CNTL, Private->StoredRegExt1DiffPostDivCntl);
RHDRegWrite(Output, off + RV620_EXT2_DIFF_POST_DIV_CNTL, Private->StoredRegExt2DiffPostDivCntl);
/* reprogram all values but don't start the encoder, yet */
RHDRegWrite(Output, off + RV620_DIG1_CNTL, Private->StoredDIGCntl & ~(CARD32)RV62_DIG_START);
RHDRegWrite(Output, RV620_DCIO_LINK_STEER_CNTL, Private->StoredDCIOLinkSteerCntl);
RHDRegWrite(Output, off + RV620_DIG1_CLOCK_PATTERN, Private->StoredDIGClockPattern);
RHDRegWrite(Output, off + RV620_LVDS1_DATA_CNTL, Private->StoredLVDSDataCntl);
RHDRegWrite(Output, off + RV620_TMDS1_CNTL, Private->StoredTMDSCntl);
RHDRegWrite(Output, (off == DIG2_OFFSET)
? RV620_DCCG_PCLK_DIGB_CNTL
: RV620_DCCG_PCLK_DIGA_CNTL,
Private->StoredDCCGPclkDigCntl);
/* now enable the encoder */
RHDRegWrite(Output, off + RV620_DIG1_CNTL, Private->StoredDIGCntl);
RHDRegWrite(Output, RV620_DCCG_SYMCLK_CNTL, Private->StoredDCCGSymclkCntl);
RHDRegWrite(Output, RV620_LVTMA_BL_MOD_CNTL, Private->StoredBlModCntl);
}
 
/*
*
*/
static void
EncoderDestroy(struct rhdOutput *Output)
{
struct DIGPrivate *digPrivate = (struct DIGPrivate *)Output->Private;
 
RHDFUNC(Output);
 
if (!digPrivate || !digPrivate->Encoder.Private)
return;
 
xfree(digPrivate->Encoder.Private);
}
 
/*
* Housekeeping
*/
void
GetLVDSInfo(RHDPtr rhdPtr, struct DIGPrivate *Private)
{
CARD32 off = (Private->EncoderID == ENCODER_DIG2) ? DIG2_OFFSET : DIG1_OFFSET;
CARD32 tmp;
 
RHDFUNC(rhdPtr);
 
Private->FPDI = ((RHDRegRead(rhdPtr, off + RV620_LVDS1_DATA_CNTL)
& RV62_LVDS_24BIT_FORMAT) != 0);
Private->RunDualLink = ((RHDRegRead(rhdPtr, off + RV620_DIG1_CNTL)
& RV62_DIG_DUAL_LINK_ENABLE) != 0);
Private->FMTDither.LVDS24Bit = ((RHDRegRead(rhdPtr, off + RV620_LVDS1_DATA_CNTL)
& RV62_LVDS_24BIT_ENABLE) != 0);
 
tmp = RHDRegRead(rhdPtr, RV620_LVTMA_BL_MOD_CNTL);
if (tmp & 0x1)
Private->BlLevel = ( tmp >> LVTMA_BL_MOD_LEVEL_SHIFT ) & 0xff;
else
Private->BlLevel = -1;
 
tmp = RHDRegRead(rhdPtr, RV620_LVTMA_PWRSEQ_REF_DIV);
tmp &= 0xffff;
tmp += 1;
tmp /= 1000;
Private->PowerSequenceDig2De = Private->PowerSequenceDe2Bl =
RHDRegRead(rhdPtr, RV620_LVTMA_PWRSEQ_REF_DIV);
Private->PowerSequenceDig2De = ((Private->PowerSequenceDig2De & 0xff) * tmp) / 10;
Private->PowerSequenceDe2Bl = (((Private->PowerSequenceDe2Bl >> 8) & 0xff) * tmp) / 10;
Private->OffDelay = RHDRegRead(rhdPtr, RV620_LVTMA_PWRSEQ_DELAY2);
Private->OffDelay *= tmp;
 
/* This is really ugly! */
{
CARD32 fmt_offset;
 
tmp = RHDRegRead(rhdPtr, off + RV620_DIG1_CNTL);
fmt_offset = (tmp & RV62_DIG_SOURCE_SELECT) ? FMT2_OFFSET :0;
tmp = RHDRegRead(rhdPtr, fmt_offset + RV620_FMT1_BIT_DEPTH_CONTROL);
Private->FMTDither.LVDSSpatialDither = ((tmp & 0x100) != 0);
Private->FMTDither.LVDSGreyLevel = ((tmp & 0x10000) != 0);
Private->FMTDither.LVDSTemporalDither
= (Private->FMTDither.LVDSGreyLevel > 0) || ((tmp & 0x1000000) != 0);
}
 
#ifdef ATOM_BIOS
{
AtomBiosArgRec data;
 
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS,
ATOM_LVDS_FPDI, &data) == ATOM_SUCCESS)
Private->FPDI = data.val;
 
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS,
ATOM_LVDS_DUALLINK, &data) == ATOM_SUCCESS)
Private->RunDualLink = data.val;
 
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS,
ATOM_LVDS_GREYLVL, &data) == ATOM_SUCCESS)
Private->FMTDither.LVDSGreyLevel = data.val;
 
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS,
ATOM_LVDS_SEQ_DIG_ONTO_DE, &data) == ATOM_SUCCESS)
Private->PowerSequenceDig2De = data.val;
 
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS,
ATOM_LVDS_SEQ_DE_TO_BL, &data) == ATOM_SUCCESS)
Private->PowerSequenceDe2Bl = data.val;
 
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS,
ATOM_LVDS_OFF_DELAY, &data) == ATOM_SUCCESS)
Private->OffDelay = data.val;
 
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS,
ATOM_LVDS_24BIT, &data) == ATOM_SUCCESS)
Private->FMTDither.LVDS24Bit = data.val;
 
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS,
ATOM_LVDS_SPATIAL_DITHER, &data) == ATOM_SUCCESS)
Private->FMTDither.LVDSSpatialDither = data.val;
 
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS,
ATOM_LVDS_TEMPORAL_DITHER, &data) == ATOM_SUCCESS)
Private->FMTDither.LVDSTemporalDither = data.val;
 
Private->PowerSequenceDe2Bl = data.val;
 
}
#endif
 
}
 
/*
* Infrastructure
*/
 
static ModeStatus
DigModeValid(struct rhdOutput *Output, DisplayModePtr Mode)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
struct transmitter *Transmitter = &Private->Transmitter;
struct encoder *Encoder = &Private->Encoder;
ModeStatus Status;
 
RHDFUNC(Output);
 
if ((Status = Transmitter->ModeValid(Output, Mode)) == MODE_OK)
return ((Encoder->ModeValid(Output, Mode)));
else
return Status;
}
 
/*
*
*/
static void
DigPower(struct rhdOutput *Output, int Power)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
struct transmitter *Transmitter = &Private->Transmitter;
struct encoder *Encoder = &Private->Encoder;
Bool enableHDMI;
 
RHDDebug(Output->scrnIndex, "%s(%s,%s)\n",__func__,Output->Name,
rhdPowerString[Power]);
 
if(Output->Connector != NULL) {
/* check if attached monitor supports HDMI */
enableHDMI = RHDConnectorEnableHDMI(Output->Connector);
if (enableHDMI && Private->EncoderMode == TMDS_DVI)
Private->EncoderMode = TMDS_HDMI;
else if (!enableHDMI && Private->EncoderMode == TMDS_HDMI)
Private->EncoderMode = TMDS_DVI;
}
 
switch (Power) {
case RHD_POWER_ON:
Encoder->Power(Output, Power);
Transmitter->Power(Output, Power);
RHDHdmiEnable(Private->Hdmi, Private->EncoderMode == TMDS_HDMI);
return;
case RHD_POWER_RESET:
Transmitter->Power(Output, Power);
Encoder->Power(Output, Power);
return;
case RHD_POWER_SHUTDOWN:
default:
Transmitter->Power(Output, Power);
Encoder->Power(Output, Power);
RHDHdmiEnable(Private->Hdmi, FALSE);
return;
}
}
 
/*
*
*/
static Bool
DigPropertyControl(struct rhdOutput *Output,
enum rhdPropertyAction Action, enum rhdOutputProperty Property, union rhdPropertyData *val)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
 
RHDFUNC(Output);
 
switch(Property) {
case RHD_OUTPUT_COHERENT:
case RHD_OUTPUT_BACKLIGHT:
{
if (!Private->Transmitter.Property)
return FALSE;
Private->Transmitter.Property(Output, Action, Property, val);
break;
}
default:
return FALSE;
}
return TRUE;
}
 
 
/*
*
*/
static void
DigMode(struct rhdOutput *Output, DisplayModePtr Mode)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
struct transmitter *Transmitter = &Private->Transmitter;
struct encoder *Encoder = &Private->Encoder;
struct rhdCrtc *Crtc = Output->Crtc;
 
RHDFUNC(Output);
 
/*
* For dual link capable DVI we need to decide from the pix clock if we are dual link.
* Do it here as it is convenient.
*/
if (Output->Connector->Type == RHD_CONNECTOR_DVI)
Private->RunDualLink = (Mode->SynthClock > 165000) ? TRUE : FALSE;
 
Encoder->Mode(Output, Crtc, Mode);
Transmitter->Mode(Output, Crtc, Mode);
RHDHdmiSetMode(Private->Hdmi, Mode);
}
 
/*
*
*/
static void
DigSave(struct rhdOutput *Output)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
struct transmitter *Transmitter = &Private->Transmitter;
struct encoder *Encoder = &Private->Encoder;
 
RHDFUNC(Output);
 
Encoder->Save(Output);
Transmitter->Save(Output);
RHDHdmiSave(Private->Hdmi);
}
 
/*
*
*/
static void
DigRestore(struct rhdOutput *Output)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
struct transmitter *Transmitter = &Private->Transmitter;
struct encoder *Encoder = &Private->Encoder;
 
RHDFUNC(Output);
 
Encoder->Restore(Output);
Transmitter->Restore(Output);
RHDHdmiRestore(Private->Hdmi);
}
 
/*
*
*/
static void
DigDestroy(struct rhdOutput *Output)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
struct transmitter *Transmitter = &Private->Transmitter;
struct encoder *Encoder = &Private->Encoder;
 
RHDFUNC(Output);
 
Encoder->Destroy(Output);
Transmitter->Destroy(Output);
RHDHdmiDestroy(Private->Hdmi);
#ifdef NOT_YET
if (Transmitter->PropertyPrivate)
RhdAtomDestroyBacklightControlProperty(Output, Transmitter->PropertyPrivate);
#endif
xfree(Private);
Output->Private = NULL;
}
 
/*
*
*/
static Bool
DigAllocFree(struct rhdOutput *Output, enum rhdOutputAllocation Alloc)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
RHDPtr rhdPtr = RHDPTRI(Output);
char *TransmitterName;
 
RHDFUNC(rhdPtr);
 
switch (Output->Id) {
case RHD_OUTPUT_KLDSKP_LVTMA:
TransmitterName = "KLDSKP_LVTMA";
break;
case RHD_OUTPUT_UNIPHYA:
TransmitterName = "UNIPHYA";
break;
case RHD_OUTPUT_UNIPHYB:
TransmitterName = "UNIPHYB";
break;
default:
return FALSE;
}
switch (Alloc) {
case RHD_OUTPUT_ALLOC:
 
if (Private->EncoderID != ENCODER_NONE)
return TRUE;
 
/*
* LVTMA can only use DIG2. Thus exclude
* DIG1 for LVTMA and prefer it for the
* UNIPHYs.
*/
if (Output->Id == RHD_OUTPUT_KLDSKP_LVTMA) {
if (!rhdPtr->DigEncoderOutput[1]) {
rhdPtr->DigEncoderOutput[1] = Output;
Private->EncoderID = ENCODER_DIG2;
xf86DrvMsg(Output->scrnIndex, X_INFO,
"Mapping DIG2 encoder to %s\n",TransmitterName);
return TRUE;
} else
return FALSE;
} else {
struct ATOMTransmitterPrivate *transPrivate =
(struct ATOMTransmitterPrivate *)Private->Transmitter.Private;
struct atomTransmitterConfig *atc = &transPrivate->atomTransmitterConfig;
if (!rhdPtr->DigEncoderOutput[0]) {
rhdPtr->DigEncoderOutput[0] = Output;
Private->EncoderID = ENCODER_DIG1;
atc->Encoder = atomEncoderDIG1;
xf86DrvMsg(Output->scrnIndex, X_INFO,
"Mapping DIG1 encoder to %s\n",TransmitterName);
return TRUE;
} else if (!rhdPtr->DigEncoderOutput[1]) {
rhdPtr->DigEncoderOutput[1] = Output;
Private->EncoderID = ENCODER_DIG2;
atc->Encoder = atomEncoderDIG2;
xf86DrvMsg(Output->scrnIndex, X_INFO,
"Mapping DIG2 encoder to %s\n",TransmitterName);
return TRUE;
} else
return FALSE;
}
 
case RHD_OUTPUT_FREE:
Private->EncoderID = ENCODER_NONE;
if (rhdPtr->DigEncoderOutput[0] == Output) {
rhdPtr->DigEncoderOutput[0] = NULL;
return TRUE;
} else if (rhdPtr->DigEncoderOutput[1] == Output) {
rhdPtr->DigEncoderOutput[1] = NULL;
return TRUE;
} else
return FALSE;
break;
default:
return FALSE;
}
}
 
/*
*
*/
static Bool
rhdDIGSetCoherent(RHDPtr rhdPtr,struct rhdOutput *Output)
{
Bool coherent = FALSE;
// int from = X_CONFIG;
 
// switch (RhdParseBooleanOption(&rhdPtr->coherent, Output->Name)) {
// case RHD_OPTION_NOT_SET:
// case RHD_OPTION_DEFAULT:
// from = X_DEFAULT;
// coherent = FALSE;
// break;
// case RHD_OPTION_ON:
// coherent = TRUE;
// break;
// case RHD_OPTION_OFF:
// coherent = FALSE;
// break;
// }
// xf86DrvMsg(rhdPtr->scrnIndex,from,"Setting %s to %scoherent\n",
// Output->Name,coherent ? "" : "in");
 
return coherent;
}
 
/*
*
*/
#ifdef NOT_YET
static Bool
digTransmitterPropertyWrapper(struct rhdOutput *Output,
enum rhdPropertyAction Action,
enum rhdOutputProperty Property,
union rhdPropertyData *val)
{
struct DIGPrivate *Private = (struct DIGPrivate *)Output->Private;
void *storePrivate = Output->Private;
Bool (*func)(struct rhdOutput *,enum rhdPropertyAction, enum rhdOutputProperty,
union rhdPropertyData *) = Private->Transmitter.WrappedPropertyCallback;
Bool ret;
 
Output->Private = Private->Transmitter.PropertyPrivate;
ret = func(Output, Action, Property, val);
Output->Private = storePrivate;
 
return ret;
}
#endif
 
/*
*
*/
struct rhdOutput *
RHDDIGInit(RHDPtr rhdPtr, enum rhdOutputType outputType, CARD8 ConnectorType)
{
struct rhdOutput *Output;
struct DIGPrivate *Private;
struct DIGEncoder *Encoder;
 
RHDFUNC(rhdPtr);
 
Output = xnfcalloc(sizeof(struct rhdOutput), 1);
 
Output->scrnIndex = rhdPtr->scrnIndex;
Output->Id = outputType;
 
Output->Sense = NULL;
Output->ModeValid = DigModeValid;
Output->Mode = DigMode;
Output->Power = DigPower;
Output->Save = DigSave;
Output->Restore = DigRestore;
Output->Destroy = DigDestroy;
Output->Property = DigPropertyControl;
Output->AllocFree = DigAllocFree;
 
Private = xnfcalloc(sizeof(struct DIGPrivate), 1);
Output->Private = Private;
 
Private->EncoderID = ENCODER_NONE;
 
switch (outputType) {
case RHD_OUTPUT_UNIPHYA:
#if defined (ATOM_BIOS) && defined (ATOM_BIOS_PARSER)
Output->Name = "UNIPHY_A";
Private->Transmitter.Private =
(struct ATOMTransmitterPrivate *)xnfcalloc(sizeof (struct ATOMTransmitterPrivate), 1);
 
Private->Transmitter.Sense = NULL;
Private->Transmitter.ModeValid = ATOMTransmitterModeValid;
Private->Transmitter.Mode = ATOMTransmitterSet;
Private->Transmitter.Power = ATOMTransmitterPower;
Private->Transmitter.Save = ATOMTransmitterSave;
Private->Transmitter.Restore = ATOMTransmitterRestore;
Private->Transmitter.Destroy = ATOMTransmitterDestroy;
Private->Transmitter.Property = TMDSTransmitterPropertyControl;
{
struct ATOMTransmitterPrivate *transPrivate =
(struct ATOMTransmitterPrivate *)Private->Transmitter.Private;
struct atomTransmitterConfig *atc = &transPrivate->atomTransmitterConfig;
atc->Coherent = Private->Coherent = rhdDIGSetCoherent(rhdPtr, Output);
atc->Link = atomTransLinkA;
atc->Encoder = atomEncoderNone;
if (RHDIsIGP(rhdPtr->ChipSet)) {
AtomBiosArgRec data;
data.val = 1;
if (RHDAtomBiosFunc(rhdPtr, rhdPtr->atomBIOS, ATOM_GET_PCIE_LANES,
&data) == ATOM_SUCCESS)
atc->Lanes = data.pcieLanes.Chassis; /* only do 'chassis' for now */
else {
xfree(Private);
xfree(Output);
return NULL;
}
}
if (RHDIsIGP(rhdPtr->ChipSet))
transPrivate->atomTransmitterID = atomTransmitterPCIEPHY;
else
transPrivate->atomTransmitterID = atomTransmitterUNIPHY;
}
break;
#else
xfree(Private);
xfree(Output);
return NULL;
#endif /* ATOM_BIOS && ATOM_BIOS_PARSER */
 
case RHD_OUTPUT_UNIPHYB:
#if defined (ATOM_BIOS) && defined (ATOM_BIOS_PARSER)
Output->Name = "UNIPHY_B";
Private->Transmitter.Private =
(struct atomTransmitterPrivate *)xnfcalloc(sizeof (struct ATOMTransmitterPrivate), 1);
 
Private->Transmitter.Sense = NULL;
Private->Transmitter.ModeValid = ATOMTransmitterModeValid;
Private->Transmitter.Mode = ATOMTransmitterSet;
Private->Transmitter.Power = ATOMTransmitterPower;
Private->Transmitter.Save = ATOMTransmitterSave;
Private->Transmitter.Restore = ATOMTransmitterRestore;
Private->Transmitter.Destroy = ATOMTransmitterDestroy;
Private->Transmitter.Property = TMDSTransmitterPropertyControl;
{
struct ATOMTransmitterPrivate *transPrivate =
(struct ATOMTransmitterPrivate *)Private->Transmitter.Private;
struct atomTransmitterConfig *atc = &transPrivate->atomTransmitterConfig;
atc->Coherent = Private->Coherent = rhdDIGSetCoherent(rhdPtr, Output);
atc->Link = atomTransLinkB;
atc->Encoder = atomEncoderNone;
if (RHDIsIGP(rhdPtr->ChipSet)) {
AtomBiosArgRec data;
data.val = 2;
if (RHDAtomBiosFunc(rhdPtr->scrnIndex, rhdPtr->atomBIOS, ATOM_GET_PCIE_LANES,
&data) == ATOM_SUCCESS)
atc->Lanes = data.pcieLanes.Chassis; /* only do 'chassis' for now */
else {
xfree(Private);
xfree(Output);
return NULL;
}
}
if (RHDIsIGP(rhdPtr->ChipSet))
transPrivate->atomTransmitterID = atomTransmitterPCIEPHY;
else
transPrivate->atomTransmitterID = atomTransmitterUNIPHY;
}
break;
#else
xfree(Private);
xfree(Output);
return NULL;
#endif /* ATOM_BIOS && ATOM_BIOS_PARSER */
 
case RHD_OUTPUT_KLDSKP_LVTMA:
Output->Name = "UNIPHY_KLDSKP_LVTMA";
Private->Coherent = rhdDIGSetCoherent(rhdPtr, Output);
Private->Transmitter.Private =
(struct LVTMATransmitterPrivate *)xnfcalloc(sizeof (struct LVTMATransmitterPrivate), 1);
 
Private->Transmitter.Sense = NULL;
Private->Transmitter.ModeValid = LVTMATransmitterModeValid;
if (ConnectorType != RHD_CONNECTOR_PANEL) {
Private->Transmitter.Mode = LVTMA_TMDSTransmitterSet;
Private->Transmitter.Power = LVTMA_TMDSTransmitterPower;
Private->Transmitter.Save = LVTMA_TMDSTransmitterSave;
Private->Transmitter.Restore = LVTMA_TMDSTransmitterRestore;
} else {
Private->Transmitter.Mode = LVTMA_LVDSTransmitterSet;
Private->Transmitter.Power = LVTMA_LVDSTransmitterPower;
Private->Transmitter.Save = LVTMA_LVDSTransmitterSave;
Private->Transmitter.Restore = LVTMA_LVDSTransmitterRestore;
}
Private->Transmitter.Destroy = LVTMATransmitterDestroy;
if (ConnectorType == RHD_CONNECTOR_PANEL)
Private->Transmitter.Property = LVDSTransmitterPropertyControl;
else
Private->Transmitter.Property = TMDSTransmitterPropertyControl;
break;
 
default:
xfree(Private);
xfree(Output);
return NULL;
}
 
Encoder = (struct DIGEncoder *)(xnfcalloc(sizeof (struct DIGEncoder),1));
Private->Encoder.Private = Encoder;
Private->Encoder.ModeValid = EncoderModeValid;
Private->Encoder.Mode = EncoderSet;
Private->Encoder.Power = EncoderPower;
Private->Encoder.Save = EncoderSave;
Private->Encoder.Restore = EncoderRestore;
Private->Encoder.Destroy = EncoderDestroy;
 
switch (ConnectorType) {
case RHD_CONNECTOR_PANEL:
Private->EncoderMode = LVDS;
GetLVDSInfo(rhdPtr, Private);
#ifdef ATOM_BIOS
#ifdef NOT_YET
if (Private->BlLevel < 0) {
Private->BlLevel = RhdAtomSetupBacklightControlProperty(Output,
&Private->Transmitter.WrappedPropertyCallback,
&Private->Transmitter.PropertyPrivate);
if (Private->Transmitter.PropertyPrivate)
Private->Transmitter.Property = digTransmitterPropertyWrapper;
}
#endif
#endif
Private->Hdmi = NULL;
break;
case RHD_CONNECTOR_DVI:
Private->RunDualLink = FALSE; /* will be set later acc to pxclk */
Private->EncoderMode = TMDS_DVI;
Private->Hdmi = RHDHdmiInit(rhdPtr, Output);
break;
case RHD_CONNECTOR_DVI_SINGLE:
Private->RunDualLink = FALSE;
Private->EncoderMode = TMDS_DVI; /* changed later to HDMI if aplicateable */
Private->Hdmi = RHDHdmiInit(rhdPtr, Output);
break;
}
 
return Output;
}