Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 5133 → Rev 5134

/contrib/sdk/sources/libstdc++-v3/include/tr1/array
0,0 → 1,251
// class template array -*- C++ -*-
 
// Copyright (C) 2004-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/array
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_ARRAY
#define _GLIBCXX_TR1_ARRAY 1
 
#pragma GCC system_header
 
#include <bits/stl_algobase.h>
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @brief A standard container for storing a fixed size sequence of elements.
*
* @ingroup sequences
*
* Meets the requirements of a <a href="tables.html#65">container</a>, a
* <a href="tables.html#66">reversible container</a>, and a
* <a href="tables.html#67">sequence</a>.
*
* Sets support random access iterators.
*
* @param Tp Type of element. Required to be a complete type.
* @param N Number of elements.
*/
template<typename _Tp, std::size_t _Nm>
struct array
{
typedef _Tp value_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* iterator;
typedef const value_type* const_iterator;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
 
// Support for zero-sized arrays mandatory.
value_type _M_instance[_Nm ? _Nm : 1];
 
// No explicit construct/copy/destroy for aggregate type.
 
void
assign(const value_type& __u)
{ std::fill_n(begin(), size(), __u); }
 
void
swap(array& __other)
{ std::swap_ranges(begin(), end(), __other.begin()); }
 
// Iterators.
iterator
begin()
{ return iterator(std::__addressof(_M_instance[0])); }
 
const_iterator
begin() const
{ return const_iterator(std::__addressof(_M_instance[0])); }
 
iterator
end()
{ return iterator(std::__addressof(_M_instance[_Nm])); }
 
const_iterator
end() const
{ return const_iterator(std::__addressof(_M_instance[_Nm])); }
 
reverse_iterator
rbegin()
{ return reverse_iterator(end()); }
 
const_reverse_iterator
rbegin() const
{ return const_reverse_iterator(end()); }
 
reverse_iterator
rend()
{ return reverse_iterator(begin()); }
 
const_reverse_iterator
rend() const
{ return const_reverse_iterator(begin()); }
 
// Capacity.
size_type
size() const { return _Nm; }
 
size_type
max_size() const { return _Nm; }
 
bool
empty() const { return size() == 0; }
 
// Element access.
reference
operator[](size_type __n)
{ return _M_instance[__n]; }
 
const_reference
operator[](size_type __n) const
{ return _M_instance[__n]; }
 
reference
at(size_type __n)
{
if (__n >= _Nm)
std::__throw_out_of_range(__N("array::at"));
return _M_instance[__n];
}
 
const_reference
at(size_type __n) const
{
if (__n >= _Nm)
std::__throw_out_of_range(__N("array::at"));
return _M_instance[__n];
}
 
reference
front()
{ return *begin(); }
 
const_reference
front() const
{ return *begin(); }
 
reference
back()
{ return _Nm ? *(end() - 1) : *end(); }
 
const_reference
back() const
{ return _Nm ? *(end() - 1) : *end(); }
 
_Tp*
data()
{ return std::__addressof(_M_instance[0]); }
 
const _Tp*
data() const
{ return std::__addressof(_M_instance[0]); }
};
 
// Array comparisons.
template<typename _Tp, std::size_t _Nm>
inline bool
operator==(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return std::equal(__one.begin(), __one.end(), __two.begin()); }
 
template<typename _Tp, std::size_t _Nm>
inline bool
operator!=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return !(__one == __two); }
 
template<typename _Tp, std::size_t _Nm>
inline bool
operator<(const array<_Tp, _Nm>& __a, const array<_Tp, _Nm>& __b)
{
return std::lexicographical_compare(__a.begin(), __a.end(),
__b.begin(), __b.end());
}
 
template<typename _Tp, std::size_t _Nm>
inline bool
operator>(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return __two < __one; }
 
template<typename _Tp, std::size_t _Nm>
inline bool
operator<=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return !(__one > __two); }
 
template<typename _Tp, std::size_t _Nm>
inline bool
operator>=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
{ return !(__one < __two); }
 
// Specialized algorithms [6.2.2.2].
template<typename _Tp, std::size_t _Nm>
inline void
swap(array<_Tp, _Nm>& __one, array<_Tp, _Nm>& __two)
{ __one.swap(__two); }
 
// Tuple interface to class template array [6.2.2.5].
 
/// tuple_size
template<typename _Tp>
class tuple_size;
 
/// tuple_element
template<int _Int, typename _Tp>
class tuple_element;
 
template<typename _Tp, std::size_t _Nm>
struct tuple_size<array<_Tp, _Nm> >
{ static const int value = _Nm; };
 
template<typename _Tp, std::size_t _Nm>
const int
tuple_size<array<_Tp, _Nm> >::value;
 
template<int _Int, typename _Tp, std::size_t _Nm>
struct tuple_element<_Int, array<_Tp, _Nm> >
{ typedef _Tp type; };
 
template<int _Int, typename _Tp, std::size_t _Nm>
inline _Tp&
get(array<_Tp, _Nm>& __arr)
{ return __arr[_Int]; }
 
template<int _Int, typename _Tp, std::size_t _Nm>
inline const _Tp&
get(const array<_Tp, _Nm>& __arr)
{ return __arr[_Int]; }
 
_GLIBCXX_END_NAMESPACE_VERSION
}
}
 
#endif // _GLIBCXX_TR1_ARRAY
/contrib/sdk/sources/libstdc++-v3/include/tr1/bessel_function.tcc
0,0 → 1,628
// Special functions -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/bessel_function.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
 
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
 
// Written by Edward Smith-Rowland.
//
// References:
// (1) Handbook of Mathematical Functions,
// ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 9, pp. 355-434, Section 10 pp. 435-478
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
// 2nd ed, pp. 240-245
 
#ifndef _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
#define _GLIBCXX_TR1_BESSEL_FUNCTION_TCC 1
 
#include "special_function_util.h"
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
 
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @brief Compute the gamma functions required by the Temme series
* expansions of @f$ N_\nu(x) @f$ and @f$ K_\nu(x) @f$.
* @f[
* \Gamma_1 = \frac{1}{2\mu}
* [\frac{1}{\Gamma(1 - \mu)} - \frac{1}{\Gamma(1 + \mu)}]
* @f]
* and
* @f[
* \Gamma_2 = \frac{1}{2}
* [\frac{1}{\Gamma(1 - \mu)} + \frac{1}{\Gamma(1 + \mu)}]
* @f]
* where @f$ -1/2 <= \mu <= 1/2 @f$ is @f$ \mu = \nu - N @f$ and @f$ N @f$.
* is the nearest integer to @f$ \nu @f$.
* The values of \f$ \Gamma(1 + \mu) \f$ and \f$ \Gamma(1 - \mu) \f$
* are returned as well.
*
* The accuracy requirements on this are exquisite.
*
* @param __mu The input parameter of the gamma functions.
* @param __gam1 The output function \f$ \Gamma_1(\mu) \f$
* @param __gam2 The output function \f$ \Gamma_2(\mu) \f$
* @param __gampl The output function \f$ \Gamma(1 + \mu) \f$
* @param __gammi The output function \f$ \Gamma(1 - \mu) \f$
*/
template <typename _Tp>
void
__gamma_temme(_Tp __mu,
_Tp & __gam1, _Tp & __gam2, _Tp & __gampl, _Tp & __gammi)
{
#if _GLIBCXX_USE_C99_MATH_TR1
__gampl = _Tp(1) / std::tr1::tgamma(_Tp(1) + __mu);
__gammi = _Tp(1) / std::tr1::tgamma(_Tp(1) - __mu);
#else
__gampl = _Tp(1) / __gamma(_Tp(1) + __mu);
__gammi = _Tp(1) / __gamma(_Tp(1) - __mu);
#endif
 
if (std::abs(__mu) < std::numeric_limits<_Tp>::epsilon())
__gam1 = -_Tp(__numeric_constants<_Tp>::__gamma_e());
else
__gam1 = (__gammi - __gampl) / (_Tp(2) * __mu);
 
__gam2 = (__gammi + __gampl) / (_Tp(2));
 
return;
}
 
 
/**
* @brief Compute the Bessel @f$ J_\nu(x) @f$ and Neumann
* @f$ N_\nu(x) @f$ functions and their first derivatives
* @f$ J'_\nu(x) @f$ and @f$ N'_\nu(x) @f$ respectively.
* These four functions are computed together for numerical
* stability.
*
* @param __nu The order of the Bessel functions.
* @param __x The argument of the Bessel functions.
* @param __Jnu The output Bessel function of the first kind.
* @param __Nnu The output Neumann function (Bessel function of the second kind).
* @param __Jpnu The output derivative of the Bessel function of the first kind.
* @param __Npnu The output derivative of the Neumann function.
*/
template <typename _Tp>
void
__bessel_jn(_Tp __nu, _Tp __x,
_Tp & __Jnu, _Tp & __Nnu, _Tp & __Jpnu, _Tp & __Npnu)
{
if (__x == _Tp(0))
{
if (__nu == _Tp(0))
{
__Jnu = _Tp(1);
__Jpnu = _Tp(0);
}
else if (__nu == _Tp(1))
{
__Jnu = _Tp(0);
__Jpnu = _Tp(0.5L);
}
else
{
__Jnu = _Tp(0);
__Jpnu = _Tp(0);
}
__Nnu = -std::numeric_limits<_Tp>::infinity();
__Npnu = std::numeric_limits<_Tp>::infinity();
return;
}
 
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
// When the multiplier is N i.e.
// fp_min = N * min()
// Then J_0 and N_0 tank at x = 8 * N (J_0 = 0 and N_0 = nan)!
//const _Tp __fp_min = _Tp(20) * std::numeric_limits<_Tp>::min();
const _Tp __fp_min = std::sqrt(std::numeric_limits<_Tp>::min());
const int __max_iter = 15000;
const _Tp __x_min = _Tp(2);
 
const int __nl = (__x < __x_min
? static_cast<int>(__nu + _Tp(0.5L))
: std::max(0, static_cast<int>(__nu - __x + _Tp(1.5L))));
 
const _Tp __mu = __nu - __nl;
const _Tp __mu2 = __mu * __mu;
const _Tp __xi = _Tp(1) / __x;
const _Tp __xi2 = _Tp(2) * __xi;
_Tp __w = __xi2 / __numeric_constants<_Tp>::__pi();
int __isign = 1;
_Tp __h = __nu * __xi;
if (__h < __fp_min)
__h = __fp_min;
_Tp __b = __xi2 * __nu;
_Tp __d = _Tp(0);
_Tp __c = __h;
int __i;
for (__i = 1; __i <= __max_iter; ++__i)
{
__b += __xi2;
__d = __b - __d;
if (std::abs(__d) < __fp_min)
__d = __fp_min;
__c = __b - _Tp(1) / __c;
if (std::abs(__c) < __fp_min)
__c = __fp_min;
__d = _Tp(1) / __d;
const _Tp __del = __c * __d;
__h *= __del;
if (__d < _Tp(0))
__isign = -__isign;
if (std::abs(__del - _Tp(1)) < __eps)
break;
}
if (__i > __max_iter)
std::__throw_runtime_error(__N("Argument x too large in __bessel_jn; "
"try asymptotic expansion."));
_Tp __Jnul = __isign * __fp_min;
_Tp __Jpnul = __h * __Jnul;
_Tp __Jnul1 = __Jnul;
_Tp __Jpnu1 = __Jpnul;
_Tp __fact = __nu * __xi;
for ( int __l = __nl; __l >= 1; --__l )
{
const _Tp __Jnutemp = __fact * __Jnul + __Jpnul;
__fact -= __xi;
__Jpnul = __fact * __Jnutemp - __Jnul;
__Jnul = __Jnutemp;
}
if (__Jnul == _Tp(0))
__Jnul = __eps;
_Tp __f= __Jpnul / __Jnul;
_Tp __Nmu, __Nnu1, __Npmu, __Jmu;
if (__x < __x_min)
{
const _Tp __x2 = __x / _Tp(2);
const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
_Tp __fact = (std::abs(__pimu) < __eps
? _Tp(1) : __pimu / std::sin(__pimu));
_Tp __d = -std::log(__x2);
_Tp __e = __mu * __d;
_Tp __fact2 = (std::abs(__e) < __eps
? _Tp(1) : std::sinh(__e) / __e);
_Tp __gam1, __gam2, __gampl, __gammi;
__gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
_Tp __ff = (_Tp(2) / __numeric_constants<_Tp>::__pi())
* __fact * (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
__e = std::exp(__e);
_Tp __p = __e / (__numeric_constants<_Tp>::__pi() * __gampl);
_Tp __q = _Tp(1) / (__e * __numeric_constants<_Tp>::__pi() * __gammi);
const _Tp __pimu2 = __pimu / _Tp(2);
_Tp __fact3 = (std::abs(__pimu2) < __eps
? _Tp(1) : std::sin(__pimu2) / __pimu2 );
_Tp __r = __numeric_constants<_Tp>::__pi() * __pimu2 * __fact3 * __fact3;
_Tp __c = _Tp(1);
__d = -__x2 * __x2;
_Tp __sum = __ff + __r * __q;
_Tp __sum1 = __p;
for (__i = 1; __i <= __max_iter; ++__i)
{
__ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
__c *= __d / _Tp(__i);
__p /= _Tp(__i) - __mu;
__q /= _Tp(__i) + __mu;
const _Tp __del = __c * (__ff + __r * __q);
__sum += __del;
const _Tp __del1 = __c * __p - __i * __del;
__sum1 += __del1;
if ( std::abs(__del) < __eps * (_Tp(1) + std::abs(__sum)) )
break;
}
if ( __i > __max_iter )
std::__throw_runtime_error(__N("Bessel y series failed to converge "
"in __bessel_jn."));
__Nmu = -__sum;
__Nnu1 = -__sum1 * __xi2;
__Npmu = __mu * __xi * __Nmu - __Nnu1;
__Jmu = __w / (__Npmu - __f * __Nmu);
}
else
{
_Tp __a = _Tp(0.25L) - __mu2;
_Tp __q = _Tp(1);
_Tp __p = -__xi / _Tp(2);
_Tp __br = _Tp(2) * __x;
_Tp __bi = _Tp(2);
_Tp __fact = __a * __xi / (__p * __p + __q * __q);
_Tp __cr = __br + __q * __fact;
_Tp __ci = __bi + __p * __fact;
_Tp __den = __br * __br + __bi * __bi;
_Tp __dr = __br / __den;
_Tp __di = -__bi / __den;
_Tp __dlr = __cr * __dr - __ci * __di;
_Tp __dli = __cr * __di + __ci * __dr;
_Tp __temp = __p * __dlr - __q * __dli;
__q = __p * __dli + __q * __dlr;
__p = __temp;
int __i;
for (__i = 2; __i <= __max_iter; ++__i)
{
__a += _Tp(2 * (__i - 1));
__bi += _Tp(2);
__dr = __a * __dr + __br;
__di = __a * __di + __bi;
if (std::abs(__dr) + std::abs(__di) < __fp_min)
__dr = __fp_min;
__fact = __a / (__cr * __cr + __ci * __ci);
__cr = __br + __cr * __fact;
__ci = __bi - __ci * __fact;
if (std::abs(__cr) + std::abs(__ci) < __fp_min)
__cr = __fp_min;
__den = __dr * __dr + __di * __di;
__dr /= __den;
__di /= -__den;
__dlr = __cr * __dr - __ci * __di;
__dli = __cr * __di + __ci * __dr;
__temp = __p * __dlr - __q * __dli;
__q = __p * __dli + __q * __dlr;
__p = __temp;
if (std::abs(__dlr - _Tp(1)) + std::abs(__dli) < __eps)
break;
}
if (__i > __max_iter)
std::__throw_runtime_error(__N("Lentz's method failed "
"in __bessel_jn."));
const _Tp __gam = (__p - __f) / __q;
__Jmu = std::sqrt(__w / ((__p - __f) * __gam + __q));
#if _GLIBCXX_USE_C99_MATH_TR1
__Jmu = std::tr1::copysign(__Jmu, __Jnul);
#else
if (__Jmu * __Jnul < _Tp(0))
__Jmu = -__Jmu;
#endif
__Nmu = __gam * __Jmu;
__Npmu = (__p + __q / __gam) * __Nmu;
__Nnu1 = __mu * __xi * __Nmu - __Npmu;
}
__fact = __Jmu / __Jnul;
__Jnu = __fact * __Jnul1;
__Jpnu = __fact * __Jpnu1;
for (__i = 1; __i <= __nl; ++__i)
{
const _Tp __Nnutemp = (__mu + __i) * __xi2 * __Nnu1 - __Nmu;
__Nmu = __Nnu1;
__Nnu1 = __Nnutemp;
}
__Nnu = __Nmu;
__Npnu = __nu * __xi * __Nmu - __Nnu1;
 
return;
}
 
 
/**
* @brief This routine computes the asymptotic cylindrical Bessel
* and Neumann functions of order nu: \f$ J_{\nu} \f$,
* \f$ N_{\nu} \f$.
*
* References:
* (1) Handbook of Mathematical Functions,
* ed. Milton Abramowitz and Irene A. Stegun,
* Dover Publications,
* Section 9 p. 364, Equations 9.2.5-9.2.10
*
* @param __nu The order of the Bessel functions.
* @param __x The argument of the Bessel functions.
* @param __Jnu The output Bessel function of the first kind.
* @param __Nnu The output Neumann function (Bessel function of the second kind).
*/
template <typename _Tp>
void
__cyl_bessel_jn_asymp(_Tp __nu, _Tp __x, _Tp & __Jnu, _Tp & __Nnu)
{
const _Tp __mu = _Tp(4) * __nu * __nu;
const _Tp __mum1 = __mu - _Tp(1);
const _Tp __mum9 = __mu - _Tp(9);
const _Tp __mum25 = __mu - _Tp(25);
const _Tp __mum49 = __mu - _Tp(49);
const _Tp __xx = _Tp(64) * __x * __x;
const _Tp __P = _Tp(1) - __mum1 * __mum9 / (_Tp(2) * __xx)
* (_Tp(1) - __mum25 * __mum49 / (_Tp(12) * __xx));
const _Tp __Q = __mum1 / (_Tp(8) * __x)
* (_Tp(1) - __mum9 * __mum25 / (_Tp(6) * __xx));
 
const _Tp __chi = __x - (__nu + _Tp(0.5L))
* __numeric_constants<_Tp>::__pi_2();
const _Tp __c = std::cos(__chi);
const _Tp __s = std::sin(__chi);
 
const _Tp __coef = std::sqrt(_Tp(2)
/ (__numeric_constants<_Tp>::__pi() * __x));
__Jnu = __coef * (__c * __P - __s * __Q);
__Nnu = __coef * (__s * __P + __c * __Q);
 
return;
}
 
 
/**
* @brief This routine returns the cylindrical Bessel functions
* of order \f$ \nu \f$: \f$ J_{\nu} \f$ or \f$ I_{\nu} \f$
* by series expansion.
*
* The modified cylindrical Bessel function is:
* @f[
* Z_{\nu}(x) = \sum_{k=0}^{\infty}
* \frac{\sigma^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
* @f]
* where \f$ \sigma = +1 \f$ or\f$ -1 \f$ for
* \f$ Z = I \f$ or \f$ J \f$ respectively.
*
* See Abramowitz & Stegun, 9.1.10
* Abramowitz & Stegun, 9.6.7
* (1) Handbook of Mathematical Functions,
* ed. Milton Abramowitz and Irene A. Stegun,
* Dover Publications,
* Equation 9.1.10 p. 360 and Equation 9.6.10 p. 375
*
* @param __nu The order of the Bessel function.
* @param __x The argument of the Bessel function.
* @param __sgn The sign of the alternate terms
* -1 for the Bessel function of the first kind.
* +1 for the modified Bessel function of the first kind.
* @return The output Bessel function.
*/
template <typename _Tp>
_Tp
__cyl_bessel_ij_series(_Tp __nu, _Tp __x, _Tp __sgn,
unsigned int __max_iter)
{
if (__x == _Tp(0))
return __nu == _Tp(0) ? _Tp(1) : _Tp(0);
 
const _Tp __x2 = __x / _Tp(2);
_Tp __fact = __nu * std::log(__x2);
#if _GLIBCXX_USE_C99_MATH_TR1
__fact -= std::tr1::lgamma(__nu + _Tp(1));
#else
__fact -= __log_gamma(__nu + _Tp(1));
#endif
__fact = std::exp(__fact);
const _Tp __xx4 = __sgn * __x2 * __x2;
_Tp __Jn = _Tp(1);
_Tp __term = _Tp(1);
 
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
__term *= __xx4 / (_Tp(__i) * (__nu + _Tp(__i)));
__Jn += __term;
if (std::abs(__term / __Jn) < std::numeric_limits<_Tp>::epsilon())
break;
}
 
return __fact * __Jn;
}
 
 
/**
* @brief Return the Bessel function of order \f$ \nu \f$:
* \f$ J_{\nu}(x) \f$.
*
* The cylindrical Bessel function is:
* @f[
* J_{\nu}(x) = \sum_{k=0}^{\infty}
* \frac{(-1)^k (x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
* @f]
*
* @param __nu The order of the Bessel function.
* @param __x The argument of the Bessel function.
* @return The output Bessel function.
*/
template<typename _Tp>
_Tp
__cyl_bessel_j(_Tp __nu, _Tp __x)
{
if (__nu < _Tp(0) || __x < _Tp(0))
std::__throw_domain_error(__N("Bad argument "
"in __cyl_bessel_j."));
else if (__isnan(__nu) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
return __cyl_bessel_ij_series(__nu, __x, -_Tp(1), 200);
else if (__x > _Tp(1000))
{
_Tp __J_nu, __N_nu;
__cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
return __J_nu;
}
else
{
_Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
__bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
return __J_nu;
}
}
 
 
/**
* @brief Return the Neumann function of order \f$ \nu \f$:
* \f$ N_{\nu}(x) \f$.
*
* The Neumann function is defined by:
* @f[
* N_{\nu}(x) = \frac{J_{\nu}(x) \cos \nu\pi - J_{-\nu}(x)}
* {\sin \nu\pi}
* @f]
* where for integral \f$ \nu = n \f$ a limit is taken:
* \f$ lim_{\nu \to n} \f$.
*
* @param __nu The order of the Neumann function.
* @param __x The argument of the Neumann function.
* @return The output Neumann function.
*/
template<typename _Tp>
_Tp
__cyl_neumann_n(_Tp __nu, _Tp __x)
{
if (__nu < _Tp(0) || __x < _Tp(0))
std::__throw_domain_error(__N("Bad argument "
"in __cyl_neumann_n."));
else if (__isnan(__nu) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x > _Tp(1000))
{
_Tp __J_nu, __N_nu;
__cyl_bessel_jn_asymp(__nu, __x, __J_nu, __N_nu);
return __N_nu;
}
else
{
_Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
__bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
return __N_nu;
}
}
 
 
/**
* @brief Compute the spherical Bessel @f$ j_n(x) @f$
* and Neumann @f$ n_n(x) @f$ functions and their first
* derivatives @f$ j'_n(x) @f$ and @f$ n'_n(x) @f$
* respectively.
*
* @param __n The order of the spherical Bessel function.
* @param __x The argument of the spherical Bessel function.
* @param __j_n The output spherical Bessel function.
* @param __n_n The output spherical Neumann function.
* @param __jp_n The output derivative of the spherical Bessel function.
* @param __np_n The output derivative of the spherical Neumann function.
*/
template <typename _Tp>
void
__sph_bessel_jn(unsigned int __n, _Tp __x,
_Tp & __j_n, _Tp & __n_n, _Tp & __jp_n, _Tp & __np_n)
{
const _Tp __nu = _Tp(__n) + _Tp(0.5L);
 
_Tp __J_nu, __N_nu, __Jp_nu, __Np_nu;
__bessel_jn(__nu, __x, __J_nu, __N_nu, __Jp_nu, __Np_nu);
 
const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
/ std::sqrt(__x);
 
__j_n = __factor * __J_nu;
__n_n = __factor * __N_nu;
__jp_n = __factor * __Jp_nu - __j_n / (_Tp(2) * __x);
__np_n = __factor * __Np_nu - __n_n / (_Tp(2) * __x);
 
return;
}
 
 
/**
* @brief Return the spherical Bessel function
* @f$ j_n(x) @f$ of order n.
*
* The spherical Bessel function is defined by:
* @f[
* j_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} J_{n+1/2}(x)
* @f]
*
* @param __n The order of the spherical Bessel function.
* @param __x The argument of the spherical Bessel function.
* @return The output spherical Bessel function.
*/
template <typename _Tp>
_Tp
__sph_bessel(unsigned int __n, _Tp __x)
{
if (__x < _Tp(0))
std::__throw_domain_error(__N("Bad argument "
"in __sph_bessel."));
else if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x == _Tp(0))
{
if (__n == 0)
return _Tp(1);
else
return _Tp(0);
}
else
{
_Tp __j_n, __n_n, __jp_n, __np_n;
__sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
return __j_n;
}
}
 
 
/**
* @brief Return the spherical Neumann function
* @f$ n_n(x) @f$.
*
* The spherical Neumann function is defined by:
* @f[
* n_n(x) = \left( \frac{\pi}{2x} \right) ^{1/2} N_{n+1/2}(x)
* @f]
*
* @param __n The order of the spherical Neumann function.
* @param __x The argument of the spherical Neumann function.
* @return The output spherical Neumann function.
*/
template <typename _Tp>
_Tp
__sph_neumann(unsigned int __n, _Tp __x)
{
if (__x < _Tp(0))
std::__throw_domain_error(__N("Bad argument "
"in __sph_neumann."));
else if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x == _Tp(0))
return -std::numeric_limits<_Tp>::infinity();
else
{
_Tp __j_n, __n_n, __jp_n, __np_n;
__sph_bessel_jn(__n, __x, __j_n, __n_n, __jp_n, __np_n);
return __n_n;
}
}
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
 
#endif // _GLIBCXX_TR1_BESSEL_FUNCTION_TCC
/contrib/sdk/sources/libstdc++-v3/include/tr1/beta_function.tcc
0,0 → 1,197
// Special functions -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/beta_function.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
 
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
 
// Written by Edward Smith-Rowland based on:
// (1) Handbook of Mathematical Functions,
// ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 6, pp. 253-266
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
// 2nd ed, pp. 213-216
// (4) Gamma, Exploring Euler's Constant, Julian Havil,
// Princeton, 2003.
 
#ifndef _GLIBCXX_TR1_BETA_FUNCTION_TCC
#define _GLIBCXX_TR1_BETA_FUNCTION_TCC 1
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
 
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @brief Return the beta function: \f$B(x,y)\f$.
*
* The beta function is defined by
* @f[
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
* @f]
*
* @param __x The first argument of the beta function.
* @param __y The second argument of the beta function.
* @return The beta function.
*/
template<typename _Tp>
_Tp
__beta_gamma(_Tp __x, _Tp __y)
{
 
_Tp __bet;
#if _GLIBCXX_USE_C99_MATH_TR1
if (__x > __y)
{
__bet = std::tr1::tgamma(__x)
/ std::tr1::tgamma(__x + __y);
__bet *= std::tr1::tgamma(__y);
}
else
{
__bet = std::tr1::tgamma(__y)
/ std::tr1::tgamma(__x + __y);
__bet *= std::tr1::tgamma(__x);
}
#else
if (__x > __y)
{
__bet = __gamma(__x) / __gamma(__x + __y);
__bet *= __gamma(__y);
}
else
{
__bet = __gamma(__y) / __gamma(__x + __y);
__bet *= __gamma(__x);
}
#endif
 
return __bet;
}
 
/**
* @brief Return the beta function \f$B(x,y)\f$ using
* the log gamma functions.
*
* The beta function is defined by
* @f[
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
* @f]
*
* @param __x The first argument of the beta function.
* @param __y The second argument of the beta function.
* @return The beta function.
*/
template<typename _Tp>
_Tp
__beta_lgamma(_Tp __x, _Tp __y)
{
#if _GLIBCXX_USE_C99_MATH_TR1
_Tp __bet = std::tr1::lgamma(__x)
+ std::tr1::lgamma(__y)
- std::tr1::lgamma(__x + __y);
#else
_Tp __bet = __log_gamma(__x)
+ __log_gamma(__y)
- __log_gamma(__x + __y);
#endif
__bet = std::exp(__bet);
return __bet;
}
 
 
/**
* @brief Return the beta function \f$B(x,y)\f$ using
* the product form.
*
* The beta function is defined by
* @f[
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
* @f]
*
* @param __x The first argument of the beta function.
* @param __y The second argument of the beta function.
* @return The beta function.
*/
template<typename _Tp>
_Tp
__beta_product(_Tp __x, _Tp __y)
{
 
_Tp __bet = (__x + __y) / (__x * __y);
 
unsigned int __max_iter = 1000000;
for (unsigned int __k = 1; __k < __max_iter; ++__k)
{
_Tp __term = (_Tp(1) + (__x + __y) / __k)
/ ((_Tp(1) + __x / __k) * (_Tp(1) + __y / __k));
__bet *= __term;
}
 
return __bet;
}
 
 
/**
* @brief Return the beta function \f$ B(x,y) \f$.
*
* The beta function is defined by
* @f[
* B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}
* @f]
*
* @param __x The first argument of the beta function.
* @param __y The second argument of the beta function.
* @return The beta function.
*/
template<typename _Tp>
inline _Tp
__beta(_Tp __x, _Tp __y)
{
if (__isnan(__x) || __isnan(__y))
return std::numeric_limits<_Tp>::quiet_NaN();
else
return __beta_lgamma(__x, __y);
}
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
 
#endif // __GLIBCXX_TR1_BETA_FUNCTION_TCC
/contrib/sdk/sources/libstdc++-v3/include/tr1/ccomplex
0,0 → 1,34
// TR1 ccomplex -*- C++ -*-
 
// Copyright (C) 2007-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/ccomplex
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CCOMPLEX
#define _GLIBCXX_TR1_CCOMPLEX 1
 
#include <tr1/complex>
 
#endif // _GLIBCXX_TR1_CCOMPLEX
/contrib/sdk/sources/libstdc++-v3/include/tr1/cctype
0,0 → 1,49
// TR1 cctype -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/cctype
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CCTYPE
#define _GLIBCXX_TR1_CCTYPE 1
 
#include <bits/c++config.h>
#include <cctype>
 
#ifdef _GLIBCXX_USE_C99_CTYPE_TR1
 
#undef isblank
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
using ::isblank;
}
}
 
#endif
 
#endif // _GLIBCXX_TR1_CCTYPE
/contrib/sdk/sources/libstdc++-v3/include/tr1/cfenv
0,0 → 1,81
// TR1 cfenv -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/cfenv
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CFENV
#define _GLIBCXX_TR1_CFENV 1
 
#pragma GCC system_header
 
#include <bits/c++config.h>
 
#if _GLIBCXX_HAVE_FENV_H
# include <fenv.h>
#endif
 
#ifdef _GLIBCXX_USE_C99_FENV_TR1
 
#undef feclearexcept
#undef fegetexceptflag
#undef feraiseexcept
#undef fesetexceptflag
#undef fetestexcept
#undef fegetround
#undef fesetround
#undef fegetenv
#undef feholdexcept
#undef fesetenv
#undef feupdateenv
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// types
using ::fenv_t;
using ::fexcept_t;
 
// functions
using ::feclearexcept;
using ::fegetexceptflag;
using ::feraiseexcept;
using ::fesetexceptflag;
using ::fetestexcept;
 
using ::fegetround;
using ::fesetround;
 
using ::fegetenv;
using ::feholdexcept;
using ::fesetenv;
using ::feupdateenv;
}
}
 
#endif // _GLIBCXX_USE_C99_FENV_TR1
 
#endif // _GLIBCXX_TR1_CFENV
/contrib/sdk/sources/libstdc++-v3/include/tr1/cfloat
0,0 → 1,42
// TR1 cfloat -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/cfloat
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CFLOAT
#define _GLIBCXX_TR1_CFLOAT 1
 
#include <cfloat>
 
#ifndef DECIMAL_DIG
#define DECIMAL_DIG __DECIMAL_DIG__
#endif
 
#ifndef FLT_EVAL_METHOD
#define FLT_EVAL_METHOD __FLT_EVAL_METHOD__
#endif
 
#endif //_GLIBCXX_TR1_CFLOAT
/contrib/sdk/sources/libstdc++-v3/include/tr1/cinttypes
0,0 → 1,84
// TR1 cinttypes -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/cinttypes
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CINTTYPES
#define _GLIBCXX_TR1_CINTTYPES 1
 
#pragma GCC system_header
 
#include <tr1/cstdint>
 
// For 8.11.1/1 (see C99, Note 184)
#if _GLIBCXX_HAVE_INTTYPES_H
# ifndef __STDC_FORMAT_MACROS
# define _UNDEF__STDC_FORMAT_MACROS
# define __STDC_FORMAT_MACROS
# endif
# include <inttypes.h>
# ifdef _UNDEF__STDC_FORMAT_MACROS
# undef __STDC_FORMAT_MACROS
# undef _UNDEF__STDC_FORMAT_MACROS
# endif
#endif
 
#ifdef _GLIBCXX_USE_C99_INTTYPES_TR1
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// types
using ::imaxdiv_t;
 
// functions
using ::imaxabs;
 
// May collide with _Longlong abs(_Longlong), and is not described
// anywhere outside the synopsis. Likely, a defect.
//
// intmax_t abs(intmax_t)
 
using ::imaxdiv;
 
// Likewise, with lldiv_t div(_Longlong, _Longlong).
//
// imaxdiv_t div(intmax_t, intmax_t)
 
using ::strtoimax;
using ::strtoumax;
 
#if defined(_GLIBCXX_USE_WCHAR_T) && _GLIBCXX_USE_C99_INTTYPES_WCHAR_T_TR1
using ::wcstoimax;
using ::wcstoumax;
#endif
}
}
 
#endif // _GLIBCXX_USE_C99_INTTYPES_TR1
 
#endif // _GLIBCXX_TR1_CINTTYPES
/contrib/sdk/sources/libstdc++-v3/include/tr1/climits
0,0 → 1,46
// TR1 climits -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/climits
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CLIMITS
#define _GLIBCXX_TR1_CLIMITS 1
 
#include <climits>
 
#ifndef LLONG_MIN
#define LLONG_MIN (-__LONG_LONG_MAX__ - 1)
#endif
 
#ifndef LLONG_MAX
#define LLONG_MAX __LONG_LONG_MAX__
#endif
 
#ifndef ULLONG_MAX
#define ULLONG_MAX (__LONG_LONG_MAX__ * 2ULL + 1)
#endif
 
#endif // _GLIBCXX_TR1_CLIMITS
/contrib/sdk/sources/libstdc++-v3/include/tr1/cmath
0,0 → 1,1440
// TR1 cmath -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/cmath
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CMATH
#define _GLIBCXX_TR1_CMATH 1
 
#pragma GCC system_header
 
#include <cmath>
 
#ifdef _GLIBCXX_USE_C99_MATH_TR1
 
#undef acosh
#undef acoshf
#undef acoshl
#undef asinh
#undef asinhf
#undef asinhl
#undef atanh
#undef atanhf
#undef atanhl
#undef cbrt
#undef cbrtf
#undef cbrtl
#undef copysign
#undef copysignf
#undef copysignl
#undef erf
#undef erff
#undef erfl
#undef erfc
#undef erfcf
#undef erfcl
#undef exp2
#undef exp2f
#undef exp2l
#undef expm1
#undef expm1f
#undef expm1l
#undef fdim
#undef fdimf
#undef fdiml
#undef fma
#undef fmaf
#undef fmal
#undef fmax
#undef fmaxf
#undef fmaxl
#undef fmin
#undef fminf
#undef fminl
#undef hypot
#undef hypotf
#undef hypotl
#undef ilogb
#undef ilogbf
#undef ilogbl
#undef lgamma
#undef lgammaf
#undef lgammal
#undef llrint
#undef llrintf
#undef llrintl
#undef llround
#undef llroundf
#undef llroundl
#undef log1p
#undef log1pf
#undef log1pl
#undef log2
#undef log2f
#undef log2l
#undef logb
#undef logbf
#undef logbl
#undef lrint
#undef lrintf
#undef lrintl
#undef lround
#undef lroundf
#undef lroundl
#undef nan
#undef nanf
#undef nanl
#undef nearbyint
#undef nearbyintf
#undef nearbyintl
#undef nextafter
#undef nextafterf
#undef nextafterl
#undef nexttoward
#undef nexttowardf
#undef nexttowardl
#undef remainder
#undef remainderf
#undef remainderl
#undef remquo
#undef remquof
#undef remquol
#undef rint
#undef rintf
#undef rintl
#undef round
#undef roundf
#undef roundl
#undef scalbln
#undef scalblnf
#undef scalblnl
#undef scalbn
#undef scalbnf
#undef scalbnl
#undef tgamma
#undef tgammaf
#undef tgammal
#undef trunc
#undef truncf
#undef truncl
 
#endif
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
#if _GLIBCXX_USE_C99_MATH_TR1
 
// types
using ::double_t;
using ::float_t;
 
// functions
using ::acosh;
using ::acoshf;
using ::acoshl;
 
using ::asinh;
using ::asinhf;
using ::asinhl;
 
using ::atanh;
using ::atanhf;
using ::atanhl;
 
using ::cbrt;
using ::cbrtf;
using ::cbrtl;
 
using ::copysign;
using ::copysignf;
using ::copysignl;
 
using ::erf;
using ::erff;
using ::erfl;
 
using ::erfc;
using ::erfcf;
using ::erfcl;
 
using ::exp2;
using ::exp2f;
using ::exp2l;
 
using ::expm1;
using ::expm1f;
using ::expm1l;
 
using ::fdim;
using ::fdimf;
using ::fdiml;
 
using ::fma;
using ::fmaf;
using ::fmal;
 
using ::fmax;
using ::fmaxf;
using ::fmaxl;
 
using ::fmin;
using ::fminf;
using ::fminl;
 
using ::hypot;
using ::hypotf;
using ::hypotl;
 
using ::ilogb;
using ::ilogbf;
using ::ilogbl;
 
using ::lgamma;
using ::lgammaf;
using ::lgammal;
 
using ::llrint;
using ::llrintf;
using ::llrintl;
 
using ::llround;
using ::llroundf;
using ::llroundl;
 
using ::log1p;
using ::log1pf;
using ::log1pl;
 
using ::log2;
using ::log2f;
using ::log2l;
 
using ::logb;
using ::logbf;
using ::logbl;
 
using ::lrint;
using ::lrintf;
using ::lrintl;
 
using ::lround;
using ::lroundf;
using ::lroundl;
 
using ::nan;
using ::nanf;
using ::nanl;
 
using ::nearbyint;
using ::nearbyintf;
using ::nearbyintl;
 
using ::nextafter;
using ::nextafterf;
using ::nextafterl;
 
using ::nexttoward;
using ::nexttowardf;
using ::nexttowardl;
 
using ::remainder;
using ::remainderf;
using ::remainderl;
 
using ::remquo;
using ::remquof;
using ::remquol;
 
using ::rint;
using ::rintf;
using ::rintl;
 
using ::round;
using ::roundf;
using ::roundl;
 
using ::scalbln;
using ::scalblnf;
using ::scalblnl;
 
using ::scalbn;
using ::scalbnf;
using ::scalbnl;
 
using ::tgamma;
using ::tgammaf;
using ::tgammal;
 
using ::trunc;
using ::truncf;
using ::truncl;
 
#endif
 
#if _GLIBCXX_USE_C99_MATH
#if !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC
 
/// Function template definitions [8.16.3].
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
fpclassify(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL,
FP_SUBNORMAL, FP_ZERO, __type(__f));
}
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isfinite(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isfinite(__type(__f));
}
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isinf(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isinf(__type(__f));
}
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isnan(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isnan(__type(__f));
}
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isnormal(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isnormal(__type(__f));
}
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
signbit(_Tp __f)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_signbit(__type(__f));
}
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isgreater(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isgreater(__type(__f1), __type(__f2));
}
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isgreaterequal(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isgreaterequal(__type(__f1), __type(__f2));
}
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isless(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isless(__type(__f1), __type(__f2));
}
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
islessequal(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_islessequal(__type(__f1), __type(__f2));
}
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
islessgreater(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_islessgreater(__type(__f1), __type(__f2));
}
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
int>::__type
isunordered(_Tp __f1, _Tp __f2)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __builtin_isunordered(__type(__f1), __type(__f2));
}
 
#endif
#endif
 
#if _GLIBCXX_USE_C99_MATH_TR1
 
/// Additional overloads [8.16.4].
using std::acos;
 
inline float
acosh(float __x)
{ return __builtin_acoshf(__x); }
 
inline long double
acosh(long double __x)
{ return __builtin_acoshl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
acosh(_Tp __x)
{ return __builtin_acosh(__x); }
 
using std::asin;
 
inline float
asinh(float __x)
{ return __builtin_asinhf(__x); }
 
inline long double
asinh(long double __x)
{ return __builtin_asinhl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
asinh(_Tp __x)
{ return __builtin_asinh(__x); }
 
using std::atan;
using std::atan2;
 
inline float
atanh(float __x)
{ return __builtin_atanhf(__x); }
 
inline long double
atanh(long double __x)
{ return __builtin_atanhl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
atanh(_Tp __x)
{ return __builtin_atanh(__x); }
 
inline float
cbrt(float __x)
{ return __builtin_cbrtf(__x); }
 
inline long double
cbrt(long double __x)
{ return __builtin_cbrtl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
cbrt(_Tp __x)
{ return __builtin_cbrt(__x); }
 
using std::ceil;
 
inline float
copysign(float __x, float __y)
{ return __builtin_copysignf(__x, __y); }
 
inline long double
copysign(long double __x, long double __y)
{ return __builtin_copysignl(__x, __y); }
 
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
copysign(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return copysign(__type(__x), __type(__y));
}
 
using std::cos;
using std::cosh;
 
inline float
erf(float __x)
{ return __builtin_erff(__x); }
 
inline long double
erf(long double __x)
{ return __builtin_erfl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
erf(_Tp __x)
{ return __builtin_erf(__x); }
 
inline float
erfc(float __x)
{ return __builtin_erfcf(__x); }
 
inline long double
erfc(long double __x)
{ return __builtin_erfcl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
erfc(_Tp __x)
{ return __builtin_erfc(__x); }
 
using std::exp;
 
inline float
exp2(float __x)
{ return __builtin_exp2f(__x); }
 
inline long double
exp2(long double __x)
{ return __builtin_exp2l(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
exp2(_Tp __x)
{ return __builtin_exp2(__x); }
 
inline float
expm1(float __x)
{ return __builtin_expm1f(__x); }
 
inline long double
expm1(long double __x)
{ return __builtin_expm1l(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
expm1(_Tp __x)
{ return __builtin_expm1(__x); }
 
// Note: we deal with fabs in a special way, because an using std::fabs
// would bring in also the overloads for complex types, which in C++0x
// mode have a different return type.
// With __CORRECT_ISO_CPP_MATH_H_PROTO, math.h imports std::fabs in the
// global namespace after the declarations of the float / double / long
// double overloads but before the std::complex overloads.
using ::fabs;
 
#ifndef __CORRECT_ISO_CPP_MATH_H_PROTO
inline float
fabs(float __x)
{ return __builtin_fabsf(__x); }
 
inline long double
fabs(long double __x)
{ return __builtin_fabsl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
fabs(_Tp __x)
{ return __builtin_fabs(__x); }
#endif
 
inline float
fdim(float __x, float __y)
{ return __builtin_fdimf(__x, __y); }
 
inline long double
fdim(long double __x, long double __y)
{ return __builtin_fdiml(__x, __y); }
 
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
fdim(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return fdim(__type(__x), __type(__y));
}
 
using std::floor;
 
inline float
fma(float __x, float __y, float __z)
{ return __builtin_fmaf(__x, __y, __z); }
 
inline long double
fma(long double __x, long double __y, long double __z)
{ return __builtin_fmal(__x, __y, __z); }
 
template<typename _Tp, typename _Up, typename _Vp>
inline typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type
fma(_Tp __x, _Up __y, _Vp __z)
{
typedef typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type __type;
return fma(__type(__x), __type(__y), __type(__z));
}
 
inline float
fmax(float __x, float __y)
{ return __builtin_fmaxf(__x, __y); }
 
inline long double
fmax(long double __x, long double __y)
{ return __builtin_fmaxl(__x, __y); }
 
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
fmax(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return fmax(__type(__x), __type(__y));
}
 
inline float
fmin(float __x, float __y)
{ return __builtin_fminf(__x, __y); }
 
inline long double
fmin(long double __x, long double __y)
{ return __builtin_fminl(__x, __y); }
 
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
fmin(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return fmin(__type(__x), __type(__y));
}
 
using std::fmod;
using std::frexp;
 
inline float
hypot(float __x, float __y)
{ return __builtin_hypotf(__x, __y); }
 
inline long double
hypot(long double __x, long double __y)
{ return __builtin_hypotl(__x, __y); }
 
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
hypot(_Tp __y, _Up __x)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return hypot(__type(__y), __type(__x));
}
 
inline int
ilogb(float __x)
{ return __builtin_ilogbf(__x); }
 
inline int
ilogb(long double __x)
{ return __builtin_ilogbl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
int>::__type
ilogb(_Tp __x)
{ return __builtin_ilogb(__x); }
 
using std::ldexp;
 
inline float
lgamma(float __x)
{ return __builtin_lgammaf(__x); }
 
inline long double
lgamma(long double __x)
{ return __builtin_lgammal(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
lgamma(_Tp __x)
{ return __builtin_lgamma(__x); }
 
inline long long
llrint(float __x)
{ return __builtin_llrintf(__x); }
 
inline long long
llrint(long double __x)
{ return __builtin_llrintl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
long long>::__type
llrint(_Tp __x)
{ return __builtin_llrint(__x); }
 
inline long long
llround(float __x)
{ return __builtin_llroundf(__x); }
 
inline long long
llround(long double __x)
{ return __builtin_llroundl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
long long>::__type
llround(_Tp __x)
{ return __builtin_llround(__x); }
 
using std::log;
using std::log10;
 
inline float
log1p(float __x)
{ return __builtin_log1pf(__x); }
 
inline long double
log1p(long double __x)
{ return __builtin_log1pl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
log1p(_Tp __x)
{ return __builtin_log1p(__x); }
 
// DR 568.
inline float
log2(float __x)
{ return __builtin_log2f(__x); }
 
inline long double
log2(long double __x)
{ return __builtin_log2l(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
log2(_Tp __x)
{ return __builtin_log2(__x); }
 
inline float
logb(float __x)
{ return __builtin_logbf(__x); }
 
inline long double
logb(long double __x)
{ return __builtin_logbl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
logb(_Tp __x)
{
return __builtin_logb(__x);
}
 
inline long
lrint(float __x)
{ return __builtin_lrintf(__x); }
 
inline long
lrint(long double __x)
{ return __builtin_lrintl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
long>::__type
lrint(_Tp __x)
{ return __builtin_lrint(__x); }
 
inline long
lround(float __x)
{ return __builtin_lroundf(__x); }
 
inline long
lround(long double __x)
{ return __builtin_lroundl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
long>::__type
lround(_Tp __x)
{ return __builtin_lround(__x); }
 
inline float
nearbyint(float __x)
{ return __builtin_nearbyintf(__x); }
 
inline long double
nearbyint(long double __x)
{ return __builtin_nearbyintl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
nearbyint(_Tp __x)
{ return __builtin_nearbyint(__x); }
 
inline float
nextafter(float __x, float __y)
{ return __builtin_nextafterf(__x, __y); }
 
inline long double
nextafter(long double __x, long double __y)
{ return __builtin_nextafterl(__x, __y); }
 
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
nextafter(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return nextafter(__type(__x), __type(__y));
}
 
inline float
nexttoward(float __x, long double __y)
{ return __builtin_nexttowardf(__x, __y); }
 
inline long double
nexttoward(long double __x, long double __y)
{ return __builtin_nexttowardl(__x, __y); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
nexttoward(_Tp __x, long double __y)
{ return __builtin_nexttoward(__x, __y); }
 
// DR 550. What should the return type of pow(float,int) be?
// NB: C++0x and TR1 != C++03.
// using std::pow;
 
inline float
remainder(float __x, float __y)
{ return __builtin_remainderf(__x, __y); }
 
inline long double
remainder(long double __x, long double __y)
{ return __builtin_remainderl(__x, __y); }
 
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
remainder(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return remainder(__type(__x), __type(__y));
}
 
inline float
remquo(float __x, float __y, int* __pquo)
{ return __builtin_remquof(__x, __y, __pquo); }
 
inline long double
remquo(long double __x, long double __y, int* __pquo)
{ return __builtin_remquol(__x, __y, __pquo); }
 
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
remquo(_Tp __x, _Up __y, int* __pquo)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return remquo(__type(__x), __type(__y), __pquo);
}
 
inline float
rint(float __x)
{ return __builtin_rintf(__x); }
 
inline long double
rint(long double __x)
{ return __builtin_rintl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
rint(_Tp __x)
{ return __builtin_rint(__x); }
 
inline float
round(float __x)
{ return __builtin_roundf(__x); }
 
inline long double
round(long double __x)
{ return __builtin_roundl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
round(_Tp __x)
{ return __builtin_round(__x); }
 
inline float
scalbln(float __x, long __ex)
{ return __builtin_scalblnf(__x, __ex); }
 
inline long double
scalbln(long double __x, long __ex)
{ return __builtin_scalblnl(__x, __ex); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
scalbln(_Tp __x, long __ex)
{ return __builtin_scalbln(__x, __ex); }
inline float
scalbn(float __x, int __ex)
{ return __builtin_scalbnf(__x, __ex); }
 
inline long double
scalbn(long double __x, int __ex)
{ return __builtin_scalbnl(__x, __ex); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
scalbn(_Tp __x, int __ex)
{ return __builtin_scalbn(__x, __ex); }
 
using std::sin;
using std::sinh;
using std::sqrt;
using std::tan;
using std::tanh;
 
inline float
tgamma(float __x)
{ return __builtin_tgammaf(__x); }
 
inline long double
tgamma(long double __x)
{ return __builtin_tgammal(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
tgamma(_Tp __x)
{ return __builtin_tgamma(__x); }
inline float
trunc(float __x)
{ return __builtin_truncf(__x); }
 
inline long double
trunc(long double __x)
{ return __builtin_truncl(__x); }
 
template<typename _Tp>
inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
double>::__type
trunc(_Tp __x)
{ return __builtin_trunc(__x); }
 
#endif
_GLIBCXX_END_NAMESPACE_VERSION
}
}
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
// DR 550. What should the return type of pow(float,int) be?
// NB: C++0x and TR1 != C++03.
inline double
pow(double __x, double __y)
{ return std::pow(__x, __y); }
 
inline float
pow(float __x, float __y)
{ return std::pow(__x, __y); }
 
inline long double
pow(long double __x, long double __y)
{ return std::pow(__x, __y); }
 
template<typename _Tp, typename _Up>
inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
pow(_Tp __x, _Up __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return std::pow(__type(__x), __type(__y));
}
 
_GLIBCXX_END_NAMESPACE_VERSION
}
}
 
#include <bits/stl_algobase.h>
#include <limits>
#include <tr1/type_traits>
 
#include <tr1/gamma.tcc>
#include <tr1/bessel_function.tcc>
#include <tr1/beta_function.tcc>
#include <tr1/ell_integral.tcc>
#include <tr1/exp_integral.tcc>
#include <tr1/hypergeometric.tcc>
#include <tr1/legendre_function.tcc>
#include <tr1/modified_bessel_func.tcc>
#include <tr1/poly_hermite.tcc>
#include <tr1/poly_laguerre.tcc>
#include <tr1/riemann_zeta.tcc>
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @defgroup tr1_math_spec_func Mathematical Special Functions
* @ingroup numerics
*
* A collection of advanced mathematical special functions.
* @{
*/
 
inline float
assoc_laguerref(unsigned int __n, unsigned int __m, float __x)
{ return __detail::__assoc_laguerre<float>(__n, __m, __x); }
 
inline long double
assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x)
{
return __detail::__assoc_laguerre<long double>(__n, __m, __x);
}
 
/// 5.2.1.1 Associated Laguerre polynomials.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__assoc_laguerre<__type>(__n, __m, __x);
}
 
inline float
assoc_legendref(unsigned int __l, unsigned int __m, float __x)
{ return __detail::__assoc_legendre_p<float>(__l, __m, __x); }
 
inline long double
assoc_legendrel(unsigned int __l, unsigned int __m, long double __x)
{ return __detail::__assoc_legendre_p<long double>(__l, __m, __x); }
 
/// 5.2.1.2 Associated Legendre functions.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__assoc_legendre_p<__type>(__l, __m, __x);
}
 
inline float
betaf(float __x, float __y)
{ return __detail::__beta<float>(__x, __y); }
 
inline long double
betal(long double __x, long double __y)
{ return __detail::__beta<long double>(__x, __y); }
 
/// 5.2.1.3 Beta functions.
template<typename _Tpx, typename _Tpy>
inline typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type
beta(_Tpx __x, _Tpy __y)
{
typedef typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type __type;
return __detail::__beta<__type>(__x, __y);
}
 
inline float
comp_ellint_1f(float __k)
{ return __detail::__comp_ellint_1<float>(__k); }
 
inline long double
comp_ellint_1l(long double __k)
{ return __detail::__comp_ellint_1<long double>(__k); }
 
/// 5.2.1.4 Complete elliptic integrals of the first kind.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
comp_ellint_1(_Tp __k)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__comp_ellint_1<__type>(__k);
}
 
inline float
comp_ellint_2f(float __k)
{ return __detail::__comp_ellint_2<float>(__k); }
 
inline long double
comp_ellint_2l(long double __k)
{ return __detail::__comp_ellint_2<long double>(__k); }
 
/// 5.2.1.5 Complete elliptic integrals of the second kind.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
comp_ellint_2(_Tp __k)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__comp_ellint_2<__type>(__k);
}
 
inline float
comp_ellint_3f(float __k, float __nu)
{ return __detail::__comp_ellint_3<float>(__k, __nu); }
 
inline long double
comp_ellint_3l(long double __k, long double __nu)
{ return __detail::__comp_ellint_3<long double>(__k, __nu); }
 
/// 5.2.1.6 Complete elliptic integrals of the third kind.
template<typename _Tp, typename _Tpn>
inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type
comp_ellint_3(_Tp __k, _Tpn __nu)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type;
return __detail::__comp_ellint_3<__type>(__k, __nu);
}
 
inline float
conf_hypergf(float __a, float __c, float __x)
{ return __detail::__conf_hyperg<float>(__a, __c, __x); }
 
inline long double
conf_hypergl(long double __a, long double __c, long double __x)
{ return __detail::__conf_hyperg<long double>(__a, __c, __x); }
 
/// 5.2.1.7 Confluent hypergeometric functions.
template<typename _Tpa, typename _Tpc, typename _Tp>
inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type
conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x)
{
typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type;
return __detail::__conf_hyperg<__type>(__a, __c, __x);
}
 
inline float
cyl_bessel_if(float __nu, float __x)
{ return __detail::__cyl_bessel_i<float>(__nu, __x); }
 
inline long double
cyl_bessel_il(long double __nu, long double __x)
{ return __detail::__cyl_bessel_i<long double>(__nu, __x); }
 
/// 5.2.1.8 Regular modified cylindrical Bessel functions.
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_bessel_i(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_bessel_i<__type>(__nu, __x);
}
 
inline float
cyl_bessel_jf(float __nu, float __x)
{ return __detail::__cyl_bessel_j<float>(__nu, __x); }
 
inline long double
cyl_bessel_jl(long double __nu, long double __x)
{ return __detail::__cyl_bessel_j<long double>(__nu, __x); }
 
/// 5.2.1.9 Cylindrical Bessel functions (of the first kind).
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_bessel_j(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_bessel_j<__type>(__nu, __x);
}
 
inline float
cyl_bessel_kf(float __nu, float __x)
{ return __detail::__cyl_bessel_k<float>(__nu, __x); }
 
inline long double
cyl_bessel_kl(long double __nu, long double __x)
{ return __detail::__cyl_bessel_k<long double>(__nu, __x); }
 
/// 5.2.1.10 Irregular modified cylindrical Bessel functions.
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_bessel_k(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_bessel_k<__type>(__nu, __x);
}
 
inline float
cyl_neumannf(float __nu, float __x)
{ return __detail::__cyl_neumann_n<float>(__nu, __x); }
 
inline long double
cyl_neumannl(long double __nu, long double __x)
{ return __detail::__cyl_neumann_n<long double>(__nu, __x); }
 
/// 5.2.1.11 Cylindrical Neumann functions.
template<typename _Tpnu, typename _Tp>
inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
cyl_neumann(_Tpnu __nu, _Tp __x)
{
typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
return __detail::__cyl_neumann_n<__type>(__nu, __x);
}
 
inline float
ellint_1f(float __k, float __phi)
{ return __detail::__ellint_1<float>(__k, __phi); }
 
inline long double
ellint_1l(long double __k, long double __phi)
{ return __detail::__ellint_1<long double>(__k, __phi); }
 
/// 5.2.1.12 Incomplete elliptic integrals of the first kind.
template<typename _Tp, typename _Tpp>
inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
ellint_1(_Tp __k, _Tpp __phi)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
return __detail::__ellint_1<__type>(__k, __phi);
}
 
inline float
ellint_2f(float __k, float __phi)
{ return __detail::__ellint_2<float>(__k, __phi); }
 
inline long double
ellint_2l(long double __k, long double __phi)
{ return __detail::__ellint_2<long double>(__k, __phi); }
 
/// 5.2.1.13 Incomplete elliptic integrals of the second kind.
template<typename _Tp, typename _Tpp>
inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
ellint_2(_Tp __k, _Tpp __phi)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
return __detail::__ellint_2<__type>(__k, __phi);
}
 
inline float
ellint_3f(float __k, float __nu, float __phi)
{ return __detail::__ellint_3<float>(__k, __nu, __phi); }
 
inline long double
ellint_3l(long double __k, long double __nu, long double __phi)
{ return __detail::__ellint_3<long double>(__k, __nu, __phi); }
 
/// 5.2.1.14 Incomplete elliptic integrals of the third kind.
template<typename _Tp, typename _Tpn, typename _Tpp>
inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type
ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)
{
typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type;
return __detail::__ellint_3<__type>(__k, __nu, __phi);
}
 
inline float
expintf(float __x)
{ return __detail::__expint<float>(__x); }
 
inline long double
expintl(long double __x)
{ return __detail::__expint<long double>(__x); }
 
/// 5.2.1.15 Exponential integrals.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
expint(_Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__expint<__type>(__x);
}
 
inline float
hermitef(unsigned int __n, float __x)
{ return __detail::__poly_hermite<float>(__n, __x); }
 
inline long double
hermitel(unsigned int __n, long double __x)
{ return __detail::__poly_hermite<long double>(__n, __x); }
 
/// 5.2.1.16 Hermite polynomials.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
hermite(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__poly_hermite<__type>(__n, __x);
}
 
inline float
hypergf(float __a, float __b, float __c, float __x)
{ return __detail::__hyperg<float>(__a, __b, __c, __x); }
 
inline long double
hypergl(long double __a, long double __b, long double __c, long double __x)
{ return __detail::__hyperg<long double>(__a, __b, __c, __x); }
 
/// 5.2.1.17 Hypergeometric functions.
template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp>
inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type
hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)
{
typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type __type;
return __detail::__hyperg<__type>(__a, __b, __c, __x);
}
 
inline float
laguerref(unsigned int __n, float __x)
{ return __detail::__laguerre<float>(__n, __x); }
 
inline long double
laguerrel(unsigned int __n, long double __x)
{ return __detail::__laguerre<long double>(__n, __x); }
 
/// 5.2.1.18 Laguerre polynomials.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
laguerre(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__laguerre<__type>(__n, __x);
}
 
inline float
legendref(unsigned int __n, float __x)
{ return __detail::__poly_legendre_p<float>(__n, __x); }
 
inline long double
legendrel(unsigned int __n, long double __x)
{ return __detail::__poly_legendre_p<long double>(__n, __x); }
 
/// 5.2.1.19 Legendre polynomials.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
legendre(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__poly_legendre_p<__type>(__n, __x);
}
 
inline float
riemann_zetaf(float __x)
{ return __detail::__riemann_zeta<float>(__x); }
 
inline long double
riemann_zetal(long double __x)
{ return __detail::__riemann_zeta<long double>(__x); }
 
/// 5.2.1.20 Riemann zeta function.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
riemann_zeta(_Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__riemann_zeta<__type>(__x);
}
 
inline float
sph_besself(unsigned int __n, float __x)
{ return __detail::__sph_bessel<float>(__n, __x); }
 
inline long double
sph_bessell(unsigned int __n, long double __x)
{ return __detail::__sph_bessel<long double>(__n, __x); }
 
/// 5.2.1.21 Spherical Bessel functions.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
sph_bessel(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__sph_bessel<__type>(__n, __x);
}
 
inline float
sph_legendref(unsigned int __l, unsigned int __m, float __theta)
{ return __detail::__sph_legendre<float>(__l, __m, __theta); }
 
inline long double
sph_legendrel(unsigned int __l, unsigned int __m, long double __theta)
{ return __detail::__sph_legendre<long double>(__l, __m, __theta); }
 
/// 5.2.1.22 Spherical associated Legendre functions.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__sph_legendre<__type>(__l, __m, __theta);
}
 
inline float
sph_neumannf(unsigned int __n, float __x)
{ return __detail::__sph_neumann<float>(__n, __x); }
 
inline long double
sph_neumannl(unsigned int __n, long double __x)
{ return __detail::__sph_neumann<long double>(__n, __x); }
 
/// 5.2.1.23 Spherical Neumann functions.
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
sph_neumann(unsigned int __n, _Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __detail::__sph_neumann<__type>(__n, __x);
}
 
/* @} */ // tr1_math_spec_func
_GLIBCXX_END_NAMESPACE_VERSION
}
}
 
#endif // _GLIBCXX_TR1_CMATH
/contrib/sdk/sources/libstdc++-v3/include/tr1/complex
0,0 → 1,418
// TR1 complex -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/complex
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_COMPLEX
#define _GLIBCXX_TR1_COMPLEX 1
 
#pragma GCC system_header
 
#include <complex>
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @addtogroup complex_numbers
* @{
*/
 
#if __cplusplus >= 201103L
using std::acos;
using std::asin;
using std::atan;
#else
template<typename _Tp> std::complex<_Tp> acos(const std::complex<_Tp>&);
template<typename _Tp> std::complex<_Tp> asin(const std::complex<_Tp>&);
template<typename _Tp> std::complex<_Tp> atan(const std::complex<_Tp>&);
#endif
 
template<typename _Tp> std::complex<_Tp> acosh(const std::complex<_Tp>&);
template<typename _Tp> std::complex<_Tp> asinh(const std::complex<_Tp>&);
template<typename _Tp> std::complex<_Tp> atanh(const std::complex<_Tp>&);
 
// The std::fabs return type in C++0x mode is different (just _Tp).
template<typename _Tp> std::complex<_Tp> fabs(const std::complex<_Tp>&);
 
#if __cplusplus < 201103L
template<typename _Tp>
inline std::complex<_Tp>
__complex_acos(const std::complex<_Tp>& __z)
{
const std::complex<_Tp> __t = std::tr1::asin(__z);
const _Tp __pi_2 = 1.5707963267948966192313216916397514L;
return std::complex<_Tp>(__pi_2 - __t.real(), -__t.imag());
}
 
#if _GLIBCXX_USE_C99_COMPLEX_TR1
inline __complex__ float
__complex_acos(__complex__ float __z)
{ return __builtin_cacosf(__z); }
 
inline __complex__ double
__complex_acos(__complex__ double __z)
{ return __builtin_cacos(__z); }
 
inline __complex__ long double
__complex_acos(const __complex__ long double& __z)
{ return __builtin_cacosl(__z); }
 
template<typename _Tp>
inline std::complex<_Tp>
acos(const std::complex<_Tp>& __z)
{ return __complex_acos(__z.__rep()); }
#else
/// acos(__z) [8.1.2].
// Effects: Behaves the same as C99 function cacos, defined
// in subclause 7.3.5.1.
template<typename _Tp>
inline std::complex<_Tp>
acos(const std::complex<_Tp>& __z)
{ return __complex_acos(__z); }
#endif
 
template<typename _Tp>
inline std::complex<_Tp>
__complex_asin(const std::complex<_Tp>& __z)
{
std::complex<_Tp> __t(-__z.imag(), __z.real());
__t = std::tr1::asinh(__t);
return std::complex<_Tp>(__t.imag(), -__t.real());
}
 
#if _GLIBCXX_USE_C99_COMPLEX_TR1
inline __complex__ float
__complex_asin(__complex__ float __z)
{ return __builtin_casinf(__z); }
 
inline __complex__ double
__complex_asin(__complex__ double __z)
{ return __builtin_casin(__z); }
 
inline __complex__ long double
__complex_asin(const __complex__ long double& __z)
{ return __builtin_casinl(__z); }
 
template<typename _Tp>
inline std::complex<_Tp>
asin(const std::complex<_Tp>& __z)
{ return __complex_asin(__z.__rep()); }
#else
/// asin(__z) [8.1.3].
// Effects: Behaves the same as C99 function casin, defined
// in subclause 7.3.5.2.
template<typename _Tp>
inline std::complex<_Tp>
asin(const std::complex<_Tp>& __z)
{ return __complex_asin(__z); }
#endif
template<typename _Tp>
std::complex<_Tp>
__complex_atan(const std::complex<_Tp>& __z)
{
const _Tp __r2 = __z.real() * __z.real();
const _Tp __x = _Tp(1.0) - __r2 - __z.imag() * __z.imag();
 
_Tp __num = __z.imag() + _Tp(1.0);
_Tp __den = __z.imag() - _Tp(1.0);
 
__num = __r2 + __num * __num;
__den = __r2 + __den * __den;
 
return std::complex<_Tp>(_Tp(0.5) * atan2(_Tp(2.0) * __z.real(), __x),
_Tp(0.25) * log(__num / __den));
}
 
#if _GLIBCXX_USE_C99_COMPLEX_TR1
inline __complex__ float
__complex_atan(__complex__ float __z)
{ return __builtin_catanf(__z); }
 
inline __complex__ double
__complex_atan(__complex__ double __z)
{ return __builtin_catan(__z); }
 
inline __complex__ long double
__complex_atan(const __complex__ long double& __z)
{ return __builtin_catanl(__z); }
 
template<typename _Tp>
inline std::complex<_Tp>
atan(const std::complex<_Tp>& __z)
{ return __complex_atan(__z.__rep()); }
#else
/// atan(__z) [8.1.4].
// Effects: Behaves the same as C99 function catan, defined
// in subclause 7.3.5.3.
template<typename _Tp>
inline std::complex<_Tp>
atan(const std::complex<_Tp>& __z)
{ return __complex_atan(__z); }
#endif
 
#endif // C++11
 
template<typename _Tp>
std::complex<_Tp>
__complex_acosh(const std::complex<_Tp>& __z)
{
// Kahan's formula.
return _Tp(2.0) * std::log(std::sqrt(_Tp(0.5) * (__z + _Tp(1.0)))
+ std::sqrt(_Tp(0.5) * (__z - _Tp(1.0))));
}
 
#if _GLIBCXX_USE_C99_COMPLEX_TR1
inline __complex__ float
__complex_acosh(__complex__ float __z)
{ return __builtin_cacoshf(__z); }
 
inline __complex__ double
__complex_acosh(__complex__ double __z)
{ return __builtin_cacosh(__z); }
 
inline __complex__ long double
__complex_acosh(const __complex__ long double& __z)
{ return __builtin_cacoshl(__z); }
 
template<typename _Tp>
inline std::complex<_Tp>
acosh(const std::complex<_Tp>& __z)
{ return __complex_acosh(__z.__rep()); }
#else
/// acosh(__z) [8.1.5].
// Effects: Behaves the same as C99 function cacosh, defined
// in subclause 7.3.6.1.
template<typename _Tp>
inline std::complex<_Tp>
acosh(const std::complex<_Tp>& __z)
{ return __complex_acosh(__z); }
#endif
 
template<typename _Tp>
std::complex<_Tp>
__complex_asinh(const std::complex<_Tp>& __z)
{
std::complex<_Tp> __t((__z.real() - __z.imag())
* (__z.real() + __z.imag()) + _Tp(1.0),
_Tp(2.0) * __z.real() * __z.imag());
__t = std::sqrt(__t);
 
return std::log(__t + __z);
}
 
#if _GLIBCXX_USE_C99_COMPLEX_TR1
inline __complex__ float
__complex_asinh(__complex__ float __z)
{ return __builtin_casinhf(__z); }
 
inline __complex__ double
__complex_asinh(__complex__ double __z)
{ return __builtin_casinh(__z); }
 
inline __complex__ long double
__complex_asinh(const __complex__ long double& __z)
{ return __builtin_casinhl(__z); }
 
template<typename _Tp>
inline std::complex<_Tp>
asinh(const std::complex<_Tp>& __z)
{ return __complex_asinh(__z.__rep()); }
#else
/// asinh(__z) [8.1.6].
// Effects: Behaves the same as C99 function casin, defined
// in subclause 7.3.6.2.
template<typename _Tp>
inline std::complex<_Tp>
asinh(const std::complex<_Tp>& __z)
{ return __complex_asinh(__z); }
#endif
 
template<typename _Tp>
std::complex<_Tp>
__complex_atanh(const std::complex<_Tp>& __z)
{
const _Tp __i2 = __z.imag() * __z.imag();
const _Tp __x = _Tp(1.0) - __i2 - __z.real() * __z.real();
 
_Tp __num = _Tp(1.0) + __z.real();
_Tp __den = _Tp(1.0) - __z.real();
 
__num = __i2 + __num * __num;
__den = __i2 + __den * __den;
 
return std::complex<_Tp>(_Tp(0.25) * (log(__num) - log(__den)),
_Tp(0.5) * atan2(_Tp(2.0) * __z.imag(), __x));
}
 
#if _GLIBCXX_USE_C99_COMPLEX_TR1
inline __complex__ float
__complex_atanh(__complex__ float __z)
{ return __builtin_catanhf(__z); }
 
inline __complex__ double
__complex_atanh(__complex__ double __z)
{ return __builtin_catanh(__z); }
 
inline __complex__ long double
__complex_atanh(const __complex__ long double& __z)
{ return __builtin_catanhl(__z); }
 
template<typename _Tp>
inline std::complex<_Tp>
atanh(const std::complex<_Tp>& __z)
{ return __complex_atanh(__z.__rep()); }
#else
/// atanh(__z) [8.1.7].
// Effects: Behaves the same as C99 function catanh, defined
// in subclause 7.3.6.3.
template<typename _Tp>
inline std::complex<_Tp>
atanh(const std::complex<_Tp>& __z)
{ return __complex_atanh(__z); }
#endif
 
template<typename _Tp>
inline std::complex<_Tp>
/// fabs(__z) [8.1.8].
// Effects: Behaves the same as C99 function cabs, defined
// in subclause 7.3.8.1.
fabs(const std::complex<_Tp>& __z)
{ return std::abs(__z); }
 
/// Additional overloads [8.1.9].
#if __cplusplus < 201103L
 
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
arg(_Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
#if (_GLIBCXX_USE_C99_MATH && !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC)
return std::signbit(__x) ? __type(3.1415926535897932384626433832795029L)
: __type();
#else
return std::arg(std::complex<__type>(__x));
#endif
}
 
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
imag(_Tp)
{ return _Tp(); }
 
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
norm(_Tp __x)
{
typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
return __type(__x) * __type(__x);
}
 
template<typename _Tp>
inline typename __gnu_cxx::__promote<_Tp>::__type
real(_Tp __x)
{ return __x; }
 
#endif
 
template<typename _Tp, typename _Up>
inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
pow(const std::complex<_Tp>& __x, const _Up& __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return std::pow(std::complex<__type>(__x), __type(__y));
}
 
template<typename _Tp, typename _Up>
inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
pow(const _Tp& __x, const std::complex<_Up>& __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return std::pow(__type(__x), std::complex<__type>(__y));
}
 
template<typename _Tp, typename _Up>
inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
pow(const std::complex<_Tp>& __x, const std::complex<_Up>& __y)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return std::pow(std::complex<__type>(__x),
std::complex<__type>(__y));
}
 
using std::arg;
 
template<typename _Tp>
inline std::complex<_Tp>
conj(const std::complex<_Tp>& __z)
{ return std::conj(__z); }
 
template<typename _Tp>
inline std::complex<typename __gnu_cxx::__promote<_Tp>::__type>
conj(_Tp __x)
{ return __x; }
 
using std::imag;
using std::norm;
using std::polar;
 
template<typename _Tp, typename _Up>
inline std::complex<typename __gnu_cxx::__promote_2<_Tp, _Up>::__type>
polar(const _Tp& __rho, const _Up& __theta)
{
typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
return std::polar(__type(__rho), __type(__theta));
}
 
using std::real;
 
template<typename _Tp>
inline std::complex<_Tp>
pow(const std::complex<_Tp>& __x, const _Tp& __y)
{ return std::pow(__x, __y); }
 
template<typename _Tp>
inline std::complex<_Tp>
pow(const _Tp& __x, const std::complex<_Tp>& __y)
{ return std::pow(__x, __y); }
 
template<typename _Tp>
inline std::complex<_Tp>
pow(const std::complex<_Tp>& __x, const std::complex<_Tp>& __y)
{ return std::pow(__x, __y); }
 
// @} group complex_numbers
 
_GLIBCXX_END_NAMESPACE_VERSION
}
}
 
#endif // _GLIBCXX_TR1_COMPLEX
/contrib/sdk/sources/libstdc++-v3/include/tr1/complex.h
0,0 → 1,34
// TR1 complex.h -*- C++ -*-
 
// Copyright (C) 2007-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/complex.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_COMPLEX_H
#define _GLIBCXX_TR1_COMPLEX_H 1
 
#include <tr1/ccomplex>
 
#endif // _GLIBCXX_TR1_COMPLEX_H
/contrib/sdk/sources/libstdc++-v3/include/tr1/cstdarg
0,0 → 1,34
// TR1 cstdarg -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/cstdarg
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CSTDARG
#define _GLIBCXX_TR1_CSTDARG 1
 
#include <cstdarg>
 
#endif // _GLIBCXX_TR1_CSTDARG
/contrib/sdk/sources/libstdc++-v3/include/tr1/cstdbool
0,0 → 1,40
// TR1 cstdbool -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/cstdbool
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CSTDBOOL
#define _GLIBCXX_TR1_CSTDBOOL 1
 
#pragma GCC system_header
 
#include <bits/c++config.h>
 
#if _GLIBCXX_HAVE_STDBOOL_H
#include <stdbool.h>
#endif
 
#endif // _GLIBCXX_TR1_CSTDBOOL
/contrib/sdk/sources/libstdc++-v3/include/tr1/cstdint
0,0 → 1,104
// TR1 cstdint -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/cstdint
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CSTDINT
#define _GLIBCXX_TR1_CSTDINT 1
 
#pragma GCC system_header
 
#include <bits/c++config.h>
 
// For 8.22.1/1 (see C99, Notes 219, 220, 222)
# if _GLIBCXX_HAVE_STDINT_H
# ifndef __STDC_LIMIT_MACROS
# define _UNDEF__STDC_LIMIT_MACROS
# define __STDC_LIMIT_MACROS
# endif
# ifndef __STDC_CONSTANT_MACROS
# define _UNDEF__STDC_CONSTANT_MACROS
# define __STDC_CONSTANT_MACROS
# endif
# include <stdint.h>
# ifdef _UNDEF__STDC_LIMIT_MACROS
# undef __STDC_LIMIT_MACROS
# undef _UNDEF__STDC_LIMIT_MACROS
# endif
# ifdef _UNDEF__STDC_CONSTANT_MACROS
# undef __STDC_CONSTANT_MACROS
# undef _UNDEF__STDC_CONSTANT_MACROS
# endif
# endif
 
#ifdef _GLIBCXX_USE_C99_STDINT_TR1
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
using ::int8_t;
using ::int16_t;
using ::int32_t;
using ::int64_t;
 
using ::int_fast8_t;
using ::int_fast16_t;
using ::int_fast32_t;
using ::int_fast64_t;
 
using ::int_least8_t;
using ::int_least16_t;
using ::int_least32_t;
using ::int_least64_t;
 
using ::intmax_t;
using ::intptr_t;
using ::uint8_t;
using ::uint16_t;
using ::uint32_t;
using ::uint64_t;
 
using ::uint_fast8_t;
using ::uint_fast16_t;
using ::uint_fast32_t;
using ::uint_fast64_t;
 
using ::uint_least8_t;
using ::uint_least16_t;
using ::uint_least32_t;
using ::uint_least64_t;
 
using ::uintmax_t;
using ::uintptr_t;
}
}
 
#endif // _GLIBCXX_USE_C99_STDINT_TR1
 
#endif // _GLIBCXX_TR1_CSTDINT
 
/contrib/sdk/sources/libstdc++-v3/include/tr1/cstdio
0,0 → 1,53
// TR1 cstdio -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/cstdio
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CSTDIO
#define _GLIBCXX_TR1_CSTDIO 1
 
#pragma GCC system_header
 
#include <cstdio>
 
#if _GLIBCXX_USE_C99
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
using std::snprintf;
using std::vsnprintf;
 
using std::vfscanf;
using std::vscanf;
using std::vsscanf;
}
}
 
#endif
 
#endif // _GLIBCXX_TR1_CSTDIO
/contrib/sdk/sources/libstdc++-v3/include/tr1/cstdlib
0,0 → 1,72
// TR1 cstdlib -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/cstdlib
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CSTDLIB
#define _GLIBCXX_TR1_CSTDLIB 1
 
#pragma GCC system_header
 
#include <cstdlib>
 
#if _GLIBCXX_HOSTED
 
#if _GLIBCXX_USE_C99
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
#if !_GLIBCXX_USE_C99_LONG_LONG_DYNAMIC
// types
using std::lldiv_t;
 
// functions
using std::llabs;
using std::lldiv;
#endif
 
using std::atoll;
using std::strtoll;
using std::strtoull;
 
using std::strtof;
using std::strtold;
 
// overloads
using std::abs;
#if !_GLIBCXX_USE_C99_LONG_LONG_DYNAMIC
using std::div;
#endif
}
}
 
#endif // _GLIBCXX_USE_C99
 
#endif // _GLIBCXX_HOSTED
 
#endif // _GLIBCXX_TR1_CSTDLIB
/contrib/sdk/sources/libstdc++-v3/include/tr1/ctgmath
0,0 → 1,34
// TR1 ctgmath -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/ctgmath
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CTGMATH
#define _GLIBCXX_TR1_CTGMATH 1
 
#include <tr1/cmath>
 
#endif // _GLIBCXX_TR1_CTGMATH
/contrib/sdk/sources/libstdc++-v3/include/tr1/ctime
0,0 → 1,34
// TR1 ctime -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/ctime
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CTIME
#define _GLIBCXX_TR1_CTIME 1
 
#include <ctime>
 
#endif // _GLIBCXX_TR1_CTIME
/contrib/sdk/sources/libstdc++-v3/include/tr1/ctype.h
0,0 → 1,34
// TR1 ctype.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/ctype.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _TR1_CTYPE_H
#define _TR1_CTYPE_H 1
 
#include <tr1/cctype>
 
#endif
/contrib/sdk/sources/libstdc++-v3/include/tr1/cwchar
0,0 → 1,65
// TR1 cwchar -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/cwchar
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CWCHAR
#define _GLIBCXX_TR1_CWCHAR 1
 
#pragma GCC system_header
 
#include <cwchar>
 
#ifdef _GLIBCXX_USE_WCHAR_T
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
#if _GLIBCXX_HAVE_WCSTOF
using std::wcstof;
#endif
#if _GLIBCXX_HAVE_VFWSCANF
using std::vfwscanf;
#endif
#if _GLIBCXX_HAVE_VSWSCANF
using std::vswscanf;
#endif
#if _GLIBCXX_HAVE_VWSCANF
using std::vwscanf;
#endif
 
#if _GLIBCXX_USE_C99
using std::wcstold;
using std::wcstoll;
using std::wcstoull;
#endif
}
}
 
#endif // _GLIBCXX_USE_WCHAR_T
 
#endif // _GLIBCXX_TR1_CWCHAR
/contrib/sdk/sources/libstdc++-v3/include/tr1/cwctype
0,0 → 1,50
// TR1 cwctype -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/cwctype
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_CWCTYPE
#define _GLIBCXX_TR1_CWCTYPE 1
 
#pragma GCC system_header
 
#include <cwctype>
 
#ifdef _GLIBCXX_USE_WCHAR_T
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
#if _GLIBCXX_HAVE_ISWBLANK
using std::iswblank;
#endif
}
}
 
#endif // _GLIBCXX_USE_WCHAR_T
 
#endif // _GLIBCXX_TR1_CWCTYPE
/contrib/sdk/sources/libstdc++-v3/include/tr1/ell_integral.tcc
0,0 → 1,750
// Special functions -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/ell_integral.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
 
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
 
// Written by Edward Smith-Rowland based on:
// (1) B. C. Carlson Numer. Math. 33, 1 (1979)
// (2) B. C. Carlson, Special Functions of Applied Mathematics (1977)
// (3) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (4) Numerical Recipes in C, 2nd ed, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press
// (1992), pp. 261-269
 
#ifndef _GLIBCXX_TR1_ELL_INTEGRAL_TCC
#define _GLIBCXX_TR1_ELL_INTEGRAL_TCC 1
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
 
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @brief Return the Carlson elliptic function @f$ R_F(x,y,z) @f$
* of the first kind.
*
* The Carlson elliptic function of the first kind is defined by:
* @f[
* R_F(x,y,z) = \frac{1}{2} \int_0^\infty
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}}
* @f]
*
* @param __x The first of three symmetric arguments.
* @param __y The second of three symmetric arguments.
* @param __z The third of three symmetric arguments.
* @return The Carlson elliptic function of the first kind.
*/
template<typename _Tp>
_Tp
__ellint_rf(_Tp __x, _Tp __y, _Tp __z)
{
const _Tp __min = std::numeric_limits<_Tp>::min();
const _Tp __max = std::numeric_limits<_Tp>::max();
const _Tp __lolim = _Tp(5) * __min;
const _Tp __uplim = __max / _Tp(5);
 
if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
std::__throw_domain_error(__N("Argument less than zero "
"in __ellint_rf."));
else if (__x + __y < __lolim || __x + __z < __lolim
|| __y + __z < __lolim)
std::__throw_domain_error(__N("Argument too small in __ellint_rf"));
else
{
const _Tp __c0 = _Tp(1) / _Tp(4);
const _Tp __c1 = _Tp(1) / _Tp(24);
const _Tp __c2 = _Tp(1) / _Tp(10);
const _Tp __c3 = _Tp(3) / _Tp(44);
const _Tp __c4 = _Tp(1) / _Tp(14);
 
_Tp __xn = __x;
_Tp __yn = __y;
_Tp __zn = __z;
 
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __errtol = std::pow(__eps, _Tp(1) / _Tp(6));
_Tp __mu;
_Tp __xndev, __yndev, __zndev;
 
const unsigned int __max_iter = 100;
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
{
__mu = (__xn + __yn + __zn) / _Tp(3);
__xndev = 2 - (__mu + __xn) / __mu;
__yndev = 2 - (__mu + __yn) / __mu;
__zndev = 2 - (__mu + __zn) / __mu;
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
__epsilon = std::max(__epsilon, std::abs(__zndev));
if (__epsilon < __errtol)
break;
const _Tp __xnroot = std::sqrt(__xn);
const _Tp __ynroot = std::sqrt(__yn);
const _Tp __znroot = std::sqrt(__zn);
const _Tp __lambda = __xnroot * (__ynroot + __znroot)
+ __ynroot * __znroot;
__xn = __c0 * (__xn + __lambda);
__yn = __c0 * (__yn + __lambda);
__zn = __c0 * (__zn + __lambda);
}
 
const _Tp __e2 = __xndev * __yndev - __zndev * __zndev;
const _Tp __e3 = __xndev * __yndev * __zndev;
const _Tp __s = _Tp(1) + (__c1 * __e2 - __c2 - __c3 * __e3) * __e2
+ __c4 * __e3;
 
return __s / std::sqrt(__mu);
}
}
 
 
/**
* @brief Return the complete elliptic integral of the first kind
* @f$ K(k) @f$ by series expansion.
*
* The complete elliptic integral of the first kind is defined as
* @f[
* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
* {\sqrt{1 - k^2sin^2\theta}}
* @f]
*
* This routine is not bad as long as |k| is somewhat smaller than 1
* but is not is good as the Carlson elliptic integral formulation.
*
* @param __k The argument of the complete elliptic function.
* @return The complete elliptic function of the first kind.
*/
template<typename _Tp>
_Tp
__comp_ellint_1_series(_Tp __k)
{
 
const _Tp __kk = __k * __k;
 
_Tp __term = __kk / _Tp(4);
_Tp __sum = _Tp(1) + __term;
 
const unsigned int __max_iter = 1000;
for (unsigned int __i = 2; __i < __max_iter; ++__i)
{
__term *= (2 * __i - 1) * __kk / (2 * __i);
if (__term < std::numeric_limits<_Tp>::epsilon())
break;
__sum += __term;
}
 
return __numeric_constants<_Tp>::__pi_2() * __sum;
}
 
 
/**
* @brief Return the complete elliptic integral of the first kind
* @f$ K(k) @f$ using the Carlson formulation.
*
* The complete elliptic integral of the first kind is defined as
* @f[
* K(k) = F(k,\pi/2) = \int_0^{\pi/2}\frac{d\theta}
* {\sqrt{1 - k^2 sin^2\theta}}
* @f]
* where @f$ F(k,\phi) @f$ is the incomplete elliptic integral of the
* first kind.
*
* @param __k The argument of the complete elliptic function.
* @return The complete elliptic function of the first kind.
*/
template<typename _Tp>
_Tp
__comp_ellint_1(_Tp __k)
{
 
if (__isnan(__k))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (std::abs(__k) >= _Tp(1))
return std::numeric_limits<_Tp>::quiet_NaN();
else
return __ellint_rf(_Tp(0), _Tp(1) - __k * __k, _Tp(1));
}
 
 
/**
* @brief Return the incomplete elliptic integral of the first kind
* @f$ F(k,\phi) @f$ using the Carlson formulation.
*
* The incomplete elliptic integral of the first kind is defined as
* @f[
* F(k,\phi) = \int_0^{\phi}\frac{d\theta}
* {\sqrt{1 - k^2 sin^2\theta}}
* @f]
*
* @param __k The argument of the elliptic function.
* @param __phi The integral limit argument of the elliptic function.
* @return The elliptic function of the first kind.
*/
template<typename _Tp>
_Tp
__ellint_1(_Tp __k, _Tp __phi)
{
 
if (__isnan(__k) || __isnan(__phi))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (std::abs(__k) > _Tp(1))
std::__throw_domain_error(__N("Bad argument in __ellint_1."));
else
{
// Reduce phi to -pi/2 < phi < +pi/2.
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
+ _Tp(0.5L));
const _Tp __phi_red = __phi
- __n * __numeric_constants<_Tp>::__pi();
 
const _Tp __s = std::sin(__phi_red);
const _Tp __c = std::cos(__phi_red);
 
const _Tp __F = __s
* __ellint_rf(__c * __c,
_Tp(1) - __k * __k * __s * __s, _Tp(1));
 
if (__n == 0)
return __F;
else
return __F + _Tp(2) * __n * __comp_ellint_1(__k);
}
}
 
 
/**
* @brief Return the complete elliptic integral of the second kind
* @f$ E(k) @f$ by series expansion.
*
* The complete elliptic integral of the second kind is defined as
* @f[
* E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
* @f]
*
* This routine is not bad as long as |k| is somewhat smaller than 1
* but is not is good as the Carlson elliptic integral formulation.
*
* @param __k The argument of the complete elliptic function.
* @return The complete elliptic function of the second kind.
*/
template<typename _Tp>
_Tp
__comp_ellint_2_series(_Tp __k)
{
 
const _Tp __kk = __k * __k;
 
_Tp __term = __kk;
_Tp __sum = __term;
 
const unsigned int __max_iter = 1000;
for (unsigned int __i = 2; __i < __max_iter; ++__i)
{
const _Tp __i2m = 2 * __i - 1;
const _Tp __i2 = 2 * __i;
__term *= __i2m * __i2m * __kk / (__i2 * __i2);
if (__term < std::numeric_limits<_Tp>::epsilon())
break;
__sum += __term / __i2m;
}
 
return __numeric_constants<_Tp>::__pi_2() * (_Tp(1) - __sum);
}
 
 
/**
* @brief Return the Carlson elliptic function of the second kind
* @f$ R_D(x,y,z) = R_J(x,y,z,z) @f$ where
* @f$ R_J(x,y,z,p) @f$ is the Carlson elliptic function
* of the third kind.
*
* The Carlson elliptic function of the second kind is defined by:
* @f[
* R_D(x,y,z) = \frac{3}{2} \int_0^\infty
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{3/2}}
* @f]
*
* Based on Carlson's algorithms:
* - B. C. Carlson Numer. Math. 33, 1 (1979)
* - B. C. Carlson, Special Functions of Applied Mathematics (1977)
* - Numerical Recipes in C, 2nd ed, pp. 261-269,
* by Press, Teukolsky, Vetterling, Flannery (1992)
*
* @param __x The first of two symmetric arguments.
* @param __y The second of two symmetric arguments.
* @param __z The third argument.
* @return The Carlson elliptic function of the second kind.
*/
template<typename _Tp>
_Tp
__ellint_rd(_Tp __x, _Tp __y, _Tp __z)
{
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
const _Tp __min = std::numeric_limits<_Tp>::min();
const _Tp __max = std::numeric_limits<_Tp>::max();
const _Tp __lolim = _Tp(2) / std::pow(__max, _Tp(2) / _Tp(3));
const _Tp __uplim = std::pow(_Tp(0.1L) * __errtol / __min, _Tp(2) / _Tp(3));
 
if (__x < _Tp(0) || __y < _Tp(0))
std::__throw_domain_error(__N("Argument less than zero "
"in __ellint_rd."));
else if (__x + __y < __lolim || __z < __lolim)
std::__throw_domain_error(__N("Argument too small "
"in __ellint_rd."));
else
{
const _Tp __c0 = _Tp(1) / _Tp(4);
const _Tp __c1 = _Tp(3) / _Tp(14);
const _Tp __c2 = _Tp(1) / _Tp(6);
const _Tp __c3 = _Tp(9) / _Tp(22);
const _Tp __c4 = _Tp(3) / _Tp(26);
 
_Tp __xn = __x;
_Tp __yn = __y;
_Tp __zn = __z;
_Tp __sigma = _Tp(0);
_Tp __power4 = _Tp(1);
 
_Tp __mu;
_Tp __xndev, __yndev, __zndev;
 
const unsigned int __max_iter = 100;
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
{
__mu = (__xn + __yn + _Tp(3) * __zn) / _Tp(5);
__xndev = (__mu - __xn) / __mu;
__yndev = (__mu - __yn) / __mu;
__zndev = (__mu - __zn) / __mu;
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
__epsilon = std::max(__epsilon, std::abs(__zndev));
if (__epsilon < __errtol)
break;
_Tp __xnroot = std::sqrt(__xn);
_Tp __ynroot = std::sqrt(__yn);
_Tp __znroot = std::sqrt(__zn);
_Tp __lambda = __xnroot * (__ynroot + __znroot)
+ __ynroot * __znroot;
__sigma += __power4 / (__znroot * (__zn + __lambda));
__power4 *= __c0;
__xn = __c0 * (__xn + __lambda);
__yn = __c0 * (__yn + __lambda);
__zn = __c0 * (__zn + __lambda);
}
 
// Note: __ea is an SPU badname.
_Tp __eaa = __xndev * __yndev;
_Tp __eb = __zndev * __zndev;
_Tp __ec = __eaa - __eb;
_Tp __ed = __eaa - _Tp(6) * __eb;
_Tp __ef = __ed + __ec + __ec;
_Tp __s1 = __ed * (-__c1 + __c3 * __ed
/ _Tp(3) - _Tp(3) * __c4 * __zndev * __ef
/ _Tp(2));
_Tp __s2 = __zndev
* (__c2 * __ef
+ __zndev * (-__c3 * __ec - __zndev * __c4 - __eaa));
 
return _Tp(3) * __sigma + __power4 * (_Tp(1) + __s1 + __s2)
/ (__mu * std::sqrt(__mu));
}
}
 
 
/**
* @brief Return the complete elliptic integral of the second kind
* @f$ E(k) @f$ using the Carlson formulation.
*
* The complete elliptic integral of the second kind is defined as
* @f[
* E(k,\pi/2) = \int_0^{\pi/2}\sqrt{1 - k^2 sin^2\theta}
* @f]
*
* @param __k The argument of the complete elliptic function.
* @return The complete elliptic function of the second kind.
*/
template<typename _Tp>
_Tp
__comp_ellint_2(_Tp __k)
{
 
if (__isnan(__k))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (std::abs(__k) == 1)
return _Tp(1);
else if (std::abs(__k) > _Tp(1))
std::__throw_domain_error(__N("Bad argument in __comp_ellint_2."));
else
{
const _Tp __kk = __k * __k;
 
return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
- __kk * __ellint_rd(_Tp(0), _Tp(1) - __kk, _Tp(1)) / _Tp(3);
}
}
 
 
/**
* @brief Return the incomplete elliptic integral of the second kind
* @f$ E(k,\phi) @f$ using the Carlson formulation.
*
* The incomplete elliptic integral of the second kind is defined as
* @f[
* E(k,\phi) = \int_0^{\phi} \sqrt{1 - k^2 sin^2\theta}
* @f]
*
* @param __k The argument of the elliptic function.
* @param __phi The integral limit argument of the elliptic function.
* @return The elliptic function of the second kind.
*/
template<typename _Tp>
_Tp
__ellint_2(_Tp __k, _Tp __phi)
{
 
if (__isnan(__k) || __isnan(__phi))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (std::abs(__k) > _Tp(1))
std::__throw_domain_error(__N("Bad argument in __ellint_2."));
else
{
// Reduce phi to -pi/2 < phi < +pi/2.
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
+ _Tp(0.5L));
const _Tp __phi_red = __phi
- __n * __numeric_constants<_Tp>::__pi();
 
const _Tp __kk = __k * __k;
const _Tp __s = std::sin(__phi_red);
const _Tp __ss = __s * __s;
const _Tp __sss = __ss * __s;
const _Tp __c = std::cos(__phi_red);
const _Tp __cc = __c * __c;
 
const _Tp __E = __s
* __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
- __kk * __sss
* __ellint_rd(__cc, _Tp(1) - __kk * __ss, _Tp(1))
/ _Tp(3);
 
if (__n == 0)
return __E;
else
return __E + _Tp(2) * __n * __comp_ellint_2(__k);
}
}
 
 
/**
* @brief Return the Carlson elliptic function
* @f$ R_C(x,y) = R_F(x,y,y) @f$ where @f$ R_F(x,y,z) @f$
* is the Carlson elliptic function of the first kind.
*
* The Carlson elliptic function is defined by:
* @f[
* R_C(x,y) = \frac{1}{2} \int_0^\infty
* \frac{dt}{(t + x)^{1/2}(t + y)}
* @f]
*
* Based on Carlson's algorithms:
* - B. C. Carlson Numer. Math. 33, 1 (1979)
* - B. C. Carlson, Special Functions of Applied Mathematics (1977)
* - Numerical Recipes in C, 2nd ed, pp. 261-269,
* by Press, Teukolsky, Vetterling, Flannery (1992)
*
* @param __x The first argument.
* @param __y The second argument.
* @return The Carlson elliptic function.
*/
template<typename _Tp>
_Tp
__ellint_rc(_Tp __x, _Tp __y)
{
const _Tp __min = std::numeric_limits<_Tp>::min();
const _Tp __max = std::numeric_limits<_Tp>::max();
const _Tp __lolim = _Tp(5) * __min;
const _Tp __uplim = __max / _Tp(5);
 
if (__x < _Tp(0) || __y < _Tp(0) || __x + __y < __lolim)
std::__throw_domain_error(__N("Argument less than zero "
"in __ellint_rc."));
else
{
const _Tp __c0 = _Tp(1) / _Tp(4);
const _Tp __c1 = _Tp(1) / _Tp(7);
const _Tp __c2 = _Tp(9) / _Tp(22);
const _Tp __c3 = _Tp(3) / _Tp(10);
const _Tp __c4 = _Tp(3) / _Tp(8);
 
_Tp __xn = __x;
_Tp __yn = __y;
 
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __errtol = std::pow(__eps / _Tp(30), _Tp(1) / _Tp(6));
_Tp __mu;
_Tp __sn;
 
const unsigned int __max_iter = 100;
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
{
__mu = (__xn + _Tp(2) * __yn) / _Tp(3);
__sn = (__yn + __mu) / __mu - _Tp(2);
if (std::abs(__sn) < __errtol)
break;
const _Tp __lambda = _Tp(2) * std::sqrt(__xn) * std::sqrt(__yn)
+ __yn;
__xn = __c0 * (__xn + __lambda);
__yn = __c0 * (__yn + __lambda);
}
 
_Tp __s = __sn * __sn
* (__c3 + __sn*(__c1 + __sn * (__c4 + __sn * __c2)));
 
return (_Tp(1) + __s) / std::sqrt(__mu);
}
}
 
 
/**
* @brief Return the Carlson elliptic function @f$ R_J(x,y,z,p) @f$
* of the third kind.
*
* The Carlson elliptic function of the third kind is defined by:
* @f[
* R_J(x,y,z,p) = \frac{3}{2} \int_0^\infty
* \frac{dt}{(t + x)^{1/2}(t + y)^{1/2}(t + z)^{1/2}(t + p)}
* @f]
*
* Based on Carlson's algorithms:
* - B. C. Carlson Numer. Math. 33, 1 (1979)
* - B. C. Carlson, Special Functions of Applied Mathematics (1977)
* - Numerical Recipes in C, 2nd ed, pp. 261-269,
* by Press, Teukolsky, Vetterling, Flannery (1992)
*
* @param __x The first of three symmetric arguments.
* @param __y The second of three symmetric arguments.
* @param __z The third of three symmetric arguments.
* @param __p The fourth argument.
* @return The Carlson elliptic function of the fourth kind.
*/
template<typename _Tp>
_Tp
__ellint_rj(_Tp __x, _Tp __y, _Tp __z, _Tp __p)
{
const _Tp __min = std::numeric_limits<_Tp>::min();
const _Tp __max = std::numeric_limits<_Tp>::max();
const _Tp __lolim = std::pow(_Tp(5) * __min, _Tp(1)/_Tp(3));
const _Tp __uplim = _Tp(0.3L)
* std::pow(_Tp(0.2L) * __max, _Tp(1)/_Tp(3));
 
if (__x < _Tp(0) || __y < _Tp(0) || __z < _Tp(0))
std::__throw_domain_error(__N("Argument less than zero "
"in __ellint_rj."));
else if (__x + __y < __lolim || __x + __z < __lolim
|| __y + __z < __lolim || __p < __lolim)
std::__throw_domain_error(__N("Argument too small "
"in __ellint_rj"));
else
{
const _Tp __c0 = _Tp(1) / _Tp(4);
const _Tp __c1 = _Tp(3) / _Tp(14);
const _Tp __c2 = _Tp(1) / _Tp(3);
const _Tp __c3 = _Tp(3) / _Tp(22);
const _Tp __c4 = _Tp(3) / _Tp(26);
 
_Tp __xn = __x;
_Tp __yn = __y;
_Tp __zn = __z;
_Tp __pn = __p;
_Tp __sigma = _Tp(0);
_Tp __power4 = _Tp(1);
 
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __errtol = std::pow(__eps / _Tp(8), _Tp(1) / _Tp(6));
 
_Tp __lambda, __mu;
_Tp __xndev, __yndev, __zndev, __pndev;
 
const unsigned int __max_iter = 100;
for (unsigned int __iter = 0; __iter < __max_iter; ++__iter)
{
__mu = (__xn + __yn + __zn + _Tp(2) * __pn) / _Tp(5);
__xndev = (__mu - __xn) / __mu;
__yndev = (__mu - __yn) / __mu;
__zndev = (__mu - __zn) / __mu;
__pndev = (__mu - __pn) / __mu;
_Tp __epsilon = std::max(std::abs(__xndev), std::abs(__yndev));
__epsilon = std::max(__epsilon, std::abs(__zndev));
__epsilon = std::max(__epsilon, std::abs(__pndev));
if (__epsilon < __errtol)
break;
const _Tp __xnroot = std::sqrt(__xn);
const _Tp __ynroot = std::sqrt(__yn);
const _Tp __znroot = std::sqrt(__zn);
const _Tp __lambda = __xnroot * (__ynroot + __znroot)
+ __ynroot * __znroot;
const _Tp __alpha1 = __pn * (__xnroot + __ynroot + __znroot)
+ __xnroot * __ynroot * __znroot;
const _Tp __alpha2 = __alpha1 * __alpha1;
const _Tp __beta = __pn * (__pn + __lambda)
* (__pn + __lambda);
__sigma += __power4 * __ellint_rc(__alpha2, __beta);
__power4 *= __c0;
__xn = __c0 * (__xn + __lambda);
__yn = __c0 * (__yn + __lambda);
__zn = __c0 * (__zn + __lambda);
__pn = __c0 * (__pn + __lambda);
}
 
// Note: __ea is an SPU badname.
_Tp __eaa = __xndev * (__yndev + __zndev) + __yndev * __zndev;
_Tp __eb = __xndev * __yndev * __zndev;
_Tp __ec = __pndev * __pndev;
_Tp __e2 = __eaa - _Tp(3) * __ec;
_Tp __e3 = __eb + _Tp(2) * __pndev * (__eaa - __ec);
_Tp __s1 = _Tp(1) + __e2 * (-__c1 + _Tp(3) * __c3 * __e2 / _Tp(4)
- _Tp(3) * __c4 * __e3 / _Tp(2));
_Tp __s2 = __eb * (__c2 / _Tp(2)
+ __pndev * (-__c3 - __c3 + __pndev * __c4));
_Tp __s3 = __pndev * __eaa * (__c2 - __pndev * __c3)
- __c2 * __pndev * __ec;
 
return _Tp(3) * __sigma + __power4 * (__s1 + __s2 + __s3)
/ (__mu * std::sqrt(__mu));
}
}
 
 
/**
* @brief Return the complete elliptic integral of the third kind
* @f$ \Pi(k,\nu) = \Pi(k,\nu,\pi/2) @f$ using the
* Carlson formulation.
*
* The complete elliptic integral of the third kind is defined as
* @f[
* \Pi(k,\nu) = \int_0^{\pi/2}
* \frac{d\theta}
* {(1 - \nu \sin^2\theta)\sqrt{1 - k^2 \sin^2\theta}}
* @f]
*
* @param __k The argument of the elliptic function.
* @param __nu The second argument of the elliptic function.
* @return The complete elliptic function of the third kind.
*/
template<typename _Tp>
_Tp
__comp_ellint_3(_Tp __k, _Tp __nu)
{
 
if (__isnan(__k) || __isnan(__nu))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__nu == _Tp(1))
return std::numeric_limits<_Tp>::infinity();
else if (std::abs(__k) > _Tp(1))
std::__throw_domain_error(__N("Bad argument in __comp_ellint_3."));
else
{
const _Tp __kk = __k * __k;
 
return __ellint_rf(_Tp(0), _Tp(1) - __kk, _Tp(1))
- __nu
* __ellint_rj(_Tp(0), _Tp(1) - __kk, _Tp(1), _Tp(1) + __nu)
/ _Tp(3);
}
}
 
 
/**
* @brief Return the incomplete elliptic integral of the third kind
* @f$ \Pi(k,\nu,\phi) @f$ using the Carlson formulation.
*
* The incomplete elliptic integral of the third kind is defined as
* @f[
* \Pi(k,\nu,\phi) = \int_0^{\phi}
* \frac{d\theta}
* {(1 - \nu \sin^2\theta)
* \sqrt{1 - k^2 \sin^2\theta}}
* @f]
*
* @param __k The argument of the elliptic function.
* @param __nu The second argument of the elliptic function.
* @param __phi The integral limit argument of the elliptic function.
* @return The elliptic function of the third kind.
*/
template<typename _Tp>
_Tp
__ellint_3(_Tp __k, _Tp __nu, _Tp __phi)
{
 
if (__isnan(__k) || __isnan(__nu) || __isnan(__phi))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (std::abs(__k) > _Tp(1))
std::__throw_domain_error(__N("Bad argument in __ellint_3."));
else
{
// Reduce phi to -pi/2 < phi < +pi/2.
const int __n = std::floor(__phi / __numeric_constants<_Tp>::__pi()
+ _Tp(0.5L));
const _Tp __phi_red = __phi
- __n * __numeric_constants<_Tp>::__pi();
 
const _Tp __kk = __k * __k;
const _Tp __s = std::sin(__phi_red);
const _Tp __ss = __s * __s;
const _Tp __sss = __ss * __s;
const _Tp __c = std::cos(__phi_red);
const _Tp __cc = __c * __c;
 
const _Tp __Pi = __s
* __ellint_rf(__cc, _Tp(1) - __kk * __ss, _Tp(1))
- __nu * __sss
* __ellint_rj(__cc, _Tp(1) - __kk * __ss, _Tp(1),
_Tp(1) + __nu * __ss) / _Tp(3);
 
if (__n == 0)
return __Pi;
else
return __Pi + _Tp(2) * __n * __comp_ellint_3(__k, __nu);
}
}
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
 
#endif // _GLIBCXX_TR1_ELL_INTEGRAL_TCC
 
/contrib/sdk/sources/libstdc++-v3/include/tr1/exp_integral.tcc
0,0 → 1,526
// Special functions -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/exp_integral.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
 
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
 
// Written by Edward Smith-Rowland based on:
//
// (1) Handbook of Mathematical Functions,
// Ed. by Milton Abramowitz and Irene A. Stegun,
// Dover Publications, New-York, Section 5, pp. 228-251.
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
// 2nd ed, pp. 222-225.
//
 
#ifndef _GLIBCXX_TR1_EXP_INTEGRAL_TCC
#define _GLIBCXX_TR1_EXP_INTEGRAL_TCC 1
 
#include "special_function_util.h"
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
 
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
template<typename _Tp> _Tp __expint_E1(_Tp);
 
/**
* @brief Return the exponential integral @f$ E_1(x) @f$
* by series summation. This should be good
* for @f$ x < 1 @f$.
*
* The exponential integral is given by
* \f[
* E_1(x) = \int_{1}^{\infty} \frac{e^{-xt}}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_E1_series(_Tp __x)
{
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
_Tp __term = _Tp(1);
_Tp __esum = _Tp(0);
_Tp __osum = _Tp(0);
const unsigned int __max_iter = 100;
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
__term *= - __x / __i;
if (std::abs(__term) < __eps)
break;
if (__term >= _Tp(0))
__esum += __term / __i;
else
__osum += __term / __i;
}
 
return - __esum - __osum
- __numeric_constants<_Tp>::__gamma_e() - std::log(__x);
}
 
 
/**
* @brief Return the exponential integral @f$ E_1(x) @f$
* by asymptotic expansion.
*
* The exponential integral is given by
* \f[
* E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_E1_asymp(_Tp __x)
{
_Tp __term = _Tp(1);
_Tp __esum = _Tp(1);
_Tp __osum = _Tp(0);
const unsigned int __max_iter = 1000;
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
_Tp __prev = __term;
__term *= - __i / __x;
if (std::abs(__term) > std::abs(__prev))
break;
if (__term >= _Tp(0))
__esum += __term;
else
__osum += __term;
}
 
return std::exp(- __x) * (__esum + __osum) / __x;
}
 
 
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* by series summation.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_En_series(unsigned int __n, _Tp __x)
{
const unsigned int __max_iter = 100;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const int __nm1 = __n - 1;
_Tp __ans = (__nm1 != 0
? _Tp(1) / __nm1 : -std::log(__x)
- __numeric_constants<_Tp>::__gamma_e());
_Tp __fact = _Tp(1);
for (int __i = 1; __i <= __max_iter; ++__i)
{
__fact *= -__x / _Tp(__i);
_Tp __del;
if ( __i != __nm1 )
__del = -__fact / _Tp(__i - __nm1);
else
{
_Tp __psi = -__numeric_constants<_Tp>::gamma_e();
for (int __ii = 1; __ii <= __nm1; ++__ii)
__psi += _Tp(1) / _Tp(__ii);
__del = __fact * (__psi - std::log(__x));
}
__ans += __del;
if (std::abs(__del) < __eps * std::abs(__ans))
return __ans;
}
std::__throw_runtime_error(__N("Series summation failed "
"in __expint_En_series."));
}
 
 
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* by continued fractions.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_En_cont_frac(unsigned int __n, _Tp __x)
{
const unsigned int __max_iter = 100;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __fp_min = std::numeric_limits<_Tp>::min();
const int __nm1 = __n - 1;
_Tp __b = __x + _Tp(__n);
_Tp __c = _Tp(1) / __fp_min;
_Tp __d = _Tp(1) / __b;
_Tp __h = __d;
for ( unsigned int __i = 1; __i <= __max_iter; ++__i )
{
_Tp __a = -_Tp(__i * (__nm1 + __i));
__b += _Tp(2);
__d = _Tp(1) / (__a * __d + __b);
__c = __b + __a / __c;
const _Tp __del = __c * __d;
__h *= __del;
if (std::abs(__del - _Tp(1)) < __eps)
{
const _Tp __ans = __h * std::exp(-__x);
return __ans;
}
}
std::__throw_runtime_error(__N("Continued fraction failed "
"in __expint_En_cont_frac."));
}
 
 
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* by recursion. Use upward recursion for @f$ x < n @f$
* and downward recursion (Miller's algorithm) otherwise.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_En_recursion(unsigned int __n, _Tp __x)
{
_Tp __En;
_Tp __E1 = __expint_E1(__x);
if (__x < _Tp(__n))
{
// Forward recursion is stable only for n < x.
__En = __E1;
for (unsigned int __j = 2; __j < __n; ++__j)
__En = (std::exp(-__x) - __x * __En) / _Tp(__j - 1);
}
else
{
// Backward recursion is stable only for n >= x.
__En = _Tp(1);
const int __N = __n + 20; // TODO: Check this starting number.
_Tp __save = _Tp(0);
for (int __j = __N; __j > 0; --__j)
{
__En = (std::exp(-__x) - __j * __En) / __x;
if (__j == __n)
__save = __En;
}
_Tp __norm = __En / __E1;
__En /= __norm;
}
 
return __En;
}
 
/**
* @brief Return the exponential integral @f$ Ei(x) @f$
* by series summation.
*
* The exponential integral is given by
* \f[
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_Ei_series(_Tp __x)
{
_Tp __term = _Tp(1);
_Tp __sum = _Tp(0);
const unsigned int __max_iter = 1000;
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
__term *= __x / __i;
__sum += __term / __i;
if (__term < std::numeric_limits<_Tp>::epsilon() * __sum)
break;
}
 
return __numeric_constants<_Tp>::__gamma_e() + __sum + std::log(__x);
}
 
 
/**
* @brief Return the exponential integral @f$ Ei(x) @f$
* by asymptotic expansion.
*
* The exponential integral is given by
* \f[
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_Ei_asymp(_Tp __x)
{
_Tp __term = _Tp(1);
_Tp __sum = _Tp(1);
const unsigned int __max_iter = 1000;
for (unsigned int __i = 1; __i < __max_iter; ++__i)
{
_Tp __prev = __term;
__term *= __i / __x;
if (__term < std::numeric_limits<_Tp>::epsilon())
break;
if (__term >= __prev)
break;
__sum += __term;
}
 
return std::exp(__x) * __sum / __x;
}
 
 
/**
* @brief Return the exponential integral @f$ Ei(x) @f$.
*
* The exponential integral is given by
* \f[
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_Ei(_Tp __x)
{
if (__x < _Tp(0))
return -__expint_E1(-__x);
else if (__x < -std::log(std::numeric_limits<_Tp>::epsilon()))
return __expint_Ei_series(__x);
else
return __expint_Ei_asymp(__x);
}
 
 
/**
* @brief Return the exponential integral @f$ E_1(x) @f$.
*
* The exponential integral is given by
* \f[
* E_1(x) = \int_{1}^\infty \frac{e^{-xt}}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_E1(_Tp __x)
{
if (__x < _Tp(0))
return -__expint_Ei(-__x);
else if (__x < _Tp(1))
return __expint_E1_series(__x);
else if (__x < _Tp(100)) // TODO: Find a good asymptotic switch point.
return __expint_En_cont_frac(1, __x);
else
return __expint_E1_asymp(__x);
}
 
 
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* for large argument.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* This is something of an extension.
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_asymp(unsigned int __n, _Tp __x)
{
_Tp __term = _Tp(1);
_Tp __sum = _Tp(1);
for (unsigned int __i = 1; __i <= __n; ++__i)
{
_Tp __prev = __term;
__term *= -(__n - __i + 1) / __x;
if (std::abs(__term) > std::abs(__prev))
break;
__sum += __term;
}
 
return std::exp(-__x) * __sum / __x;
}
 
 
/**
* @brief Return the exponential integral @f$ E_n(x) @f$
* for large order.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
*
* This is something of an extension.
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint_large_n(unsigned int __n, _Tp __x)
{
const _Tp __xpn = __x + __n;
const _Tp __xpn2 = __xpn * __xpn;
_Tp __term = _Tp(1);
_Tp __sum = _Tp(1);
for (unsigned int __i = 1; __i <= __n; ++__i)
{
_Tp __prev = __term;
__term *= (__n - 2 * (__i - 1) * __x) / __xpn2;
if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
break;
__sum += __term;
}
 
return std::exp(-__x) * __sum / __xpn;
}
 
 
/**
* @brief Return the exponential integral @f$ E_n(x) @f$.
*
* The exponential integral is given by
* \f[
* E_n(x) = \int_{1}^\infty \frac{e^{-xt}}{t^n} dt
* \f]
* This is something of an extension.
*
* @param __n The order of the exponential integral function.
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
_Tp
__expint(unsigned int __n, _Tp __x)
{
// Return NaN on NaN input.
if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__n <= 1 && __x == _Tp(0))
return std::numeric_limits<_Tp>::infinity();
else
{
_Tp __E0 = std::exp(__x) / __x;
if (__n == 0)
return __E0;
 
_Tp __E1 = __expint_E1(__x);
if (__n == 1)
return __E1;
 
if (__x == _Tp(0))
return _Tp(1) / static_cast<_Tp>(__n - 1);
 
_Tp __En = __expint_En_recursion(__n, __x);
 
return __En;
}
}
 
 
/**
* @brief Return the exponential integral @f$ Ei(x) @f$.
*
* The exponential integral is given by
* \f[
* Ei(x) = -\int_{-x}^\infty \frac{e^t}{t} dt
* \f]
*
* @param __x The argument of the exponential integral function.
* @return The exponential integral.
*/
template<typename _Tp>
inline _Tp
__expint(_Tp __x)
{
if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else
return __expint_Ei(__x);
}
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
 
#endif // _GLIBCXX_TR1_EXP_INTEGRAL_TCC
/contrib/sdk/sources/libstdc++-v3/include/tr1/fenv.h
0,0 → 1,34
// TR1 fenv.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/fenv.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _TR1_FENV_H
#define _TR1_FENV_H 1
 
#include <tr1/cfenv>
 
#endif
/contrib/sdk/sources/libstdc++-v3/include/tr1/float.h
0,0 → 1,34
// TR1 float.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/float.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _TR1_FLOAT_H
#define _TR1_FLOAT_H 1
 
#include <tr1/cfloat>
 
#endif
/contrib/sdk/sources/libstdc++-v3/include/tr1/functional
0,0 → 1,2308
// TR1 functional header -*- C++ -*-
 
// Copyright (C) 2004-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/functional
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_FUNCTIONAL
#define _GLIBCXX_TR1_FUNCTIONAL 1
 
#pragma GCC system_header
 
#include <bits/c++config.h>
#include <bits/stl_function.h>
 
#include <typeinfo>
#include <new>
#include <tr1/tuple>
#include <tr1/type_traits>
#include <bits/stringfwd.h>
#include <tr1/functional_hash.h>
#include <ext/type_traits.h>
#include <bits/move.h> // for std::__addressof
#if __cplusplus >= 201103L
# include <type_traits> // for integral_constant, true_type, false_type
#endif
 
namespace std _GLIBCXX_VISIBILITY(default)
{
#if __cplusplus >= 201103L
_GLIBCXX_BEGIN_NAMESPACE_VERSION
template<int> struct _Placeholder;
template<typename> class _Bind;
template<typename, typename> class _Bind_result;
_GLIBCXX_END_NAMESPACE_VERSION
#endif
 
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
template<typename _MemberPointer>
class _Mem_fn;
template<typename _Tp, typename _Class>
_Mem_fn<_Tp _Class::*>
mem_fn(_Tp _Class::*);
 
/**
* Actual implementation of _Has_result_type, which uses SFINAE to
* determine if the type _Tp has a publicly-accessible member type
* result_type.
*/
template<typename _Tp>
class _Has_result_type_helper : __sfinae_types
{
template<typename _Up>
struct _Wrap_type
{ };
 
template<typename _Up>
static __one __test(_Wrap_type<typename _Up::result_type>*);
 
template<typename _Up>
static __two __test(...);
 
public:
static const bool value = sizeof(__test<_Tp>(0)) == 1;
};
 
template<typename _Tp>
struct _Has_result_type
: integral_constant<bool,
_Has_result_type_helper<typename remove_cv<_Tp>::type>::value>
{ };
 
/**
*
*/
/// If we have found a result_type, extract it.
template<bool _Has_result_type, typename _Functor>
struct _Maybe_get_result_type
{ };
 
template<typename _Functor>
struct _Maybe_get_result_type<true, _Functor>
{
typedef typename _Functor::result_type result_type;
};
 
/**
* Base class for any function object that has a weak result type, as
* defined in 3.3/3 of TR1.
*/
template<typename _Functor>
struct _Weak_result_type_impl
: _Maybe_get_result_type<_Has_result_type<_Functor>::value, _Functor>
{
};
 
/// Retrieve the result type for a function type.
template<typename _Res, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res(_ArgTypes...)>
{
typedef _Res result_type;
};
 
/// Retrieve the result type for a function reference.
template<typename _Res, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res(&)(_ArgTypes...)>
{
typedef _Res result_type;
};
 
/// Retrieve the result type for a function pointer.
template<typename _Res, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res(*)(_ArgTypes...)>
{
typedef _Res result_type;
};
 
/// Retrieve result type for a member function pointer.
template<typename _Res, typename _Class, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)>
{
typedef _Res result_type;
};
 
/// Retrieve result type for a const member function pointer.
template<typename _Res, typename _Class, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) const>
{
typedef _Res result_type;
};
 
/// Retrieve result type for a volatile member function pointer.
template<typename _Res, typename _Class, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...) volatile>
{
typedef _Res result_type;
};
 
/// Retrieve result type for a const volatile member function pointer.
template<typename _Res, typename _Class, typename... _ArgTypes>
struct _Weak_result_type_impl<_Res (_Class::*)(_ArgTypes...)const volatile>
{
typedef _Res result_type;
};
 
/**
* Strip top-level cv-qualifiers from the function object and let
* _Weak_result_type_impl perform the real work.
*/
template<typename _Functor>
struct _Weak_result_type
: _Weak_result_type_impl<typename remove_cv<_Functor>::type>
{
};
 
template<typename _Signature>
class result_of;
 
/**
* Actual implementation of result_of. When _Has_result_type is
* true, gets its result from _Weak_result_type. Otherwise, uses
* the function object's member template result to extract the
* result type.
*/
template<bool _Has_result_type, typename _Signature>
struct _Result_of_impl;
 
// Handle member data pointers using _Mem_fn's logic
template<typename _Res, typename _Class, typename _T1>
struct _Result_of_impl<false, _Res _Class::*(_T1)>
{
typedef typename _Mem_fn<_Res _Class::*>
::template _Result_type<_T1>::type type;
};
 
/**
* Determine whether we can determine a result type from @c Functor
* alone.
*/
template<typename _Functor, typename... _ArgTypes>
class result_of<_Functor(_ArgTypes...)>
: public _Result_of_impl<
_Has_result_type<_Weak_result_type<_Functor> >::value,
_Functor(_ArgTypes...)>
{
};
 
/// We already know the result type for @c Functor; use it.
template<typename _Functor, typename... _ArgTypes>
struct _Result_of_impl<true, _Functor(_ArgTypes...)>
{
typedef typename _Weak_result_type<_Functor>::result_type type;
};
 
/**
* We need to compute the result type for this invocation the hard
* way.
*/
template<typename _Functor, typename... _ArgTypes>
struct _Result_of_impl<false, _Functor(_ArgTypes...)>
{
typedef typename _Functor
::template result<_Functor(_ArgTypes...)>::type type;
};
 
/**
* It is unsafe to access ::result when there are zero arguments, so we
* return @c void instead.
*/
template<typename _Functor>
struct _Result_of_impl<false, _Functor()>
{
typedef void type;
};
 
/// Determines if the type _Tp derives from unary_function.
template<typename _Tp>
struct _Derives_from_unary_function : __sfinae_types
{
private:
template<typename _T1, typename _Res>
static __one __test(const volatile unary_function<_T1, _Res>*);
 
// It's tempting to change "..." to const volatile void*, but
// that fails when _Tp is a function type.
static __two __test(...);
 
public:
static const bool value = sizeof(__test((_Tp*)0)) == 1;
};
 
/// Determines if the type _Tp derives from binary_function.
template<typename _Tp>
struct _Derives_from_binary_function : __sfinae_types
{
private:
template<typename _T1, typename _T2, typename _Res>
static __one __test(const volatile binary_function<_T1, _T2, _Res>*);
 
// It's tempting to change "..." to const volatile void*, but
// that fails when _Tp is a function type.
static __two __test(...);
 
public:
static const bool value = sizeof(__test((_Tp*)0)) == 1;
};
 
/// Turns a function type into a function pointer type
template<typename _Tp, bool _IsFunctionType = is_function<_Tp>::value>
struct _Function_to_function_pointer
{
typedef _Tp type;
};
 
template<typename _Tp>
struct _Function_to_function_pointer<_Tp, true>
{
typedef _Tp* type;
};
 
/**
* Invoke a function object, which may be either a member pointer or a
* function object. The first parameter will tell which.
*/
template<typename _Functor, typename... _Args>
inline
typename __gnu_cxx::__enable_if<
(!is_member_pointer<_Functor>::value
&& !is_function<_Functor>::value
&& !is_function<typename remove_pointer<_Functor>::type>::value),
typename result_of<_Functor(_Args...)>::type
>::__type
__invoke(_Functor& __f, _Args&... __args)
{
return __f(__args...);
}
 
template<typename _Functor, typename... _Args>
inline
typename __gnu_cxx::__enable_if<
(is_member_pointer<_Functor>::value
&& !is_function<_Functor>::value
&& !is_function<typename remove_pointer<_Functor>::type>::value),
typename result_of<_Functor(_Args...)>::type
>::__type
__invoke(_Functor& __f, _Args&... __args)
{
return mem_fn(__f)(__args...);
}
 
// To pick up function references (that will become function pointers)
template<typename _Functor, typename... _Args>
inline
typename __gnu_cxx::__enable_if<
(is_pointer<_Functor>::value
&& is_function<typename remove_pointer<_Functor>::type>::value),
typename result_of<_Functor(_Args...)>::type
>::__type
__invoke(_Functor __f, _Args&... __args)
{
return __f(__args...);
}
 
/**
* Knowing which of unary_function and binary_function _Tp derives
* from, derives from the same and ensures that reference_wrapper
* will have a weak result type. See cases below.
*/
template<bool _Unary, bool _Binary, typename _Tp>
struct _Reference_wrapper_base_impl;
 
// Not a unary_function or binary_function, so try a weak result type.
template<typename _Tp>
struct _Reference_wrapper_base_impl<false, false, _Tp>
: _Weak_result_type<_Tp>
{ };
 
// unary_function but not binary_function
template<typename _Tp>
struct _Reference_wrapper_base_impl<true, false, _Tp>
: unary_function<typename _Tp::argument_type,
typename _Tp::result_type>
{ };
 
// binary_function but not unary_function
template<typename _Tp>
struct _Reference_wrapper_base_impl<false, true, _Tp>
: binary_function<typename _Tp::first_argument_type,
typename _Tp::second_argument_type,
typename _Tp::result_type>
{ };
 
// Both unary_function and binary_function. Import result_type to
// avoid conflicts.
template<typename _Tp>
struct _Reference_wrapper_base_impl<true, true, _Tp>
: unary_function<typename _Tp::argument_type,
typename _Tp::result_type>,
binary_function<typename _Tp::first_argument_type,
typename _Tp::second_argument_type,
typename _Tp::result_type>
{
typedef typename _Tp::result_type result_type;
};
 
/**
* Derives from unary_function or binary_function when it
* can. Specializations handle all of the easy cases. The primary
* template determines what to do with a class type, which may
* derive from both unary_function and binary_function.
*/
template<typename _Tp>
struct _Reference_wrapper_base
: _Reference_wrapper_base_impl<
_Derives_from_unary_function<_Tp>::value,
_Derives_from_binary_function<_Tp>::value,
_Tp>
{ };
 
// - a function type (unary)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res(_T1)>
: unary_function<_T1, _Res>
{ };
 
// - a function type (binary)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res(_T1, _T2)>
: binary_function<_T1, _T2, _Res>
{ };
 
// - a function pointer type (unary)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res(*)(_T1)>
: unary_function<_T1, _Res>
{ };
 
// - a function pointer type (binary)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
: binary_function<_T1, _T2, _Res>
{ };
 
// - a pointer to member function type (unary, no qualifiers)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)()>
: unary_function<_T1*, _Res>
{ };
 
// - a pointer to member function type (binary, no qualifiers)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
: binary_function<_T1*, _T2, _Res>
{ };
 
// - a pointer to member function type (unary, const)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)() const>
: unary_function<const _T1*, _Res>
{ };
 
// - a pointer to member function type (binary, const)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
: binary_function<const _T1*, _T2, _Res>
{ };
 
// - a pointer to member function type (unary, volatile)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
: unary_function<volatile _T1*, _Res>
{ };
 
// - a pointer to member function type (binary, volatile)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
: binary_function<volatile _T1*, _T2, _Res>
{ };
 
// - a pointer to member function type (unary, const volatile)
template<typename _Res, typename _T1>
struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
: unary_function<const volatile _T1*, _Res>
{ };
 
// - a pointer to member function type (binary, const volatile)
template<typename _Res, typename _T1, typename _T2>
struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
: binary_function<const volatile _T1*, _T2, _Res>
{ };
 
/// reference_wrapper
template<typename _Tp>
class reference_wrapper
: public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
{
// If _Tp is a function type, we can't form result_of<_Tp(...)>,
// so turn it into a function pointer type.
typedef typename _Function_to_function_pointer<_Tp>::type
_M_func_type;
 
_Tp* _M_data;
public:
typedef _Tp type;
 
explicit
reference_wrapper(_Tp& __indata)
: _M_data(std::__addressof(__indata))
{ }
 
reference_wrapper(const reference_wrapper<_Tp>& __inref):
_M_data(__inref._M_data)
{ }
 
reference_wrapper&
operator=(const reference_wrapper<_Tp>& __inref)
{
_M_data = __inref._M_data;
return *this;
}
 
operator _Tp&() const
{ return this->get(); }
 
_Tp&
get() const
{ return *_M_data; }
 
template<typename... _Args>
typename result_of<_M_func_type(_Args...)>::type
operator()(_Args&... __args) const
{
return __invoke(get(), __args...);
}
};
 
 
// Denotes a reference should be taken to a variable.
template<typename _Tp>
inline reference_wrapper<_Tp>
ref(_Tp& __t)
{ return reference_wrapper<_Tp>(__t); }
 
// Denotes a const reference should be taken to a variable.
template<typename _Tp>
inline reference_wrapper<const _Tp>
cref(const _Tp& __t)
{ return reference_wrapper<const _Tp>(__t); }
 
template<typename _Tp>
inline reference_wrapper<_Tp>
ref(reference_wrapper<_Tp> __t)
{ return ref(__t.get()); }
 
template<typename _Tp>
inline reference_wrapper<const _Tp>
cref(reference_wrapper<_Tp> __t)
{ return cref(__t.get()); }
 
template<typename _Tp, bool>
struct _Mem_fn_const_or_non
{
typedef const _Tp& type;
};
 
template<typename _Tp>
struct _Mem_fn_const_or_non<_Tp, false>
{
typedef _Tp& type;
};
 
/**
* Derives from @c unary_function or @c binary_function, or perhaps
* nothing, depending on the number of arguments provided. The
* primary template is the basis case, which derives nothing.
*/
template<typename _Res, typename... _ArgTypes>
struct _Maybe_unary_or_binary_function { };
 
/// Derives from @c unary_function, as appropriate.
template<typename _Res, typename _T1>
struct _Maybe_unary_or_binary_function<_Res, _T1>
: std::unary_function<_T1, _Res> { };
 
/// Derives from @c binary_function, as appropriate.
template<typename _Res, typename _T1, typename _T2>
struct _Maybe_unary_or_binary_function<_Res, _T1, _T2>
: std::binary_function<_T1, _T2, _Res> { };
 
/// Implementation of @c mem_fn for member function pointers.
template<typename _Res, typename _Class, typename... _ArgTypes>
class _Mem_fn<_Res (_Class::*)(_ArgTypes...)>
: public _Maybe_unary_or_binary_function<_Res, _Class*, _ArgTypes...>
{
typedef _Res (_Class::*_Functor)(_ArgTypes...);
 
template<typename _Tp>
_Res
_M_call(_Tp& __object, const volatile _Class *,
_ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
 
template<typename _Tp>
_Res
_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
{ return ((*__ptr).*__pmf)(__args...); }
 
public:
typedef _Res result_type;
 
explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
 
// Handle objects
_Res
operator()(_Class& __object, _ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
 
// Handle pointers
_Res
operator()(_Class* __object, _ArgTypes... __args) const
{ return (__object->*__pmf)(__args...); }
 
// Handle smart pointers, references and pointers to derived
template<typename _Tp>
_Res
operator()(_Tp& __object, _ArgTypes... __args) const
{ return _M_call(__object, &__object, __args...); }
 
private:
_Functor __pmf;
};
 
/// Implementation of @c mem_fn for const member function pointers.
template<typename _Res, typename _Class, typename... _ArgTypes>
class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const>
: public _Maybe_unary_or_binary_function<_Res, const _Class*,
_ArgTypes...>
{
typedef _Res (_Class::*_Functor)(_ArgTypes...) const;
 
template<typename _Tp>
_Res
_M_call(_Tp& __object, const volatile _Class *,
_ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
 
template<typename _Tp>
_Res
_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
{ return ((*__ptr).*__pmf)(__args...); }
 
public:
typedef _Res result_type;
 
explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
 
// Handle objects
_Res
operator()(const _Class& __object, _ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
 
// Handle pointers
_Res
operator()(const _Class* __object, _ArgTypes... __args) const
{ return (__object->*__pmf)(__args...); }
 
// Handle smart pointers, references and pointers to derived
template<typename _Tp>
_Res operator()(_Tp& __object, _ArgTypes... __args) const
{ return _M_call(__object, &__object, __args...); }
 
private:
_Functor __pmf;
};
 
/// Implementation of @c mem_fn for volatile member function pointers.
template<typename _Res, typename _Class, typename... _ArgTypes>
class _Mem_fn<_Res (_Class::*)(_ArgTypes...) volatile>
: public _Maybe_unary_or_binary_function<_Res, volatile _Class*,
_ArgTypes...>
{
typedef _Res (_Class::*_Functor)(_ArgTypes...) volatile;
 
template<typename _Tp>
_Res
_M_call(_Tp& __object, const volatile _Class *,
_ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
 
template<typename _Tp>
_Res
_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
{ return ((*__ptr).*__pmf)(__args...); }
 
public:
typedef _Res result_type;
 
explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
 
// Handle objects
_Res
operator()(volatile _Class& __object, _ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
 
// Handle pointers
_Res
operator()(volatile _Class* __object, _ArgTypes... __args) const
{ return (__object->*__pmf)(__args...); }
 
// Handle smart pointers, references and pointers to derived
template<typename _Tp>
_Res
operator()(_Tp& __object, _ArgTypes... __args) const
{ return _M_call(__object, &__object, __args...); }
 
private:
_Functor __pmf;
};
 
/// Implementation of @c mem_fn for const volatile member function pointers.
template<typename _Res, typename _Class, typename... _ArgTypes>
class _Mem_fn<_Res (_Class::*)(_ArgTypes...) const volatile>
: public _Maybe_unary_or_binary_function<_Res, const volatile _Class*,
_ArgTypes...>
{
typedef _Res (_Class::*_Functor)(_ArgTypes...) const volatile;
 
template<typename _Tp>
_Res
_M_call(_Tp& __object, const volatile _Class *,
_ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
 
template<typename _Tp>
_Res
_M_call(_Tp& __ptr, const volatile void *, _ArgTypes... __args) const
{ return ((*__ptr).*__pmf)(__args...); }
 
public:
typedef _Res result_type;
 
explicit _Mem_fn(_Functor __pmf) : __pmf(__pmf) { }
 
// Handle objects
_Res
operator()(const volatile _Class& __object, _ArgTypes... __args) const
{ return (__object.*__pmf)(__args...); }
 
// Handle pointers
_Res
operator()(const volatile _Class* __object, _ArgTypes... __args) const
{ return (__object->*__pmf)(__args...); }
 
// Handle smart pointers, references and pointers to derived
template<typename _Tp>
_Res operator()(_Tp& __object, _ArgTypes... __args) const
{ return _M_call(__object, &__object, __args...); }
 
private:
_Functor __pmf;
};
 
 
template<typename _Res, typename _Class>
class _Mem_fn<_Res _Class::*>
{
// This bit of genius is due to Peter Dimov, improved slightly by
// Douglas Gregor.
template<typename _Tp>
_Res&
_M_call(_Tp& __object, _Class *) const
{ return __object.*__pm; }
 
template<typename _Tp, typename _Up>
_Res&
_M_call(_Tp& __object, _Up * const *) const
{ return (*__object).*__pm; }
 
template<typename _Tp, typename _Up>
const _Res&
_M_call(_Tp& __object, const _Up * const *) const
{ return (*__object).*__pm; }
 
template<typename _Tp>
const _Res&
_M_call(_Tp& __object, const _Class *) const
{ return __object.*__pm; }
 
template<typename _Tp>
const _Res&
_M_call(_Tp& __ptr, const volatile void*) const
{ return (*__ptr).*__pm; }
 
template<typename _Tp> static _Tp& __get_ref();
 
template<typename _Tp>
static __sfinae_types::__one __check_const(_Tp&, _Class*);
template<typename _Tp, typename _Up>
static __sfinae_types::__one __check_const(_Tp&, _Up * const *);
template<typename _Tp, typename _Up>
static __sfinae_types::__two __check_const(_Tp&, const _Up * const *);
template<typename _Tp>
static __sfinae_types::__two __check_const(_Tp&, const _Class*);
template<typename _Tp>
static __sfinae_types::__two __check_const(_Tp&, const volatile void*);
 
public:
template<typename _Tp>
struct _Result_type
: _Mem_fn_const_or_non<_Res,
(sizeof(__sfinae_types::__two)
== sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))>
{ };
 
template<typename _Signature>
struct result;
 
template<typename _CVMem, typename _Tp>
struct result<_CVMem(_Tp)>
: public _Result_type<_Tp> { };
 
template<typename _CVMem, typename _Tp>
struct result<_CVMem(_Tp&)>
: public _Result_type<_Tp> { };
 
explicit
_Mem_fn(_Res _Class::*__pm) : __pm(__pm) { }
 
// Handle objects
_Res&
operator()(_Class& __object) const
{ return __object.*__pm; }
 
const _Res&
operator()(const _Class& __object) const
{ return __object.*__pm; }
 
// Handle pointers
_Res&
operator()(_Class* __object) const
{ return __object->*__pm; }
 
const _Res&
operator()(const _Class* __object) const
{ return __object->*__pm; }
 
// Handle smart pointers and derived
template<typename _Tp>
typename _Result_type<_Tp>::type
operator()(_Tp& __unknown) const
{ return _M_call(__unknown, &__unknown); }
 
private:
_Res _Class::*__pm;
};
 
/**
* @brief Returns a function object that forwards to the member
* pointer @a pm.
*/
template<typename _Tp, typename _Class>
inline _Mem_fn<_Tp _Class::*>
mem_fn(_Tp _Class::* __pm)
{
return _Mem_fn<_Tp _Class::*>(__pm);
}
 
/**
* @brief Determines if the given type _Tp is a function object
* should be treated as a subexpression when evaluating calls to
* function objects returned by bind(). [TR1 3.6.1]
*/
template<typename _Tp>
struct is_bind_expression
{ static const bool value = false; };
 
template<typename _Tp>
const bool is_bind_expression<_Tp>::value;
 
/**
* @brief Determines if the given type _Tp is a placeholder in a
* bind() expression and, if so, which placeholder it is. [TR1 3.6.2]
*/
template<typename _Tp>
struct is_placeholder
{ static const int value = 0; };
 
template<typename _Tp>
const int is_placeholder<_Tp>::value;
 
/// The type of placeholder objects defined by libstdc++.
template<int _Num> struct _Placeholder { };
 
_GLIBCXX_END_NAMESPACE_VERSION
 
/** @namespace std::tr1::placeholders
* @brief Sub-namespace for tr1/functional.
*/
namespace placeholders
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/* Define a large number of placeholders. There is no way to
* simplify this with variadic templates, because we're introducing
* unique names for each.
*/
namespace
{
_Placeholder<1> _1;
_Placeholder<2> _2;
_Placeholder<3> _3;
_Placeholder<4> _4;
_Placeholder<5> _5;
_Placeholder<6> _6;
_Placeholder<7> _7;
_Placeholder<8> _8;
_Placeholder<9> _9;
_Placeholder<10> _10;
_Placeholder<11> _11;
_Placeholder<12> _12;
_Placeholder<13> _13;
_Placeholder<14> _14;
_Placeholder<15> _15;
_Placeholder<16> _16;
_Placeholder<17> _17;
_Placeholder<18> _18;
_Placeholder<19> _19;
_Placeholder<20> _20;
_Placeholder<21> _21;
_Placeholder<22> _22;
_Placeholder<23> _23;
_Placeholder<24> _24;
_Placeholder<25> _25;
_Placeholder<26> _26;
_Placeholder<27> _27;
_Placeholder<28> _28;
_Placeholder<29> _29;
}
_GLIBCXX_END_NAMESPACE_VERSION
}
 
_GLIBCXX_BEGIN_NAMESPACE_VERSION
/**
* Partial specialization of is_placeholder that provides the placeholder
* number for the placeholder objects defined by libstdc++.
*/
template<int _Num>
struct is_placeholder<_Placeholder<_Num> >
{ static const int value = _Num; };
 
template<int _Num>
const int is_placeholder<_Placeholder<_Num> >::value;
 
#if __cplusplus >= 201103L
template<int _Num>
struct is_placeholder<std::_Placeholder<_Num>>
: std::integral_constant<int, _Num>
{ };
 
template<int _Num>
struct is_placeholder<const std::_Placeholder<_Num>>
: std::integral_constant<int, _Num>
{ };
#endif
 
/**
* Stores a tuple of indices. Used by bind() to extract the elements
* in a tuple.
*/
template<int... _Indexes>
struct _Index_tuple { };
 
/// Builds an _Index_tuple<0, 1, 2, ..., _Num-1>.
template<std::size_t _Num, typename _Tuple = _Index_tuple<> >
struct _Build_index_tuple;
template<std::size_t _Num, int... _Indexes>
struct _Build_index_tuple<_Num, _Index_tuple<_Indexes...> >
: _Build_index_tuple<_Num - 1,
_Index_tuple<_Indexes..., sizeof...(_Indexes)> >
{
};
 
template<int... _Indexes>
struct _Build_index_tuple<0, _Index_tuple<_Indexes...> >
{
typedef _Index_tuple<_Indexes...> __type;
};
 
/**
* Used by _Safe_tuple_element to indicate that there is no tuple
* element at this position.
*/
struct _No_tuple_element;
 
/**
* Implementation helper for _Safe_tuple_element. This primary
* template handles the case where it is safe to use @c
* tuple_element.
*/
template<int __i, typename _Tuple, bool _IsSafe>
struct _Safe_tuple_element_impl
: tuple_element<__i, _Tuple> { };
 
/**
* Implementation helper for _Safe_tuple_element. This partial
* specialization handles the case where it is not safe to use @c
* tuple_element. We just return @c _No_tuple_element.
*/
template<int __i, typename _Tuple>
struct _Safe_tuple_element_impl<__i, _Tuple, false>
{
typedef _No_tuple_element type;
};
 
/**
* Like tuple_element, but returns @c _No_tuple_element when
* tuple_element would return an error.
*/
template<int __i, typename _Tuple>
struct _Safe_tuple_element
: _Safe_tuple_element_impl<__i, _Tuple,
(__i >= 0 && __i < tuple_size<_Tuple>::value)>
{
};
 
/**
* Maps an argument to bind() into an actual argument to the bound
* function object [TR1 3.6.3/5]. Only the first parameter should
* be specified: the rest are used to determine among the various
* implementations. Note that, although this class is a function
* object, it isn't entirely normal because it takes only two
* parameters regardless of the number of parameters passed to the
* bind expression. The first parameter is the bound argument and
* the second parameter is a tuple containing references to the
* rest of the arguments.
*/
template<typename _Arg,
bool _IsBindExp = is_bind_expression<_Arg>::value,
bool _IsPlaceholder = (is_placeholder<_Arg>::value > 0)>
class _Mu;
 
/**
* If the argument is reference_wrapper<_Tp>, returns the
* underlying reference. [TR1 3.6.3/5 bullet 1]
*/
template<typename _Tp>
class _Mu<reference_wrapper<_Tp>, false, false>
{
public:
typedef _Tp& result_type;
 
/* Note: This won't actually work for const volatile
* reference_wrappers, because reference_wrapper::get() is const
* but not volatile-qualified. This might be a defect in the TR.
*/
template<typename _CVRef, typename _Tuple>
result_type
operator()(_CVRef& __arg, const _Tuple&) const volatile
{ return __arg.get(); }
};
 
/**
* If the argument is a bind expression, we invoke the underlying
* function object with the same cv-qualifiers as we are given and
* pass along all of our arguments (unwrapped). [TR1 3.6.3/5 bullet 2]
*/
template<typename _Arg>
class _Mu<_Arg, true, false>
{
public:
template<typename _Signature> class result;
 
// Determine the result type when we pass the arguments along. This
// involves passing along the cv-qualifiers placed on _Mu and
// unwrapping the argument bundle.
template<typename _CVMu, typename _CVArg, typename... _Args>
class result<_CVMu(_CVArg, tuple<_Args...>)>
: public result_of<_CVArg(_Args...)> { };
 
template<typename _CVArg, typename... _Args>
typename result_of<_CVArg(_Args...)>::type
operator()(_CVArg& __arg,
const tuple<_Args...>& __tuple) const volatile
{
// Construct an index tuple and forward to __call
typedef typename _Build_index_tuple<sizeof...(_Args)>::__type
_Indexes;
return this->__call(__arg, __tuple, _Indexes());
}
 
private:
// Invokes the underlying function object __arg by unpacking all
// of the arguments in the tuple.
template<typename _CVArg, typename... _Args, int... _Indexes>
typename result_of<_CVArg(_Args...)>::type
__call(_CVArg& __arg, const tuple<_Args...>& __tuple,
const _Index_tuple<_Indexes...>&) const volatile
{
return __arg(tr1::get<_Indexes>(__tuple)...);
}
};
 
/**
* If the argument is a placeholder for the Nth argument, returns
* a reference to the Nth argument to the bind function object.
* [TR1 3.6.3/5 bullet 3]
*/
template<typename _Arg>
class _Mu<_Arg, false, true>
{
public:
template<typename _Signature> class result;
 
template<typename _CVMu, typename _CVArg, typename _Tuple>
class result<_CVMu(_CVArg, _Tuple)>
{
// Add a reference, if it hasn't already been done for us.
// This allows us to be a little bit sloppy in constructing
// the tuple that we pass to result_of<...>.
typedef typename _Safe_tuple_element<(is_placeholder<_Arg>::value
- 1), _Tuple>::type
__base_type;
 
public:
typedef typename add_reference<__base_type>::type type;
};
 
template<typename _Tuple>
typename result<_Mu(_Arg, _Tuple)>::type
operator()(const volatile _Arg&, const _Tuple& __tuple) const volatile
{
return ::std::tr1::get<(is_placeholder<_Arg>::value - 1)>(__tuple);
}
};
 
/**
* If the argument is just a value, returns a reference to that
* value. The cv-qualifiers on the reference are the same as the
* cv-qualifiers on the _Mu object. [TR1 3.6.3/5 bullet 4]
*/
template<typename _Arg>
class _Mu<_Arg, false, false>
{
public:
template<typename _Signature> struct result;
 
template<typename _CVMu, typename _CVArg, typename _Tuple>
struct result<_CVMu(_CVArg, _Tuple)>
{
typedef typename add_reference<_CVArg>::type type;
};
 
// Pick up the cv-qualifiers of the argument
template<typename _CVArg, typename _Tuple>
_CVArg&
operator()(_CVArg& __arg, const _Tuple&) const volatile
{ return __arg; }
};
 
/**
* Maps member pointers into instances of _Mem_fn but leaves all
* other function objects untouched. Used by tr1::bind(). The
* primary template handles the non--member-pointer case.
*/
template<typename _Tp>
struct _Maybe_wrap_member_pointer
{
typedef _Tp type;
static const _Tp&
__do_wrap(const _Tp& __x)
{ return __x; }
};
 
/**
* Maps member pointers into instances of _Mem_fn but leaves all
* other function objects untouched. Used by tr1::bind(). This
* partial specialization handles the member pointer case.
*/
template<typename _Tp, typename _Class>
struct _Maybe_wrap_member_pointer<_Tp _Class::*>
{
typedef _Mem_fn<_Tp _Class::*> type;
static type
__do_wrap(_Tp _Class::* __pm)
{ return type(__pm); }
};
 
/// Type of the function object returned from bind().
template<typename _Signature>
struct _Bind;
 
template<typename _Functor, typename... _Bound_args>
class _Bind<_Functor(_Bound_args...)>
: public _Weak_result_type<_Functor>
{
typedef _Bind __self_type;
typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
_Bound_indexes;
 
_Functor _M_f;
tuple<_Bound_args...> _M_bound_args;
 
// Call unqualified
template<typename... _Args, int... _Indexes>
typename result_of<
_Functor(typename result_of<_Mu<_Bound_args>
(_Bound_args, tuple<_Args...>)>::type...)
>::type
__call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
 
// Call as const
template<typename... _Args, int... _Indexes>
typename result_of<
const _Functor(typename result_of<_Mu<_Bound_args>
(const _Bound_args, tuple<_Args...>)
>::type...)>::type
__call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
 
// Call as volatile
template<typename... _Args, int... _Indexes>
typename result_of<
volatile _Functor(typename result_of<_Mu<_Bound_args>
(volatile _Bound_args, tuple<_Args...>)
>::type...)>::type
__call(const tuple<_Args...>& __args,
_Index_tuple<_Indexes...>) volatile
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
 
// Call as const volatile
template<typename... _Args, int... _Indexes>
typename result_of<
const volatile _Functor(typename result_of<_Mu<_Bound_args>
(const volatile _Bound_args,
tuple<_Args...>)
>::type...)>::type
__call(const tuple<_Args...>& __args,
_Index_tuple<_Indexes...>) const volatile
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
 
public:
explicit _Bind(_Functor __f, _Bound_args... __bound_args)
: _M_f(__f), _M_bound_args(__bound_args...) { }
 
// Call unqualified
template<typename... _Args>
typename result_of<
_Functor(typename result_of<_Mu<_Bound_args>
(_Bound_args, tuple<_Args...>)>::type...)
>::type
operator()(_Args&... __args)
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
 
// Call as const
template<typename... _Args>
typename result_of<
const _Functor(typename result_of<_Mu<_Bound_args>
(const _Bound_args, tuple<_Args...>)>::type...)
>::type
operator()(_Args&... __args) const
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
 
 
// Call as volatile
template<typename... _Args>
typename result_of<
volatile _Functor(typename result_of<_Mu<_Bound_args>
(volatile _Bound_args, tuple<_Args...>)>::type...)
>::type
operator()(_Args&... __args) volatile
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
 
 
// Call as const volatile
template<typename... _Args>
typename result_of<
const volatile _Functor(typename result_of<_Mu<_Bound_args>
(const volatile _Bound_args,
tuple<_Args...>)>::type...)
>::type
operator()(_Args&... __args) const volatile
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
};
 
/// Type of the function object returned from bind<R>().
template<typename _Result, typename _Signature>
struct _Bind_result;
 
template<typename _Result, typename _Functor, typename... _Bound_args>
class _Bind_result<_Result, _Functor(_Bound_args...)>
{
typedef _Bind_result __self_type;
typedef typename _Build_index_tuple<sizeof...(_Bound_args)>::__type
_Bound_indexes;
 
_Functor _M_f;
tuple<_Bound_args...> _M_bound_args;
 
// Call unqualified
template<typename... _Args, int... _Indexes>
_Result
__call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>)
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
 
// Call as const
template<typename... _Args, int... _Indexes>
_Result
__call(const tuple<_Args...>& __args, _Index_tuple<_Indexes...>) const
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
 
// Call as volatile
template<typename... _Args, int... _Indexes>
_Result
__call(const tuple<_Args...>& __args,
_Index_tuple<_Indexes...>) volatile
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
 
// Call as const volatile
template<typename... _Args, int... _Indexes>
_Result
__call(const tuple<_Args...>& __args,
_Index_tuple<_Indexes...>) const volatile
{
return _M_f(_Mu<_Bound_args>()
(tr1::get<_Indexes>(_M_bound_args), __args)...);
}
 
public:
typedef _Result result_type;
 
explicit
_Bind_result(_Functor __f, _Bound_args... __bound_args)
: _M_f(__f), _M_bound_args(__bound_args...) { }
 
// Call unqualified
template<typename... _Args>
result_type
operator()(_Args&... __args)
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
 
// Call as const
template<typename... _Args>
result_type
operator()(_Args&... __args) const
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
 
// Call as volatile
template<typename... _Args>
result_type
operator()(_Args&... __args) volatile
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
 
// Call as const volatile
template<typename... _Args>
result_type
operator()(_Args&... __args) const volatile
{
return this->__call(tr1::tie(__args...), _Bound_indexes());
}
};
 
/// Class template _Bind is always a bind expression.
template<typename _Signature>
struct is_bind_expression<_Bind<_Signature> >
{ static const bool value = true; };
 
template<typename _Signature>
const bool is_bind_expression<_Bind<_Signature> >::value;
 
/// Class template _Bind is always a bind expression.
template<typename _Signature>
struct is_bind_expression<const _Bind<_Signature> >
{ static const bool value = true; };
 
template<typename _Signature>
const bool is_bind_expression<const _Bind<_Signature> >::value;
 
/// Class template _Bind is always a bind expression.
template<typename _Signature>
struct is_bind_expression<volatile _Bind<_Signature> >
{ static const bool value = true; };
 
template<typename _Signature>
const bool is_bind_expression<volatile _Bind<_Signature> >::value;
 
/// Class template _Bind is always a bind expression.
template<typename _Signature>
struct is_bind_expression<const volatile _Bind<_Signature> >
{ static const bool value = true; };
 
template<typename _Signature>
const bool is_bind_expression<const volatile _Bind<_Signature> >::value;
 
/// Class template _Bind_result is always a bind expression.
template<typename _Result, typename _Signature>
struct is_bind_expression<_Bind_result<_Result, _Signature> >
{ static const bool value = true; };
 
template<typename _Result, typename _Signature>
const bool is_bind_expression<_Bind_result<_Result, _Signature> >::value;
 
/// Class template _Bind_result is always a bind expression.
template<typename _Result, typename _Signature>
struct is_bind_expression<const _Bind_result<_Result, _Signature> >
{ static const bool value = true; };
 
template<typename _Result, typename _Signature>
const bool
is_bind_expression<const _Bind_result<_Result, _Signature> >::value;
 
/// Class template _Bind_result is always a bind expression.
template<typename _Result, typename _Signature>
struct is_bind_expression<volatile _Bind_result<_Result, _Signature> >
{ static const bool value = true; };
 
template<typename _Result, typename _Signature>
const bool
is_bind_expression<volatile _Bind_result<_Result, _Signature> >::value;
 
/// Class template _Bind_result is always a bind expression.
template<typename _Result, typename _Signature>
struct
is_bind_expression<const volatile _Bind_result<_Result, _Signature> >
{ static const bool value = true; };
 
template<typename _Result, typename _Signature>
const bool
is_bind_expression<const volatile _Bind_result<_Result,
_Signature> >::value;
 
#if __cplusplus >= 201103L
template<typename _Signature>
struct is_bind_expression<std::_Bind<_Signature>>
: true_type { };
 
template<typename _Signature>
struct is_bind_expression<const std::_Bind<_Signature>>
: true_type { };
 
template<typename _Signature>
struct is_bind_expression<volatile std::_Bind<_Signature>>
: true_type { };
 
template<typename _Signature>
struct is_bind_expression<const volatile std::_Bind<_Signature>>
: true_type { };
 
template<typename _Result, typename _Signature>
struct is_bind_expression<std::_Bind_result<_Result, _Signature>>
: true_type { };
 
template<typename _Result, typename _Signature>
struct is_bind_expression<const std::_Bind_result<_Result, _Signature>>
: true_type { };
 
template<typename _Result, typename _Signature>
struct is_bind_expression<volatile std::_Bind_result<_Result, _Signature>>
: true_type { };
 
template<typename _Result, typename _Signature>
struct is_bind_expression<const volatile std::_Bind_result<_Result,
_Signature>>
: true_type { };
#endif
 
/// bind
template<typename _Functor, typename... _ArgTypes>
inline
_Bind<typename _Maybe_wrap_member_pointer<_Functor>::type(_ArgTypes...)>
bind(_Functor __f, _ArgTypes... __args)
{
typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
typedef typename __maybe_type::type __functor_type;
typedef _Bind<__functor_type(_ArgTypes...)> __result_type;
return __result_type(__maybe_type::__do_wrap(__f), __args...);
}
 
template<typename _Result, typename _Functor, typename... _ArgTypes>
inline
_Bind_result<_Result,
typename _Maybe_wrap_member_pointer<_Functor>::type
(_ArgTypes...)>
bind(_Functor __f, _ArgTypes... __args)
{
typedef _Maybe_wrap_member_pointer<_Functor> __maybe_type;
typedef typename __maybe_type::type __functor_type;
typedef _Bind_result<_Result, __functor_type(_ArgTypes...)>
__result_type;
return __result_type(__maybe_type::__do_wrap(__f), __args...);
}
 
/**
* @brief Exception class thrown when class template function's
* operator() is called with an empty target.
* @ingroup exceptions
*/
class bad_function_call : public std::exception { };
 
/**
* The integral constant expression 0 can be converted into a
* pointer to this type. It is used by the function template to
* accept NULL pointers.
*/
struct _M_clear_type;
 
/**
* Trait identifying @a location-invariant types, meaning that the
* address of the object (or any of its members) will not escape.
* Also implies a trivial copy constructor and assignment operator.
*/
template<typename _Tp>
struct __is_location_invariant
: integral_constant<bool,
(is_pointer<_Tp>::value
|| is_member_pointer<_Tp>::value)>
{
};
 
class _Undefined_class;
 
union _Nocopy_types
{
void* _M_object;
const void* _M_const_object;
void (*_M_function_pointer)();
void (_Undefined_class::*_M_member_pointer)();
};
 
union _Any_data
{
void* _M_access() { return &_M_pod_data[0]; }
const void* _M_access() const { return &_M_pod_data[0]; }
 
template<typename _Tp>
_Tp&
_M_access()
{ return *static_cast<_Tp*>(_M_access()); }
 
template<typename _Tp>
const _Tp&
_M_access() const
{ return *static_cast<const _Tp*>(_M_access()); }
 
_Nocopy_types _M_unused;
char _M_pod_data[sizeof(_Nocopy_types)];
};
 
enum _Manager_operation
{
__get_type_info,
__get_functor_ptr,
__clone_functor,
__destroy_functor
};
 
// Simple type wrapper that helps avoid annoying const problems
// when casting between void pointers and pointers-to-pointers.
template<typename _Tp>
struct _Simple_type_wrapper
{
_Simple_type_wrapper(_Tp __value) : __value(__value) { }
 
_Tp __value;
};
 
template<typename _Tp>
struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
: __is_location_invariant<_Tp>
{
};
 
// Converts a reference to a function object into a callable
// function object.
template<typename _Functor>
inline _Functor&
__callable_functor(_Functor& __f)
{ return __f; }
 
template<typename _Member, typename _Class>
inline _Mem_fn<_Member _Class::*>
__callable_functor(_Member _Class::* &__p)
{ return mem_fn(__p); }
 
template<typename _Member, typename _Class>
inline _Mem_fn<_Member _Class::*>
__callable_functor(_Member _Class::* const &__p)
{ return mem_fn(__p); }
 
template<typename _Signature>
class function;
 
/// Base class of all polymorphic function object wrappers.
class _Function_base
{
public:
static const std::size_t _M_max_size = sizeof(_Nocopy_types);
static const std::size_t _M_max_align = __alignof__(_Nocopy_types);
 
template<typename _Functor>
class _Base_manager
{
protected:
static const bool __stored_locally =
(__is_location_invariant<_Functor>::value
&& sizeof(_Functor) <= _M_max_size
&& __alignof__(_Functor) <= _M_max_align
&& (_M_max_align % __alignof__(_Functor) == 0));
typedef integral_constant<bool, __stored_locally> _Local_storage;
 
// Retrieve a pointer to the function object
static _Functor*
_M_get_pointer(const _Any_data& __source)
{
const _Functor* __ptr =
__stored_locally? std::__addressof(__source._M_access<_Functor>())
/* have stored a pointer */ : __source._M_access<_Functor*>();
return const_cast<_Functor*>(__ptr);
}
 
// Clone a location-invariant function object that fits within
// an _Any_data structure.
static void
_M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
{
new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
}
 
// Clone a function object that is not location-invariant or
// that cannot fit into an _Any_data structure.
static void
_M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
{
__dest._M_access<_Functor*>() =
new _Functor(*__source._M_access<_Functor*>());
}
 
// Destroying a location-invariant object may still require
// destruction.
static void
_M_destroy(_Any_data& __victim, true_type)
{
__victim._M_access<_Functor>().~_Functor();
}
// Destroying an object located on the heap.
static void
_M_destroy(_Any_data& __victim, false_type)
{
delete __victim._M_access<_Functor*>();
}
public:
static bool
_M_manager(_Any_data& __dest, const _Any_data& __source,
_Manager_operation __op)
{
switch (__op)
{
#ifdef __GXX_RTTI
case __get_type_info:
__dest._M_access<const type_info*>() = &typeid(_Functor);
break;
#endif
case __get_functor_ptr:
__dest._M_access<_Functor*>() = _M_get_pointer(__source);
break;
case __clone_functor:
_M_clone(__dest, __source, _Local_storage());
break;
 
case __destroy_functor:
_M_destroy(__dest, _Local_storage());
break;
}
return false;
}
 
static void
_M_init_functor(_Any_data& __functor, const _Functor& __f)
{ _M_init_functor(__functor, __f, _Local_storage()); }
template<typename _Signature>
static bool
_M_not_empty_function(const function<_Signature>& __f)
{ return static_cast<bool>(__f); }
 
template<typename _Tp>
static bool
_M_not_empty_function(const _Tp*& __fp)
{ return __fp; }
 
template<typename _Class, typename _Tp>
static bool
_M_not_empty_function(_Tp _Class::* const& __mp)
{ return __mp; }
 
template<typename _Tp>
static bool
_M_not_empty_function(const _Tp&)
{ return true; }
 
private:
static void
_M_init_functor(_Any_data& __functor, const _Functor& __f, true_type)
{ new (__functor._M_access()) _Functor(__f); }
 
static void
_M_init_functor(_Any_data& __functor, const _Functor& __f, false_type)
{ __functor._M_access<_Functor*>() = new _Functor(__f); }
};
 
template<typename _Functor>
class _Ref_manager : public _Base_manager<_Functor*>
{
typedef _Function_base::_Base_manager<_Functor*> _Base;
 
public:
static bool
_M_manager(_Any_data& __dest, const _Any_data& __source,
_Manager_operation __op)
{
switch (__op)
{
#ifdef __GXX_RTTI
case __get_type_info:
__dest._M_access<const type_info*>() = &typeid(_Functor);
break;
#endif
case __get_functor_ptr:
__dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
return is_const<_Functor>::value;
break;
default:
_Base::_M_manager(__dest, __source, __op);
}
return false;
}
 
static void
_M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
{
_Base::_M_init_functor(__functor, std::__addressof(__f.get()));
}
};
 
_Function_base() : _M_manager(0) { }
~_Function_base()
{
if (_M_manager)
_M_manager(_M_functor, _M_functor, __destroy_functor);
}
 
 
bool _M_empty() const { return !_M_manager; }
 
typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
_Manager_operation);
 
_Any_data _M_functor;
_Manager_type _M_manager;
};
 
template<typename _Signature, typename _Functor>
class _Function_handler;
 
template<typename _Res, typename _Functor, typename... _ArgTypes>
class _Function_handler<_Res(_ArgTypes...), _Functor>
: public _Function_base::_Base_manager<_Functor>
{
typedef _Function_base::_Base_manager<_Functor> _Base;
 
public:
static _Res
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
return (*_Base::_M_get_pointer(__functor))(__args...);
}
};
 
template<typename _Functor, typename... _ArgTypes>
class _Function_handler<void(_ArgTypes...), _Functor>
: public _Function_base::_Base_manager<_Functor>
{
typedef _Function_base::_Base_manager<_Functor> _Base;
 
public:
static void
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
(*_Base::_M_get_pointer(__functor))(__args...);
}
};
 
template<typename _Res, typename _Functor, typename... _ArgTypes>
class _Function_handler<_Res(_ArgTypes...), reference_wrapper<_Functor> >
: public _Function_base::_Ref_manager<_Functor>
{
typedef _Function_base::_Ref_manager<_Functor> _Base;
 
public:
static _Res
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
return
__callable_functor(**_Base::_M_get_pointer(__functor))(__args...);
}
};
 
template<typename _Functor, typename... _ArgTypes>
class _Function_handler<void(_ArgTypes...), reference_wrapper<_Functor> >
: public _Function_base::_Ref_manager<_Functor>
{
typedef _Function_base::_Ref_manager<_Functor> _Base;
 
public:
static void
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
__callable_functor(**_Base::_M_get_pointer(__functor))(__args...);
}
};
 
template<typename _Class, typename _Member, typename _Res,
typename... _ArgTypes>
class _Function_handler<_Res(_ArgTypes...), _Member _Class::*>
: public _Function_handler<void(_ArgTypes...), _Member _Class::*>
{
typedef _Function_handler<void(_ArgTypes...), _Member _Class::*>
_Base;
 
public:
static _Res
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
return tr1::
mem_fn(_Base::_M_get_pointer(__functor)->__value)(__args...);
}
};
 
template<typename _Class, typename _Member, typename... _ArgTypes>
class _Function_handler<void(_ArgTypes...), _Member _Class::*>
: public _Function_base::_Base_manager<
_Simple_type_wrapper< _Member _Class::* > >
{
typedef _Member _Class::* _Functor;
typedef _Simple_type_wrapper<_Functor> _Wrapper;
typedef _Function_base::_Base_manager<_Wrapper> _Base;
 
public:
static bool
_M_manager(_Any_data& __dest, const _Any_data& __source,
_Manager_operation __op)
{
switch (__op)
{
#ifdef __GXX_RTTI
case __get_type_info:
__dest._M_access<const type_info*>() = &typeid(_Functor);
break;
#endif
case __get_functor_ptr:
__dest._M_access<_Functor*>() =
&_Base::_M_get_pointer(__source)->__value;
break;
default:
_Base::_M_manager(__dest, __source, __op);
}
return false;
}
 
static void
_M_invoke(const _Any_data& __functor, _ArgTypes... __args)
{
tr1::mem_fn(_Base::_M_get_pointer(__functor)->__value)(__args...);
}
};
 
/// class function
template<typename _Res, typename... _ArgTypes>
class function<_Res(_ArgTypes...)>
: public _Maybe_unary_or_binary_function<_Res, _ArgTypes...>,
private _Function_base
{
#if __cplusplus < 201103L
/// This class is used to implement the safe_bool idiom.
struct _Hidden_type
{
_Hidden_type* _M_bool;
};
 
/// This typedef is used to implement the safe_bool idiom.
typedef _Hidden_type* _Hidden_type::* _Safe_bool;
#endif
 
typedef _Res _Signature_type(_ArgTypes...);
struct _Useless { };
public:
typedef _Res result_type;
// [3.7.2.1] construct/copy/destroy
/**
* @brief Default construct creates an empty function call wrapper.
* @post @c !(bool)*this
*/
function() : _Function_base() { }
/**
* @brief Default construct creates an empty function call wrapper.
* @post @c !(bool)*this
*/
function(_M_clear_type*) : _Function_base() { }
/**
* @brief %Function copy constructor.
* @param x A %function object with identical call signature.
* @post @c (bool)*this == (bool)x
*
* The newly-created %function contains a copy of the target of @a
* x (if it has one).
*/
function(const function& __x);
 
/**
* @brief Builds a %function that targets a copy of the incoming
* function object.
* @param f A %function object that is callable with parameters of
* type @c T1, @c T2, ..., @c TN and returns a value convertible
* to @c Res.
*
* The newly-created %function object will target a copy of @a
* f. If @a f is @c reference_wrapper<F>, then this function
* object will contain a reference to the function object @c
* f.get(). If @a f is a NULL function pointer or NULL
* pointer-to-member, the newly-created object will be empty.
*
* If @a f is a non-NULL function pointer or an object of type @c
* reference_wrapper<F>, this function will not throw.
*/
template<typename _Functor>
function(_Functor __f,
typename __gnu_cxx::__enable_if<
!is_integral<_Functor>::value, _Useless>::__type
= _Useless());
 
/**
* @brief %Function assignment operator.
* @param x A %function with identical call signature.
* @post @c (bool)*this == (bool)x
* @returns @c *this
*
* The target of @a x is copied to @c *this. If @a x has no
* target, then @c *this will be empty.
*
* If @a x targets a function pointer or a reference to a function
* object, then this operation will not throw an %exception.
*/
function&
operator=(const function& __x)
{
function(__x).swap(*this);
return *this;
}
 
/**
* @brief %Function assignment to zero.
* @post @c !(bool)*this
* @returns @c *this
*
* The target of @c *this is deallocated, leaving it empty.
*/
function&
operator=(_M_clear_type*)
{
if (_M_manager)
{
_M_manager(_M_functor, _M_functor, __destroy_functor);
_M_manager = 0;
_M_invoker = 0;
}
return *this;
}
 
/**
* @brief %Function assignment to a new target.
* @param f A %function object that is callable with parameters of
* type @c T1, @c T2, ..., @c TN and returns a value convertible
* to @c Res.
* @return @c *this
*
* This %function object wrapper will target a copy of @a
* f. If @a f is @c reference_wrapper<F>, then this function
* object will contain a reference to the function object @c
* f.get(). If @a f is a NULL function pointer or NULL
* pointer-to-member, @c this object will be empty.
*
* If @a f is a non-NULL function pointer or an object of type @c
* reference_wrapper<F>, this function will not throw.
*/
template<typename _Functor>
typename __gnu_cxx::__enable_if<!is_integral<_Functor>::value,
function&>::__type
operator=(_Functor __f)
{
function(__f).swap(*this);
return *this;
}
 
// [3.7.2.2] function modifiers
/**
* @brief Swap the targets of two %function objects.
* @param f A %function with identical call signature.
*
* Swap the targets of @c this function object and @a f. This
* function will not throw an %exception.
*/
void swap(function& __x)
{
std::swap(_M_functor, __x._M_functor);
std::swap(_M_manager, __x._M_manager);
std::swap(_M_invoker, __x._M_invoker);
}
 
// [3.7.2.3] function capacity
 
/**
* @brief Determine if the %function wrapper has a target.
*
* @return @c true when this %function object contains a target,
* or @c false when it is empty.
*
* This function will not throw an %exception.
*/
#if __cplusplus >= 201103L
explicit operator bool() const
{ return !_M_empty(); }
#else
operator _Safe_bool() const
{
if (_M_empty())
return 0;
else
return &_Hidden_type::_M_bool;
}
#endif
 
// [3.7.2.4] function invocation
 
/**
* @brief Invokes the function targeted by @c *this.
* @returns the result of the target.
* @throws bad_function_call when @c !(bool)*this
*
* The function call operator invokes the target function object
* stored by @c this.
*/
_Res operator()(_ArgTypes... __args) const;
 
#ifdef __GXX_RTTI
// [3.7.2.5] function target access
/**
* @brief Determine the type of the target of this function object
* wrapper.
*
* @returns the type identifier of the target function object, or
* @c typeid(void) if @c !(bool)*this.
*
* This function will not throw an %exception.
*/
const type_info& target_type() const;
/**
* @brief Access the stored target function object.
*
* @return Returns a pointer to the stored target function object,
* if @c typeid(Functor).equals(target_type()); otherwise, a NULL
* pointer.
*
* This function will not throw an %exception.
*/
template<typename _Functor> _Functor* target();
/// @overload
template<typename _Functor> const _Functor* target() const;
#endif
 
private:
// [3.7.2.6] undefined operators
template<typename _Function>
void operator==(const function<_Function>&) const;
template<typename _Function>
void operator!=(const function<_Function>&) const;
 
typedef _Res (*_Invoker_type)(const _Any_data&, _ArgTypes...);
_Invoker_type _M_invoker;
};
 
template<typename _Res, typename... _ArgTypes>
function<_Res(_ArgTypes...)>::
function(const function& __x)
: _Function_base()
{
if (static_cast<bool>(__x))
{
_M_invoker = __x._M_invoker;
_M_manager = __x._M_manager;
__x._M_manager(_M_functor, __x._M_functor, __clone_functor);
}
}
 
template<typename _Res, typename... _ArgTypes>
template<typename _Functor>
function<_Res(_ArgTypes...)>::
function(_Functor __f,
typename __gnu_cxx::__enable_if<
!is_integral<_Functor>::value, _Useless>::__type)
: _Function_base()
{
typedef _Function_handler<_Signature_type, _Functor> _My_handler;
 
if (_My_handler::_M_not_empty_function(__f))
{
_M_invoker = &_My_handler::_M_invoke;
_M_manager = &_My_handler::_M_manager;
_My_handler::_M_init_functor(_M_functor, __f);
}
}
 
template<typename _Res, typename... _ArgTypes>
_Res
function<_Res(_ArgTypes...)>::
operator()(_ArgTypes... __args) const
{
if (_M_empty())
_GLIBCXX_THROW_OR_ABORT(bad_function_call());
return _M_invoker(_M_functor, __args...);
}
 
#ifdef __GXX_RTTI
template<typename _Res, typename... _ArgTypes>
const type_info&
function<_Res(_ArgTypes...)>::
target_type() const
{
if (_M_manager)
{
_Any_data __typeinfo_result;
_M_manager(__typeinfo_result, _M_functor, __get_type_info);
return *__typeinfo_result._M_access<const type_info*>();
}
else
return typeid(void);
}
 
template<typename _Res, typename... _ArgTypes>
template<typename _Functor>
_Functor*
function<_Res(_ArgTypes...)>::
target()
{
if (typeid(_Functor) == target_type() && _M_manager)
{
_Any_data __ptr;
if (_M_manager(__ptr, _M_functor, __get_functor_ptr)
&& !is_const<_Functor>::value)
return 0;
else
return __ptr._M_access<_Functor*>();
}
else
return 0;
}
 
template<typename _Res, typename... _ArgTypes>
template<typename _Functor>
const _Functor*
function<_Res(_ArgTypes...)>::
target() const
{
if (typeid(_Functor) == target_type() && _M_manager)
{
_Any_data __ptr;
_M_manager(__ptr, _M_functor, __get_functor_ptr);
return __ptr._M_access<const _Functor*>();
}
else
return 0;
}
#endif
 
// [3.7.2.7] null pointer comparisons
 
/**
* @brief Compares a polymorphic function object wrapper against 0
* (the NULL pointer).
* @returns @c true if the wrapper has no target, @c false otherwise
*
* This function will not throw an %exception.
*/
template<typename _Signature>
inline bool
operator==(const function<_Signature>& __f, _M_clear_type*)
{ return !static_cast<bool>(__f); }
 
/// @overload
template<typename _Signature>
inline bool
operator==(_M_clear_type*, const function<_Signature>& __f)
{ return !static_cast<bool>(__f); }
 
/**
* @brief Compares a polymorphic function object wrapper against 0
* (the NULL pointer).
* @returns @c false if the wrapper has no target, @c true otherwise
*
* This function will not throw an %exception.
*/
template<typename _Signature>
inline bool
operator!=(const function<_Signature>& __f, _M_clear_type*)
{ return static_cast<bool>(__f); }
 
/// @overload
template<typename _Signature>
inline bool
operator!=(_M_clear_type*, const function<_Signature>& __f)
{ return static_cast<bool>(__f); }
 
// [3.7.2.8] specialized algorithms
 
/**
* @brief Swap the targets of two polymorphic function object wrappers.
*
* This function will not throw an %exception.
*/
template<typename _Signature>
inline void
swap(function<_Signature>& __x, function<_Signature>& __y)
{ __x.swap(__y); }
 
_GLIBCXX_END_NAMESPACE_VERSION
}
 
#if __cplusplus >= 201103L
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
template<typename> struct is_placeholder;
 
template<int _Num>
struct is_placeholder<tr1::_Placeholder<_Num>>
: integral_constant<int, _Num>
{ };
 
template<int _Num>
struct is_placeholder<const tr1::_Placeholder<_Num>>
: integral_constant<int, _Num>
{ };
 
template<typename> struct is_bind_expression;
 
template<typename _Signature>
struct is_bind_expression<tr1::_Bind<_Signature>>
: true_type { };
 
template<typename _Signature>
struct is_bind_expression<const tr1::_Bind<_Signature>>
: true_type { };
 
template<typename _Signature>
struct is_bind_expression<volatile tr1::_Bind<_Signature>>
: true_type { };
 
template<typename _Signature>
struct is_bind_expression<const volatile tr1::_Bind<_Signature>>
: true_type { };
 
template<typename _Result, typename _Signature>
struct is_bind_expression<tr1::_Bind_result<_Result, _Signature>>
: true_type { };
 
template<typename _Result, typename _Signature>
struct is_bind_expression<const tr1::_Bind_result<_Result, _Signature>>
: true_type { };
 
template<typename _Result, typename _Signature>
struct is_bind_expression<volatile tr1::_Bind_result<_Result, _Signature>>
: true_type { };
 
template<typename _Result, typename _Signature>
struct is_bind_expression<const volatile tr1::_Bind_result<_Result,
_Signature>>
: true_type { };
 
_GLIBCXX_END_NAMESPACE_VERSION
#endif
}
 
#endif // _GLIBCXX_TR1_FUNCTIONAL
/contrib/sdk/sources/libstdc++-v3/include/tr1/functional_hash.h
0,0 → 1,196
// TR1 functional_hash.h header -*- C++ -*-
 
// Copyright (C) 2007-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/functional_hash.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/functional}
*/
 
#ifndef _GLIBCXX_TR1_FUNCTIONAL_HASH_H
#define _GLIBCXX_TR1_FUNCTIONAL_HASH_H 1
 
#pragma GCC system_header
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/// Class template hash.
// Declaration of default hash functor std::tr1::hash. The types for
// which std::tr1::hash<T> is well-defined is in clause 6.3.3. of the PDTR.
template<typename _Tp>
struct hash : public std::unary_function<_Tp, size_t>
{
size_t
operator()(_Tp __val) const;
};
 
/// Partial specializations for pointer types.
template<typename _Tp>
struct hash<_Tp*> : public std::unary_function<_Tp*, size_t>
{
size_t
operator()(_Tp* __p) const
{ return reinterpret_cast<size_t>(__p); }
};
 
/// Explicit specializations for integer types.
#define _TR1_hashtable_define_trivial_hash(_Tp) \
template<> \
inline size_t \
hash<_Tp>::operator()(_Tp __val) const \
{ return static_cast<size_t>(__val); }
 
_TR1_hashtable_define_trivial_hash(bool);
_TR1_hashtable_define_trivial_hash(char);
_TR1_hashtable_define_trivial_hash(signed char);
_TR1_hashtable_define_trivial_hash(unsigned char);
_TR1_hashtable_define_trivial_hash(wchar_t);
_TR1_hashtable_define_trivial_hash(short);
_TR1_hashtable_define_trivial_hash(int);
_TR1_hashtable_define_trivial_hash(long);
_TR1_hashtable_define_trivial_hash(long long);
_TR1_hashtable_define_trivial_hash(unsigned short);
_TR1_hashtable_define_trivial_hash(unsigned int);
_TR1_hashtable_define_trivial_hash(unsigned long);
_TR1_hashtable_define_trivial_hash(unsigned long long);
 
#undef _TR1_hashtable_define_trivial_hash
 
// Fowler / Noll / Vo (FNV) Hash (type FNV-1a)
// (Used by the next specializations of std::tr1::hash.)
 
/// Dummy generic implementation (for sizeof(size_t) != 4, 8).
template<size_t>
struct _Fnv_hash_base
{
template<typename _Tp>
static size_t
hash(const _Tp* __ptr, size_t __clength)
{
size_t __result = 0;
const char* __cptr = reinterpret_cast<const char*>(__ptr);
for (; __clength; --__clength)
__result = (__result * 131) + *__cptr++;
return __result;
}
};
 
template<>
struct _Fnv_hash_base<4>
{
template<typename _Tp>
static size_t
hash(const _Tp* __ptr, size_t __clength)
{
size_t __result = static_cast<size_t>(2166136261UL);
const char* __cptr = reinterpret_cast<const char*>(__ptr);
for (; __clength; --__clength)
{
__result ^= static_cast<size_t>(*__cptr++);
__result *= static_cast<size_t>(16777619UL);
}
return __result;
}
};
template<>
struct _Fnv_hash_base<8>
{
template<typename _Tp>
static size_t
hash(const _Tp* __ptr, size_t __clength)
{
size_t __result
= static_cast<size_t>(14695981039346656037ULL);
const char* __cptr = reinterpret_cast<const char*>(__ptr);
for (; __clength; --__clength)
{
__result ^= static_cast<size_t>(*__cptr++);
__result *= static_cast<size_t>(1099511628211ULL);
}
return __result;
}
};
 
struct _Fnv_hash
: public _Fnv_hash_base<sizeof(size_t)>
{
using _Fnv_hash_base<sizeof(size_t)>::hash;
 
template<typename _Tp>
static size_t
hash(const _Tp& __val)
{ return hash(&__val, sizeof(__val)); }
};
 
/// Explicit specializations for float.
template<>
inline size_t
hash<float>::operator()(float __val) const
{
// 0 and -0 both hash to zero.
return __val != 0.0f ? std::tr1::_Fnv_hash::hash(__val) : 0;
}
 
/// Explicit specializations for double.
template<>
inline size_t
hash<double>::operator()(double __val) const
{
// 0 and -0 both hash to zero.
return __val != 0.0 ? std::tr1::_Fnv_hash::hash(__val) : 0;
}
 
/// Explicit specializations for long double.
template<>
_GLIBCXX_PURE size_t
hash<long double>::operator()(long double __val) const;
 
/// Explicit specialization of member operator for non-builtin types.
template<>
_GLIBCXX_PURE size_t
hash<string>::operator()(string) const;
 
template<>
_GLIBCXX_PURE size_t
hash<const string&>::operator()(const string&) const;
 
#ifdef _GLIBCXX_USE_WCHAR_T
template<>
_GLIBCXX_PURE size_t
hash<wstring>::operator()(wstring) const;
 
template<>
_GLIBCXX_PURE size_t
hash<const wstring&>::operator()(const wstring&) const;
#endif
 
_GLIBCXX_END_NAMESPACE_VERSION
}
}
 
#endif // _GLIBCXX_TR1_FUNCTIONAL_HASH_H
/contrib/sdk/sources/libstdc++-v3/include/tr1/gamma.tcc
0,0 → 1,469
// Special functions -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/gamma.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
 
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
 
// Written by Edward Smith-Rowland based on:
// (1) Handbook of Mathematical Functions,
// ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 6, pp. 253-266
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
// 2nd ed, pp. 213-216
// (4) Gamma, Exploring Euler's Constant, Julian Havil,
// Princeton, 2003.
 
#ifndef _GLIBCXX_TR1_GAMMA_TCC
#define _GLIBCXX_TR1_GAMMA_TCC 1
 
#include "special_function_util.h"
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @brief This returns Bernoulli numbers from a table or by summation
* for larger values.
*
* Recursion is unstable.
*
* @param __n the order n of the Bernoulli number.
* @return The Bernoulli number of order n.
*/
template <typename _Tp>
_Tp
__bernoulli_series(unsigned int __n)
{
 
static const _Tp __num[28] = {
_Tp(1UL), -_Tp(1UL) / _Tp(2UL),
_Tp(1UL) / _Tp(6UL), _Tp(0UL),
-_Tp(1UL) / _Tp(30UL), _Tp(0UL),
_Tp(1UL) / _Tp(42UL), _Tp(0UL),
-_Tp(1UL) / _Tp(30UL), _Tp(0UL),
_Tp(5UL) / _Tp(66UL), _Tp(0UL),
-_Tp(691UL) / _Tp(2730UL), _Tp(0UL),
_Tp(7UL) / _Tp(6UL), _Tp(0UL),
-_Tp(3617UL) / _Tp(510UL), _Tp(0UL),
_Tp(43867UL) / _Tp(798UL), _Tp(0UL),
-_Tp(174611) / _Tp(330UL), _Tp(0UL),
_Tp(854513UL) / _Tp(138UL), _Tp(0UL),
-_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL),
_Tp(8553103UL) / _Tp(6UL), _Tp(0UL)
};
 
if (__n == 0)
return _Tp(1);
 
if (__n == 1)
return -_Tp(1) / _Tp(2);
 
// Take care of the rest of the odd ones.
if (__n % 2 == 1)
return _Tp(0);
 
// Take care of some small evens that are painful for the series.
if (__n < 28)
return __num[__n];
 
 
_Tp __fact = _Tp(1);
if ((__n / 2) % 2 == 0)
__fact *= _Tp(-1);
for (unsigned int __k = 1; __k <= __n; ++__k)
__fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi());
__fact *= _Tp(2);
 
_Tp __sum = _Tp(0);
for (unsigned int __i = 1; __i < 1000; ++__i)
{
_Tp __term = std::pow(_Tp(__i), -_Tp(__n));
if (__term < std::numeric_limits<_Tp>::epsilon())
break;
__sum += __term;
}
 
return __fact * __sum;
}
 
 
/**
* @brief This returns Bernoulli number \f$B_n\f$.
*
* @param __n the order n of the Bernoulli number.
* @return The Bernoulli number of order n.
*/
template<typename _Tp>
inline _Tp
__bernoulli(int __n)
{ return __bernoulli_series<_Tp>(__n); }
 
 
/**
* @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion
* with Bernoulli number coefficients. This is like
* Sterling's approximation.
*
* @param __x The argument of the log of the gamma function.
* @return The logarithm of the gamma function.
*/
template<typename _Tp>
_Tp
__log_gamma_bernoulli(_Tp __x)
{
_Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x
+ _Tp(0.5L) * std::log(_Tp(2)
* __numeric_constants<_Tp>::__pi());
 
const _Tp __xx = __x * __x;
_Tp __help = _Tp(1) / __x;
for ( unsigned int __i = 1; __i < 20; ++__i )
{
const _Tp __2i = _Tp(2 * __i);
__help /= __2i * (__2i - _Tp(1)) * __xx;
__lg += __bernoulli<_Tp>(2 * __i) * __help;
}
 
return __lg;
}
 
 
/**
* @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method.
* This method dominates all others on the positive axis I think.
*
* @param __x The argument of the log of the gamma function.
* @return The logarithm of the gamma function.
*/
template<typename _Tp>
_Tp
__log_gamma_lanczos(_Tp __x)
{
const _Tp __xm1 = __x - _Tp(1);
 
static const _Tp __lanczos_cheb_7[9] = {
_Tp( 0.99999999999980993227684700473478L),
_Tp( 676.520368121885098567009190444019L),
_Tp(-1259.13921672240287047156078755283L),
_Tp( 771.3234287776530788486528258894L),
_Tp(-176.61502916214059906584551354L),
_Tp( 12.507343278686904814458936853L),
_Tp(-0.13857109526572011689554707L),
_Tp( 9.984369578019570859563e-6L),
_Tp( 1.50563273514931155834e-7L)
};
 
static const _Tp __LOGROOT2PI
= _Tp(0.9189385332046727417803297364056176L);
 
_Tp __sum = __lanczos_cheb_7[0];
for(unsigned int __k = 1; __k < 9; ++__k)
__sum += __lanczos_cheb_7[__k] / (__xm1 + __k);
 
const _Tp __term1 = (__xm1 + _Tp(0.5L))
* std::log((__xm1 + _Tp(7.5L))
/ __numeric_constants<_Tp>::__euler());
const _Tp __term2 = __LOGROOT2PI + std::log(__sum);
const _Tp __result = __term1 + (__term2 - _Tp(7));
 
return __result;
}
 
 
/**
* @brief Return \f$ log(|\Gamma(x)|) \f$.
* This will return values even for \f$ x < 0 \f$.
* To recover the sign of \f$ \Gamma(x) \f$ for
* any argument use @a __log_gamma_sign.
*
* @param __x The argument of the log of the gamma function.
* @return The logarithm of the gamma function.
*/
template<typename _Tp>
_Tp
__log_gamma(_Tp __x)
{
if (__x > _Tp(0.5L))
return __log_gamma_lanczos(__x);
else
{
const _Tp __sin_fact
= std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x));
if (__sin_fact == _Tp(0))
std::__throw_domain_error(__N("Argument is nonpositive integer "
"in __log_gamma"));
return __numeric_constants<_Tp>::__lnpi()
- std::log(__sin_fact)
- __log_gamma_lanczos(_Tp(1) - __x);
}
}
 
 
/**
* @brief Return the sign of \f$ \Gamma(x) \f$.
* At nonpositive integers zero is returned.
*
* @param __x The argument of the gamma function.
* @return The sign of the gamma function.
*/
template<typename _Tp>
_Tp
__log_gamma_sign(_Tp __x)
{
if (__x > _Tp(0))
return _Tp(1);
else
{
const _Tp __sin_fact
= std::sin(__numeric_constants<_Tp>::__pi() * __x);
if (__sin_fact > _Tp(0))
return (1);
else if (__sin_fact < _Tp(0))
return -_Tp(1);
else
return _Tp(0);
}
}
 
 
/**
* @brief Return the logarithm of the binomial coefficient.
* The binomial coefficient is given by:
* @f[
* \left( \right) = \frac{n!}{(n-k)! k!}
* @f]
*
* @param __n The first argument of the binomial coefficient.
* @param __k The second argument of the binomial coefficient.
* @return The binomial coefficient.
*/
template<typename _Tp>
_Tp
__log_bincoef(unsigned int __n, unsigned int __k)
{
// Max e exponent before overflow.
static const _Tp __max_bincoeff
= std::numeric_limits<_Tp>::max_exponent10
* std::log(_Tp(10)) - _Tp(1);
#if _GLIBCXX_USE_C99_MATH_TR1
_Tp __coeff = std::tr1::lgamma(_Tp(1 + __n))
- std::tr1::lgamma(_Tp(1 + __k))
- std::tr1::lgamma(_Tp(1 + __n - __k));
#else
_Tp __coeff = __log_gamma(_Tp(1 + __n))
- __log_gamma(_Tp(1 + __k))
- __log_gamma(_Tp(1 + __n - __k));
#endif
}
 
 
/**
* @brief Return the binomial coefficient.
* The binomial coefficient is given by:
* @f[
* \left( \right) = \frac{n!}{(n-k)! k!}
* @f]
*
* @param __n The first argument of the binomial coefficient.
* @param __k The second argument of the binomial coefficient.
* @return The binomial coefficient.
*/
template<typename _Tp>
_Tp
__bincoef(unsigned int __n, unsigned int __k)
{
// Max e exponent before overflow.
static const _Tp __max_bincoeff
= std::numeric_limits<_Tp>::max_exponent10
* std::log(_Tp(10)) - _Tp(1);
 
const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k);
if (__log_coeff > __max_bincoeff)
return std::numeric_limits<_Tp>::quiet_NaN();
else
return std::exp(__log_coeff);
}
 
 
/**
* @brief Return \f$ \Gamma(x) \f$.
*
* @param __x The argument of the gamma function.
* @return The gamma function.
*/
template<typename _Tp>
inline _Tp
__gamma(_Tp __x)
{ return std::exp(__log_gamma(__x)); }
 
 
/**
* @brief Return the digamma function by series expansion.
* The digamma or @f$ \psi(x) @f$ function is defined by
* @f[
* \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
* @f]
*
* The series is given by:
* @f[
* \psi(x) = -\gamma_E - \frac{1}{x}
* \sum_{k=1}^{\infty} \frac{x}{k(x + k)}
* @f]
*/
template<typename _Tp>
_Tp
__psi_series(_Tp __x)
{
_Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x;
const unsigned int __max_iter = 100000;
for (unsigned int __k = 1; __k < __max_iter; ++__k)
{
const _Tp __term = __x / (__k * (__k + __x));
__sum += __term;
if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
break;
}
return __sum;
}
 
 
/**
* @brief Return the digamma function for large argument.
* The digamma or @f$ \psi(x) @f$ function is defined by
* @f[
* \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
* @f]
*
* The asymptotic series is given by:
* @f[
* \psi(x) = \ln(x) - \frac{1}{2x}
* - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}}
* @f]
*/
template<typename _Tp>
_Tp
__psi_asymp(_Tp __x)
{
_Tp __sum = std::log(__x) - _Tp(0.5L) / __x;
const _Tp __xx = __x * __x;
_Tp __xp = __xx;
const unsigned int __max_iter = 100;
for (unsigned int __k = 1; __k < __max_iter; ++__k)
{
const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp);
__sum -= __term;
if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon())
break;
__xp *= __xx;
}
return __sum;
}
 
 
/**
* @brief Return the digamma function.
* The digamma or @f$ \psi(x) @f$ function is defined by
* @f[
* \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}
* @f]
* For negative argument the reflection formula is used:
* @f[
* \psi(x) = \psi(1-x) - \pi \cot(\pi x)
* @f]
*/
template<typename _Tp>
_Tp
__psi(_Tp __x)
{
const int __n = static_cast<int>(__x + 0.5L);
const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon();
if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps)
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x < _Tp(0))
{
const _Tp __pi = __numeric_constants<_Tp>::__pi();
return __psi(_Tp(1) - __x)
- __pi * std::cos(__pi * __x) / std::sin(__pi * __x);
}
else if (__x > _Tp(100))
return __psi_asymp(__x);
else
return __psi_series(__x);
}
 
 
/**
* @brief Return the polygamma function @f$ \psi^{(n)}(x) @f$.
*
* The polygamma function is related to the Hurwitz zeta function:
* @f[
* \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x)
* @f]
*/
template<typename _Tp>
_Tp
__psi(unsigned int __n, _Tp __x)
{
if (__x <= _Tp(0))
std::__throw_domain_error(__N("Argument out of range "
"in __psi"));
else if (__n == 0)
return __psi(__x);
else
{
const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x);
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __ln_nfact = std::tr1::lgamma(_Tp(__n + 1));
#else
const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1));
#endif
_Tp __result = std::exp(__ln_nfact) * __hzeta;
if (__n % 2 == 1)
__result = -__result;
return __result;
}
}
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
 
#endif // _GLIBCXX_TR1_GAMMA_TCC
 
/contrib/sdk/sources/libstdc++-v3/include/tr1/hashtable.h
0,0 → 1,1181
// TR1 hashtable.h header -*- C++ -*-
 
// Copyright (C) 2007-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/hashtable.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly.
* @headername{tr1/unordered_set, tr1/unordered_map}
*/
 
#ifndef _GLIBCXX_TR1_HASHTABLE_H
#define _GLIBCXX_TR1_HASHTABLE_H 1
 
#pragma GCC system_header
 
#include <tr1/hashtable_policy.h>
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
// Class template _Hashtable, class definition.
 
// Meaning of class template _Hashtable's template parameters
 
// _Key and _Value: arbitrary CopyConstructible types.
 
// _Allocator: an allocator type ([lib.allocator.requirements]) whose
// value type is Value. As a conforming extension, we allow for
// value type != Value.
 
// _ExtractKey: function object that takes a object of type Value
// and returns a value of type _Key.
 
// _Equal: function object that takes two objects of type k and returns
// a bool-like value that is true if the two objects are considered equal.
 
// _H1: the hash function. A unary function object with argument type
// Key and result type size_t. Return values should be distributed
// over the entire range [0, numeric_limits<size_t>:::max()].
 
// _H2: the range-hashing function (in the terminology of Tavori and
// Dreizin). A binary function object whose argument types and result
// type are all size_t. Given arguments r and N, the return value is
// in the range [0, N).
 
// _Hash: the ranged hash function (Tavori and Dreizin). A binary function
// whose argument types are _Key and size_t and whose result type is
// size_t. Given arguments k and N, the return value is in the range
// [0, N). Default: hash(k, N) = h2(h1(k), N). If _Hash is anything other
// than the default, _H1 and _H2 are ignored.
 
// _RehashPolicy: Policy class with three members, all of which govern
// the bucket count. _M_next_bkt(n) returns a bucket count no smaller
// than n. _M_bkt_for_elements(n) returns a bucket count appropriate
// for an element count of n. _M_need_rehash(n_bkt, n_elt, n_ins)
// determines whether, if the current bucket count is n_bkt and the
// current element count is n_elt, we need to increase the bucket
// count. If so, returns make_pair(true, n), where n is the new
// bucket count. If not, returns make_pair(false, <anything>).
 
// ??? Right now it is hard-wired that the number of buckets never
// shrinks. Should we allow _RehashPolicy to change that?
 
// __cache_hash_code: bool. true if we store the value of the hash
// function along with the value. This is a time-space tradeoff.
// Storing it may improve lookup speed by reducing the number of times
// we need to call the Equal function.
 
// __constant_iterators: bool. true if iterator and const_iterator are
// both constant iterator types. This is true for unordered_set and
// unordered_multiset, false for unordered_map and unordered_multimap.
 
// __unique_keys: bool. true if the return value of _Hashtable::count(k)
// is always at most one, false if it may be an arbitrary number. This
// true for unordered_set and unordered_map, false for unordered_multiset
// and unordered_multimap.
 
template<typename _Key, typename _Value, typename _Allocator,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
typename _RehashPolicy,
bool __cache_hash_code,
bool __constant_iterators,
bool __unique_keys>
class _Hashtable
: public __detail::_Rehash_base<_RehashPolicy,
_Hashtable<_Key, _Value, _Allocator,
_ExtractKey,
_Equal, _H1, _H2, _Hash,
_RehashPolicy,
__cache_hash_code,
__constant_iterators,
__unique_keys> >,
public __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
_H1, _H2, _Hash, __cache_hash_code>,
public __detail::_Map_base<_Key, _Value, _ExtractKey, __unique_keys,
_Hashtable<_Key, _Value, _Allocator,
_ExtractKey,
_Equal, _H1, _H2, _Hash,
_RehashPolicy,
__cache_hash_code,
__constant_iterators,
__unique_keys> >
{
public:
typedef _Allocator allocator_type;
typedef _Value value_type;
typedef _Key key_type;
typedef _Equal key_equal;
// mapped_type, if present, comes from _Map_base.
// hasher, if present, comes from _Hash_code_base.
typedef typename _Allocator::difference_type difference_type;
typedef typename _Allocator::size_type size_type;
typedef typename _Allocator::pointer pointer;
typedef typename _Allocator::const_pointer const_pointer;
typedef typename _Allocator::reference reference;
typedef typename _Allocator::const_reference const_reference;
 
typedef __detail::_Node_iterator<value_type, __constant_iterators,
__cache_hash_code>
local_iterator;
typedef __detail::_Node_const_iterator<value_type,
__constant_iterators,
__cache_hash_code>
const_local_iterator;
 
typedef __detail::_Hashtable_iterator<value_type, __constant_iterators,
__cache_hash_code>
iterator;
typedef __detail::_Hashtable_const_iterator<value_type,
__constant_iterators,
__cache_hash_code>
const_iterator;
 
template<typename _Key2, typename _Value2, typename _Ex2, bool __unique2,
typename _Hashtable2>
friend struct __detail::_Map_base;
 
private:
typedef __detail::_Hash_node<_Value, __cache_hash_code> _Node;
typedef typename _Allocator::template rebind<_Node>::other
_Node_allocator_type;
typedef typename _Allocator::template rebind<_Node*>::other
_Bucket_allocator_type;
 
typedef typename _Allocator::template rebind<_Value>::other
_Value_allocator_type;
 
_Node_allocator_type _M_node_allocator;
_Node** _M_buckets;
size_type _M_bucket_count;
size_type _M_element_count;
_RehashPolicy _M_rehash_policy;
 
_Node*
_M_allocate_node(const value_type& __v);
 
void
_M_deallocate_node(_Node* __n);
 
void
_M_deallocate_nodes(_Node**, size_type);
 
_Node**
_M_allocate_buckets(size_type __n);
 
void
_M_deallocate_buckets(_Node**, size_type __n);
 
public:
// Constructor, destructor, assignment, swap
_Hashtable(size_type __bucket_hint,
const _H1&, const _H2&, const _Hash&,
const _Equal&, const _ExtractKey&,
const allocator_type&);
 
template<typename _InputIterator>
_Hashtable(_InputIterator __first, _InputIterator __last,
size_type __bucket_hint,
const _H1&, const _H2&, const _Hash&,
const _Equal&, const _ExtractKey&,
const allocator_type&);
 
_Hashtable(const _Hashtable&);
 
_Hashtable&
operator=(const _Hashtable&);
 
~_Hashtable();
 
void swap(_Hashtable&);
 
// Basic container operations
iterator
begin()
{
iterator __i(_M_buckets);
if (!__i._M_cur_node)
__i._M_incr_bucket();
return __i;
}
 
const_iterator
begin() const
{
const_iterator __i(_M_buckets);
if (!__i._M_cur_node)
__i._M_incr_bucket();
return __i;
}
 
iterator
end()
{ return iterator(_M_buckets + _M_bucket_count); }
 
const_iterator
end() const
{ return const_iterator(_M_buckets + _M_bucket_count); }
 
size_type
size() const
{ return _M_element_count; }
 
bool
empty() const
{ return size() == 0; }
 
allocator_type
get_allocator() const
{ return allocator_type(_M_node_allocator); }
 
_Value_allocator_type
_M_get_Value_allocator() const
{ return _Value_allocator_type(_M_node_allocator); }
 
size_type
max_size() const
{ return _M_node_allocator.max_size(); }
 
// Observers
key_equal
key_eq() const
{ return this->_M_eq; }
 
// hash_function, if present, comes from _Hash_code_base.
 
// Bucket operations
size_type
bucket_count() const
{ return _M_bucket_count; }
 
size_type
max_bucket_count() const
{ return max_size(); }
 
size_type
bucket_size(size_type __n) const
{ return std::distance(begin(__n), end(__n)); }
 
size_type
bucket(const key_type& __k) const
{
return this->_M_bucket_index(__k, this->_M_hash_code(__k),
bucket_count());
}
 
local_iterator
begin(size_type __n)
{ return local_iterator(_M_buckets[__n]); }
 
local_iterator
end(size_type)
{ return local_iterator(0); }
 
const_local_iterator
begin(size_type __n) const
{ return const_local_iterator(_M_buckets[__n]); }
 
const_local_iterator
end(size_type) const
{ return const_local_iterator(0); }
 
float
load_factor() const
{
return static_cast<float>(size()) / static_cast<float>(bucket_count());
}
 
// max_load_factor, if present, comes from _Rehash_base.
 
// Generalization of max_load_factor. Extension, not found in TR1. Only
// useful if _RehashPolicy is something other than the default.
const _RehashPolicy&
__rehash_policy() const
{ return _M_rehash_policy; }
 
void
__rehash_policy(const _RehashPolicy&);
 
// Lookup.
iterator
find(const key_type& __k);
 
const_iterator
find(const key_type& __k) const;
 
size_type
count(const key_type& __k) const;
 
std::pair<iterator, iterator>
equal_range(const key_type& __k);
 
std::pair<const_iterator, const_iterator>
equal_range(const key_type& __k) const;
 
private: // Find, insert and erase helper functions
// ??? This dispatching is a workaround for the fact that we don't
// have partial specialization of member templates; it would be
// better to just specialize insert on __unique_keys. There may be a
// cleaner workaround.
typedef typename __gnu_cxx::__conditional_type<__unique_keys,
std::pair<iterator, bool>, iterator>::__type
_Insert_Return_Type;
 
typedef typename __gnu_cxx::__conditional_type<__unique_keys,
std::_Select1st<_Insert_Return_Type>,
std::_Identity<_Insert_Return_Type>
>::__type
_Insert_Conv_Type;
 
_Node*
_M_find_node(_Node*, const key_type&,
typename _Hashtable::_Hash_code_type) const;
 
iterator
_M_insert_bucket(const value_type&, size_type,
typename _Hashtable::_Hash_code_type);
 
std::pair<iterator, bool>
_M_insert(const value_type&, std::tr1::true_type);
 
iterator
_M_insert(const value_type&, std::tr1::false_type);
 
void
_M_erase_node(_Node*, _Node**);
 
public:
// Insert and erase
_Insert_Return_Type
insert(const value_type& __v)
{ return _M_insert(__v, std::tr1::integral_constant<bool,
__unique_keys>()); }
 
iterator
insert(iterator, const value_type& __v)
{ return iterator(_Insert_Conv_Type()(this->insert(__v))); }
 
const_iterator
insert(const_iterator, const value_type& __v)
{ return const_iterator(_Insert_Conv_Type()(this->insert(__v))); }
 
template<typename _InputIterator>
void
insert(_InputIterator __first, _InputIterator __last);
 
iterator
erase(iterator);
 
const_iterator
erase(const_iterator);
 
size_type
erase(const key_type&);
 
iterator
erase(iterator, iterator);
 
const_iterator
erase(const_iterator, const_iterator);
 
void
clear();
 
// Set number of buckets to be appropriate for container of n element.
void rehash(size_type __n);
 
private:
// Unconditionally change size of bucket array to n.
void _M_rehash(size_type __n);
};
 
 
// Definitions of class template _Hashtable's out-of-line member functions.
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::_Node*
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_M_allocate_node(const value_type& __v)
{
_Node* __n = _M_node_allocator.allocate(1);
__try
{
_M_get_Value_allocator().construct(&__n->_M_v, __v);
__n->_M_next = 0;
return __n;
}
__catch(...)
{
_M_node_allocator.deallocate(__n, 1);
__throw_exception_again;
}
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
void
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_M_deallocate_node(_Node* __n)
{
_M_get_Value_allocator().destroy(&__n->_M_v);
_M_node_allocator.deallocate(__n, 1);
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
void
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_M_deallocate_nodes(_Node** __array, size_type __n)
{
for (size_type __i = 0; __i < __n; ++__i)
{
_Node* __p = __array[__i];
while (__p)
{
_Node* __tmp = __p;
__p = __p->_M_next;
_M_deallocate_node(__tmp);
}
__array[__i] = 0;
}
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::_Node**
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_M_allocate_buckets(size_type __n)
{
_Bucket_allocator_type __alloc(_M_node_allocator);
 
// We allocate one extra bucket to hold a sentinel, an arbitrary
// non-null pointer. Iterator increment relies on this.
_Node** __p = __alloc.allocate(__n + 1);
std::fill(__p, __p + __n, (_Node*) 0);
__p[__n] = reinterpret_cast<_Node*>(0x1000);
return __p;
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
void
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_M_deallocate_buckets(_Node** __p, size_type __n)
{
_Bucket_allocator_type __alloc(_M_node_allocator);
__alloc.deallocate(__p, __n + 1);
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_Hashtable(size_type __bucket_hint,
const _H1& __h1, const _H2& __h2, const _Hash& __h,
const _Equal& __eq, const _ExtractKey& __exk,
const allocator_type& __a)
: __detail::_Rehash_base<_RehashPolicy, _Hashtable>(),
__detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
_H1, _H2, _Hash, __chc>(__exk, __eq,
__h1, __h2, __h),
__detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(),
_M_node_allocator(__a),
_M_bucket_count(0),
_M_element_count(0),
_M_rehash_policy()
{
_M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint);
_M_buckets = _M_allocate_buckets(_M_bucket_count);
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
template<typename _InputIterator>
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_Hashtable(_InputIterator __f, _InputIterator __l,
size_type __bucket_hint,
const _H1& __h1, const _H2& __h2, const _Hash& __h,
const _Equal& __eq, const _ExtractKey& __exk,
const allocator_type& __a)
: __detail::_Rehash_base<_RehashPolicy, _Hashtable>(),
__detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
_H1, _H2, _Hash, __chc>(__exk, __eq,
__h1, __h2, __h),
__detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(),
_M_node_allocator(__a),
_M_bucket_count(0),
_M_element_count(0),
_M_rehash_policy()
{
_M_bucket_count = std::max(_M_rehash_policy._M_next_bkt(__bucket_hint),
_M_rehash_policy.
_M_bkt_for_elements(__detail::
__distance_fw(__f,
__l)));
_M_buckets = _M_allocate_buckets(_M_bucket_count);
__try
{
for (; __f != __l; ++__f)
this->insert(*__f);
}
__catch(...)
{
clear();
_M_deallocate_buckets(_M_buckets, _M_bucket_count);
__throw_exception_again;
}
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_Hashtable(const _Hashtable& __ht)
: __detail::_Rehash_base<_RehashPolicy, _Hashtable>(__ht),
__detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
_H1, _H2, _Hash, __chc>(__ht),
__detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(__ht),
_M_node_allocator(__ht._M_node_allocator),
_M_bucket_count(__ht._M_bucket_count),
_M_element_count(__ht._M_element_count),
_M_rehash_policy(__ht._M_rehash_policy)
{
_M_buckets = _M_allocate_buckets(_M_bucket_count);
__try
{
for (size_type __i = 0; __i < __ht._M_bucket_count; ++__i)
{
_Node* __n = __ht._M_buckets[__i];
_Node** __tail = _M_buckets + __i;
while (__n)
{
*__tail = _M_allocate_node(__n->_M_v);
this->_M_copy_code(*__tail, __n);
__tail = &((*__tail)->_M_next);
__n = __n->_M_next;
}
}
}
__catch(...)
{
clear();
_M_deallocate_buckets(_M_buckets, _M_bucket_count);
__throw_exception_again;
}
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>&
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
operator=(const _Hashtable& __ht)
{
_Hashtable __tmp(__ht);
this->swap(__tmp);
return *this;
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
~_Hashtable()
{
clear();
_M_deallocate_buckets(_M_buckets, _M_bucket_count);
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
void
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
swap(_Hashtable& __x)
{
// The only base class with member variables is hash_code_base. We
// define _Hash_code_base::_M_swap because different specializations
// have different members.
__detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
_H1, _H2, _Hash, __chc>::_M_swap(__x);
 
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 431. Swapping containers with unequal allocators.
std::__alloc_swap<_Node_allocator_type>::_S_do_it(_M_node_allocator,
__x._M_node_allocator);
 
std::swap(_M_rehash_policy, __x._M_rehash_policy);
std::swap(_M_buckets, __x._M_buckets);
std::swap(_M_bucket_count, __x._M_bucket_count);
std::swap(_M_element_count, __x._M_element_count);
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
void
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
__rehash_policy(const _RehashPolicy& __pol)
{
_M_rehash_policy = __pol;
size_type __n_bkt = __pol._M_bkt_for_elements(_M_element_count);
if (__n_bkt > _M_bucket_count)
_M_rehash(__n_bkt);
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::iterator
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
find(const key_type& __k)
{
typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
_Node* __p = _M_find_node(_M_buckets[__n], __k, __code);
return __p ? iterator(__p, _M_buckets + __n) : this->end();
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::const_iterator
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
find(const key_type& __k) const
{
typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
_Node* __p = _M_find_node(_M_buckets[__n], __k, __code);
return __p ? const_iterator(__p, _M_buckets + __n) : this->end();
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::size_type
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
count(const key_type& __k) const
{
typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
std::size_t __result = 0;
for (_Node* __p = _M_buckets[__n]; __p; __p = __p->_M_next)
if (this->_M_compare(__k, __code, __p))
++__result;
return __result;
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
std::pair<typename _Hashtable<_Key, _Value, _Allocator,
_ExtractKey, _Equal, _H1,
_H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::iterator,
typename _Hashtable<_Key, _Value, _Allocator,
_ExtractKey, _Equal, _H1,
_H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::iterator>
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
equal_range(const key_type& __k)
{
typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
_Node** __head = _M_buckets + __n;
_Node* __p = _M_find_node(*__head, __k, __code);
 
if (__p)
{
_Node* __p1 = __p->_M_next;
for (; __p1; __p1 = __p1->_M_next)
if (!this->_M_compare(__k, __code, __p1))
break;
 
iterator __first(__p, __head);
iterator __last(__p1, __head);
if (!__p1)
__last._M_incr_bucket();
return std::make_pair(__first, __last);
}
else
return std::make_pair(this->end(), this->end());
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
std::pair<typename _Hashtable<_Key, _Value, _Allocator,
_ExtractKey, _Equal, _H1,
_H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::const_iterator,
typename _Hashtable<_Key, _Value, _Allocator,
_ExtractKey, _Equal, _H1,
_H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::const_iterator>
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
equal_range(const key_type& __k) const
{
typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
_Node** __head = _M_buckets + __n;
_Node* __p = _M_find_node(*__head, __k, __code);
 
if (__p)
{
_Node* __p1 = __p->_M_next;
for (; __p1; __p1 = __p1->_M_next)
if (!this->_M_compare(__k, __code, __p1))
break;
 
const_iterator __first(__p, __head);
const_iterator __last(__p1, __head);
if (!__p1)
__last._M_incr_bucket();
return std::make_pair(__first, __last);
}
else
return std::make_pair(this->end(), this->end());
}
 
// Find the node whose key compares equal to k, beginning the search
// at p (usually the head of a bucket). Return zero if no node is found.
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey,
_Equal, _H1, _H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::_Node*
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_M_find_node(_Node* __p, const key_type& __k,
typename _Hashtable::_Hash_code_type __code) const
{
for (; __p; __p = __p->_M_next)
if (this->_M_compare(__k, __code, __p))
return __p;
return 0;
}
 
// Insert v in bucket n (assumes no element with its key already present).
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::iterator
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_M_insert_bucket(const value_type& __v, size_type __n,
typename _Hashtable::_Hash_code_type __code)
{
std::pair<bool, std::size_t> __do_rehash
= _M_rehash_policy._M_need_rehash(_M_bucket_count,
_M_element_count, 1);
 
// Allocate the new node before doing the rehash so that we don't
// do a rehash if the allocation throws.
_Node* __new_node = _M_allocate_node(__v);
 
__try
{
if (__do_rehash.first)
{
const key_type& __k = this->_M_extract(__v);
__n = this->_M_bucket_index(__k, __code, __do_rehash.second);
_M_rehash(__do_rehash.second);
}
 
__new_node->_M_next = _M_buckets[__n];
this->_M_store_code(__new_node, __code);
_M_buckets[__n] = __new_node;
++_M_element_count;
return iterator(__new_node, _M_buckets + __n);
}
__catch(...)
{
_M_deallocate_node(__new_node);
__throw_exception_again;
}
}
 
// Insert v if no element with its key is already present.
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
std::pair<typename _Hashtable<_Key, _Value, _Allocator,
_ExtractKey, _Equal, _H1,
_H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::iterator, bool>
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_M_insert(const value_type& __v, std::tr1::true_type)
{
const key_type& __k = this->_M_extract(__v);
typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
size_type __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
 
if (_Node* __p = _M_find_node(_M_buckets[__n], __k, __code))
return std::make_pair(iterator(__p, _M_buckets + __n), false);
return std::make_pair(_M_insert_bucket(__v, __n, __code), true);
}
 
// Insert v unconditionally.
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::iterator
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_M_insert(const value_type& __v, std::tr1::false_type)
{
std::pair<bool, std::size_t> __do_rehash
= _M_rehash_policy._M_need_rehash(_M_bucket_count,
_M_element_count, 1);
if (__do_rehash.first)
_M_rehash(__do_rehash.second);
 
const key_type& __k = this->_M_extract(__v);
typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
size_type __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
 
// First find the node, avoid leaking new_node if compare throws.
_Node* __prev = _M_find_node(_M_buckets[__n], __k, __code);
_Node* __new_node = _M_allocate_node(__v);
 
if (__prev)
{
__new_node->_M_next = __prev->_M_next;
__prev->_M_next = __new_node;
}
else
{
__new_node->_M_next = _M_buckets[__n];
_M_buckets[__n] = __new_node;
}
this->_M_store_code(__new_node, __code);
 
++_M_element_count;
return iterator(__new_node, _M_buckets + __n);
}
 
// For erase(iterator) and erase(const_iterator).
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
void
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_M_erase_node(_Node* __p, _Node** __b)
{
_Node* __cur = *__b;
if (__cur == __p)
*__b = __cur->_M_next;
else
{
_Node* __next = __cur->_M_next;
while (__next != __p)
{
__cur = __next;
__next = __cur->_M_next;
}
__cur->_M_next = __next->_M_next;
}
 
_M_deallocate_node(__p);
--_M_element_count;
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
template<typename _InputIterator>
void
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
insert(_InputIterator __first, _InputIterator __last)
{
size_type __n_elt = __detail::__distance_fw(__first, __last);
std::pair<bool, std::size_t> __do_rehash
= _M_rehash_policy._M_need_rehash(_M_bucket_count,
_M_element_count, __n_elt);
if (__do_rehash.first)
_M_rehash(__do_rehash.second);
 
for (; __first != __last; ++__first)
this->insert(*__first);
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::iterator
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
erase(iterator __it)
{
iterator __result = __it;
++__result;
_M_erase_node(__it._M_cur_node, __it._M_cur_bucket);
return __result;
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::const_iterator
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
erase(const_iterator __it)
{
const_iterator __result = __it;
++__result;
_M_erase_node(__it._M_cur_node, __it._M_cur_bucket);
return __result;
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::size_type
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
erase(const key_type& __k)
{
typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
size_type __result = 0;
 
_Node** __slot = _M_buckets + __n;
while (*__slot && !this->_M_compare(__k, __code, *__slot))
__slot = &((*__slot)->_M_next);
 
_Node** __saved_slot = 0;
while (*__slot && this->_M_compare(__k, __code, *__slot))
{
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 526. Is it undefined if a function in the standard changes
// in parameters?
if (&this->_M_extract((*__slot)->_M_v) != &__k)
{
_Node* __p = *__slot;
*__slot = __p->_M_next;
_M_deallocate_node(__p);
--_M_element_count;
++__result;
}
else
{
__saved_slot = __slot;
__slot = &((*__slot)->_M_next);
}
}
 
if (__saved_slot)
{
_Node* __p = *__saved_slot;
*__saved_slot = __p->_M_next;
_M_deallocate_node(__p);
--_M_element_count;
++__result;
}
 
return __result;
}
 
// ??? This could be optimized by taking advantage of the bucket
// structure, but it's not clear that it's worth doing. It probably
// wouldn't even be an optimization unless the load factor is large.
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::iterator
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
erase(iterator __first, iterator __last)
{
while (__first != __last)
__first = this->erase(__first);
return __last;
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy,
__chc, __cit, __uk>::const_iterator
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
erase(const_iterator __first, const_iterator __last)
{
while (__first != __last)
__first = this->erase(__first);
return __last;
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
void
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
clear()
{
_M_deallocate_nodes(_M_buckets, _M_bucket_count);
_M_element_count = 0;
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
void
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
rehash(size_type __n)
{
_M_rehash(std::max(_M_rehash_policy._M_next_bkt(__n),
_M_rehash_policy._M_bkt_for_elements(_M_element_count
+ 1)));
}
 
template<typename _Key, typename _Value,
typename _Allocator, typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
bool __chc, bool __cit, bool __uk>
void
_Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
_H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
_M_rehash(size_type __n)
{
_Node** __new_array = _M_allocate_buckets(__n);
__try
{
for (size_type __i = 0; __i < _M_bucket_count; ++__i)
while (_Node* __p = _M_buckets[__i])
{
std::size_t __new_index = this->_M_bucket_index(__p, __n);
_M_buckets[__i] = __p->_M_next;
__p->_M_next = __new_array[__new_index];
__new_array[__new_index] = __p;
}
_M_deallocate_buckets(_M_buckets, _M_bucket_count);
_M_bucket_count = __n;
_M_buckets = __new_array;
}
__catch(...)
{
// A failure here means that a hash function threw an exception.
// We can't restore the previous state without calling the hash
// function again, so the only sensible recovery is to delete
// everything.
_M_deallocate_nodes(__new_array, __n);
_M_deallocate_buckets(__new_array, __n);
_M_deallocate_nodes(_M_buckets, _M_bucket_count);
_M_element_count = 0;
__throw_exception_again;
}
}
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace tr1
} // namespace std
 
#endif // _GLIBCXX_TR1_HASHTABLE_H
/contrib/sdk/sources/libstdc++-v3/include/tr1/hashtable_policy.h
0,0 → 1,783
// Internal policy header for TR1 unordered_set and unordered_map -*- C++ -*-
 
// Copyright (C) 2010-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/hashtable_policy.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly.
* @headername{tr1/unordered_map, tr1/unordered_set}
*/
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
// Helper function: return distance(first, last) for forward
// iterators, or 0 for input iterators.
template<class _Iterator>
inline typename std::iterator_traits<_Iterator>::difference_type
__distance_fw(_Iterator __first, _Iterator __last,
std::input_iterator_tag)
{ return 0; }
 
template<class _Iterator>
inline typename std::iterator_traits<_Iterator>::difference_type
__distance_fw(_Iterator __first, _Iterator __last,
std::forward_iterator_tag)
{ return std::distance(__first, __last); }
 
template<class _Iterator>
inline typename std::iterator_traits<_Iterator>::difference_type
__distance_fw(_Iterator __first, _Iterator __last)
{
typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
return __distance_fw(__first, __last, _Tag());
}
 
// Auxiliary types used for all instantiations of _Hashtable: nodes
// and iterators.
// Nodes, used to wrap elements stored in the hash table. A policy
// template parameter of class template _Hashtable controls whether
// nodes also store a hash code. In some cases (e.g. strings) this
// may be a performance win.
template<typename _Value, bool __cache_hash_code>
struct _Hash_node;
 
template<typename _Value>
struct _Hash_node<_Value, true>
{
_Value _M_v;
std::size_t _M_hash_code;
_Hash_node* _M_next;
};
 
template<typename _Value>
struct _Hash_node<_Value, false>
{
_Value _M_v;
_Hash_node* _M_next;
};
 
// Local iterators, used to iterate within a bucket but not between
// buckets.
template<typename _Value, bool __cache>
struct _Node_iterator_base
{
_Node_iterator_base(_Hash_node<_Value, __cache>* __p)
: _M_cur(__p) { }
void
_M_incr()
{ _M_cur = _M_cur->_M_next; }
 
_Hash_node<_Value, __cache>* _M_cur;
};
 
template<typename _Value, bool __cache>
inline bool
operator==(const _Node_iterator_base<_Value, __cache>& __x,
const _Node_iterator_base<_Value, __cache>& __y)
{ return __x._M_cur == __y._M_cur; }
 
template<typename _Value, bool __cache>
inline bool
operator!=(const _Node_iterator_base<_Value, __cache>& __x,
const _Node_iterator_base<_Value, __cache>& __y)
{ return __x._M_cur != __y._M_cur; }
 
template<typename _Value, bool __constant_iterators, bool __cache>
struct _Node_iterator
: public _Node_iterator_base<_Value, __cache>
{
typedef _Value value_type;
typedef typename
__gnu_cxx::__conditional_type<__constant_iterators,
const _Value*, _Value*>::__type
pointer;
typedef typename
__gnu_cxx::__conditional_type<__constant_iterators,
const _Value&, _Value&>::__type
reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
 
_Node_iterator()
: _Node_iterator_base<_Value, __cache>(0) { }
 
explicit
_Node_iterator(_Hash_node<_Value, __cache>* __p)
: _Node_iterator_base<_Value, __cache>(__p) { }
 
reference
operator*() const
{ return this->_M_cur->_M_v; }
pointer
operator->() const
{ return std::__addressof(this->_M_cur->_M_v); }
 
_Node_iterator&
operator++()
{
this->_M_incr();
return *this;
}
_Node_iterator
operator++(int)
{
_Node_iterator __tmp(*this);
this->_M_incr();
return __tmp;
}
};
 
template<typename _Value, bool __constant_iterators, bool __cache>
struct _Node_const_iterator
: public _Node_iterator_base<_Value, __cache>
{
typedef _Value value_type;
typedef const _Value* pointer;
typedef const _Value& reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
 
_Node_const_iterator()
: _Node_iterator_base<_Value, __cache>(0) { }
 
explicit
_Node_const_iterator(_Hash_node<_Value, __cache>* __p)
: _Node_iterator_base<_Value, __cache>(__p) { }
 
_Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
__cache>& __x)
: _Node_iterator_base<_Value, __cache>(__x._M_cur) { }
 
reference
operator*() const
{ return this->_M_cur->_M_v; }
pointer
operator->() const
{ return std::__addressof(this->_M_cur->_M_v); }
 
_Node_const_iterator&
operator++()
{
this->_M_incr();
return *this;
}
_Node_const_iterator
operator++(int)
{
_Node_const_iterator __tmp(*this);
this->_M_incr();
return __tmp;
}
};
 
template<typename _Value, bool __cache>
struct _Hashtable_iterator_base
{
_Hashtable_iterator_base(_Hash_node<_Value, __cache>* __node,
_Hash_node<_Value, __cache>** __bucket)
: _M_cur_node(__node), _M_cur_bucket(__bucket) { }
 
void
_M_incr()
{
_M_cur_node = _M_cur_node->_M_next;
if (!_M_cur_node)
_M_incr_bucket();
}
 
void
_M_incr_bucket();
 
_Hash_node<_Value, __cache>* _M_cur_node;
_Hash_node<_Value, __cache>** _M_cur_bucket;
};
 
// Global iterators, used for arbitrary iteration within a hash
// table. Larger and more expensive than local iterators.
template<typename _Value, bool __cache>
void
_Hashtable_iterator_base<_Value, __cache>::
_M_incr_bucket()
{
++_M_cur_bucket;
 
// This loop requires the bucket array to have a non-null sentinel.
while (!*_M_cur_bucket)
++_M_cur_bucket;
_M_cur_node = *_M_cur_bucket;
}
 
template<typename _Value, bool __cache>
inline bool
operator==(const _Hashtable_iterator_base<_Value, __cache>& __x,
const _Hashtable_iterator_base<_Value, __cache>& __y)
{ return __x._M_cur_node == __y._M_cur_node; }
 
template<typename _Value, bool __cache>
inline bool
operator!=(const _Hashtable_iterator_base<_Value, __cache>& __x,
const _Hashtable_iterator_base<_Value, __cache>& __y)
{ return __x._M_cur_node != __y._M_cur_node; }
 
template<typename _Value, bool __constant_iterators, bool __cache>
struct _Hashtable_iterator
: public _Hashtable_iterator_base<_Value, __cache>
{
typedef _Value value_type;
typedef typename
__gnu_cxx::__conditional_type<__constant_iterators,
const _Value*, _Value*>::__type
pointer;
typedef typename
__gnu_cxx::__conditional_type<__constant_iterators,
const _Value&, _Value&>::__type
reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
 
_Hashtable_iterator()
: _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
 
_Hashtable_iterator(_Hash_node<_Value, __cache>* __p,
_Hash_node<_Value, __cache>** __b)
: _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
 
explicit
_Hashtable_iterator(_Hash_node<_Value, __cache>** __b)
: _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
 
reference
operator*() const
{ return this->_M_cur_node->_M_v; }
pointer
operator->() const
{ return std::__addressof(this->_M_cur_node->_M_v); }
 
_Hashtable_iterator&
operator++()
{
this->_M_incr();
return *this;
}
_Hashtable_iterator
operator++(int)
{
_Hashtable_iterator __tmp(*this);
this->_M_incr();
return __tmp;
}
};
 
template<typename _Value, bool __constant_iterators, bool __cache>
struct _Hashtable_const_iterator
: public _Hashtable_iterator_base<_Value, __cache>
{
typedef _Value value_type;
typedef const _Value* pointer;
typedef const _Value& reference;
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
 
_Hashtable_const_iterator()
: _Hashtable_iterator_base<_Value, __cache>(0, 0) { }
 
_Hashtable_const_iterator(_Hash_node<_Value, __cache>* __p,
_Hash_node<_Value, __cache>** __b)
: _Hashtable_iterator_base<_Value, __cache>(__p, __b) { }
 
explicit
_Hashtable_const_iterator(_Hash_node<_Value, __cache>** __b)
: _Hashtable_iterator_base<_Value, __cache>(*__b, __b) { }
 
_Hashtable_const_iterator(const _Hashtable_iterator<_Value,
__constant_iterators, __cache>& __x)
: _Hashtable_iterator_base<_Value, __cache>(__x._M_cur_node,
__x._M_cur_bucket) { }
 
reference
operator*() const
{ return this->_M_cur_node->_M_v; }
pointer
operator->() const
{ return std::__addressof(this->_M_cur_node->_M_v); }
 
_Hashtable_const_iterator&
operator++()
{
this->_M_incr();
return *this;
}
_Hashtable_const_iterator
operator++(int)
{
_Hashtable_const_iterator __tmp(*this);
this->_M_incr();
return __tmp;
}
};
 
 
// Many of class template _Hashtable's template parameters are policy
// classes. These are defaults for the policies.
 
// Default range hashing function: use division to fold a large number
// into the range [0, N).
struct _Mod_range_hashing
{
typedef std::size_t first_argument_type;
typedef std::size_t second_argument_type;
typedef std::size_t result_type;
 
result_type
operator()(first_argument_type __num, second_argument_type __den) const
{ return __num % __den; }
};
 
// Default ranged hash function H. In principle it should be a
// function object composed from objects of type H1 and H2 such that
// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
// h1 and h2. So instead we'll just use a tag to tell class template
// hashtable to do that composition.
struct _Default_ranged_hash { };
 
// Default value for rehash policy. Bucket size is (usually) the
// smallest prime that keeps the load factor small enough.
struct _Prime_rehash_policy
{
_Prime_rehash_policy(float __z = 1.0)
: _M_max_load_factor(__z), _M_growth_factor(2.f), _M_next_resize(0) { }
 
float
max_load_factor() const
{ return _M_max_load_factor; }
 
// Return a bucket size no smaller than n.
std::size_t
_M_next_bkt(std::size_t __n) const;
// Return a bucket count appropriate for n elements
std::size_t
_M_bkt_for_elements(std::size_t __n) const;
// __n_bkt is current bucket count, __n_elt is current element count,
// and __n_ins is number of elements to be inserted. Do we need to
// increase bucket count? If so, return make_pair(true, n), where n
// is the new bucket count. If not, return make_pair(false, 0).
std::pair<bool, std::size_t>
_M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
std::size_t __n_ins) const;
 
enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
 
float _M_max_load_factor;
float _M_growth_factor;
mutable std::size_t _M_next_resize;
};
 
extern const unsigned long __prime_list[];
 
// XXX This is a hack. There's no good reason for any of
// _Prime_rehash_policy's member functions to be inline.
 
// Return a prime no smaller than n.
inline std::size_t
_Prime_rehash_policy::
_M_next_bkt(std::size_t __n) const
{
const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
+ _S_n_primes, __n);
_M_next_resize =
static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
return *__p;
}
 
// Return the smallest prime p such that alpha p >= n, where alpha
// is the load factor.
inline std::size_t
_Prime_rehash_policy::
_M_bkt_for_elements(std::size_t __n) const
{
const float __min_bkts = __n / _M_max_load_factor;
const unsigned long* __p = std::lower_bound(__prime_list, __prime_list
+ _S_n_primes, __min_bkts);
_M_next_resize =
static_cast<std::size_t>(__builtin_ceil(*__p * _M_max_load_factor));
return *__p;
}
 
// Finds the smallest prime p such that alpha p > __n_elt + __n_ins.
// If p > __n_bkt, return make_pair(true, p); otherwise return
// make_pair(false, 0). In principle this isn't very different from
// _M_bkt_for_elements.
 
// The only tricky part is that we're caching the element count at
// which we need to rehash, so we don't have to do a floating-point
// multiply for every insertion.
 
inline std::pair<bool, std::size_t>
_Prime_rehash_policy::
_M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
std::size_t __n_ins) const
{
if (__n_elt + __n_ins > _M_next_resize)
{
float __min_bkts = ((float(__n_ins) + float(__n_elt))
/ _M_max_load_factor);
if (__min_bkts > __n_bkt)
{
__min_bkts = std::max(__min_bkts, _M_growth_factor * __n_bkt);
const unsigned long* __p =
std::lower_bound(__prime_list, __prime_list + _S_n_primes,
__min_bkts);
_M_next_resize = static_cast<std::size_t>
(__builtin_ceil(*__p * _M_max_load_factor));
return std::make_pair(true, *__p);
}
else
{
_M_next_resize = static_cast<std::size_t>
(__builtin_ceil(__n_bkt * _M_max_load_factor));
return std::make_pair(false, 0);
}
}
else
return std::make_pair(false, 0);
}
 
// Base classes for std::tr1::_Hashtable. We define these base
// classes because in some cases we want to do different things
// depending on the value of a policy class. In some cases the
// policy class affects which member functions and nested typedefs
// are defined; we handle that by specializing base class templates.
// Several of the base class templates need to access other members
// of class template _Hashtable, so we use the "curiously recurring
// template pattern" for them.
 
// class template _Map_base. If the hashtable has a value type of the
// form pair<T1, T2> and a key extraction policy that returns the
// first part of the pair, the hashtable gets a mapped_type typedef.
// If it satisfies those criteria and also has unique keys, then it
// also gets an operator[].
template<typename _Key, typename _Value, typename _Ex, bool __unique,
typename _Hashtable>
struct _Map_base { };
template<typename _Key, typename _Pair, typename _Hashtable>
struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable>
{
typedef typename _Pair::second_type mapped_type;
};
 
template<typename _Key, typename _Pair, typename _Hashtable>
struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>
{
typedef typename _Pair::second_type mapped_type;
mapped_type&
operator[](const _Key& __k);
};
 
template<typename _Key, typename _Pair, typename _Hashtable>
typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>,
true, _Hashtable>::mapped_type&
_Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::
operator[](const _Key& __k)
{
_Hashtable* __h = static_cast<_Hashtable*>(this);
typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k);
std::size_t __n = __h->_M_bucket_index(__k, __code,
__h->_M_bucket_count);
 
typename _Hashtable::_Node* __p =
__h->_M_find_node(__h->_M_buckets[__n], __k, __code);
if (!__p)
return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()),
__n, __code)->second;
return (__p->_M_v).second;
}
 
// class template _Rehash_base. Give hashtable the max_load_factor
// functions iff the rehash policy is _Prime_rehash_policy.
template<typename _RehashPolicy, typename _Hashtable>
struct _Rehash_base { };
 
template<typename _Hashtable>
struct _Rehash_base<_Prime_rehash_policy, _Hashtable>
{
float
max_load_factor() const
{
const _Hashtable* __this = static_cast<const _Hashtable*>(this);
return __this->__rehash_policy().max_load_factor();
}
 
void
max_load_factor(float __z)
{
_Hashtable* __this = static_cast<_Hashtable*>(this);
__this->__rehash_policy(_Prime_rehash_policy(__z));
}
};
 
// Class template _Hash_code_base. Encapsulates two policy issues that
// aren't quite orthogonal.
// (1) the difference between using a ranged hash function and using
// the combination of a hash function and a range-hashing function.
// In the former case we don't have such things as hash codes, so
// we have a dummy type as placeholder.
// (2) Whether or not we cache hash codes. Caching hash codes is
// meaningless if we have a ranged hash function.
// We also put the key extraction and equality comparison function
// objects here, for convenience.
// Primary template: unused except as a hook for specializations.
template<typename _Key, typename _Value,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash,
bool __cache_hash_code>
struct _Hash_code_base;
 
// Specialization: ranged hash function, no caching hash codes. H1
// and H2 are provided but ignored. We define a dummy hash code type.
template<typename _Key, typename _Value,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash>
struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
_Hash, false>
{
protected:
_Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
const _H1&, const _H2&, const _Hash& __h)
: _M_extract(__ex), _M_eq(__eq), _M_ranged_hash(__h) { }
 
typedef void* _Hash_code_type;
_Hash_code_type
_M_hash_code(const _Key& __key) const
{ return 0; }
std::size_t
_M_bucket_index(const _Key& __k, _Hash_code_type,
std::size_t __n) const
{ return _M_ranged_hash(__k, __n); }
 
std::size_t
_M_bucket_index(const _Hash_node<_Value, false>* __p,
std::size_t __n) const
{ return _M_ranged_hash(_M_extract(__p->_M_v), __n); }
bool
_M_compare(const _Key& __k, _Hash_code_type,
_Hash_node<_Value, false>* __n) const
{ return _M_eq(__k, _M_extract(__n->_M_v)); }
 
void
_M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
{ }
 
void
_M_copy_code(_Hash_node<_Value, false>*,
const _Hash_node<_Value, false>*) const
{ }
void
_M_swap(_Hash_code_base& __x)
{
std::swap(_M_extract, __x._M_extract);
std::swap(_M_eq, __x._M_eq);
std::swap(_M_ranged_hash, __x._M_ranged_hash);
}
 
protected:
_ExtractKey _M_extract;
_Equal _M_eq;
_Hash _M_ranged_hash;
};
 
 
// No specialization for ranged hash function while caching hash codes.
// That combination is meaningless, and trying to do it is an error.
// Specialization: ranged hash function, cache hash codes. This
// combination is meaningless, so we provide only a declaration
// and no definition.
template<typename _Key, typename _Value,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2, typename _Hash>
struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
_Hash, true>;
 
// Specialization: hash function and range-hashing function, no
// caching of hash codes. H is provided but ignored. Provides
// typedef and accessor required by TR1.
template<typename _Key, typename _Value,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2>
struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
_Default_ranged_hash, false>
{
typedef _H1 hasher;
 
hasher
hash_function() const
{ return _M_h1; }
 
protected:
_Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
const _H1& __h1, const _H2& __h2,
const _Default_ranged_hash&)
: _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
 
typedef std::size_t _Hash_code_type;
 
_Hash_code_type
_M_hash_code(const _Key& __k) const
{ return _M_h1(__k); }
std::size_t
_M_bucket_index(const _Key&, _Hash_code_type __c,
std::size_t __n) const
{ return _M_h2(__c, __n); }
 
std::size_t
_M_bucket_index(const _Hash_node<_Value, false>* __p,
std::size_t __n) const
{ return _M_h2(_M_h1(_M_extract(__p->_M_v)), __n); }
 
bool
_M_compare(const _Key& __k, _Hash_code_type,
_Hash_node<_Value, false>* __n) const
{ return _M_eq(__k, _M_extract(__n->_M_v)); }
 
void
_M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const
{ }
 
void
_M_copy_code(_Hash_node<_Value, false>*,
const _Hash_node<_Value, false>*) const
{ }
 
void
_M_swap(_Hash_code_base& __x)
{
std::swap(_M_extract, __x._M_extract);
std::swap(_M_eq, __x._M_eq);
std::swap(_M_h1, __x._M_h1);
std::swap(_M_h2, __x._M_h2);
}
 
protected:
_ExtractKey _M_extract;
_Equal _M_eq;
_H1 _M_h1;
_H2 _M_h2;
};
 
// Specialization: hash function and range-hashing function,
// caching hash codes. H is provided but ignored. Provides
// typedef and accessor required by TR1.
template<typename _Key, typename _Value,
typename _ExtractKey, typename _Equal,
typename _H1, typename _H2>
struct _Hash_code_base<_Key, _Value, _ExtractKey, _Equal, _H1, _H2,
_Default_ranged_hash, true>
{
typedef _H1 hasher;
hasher
hash_function() const
{ return _M_h1; }
 
protected:
_Hash_code_base(const _ExtractKey& __ex, const _Equal& __eq,
const _H1& __h1, const _H2& __h2,
const _Default_ranged_hash&)
: _M_extract(__ex), _M_eq(__eq), _M_h1(__h1), _M_h2(__h2) { }
 
typedef std::size_t _Hash_code_type;
_Hash_code_type
_M_hash_code(const _Key& __k) const
{ return _M_h1(__k); }
std::size_t
_M_bucket_index(const _Key&, _Hash_code_type __c,
std::size_t __n) const
{ return _M_h2(__c, __n); }
 
std::size_t
_M_bucket_index(const _Hash_node<_Value, true>* __p,
std::size_t __n) const
{ return _M_h2(__p->_M_hash_code, __n); }
 
bool
_M_compare(const _Key& __k, _Hash_code_type __c,
_Hash_node<_Value, true>* __n) const
{ return __c == __n->_M_hash_code && _M_eq(__k, _M_extract(__n->_M_v)); }
 
void
_M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const
{ __n->_M_hash_code = __c; }
 
void
_M_copy_code(_Hash_node<_Value, true>* __to,
const _Hash_node<_Value, true>* __from) const
{ __to->_M_hash_code = __from->_M_hash_code; }
 
void
_M_swap(_Hash_code_base& __x)
{
std::swap(_M_extract, __x._M_extract);
std::swap(_M_eq, __x._M_eq);
std::swap(_M_h1, __x._M_h1);
std::swap(_M_h2, __x._M_h2);
}
protected:
_ExtractKey _M_extract;
_Equal _M_eq;
_H1 _M_h1;
_H2 _M_h2;
};
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
}
}
/contrib/sdk/sources/libstdc++-v3/include/tr1/hypergeometric.tcc
0,0 → 1,775
// Special functions -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/hypergeometric.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
 
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
 
// Written by Edward Smith-Rowland based:
// (1) Handbook of Mathematical Functions,
// ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 6, pp. 555-566
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
 
#ifndef _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
#define _GLIBCXX_TR1_HYPERGEOMETRIC_TCC 1
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
 
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @brief This routine returns the confluent hypergeometric function
* by series expansion.
*
* @f[
* _1F_1(a;c;x) = \frac{\Gamma(c)}{\Gamma(a)}
* \sum_{n=0}^{\infty}
* \frac{\Gamma(a+n)}{\Gamma(c+n)}
* \frac{x^n}{n!}
* @f]
*
* If a and b are integers and a < 0 and either b > 0 or b < a
* then the series is a polynomial with a finite number of
* terms. If b is an integer and b <= 0 the confluent
* hypergeometric function is undefined.
*
* @param __a The "numerator" parameter.
* @param __c The "denominator" parameter.
* @param __x The argument of the confluent hypergeometric function.
* @return The confluent hypergeometric function.
*/
template<typename _Tp>
_Tp
__conf_hyperg_series(_Tp __a, _Tp __c, _Tp __x)
{
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
 
_Tp __term = _Tp(1);
_Tp __Fac = _Tp(1);
const unsigned int __max_iter = 100000;
unsigned int __i;
for (__i = 0; __i < __max_iter; ++__i)
{
__term *= (__a + _Tp(__i)) * __x
/ ((__c + _Tp(__i)) * _Tp(1 + __i));
if (std::abs(__term) < __eps)
{
break;
}
__Fac += __term;
}
if (__i == __max_iter)
std::__throw_runtime_error(__N("Series failed to converge "
"in __conf_hyperg_series."));
 
return __Fac;
}
 
 
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
* by an iterative procedure described in
* Luke, Algorithms for the Computation of Mathematical Functions.
*
* Like the case of the 2F1 rational approximations, these are
* probably guaranteed to converge for x < 0, barring gross
* numerical instability in the pre-asymptotic regime.
*/
template<typename _Tp>
_Tp
__conf_hyperg_luke(_Tp __a, _Tp __c, _Tp __xin)
{
const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
const int __nmax = 20000;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __x = -__xin;
const _Tp __x3 = __x * __x * __x;
const _Tp __t0 = __a / __c;
const _Tp __t1 = (__a + _Tp(1)) / (_Tp(2) * __c);
const _Tp __t2 = (__a + _Tp(2)) / (_Tp(2) * (__c + _Tp(1)));
_Tp __F = _Tp(1);
_Tp __prec;
 
_Tp __Bnm3 = _Tp(1);
_Tp __Bnm2 = _Tp(1) + __t1 * __x;
_Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
 
_Tp __Anm3 = _Tp(1);
_Tp __Anm2 = __Bnm2 - __t0 * __x;
_Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
+ __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
 
int __n = 3;
while(1)
{
_Tp __npam1 = _Tp(__n - 1) + __a;
_Tp __npcm1 = _Tp(__n - 1) + __c;
_Tp __npam2 = _Tp(__n - 2) + __a;
_Tp __npcm2 = _Tp(__n - 2) + __c;
_Tp __tnm1 = _Tp(2 * __n - 1);
_Tp __tnm3 = _Tp(2 * __n - 3);
_Tp __tnm5 = _Tp(2 * __n - 5);
_Tp __F1 = (_Tp(__n - 2) - __a) / (_Tp(2) * __tnm3 * __npcm1);
_Tp __F2 = (_Tp(__n) + __a) * __npam1
/ (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
_Tp __F3 = -__npam2 * __npam1 * (_Tp(__n - 2) - __a)
/ (_Tp(8) * __tnm3 * __tnm3 * __tnm5
* (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
_Tp __E = -__npam1 * (_Tp(__n - 1) - __c)
/ (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
 
_Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
+ (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
_Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
+ (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
_Tp __r = __An / __Bn;
 
__prec = std::abs((__F - __r) / __F);
__F = __r;
 
if (__prec < __eps || __n > __nmax)
break;
 
if (std::abs(__An) > __big || std::abs(__Bn) > __big)
{
__An /= __big;
__Bn /= __big;
__Anm1 /= __big;
__Bnm1 /= __big;
__Anm2 /= __big;
__Bnm2 /= __big;
__Anm3 /= __big;
__Bnm3 /= __big;
}
else if (std::abs(__An) < _Tp(1) / __big
|| std::abs(__Bn) < _Tp(1) / __big)
{
__An *= __big;
__Bn *= __big;
__Anm1 *= __big;
__Bnm1 *= __big;
__Anm2 *= __big;
__Bnm2 *= __big;
__Anm3 *= __big;
__Bnm3 *= __big;
}
 
++__n;
__Bnm3 = __Bnm2;
__Bnm2 = __Bnm1;
__Bnm1 = __Bn;
__Anm3 = __Anm2;
__Anm2 = __Anm1;
__Anm1 = __An;
}
 
if (__n >= __nmax)
std::__throw_runtime_error(__N("Iteration failed to converge "
"in __conf_hyperg_luke."));
 
return __F;
}
 
 
/**
* @brief Return the confluent hypogeometric function
* @f$ _1F_1(a;c;x) @f$.
*
* @todo Handle b == nonpositive integer blowup - return NaN.
*
* @param __a The @a numerator parameter.
* @param __c The @a denominator parameter.
* @param __x The argument of the confluent hypergeometric function.
* @return The confluent hypergeometric function.
*/
template<typename _Tp>
_Tp
__conf_hyperg(_Tp __a, _Tp __c, _Tp __x)
{
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __c_nint = std::tr1::nearbyint(__c);
#else
const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
#endif
if (__isnan(__a) || __isnan(__c) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__c_nint == __c && __c_nint <= 0)
return std::numeric_limits<_Tp>::infinity();
else if (__a == _Tp(0))
return _Tp(1);
else if (__c == __a)
return std::exp(__x);
else if (__x < _Tp(0))
return __conf_hyperg_luke(__a, __c, __x);
else
return __conf_hyperg_series(__a, __c, __x);
}
 
 
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
* by series expansion.
*
* The hypogeometric function is defined by
* @f[
* _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
* \sum_{n=0}^{\infty}
* \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
* \frac{x^n}{n!}
* @f]
*
* This works and it's pretty fast.
*
* @param __a The first @a numerator parameter.
* @param __a The second @a numerator parameter.
* @param __c The @a denominator parameter.
* @param __x The argument of the confluent hypergeometric function.
* @return The confluent hypergeometric function.
*/
template<typename _Tp>
_Tp
__hyperg_series(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
{
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
 
_Tp __term = _Tp(1);
_Tp __Fabc = _Tp(1);
const unsigned int __max_iter = 100000;
unsigned int __i;
for (__i = 0; __i < __max_iter; ++__i)
{
__term *= (__a + _Tp(__i)) * (__b + _Tp(__i)) * __x
/ ((__c + _Tp(__i)) * _Tp(1 + __i));
if (std::abs(__term) < __eps)
{
break;
}
__Fabc += __term;
}
if (__i == __max_iter)
std::__throw_runtime_error(__N("Series failed to converge "
"in __hyperg_series."));
 
return __Fabc;
}
 
 
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
* by an iterative procedure described in
* Luke, Algorithms for the Computation of Mathematical Functions.
*/
template<typename _Tp>
_Tp
__hyperg_luke(_Tp __a, _Tp __b, _Tp __c, _Tp __xin)
{
const _Tp __big = std::pow(std::numeric_limits<_Tp>::max(), _Tp(0.16L));
const int __nmax = 20000;
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __x = -__xin;
const _Tp __x3 = __x * __x * __x;
const _Tp __t0 = __a * __b / __c;
const _Tp __t1 = (__a + _Tp(1)) * (__b + _Tp(1)) / (_Tp(2) * __c);
const _Tp __t2 = (__a + _Tp(2)) * (__b + _Tp(2))
/ (_Tp(2) * (__c + _Tp(1)));
 
_Tp __F = _Tp(1);
 
_Tp __Bnm3 = _Tp(1);
_Tp __Bnm2 = _Tp(1) + __t1 * __x;
_Tp __Bnm1 = _Tp(1) + __t2 * __x * (_Tp(1) + __t1 / _Tp(3) * __x);
 
_Tp __Anm3 = _Tp(1);
_Tp __Anm2 = __Bnm2 - __t0 * __x;
_Tp __Anm1 = __Bnm1 - __t0 * (_Tp(1) + __t2 * __x) * __x
+ __t0 * __t1 * (__c / (__c + _Tp(1))) * __x * __x;
 
int __n = 3;
while (1)
{
const _Tp __npam1 = _Tp(__n - 1) + __a;
const _Tp __npbm1 = _Tp(__n - 1) + __b;
const _Tp __npcm1 = _Tp(__n - 1) + __c;
const _Tp __npam2 = _Tp(__n - 2) + __a;
const _Tp __npbm2 = _Tp(__n - 2) + __b;
const _Tp __npcm2 = _Tp(__n - 2) + __c;
const _Tp __tnm1 = _Tp(2 * __n - 1);
const _Tp __tnm3 = _Tp(2 * __n - 3);
const _Tp __tnm5 = _Tp(2 * __n - 5);
const _Tp __n2 = __n * __n;
const _Tp __F1 = (_Tp(3) * __n2 + (__a + __b - _Tp(6)) * __n
+ _Tp(2) - __a * __b - _Tp(2) * (__a + __b))
/ (_Tp(2) * __tnm3 * __npcm1);
const _Tp __F2 = -(_Tp(3) * __n2 - (__a + __b + _Tp(6)) * __n
+ _Tp(2) - __a * __b) * __npam1 * __npbm1
/ (_Tp(4) * __tnm1 * __tnm3 * __npcm2 * __npcm1);
const _Tp __F3 = (__npam2 * __npam1 * __npbm2 * __npbm1
* (_Tp(__n - 2) - __a) * (_Tp(__n - 2) - __b))
/ (_Tp(8) * __tnm3 * __tnm3 * __tnm5
* (_Tp(__n - 3) + __c) * __npcm2 * __npcm1);
const _Tp __E = -__npam1 * __npbm1 * (_Tp(__n - 1) - __c)
/ (_Tp(2) * __tnm3 * __npcm2 * __npcm1);
 
_Tp __An = (_Tp(1) + __F1 * __x) * __Anm1
+ (__E + __F2 * __x) * __x * __Anm2 + __F3 * __x3 * __Anm3;
_Tp __Bn = (_Tp(1) + __F1 * __x) * __Bnm1
+ (__E + __F2 * __x) * __x * __Bnm2 + __F3 * __x3 * __Bnm3;
const _Tp __r = __An / __Bn;
 
const _Tp __prec = std::abs((__F - __r) / __F);
__F = __r;
 
if (__prec < __eps || __n > __nmax)
break;
 
if (std::abs(__An) > __big || std::abs(__Bn) > __big)
{
__An /= __big;
__Bn /= __big;
__Anm1 /= __big;
__Bnm1 /= __big;
__Anm2 /= __big;
__Bnm2 /= __big;
__Anm3 /= __big;
__Bnm3 /= __big;
}
else if (std::abs(__An) < _Tp(1) / __big
|| std::abs(__Bn) < _Tp(1) / __big)
{
__An *= __big;
__Bn *= __big;
__Anm1 *= __big;
__Bnm1 *= __big;
__Anm2 *= __big;
__Bnm2 *= __big;
__Anm3 *= __big;
__Bnm3 *= __big;
}
 
++__n;
__Bnm3 = __Bnm2;
__Bnm2 = __Bnm1;
__Bnm1 = __Bn;
__Anm3 = __Anm2;
__Anm2 = __Anm1;
__Anm1 = __An;
}
 
if (__n >= __nmax)
std::__throw_runtime_error(__N("Iteration failed to converge "
"in __hyperg_luke."));
 
return __F;
}
 
 
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$
* by the reflection formulae in Abramowitz & Stegun formula
* 15.3.6 for d = c - a - b not integral and formula 15.3.11 for
* d = c - a - b integral. This assumes a, b, c != negative
* integer.
*
* The hypogeometric function is defined by
* @f[
* _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
* \sum_{n=0}^{\infty}
* \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
* \frac{x^n}{n!}
* @f]
*
* The reflection formula for nonintegral @f$ d = c - a - b @f$ is:
* @f[
* _2F_1(a,b;c;x) = \frac{\Gamma(c)\Gamma(d)}{\Gamma(c-a)\Gamma(c-b)}
* _2F_1(a,b;1-d;1-x)
* + \frac{\Gamma(c)\Gamma(-d)}{\Gamma(a)\Gamma(b)}
* _2F_1(c-a,c-b;1+d;1-x)
* @f]
*
* The reflection formula for integral @f$ m = c - a - b @f$ is:
* @f[
* _2F_1(a,b;a+b+m;x) = \frac{\Gamma(m)\Gamma(a+b+m)}{\Gamma(a+m)\Gamma(b+m)}
* \sum_{k=0}^{m-1} \frac{(m+a)_k(m+b)_k}{k!(1-m)_k}
* -
* @f]
*/
template<typename _Tp>
_Tp
__hyperg_reflect(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
{
const _Tp __d = __c - __a - __b;
const int __intd = std::floor(__d + _Tp(0.5L));
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __toler = _Tp(1000) * __eps;
const _Tp __log_max = std::log(std::numeric_limits<_Tp>::max());
const bool __d_integer = (std::abs(__d - __intd) < __toler);
 
if (__d_integer)
{
const _Tp __ln_omx = std::log(_Tp(1) - __x);
const _Tp __ad = std::abs(__d);
_Tp __F1, __F2;
 
_Tp __d1, __d2;
if (__d >= _Tp(0))
{
__d1 = __d;
__d2 = _Tp(0);
}
else
{
__d1 = _Tp(0);
__d2 = __d;
}
 
const _Tp __lng_c = __log_gamma(__c);
 
// Evaluate F1.
if (__ad < __eps)
{
// d = c - a - b = 0.
__F1 = _Tp(0);
}
else
{
 
bool __ok_d1 = true;
_Tp __lng_ad, __lng_ad1, __lng_bd1;
__try
{
__lng_ad = __log_gamma(__ad);
__lng_ad1 = __log_gamma(__a + __d1);
__lng_bd1 = __log_gamma(__b + __d1);
}
__catch(...)
{
__ok_d1 = false;
}
 
if (__ok_d1)
{
/* Gamma functions in the denominator are ok.
* Proceed with evaluation.
*/
_Tp __sum1 = _Tp(1);
_Tp __term = _Tp(1);
_Tp __ln_pre1 = __lng_ad + __lng_c + __d2 * __ln_omx
- __lng_ad1 - __lng_bd1;
 
/* Do F1 sum.
*/
for (int __i = 1; __i < __ad; ++__i)
{
const int __j = __i - 1;
__term *= (__a + __d2 + __j) * (__b + __d2 + __j)
/ (_Tp(1) + __d2 + __j) / __i * (_Tp(1) - __x);
__sum1 += __term;
}
 
if (__ln_pre1 > __log_max)
std::__throw_runtime_error(__N("Overflow of gamma functions"
" in __hyperg_luke."));
else
__F1 = std::exp(__ln_pre1) * __sum1;
}
else
{
// Gamma functions in the denominator were not ok.
// So the F1 term is zero.
__F1 = _Tp(0);
}
} // end F1 evaluation
 
// Evaluate F2.
bool __ok_d2 = true;
_Tp __lng_ad2, __lng_bd2;
__try
{
__lng_ad2 = __log_gamma(__a + __d2);
__lng_bd2 = __log_gamma(__b + __d2);
}
__catch(...)
{
__ok_d2 = false;
}
 
if (__ok_d2)
{
// Gamma functions in the denominator are ok.
// Proceed with evaluation.
const int __maxiter = 2000;
const _Tp __psi_1 = -__numeric_constants<_Tp>::__gamma_e();
const _Tp __psi_1pd = __psi(_Tp(1) + __ad);
const _Tp __psi_apd1 = __psi(__a + __d1);
const _Tp __psi_bpd1 = __psi(__b + __d1);
 
_Tp __psi_term = __psi_1 + __psi_1pd - __psi_apd1
- __psi_bpd1 - __ln_omx;
_Tp __fact = _Tp(1);
_Tp __sum2 = __psi_term;
_Tp __ln_pre2 = __lng_c + __d1 * __ln_omx
- __lng_ad2 - __lng_bd2;
 
// Do F2 sum.
int __j;
for (__j = 1; __j < __maxiter; ++__j)
{
// Values for psi functions use recurrence;
// Abramowitz & Stegun 6.3.5
const _Tp __term1 = _Tp(1) / _Tp(__j)
+ _Tp(1) / (__ad + __j);
const _Tp __term2 = _Tp(1) / (__a + __d1 + _Tp(__j - 1))
+ _Tp(1) / (__b + __d1 + _Tp(__j - 1));
__psi_term += __term1 - __term2;
__fact *= (__a + __d1 + _Tp(__j - 1))
* (__b + __d1 + _Tp(__j - 1))
/ ((__ad + __j) * __j) * (_Tp(1) - __x);
const _Tp __delta = __fact * __psi_term;
__sum2 += __delta;
if (std::abs(__delta) < __eps * std::abs(__sum2))
break;
}
if (__j == __maxiter)
std::__throw_runtime_error(__N("Sum F2 failed to converge "
"in __hyperg_reflect"));
 
if (__sum2 == _Tp(0))
__F2 = _Tp(0);
else
__F2 = std::exp(__ln_pre2) * __sum2;
}
else
{
// Gamma functions in the denominator not ok.
// So the F2 term is zero.
__F2 = _Tp(0);
} // end F2 evaluation
 
const _Tp __sgn_2 = (__intd % 2 == 1 ? -_Tp(1) : _Tp(1));
const _Tp __F = __F1 + __sgn_2 * __F2;
 
return __F;
}
else
{
// d = c - a - b not an integer.
 
// These gamma functions appear in the denominator, so we
// catch their harmless domain errors and set the terms to zero.
bool __ok1 = true;
_Tp __sgn_g1ca = _Tp(0), __ln_g1ca = _Tp(0);
_Tp __sgn_g1cb = _Tp(0), __ln_g1cb = _Tp(0);
__try
{
__sgn_g1ca = __log_gamma_sign(__c - __a);
__ln_g1ca = __log_gamma(__c - __a);
__sgn_g1cb = __log_gamma_sign(__c - __b);
__ln_g1cb = __log_gamma(__c - __b);
}
__catch(...)
{
__ok1 = false;
}
 
bool __ok2 = true;
_Tp __sgn_g2a = _Tp(0), __ln_g2a = _Tp(0);
_Tp __sgn_g2b = _Tp(0), __ln_g2b = _Tp(0);
__try
{
__sgn_g2a = __log_gamma_sign(__a);
__ln_g2a = __log_gamma(__a);
__sgn_g2b = __log_gamma_sign(__b);
__ln_g2b = __log_gamma(__b);
}
__catch(...)
{
__ok2 = false;
}
 
const _Tp __sgn_gc = __log_gamma_sign(__c);
const _Tp __ln_gc = __log_gamma(__c);
const _Tp __sgn_gd = __log_gamma_sign(__d);
const _Tp __ln_gd = __log_gamma(__d);
const _Tp __sgn_gmd = __log_gamma_sign(-__d);
const _Tp __ln_gmd = __log_gamma(-__d);
 
const _Tp __sgn1 = __sgn_gc * __sgn_gd * __sgn_g1ca * __sgn_g1cb;
const _Tp __sgn2 = __sgn_gc * __sgn_gmd * __sgn_g2a * __sgn_g2b;
 
_Tp __pre1, __pre2;
if (__ok1 && __ok2)
{
_Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
_Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
+ __d * std::log(_Tp(1) - __x);
if (__ln_pre1 < __log_max && __ln_pre2 < __log_max)
{
__pre1 = std::exp(__ln_pre1);
__pre2 = std::exp(__ln_pre2);
__pre1 *= __sgn1;
__pre2 *= __sgn2;
}
else
{
std::__throw_runtime_error(__N("Overflow of gamma functions "
"in __hyperg_reflect"));
}
}
else if (__ok1 && !__ok2)
{
_Tp __ln_pre1 = __ln_gc + __ln_gd - __ln_g1ca - __ln_g1cb;
if (__ln_pre1 < __log_max)
{
__pre1 = std::exp(__ln_pre1);
__pre1 *= __sgn1;
__pre2 = _Tp(0);
}
else
{
std::__throw_runtime_error(__N("Overflow of gamma functions "
"in __hyperg_reflect"));
}
}
else if (!__ok1 && __ok2)
{
_Tp __ln_pre2 = __ln_gc + __ln_gmd - __ln_g2a - __ln_g2b
+ __d * std::log(_Tp(1) - __x);
if (__ln_pre2 < __log_max)
{
__pre1 = _Tp(0);
__pre2 = std::exp(__ln_pre2);
__pre2 *= __sgn2;
}
else
{
std::__throw_runtime_error(__N("Overflow of gamma functions "
"in __hyperg_reflect"));
}
}
else
{
__pre1 = _Tp(0);
__pre2 = _Tp(0);
std::__throw_runtime_error(__N("Underflow of gamma functions "
"in __hyperg_reflect"));
}
 
const _Tp __F1 = __hyperg_series(__a, __b, _Tp(1) - __d,
_Tp(1) - __x);
const _Tp __F2 = __hyperg_series(__c - __a, __c - __b, _Tp(1) + __d,
_Tp(1) - __x);
 
const _Tp __F = __pre1 * __F1 + __pre2 * __F2;
 
return __F;
}
}
 
 
/**
* @brief Return the hypogeometric function @f$ _2F_1(a,b;c;x) @f$.
*
* The hypogeometric function is defined by
* @f[
* _2F_1(a,b;c;x) = \frac{\Gamma(c)}{\Gamma(a)\Gamma(b)}
* \sum_{n=0}^{\infty}
* \frac{\Gamma(a+n)\Gamma(b+n)}{\Gamma(c+n)}
* \frac{x^n}{n!}
* @f]
*
* @param __a The first @a numerator parameter.
* @param __a The second @a numerator parameter.
* @param __c The @a denominator parameter.
* @param __x The argument of the confluent hypergeometric function.
* @return The confluent hypergeometric function.
*/
template<typename _Tp>
_Tp
__hyperg(_Tp __a, _Tp __b, _Tp __c, _Tp __x)
{
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __a_nint = std::tr1::nearbyint(__a);
const _Tp __b_nint = std::tr1::nearbyint(__b);
const _Tp __c_nint = std::tr1::nearbyint(__c);
#else
const _Tp __a_nint = static_cast<int>(__a + _Tp(0.5L));
const _Tp __b_nint = static_cast<int>(__b + _Tp(0.5L));
const _Tp __c_nint = static_cast<int>(__c + _Tp(0.5L));
#endif
const _Tp __toler = _Tp(1000) * std::numeric_limits<_Tp>::epsilon();
if (std::abs(__x) >= _Tp(1))
std::__throw_domain_error(__N("Argument outside unit circle "
"in __hyperg."));
else if (__isnan(__a) || __isnan(__b)
|| __isnan(__c) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__c_nint == __c && __c_nint <= _Tp(0))
return std::numeric_limits<_Tp>::infinity();
else if (std::abs(__c - __b) < __toler || std::abs(__c - __a) < __toler)
return std::pow(_Tp(1) - __x, __c - __a - __b);
else if (__a >= _Tp(0) && __b >= _Tp(0) && __c >= _Tp(0)
&& __x >= _Tp(0) && __x < _Tp(0.995L))
return __hyperg_series(__a, __b, __c, __x);
else if (std::abs(__a) < _Tp(10) && std::abs(__b) < _Tp(10))
{
// For integer a and b the hypergeometric function is a
// finite polynomial.
if (__a < _Tp(0) && std::abs(__a - __a_nint) < __toler)
return __hyperg_series(__a_nint, __b, __c, __x);
else if (__b < _Tp(0) && std::abs(__b - __b_nint) < __toler)
return __hyperg_series(__a, __b_nint, __c, __x);
else if (__x < -_Tp(0.25L))
return __hyperg_luke(__a, __b, __c, __x);
else if (__x < _Tp(0.5L))
return __hyperg_series(__a, __b, __c, __x);
else
if (std::abs(__c) > _Tp(10))
return __hyperg_series(__a, __b, __c, __x);
else
return __hyperg_reflect(__a, __b, __c, __x);
}
else
return __hyperg_luke(__a, __b, __c, __x);
}
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
 
#endif // _GLIBCXX_TR1_HYPERGEOMETRIC_TCC
/contrib/sdk/sources/libstdc++-v3/include/tr1/inttypes.h
0,0 → 1,34
// TR1 inttypes.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/inttypes.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_INTTYPES_H
#define _GLIBCXX_TR1_INTTYPES_H 1
 
#include <tr1/cinttypes>
 
#endif // _GLIBCXX_TR1_INTTYPES_H
/contrib/sdk/sources/libstdc++-v3/include/tr1/legendre_function.tcc
0,0 → 1,303
// Special functions -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/legendre_function.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
 
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
 
// Written by Edward Smith-Rowland based on:
// (1) Handbook of Mathematical Functions,
// ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 8, pp. 331-341
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
// 2nd ed, pp. 252-254
 
#ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
#define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1
 
#include "special_function_util.h"
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
 
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @brief Return the Legendre polynomial by recursion on order
* @f$ l @f$.
*
* The Legendre function of @f$ l @f$ and @f$ x @f$,
* @f$ P_l(x) @f$, is defined by:
* @f[
* P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
* @f]
*
* @param l The order of the Legendre polynomial. @f$l >= 0@f$.
* @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
*/
template<typename _Tp>
_Tp
__poly_legendre_p(unsigned int __l, _Tp __x)
{
 
if ((__x < _Tp(-1)) || (__x > _Tp(+1)))
std::__throw_domain_error(__N("Argument out of range"
" in __poly_legendre_p."));
else if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x == +_Tp(1))
return +_Tp(1);
else if (__x == -_Tp(1))
return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));
else
{
_Tp __p_lm2 = _Tp(1);
if (__l == 0)
return __p_lm2;
 
_Tp __p_lm1 = __x;
if (__l == 1)
return __p_lm1;
 
_Tp __p_l = 0;
for (unsigned int __ll = 2; __ll <= __l; ++__ll)
{
// This arrangement is supposed to be better for roundoff
// protection, Arfken, 2nd Ed, Eq 12.17a.
__p_l = _Tp(2) * __x * __p_lm1 - __p_lm2
- (__x * __p_lm1 - __p_lm2) / _Tp(__ll);
__p_lm2 = __p_lm1;
__p_lm1 = __p_l;
}
 
return __p_l;
}
}
 
 
/**
* @brief Return the associated Legendre function by recursion
* on @f$ l @f$.
*
* The associated Legendre function is derived from the Legendre function
* @f$ P_l(x) @f$ by the Rodrigues formula:
* @f[
* P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
* @f]
*
* @param l The order of the associated Legendre function.
* @f$ l >= 0 @f$.
* @param m The order of the associated Legendre function.
* @f$ m <= l @f$.
* @param x The argument of the associated Legendre function.
* @f$ |x| <= 1 @f$.
*/
template<typename _Tp>
_Tp
__assoc_legendre_p(unsigned int __l, unsigned int __m, _Tp __x)
{
 
if (__x < _Tp(-1) || __x > _Tp(+1))
std::__throw_domain_error(__N("Argument out of range"
" in __assoc_legendre_p."));
else if (__m > __l)
std::__throw_domain_error(__N("Degree out of range"
" in __assoc_legendre_p."));
else if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__m == 0)
return __poly_legendre_p(__l, __x);
else
{
_Tp __p_mm = _Tp(1);
if (__m > 0)
{
// Two square roots seem more accurate more of the time
// than just one.
_Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);
_Tp __fact = _Tp(1);
for (unsigned int __i = 1; __i <= __m; ++__i)
{
__p_mm *= -__fact * __root;
__fact += _Tp(2);
}
}
if (__l == __m)
return __p_mm;
 
_Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;
if (__l == __m + 1)
return __p_mp1m;
 
_Tp __p_lm2m = __p_mm;
_Tp __P_lm1m = __p_mp1m;
_Tp __p_lm = _Tp(0);
for (unsigned int __j = __m + 2; __j <= __l; ++__j)
{
__p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m
- _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);
__p_lm2m = __P_lm1m;
__P_lm1m = __p_lm;
}
 
return __p_lm;
}
}
 
 
/**
* @brief Return the spherical associated Legendre function.
*
* The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,
* and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where
* @f[
* Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
* \frac{(l-m)!}{(l+m)!}]
* P_l^m(\cos\theta) \exp^{im\phi}
* @f]
* is the spherical harmonic function and @f$ P_l^m(x) @f$ is the
* associated Legendre function.
*
* This function differs from the associated Legendre function by
* argument (@f$x = \cos(\theta)@f$) and by a normalization factor
* but this factor is rather large for large @f$ l @f$ and @f$ m @f$
* and so this function is stable for larger differences of @f$ l @f$
* and @f$ m @f$.
*
* @param l The order of the spherical associated Legendre function.
* @f$ l >= 0 @f$.
* @param m The order of the spherical associated Legendre function.
* @f$ m <= l @f$.
* @param theta The radian angle argument of the spherical associated
* Legendre function.
*/
template <typename _Tp>
_Tp
__sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
{
if (__isnan(__theta))
return std::numeric_limits<_Tp>::quiet_NaN();
 
const _Tp __x = std::cos(__theta);
 
if (__l < __m)
{
std::__throw_domain_error(__N("Bad argument "
"in __sph_legendre."));
}
else if (__m == 0)
{
_Tp __P = __poly_legendre_p(__l, __x);
_Tp __fact = std::sqrt(_Tp(2 * __l + 1)
/ (_Tp(4) * __numeric_constants<_Tp>::__pi()));
__P *= __fact;
return __P;
}
else if (__x == _Tp(1) || __x == -_Tp(1))
{
// m > 0 here
return _Tp(0);
}
else
{
// m > 0 and |x| < 1 here
 
// Starting value for recursion.
// Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )
// (-1)^m (1-x^2)^(m/2) / pi^(1/4)
const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));
const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __lncirc = std::tr1::log1p(-__x * __x);
#else
const _Tp __lncirc = std::log(_Tp(1) - __x * __x);
#endif
// Gamma(m+1/2) / Gamma(m)
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __lnpoch = std::tr1::lgamma(_Tp(__m + _Tp(0.5L)))
- std::tr1::lgamma(_Tp(__m));
#else
const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))
- __log_gamma(_Tp(__m));
#endif
const _Tp __lnpre_val =
-_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
+ _Tp(0.5L) * (__lnpoch + __m * __lncirc);
_Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
/ (_Tp(4) * __numeric_constants<_Tp>::__pi()));
_Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
_Tp __y_mp1m = __y_mp1m_factor * __y_mm;
 
if (__l == __m)
{
return __y_mm;
}
else if (__l == __m + 1)
{
return __y_mp1m;
}
else
{
_Tp __y_lm = _Tp(0);
 
// Compute Y_l^m, l > m+1, upward recursion on l.
for ( int __ll = __m + 2; __ll <= __l; ++__ll)
{
const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);
const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);
const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)
* _Tp(2 * __ll - 1));
const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)
/ _Tp(2 * __ll - 3));
__y_lm = (__x * __y_mp1m * __fact1
- (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);
__y_mm = __y_mp1m;
__y_mp1m = __y_lm;
}
 
return __y_lm;
}
}
}
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
 
#endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
/contrib/sdk/sources/libstdc++-v3/include/tr1/limits.h
0,0 → 1,34
// TR1 limits.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/limits.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _TR1_LIMITS_H
#define _TR1_LIMITS_H 1
 
#include <tr1/climits>
 
#endif
/contrib/sdk/sources/libstdc++-v3/include/tr1/math.h
0,0 → 1,186
// TR1 math.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/math.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_MATH_H
#define _GLIBCXX_TR1_MATH_H 1
 
#include <tr1/cmath>
 
#if _GLIBCXX_USE_C99_MATH_TR1
 
using std::tr1::acos;
using std::tr1::acosh;
using std::tr1::asin;
using std::tr1::asinh;
using std::tr1::atan;
using std::tr1::atan2;
using std::tr1::atanh;
using std::tr1::cbrt;
using std::tr1::ceil;
using std::tr1::copysign;
using std::tr1::cos;
using std::tr1::cosh;
using std::tr1::erf;
using std::tr1::erfc;
using std::tr1::exp;
using std::tr1::exp2;
using std::tr1::expm1;
using std::tr1::fabs;
using std::tr1::fdim;
using std::tr1::floor;
using std::tr1::fma;
using std::tr1::fmax;
using std::tr1::fmin;
using std::tr1::fmod;
using std::tr1::frexp;
using std::tr1::hypot;
using std::tr1::ilogb;
using std::tr1::ldexp;
using std::tr1::lgamma;
using std::tr1::llrint;
using std::tr1::llround;
using std::tr1::log;
using std::tr1::log10;
using std::tr1::log1p;
using std::tr1::log2;
using std::tr1::logb;
using std::tr1::lrint;
using std::tr1::lround;
using std::tr1::nearbyint;
using std::tr1::nextafter;
using std::tr1::nexttoward;
using std::tr1::pow;
using std::tr1::remainder;
using std::tr1::remquo;
using std::tr1::rint;
using std::tr1::round;
using std::tr1::scalbln;
using std::tr1::scalbn;
using std::tr1::sin;
using std::tr1::sinh;
using std::tr1::sqrt;
using std::tr1::tan;
using std::tr1::tanh;
using std::tr1::tgamma;
using std::tr1::trunc;
 
#endif
 
using std::tr1::assoc_laguerref;
using std::tr1::assoc_laguerre;
using std::tr1::assoc_laguerrel;
 
using std::tr1::assoc_legendref;
using std::tr1::assoc_legendre;
using std::tr1::assoc_legendrel;
 
using std::tr1::betaf;
using std::tr1::beta;
using std::tr1::betal;
 
using std::tr1::comp_ellint_1f;
using std::tr1::comp_ellint_1;
using std::tr1::comp_ellint_1l;
 
using std::tr1::comp_ellint_2f;
using std::tr1::comp_ellint_2;
using std::tr1::comp_ellint_2l;
 
using std::tr1::comp_ellint_3f;
using std::tr1::comp_ellint_3;
using std::tr1::comp_ellint_3l;
 
using std::tr1::conf_hypergf;
using std::tr1::conf_hyperg;
using std::tr1::conf_hypergl;
 
using std::tr1::cyl_bessel_if;
using std::tr1::cyl_bessel_i;
using std::tr1::cyl_bessel_il;
 
using std::tr1::cyl_bessel_jf;
using std::tr1::cyl_bessel_j;
using std::tr1::cyl_bessel_jl;
 
using std::tr1::cyl_bessel_kf;
using std::tr1::cyl_bessel_k;
using std::tr1::cyl_bessel_kl;
 
using std::tr1::cyl_neumannf;
using std::tr1::cyl_neumann;
using std::tr1::cyl_neumannl;
 
using std::tr1::ellint_1f;
using std::tr1::ellint_1;
using std::tr1::ellint_1l;
 
using std::tr1::ellint_2f;
using std::tr1::ellint_2;
using std::tr1::ellint_2l;
 
using std::tr1::ellint_3f;
using std::tr1::ellint_3;
using std::tr1::ellint_3l;
 
using std::tr1::expintf;
using std::tr1::expint;
using std::tr1::expintl;
 
using std::tr1::hermitef;
using std::tr1::hermite;
using std::tr1::hermitel;
 
using std::tr1::hypergf;
using std::tr1::hyperg;
using std::tr1::hypergl;
 
using std::tr1::laguerref;
using std::tr1::laguerre;
using std::tr1::laguerrel;
 
using std::tr1::legendref;
using std::tr1::legendre;
using std::tr1::legendrel;
 
using std::tr1::riemann_zetaf;
using std::tr1::riemann_zeta;
using std::tr1::riemann_zetal;
 
using std::tr1::sph_besself;
using std::tr1::sph_bessel;
using std::tr1::sph_bessell;
 
using std::tr1::sph_legendref;
using std::tr1::sph_legendre;
using std::tr1::sph_legendrel;
 
using std::tr1::sph_neumannf;
using std::tr1::sph_neumann;
using std::tr1::sph_neumannl;
 
#endif // _GLIBCXX_TR1_MATH_H
/contrib/sdk/sources/libstdc++-v3/include/tr1/memory
0,0 → 1,52
// <tr1/memory> -*- C++ -*-
 
// Copyright (C) 2005-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/**
* @file tr1/memory
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_MEMORY
#define _GLIBCXX_TR1_MEMORY 1
 
#pragma GCC system_header
 
#if defined(_GLIBCXX_INCLUDE_AS_CXX11)
# error TR1 header cannot be included from C++11 header
#endif
 
#include <memory>
#include <exception> // std::exception
#include <typeinfo> // std::type_info in get_deleter
#include <bits/stl_algobase.h> // std::swap
#include <iosfwd> // std::basic_ostream
#include <ext/atomicity.h>
#include <ext/concurrence.h>
#include <bits/functexcept.h>
#include <bits/stl_function.h> // std::less
#include <debug/debug.h>
#include <tr1/type_traits>
#include <tr1/shared_ptr.h>
 
#endif // _GLIBCXX_TR1_MEMORY
/contrib/sdk/sources/libstdc++-v3/include/tr1/modified_bessel_func.tcc
0,0 → 1,435
// Special functions -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/modified_bessel_func.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
 
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
 
// Written by Edward Smith-Rowland.
//
// References:
// (1) Handbook of Mathematical Functions,
// Ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 9, pp. 355-434, Section 10 pp. 435-478
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
// 2nd ed, pp. 246-249.
 
#ifndef _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
#define _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC 1
 
#include "special_function_util.h"
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
 
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @brief Compute the modified Bessel functions @f$ I_\nu(x) @f$ and
* @f$ K_\nu(x) @f$ and their first derivatives
* @f$ I'_\nu(x) @f$ and @f$ K'_\nu(x) @f$ respectively.
* These four functions are computed together for numerical
* stability.
*
* @param __nu The order of the Bessel functions.
* @param __x The argument of the Bessel functions.
* @param __Inu The output regular modified Bessel function.
* @param __Knu The output irregular modified Bessel function.
* @param __Ipnu The output derivative of the regular
* modified Bessel function.
* @param __Kpnu The output derivative of the irregular
* modified Bessel function.
*/
template <typename _Tp>
void
__bessel_ik(_Tp __nu, _Tp __x,
_Tp & __Inu, _Tp & __Knu, _Tp & __Ipnu, _Tp & __Kpnu)
{
if (__x == _Tp(0))
{
if (__nu == _Tp(0))
{
__Inu = _Tp(1);
__Ipnu = _Tp(0);
}
else if (__nu == _Tp(1))
{
__Inu = _Tp(0);
__Ipnu = _Tp(0.5L);
}
else
{
__Inu = _Tp(0);
__Ipnu = _Tp(0);
}
__Knu = std::numeric_limits<_Tp>::infinity();
__Kpnu = -std::numeric_limits<_Tp>::infinity();
return;
}
 
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
const _Tp __fp_min = _Tp(10) * std::numeric_limits<_Tp>::epsilon();
const int __max_iter = 15000;
const _Tp __x_min = _Tp(2);
 
const int __nl = static_cast<int>(__nu + _Tp(0.5L));
 
const _Tp __mu = __nu - __nl;
const _Tp __mu2 = __mu * __mu;
const _Tp __xi = _Tp(1) / __x;
const _Tp __xi2 = _Tp(2) * __xi;
_Tp __h = __nu * __xi;
if ( __h < __fp_min )
__h = __fp_min;
_Tp __b = __xi2 * __nu;
_Tp __d = _Tp(0);
_Tp __c = __h;
int __i;
for ( __i = 1; __i <= __max_iter; ++__i )
{
__b += __xi2;
__d = _Tp(1) / (__b + __d);
__c = __b + _Tp(1) / __c;
const _Tp __del = __c * __d;
__h *= __del;
if (std::abs(__del - _Tp(1)) < __eps)
break;
}
if (__i > __max_iter)
std::__throw_runtime_error(__N("Argument x too large "
"in __bessel_ik; "
"try asymptotic expansion."));
_Tp __Inul = __fp_min;
_Tp __Ipnul = __h * __Inul;
_Tp __Inul1 = __Inul;
_Tp __Ipnu1 = __Ipnul;
_Tp __fact = __nu * __xi;
for (int __l = __nl; __l >= 1; --__l)
{
const _Tp __Inutemp = __fact * __Inul + __Ipnul;
__fact -= __xi;
__Ipnul = __fact * __Inutemp + __Inul;
__Inul = __Inutemp;
}
_Tp __f = __Ipnul / __Inul;
_Tp __Kmu, __Knu1;
if (__x < __x_min)
{
const _Tp __x2 = __x / _Tp(2);
const _Tp __pimu = __numeric_constants<_Tp>::__pi() * __mu;
const _Tp __fact = (std::abs(__pimu) < __eps
? _Tp(1) : __pimu / std::sin(__pimu));
_Tp __d = -std::log(__x2);
_Tp __e = __mu * __d;
const _Tp __fact2 = (std::abs(__e) < __eps
? _Tp(1) : std::sinh(__e) / __e);
_Tp __gam1, __gam2, __gampl, __gammi;
__gamma_temme(__mu, __gam1, __gam2, __gampl, __gammi);
_Tp __ff = __fact
* (__gam1 * std::cosh(__e) + __gam2 * __fact2 * __d);
_Tp __sum = __ff;
__e = std::exp(__e);
_Tp __p = __e / (_Tp(2) * __gampl);
_Tp __q = _Tp(1) / (_Tp(2) * __e * __gammi);
_Tp __c = _Tp(1);
__d = __x2 * __x2;
_Tp __sum1 = __p;
int __i;
for (__i = 1; __i <= __max_iter; ++__i)
{
__ff = (__i * __ff + __p + __q) / (__i * __i - __mu2);
__c *= __d / __i;
__p /= __i - __mu;
__q /= __i + __mu;
const _Tp __del = __c * __ff;
__sum += __del;
const _Tp __del1 = __c * (__p - __i * __ff);
__sum1 += __del1;
if (std::abs(__del) < __eps * std::abs(__sum))
break;
}
if (__i > __max_iter)
std::__throw_runtime_error(__N("Bessel k series failed to converge "
"in __bessel_ik."));
__Kmu = __sum;
__Knu1 = __sum1 * __xi2;
}
else
{
_Tp __b = _Tp(2) * (_Tp(1) + __x);
_Tp __d = _Tp(1) / __b;
_Tp __delh = __d;
_Tp __h = __delh;
_Tp __q1 = _Tp(0);
_Tp __q2 = _Tp(1);
_Tp __a1 = _Tp(0.25L) - __mu2;
_Tp __q = __c = __a1;
_Tp __a = -__a1;
_Tp __s = _Tp(1) + __q * __delh;
int __i;
for (__i = 2; __i <= __max_iter; ++__i)
{
__a -= 2 * (__i - 1);
__c = -__a * __c / __i;
const _Tp __qnew = (__q1 - __b * __q2) / __a;
__q1 = __q2;
__q2 = __qnew;
__q += __c * __qnew;
__b += _Tp(2);
__d = _Tp(1) / (__b + __a * __d);
__delh = (__b * __d - _Tp(1)) * __delh;
__h += __delh;
const _Tp __dels = __q * __delh;
__s += __dels;
if ( std::abs(__dels / __s) < __eps )
break;
}
if (__i > __max_iter)
std::__throw_runtime_error(__N("Steed's method failed "
"in __bessel_ik."));
__h = __a1 * __h;
__Kmu = std::sqrt(__numeric_constants<_Tp>::__pi() / (_Tp(2) * __x))
* std::exp(-__x) / __s;
__Knu1 = __Kmu * (__mu + __x + _Tp(0.5L) - __h) * __xi;
}
 
_Tp __Kpmu = __mu * __xi * __Kmu - __Knu1;
_Tp __Inumu = __xi / (__f * __Kmu - __Kpmu);
__Inu = __Inumu * __Inul1 / __Inul;
__Ipnu = __Inumu * __Ipnu1 / __Inul;
for ( __i = 1; __i <= __nl; ++__i )
{
const _Tp __Knutemp = (__mu + __i) * __xi2 * __Knu1 + __Kmu;
__Kmu = __Knu1;
__Knu1 = __Knutemp;
}
__Knu = __Kmu;
__Kpnu = __nu * __xi * __Kmu - __Knu1;
return;
}
 
 
/**
* @brief Return the regular modified Bessel function of order
* \f$ \nu \f$: \f$ I_{\nu}(x) \f$.
*
* The regular modified cylindrical Bessel function is:
* @f[
* I_{\nu}(x) = \sum_{k=0}^{\infty}
* \frac{(x/2)^{\nu + 2k}}{k!\Gamma(\nu+k+1)}
* @f]
*
* @param __nu The order of the regular modified Bessel function.
* @param __x The argument of the regular modified Bessel function.
* @return The output regular modified Bessel function.
*/
template<typename _Tp>
_Tp
__cyl_bessel_i(_Tp __nu, _Tp __x)
{
if (__nu < _Tp(0) || __x < _Tp(0))
std::__throw_domain_error(__N("Bad argument "
"in __cyl_bessel_i."));
else if (__isnan(__nu) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x * __x < _Tp(10) * (__nu + _Tp(1)))
return __cyl_bessel_ij_series(__nu, __x, +_Tp(1), 200);
else
{
_Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
__bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
return __I_nu;
}
}
 
 
/**
* @brief Return the irregular modified Bessel function
* \f$ K_{\nu}(x) \f$ of order \f$ \nu \f$.
*
* The irregular modified Bessel function is defined by:
* @f[
* K_{\nu}(x) = \frac{\pi}{2}
* \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \nu\pi}
* @f]
* where for integral \f$ \nu = n \f$ a limit is taken:
* \f$ lim_{\nu \to n} \f$.
*
* @param __nu The order of the irregular modified Bessel function.
* @param __x The argument of the irregular modified Bessel function.
* @return The output irregular modified Bessel function.
*/
template<typename _Tp>
_Tp
__cyl_bessel_k(_Tp __nu, _Tp __x)
{
if (__nu < _Tp(0) || __x < _Tp(0))
std::__throw_domain_error(__N("Bad argument "
"in __cyl_bessel_k."));
else if (__isnan(__nu) || __isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else
{
_Tp __I_nu, __K_nu, __Ip_nu, __Kp_nu;
__bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
return __K_nu;
}
}
 
 
/**
* @brief Compute the spherical modified Bessel functions
* @f$ i_n(x) @f$ and @f$ k_n(x) @f$ and their first
* derivatives @f$ i'_n(x) @f$ and @f$ k'_n(x) @f$
* respectively.
*
* @param __n The order of the modified spherical Bessel function.
* @param __x The argument of the modified spherical Bessel function.
* @param __i_n The output regular modified spherical Bessel function.
* @param __k_n The output irregular modified spherical
* Bessel function.
* @param __ip_n The output derivative of the regular modified
* spherical Bessel function.
* @param __kp_n The output derivative of the irregular modified
* spherical Bessel function.
*/
template <typename _Tp>
void
__sph_bessel_ik(unsigned int __n, _Tp __x,
_Tp & __i_n, _Tp & __k_n, _Tp & __ip_n, _Tp & __kp_n)
{
const _Tp __nu = _Tp(__n) + _Tp(0.5L);
 
_Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
__bessel_ik(__nu, __x, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
 
const _Tp __factor = __numeric_constants<_Tp>::__sqrtpio2()
/ std::sqrt(__x);
 
__i_n = __factor * __I_nu;
__k_n = __factor * __K_nu;
__ip_n = __factor * __Ip_nu - __i_n / (_Tp(2) * __x);
__kp_n = __factor * __Kp_nu - __k_n / (_Tp(2) * __x);
 
return;
}
 
 
/**
* @brief Compute the Airy functions
* @f$ Ai(x) @f$ and @f$ Bi(x) @f$ and their first
* derivatives @f$ Ai'(x) @f$ and @f$ Bi(x) @f$
* respectively.
*
* @param __n The order of the Airy functions.
* @param __x The argument of the Airy functions.
* @param __i_n The output Airy function.
* @param __k_n The output Airy function.
* @param __ip_n The output derivative of the Airy function.
* @param __kp_n The output derivative of the Airy function.
*/
template <typename _Tp>
void
__airy(_Tp __x, _Tp & __Ai, _Tp & __Bi, _Tp & __Aip, _Tp & __Bip)
{
const _Tp __absx = std::abs(__x);
const _Tp __rootx = std::sqrt(__absx);
const _Tp __z = _Tp(2) * __absx * __rootx / _Tp(3);
 
if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__x > _Tp(0))
{
_Tp __I_nu, __Ip_nu, __K_nu, __Kp_nu;
 
__bessel_ik(_Tp(1) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
__Ai = __rootx * __K_nu
/ (__numeric_constants<_Tp>::__sqrt3()
* __numeric_constants<_Tp>::__pi());
__Bi = __rootx * (__K_nu / __numeric_constants<_Tp>::__pi()
+ _Tp(2) * __I_nu / __numeric_constants<_Tp>::__sqrt3());
 
__bessel_ik(_Tp(2) / _Tp(3), __z, __I_nu, __K_nu, __Ip_nu, __Kp_nu);
__Aip = -__x * __K_nu
/ (__numeric_constants<_Tp>::__sqrt3()
* __numeric_constants<_Tp>::__pi());
__Bip = __x * (__K_nu / __numeric_constants<_Tp>::__pi()
+ _Tp(2) * __I_nu
/ __numeric_constants<_Tp>::__sqrt3());
}
else if (__x < _Tp(0))
{
_Tp __J_nu, __Jp_nu, __N_nu, __Np_nu;
 
__bessel_jn(_Tp(1) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
__Ai = __rootx * (__J_nu
- __N_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
__Bi = -__rootx * (__N_nu
+ __J_nu / __numeric_constants<_Tp>::__sqrt3()) / _Tp(2);
 
__bessel_jn(_Tp(2) / _Tp(3), __z, __J_nu, __N_nu, __Jp_nu, __Np_nu);
__Aip = __absx * (__N_nu / __numeric_constants<_Tp>::__sqrt3()
+ __J_nu) / _Tp(2);
__Bip = __absx * (__J_nu / __numeric_constants<_Tp>::__sqrt3()
- __N_nu) / _Tp(2);
}
else
{
// Reference:
// Abramowitz & Stegun, page 446 section 10.4.4 on Airy functions.
// The number is Ai(0) = 3^{-2/3}/\Gamma(2/3).
__Ai = _Tp(0.35502805388781723926L);
__Bi = __Ai * __numeric_constants<_Tp>::__sqrt3();
 
// Reference:
// Abramowitz & Stegun, page 446 section 10.4.5 on Airy functions.
// The number is Ai'(0) = -3^{-1/3}/\Gamma(1/3).
__Aip = -_Tp(0.25881940379280679840L);
__Bip = -__Aip * __numeric_constants<_Tp>::__sqrt3();
}
 
return;
}
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
 
#endif // _GLIBCXX_TR1_MODIFIED_BESSEL_FUNC_TCC
/contrib/sdk/sources/libstdc++-v3/include/tr1/poly_hermite.tcc
0,0 → 1,124
// Special functions -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/poly_hermite.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
 
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
 
// Written by Edward Smith-Rowland based on:
// (1) Handbook of Mathematical Functions,
// Ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications, Section 22 pp. 773-802
 
#ifndef _GLIBCXX_TR1_POLY_HERMITE_TCC
#define _GLIBCXX_TR1_POLY_HERMITE_TCC 1
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
 
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @brief This routine returns the Hermite polynomial
* of order n: \f$ H_n(x) \f$ by recursion on n.
*
* The Hermite polynomial is defined by:
* @f[
* H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}
* @f]
*
* @param __n The order of the Hermite polynomial.
* @param __x The argument of the Hermite polynomial.
* @return The value of the Hermite polynomial of order n
* and argument x.
*/
template<typename _Tp>
_Tp
__poly_hermite_recursion(unsigned int __n, _Tp __x)
{
// Compute H_0.
_Tp __H_0 = 1;
if (__n == 0)
return __H_0;
 
// Compute H_1.
_Tp __H_1 = 2 * __x;
if (__n == 1)
return __H_1;
 
// Compute H_n.
_Tp __H_n, __H_nm1, __H_nm2;
unsigned int __i;
for (__H_nm2 = __H_0, __H_nm1 = __H_1, __i = 2; __i <= __n; ++__i)
{
__H_n = 2 * (__x * __H_nm1 - (__i - 1) * __H_nm2);
__H_nm2 = __H_nm1;
__H_nm1 = __H_n;
}
 
return __H_n;
}
 
 
/**
* @brief This routine returns the Hermite polynomial
* of order n: \f$ H_n(x) \f$.
*
* The Hermite polynomial is defined by:
* @f[
* H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}
* @f]
*
* @param __n The order of the Hermite polynomial.
* @param __x The argument of the Hermite polynomial.
* @return The value of the Hermite polynomial of order n
* and argument x.
*/
template<typename _Tp>
inline _Tp
__poly_hermite(unsigned int __n, _Tp __x)
{
if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else
return __poly_hermite_recursion(__n, __x);
}
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
 
#endif // _GLIBCXX_TR1_POLY_HERMITE_TCC
/contrib/sdk/sources/libstdc++-v3/include/tr1/poly_laguerre.tcc
0,0 → 1,319
// Special functions -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/poly_laguerre.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
 
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
 
// Written by Edward Smith-Rowland based on:
// (1) Handbook of Mathematical Functions,
// Ed. Milton Abramowitz and Irene A. Stegun,
// Dover Publications,
// Section 13, pp. 509-510, Section 22 pp. 773-802
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
 
#ifndef _GLIBCXX_TR1_POLY_LAGUERRE_TCC
#define _GLIBCXX_TR1_POLY_LAGUERRE_TCC 1
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
 
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @brief This routine returns the associated Laguerre polynomial
* of order @f$ n @f$, degree @f$ \alpha @f$ for large n.
* Abramowitz & Stegun, 13.5.21
*
* @param __n The order of the Laguerre function.
* @param __alpha The degree of the Laguerre function.
* @param __x The argument of the Laguerre function.
* @return The value of the Laguerre function of order n,
* degree @f$ \alpha @f$, and argument x.
*
* This is from the GNU Scientific Library.
*/
template<typename _Tpa, typename _Tp>
_Tp
__poly_laguerre_large_n(unsigned __n, _Tpa __alpha1, _Tp __x)
{
const _Tp __a = -_Tp(__n);
const _Tp __b = _Tp(__alpha1) + _Tp(1);
const _Tp __eta = _Tp(2) * __b - _Tp(4) * __a;
const _Tp __cos2th = __x / __eta;
const _Tp __sin2th = _Tp(1) - __cos2th;
const _Tp __th = std::acos(std::sqrt(__cos2th));
const _Tp __pre_h = __numeric_constants<_Tp>::__pi_2()
* __numeric_constants<_Tp>::__pi_2()
* __eta * __eta * __cos2th * __sin2th;
 
#if _GLIBCXX_USE_C99_MATH_TR1
const _Tp __lg_b = std::tr1::lgamma(_Tp(__n) + __b);
const _Tp __lnfact = std::tr1::lgamma(_Tp(__n + 1));
#else
const _Tp __lg_b = __log_gamma(_Tp(__n) + __b);
const _Tp __lnfact = __log_gamma(_Tp(__n + 1));
#endif
 
_Tp __pre_term1 = _Tp(0.5L) * (_Tp(1) - __b)
* std::log(_Tp(0.25L) * __x * __eta);
_Tp __pre_term2 = _Tp(0.25L) * std::log(__pre_h);
_Tp __lnpre = __lg_b - __lnfact + _Tp(0.5L) * __x
+ __pre_term1 - __pre_term2;
_Tp __ser_term1 = std::sin(__a * __numeric_constants<_Tp>::__pi());
_Tp __ser_term2 = std::sin(_Tp(0.25L) * __eta
* (_Tp(2) * __th
- std::sin(_Tp(2) * __th))
+ __numeric_constants<_Tp>::__pi_4());
_Tp __ser = __ser_term1 + __ser_term2;
 
return std::exp(__lnpre) * __ser;
}
 
 
/**
* @brief Evaluate the polynomial based on the confluent hypergeometric
* function in a safe way, with no restriction on the arguments.
*
* The associated Laguerre function is defined by
* @f[
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
* _1F_1(-n; \alpha + 1; x)
* @f]
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
* @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
*
* This function assumes x != 0.
*
* This is from the GNU Scientific Library.
*/
template<typename _Tpa, typename _Tp>
_Tp
__poly_laguerre_hyperg(unsigned int __n, _Tpa __alpha1, _Tp __x)
{
const _Tp __b = _Tp(__alpha1) + _Tp(1);
const _Tp __mx = -__x;
const _Tp __tc_sgn = (__x < _Tp(0) ? _Tp(1)
: ((__n % 2 == 1) ? -_Tp(1) : _Tp(1)));
// Get |x|^n/n!
_Tp __tc = _Tp(1);
const _Tp __ax = std::abs(__x);
for (unsigned int __k = 1; __k <= __n; ++__k)
__tc *= (__ax / __k);
 
_Tp __term = __tc * __tc_sgn;
_Tp __sum = __term;
for (int __k = int(__n) - 1; __k >= 0; --__k)
{
__term *= ((__b + _Tp(__k)) / _Tp(int(__n) - __k))
* _Tp(__k + 1) / __mx;
__sum += __term;
}
 
return __sum;
}
 
 
/**
* @brief This routine returns the associated Laguerre polynomial
* of order @f$ n @f$, degree @f$ \alpha @f$: @f$ L_n^\alpha(x) @f$
* by recursion.
*
* The associated Laguerre function is defined by
* @f[
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
* _1F_1(-n; \alpha + 1; x)
* @f]
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
* @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
*
* The associated Laguerre polynomial is defined for integral
* @f$ \alpha = m @f$ by:
* @f[
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
* @f]
* where the Laguerre polynomial is defined by:
* @f[
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
* @f]
*
* @param __n The order of the Laguerre function.
* @param __alpha The degree of the Laguerre function.
* @param __x The argument of the Laguerre function.
* @return The value of the Laguerre function of order n,
* degree @f$ \alpha @f$, and argument x.
*/
template<typename _Tpa, typename _Tp>
_Tp
__poly_laguerre_recursion(unsigned int __n, _Tpa __alpha1, _Tp __x)
{
// Compute l_0.
_Tp __l_0 = _Tp(1);
if (__n == 0)
return __l_0;
 
// Compute l_1^alpha.
_Tp __l_1 = -__x + _Tp(1) + _Tp(__alpha1);
if (__n == 1)
return __l_1;
 
// Compute l_n^alpha by recursion on n.
_Tp __l_n2 = __l_0;
_Tp __l_n1 = __l_1;
_Tp __l_n = _Tp(0);
for (unsigned int __nn = 2; __nn <= __n; ++__nn)
{
__l_n = (_Tp(2 * __nn - 1) + _Tp(__alpha1) - __x)
* __l_n1 / _Tp(__nn)
- (_Tp(__nn - 1) + _Tp(__alpha1)) * __l_n2 / _Tp(__nn);
__l_n2 = __l_n1;
__l_n1 = __l_n;
}
 
return __l_n;
}
 
 
/**
* @brief This routine returns the associated Laguerre polynomial
* of order n, degree @f$ \alpha @f$: @f$ L_n^alpha(x) @f$.
*
* The associated Laguerre function is defined by
* @f[
* L_n^\alpha(x) = \frac{(\alpha + 1)_n}{n!}
* _1F_1(-n; \alpha + 1; x)
* @f]
* where @f$ (\alpha)_n @f$ is the Pochhammer symbol and
* @f$ _1F_1(a; c; x) @f$ is the confluent hypergeometric function.
*
* The associated Laguerre polynomial is defined for integral
* @f$ \alpha = m @f$ by:
* @f[
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
* @f]
* where the Laguerre polynomial is defined by:
* @f[
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
* @f]
*
* @param __n The order of the Laguerre function.
* @param __alpha The degree of the Laguerre function.
* @param __x The argument of the Laguerre function.
* @return The value of the Laguerre function of order n,
* degree @f$ \alpha @f$, and argument x.
*/
template<typename _Tpa, typename _Tp>
_Tp
__poly_laguerre(unsigned int __n, _Tpa __alpha1, _Tp __x)
{
if (__x < _Tp(0))
std::__throw_domain_error(__N("Negative argument "
"in __poly_laguerre."));
// Return NaN on NaN input.
else if (__isnan(__x))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__n == 0)
return _Tp(1);
else if (__n == 1)
return _Tp(1) + _Tp(__alpha1) - __x;
else if (__x == _Tp(0))
{
_Tp __prod = _Tp(__alpha1) + _Tp(1);
for (unsigned int __k = 2; __k <= __n; ++__k)
__prod *= (_Tp(__alpha1) + _Tp(__k)) / _Tp(__k);
return __prod;
}
else if (__n > 10000000 && _Tp(__alpha1) > -_Tp(1)
&& __x < _Tp(2) * (_Tp(__alpha1) + _Tp(1)) + _Tp(4 * __n))
return __poly_laguerre_large_n(__n, __alpha1, __x);
else if (_Tp(__alpha1) >= _Tp(0)
|| (__x > _Tp(0) && _Tp(__alpha1) < -_Tp(__n + 1)))
return __poly_laguerre_recursion(__n, __alpha1, __x);
else
return __poly_laguerre_hyperg(__n, __alpha1, __x);
}
 
 
/**
* @brief This routine returns the associated Laguerre polynomial
* of order n, degree m: @f$ L_n^m(x) @f$.
*
* The associated Laguerre polynomial is defined for integral
* @f$ \alpha = m @f$ by:
* @f[
* L_n^m(x) = (-1)^m \frac{d^m}{dx^m} L_{n + m}(x)
* @f]
* where the Laguerre polynomial is defined by:
* @f[
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
* @f]
*
* @param __n The order of the Laguerre polynomial.
* @param __m The degree of the Laguerre polynomial.
* @param __x The argument of the Laguerre polynomial.
* @return The value of the associated Laguerre polynomial of order n,
* degree m, and argument x.
*/
template<typename _Tp>
inline _Tp
__assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
{ return __poly_laguerre<unsigned int, _Tp>(__n, __m, __x); }
 
 
/**
* @brief This routine returns the Laguerre polynomial
* of order n: @f$ L_n(x) @f$.
*
* The Laguerre polynomial is defined by:
* @f[
* L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^ne^{-x})
* @f]
*
* @param __n The order of the Laguerre polynomial.
* @param __x The argument of the Laguerre polynomial.
* @return The value of the Laguerre polynomial of order n
* and argument x.
*/
template<typename _Tp>
inline _Tp
__laguerre(unsigned int __n, _Tp __x)
{ return __poly_laguerre<unsigned int, _Tp>(__n, 0, __x); }
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
 
#endif // _GLIBCXX_TR1_POLY_LAGUERRE_TCC
/contrib/sdk/sources/libstdc++-v3/include/tr1/random
0,0 → 1,50
// random number generation -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/**
* @file tr1/random
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_RANDOM
#define _GLIBCXX_TR1_RANDOM 1
 
#pragma GCC system_header
 
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <string>
#include <iosfwd>
#include <limits>
#include <ext/type_traits.h>
#include <ext/numeric_traits.h>
#include <bits/concept_check.h>
#include <debug/debug.h>
#include <tr1/type_traits>
#include <tr1/cmath>
#include <tr1/random.h>
#include <tr1/random.tcc>
 
#endif // _GLIBCXX_TR1_RANDOM
/contrib/sdk/sources/libstdc++-v3/include/tr1/random.h
0,0 → 1,2417
// random number generation -*- C++ -*-
 
// Copyright (C) 2009-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/**
* @file tr1/random.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/random}
*/
 
#ifndef _GLIBCXX_TR1_RANDOM_H
#define _GLIBCXX_TR1_RANDOM_H 1
 
#pragma GCC system_header
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.1] Random number generation
 
/**
* @addtogroup tr1_random Random Number Generation
* A facility for generating random numbers on selected distributions.
* @{
*/
 
/*
* Implementation-space details.
*/
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
template<typename _UIntType, int __w,
bool = __w < std::numeric_limits<_UIntType>::digits>
struct _Shift
{ static const _UIntType __value = 0; };
 
template<typename _UIntType, int __w>
struct _Shift<_UIntType, __w, true>
{ static const _UIntType __value = _UIntType(1) << __w; };
 
template<typename _Tp, _Tp __a, _Tp __c, _Tp __m, bool>
struct _Mod;
 
// Dispatch based on modulus value to prevent divide-by-zero compile-time
// errors when m == 0.
template<typename _Tp, _Tp __a, _Tp __c, _Tp __m>
inline _Tp
__mod(_Tp __x)
{ return _Mod<_Tp, __a, __c, __m, __m == 0>::__calc(__x); }
 
typedef __gnu_cxx::__conditional_type<(sizeof(unsigned) == 4),
unsigned, unsigned long>::__type _UInt32Type;
 
/*
* An adaptor class for converting the output of any Generator into
* the input for a specific Distribution.
*/
template<typename _Engine, typename _Distribution>
struct _Adaptor
{
typedef typename remove_reference<_Engine>::type _BEngine;
typedef typename _BEngine::result_type _Engine_result_type;
typedef typename _Distribution::input_type result_type;
 
public:
_Adaptor(const _Engine& __g)
: _M_g(__g) { }
 
result_type
min() const
{
result_type __return_value;
if (is_integral<_Engine_result_type>::value
&& is_integral<result_type>::value)
__return_value = _M_g.min();
else
__return_value = result_type(0);
return __return_value;
}
 
result_type
max() const
{
result_type __return_value;
if (is_integral<_Engine_result_type>::value
&& is_integral<result_type>::value)
__return_value = _M_g.max();
else if (!is_integral<result_type>::value)
__return_value = result_type(1);
else
__return_value = std::numeric_limits<result_type>::max() - 1;
return __return_value;
}
 
/*
* Converts a value generated by the adapted random number generator
* into a value in the input domain for the dependent random number
* distribution.
*
* Because the type traits are compile time constants only the
* appropriate clause of the if statements will actually be emitted
* by the compiler.
*/
result_type
operator()()
{
result_type __return_value;
if (is_integral<_Engine_result_type>::value
&& is_integral<result_type>::value)
__return_value = _M_g();
else if (!is_integral<_Engine_result_type>::value
&& !is_integral<result_type>::value)
__return_value = result_type(_M_g() - _M_g.min())
/ result_type(_M_g.max() - _M_g.min());
else if (is_integral<_Engine_result_type>::value
&& !is_integral<result_type>::value)
__return_value = result_type(_M_g() - _M_g.min())
/ result_type(_M_g.max() - _M_g.min() + result_type(1));
else
__return_value = (((_M_g() - _M_g.min())
/ (_M_g.max() - _M_g.min()))
* std::numeric_limits<result_type>::max());
return __return_value;
}
 
private:
_Engine _M_g;
};
 
// Specialization for _Engine*.
template<typename _Engine, typename _Distribution>
struct _Adaptor<_Engine*, _Distribution>
{
typedef typename _Engine::result_type _Engine_result_type;
typedef typename _Distribution::input_type result_type;
 
public:
_Adaptor(_Engine* __g)
: _M_g(__g) { }
 
result_type
min() const
{
result_type __return_value;
if (is_integral<_Engine_result_type>::value
&& is_integral<result_type>::value)
__return_value = _M_g->min();
else
__return_value = result_type(0);
return __return_value;
}
 
result_type
max() const
{
result_type __return_value;
if (is_integral<_Engine_result_type>::value
&& is_integral<result_type>::value)
__return_value = _M_g->max();
else if (!is_integral<result_type>::value)
__return_value = result_type(1);
else
__return_value = std::numeric_limits<result_type>::max() - 1;
return __return_value;
}
 
result_type
operator()()
{
result_type __return_value;
if (is_integral<_Engine_result_type>::value
&& is_integral<result_type>::value)
__return_value = (*_M_g)();
else if (!is_integral<_Engine_result_type>::value
&& !is_integral<result_type>::value)
__return_value = result_type((*_M_g)() - _M_g->min())
/ result_type(_M_g->max() - _M_g->min());
else if (is_integral<_Engine_result_type>::value
&& !is_integral<result_type>::value)
__return_value = result_type((*_M_g)() - _M_g->min())
/ result_type(_M_g->max() - _M_g->min() + result_type(1));
else
__return_value = ((((*_M_g)() - _M_g->min())
/ (_M_g->max() - _M_g->min()))
* std::numeric_limits<result_type>::max());
return __return_value;
}
 
private:
_Engine* _M_g;
};
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
 
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* Produces random numbers on a given distribution function using a
* non-uniform random number generation engine.
*
* @todo the engine_value_type needs to be studied more carefully.
*/
template<typename _Engine, typename _Dist>
class variate_generator
{
// Concept requirements.
__glibcxx_class_requires(_Engine, _CopyConstructibleConcept)
// __glibcxx_class_requires(_Engine, _EngineConcept)
// __glibcxx_class_requires(_Dist, _EngineConcept)
 
public:
typedef _Engine engine_type;
typedef __detail::_Adaptor<_Engine, _Dist> engine_value_type;
typedef _Dist distribution_type;
typedef typename _Dist::result_type result_type;
 
// tr1:5.1.1 table 5.1 requirement
typedef typename __gnu_cxx::__enable_if<
is_arithmetic<result_type>::value, result_type>::__type _IsValidType;
 
/**
* Constructs a variate generator with the uniform random number
* generator @p __eng for the random distribution @p __dist.
*
* @throws Any exceptions which may thrown by the copy constructors of
* the @p _Engine or @p _Dist objects.
*/
variate_generator(engine_type __eng, distribution_type __dist)
: _M_engine(__eng), _M_dist(__dist) { }
 
/**
* Gets the next generated value on the distribution.
*/
result_type
operator()()
{ return _M_dist(_M_engine); }
 
/**
* WTF?
*/
template<typename _Tp>
result_type
operator()(_Tp __value)
{ return _M_dist(_M_engine, __value); }
 
/**
* Gets a reference to the underlying uniform random number generator
* object.
*/
engine_value_type&
engine()
{ return _M_engine; }
 
/**
* Gets a const reference to the underlying uniform random number
* generator object.
*/
const engine_value_type&
engine() const
{ return _M_engine; }
 
/**
* Gets a reference to the underlying random distribution.
*/
distribution_type&
distribution()
{ return _M_dist; }
 
/**
* Gets a const reference to the underlying random distribution.
*/
const distribution_type&
distribution() const
{ return _M_dist; }
 
/**
* Gets the closed lower bound of the distribution interval.
*/
result_type
min() const
{ return this->distribution().min(); }
 
/**
* Gets the closed upper bound of the distribution interval.
*/
result_type
max() const
{ return this->distribution().max(); }
 
private:
engine_value_type _M_engine;
distribution_type _M_dist;
};
 
 
/**
* @addtogroup tr1_random_generators Random Number Generators
* @ingroup tr1_random
*
* These classes define objects which provide random or pseudorandom
* numbers, either from a discrete or a continuous interval. The
* random number generator supplied as a part of this library are
* all uniform random number generators which provide a sequence of
* random number uniformly distributed over their range.
*
* A number generator is a function object with an operator() that
* takes zero arguments and returns a number.
*
* A compliant random number generator must satisfy the following
* requirements. <table border=1 cellpadding=10 cellspacing=0>
* <caption align=top>Random Number Generator Requirements</caption>
* <tr><td>To be documented.</td></tr> </table>
*
* @{
*/
 
/**
* @brief A model of a linear congruential random number generator.
*
* A random number generator that produces pseudorandom numbers using the
* linear function @f$x_{i+1}\leftarrow(ax_{i} + c) \bmod m @f$.
*
* The template parameter @p _UIntType must be an unsigned integral type
* large enough to store values up to (__m-1). If the template parameter
* @p __m is 0, the modulus @p __m used is
* std::numeric_limits<_UIntType>::max() plus 1. Otherwise, the template
* parameters @p __a and @p __c must be less than @p __m.
*
* The size of the state is @f$ 1 @f$.
*/
template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
class linear_congruential
{
__glibcxx_class_requires(_UIntType, _UnsignedIntegerConcept)
// __glibcpp_class_requires(__a < __m && __c < __m)
 
public:
/** The type of the generated random value. */
typedef _UIntType result_type;
 
/** The multiplier. */
static const _UIntType multiplier = __a;
/** An increment. */
static const _UIntType increment = __c;
/** The modulus. */
static const _UIntType modulus = __m;
 
/**
* Constructs a %linear_congruential random number generator engine with
* seed @p __s. The default seed value is 1.
*
* @param __s The initial seed value.
*/
explicit
linear_congruential(unsigned long __x0 = 1)
{ this->seed(__x0); }
 
/**
* Constructs a %linear_congruential random number generator engine
* seeded from the generator function @p __g.
*
* @param __g The seed generator function.
*/
template<class _Gen>
linear_congruential(_Gen& __g)
{ this->seed(__g); }
 
/**
* Reseeds the %linear_congruential random number generator engine
* sequence to the seed @g __s.
*
* @param __s The new seed.
*/
void
seed(unsigned long __s = 1);
 
/**
* Reseeds the %linear_congruential random number generator engine
* sequence using values from the generator function @p __g.
*
* @param __g the seed generator function.
*/
template<class _Gen>
void
seed(_Gen& __g)
{ seed(__g, typename is_fundamental<_Gen>::type()); }
 
/**
* Gets the smallest possible value in the output range.
*
* The minimum depends on the @p __c parameter: if it is zero, the
* minimum generated must be > 0, otherwise 0 is allowed.
*/
result_type
min() const
{ return (__detail::__mod<_UIntType, 1, 0, __m>(__c) == 0) ? 1 : 0; }
 
/**
* Gets the largest possible value in the output range.
*/
result_type
max() const
{ return __m - 1; }
 
/**
* Gets the next random number in the sequence.
*/
result_type
operator()();
 
/**
* Compares two linear congruential random number generator
* objects of the same type for equality.
*
* @param __lhs A linear congruential random number generator object.
* @param __rhs Another linear congruential random number generator obj.
*
* @returns true if the two objects are equal, false otherwise.
*/
friend bool
operator==(const linear_congruential& __lhs,
const linear_congruential& __rhs)
{ return __lhs._M_x == __rhs._M_x; }
 
/**
* Compares two linear congruential random number generator
* objects of the same type for inequality.
*
* @param __lhs A linear congruential random number generator object.
* @param __rhs Another linear congruential random number generator obj.
*
* @returns true if the two objects are not equal, false otherwise.
*/
friend bool
operator!=(const linear_congruential& __lhs,
const linear_congruential& __rhs)
{ return !(__lhs == __rhs); }
 
/**
* Writes the textual representation of the state x(i) of x to @p __os.
*
* @param __os The output stream.
* @param __lcr A % linear_congruential random number generator.
* @returns __os.
*/
template<class _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
_UIntType1 __m1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const linear_congruential<_UIntType1, __a1, __c1,
__m1>& __lcr);
 
/**
* Sets the state of the engine by reading its textual
* representation from @p __is.
*
* The textual representation must have been previously written using an
* output stream whose imbued locale and whose type's template
* specialization arguments _CharT and _Traits were the same as those of
* @p __is.
*
* @param __is The input stream.
* @param __lcr A % linear_congruential random number generator.
* @returns __is.
*/
template<class _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
_UIntType1 __m1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
linear_congruential<_UIntType1, __a1, __c1, __m1>& __lcr);
 
private:
template<class _Gen>
void
seed(_Gen& __g, true_type)
{ return seed(static_cast<unsigned long>(__g)); }
 
template<class _Gen>
void
seed(_Gen& __g, false_type);
 
_UIntType _M_x;
};
 
/**
* The classic Minimum Standard rand0 of Lewis, Goodman, and Miller.
*/
typedef linear_congruential<unsigned long, 16807, 0, 2147483647> minstd_rand0;
 
/**
* An alternative LCR (Lehmer Generator function) .
*/
typedef linear_congruential<unsigned long, 48271, 0, 2147483647> minstd_rand;
 
 
/**
* A generalized feedback shift register discrete random number generator.
*
* This algorithm avoids multiplication and division and is designed to be
* friendly to a pipelined architecture. If the parameters are chosen
* correctly, this generator will produce numbers with a very long period and
* fairly good apparent entropy, although still not cryptographically strong.
*
* The best way to use this generator is with the predefined mt19937 class.
*
* This algorithm was originally invented by Makoto Matsumoto and
* Takuji Nishimura.
*
* @var word_size The number of bits in each element of the state vector.
* @var state_size The degree of recursion.
* @var shift_size The period parameter.
* @var mask_bits The separation point bit index.
* @var parameter_a The last row of the twist matrix.
* @var output_u The first right-shift tempering matrix parameter.
* @var output_s The first left-shift tempering matrix parameter.
* @var output_b The first left-shift tempering matrix mask.
* @var output_t The second left-shift tempering matrix parameter.
* @var output_c The second left-shift tempering matrix mask.
* @var output_l The second right-shift tempering matrix parameter.
*/
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s, _UIntType __b, int __t,
_UIntType __c, int __l>
class mersenne_twister
{
__glibcxx_class_requires(_UIntType, _UnsignedIntegerConcept)
 
public:
// types
typedef _UIntType result_type;
 
// parameter values
static const int word_size = __w;
static const int state_size = __n;
static const int shift_size = __m;
static const int mask_bits = __r;
static const _UIntType parameter_a = __a;
static const int output_u = __u;
static const int output_s = __s;
static const _UIntType output_b = __b;
static const int output_t = __t;
static const _UIntType output_c = __c;
static const int output_l = __l;
 
// constructors and member function
mersenne_twister()
{ seed(); }
 
explicit
mersenne_twister(unsigned long __value)
{ seed(__value); }
 
template<class _Gen>
mersenne_twister(_Gen& __g)
{ seed(__g); }
 
void
seed()
{ seed(5489UL); }
 
void
seed(unsigned long __value);
 
template<class _Gen>
void
seed(_Gen& __g)
{ seed(__g, typename is_fundamental<_Gen>::type()); }
 
result_type
min() const
{ return 0; };
 
result_type
max() const
{ return __detail::_Shift<_UIntType, __w>::__value - 1; }
 
result_type
operator()();
 
/**
* Compares two % mersenne_twister random number generator objects of
* the same type for equality.
*
* @param __lhs A % mersenne_twister random number generator object.
* @param __rhs Another % mersenne_twister random number generator
* object.
*
* @returns true if the two objects are equal, false otherwise.
*/
friend bool
operator==(const mersenne_twister& __lhs,
const mersenne_twister& __rhs)
{ return std::equal(__lhs._M_x, __lhs._M_x + state_size, __rhs._M_x); }
 
/**
* Compares two % mersenne_twister random number generator objects of
* the same type for inequality.
*
* @param __lhs A % mersenne_twister random number generator object.
* @param __rhs Another % mersenne_twister random number generator
* object.
*
* @returns true if the two objects are not equal, false otherwise.
*/
friend bool
operator!=(const mersenne_twister& __lhs,
const mersenne_twister& __rhs)
{ return !(__lhs == __rhs); }
 
/**
* Inserts the current state of a % mersenne_twister random number
* generator engine @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A % mersenne_twister random number generator engine.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<class _UIntType1, int __w1, int __n1, int __m1, int __r1,
_UIntType1 __a1, int __u1, int __s1, _UIntType1 __b1, int __t1,
_UIntType1 __c1, int __l1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const mersenne_twister<_UIntType1, __w1, __n1, __m1, __r1,
__a1, __u1, __s1, __b1, __t1, __c1, __l1>& __x);
 
/**
* Extracts the current state of a % mersenne_twister random number
* generator engine @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A % mersenne_twister random number generator engine.
*
* @returns The input stream with the state of @p __x extracted or in
* an error state.
*/
template<class _UIntType1, int __w1, int __n1, int __m1, int __r1,
_UIntType1 __a1, int __u1, int __s1, _UIntType1 __b1, int __t1,
_UIntType1 __c1, int __l1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
mersenne_twister<_UIntType1, __w1, __n1, __m1, __r1,
__a1, __u1, __s1, __b1, __t1, __c1, __l1>& __x);
 
private:
template<class _Gen>
void
seed(_Gen& __g, true_type)
{ return seed(static_cast<unsigned long>(__g)); }
 
template<class _Gen>
void
seed(_Gen& __g, false_type);
 
_UIntType _M_x[state_size];
int _M_p;
};
 
/**
* The classic Mersenne Twister.
*
* Reference:
* M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-Dimensionally
* Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions
* on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
*/
typedef mersenne_twister<
unsigned long, 32, 624, 397, 31,
0x9908b0dful, 11, 7,
0x9d2c5680ul, 15,
0xefc60000ul, 18
> mt19937;
 
 
/**
* @brief The Marsaglia-Zaman generator.
*
* This is a model of a Generalized Fibonacci discrete random number
* generator, sometimes referred to as the SWC generator.
*
* A discrete random number generator that produces pseudorandom
* numbers using @f$x_{i}\leftarrow(x_{i - s} - x_{i - r} -
* carry_{i-1}) \bmod m @f$.
*
* The size of the state is @f$ r @f$
* and the maximum period of the generator is @f$ m^r - m^s -1 @f$.
*
* N1688[4.13] says <em>the template parameter _IntType shall denote
* an integral type large enough to store values up to m</em>.
*
* @var _M_x The state of the generator. This is a ring buffer.
* @var _M_carry The carry.
* @var _M_p Current index of x(i - r).
*/
template<typename _IntType, _IntType __m, int __s, int __r>
class subtract_with_carry
{
__glibcxx_class_requires(_IntType, _IntegerConcept)
 
public:
/** The type of the generated random value. */
typedef _IntType result_type;
// parameter values
static const _IntType modulus = __m;
static const int long_lag = __r;
static const int short_lag = __s;
 
/**
* Constructs a default-initialized % subtract_with_carry random number
* generator.
*/
subtract_with_carry()
{ this->seed(); }
 
/**
* Constructs an explicitly seeded % subtract_with_carry random number
* generator.
*/
explicit
subtract_with_carry(unsigned long __value)
{ this->seed(__value); }
 
/**
* Constructs a %subtract_with_carry random number generator engine
* seeded from the generator function @p __g.
*
* @param __g The seed generator function.
*/
template<class _Gen>
subtract_with_carry(_Gen& __g)
{ this->seed(__g); }
 
/**
* Seeds the initial state @f$ x_0 @f$ of the random number generator.
*
* N1688[4.19] modifies this as follows. If @p __value == 0,
* sets value to 19780503. In any case, with a linear
* congruential generator lcg(i) having parameters @f$ m_{lcg} =
* 2147483563, a_{lcg} = 40014, c_{lcg} = 0, and lcg(0) = value
* @f$, sets @f$ x_{-r} \dots x_{-1} @f$ to @f$ lcg(1) \bmod m
* \dots lcg(r) \bmod m @f$ respectively. If @f$ x_{-1} = 0 @f$
* set carry to 1, otherwise sets carry to 0.
*/
void
seed(unsigned long __value = 19780503);
 
/**
* Seeds the initial state @f$ x_0 @f$ of the % subtract_with_carry
* random number generator.
*/
template<class _Gen>
void
seed(_Gen& __g)
{ seed(__g, typename is_fundamental<_Gen>::type()); }
 
/**
* Gets the inclusive minimum value of the range of random integers
* returned by this generator.
*/
result_type
min() const
{ return 0; }
 
/**
* Gets the inclusive maximum value of the range of random integers
* returned by this generator.
*/
result_type
max() const
{ return this->modulus - 1; }
 
/**
* Gets the next random number in the sequence.
*/
result_type
operator()();
 
/**
* Compares two % subtract_with_carry random number generator objects of
* the same type for equality.
*
* @param __lhs A % subtract_with_carry random number generator object.
* @param __rhs Another % subtract_with_carry random number generator
* object.
*
* @returns true if the two objects are equal, false otherwise.
*/
friend bool
operator==(const subtract_with_carry& __lhs,
const subtract_with_carry& __rhs)
{ return std::equal(__lhs._M_x, __lhs._M_x + long_lag, __rhs._M_x); }
 
/**
* Compares two % subtract_with_carry random number generator objects of
* the same type for inequality.
*
* @param __lhs A % subtract_with_carry random number generator object.
* @param __rhs Another % subtract_with_carry random number generator
* object.
*
* @returns true if the two objects are not equal, false otherwise.
*/
friend bool
operator!=(const subtract_with_carry& __lhs,
const subtract_with_carry& __rhs)
{ return !(__lhs == __rhs); }
 
/**
* Inserts the current state of a % subtract_with_carry random number
* generator engine @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A % subtract_with_carry random number generator engine.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _IntType1, _IntType1 __m1, int __s1, int __r1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const subtract_with_carry<_IntType1, __m1, __s1,
__r1>& __x);
 
/**
* Extracts the current state of a % subtract_with_carry random number
* generator engine @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A % subtract_with_carry random number generator engine.
*
* @returns The input stream with the state of @p __x extracted or in
* an error state.
*/
template<typename _IntType1, _IntType1 __m1, int __s1, int __r1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
subtract_with_carry<_IntType1, __m1, __s1, __r1>& __x);
 
private:
template<class _Gen>
void
seed(_Gen& __g, true_type)
{ return seed(static_cast<unsigned long>(__g)); }
 
template<class _Gen>
void
seed(_Gen& __g, false_type);
 
typedef typename __gnu_cxx::__add_unsigned<_IntType>::__type _UIntType;
 
_UIntType _M_x[long_lag];
_UIntType _M_carry;
int _M_p;
};
 
 
/**
* @brief The Marsaglia-Zaman generator (floats version).
*
* @var _M_x The state of the generator. This is a ring buffer.
* @var _M_carry The carry.
* @var _M_p Current index of x(i - r).
* @var _M_npows Precomputed negative powers of 2.
*/
template<typename _RealType, int __w, int __s, int __r>
class subtract_with_carry_01
{
public:
/** The type of the generated random value. */
typedef _RealType result_type;
// parameter values
static const int word_size = __w;
static const int long_lag = __r;
static const int short_lag = __s;
 
/**
* Constructs a default-initialized % subtract_with_carry_01 random
* number generator.
*/
subtract_with_carry_01()
{
this->seed();
_M_initialize_npows();
}
 
/**
* Constructs an explicitly seeded % subtract_with_carry_01 random number
* generator.
*/
explicit
subtract_with_carry_01(unsigned long __value)
{
this->seed(__value);
_M_initialize_npows();
}
 
/**
* Constructs a % subtract_with_carry_01 random number generator engine
* seeded from the generator function @p __g.
*
* @param __g The seed generator function.
*/
template<class _Gen>
subtract_with_carry_01(_Gen& __g)
{
this->seed(__g);
_M_initialize_npows();
}
 
/**
* Seeds the initial state @f$ x_0 @f$ of the random number generator.
*/
void
seed(unsigned long __value = 19780503);
 
/**
* Seeds the initial state @f$ x_0 @f$ of the % subtract_with_carry_01
* random number generator.
*/
template<class _Gen>
void
seed(_Gen& __g)
{ seed(__g, typename is_fundamental<_Gen>::type()); }
 
/**
* Gets the minimum value of the range of random floats
* returned by this generator.
*/
result_type
min() const
{ return 0.0; }
 
/**
* Gets the maximum value of the range of random floats
* returned by this generator.
*/
result_type
max() const
{ return 1.0; }
 
/**
* Gets the next random number in the sequence.
*/
result_type
operator()();
 
/**
* Compares two % subtract_with_carry_01 random number generator objects
* of the same type for equality.
*
* @param __lhs A % subtract_with_carry_01 random number
* generator object.
* @param __rhs Another % subtract_with_carry_01 random number generator
* object.
*
* @returns true if the two objects are equal, false otherwise.
*/
friend bool
operator==(const subtract_with_carry_01& __lhs,
const subtract_with_carry_01& __rhs)
{
for (int __i = 0; __i < long_lag; ++__i)
if (!std::equal(__lhs._M_x[__i], __lhs._M_x[__i] + __n,
__rhs._M_x[__i]))
return false;
return true;
}
 
/**
* Compares two % subtract_with_carry_01 random number generator objects
* of the same type for inequality.
*
* @param __lhs A % subtract_with_carry_01 random number
* generator object.
*
* @param __rhs Another % subtract_with_carry_01 random number generator
* object.
*
* @returns true if the two objects are not equal, false otherwise.
*/
friend bool
operator!=(const subtract_with_carry_01& __lhs,
const subtract_with_carry_01& __rhs)
{ return !(__lhs == __rhs); }
 
/**
* Inserts the current state of a % subtract_with_carry_01 random number
* generator engine @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A % subtract_with_carry_01 random number generator engine.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _RealType1, int __w1, int __s1, int __r1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const subtract_with_carry_01<_RealType1, __w1, __s1,
__r1>& __x);
 
/**
* Extracts the current state of a % subtract_with_carry_01 random number
* generator engine @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A % subtract_with_carry_01 random number generator engine.
*
* @returns The input stream with the state of @p __x extracted or in
* an error state.
*/
template<typename _RealType1, int __w1, int __s1, int __r1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
subtract_with_carry_01<_RealType1, __w1, __s1, __r1>& __x);
 
private:
template<class _Gen>
void
seed(_Gen& __g, true_type)
{ return seed(static_cast<unsigned long>(__g)); }
 
template<class _Gen>
void
seed(_Gen& __g, false_type);
 
void
_M_initialize_npows();
 
static const int __n = (__w + 31) / 32;
 
typedef __detail::_UInt32Type _UInt32Type;
_UInt32Type _M_x[long_lag][__n];
_RealType _M_npows[__n];
_UInt32Type _M_carry;
int _M_p;
};
 
typedef subtract_with_carry_01<float, 24, 10, 24> ranlux_base_01;
 
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 508. Bad parameters for ranlux64_base_01.
typedef subtract_with_carry_01<double, 48, 5, 12> ranlux64_base_01;
 
 
/**
* Produces random numbers from some base engine by discarding blocks of
* data.
*
* 0 <= @p __r <= @p __p
*/
template<class _UniformRandomNumberGenerator, int __p, int __r>
class discard_block
{
// __glibcxx_class_requires(typename base_type::result_type,
// ArithmeticTypeConcept)
 
public:
/** The type of the underlying generator engine. */
typedef _UniformRandomNumberGenerator base_type;
/** The type of the generated random value. */
typedef typename base_type::result_type result_type;
 
// parameter values
static const int block_size = __p;
static const int used_block = __r;
 
/**
* Constructs a default %discard_block engine.
*
* The underlying engine is default constructed as well.
*/
discard_block()
: _M_n(0) { }
 
/**
* Copy constructs a %discard_block engine.
*
* Copies an existing base class random number generator.
* @param rng An existing (base class) engine object.
*/
explicit
discard_block(const base_type& __rng)
: _M_b(__rng), _M_n(0) { }
 
/**
* Seed constructs a %discard_block engine.
*
* Constructs the underlying generator engine seeded with @p __s.
* @param __s A seed value for the base class engine.
*/
explicit
discard_block(unsigned long __s)
: _M_b(__s), _M_n(0) { }
 
/**
* Generator construct a %discard_block engine.
*
* @param __g A seed generator function.
*/
template<class _Gen>
discard_block(_Gen& __g)
: _M_b(__g), _M_n(0) { }
 
/**
* Reseeds the %discard_block object with the default seed for the
* underlying base class generator engine.
*/
void seed()
{
_M_b.seed();
_M_n = 0;
}
 
/**
* Reseeds the %discard_block object with the given seed generator
* function.
* @param __g A seed generator function.
*/
template<class _Gen>
void seed(_Gen& __g)
{
_M_b.seed(__g);
_M_n = 0;
}
 
/**
* Gets a const reference to the underlying generator engine object.
*/
const base_type&
base() const
{ return _M_b; }
 
/**
* Gets the minimum value in the generated random number range.
*/
result_type
min() const
{ return _M_b.min(); }
 
/**
* Gets the maximum value in the generated random number range.
*/
result_type
max() const
{ return _M_b.max(); }
 
/**
* Gets the next value in the generated random number sequence.
*/
result_type
operator()();
 
/**
* Compares two %discard_block random number generator objects of
* the same type for equality.
*
* @param __lhs A %discard_block random number generator object.
* @param __rhs Another %discard_block random number generator
* object.
*
* @returns true if the two objects are equal, false otherwise.
*/
friend bool
operator==(const discard_block& __lhs, const discard_block& __rhs)
{ return (__lhs._M_b == __rhs._M_b) && (__lhs._M_n == __rhs._M_n); }
 
/**
* Compares two %discard_block random number generator objects of
* the same type for inequality.
*
* @param __lhs A %discard_block random number generator object.
* @param __rhs Another %discard_block random number generator
* object.
*
* @returns true if the two objects are not equal, false otherwise.
*/
friend bool
operator!=(const discard_block& __lhs, const discard_block& __rhs)
{ return !(__lhs == __rhs); }
 
/**
* Inserts the current state of a %discard_block random number
* generator engine @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %discard_block random number generator engine.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<class _UniformRandomNumberGenerator1, int __p1, int __r1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const discard_block<_UniformRandomNumberGenerator1,
__p1, __r1>& __x);
 
/**
* Extracts the current state of a % subtract_with_carry random number
* generator engine @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %discard_block random number generator engine.
*
* @returns The input stream with the state of @p __x extracted or in
* an error state.
*/
template<class _UniformRandomNumberGenerator1, int __p1, int __r1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
discard_block<_UniformRandomNumberGenerator1,
__p1, __r1>& __x);
 
private:
base_type _M_b;
int _M_n;
};
 
 
/**
* James's luxury-level-3 integer adaptation of Luescher's generator.
*/
typedef discard_block<
subtract_with_carry<unsigned long, (1UL << 24), 10, 24>,
223,
24
> ranlux3;
 
/**
* James's luxury-level-4 integer adaptation of Luescher's generator.
*/
typedef discard_block<
subtract_with_carry<unsigned long, (1UL << 24), 10, 24>,
389,
24
> ranlux4;
 
typedef discard_block<
subtract_with_carry_01<float, 24, 10, 24>,
223,
24
> ranlux3_01;
 
typedef discard_block<
subtract_with_carry_01<float, 24, 10, 24>,
389,
24
> ranlux4_01;
 
 
/**
* A random number generator adaptor class that combines two random number
* generator engines into a single output sequence.
*/
template<class _UniformRandomNumberGenerator1, int __s1,
class _UniformRandomNumberGenerator2, int __s2>
class xor_combine
{
// __glibcxx_class_requires(typename _UniformRandomNumberGenerator1::
// result_type, ArithmeticTypeConcept)
// __glibcxx_class_requires(typename _UniformRandomNumberGenerator2::
// result_type, ArithmeticTypeConcept)
 
public:
/** The type of the first underlying generator engine. */
typedef _UniformRandomNumberGenerator1 base1_type;
/** The type of the second underlying generator engine. */
typedef _UniformRandomNumberGenerator2 base2_type;
 
private:
typedef typename base1_type::result_type _Result_type1;
typedef typename base2_type::result_type _Result_type2;
 
public:
/** The type of the generated random value. */
typedef typename __gnu_cxx::__conditional_type<(sizeof(_Result_type1)
> sizeof(_Result_type2)),
_Result_type1, _Result_type2>::__type result_type;
 
// parameter values
static const int shift1 = __s1;
static const int shift2 = __s2;
 
// constructors and member function
xor_combine()
: _M_b1(), _M_b2()
{ _M_initialize_max(); }
 
xor_combine(const base1_type& __rng1, const base2_type& __rng2)
: _M_b1(__rng1), _M_b2(__rng2)
{ _M_initialize_max(); }
 
xor_combine(unsigned long __s)
: _M_b1(__s), _M_b2(__s + 1)
{ _M_initialize_max(); }
 
template<class _Gen>
xor_combine(_Gen& __g)
: _M_b1(__g), _M_b2(__g)
{ _M_initialize_max(); }
 
void
seed()
{
_M_b1.seed();
_M_b2.seed();
}
 
template<class _Gen>
void
seed(_Gen& __g)
{
_M_b1.seed(__g);
_M_b2.seed(__g);
}
 
const base1_type&
base1() const
{ return _M_b1; }
 
const base2_type&
base2() const
{ return _M_b2; }
 
result_type
min() const
{ return 0; }
 
result_type
max() const
{ return _M_max; }
 
/**
* Gets the next random number in the sequence.
*/
// NB: Not exactly the TR1 formula, per N2079 instead.
result_type
operator()()
{
return ((result_type(_M_b1() - _M_b1.min()) << shift1)
^ (result_type(_M_b2() - _M_b2.min()) << shift2));
}
 
/**
* Compares two %xor_combine random number generator objects of
* the same type for equality.
*
* @param __lhs A %xor_combine random number generator object.
* @param __rhs Another %xor_combine random number generator
* object.
*
* @returns true if the two objects are equal, false otherwise.
*/
friend bool
operator==(const xor_combine& __lhs, const xor_combine& __rhs)
{
return (__lhs.base1() == __rhs.base1())
&& (__lhs.base2() == __rhs.base2());
}
 
/**
* Compares two %xor_combine random number generator objects of
* the same type for inequality.
*
* @param __lhs A %xor_combine random number generator object.
* @param __rhs Another %xor_combine random number generator
* object.
*
* @returns true if the two objects are not equal, false otherwise.
*/
friend bool
operator!=(const xor_combine& __lhs, const xor_combine& __rhs)
{ return !(__lhs == __rhs); }
 
/**
* Inserts the current state of a %xor_combine random number
* generator engine @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %xor_combine random number generator engine.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<class _UniformRandomNumberGenerator11, int __s11,
class _UniformRandomNumberGenerator21, int __s21,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const xor_combine<_UniformRandomNumberGenerator11, __s11,
_UniformRandomNumberGenerator21, __s21>& __x);
 
/**
* Extracts the current state of a %xor_combine random number
* generator engine @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %xor_combine random number generator engine.
*
* @returns The input stream with the state of @p __x extracted or in
* an error state.
*/
template<class _UniformRandomNumberGenerator11, int __s11,
class _UniformRandomNumberGenerator21, int __s21,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
xor_combine<_UniformRandomNumberGenerator11, __s11,
_UniformRandomNumberGenerator21, __s21>& __x);
 
private:
void
_M_initialize_max();
 
result_type
_M_initialize_max_aux(result_type, result_type, int);
 
base1_type _M_b1;
base2_type _M_b2;
result_type _M_max;
};
 
 
/**
* A standard interface to a platform-specific non-deterministic
* random number generator (if any are available).
*/
class random_device
{
public:
// types
typedef unsigned int result_type;
 
// constructors, destructors and member functions
 
#ifdef _GLIBCXX_USE_RANDOM_TR1
 
explicit
random_device(const std::string& __token = "/dev/urandom")
{
if ((__token != "/dev/urandom" && __token != "/dev/random")
|| !(_M_file = std::fopen(__token.c_str(), "rb")))
std::__throw_runtime_error(__N("random_device::"
"random_device(const std::string&)"));
}
 
~random_device()
{ std::fclose(_M_file); }
 
#else
 
explicit
random_device(const std::string& __token = "mt19937")
: _M_mt(_M_strtoul(__token)) { }
 
private:
static unsigned long
_M_strtoul(const std::string& __str)
{
unsigned long __ret = 5489UL;
if (__str != "mt19937")
{
const char* __nptr = __str.c_str();
char* __endptr;
__ret = std::strtoul(__nptr, &__endptr, 0);
if (*__nptr == '\0' || *__endptr != '\0')
std::__throw_runtime_error(__N("random_device::_M_strtoul"
"(const std::string&)"));
}
return __ret;
}
 
public:
 
#endif
 
result_type
min() const
{ return std::numeric_limits<result_type>::min(); }
 
result_type
max() const
{ return std::numeric_limits<result_type>::max(); }
 
double
entropy() const
{ return 0.0; }
 
result_type
operator()()
{
#ifdef _GLIBCXX_USE_RANDOM_TR1
result_type __ret;
std::fread(reinterpret_cast<void*>(&__ret), sizeof(result_type),
1, _M_file);
return __ret;
#else
return _M_mt();
#endif
}
 
private:
random_device(const random_device&);
void operator=(const random_device&);
 
#ifdef _GLIBCXX_USE_RANDOM_TR1
FILE* _M_file;
#else
mt19937 _M_mt;
#endif
};
 
/* @} */ // group tr1_random_generators
 
/**
* @addtogroup tr1_random_distributions Random Number Distributions
* @ingroup tr1_random
* @{
*/
 
/**
* @addtogroup tr1_random_distributions_discrete Discrete Distributions
* @ingroup tr1_random_distributions
* @{
*/
 
/**
* @brief Uniform discrete distribution for random numbers.
* A discrete random distribution on the range @f$[min, max]@f$ with equal
* probability throughout the range.
*/
template<typename _IntType = int>
class uniform_int
{
__glibcxx_class_requires(_IntType, _IntegerConcept)
public:
/** The type of the parameters of the distribution. */
typedef _IntType input_type;
/** The type of the range of the distribution. */
typedef _IntType result_type;
 
public:
/**
* Constructs a uniform distribution object.
*/
explicit
uniform_int(_IntType __min = 0, _IntType __max = 9)
: _M_min(__min), _M_max(__max)
{
_GLIBCXX_DEBUG_ASSERT(_M_min <= _M_max);
}
 
/**
* Gets the inclusive lower bound of the distribution range.
*/
result_type
min() const
{ return _M_min; }
 
/**
* Gets the inclusive upper bound of the distribution range.
*/
result_type
max() const
{ return _M_max; }
 
/**
* Resets the distribution state.
*
* Does nothing for the uniform integer distribution.
*/
void
reset() { }
 
/**
* Gets a uniformly distributed random number in the range
* @f$(min, max)@f$.
*/
template<typename _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng)
{
typedef typename _UniformRandomNumberGenerator::result_type
_UResult_type;
return _M_call(__urng, _M_min, _M_max,
typename is_integral<_UResult_type>::type());
}
 
/**
* Gets a uniform random number in the range @f$[0, n)@f$.
*
* This function is aimed at use with std::random_shuffle.
*/
template<typename _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng, result_type __n)
{
typedef typename _UniformRandomNumberGenerator::result_type
_UResult_type;
return _M_call(__urng, 0, __n - 1,
typename is_integral<_UResult_type>::type());
}
 
/**
* Inserts a %uniform_int random number distribution @p __x into the
* output stream @p os.
*
* @param __os An output stream.
* @param __x A %uniform_int random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _IntType1, typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const uniform_int<_IntType1>& __x);
 
/**
* Extracts a %uniform_int random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %uniform_int random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _IntType1, typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
uniform_int<_IntType1>& __x);
 
private:
template<typename _UniformRandomNumberGenerator>
result_type
_M_call(_UniformRandomNumberGenerator& __urng,
result_type __min, result_type __max, true_type);
 
template<typename _UniformRandomNumberGenerator>
result_type
_M_call(_UniformRandomNumberGenerator& __urng,
result_type __min, result_type __max, false_type)
{
return result_type((__urng() - __urng.min())
/ (__urng.max() - __urng.min())
* (__max - __min + 1)) + __min;
}
 
_IntType _M_min;
_IntType _M_max;
};
 
 
/**
* @brief A Bernoulli random number distribution.
*
* Generates a sequence of true and false values with likelihood @f$ p @f$
* that true will come up and @f$ (1 - p) @f$ that false will appear.
*/
class bernoulli_distribution
{
public:
typedef int input_type;
typedef bool result_type;
 
public:
/**
* Constructs a Bernoulli distribution with likelihood @p p.
*
* @param __p [IN] The likelihood of a true result being returned. Must
* be in the interval @f$ [0, 1] @f$.
*/
explicit
bernoulli_distribution(double __p = 0.5)
: _M_p(__p)
{
_GLIBCXX_DEBUG_ASSERT((_M_p >= 0.0) && (_M_p <= 1.0));
}
 
/**
* Gets the @p p parameter of the distribution.
*/
double
p() const
{ return _M_p; }
 
/**
* Resets the distribution state.
*
* Does nothing for a Bernoulli distribution.
*/
void
reset() { }
 
/**
* Gets the next value in the Bernoullian sequence.
*/
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng)
{
if ((__urng() - __urng.min()) < _M_p * (__urng.max() - __urng.min()))
return true;
return false;
}
 
/**
* Inserts a %bernoulli_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %bernoulli_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const bernoulli_distribution& __x);
 
/**
* Extracts a %bernoulli_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %bernoulli_distribution random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
bernoulli_distribution& __x)
{ return __is >> __x._M_p; }
 
private:
double _M_p;
};
 
 
/**
* @brief A discrete geometric random number distribution.
*
* The formula for the geometric probability mass function is
* @f$ p(i) = (1 - p)p^{i-1} @f$ where @f$ p @f$ is the parameter of the
* distribution.
*/
template<typename _IntType = int, typename _RealType = double>
class geometric_distribution
{
public:
// types
typedef _RealType input_type;
typedef _IntType result_type;
 
// constructors and member function
explicit
geometric_distribution(const _RealType& __p = _RealType(0.5))
: _M_p(__p)
{
_GLIBCXX_DEBUG_ASSERT((_M_p > 0.0) && (_M_p < 1.0));
_M_initialize();
}
 
/**
* Gets the distribution parameter @p p.
*/
_RealType
p() const
{ return _M_p; }
 
void
reset() { }
 
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng);
 
/**
* Inserts a %geometric_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %geometric_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _IntType1, typename _RealType1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const geometric_distribution<_IntType1, _RealType1>& __x);
 
/**
* Extracts a %geometric_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %geometric_distribution random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
geometric_distribution& __x)
{
__is >> __x._M_p;
__x._M_initialize();
return __is;
}
 
private:
void
_M_initialize()
{ _M_log_p = std::log(_M_p); }
 
_RealType _M_p;
_RealType _M_log_p;
};
 
 
template<typename _RealType>
class normal_distribution;
 
/**
* @brief A discrete Poisson random number distribution.
*
* The formula for the Poisson probability mass function is
* @f$ p(i) = \frac{mean^i}{i!} e^{-mean} @f$ where @f$ mean @f$ is the
* parameter of the distribution.
*/
template<typename _IntType = int, typename _RealType = double>
class poisson_distribution
{
public:
// types
typedef _RealType input_type;
typedef _IntType result_type;
 
// constructors and member function
explicit
poisson_distribution(const _RealType& __mean = _RealType(1))
: _M_mean(__mean), _M_nd()
{
_GLIBCXX_DEBUG_ASSERT(_M_mean > 0.0);
_M_initialize();
}
 
/**
* Gets the distribution parameter @p mean.
*/
_RealType
mean() const
{ return _M_mean; }
 
void
reset()
{ _M_nd.reset(); }
 
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng);
 
/**
* Inserts a %poisson_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %poisson_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _IntType1, typename _RealType1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const poisson_distribution<_IntType1, _RealType1>& __x);
 
/**
* Extracts a %poisson_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %poisson_distribution random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _IntType1, typename _RealType1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
poisson_distribution<_IntType1, _RealType1>& __x);
 
private:
void
_M_initialize();
 
// NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
normal_distribution<_RealType> _M_nd;
 
_RealType _M_mean;
 
// Hosts either log(mean) or the threshold of the simple method.
_RealType _M_lm_thr;
#if _GLIBCXX_USE_C99_MATH_TR1
_RealType _M_lfm, _M_sm, _M_d, _M_scx, _M_1cx, _M_c2b, _M_cb;
#endif
};
 
 
/**
* @brief A discrete binomial random number distribution.
*
* The formula for the binomial probability mass function is
* @f$ p(i) = \binom{n}{i} p^i (1 - p)^{t - i} @f$ where @f$ t @f$
* and @f$ p @f$ are the parameters of the distribution.
*/
template<typename _IntType = int, typename _RealType = double>
class binomial_distribution
{
public:
// types
typedef _RealType input_type;
typedef _IntType result_type;
 
// constructors and member function
explicit
binomial_distribution(_IntType __t = 1,
const _RealType& __p = _RealType(0.5))
: _M_t(__t), _M_p(__p), _M_nd()
{
_GLIBCXX_DEBUG_ASSERT((_M_t >= 0) && (_M_p >= 0.0) && (_M_p <= 1.0));
_M_initialize();
}
 
/**
* Gets the distribution @p t parameter.
*/
_IntType
t() const
{ return _M_t; }
/**
* Gets the distribution @p p parameter.
*/
_RealType
p() const
{ return _M_p; }
 
void
reset()
{ _M_nd.reset(); }
 
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng);
 
/**
* Inserts a %binomial_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %binomial_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _IntType1, typename _RealType1,
typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const binomial_distribution<_IntType1, _RealType1>& __x);
 
/**
* Extracts a %binomial_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %binomial_distribution random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _IntType1, typename _RealType1,
typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
binomial_distribution<_IntType1, _RealType1>& __x);
 
private:
void
_M_initialize();
 
template<class _UniformRandomNumberGenerator>
result_type
_M_waiting(_UniformRandomNumberGenerator& __urng, _IntType __t);
 
// NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
normal_distribution<_RealType> _M_nd;
 
_RealType _M_q;
#if _GLIBCXX_USE_C99_MATH_TR1
_RealType _M_d1, _M_d2, _M_s1, _M_s2, _M_c,
_M_a1, _M_a123, _M_s, _M_lf, _M_lp1p;
#endif
_RealType _M_p;
_IntType _M_t;
 
bool _M_easy;
};
 
/* @} */ // group tr1_random_distributions_discrete
 
/**
* @addtogroup tr1_random_distributions_continuous Continuous Distributions
* @ingroup tr1_random_distributions
* @{
*/
 
/**
* @brief Uniform continuous distribution for random numbers.
*
* A continuous random distribution on the range [min, max) with equal
* probability throughout the range. The URNG should be real-valued and
* deliver number in the range [0, 1).
*/
template<typename _RealType = double>
class uniform_real
{
public:
// types
typedef _RealType input_type;
typedef _RealType result_type;
 
public:
/**
* Constructs a uniform_real object.
*
* @param __min [IN] The lower bound of the distribution.
* @param __max [IN] The upper bound of the distribution.
*/
explicit
uniform_real(_RealType __min = _RealType(0),
_RealType __max = _RealType(1))
: _M_min(__min), _M_max(__max)
{
_GLIBCXX_DEBUG_ASSERT(_M_min <= _M_max);
}
 
result_type
min() const
{ return _M_min; }
 
result_type
max() const
{ return _M_max; }
 
void
reset() { }
 
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng)
{ return (__urng() * (_M_max - _M_min)) + _M_min; }
 
/**
* Inserts a %uniform_real random number distribution @p __x into the
* output stream @p __os.
*
* @param __os An output stream.
* @param __x A %uniform_real random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _RealType1, typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const uniform_real<_RealType1>& __x);
 
/**
* Extracts a %uniform_real random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %uniform_real random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _RealType1, typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
uniform_real<_RealType1>& __x);
 
private:
_RealType _M_min;
_RealType _M_max;
};
 
 
/**
* @brief An exponential continuous distribution for random numbers.
*
* The formula for the exponential probability mass function is
* @f$ p(x) = \lambda e^{-\lambda x} @f$.
*
* <table border=1 cellpadding=10 cellspacing=0>
* <caption align=top>Distribution Statistics</caption>
* <tr><td>Mean</td><td>@f$ \frac{1}{\lambda} @f$</td></tr>
* <tr><td>Median</td><td>@f$ \frac{\ln 2}{\lambda} @f$</td></tr>
* <tr><td>Mode</td><td>@f$ zero @f$</td></tr>
* <tr><td>Range</td><td>@f$[0, \infty]@f$</td></tr>
* <tr><td>Standard Deviation</td><td>@f$ \frac{1}{\lambda} @f$</td></tr>
* </table>
*/
template<typename _RealType = double>
class exponential_distribution
{
public:
// types
typedef _RealType input_type;
typedef _RealType result_type;
 
public:
/**
* Constructs an exponential distribution with inverse scale parameter
* @f$ \lambda @f$.
*/
explicit
exponential_distribution(const result_type& __lambda = result_type(1))
: _M_lambda(__lambda)
{
_GLIBCXX_DEBUG_ASSERT(_M_lambda > 0);
}
 
/**
* Gets the inverse scale parameter of the distribution.
*/
_RealType
lambda() const
{ return _M_lambda; }
 
/**
* Resets the distribution.
*
* Has no effect on exponential distributions.
*/
void
reset() { }
 
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng)
{ return -std::log(__urng()) / _M_lambda; }
 
/**
* Inserts a %exponential_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %exponential_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _RealType1, typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const exponential_distribution<_RealType1>& __x);
 
/**
* Extracts a %exponential_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %exponential_distribution random number
* generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
exponential_distribution& __x)
{ return __is >> __x._M_lambda; }
 
private:
result_type _M_lambda;
};
 
 
/**
* @brief A normal continuous distribution for random numbers.
*
* The formula for the normal probability mass function is
* @f$ p(x) = \frac{1}{\sigma \sqrt{2 \pi}}
* e^{- \frac{{x - mean}^ {2}}{2 \sigma ^ {2}} } @f$.
*/
template<typename _RealType = double>
class normal_distribution
{
public:
// types
typedef _RealType input_type;
typedef _RealType result_type;
 
public:
/**
* Constructs a normal distribution with parameters @f$ mean @f$ and
* @f$ \sigma @f$.
*/
explicit
normal_distribution(const result_type& __mean = result_type(0),
const result_type& __sigma = result_type(1))
: _M_mean(__mean), _M_sigma(__sigma), _M_saved_available(false)
{
_GLIBCXX_DEBUG_ASSERT(_M_sigma > 0);
}
 
/**
* Gets the mean of the distribution.
*/
_RealType
mean() const
{ return _M_mean; }
 
/**
* Gets the @f$ \sigma @f$ of the distribution.
*/
_RealType
sigma() const
{ return _M_sigma; }
 
/**
* Resets the distribution.
*/
void
reset()
{ _M_saved_available = false; }
 
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng);
 
/**
* Inserts a %normal_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %normal_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _RealType1, typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const normal_distribution<_RealType1>& __x);
 
/**
* Extracts a %normal_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %normal_distribution random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _RealType1, typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
normal_distribution<_RealType1>& __x);
 
private:
result_type _M_mean;
result_type _M_sigma;
result_type _M_saved;
bool _M_saved_available;
};
 
 
/**
* @brief A gamma continuous distribution for random numbers.
*
* The formula for the gamma probability mass function is
* @f$ p(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x} @f$.
*/
template<typename _RealType = double>
class gamma_distribution
{
public:
// types
typedef _RealType input_type;
typedef _RealType result_type;
 
public:
/**
* Constructs a gamma distribution with parameters @f$ \alpha @f$.
*/
explicit
gamma_distribution(const result_type& __alpha_val = result_type(1))
: _M_alpha(__alpha_val)
{
_GLIBCXX_DEBUG_ASSERT(_M_alpha > 0);
_M_initialize();
}
 
/**
* Gets the @f$ \alpha @f$ of the distribution.
*/
_RealType
alpha() const
{ return _M_alpha; }
 
/**
* Resets the distribution.
*/
void
reset() { }
 
template<class _UniformRandomNumberGenerator>
result_type
operator()(_UniformRandomNumberGenerator& __urng);
 
/**
* Inserts a %gamma_distribution random number distribution
* @p __x into the output stream @p __os.
*
* @param __os An output stream.
* @param __x A %gamma_distribution random number distribution.
*
* @returns The output stream with the state of @p __x inserted or in
* an error state.
*/
template<typename _RealType1, typename _CharT, typename _Traits>
friend std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const gamma_distribution<_RealType1>& __x);
 
/**
* Extracts a %gamma_distribution random number distribution
* @p __x from the input stream @p __is.
*
* @param __is An input stream.
* @param __x A %gamma_distribution random number generator engine.
*
* @returns The input stream with @p __x extracted or in an error state.
*/
template<typename _CharT, typename _Traits>
friend std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
gamma_distribution& __x)
{
__is >> __x._M_alpha;
__x._M_initialize();
return __is;
}
 
private:
void
_M_initialize();
 
result_type _M_alpha;
 
// Hosts either lambda of GB or d of modified Vaduva's.
result_type _M_l_d;
};
 
/* @} */ // group tr1_random_distributions_continuous
/* @} */ // group tr1_random_distributions
/* @} */ // group tr1_random
_GLIBCXX_END_NAMESPACE_VERSION
}
}
 
#endif // _GLIBCXX_TR1_RANDOM_H
/contrib/sdk/sources/libstdc++-v3/include/tr1/random.tcc
0,0 → 1,1721
// random number generation (out of line) -*- C++ -*-
 
// Copyright (C) 2009-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
 
/** @file tr1/random.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/random}
*/
 
#ifndef _GLIBCXX_TR1_RANDOM_TCC
#define _GLIBCXX_TR1_RANDOM_TCC 1
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
/*
* (Further) implementation-space details.
*/
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
// General case for x = (ax + c) mod m -- use Schrage's algorithm to avoid
// integer overflow.
//
// Because a and c are compile-time integral constants the compiler kindly
// elides any unreachable paths.
//
// Preconditions: a > 0, m > 0.
//
template<typename _Tp, _Tp __a, _Tp __c, _Tp __m, bool>
struct _Mod
{
static _Tp
__calc(_Tp __x)
{
if (__a == 1)
__x %= __m;
else
{
static const _Tp __q = __m / __a;
static const _Tp __r = __m % __a;
_Tp __t1 = __a * (__x % __q);
_Tp __t2 = __r * (__x / __q);
if (__t1 >= __t2)
__x = __t1 - __t2;
else
__x = __m - __t2 + __t1;
}
 
if (__c != 0)
{
const _Tp __d = __m - __x;
if (__d > __c)
__x += __c;
else
__x = __c - __d;
}
return __x;
}
};
 
// Special case for m == 0 -- use unsigned integer overflow as modulo
// operator.
template<typename _Tp, _Tp __a, _Tp __c, _Tp __m>
struct _Mod<_Tp, __a, __c, __m, true>
{
static _Tp
__calc(_Tp __x)
{ return __a * __x + __c; }
};
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
 
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
const _UIntType
linear_congruential<_UIntType, __a, __c, __m>::multiplier;
 
template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
const _UIntType
linear_congruential<_UIntType, __a, __c, __m>::increment;
 
template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
const _UIntType
linear_congruential<_UIntType, __a, __c, __m>::modulus;
 
/**
* Seeds the LCR with integral value @p __x0, adjusted so that the
* ring identity is never a member of the convergence set.
*/
template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
void
linear_congruential<_UIntType, __a, __c, __m>::
seed(unsigned long __x0)
{
if ((__detail::__mod<_UIntType, 1, 0, __m>(__c) == 0)
&& (__detail::__mod<_UIntType, 1, 0, __m>(__x0) == 0))
_M_x = __detail::__mod<_UIntType, 1, 0, __m>(1);
else
_M_x = __detail::__mod<_UIntType, 1, 0, __m>(__x0);
}
 
/**
* Seeds the LCR engine with a value generated by @p __g.
*/
template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
template<class _Gen>
void
linear_congruential<_UIntType, __a, __c, __m>::
seed(_Gen& __g, false_type)
{
_UIntType __x0 = __g();
if ((__detail::__mod<_UIntType, 1, 0, __m>(__c) == 0)
&& (__detail::__mod<_UIntType, 1, 0, __m>(__x0) == 0))
_M_x = __detail::__mod<_UIntType, 1, 0, __m>(1);
else
_M_x = __detail::__mod<_UIntType, 1, 0, __m>(__x0);
}
 
/**
* Gets the next generated value in sequence.
*/
template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
typename linear_congruential<_UIntType, __a, __c, __m>::result_type
linear_congruential<_UIntType, __a, __c, __m>::
operator()()
{
_M_x = __detail::__mod<_UIntType, __a, __c, __m>(_M_x);
return _M_x;
}
 
template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const linear_congruential<_UIntType, __a, __c, __m>& __lcr)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
__os.fill(__os.widen(' '));
 
__os << __lcr._M_x;
 
__os.flags(__flags);
__os.fill(__fill);
return __os;
}
 
template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m,
typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
linear_congruential<_UIntType, __a, __c, __m>& __lcr)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec);
 
__is >> __lcr._M_x;
 
__is.flags(__flags);
return __is;
}
 
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
const int
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::word_size;
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
const int
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::state_size;
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
const int
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::shift_size;
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
const int
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::mask_bits;
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
const _UIntType
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::parameter_a;
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
const int
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::output_u;
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
const int
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::output_s;
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
const _UIntType
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::output_b;
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
const int
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::output_t;
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
const _UIntType
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::output_c;
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
const int
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::output_l;
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
void
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::
seed(unsigned long __value)
{
_M_x[0] = __detail::__mod<_UIntType, 1, 0,
__detail::_Shift<_UIntType, __w>::__value>(__value);
 
for (int __i = 1; __i < state_size; ++__i)
{
_UIntType __x = _M_x[__i - 1];
__x ^= __x >> (__w - 2);
__x *= 1812433253ul;
__x += __i;
_M_x[__i] = __detail::__mod<_UIntType, 1, 0,
__detail::_Shift<_UIntType, __w>::__value>(__x);
}
_M_p = state_size;
}
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
template<class _Gen>
void
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::
seed(_Gen& __gen, false_type)
{
for (int __i = 0; __i < state_size; ++__i)
_M_x[__i] = __detail::__mod<_UIntType, 1, 0,
__detail::_Shift<_UIntType, __w>::__value>(__gen());
_M_p = state_size;
}
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s,
_UIntType __b, int __t, _UIntType __c, int __l>
typename
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::result_type
mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s,
__b, __t, __c, __l>::
operator()()
{
// Reload the vector - cost is O(n) amortized over n calls.
if (_M_p >= state_size)
{
const _UIntType __upper_mask = (~_UIntType()) << __r;
const _UIntType __lower_mask = ~__upper_mask;
 
for (int __k = 0; __k < (__n - __m); ++__k)
{
_UIntType __y = ((_M_x[__k] & __upper_mask)
| (_M_x[__k + 1] & __lower_mask));
_M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1)
^ ((__y & 0x01) ? __a : 0));
}
 
for (int __k = (__n - __m); __k < (__n - 1); ++__k)
{
_UIntType __y = ((_M_x[__k] & __upper_mask)
| (_M_x[__k + 1] & __lower_mask));
_M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1)
^ ((__y & 0x01) ? __a : 0));
}
 
_UIntType __y = ((_M_x[__n - 1] & __upper_mask)
| (_M_x[0] & __lower_mask));
_M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1)
^ ((__y & 0x01) ? __a : 0));
_M_p = 0;
}
 
// Calculate o(x(i)).
result_type __z = _M_x[_M_p++];
__z ^= (__z >> __u);
__z ^= (__z << __s) & __b;
__z ^= (__z << __t) & __c;
__z ^= (__z >> __l);
 
return __z;
}
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s, _UIntType __b, int __t,
_UIntType __c, int __l,
typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const mersenne_twister<_UIntType, __w, __n, __m,
__r, __a, __u, __s, __b, __t, __c, __l>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
__os.fill(__space);
 
for (int __i = 0; __i < __n - 1; ++__i)
__os << __x._M_x[__i] << __space;
__os << __x._M_x[__n - 1];
 
__os.flags(__flags);
__os.fill(__fill);
return __os;
}
 
template<class _UIntType, int __w, int __n, int __m, int __r,
_UIntType __a, int __u, int __s, _UIntType __b, int __t,
_UIntType __c, int __l,
typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
mersenne_twister<_UIntType, __w, __n, __m,
__r, __a, __u, __s, __b, __t, __c, __l>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
 
for (int __i = 0; __i < __n; ++__i)
__is >> __x._M_x[__i];
 
__is.flags(__flags);
return __is;
}
 
 
template<typename _IntType, _IntType __m, int __s, int __r>
const _IntType
subtract_with_carry<_IntType, __m, __s, __r>::modulus;
 
template<typename _IntType, _IntType __m, int __s, int __r>
const int
subtract_with_carry<_IntType, __m, __s, __r>::long_lag;
 
template<typename _IntType, _IntType __m, int __s, int __r>
const int
subtract_with_carry<_IntType, __m, __s, __r>::short_lag;
 
template<typename _IntType, _IntType __m, int __s, int __r>
void
subtract_with_carry<_IntType, __m, __s, __r>::
seed(unsigned long __value)
{
if (__value == 0)
__value = 19780503;
 
std::tr1::linear_congruential<unsigned long, 40014, 0, 2147483563>
__lcg(__value);
 
for (int __i = 0; __i < long_lag; ++__i)
_M_x[__i] = __detail::__mod<_UIntType, 1, 0, modulus>(__lcg());
 
_M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
_M_p = 0;
}
 
template<typename _IntType, _IntType __m, int __s, int __r>
template<class _Gen>
void
subtract_with_carry<_IntType, __m, __s, __r>::
seed(_Gen& __gen, false_type)
{
const int __n = (std::numeric_limits<_UIntType>::digits + 31) / 32;
 
for (int __i = 0; __i < long_lag; ++__i)
{
_UIntType __tmp = 0;
_UIntType __factor = 1;
for (int __j = 0; __j < __n; ++__j)
{
__tmp += __detail::__mod<__detail::_UInt32Type, 1, 0, 0>
(__gen()) * __factor;
__factor *= __detail::_Shift<_UIntType, 32>::__value;
}
_M_x[__i] = __detail::__mod<_UIntType, 1, 0, modulus>(__tmp);
}
_M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
_M_p = 0;
}
 
template<typename _IntType, _IntType __m, int __s, int __r>
typename subtract_with_carry<_IntType, __m, __s, __r>::result_type
subtract_with_carry<_IntType, __m, __s, __r>::
operator()()
{
// Derive short lag index from current index.
int __ps = _M_p - short_lag;
if (__ps < 0)
__ps += long_lag;
 
// Calculate new x(i) without overflow or division.
// NB: Thanks to the requirements for _IntType, _M_x[_M_p] + _M_carry
// cannot overflow.
_UIntType __xi;
if (_M_x[__ps] >= _M_x[_M_p] + _M_carry)
{
__xi = _M_x[__ps] - _M_x[_M_p] - _M_carry;
_M_carry = 0;
}
else
{
__xi = modulus - _M_x[_M_p] - _M_carry + _M_x[__ps];
_M_carry = 1;
}
_M_x[_M_p] = __xi;
 
// Adjust current index to loop around in ring buffer.
if (++_M_p >= long_lag)
_M_p = 0;
 
return __xi;
}
 
template<typename _IntType, _IntType __m, int __s, int __r,
typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const subtract_with_carry<_IntType, __m, __s, __r>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
__os.fill(__space);
 
for (int __i = 0; __i < __r; ++__i)
__os << __x._M_x[__i] << __space;
__os << __x._M_carry;
 
__os.flags(__flags);
__os.fill(__fill);
return __os;
}
 
template<typename _IntType, _IntType __m, int __s, int __r,
typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
subtract_with_carry<_IntType, __m, __s, __r>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
 
for (int __i = 0; __i < __r; ++__i)
__is >> __x._M_x[__i];
__is >> __x._M_carry;
 
__is.flags(__flags);
return __is;
}
 
 
template<typename _RealType, int __w, int __s, int __r>
const int
subtract_with_carry_01<_RealType, __w, __s, __r>::word_size;
 
template<typename _RealType, int __w, int __s, int __r>
const int
subtract_with_carry_01<_RealType, __w, __s, __r>::long_lag;
 
template<typename _RealType, int __w, int __s, int __r>
const int
subtract_with_carry_01<_RealType, __w, __s, __r>::short_lag;
 
template<typename _RealType, int __w, int __s, int __r>
void
subtract_with_carry_01<_RealType, __w, __s, __r>::
_M_initialize_npows()
{
for (int __j = 0; __j < __n; ++__j)
#if _GLIBCXX_USE_C99_MATH_TR1
_M_npows[__j] = std::tr1::ldexp(_RealType(1), -__w + __j * 32);
#else
_M_npows[__j] = std::pow(_RealType(2), -__w + __j * 32);
#endif
}
 
template<typename _RealType, int __w, int __s, int __r>
void
subtract_with_carry_01<_RealType, __w, __s, __r>::
seed(unsigned long __value)
{
if (__value == 0)
__value = 19780503;
 
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 512. Seeding subtract_with_carry_01 from a single unsigned long.
std::tr1::linear_congruential<unsigned long, 40014, 0, 2147483563>
__lcg(__value);
 
this->seed(__lcg);
}
 
template<typename _RealType, int __w, int __s, int __r>
template<class _Gen>
void
subtract_with_carry_01<_RealType, __w, __s, __r>::
seed(_Gen& __gen, false_type)
{
for (int __i = 0; __i < long_lag; ++__i)
{
for (int __j = 0; __j < __n - 1; ++__j)
_M_x[__i][__j] = __detail::__mod<_UInt32Type, 1, 0, 0>(__gen());
_M_x[__i][__n - 1] = __detail::__mod<_UInt32Type, 1, 0,
__detail::_Shift<_UInt32Type, __w % 32>::__value>(__gen());
}
 
_M_carry = 1;
for (int __j = 0; __j < __n; ++__j)
if (_M_x[long_lag - 1][__j] != 0)
{
_M_carry = 0;
break;
}
 
_M_p = 0;
}
 
template<typename _RealType, int __w, int __s, int __r>
typename subtract_with_carry_01<_RealType, __w, __s, __r>::result_type
subtract_with_carry_01<_RealType, __w, __s, __r>::
operator()()
{
// Derive short lag index from current index.
int __ps = _M_p - short_lag;
if (__ps < 0)
__ps += long_lag;
 
_UInt32Type __new_carry;
for (int __j = 0; __j < __n - 1; ++__j)
{
if (_M_x[__ps][__j] > _M_x[_M_p][__j]
|| (_M_x[__ps][__j] == _M_x[_M_p][__j] && _M_carry == 0))
__new_carry = 0;
else
__new_carry = 1;
 
_M_x[_M_p][__j] = _M_x[__ps][__j] - _M_x[_M_p][__j] - _M_carry;
_M_carry = __new_carry;
}
 
if (_M_x[__ps][__n - 1] > _M_x[_M_p][__n - 1]
|| (_M_x[__ps][__n - 1] == _M_x[_M_p][__n - 1] && _M_carry == 0))
__new_carry = 0;
else
__new_carry = 1;
_M_x[_M_p][__n - 1] = __detail::__mod<_UInt32Type, 1, 0,
__detail::_Shift<_UInt32Type, __w % 32>::__value>
(_M_x[__ps][__n - 1] - _M_x[_M_p][__n - 1] - _M_carry);
_M_carry = __new_carry;
 
result_type __ret = 0.0;
for (int __j = 0; __j < __n; ++__j)
__ret += _M_x[_M_p][__j] * _M_npows[__j];
 
// Adjust current index to loop around in ring buffer.
if (++_M_p >= long_lag)
_M_p = 0;
 
return __ret;
}
 
template<typename _RealType, int __w, int __s, int __r,
typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const subtract_with_carry_01<_RealType, __w, __s, __r>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
__os.fill(__space);
 
for (int __i = 0; __i < __r; ++__i)
for (int __j = 0; __j < __x.__n; ++__j)
__os << __x._M_x[__i][__j] << __space;
__os << __x._M_carry;
 
__os.flags(__flags);
__os.fill(__fill);
return __os;
}
 
template<typename _RealType, int __w, int __s, int __r,
typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
subtract_with_carry_01<_RealType, __w, __s, __r>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
 
for (int __i = 0; __i < __r; ++__i)
for (int __j = 0; __j < __x.__n; ++__j)
__is >> __x._M_x[__i][__j];
__is >> __x._M_carry;
 
__is.flags(__flags);
return __is;
}
 
template<class _UniformRandomNumberGenerator, int __p, int __r>
const int
discard_block<_UniformRandomNumberGenerator, __p, __r>::block_size;
 
template<class _UniformRandomNumberGenerator, int __p, int __r>
const int
discard_block<_UniformRandomNumberGenerator, __p, __r>::used_block;
 
template<class _UniformRandomNumberGenerator, int __p, int __r>
typename discard_block<_UniformRandomNumberGenerator,
__p, __r>::result_type
discard_block<_UniformRandomNumberGenerator, __p, __r>::
operator()()
{
if (_M_n >= used_block)
{
while (_M_n < block_size)
{
_M_b();
++_M_n;
}
_M_n = 0;
}
++_M_n;
return _M_b();
}
 
template<class _UniformRandomNumberGenerator, int __p, int __r,
typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const discard_block<_UniformRandomNumberGenerator,
__p, __r>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::dec | __ios_base::fixed
| __ios_base::left);
__os.fill(__space);
 
__os << __x._M_b << __space << __x._M_n;
 
__os.flags(__flags);
__os.fill(__fill);
return __os;
}
 
template<class _UniformRandomNumberGenerator, int __p, int __r,
typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
discard_block<_UniformRandomNumberGenerator, __p, __r>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
 
__is >> __x._M_b >> __x._M_n;
 
__is.flags(__flags);
return __is;
}
 
 
template<class _UniformRandomNumberGenerator1, int __s1,
class _UniformRandomNumberGenerator2, int __s2>
const int
xor_combine<_UniformRandomNumberGenerator1, __s1,
_UniformRandomNumberGenerator2, __s2>::shift1;
template<class _UniformRandomNumberGenerator1, int __s1,
class _UniformRandomNumberGenerator2, int __s2>
const int
xor_combine<_UniformRandomNumberGenerator1, __s1,
_UniformRandomNumberGenerator2, __s2>::shift2;
 
template<class _UniformRandomNumberGenerator1, int __s1,
class _UniformRandomNumberGenerator2, int __s2>
void
xor_combine<_UniformRandomNumberGenerator1, __s1,
_UniformRandomNumberGenerator2, __s2>::
_M_initialize_max()
{
const int __w = std::numeric_limits<result_type>::digits;
 
const result_type __m1 =
std::min(result_type(_M_b1.max() - _M_b1.min()),
__detail::_Shift<result_type, __w - __s1>::__value - 1);
 
const result_type __m2 =
std::min(result_type(_M_b2.max() - _M_b2.min()),
__detail::_Shift<result_type, __w - __s2>::__value - 1);
 
// NB: In TR1 s1 is not required to be >= s2.
if (__s1 < __s2)
_M_max = _M_initialize_max_aux(__m2, __m1, __s2 - __s1) << __s1;
else
_M_max = _M_initialize_max_aux(__m1, __m2, __s1 - __s2) << __s2;
}
 
template<class _UniformRandomNumberGenerator1, int __s1,
class _UniformRandomNumberGenerator2, int __s2>
typename xor_combine<_UniformRandomNumberGenerator1, __s1,
_UniformRandomNumberGenerator2, __s2>::result_type
xor_combine<_UniformRandomNumberGenerator1, __s1,
_UniformRandomNumberGenerator2, __s2>::
_M_initialize_max_aux(result_type __a, result_type __b, int __d)
{
const result_type __two2d = result_type(1) << __d;
const result_type __c = __a * __two2d;
 
if (__a == 0 || __b < __two2d)
return __c + __b;
 
const result_type __t = std::max(__c, __b);
const result_type __u = std::min(__c, __b);
 
result_type __ub = __u;
result_type __p;
for (__p = 0; __ub != 1; __ub >>= 1)
++__p;
 
const result_type __two2p = result_type(1) << __p;
const result_type __k = __t / __two2p;
 
if (__k & 1)
return (__k + 1) * __two2p - 1;
 
if (__c >= __b)
return (__k + 1) * __two2p + _M_initialize_max_aux((__t % __two2p)
/ __two2d,
__u % __two2p, __d);
else
return (__k + 1) * __two2p + _M_initialize_max_aux((__u % __two2p)
/ __two2d,
__t % __two2p, __d);
}
 
template<class _UniformRandomNumberGenerator1, int __s1,
class _UniformRandomNumberGenerator2, int __s2,
typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const xor_combine<_UniformRandomNumberGenerator1, __s1,
_UniformRandomNumberGenerator2, __s2>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
__os.fill(__space);
 
__os << __x.base1() << __space << __x.base2();
 
__os.flags(__flags);
__os.fill(__fill);
return __os;
}
 
template<class _UniformRandomNumberGenerator1, int __s1,
class _UniformRandomNumberGenerator2, int __s2,
typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
xor_combine<_UniformRandomNumberGenerator1, __s1,
_UniformRandomNumberGenerator2, __s2>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::skipws);
 
__is >> __x._M_b1 >> __x._M_b2;
 
__is.flags(__flags);
return __is;
}
 
 
template<typename _IntType>
template<typename _UniformRandomNumberGenerator>
typename uniform_int<_IntType>::result_type
uniform_int<_IntType>::
_M_call(_UniformRandomNumberGenerator& __urng,
result_type __min, result_type __max, true_type)
{
// XXX Must be fixed to work well for *arbitrary* __urng.max(),
// __urng.min(), __max, __min. Currently works fine only in the
// most common case __urng.max() - __urng.min() >= __max - __min,
// with __urng.max() > __urng.min() >= 0.
typedef typename __gnu_cxx::__add_unsigned<typename
_UniformRandomNumberGenerator::result_type>::__type __urntype;
typedef typename __gnu_cxx::__add_unsigned<result_type>::__type
__utype;
typedef typename __gnu_cxx::__conditional_type<(sizeof(__urntype)
> sizeof(__utype)),
__urntype, __utype>::__type __uctype;
 
result_type __ret;
 
const __urntype __urnmin = __urng.min();
const __urntype __urnmax = __urng.max();
const __urntype __urnrange = __urnmax - __urnmin;
const __uctype __urange = __max - __min;
const __uctype __udenom = (__urnrange <= __urange
? 1 : __urnrange / (__urange + 1));
do
__ret = (__urntype(__urng()) - __urnmin) / __udenom;
while (__ret > __max - __min);
 
return __ret + __min;
}
 
template<typename _IntType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const uniform_int<_IntType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
 
__os << __x.min() << __space << __x.max();
 
__os.flags(__flags);
__os.fill(__fill);
return __os;
}
 
template<typename _IntType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
uniform_int<_IntType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
 
__is >> __x._M_min >> __x._M_max;
 
__is.flags(__flags);
return __is;
}
 
template<typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const bernoulli_distribution& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__os.widen(' '));
__os.precision(__gnu_cxx::__numeric_traits<double>::__max_digits10);
 
__os << __x.p();
 
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
 
 
template<typename _IntType, typename _RealType>
template<class _UniformRandomNumberGenerator>
typename geometric_distribution<_IntType, _RealType>::result_type
geometric_distribution<_IntType, _RealType>::
operator()(_UniformRandomNumberGenerator& __urng)
{
// About the epsilon thing see this thread:
// http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
const _RealType __naf =
(1 - std::numeric_limits<_RealType>::epsilon()) / 2;
// The largest _RealType convertible to _IntType.
const _RealType __thr =
std::numeric_limits<_IntType>::max() + __naf;
 
_RealType __cand;
do
__cand = std::ceil(std::log(__urng()) / _M_log_p);
while (__cand >= __thr);
 
return result_type(__cand + __naf);
}
 
template<typename _IntType, typename _RealType,
typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const geometric_distribution<_IntType, _RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__os.widen(' '));
__os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
 
__os << __x.p();
 
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
 
 
template<typename _IntType, typename _RealType>
void
poisson_distribution<_IntType, _RealType>::
_M_initialize()
{
#if _GLIBCXX_USE_C99_MATH_TR1
if (_M_mean >= 12)
{
const _RealType __m = std::floor(_M_mean);
_M_lm_thr = std::log(_M_mean);
_M_lfm = std::tr1::lgamma(__m + 1);
_M_sm = std::sqrt(__m);
 
const _RealType __pi_4 = 0.7853981633974483096156608458198757L;
const _RealType __dx = std::sqrt(2 * __m * std::log(32 * __m
/ __pi_4));
_M_d = std::tr1::round(std::max(_RealType(6),
std::min(__m, __dx)));
const _RealType __cx = 2 * __m + _M_d;
_M_scx = std::sqrt(__cx / 2);
_M_1cx = 1 / __cx;
 
_M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx);
_M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2)) / _M_d;
}
else
#endif
_M_lm_thr = std::exp(-_M_mean);
}
 
/**
* A rejection algorithm when mean >= 12 and a simple method based
* upon the multiplication of uniform random variates otherwise.
* NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
* is defined.
*
* Reference:
* Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
* New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!).
*/
template<typename _IntType, typename _RealType>
template<class _UniformRandomNumberGenerator>
typename poisson_distribution<_IntType, _RealType>::result_type
poisson_distribution<_IntType, _RealType>::
operator()(_UniformRandomNumberGenerator& __urng)
{
#if _GLIBCXX_USE_C99_MATH_TR1
if (_M_mean >= 12)
{
_RealType __x;
 
// See comments above...
const _RealType __naf =
(1 - std::numeric_limits<_RealType>::epsilon()) / 2;
const _RealType __thr =
std::numeric_limits<_IntType>::max() + __naf;
 
const _RealType __m = std::floor(_M_mean);
// sqrt(pi / 2)
const _RealType __spi_2 = 1.2533141373155002512078826424055226L;
const _RealType __c1 = _M_sm * __spi_2;
const _RealType __c2 = _M_c2b + __c1;
const _RealType __c3 = __c2 + 1;
const _RealType __c4 = __c3 + 1;
// e^(1 / 78)
const _RealType __e178 = 1.0129030479320018583185514777512983L;
const _RealType __c5 = __c4 + __e178;
const _RealType __c = _M_cb + __c5;
const _RealType __2cx = 2 * (2 * __m + _M_d);
 
bool __reject = true;
do
{
const _RealType __u = __c * __urng();
const _RealType __e = -std::log(__urng());
 
_RealType __w = 0.0;
if (__u <= __c1)
{
const _RealType __n = _M_nd(__urng);
const _RealType __y = -std::abs(__n) * _M_sm - 1;
__x = std::floor(__y);
__w = -__n * __n / 2;
if (__x < -__m)
continue;
}
else if (__u <= __c2)
{
const _RealType __n = _M_nd(__urng);
const _RealType __y = 1 + std::abs(__n) * _M_scx;
__x = std::ceil(__y);
__w = __y * (2 - __y) * _M_1cx;
if (__x > _M_d)
continue;
}
else if (__u <= __c3)
// NB: This case not in the book, nor in the Errata,
// but should be ok...
__x = -1;
else if (__u <= __c4)
__x = 0;
else if (__u <= __c5)
__x = 1;
else
{
const _RealType __v = -std::log(__urng());
const _RealType __y = _M_d + __v * __2cx / _M_d;
__x = std::ceil(__y);
__w = -_M_d * _M_1cx * (1 + __y / 2);
}
 
__reject = (__w - __e - __x * _M_lm_thr
> _M_lfm - std::tr1::lgamma(__x + __m + 1));
 
__reject |= __x + __m >= __thr;
 
} while (__reject);
 
return result_type(__x + __m + __naf);
}
else
#endif
{
_IntType __x = 0;
_RealType __prod = 1.0;
 
do
{
__prod *= __urng();
__x += 1;
}
while (__prod > _M_lm_thr);
 
return __x - 1;
}
}
 
template<typename _IntType, typename _RealType,
typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const poisson_distribution<_IntType, _RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
 
__os << __x.mean() << __space << __x._M_nd;
 
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
 
template<typename _IntType, typename _RealType,
typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
poisson_distribution<_IntType, _RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::skipws);
 
__is >> __x._M_mean >> __x._M_nd;
__x._M_initialize();
 
__is.flags(__flags);
return __is;
}
 
 
template<typename _IntType, typename _RealType>
void
binomial_distribution<_IntType, _RealType>::
_M_initialize()
{
const _RealType __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p;
 
_M_easy = true;
 
#if _GLIBCXX_USE_C99_MATH_TR1
if (_M_t * __p12 >= 8)
{
_M_easy = false;
const _RealType __np = std::floor(_M_t * __p12);
const _RealType __pa = __np / _M_t;
const _RealType __1p = 1 - __pa;
const _RealType __pi_4 = 0.7853981633974483096156608458198757L;
const _RealType __d1x =
std::sqrt(__np * __1p * std::log(32 * __np
/ (81 * __pi_4 * __1p)));
_M_d1 = std::tr1::round(std::max(_RealType(1), __d1x));
const _RealType __d2x =
std::sqrt(__np * __1p * std::log(32 * _M_t * __1p
/ (__pi_4 * __pa)));
_M_d2 = std::tr1::round(std::max(_RealType(1), __d2x));
// sqrt(pi / 2)
const _RealType __spi_2 = 1.2533141373155002512078826424055226L;
_M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np));
_M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p));
_M_c = 2 * _M_d1 / __np;
_M_a1 = std::exp(_M_c) * _M_s1 * __spi_2;
const _RealType __a12 = _M_a1 + _M_s2 * __spi_2;
const _RealType __s1s = _M_s1 * _M_s1;
_M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p))
* 2 * __s1s / _M_d1
* std::exp(-_M_d1 * _M_d1 / (2 * __s1s)));
const _RealType __s2s = _M_s2 * _M_s2;
_M_s = (_M_a123 + 2 * __s2s / _M_d2
* std::exp(-_M_d2 * _M_d2 / (2 * __s2s)));
_M_lf = (std::tr1::lgamma(__np + 1)
+ std::tr1::lgamma(_M_t - __np + 1));
_M_lp1p = std::log(__pa / __1p);
 
_M_q = -std::log(1 - (__p12 - __pa) / __1p);
}
else
#endif
_M_q = -std::log(1 - __p12);
}
 
template<typename _IntType, typename _RealType>
template<class _UniformRandomNumberGenerator>
typename binomial_distribution<_IntType, _RealType>::result_type
binomial_distribution<_IntType, _RealType>::
_M_waiting(_UniformRandomNumberGenerator& __urng, _IntType __t)
{
_IntType __x = 0;
_RealType __sum = 0;
 
do
{
const _RealType __e = -std::log(__urng());
__sum += __e / (__t - __x);
__x += 1;
}
while (__sum <= _M_q);
 
return __x - 1;
}
 
/**
* A rejection algorithm when t * p >= 8 and a simple waiting time
* method - the second in the referenced book - otherwise.
* NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
* is defined.
*
* Reference:
* Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
* New York, 1986, Ch. X, Sect. 4 (+ Errata!).
*/
template<typename _IntType, typename _RealType>
template<class _UniformRandomNumberGenerator>
typename binomial_distribution<_IntType, _RealType>::result_type
binomial_distribution<_IntType, _RealType>::
operator()(_UniformRandomNumberGenerator& __urng)
{
result_type __ret;
const _RealType __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p;
 
#if _GLIBCXX_USE_C99_MATH_TR1
if (!_M_easy)
{
_RealType __x;
 
// See comments above...
const _RealType __naf =
(1 - std::numeric_limits<_RealType>::epsilon()) / 2;
const _RealType __thr =
std::numeric_limits<_IntType>::max() + __naf;
 
const _RealType __np = std::floor(_M_t * __p12);
const _RealType __pa = __np / _M_t;
 
// sqrt(pi / 2)
const _RealType __spi_2 = 1.2533141373155002512078826424055226L;
const _RealType __a1 = _M_a1;
const _RealType __a12 = __a1 + _M_s2 * __spi_2;
const _RealType __a123 = _M_a123;
const _RealType __s1s = _M_s1 * _M_s1;
const _RealType __s2s = _M_s2 * _M_s2;
 
bool __reject;
do
{
const _RealType __u = _M_s * __urng();
 
_RealType __v;
 
if (__u <= __a1)
{
const _RealType __n = _M_nd(__urng);
const _RealType __y = _M_s1 * std::abs(__n);
__reject = __y >= _M_d1;
if (!__reject)
{
const _RealType __e = -std::log(__urng());
__x = std::floor(__y);
__v = -__e - __n * __n / 2 + _M_c;
}
}
else if (__u <= __a12)
{
const _RealType __n = _M_nd(__urng);
const _RealType __y = _M_s2 * std::abs(__n);
__reject = __y >= _M_d2;
if (!__reject)
{
const _RealType __e = -std::log(__urng());
__x = std::floor(-__y);
__v = -__e - __n * __n / 2;
}
}
else if (__u <= __a123)
{
const _RealType __e1 = -std::log(__urng());
const _RealType __e2 = -std::log(__urng());
 
const _RealType __y = _M_d1 + 2 * __s1s * __e1 / _M_d1;
__x = std::floor(__y);
__v = (-__e2 + _M_d1 * (1 / (_M_t - __np)
-__y / (2 * __s1s)));
__reject = false;
}
else
{
const _RealType __e1 = -std::log(__urng());
const _RealType __e2 = -std::log(__urng());
 
const _RealType __y = _M_d2 + 2 * __s2s * __e1 / _M_d2;
__x = std::floor(-__y);
__v = -__e2 - _M_d2 * __y / (2 * __s2s);
__reject = false;
}
 
__reject = __reject || __x < -__np || __x > _M_t - __np;
if (!__reject)
{
const _RealType __lfx =
std::tr1::lgamma(__np + __x + 1)
+ std::tr1::lgamma(_M_t - (__np + __x) + 1);
__reject = __v > _M_lf - __lfx + __x * _M_lp1p;
}
 
__reject |= __x + __np >= __thr;
}
while (__reject);
 
__x += __np + __naf;
 
const _IntType __z = _M_waiting(__urng, _M_t - _IntType(__x));
__ret = _IntType(__x) + __z;
}
else
#endif
__ret = _M_waiting(__urng, _M_t);
 
if (__p12 != _M_p)
__ret = _M_t - __ret;
return __ret;
}
 
template<typename _IntType, typename _RealType,
typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const binomial_distribution<_IntType, _RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
 
__os << __x.t() << __space << __x.p()
<< __space << __x._M_nd;
 
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
 
template<typename _IntType, typename _RealType,
typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
binomial_distribution<_IntType, _RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
 
__is >> __x._M_t >> __x._M_p >> __x._M_nd;
__x._M_initialize();
 
__is.flags(__flags);
return __is;
}
 
 
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const uniform_real<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
 
__os << __x.min() << __space << __x.max();
 
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
 
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
uniform_real<_RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::skipws);
 
__is >> __x._M_min >> __x._M_max;
 
__is.flags(__flags);
return __is;
}
 
 
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const exponential_distribution<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__os.widen(' '));
__os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
 
__os << __x.lambda();
 
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
 
 
/**
* Polar method due to Marsaglia.
*
* Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
* New York, 1986, Ch. V, Sect. 4.4.
*/
template<typename _RealType>
template<class _UniformRandomNumberGenerator>
typename normal_distribution<_RealType>::result_type
normal_distribution<_RealType>::
operator()(_UniformRandomNumberGenerator& __urng)
{
result_type __ret;
 
if (_M_saved_available)
{
_M_saved_available = false;
__ret = _M_saved;
}
else
{
result_type __x, __y, __r2;
do
{
__x = result_type(2.0) * __urng() - 1.0;
__y = result_type(2.0) * __urng() - 1.0;
__r2 = __x * __x + __y * __y;
}
while (__r2 > 1.0 || __r2 == 0.0);
 
const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
_M_saved = __x * __mult;
_M_saved_available = true;
__ret = __y * __mult;
}
__ret = __ret * _M_sigma + _M_mean;
return __ret;
}
 
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const normal_distribution<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
const _CharT __space = __os.widen(' ');
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__space);
__os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
 
__os << __x._M_saved_available << __space
<< __x.mean() << __space
<< __x.sigma();
if (__x._M_saved_available)
__os << __space << __x._M_saved;
 
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
 
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_istream<_CharT, _Traits>&
operator>>(std::basic_istream<_CharT, _Traits>& __is,
normal_distribution<_RealType>& __x)
{
typedef std::basic_istream<_CharT, _Traits> __istream_type;
typedef typename __istream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __is.flags();
__is.flags(__ios_base::dec | __ios_base::skipws);
 
__is >> __x._M_saved_available >> __x._M_mean
>> __x._M_sigma;
if (__x._M_saved_available)
__is >> __x._M_saved;
 
__is.flags(__flags);
return __is;
}
 
 
template<typename _RealType>
void
gamma_distribution<_RealType>::
_M_initialize()
{
if (_M_alpha >= 1)
_M_l_d = std::sqrt(2 * _M_alpha - 1);
else
_M_l_d = (std::pow(_M_alpha, _M_alpha / (1 - _M_alpha))
* (1 - _M_alpha));
}
 
/**
* Cheng's rejection algorithm GB for alpha >= 1 and a modification
* of Vaduva's rejection from Weibull algorithm due to Devroye for
* alpha < 1.
*
* References:
* Cheng, R. C. The Generation of Gamma Random Variables with Non-integral
* Shape Parameter. Applied Statistics, 26, 71-75, 1977.
*
* Vaduva, I. Computer Generation of Gamma Gandom Variables by Rejection
* and Composition Procedures. Math. Operationsforschung and Statistik,
* Series in Statistics, 8, 545-576, 1977.
*
* Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
* New York, 1986, Ch. IX, Sect. 3.4 (+ Errata!).
*/
template<typename _RealType>
template<class _UniformRandomNumberGenerator>
typename gamma_distribution<_RealType>::result_type
gamma_distribution<_RealType>::
operator()(_UniformRandomNumberGenerator& __urng)
{
result_type __x;
 
bool __reject;
if (_M_alpha >= 1)
{
// alpha - log(4)
const result_type __b = _M_alpha
- result_type(1.3862943611198906188344642429163531L);
const result_type __c = _M_alpha + _M_l_d;
const result_type __1l = 1 / _M_l_d;
 
// 1 + log(9 / 2)
const result_type __k = 2.5040773967762740733732583523868748L;
 
do
{
const result_type __u = __urng();
const result_type __v = __urng();
 
const result_type __y = __1l * std::log(__v / (1 - __v));
__x = _M_alpha * std::exp(__y);
 
const result_type __z = __u * __v * __v;
const result_type __r = __b + __c * __y - __x;
 
__reject = __r < result_type(4.5) * __z - __k;
if (__reject)
__reject = __r < std::log(__z);
}
while (__reject);
}
else
{
const result_type __c = 1 / _M_alpha;
 
do
{
const result_type __z = -std::log(__urng());
const result_type __e = -std::log(__urng());
 
__x = std::pow(__z, __c);
 
__reject = __z + __e < _M_l_d + __x;
}
while (__reject);
}
 
return __x;
}
 
template<typename _RealType, typename _CharT, typename _Traits>
std::basic_ostream<_CharT, _Traits>&
operator<<(std::basic_ostream<_CharT, _Traits>& __os,
const gamma_distribution<_RealType>& __x)
{
typedef std::basic_ostream<_CharT, _Traits> __ostream_type;
typedef typename __ostream_type::ios_base __ios_base;
 
const typename __ios_base::fmtflags __flags = __os.flags();
const _CharT __fill = __os.fill();
const std::streamsize __precision = __os.precision();
__os.flags(__ios_base::scientific | __ios_base::left);
__os.fill(__os.widen(' '));
__os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10);
 
__os << __x.alpha();
 
__os.flags(__flags);
__os.fill(__fill);
__os.precision(__precision);
return __os;
}
 
_GLIBCXX_END_NAMESPACE_VERSION
}
}
 
#endif
/contrib/sdk/sources/libstdc++-v3/include/tr1/regex
0,0 → 1,2730
// class template regex -*- C++ -*-
 
// Copyright (C) 2007-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/**
* @file tr1/regex
* @author Stephen M. Webb <stephen.webb@bregmasoft.ca>
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_REGEX
#define _GLIBCXX_TR1_REGEX 1
 
#pragma GCC system_header
 
#include <algorithm>
#include <bitset>
#include <iterator>
#include <locale>
#include <stdexcept>
#include <string>
#include <vector>
#include <utility>
#include <sstream>
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
/**
* @defgroup tr1_regex Regular Expressions
* A facility for performing regular expression pattern matching.
*/
//@{
 
/** @namespace std::regex_constants
* @brief ISO C++ 0x entities sub namespace for regex.
*/
namespace regex_constants
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @name 5.1 Regular Expression Syntax Options
*/
//@{
enum __syntax_option
{
_S_icase,
_S_nosubs,
_S_optimize,
_S_collate,
_S_ECMAScript,
_S_basic,
_S_extended,
_S_awk,
_S_grep,
_S_egrep,
_S_syntax_last
};
 
/**
* @brief This is a bitmask type indicating how to interpret the regex.
*
* The @c syntax_option_type is implementation defined but it is valid to
* perform bitwise operations on these values and expect the right thing to
* happen.
*
* A valid value of type syntax_option_type shall have exactly one of the
* elements @c ECMAScript, @c basic, @c extended, @c awk, @c grep, @c egrep
* %set.
*/
typedef unsigned int syntax_option_type;
 
/**
* Specifies that the matching of regular expressions against a character
* sequence shall be performed without regard to case.
*/
static const syntax_option_type icase = 1 << _S_icase;
 
/**
* Specifies that when a regular expression is matched against a character
* container sequence, no sub-expression matches are to be stored in the
* supplied match_results structure.
*/
static const syntax_option_type nosubs = 1 << _S_nosubs;
 
/**
* Specifies that the regular expression engine should pay more attention to
* the speed with which regular expressions are matched, and less to the
* speed with which regular expression objects are constructed. Otherwise
* it has no detectable effect on the program output.
*/
static const syntax_option_type optimize = 1 << _S_optimize;
 
/**
* Specifies that character ranges of the form [a-b] should be locale
* sensitive.
*/
static const syntax_option_type collate = 1 << _S_collate;
 
/**
* Specifies that the grammar recognized by the regular expression engine is
* that used by ECMAScript in ECMA-262 [Ecma International, ECMAScript
* Language Specification, Standard Ecma-262, third edition, 1999], as
* modified in tr1 section [7.13]. This grammar is similar to that defined
* in the PERL scripting language but extended with elements found in the
* POSIX regular expression grammar.
*/
static const syntax_option_type ECMAScript = 1 << _S_ECMAScript;
 
/**
* Specifies that the grammar recognized by the regular expression engine is
* that used by POSIX basic regular expressions in IEEE Std 1003.1-2001,
* Portable Operating System Interface (POSIX), Base Definitions and
* Headers, Section 9, Regular Expressions [IEEE, Information Technology --
* Portable Operating System Interface (POSIX), IEEE Standard 1003.1-2001].
*/
static const syntax_option_type basic = 1 << _S_basic;
 
/**
* Specifies that the grammar recognized by the regular expression engine is
* that used by POSIX extended regular expressions in IEEE Std 1003.1-2001,
* Portable Operating System Interface (POSIX), Base Definitions and Headers,
* Section 9, Regular Expressions.
*/
static const syntax_option_type extended = 1 << _S_extended;
 
/**
* Specifies that the grammar recognized by the regular expression engine is
* that used by POSIX utility awk in IEEE Std 1003.1-2001. This option is
* identical to syntax_option_type extended, except that C-style escape
* sequences are supported. These sequences are:
* \\\\, \\a, \\b, \\f,
* \\n, \\r, \\t , \\v,
* \\&apos;, &apos;, and \\ddd
* (where ddd is one, two, or three octal digits).
*/
static const syntax_option_type awk = 1 << _S_awk;
 
/**
* Specifies that the grammar recognized by the regular expression engine is
* that used by POSIX utility grep in IEEE Std 1003.1-2001. This option is
* identical to syntax_option_type basic, except that newlines are treated
* as whitespace.
*/
static const syntax_option_type grep = 1 << _S_grep;
 
/**
* Specifies that the grammar recognized by the regular expression engine is
* that used by POSIX utility grep when given the -E option in
* IEEE Std 1003.1-2001. This option is identical to syntax_option_type
* extended, except that newlines are treated as whitespace.
*/
static const syntax_option_type egrep = 1 << _S_egrep;
 
//@}
 
/**
* @name 5.2 Matching Rules
*
* Matching a regular expression against a sequence of characters [first,
* last) proceeds according to the rules of the grammar specified for the
* regular expression object, modified according to the effects listed
* below for any bitmask elements set.
*
*/
//@{
 
enum __match_flag
{
_S_not_bol,
_S_not_eol,
_S_not_bow,
_S_not_eow,
_S_any,
_S_not_null,
_S_continuous,
_S_prev_avail,
_S_sed,
_S_no_copy,
_S_first_only,
_S_match_flag_last
};
 
/**
* @brief This is a bitmask type indicating regex matching rules.
*
* The @c match_flag_type is implementation defined but it is valid to
* perform bitwise operations on these values and expect the right thing to
* happen.
*/
typedef std::bitset<_S_match_flag_last> match_flag_type;
 
/**
* The default matching rules.
*/
static const match_flag_type match_default = 0;
 
/**
* The first character in the sequence [first, last) is treated as though it
* is not at the beginning of a line, so the character (^) in the regular
* expression shall not match [first, first).
*/
static const match_flag_type match_not_bol = 1 << _S_not_bol;
 
/**
* The last character in the sequence [first, last) is treated as though it
* is not at the end of a line, so the character ($) in the regular
* expression shall not match [last, last).
*/
static const match_flag_type match_not_eol = 1 << _S_not_eol;
/**
* The expression \\b is not matched against the sub-sequence
* [first,first).
*/
static const match_flag_type match_not_bow = 1 << _S_not_bow;
/**
* The expression \\b should not be matched against the sub-sequence
* [last,last).
*/
static const match_flag_type match_not_eow = 1 << _S_not_eow;
/**
* If more than one match is possible then any match is an acceptable
* result.
*/
static const match_flag_type match_any = 1 << _S_any;
/**
* The expression does not match an empty sequence.
*/
static const match_flag_type match_not_null = 1 << _S_not_null;
/**
* The expression only matches a sub-sequence that begins at first .
*/
static const match_flag_type match_continuous = 1 << _S_continuous;
/**
* --first is a valid iterator position. When this flag is set then the
* flags match_not_bol and match_not_bow are ignored by the regular
* expression algorithms 7.11 and iterators 7.12.
*/
static const match_flag_type match_prev_avail = 1 << _S_prev_avail;
 
/**
* When a regular expression match is to be replaced by a new string, the
* new string is constructed using the rules used by the ECMAScript replace
* function in ECMA- 262 [Ecma International, ECMAScript Language
* Specification, Standard Ecma-262, third edition, 1999], part 15.5.4.11
* String.prototype.replace. In addition, during search and replace
* operations all non-overlapping occurrences of the regular expression
* are located and replaced, and sections of the input that did not match
* the expression are copied unchanged to the output string.
*
* Format strings (from ECMA-262 [15.5.4.11]):
* @li $$ The dollar-sign itself ($)
* @li $& The matched substring.
* @li $` The portion of @a string that precedes the matched substring.
* This would be match_results::prefix().
* @li $' The portion of @a string that follows the matched substring.
* This would be match_results::suffix().
* @li $n The nth capture, where n is in [1,9] and $n is not followed by a
* decimal digit. If n <= match_results::size() and the nth capture
* is undefined, use the empty string instead. If n >
* match_results::size(), the result is implementation-defined.
* @li $nn The nnth capture, where nn is a two-digit decimal number on
* [01, 99]. If nn <= match_results::size() and the nth capture is
* undefined, use the empty string instead. If
* nn > match_results::size(), the result is implementation-defined.
*/
static const match_flag_type format_default = 0;
 
/**
* When a regular expression match is to be replaced by a new string, the
* new string is constructed using the rules used by the POSIX sed utility
* in IEEE Std 1003.1- 2001 [IEEE, Information Technology -- Portable
* Operating System Interface (POSIX), IEEE Standard 1003.1-2001].
*/
static const match_flag_type format_sed = 1 << _S_sed;
 
/**
* During a search and replace operation, sections of the character
* container sequence being searched that do not match the regular
* expression shall not be copied to the output string.
*/
static const match_flag_type format_no_copy = 1 << _S_no_copy;
 
/**
* When specified during a search and replace operation, only the first
* occurrence of the regular expression shall be replaced.
*/
static const match_flag_type format_first_only = 1 << _S_first_only;
 
//@}
 
/**
* @name 5.3 Error Types
*/
//@{
enum error_type
{
_S_error_collate,
_S_error_ctype,
_S_error_escape,
_S_error_backref,
_S_error_brack,
_S_error_paren,
_S_error_brace,
_S_error_badbrace,
_S_error_range,
_S_error_space,
_S_error_badrepeat,
_S_error_complexity,
_S_error_stack,
_S_error_last
};
 
/** The expression contained an invalid collating element name. */
static const error_type error_collate(_S_error_collate);
 
/** The expression contained an invalid character class name. */
static const error_type error_ctype(_S_error_ctype);
 
/**
* The expression contained an invalid escaped character, or a trailing
* escape.
*/
static const error_type error_escape(_S_error_escape);
 
/** The expression contained an invalid back reference. */
static const error_type error_backref(_S_error_backref);
 
/** The expression contained mismatched [ and ]. */
static const error_type error_brack(_S_error_brack);
 
/** The expression contained mismatched ( and ). */
static const error_type error_paren(_S_error_paren);
 
/** The expression contained mismatched { and } */
static const error_type error_brace(_S_error_brace);
 
/** The expression contained an invalid range in a {} expression. */
static const error_type error_badbrace(_S_error_badbrace);
 
/**
* The expression contained an invalid character range,
* such as [b-a] in most encodings.
*/
static const error_type error_range(_S_error_range);
 
/**
* There was insufficient memory to convert the expression into a
* finite state machine.
*/
static const error_type error_space(_S_error_space);
 
/**
* One of <em>*?+{</em> was not preceded by a valid regular expression.
*/
static const error_type error_badrepeat(_S_error_badrepeat);
 
/**
* The complexity of an attempted match against a regular expression
* exceeded a pre-set level.
*/
static const error_type error_complexity(_S_error_complexity);
 
/**
* There was insufficient memory to determine whether the
* regular expression could match the specified character sequence.
*/
static const error_type error_stack(_S_error_stack);
 
//@}
_GLIBCXX_END_NAMESPACE_VERSION
}
 
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
// [7.8] Class regex_error
/**
* @brief A regular expression exception class.
* @ingroup exceptions
*
* The regular expression library throws objects of this class on error.
*/
class regex_error
: public std::runtime_error
{
public:
/**
* @brief Constructs a regex_error object.
*
* @param ecode the regex error code.
*/
explicit
regex_error(regex_constants::error_type __ecode)
: std::runtime_error("regex_error"), _M_code(__ecode)
{ }
 
/**
* @brief Gets the regex error code.
*
* @returns the regex error code.
*/
regex_constants::error_type
code() const
{ return _M_code; }
 
protected:
regex_constants::error_type _M_code;
};
 
// [7.7] Class regex_traits
/**
* @brief Describes aspects of a regular expression.
*
* A regular expression traits class that satisfies the requirements of tr1
* section [7.2].
*
* The class %regex is parameterized around a set of related types and
* functions used to complete the definition of its semantics. This class
* satisfies the requirements of such a traits class.
*/
template<typename _Ch_type>
struct regex_traits
{
public:
typedef _Ch_type char_type;
typedef std::basic_string<char_type> string_type;
typedef std::locale locale_type;
typedef std::ctype_base::mask char_class_type;
 
public:
/**
* @brief Constructs a default traits object.
*/
regex_traits()
{ }
/**
* @brief Gives the length of a C-style string starting at @p __p.
*
* @param __p a pointer to the start of a character sequence.
*
* @returns the number of characters between @p *__p and the first
* default-initialized value of type @p char_type. In other words, uses
* the C-string algorithm for determining the length of a sequence of
* characters.
*/
static std::size_t
length(const char_type* __p)
{ return string_type::traits_type::length(__p); }
 
/**
* @brief Performs the identity translation.
*
* @param c A character to the locale-specific character set.
*
* @returns c.
*/
char_type
translate(char_type __c) const
{ return __c; }
/**
* @brief Translates a character into a case-insensitive equivalent.
*
* @param c A character to the locale-specific character set.
*
* @returns the locale-specific lower-case equivalent of c.
* @throws std::bad_cast if the imbued locale does not support the ctype
* facet.
*/
char_type
translate_nocase(char_type __c) const
{
using std::ctype;
using std::use_facet;
return use_facet<ctype<char_type> >(_M_locale).tolower(__c);
}
/**
* @brief Gets a sort key for a character sequence.
*
* @param first beginning of the character sequence.
* @param last one-past-the-end of the character sequence.
*
* Returns a sort key for the character sequence designated by the
* iterator range [F1, F2) such that if the character sequence [G1, G2)
* sorts before the character sequence [H1, H2) then
* v.transform(G1, G2) < v.transform(H1, H2).
*
* What this really does is provide a more efficient way to compare a
* string to multiple other strings in locales with fancy collation
* rules and equivalence classes.
*
* @returns a locale-specific sort key equivalent to the input range.
*
* @throws std::bad_cast if the current locale does not have a collate
* facet.
*/
template<typename _Fwd_iter>
string_type
transform(_Fwd_iter __first, _Fwd_iter __last) const
{
using std::collate;
using std::use_facet;
const collate<_Ch_type>& __c(use_facet<
collate<_Ch_type> >(_M_locale));
string_type __s(__first, __last);
return __c.transform(__s.data(), __s.data() + __s.size());
}
 
/**
* @brief Dunno.
*
* @param first beginning of the character sequence.
* @param last one-past-the-end of the character sequence.
*
* Effects: if typeid(use_facet<collate<_Ch_type> >) ==
* typeid(collate_byname<_Ch_type>) and the form of the sort key
* returned by collate_byname<_Ch_type>::transform(first, last) is known
* and can be converted into a primary sort key then returns that key,
* otherwise returns an empty string. WTF??
*
* @todo Implement this function.
*/
template<typename _Fwd_iter>
string_type
transform_primary(_Fwd_iter __first, _Fwd_iter __last) const;
 
/**
* @brief Gets a collation element by name.
*
* @param first beginning of the collation element name.
* @param last one-past-the-end of the collation element name.
*
* @returns a sequence of one or more characters that represents the
* collating element consisting of the character sequence designated by
* the iterator range [first, last). Returns an empty string if the
* character sequence is not a valid collating element.
*
* @todo Implement this function.
*/
template<typename _Fwd_iter>
string_type
lookup_collatename(_Fwd_iter __first, _Fwd_iter __last) const;
 
/**
* @brief Maps one or more characters to a named character
* classification.
*
* @param first beginning of the character sequence.
* @param last one-past-the-end of the character sequence.
*
* @returns an unspecified value that represents the character
* classification named by the character sequence designated by the
* iterator range [first, last). The value returned shall be independent
* of the case of the characters in the character sequence. If the name
* is not recognized then returns a value that compares equal to 0.
*
* At least the following names (or their wide-character equivalent) are
* supported.
* - d
* - w
* - s
* - alnum
* - alpha
* - blank
* - cntrl
* - digit
* - graph
* - lower
* - print
* - punct
* - space
* - upper
* - xdigit
*
* @todo Implement this function.
*/
template<typename _Fwd_iter>
char_class_type
lookup_classname(_Fwd_iter __first, _Fwd_iter __last) const;
 
/**
* @brief Determines if @p c is a member of an identified class.
*
* @param c a character.
* @param f a class type (as returned from lookup_classname).
*
* @returns true if the character @p c is a member of the classification
* represented by @p f, false otherwise.
*
* @throws std::bad_cast if the current locale does not have a ctype
* facet.
*/
bool
isctype(_Ch_type __c, char_class_type __f) const;
 
/**
* @brief Converts a digit to an int.
*
* @param ch a character representing a digit.
* @param radix the radix if the numeric conversion (limited to 8, 10,
* or 16).
*
* @returns the value represented by the digit ch in base radix if the
* character ch is a valid digit in base radix; otherwise returns -1.
*/
int
value(_Ch_type __ch, int __radix) const;
/**
* @brief Imbues the regex_traits object with a copy of a new locale.
*
* @param loc A locale.
*
* @returns a copy of the previous locale in use by the regex_traits
* object.
*
* @note Calling imbue with a different locale than the one currently in
* use invalidates all cached data held by *this.
*/
locale_type
imbue(locale_type __loc)
{
std::swap(_M_locale, __loc);
return __loc;
}
/**
* @brief Gets a copy of the current locale in use by the regex_traits
* object.
*/
locale_type
getloc() const
{ return _M_locale; }
protected:
locale_type _M_locale;
};
 
template<typename _Ch_type>
bool regex_traits<_Ch_type>::
isctype(_Ch_type __c, char_class_type __f) const
{
using std::ctype;
using std::use_facet;
const ctype<_Ch_type>& __ctype(use_facet<
ctype<_Ch_type> >(_M_locale));
if (__ctype.is(__c, __f))
return true;
// special case of underscore in [[:w:]]
if (__c == __ctype.widen('_'))
{
const char* const __wb[] = "w";
char_class_type __wt = this->lookup_classname(__wb,
__wb + sizeof(__wb));
if (__f | __wt)
return true;
}
// special case of [[:space:]] in [[:blank:]]
if (__c == __ctype.isspace(__c))
{
const char* const __bb[] = "blank";
char_class_type __bt = this->lookup_classname(__bb,
__bb + sizeof(__bb));
if (__f | __bt)
return true;
}
return false;
}
 
template<typename _Ch_type>
int regex_traits<_Ch_type>::
value(_Ch_type __ch, int __radix) const
{
std::basic_istringstream<_Ch_type> __is(string_type(1, __ch));
int __v;
if (__radix == 8)
__is >> std::oct;
else if (__radix == 16)
__is >> std::hex;
__is >> __v;
return __is.fail() ? -1 : __v;
}
 
// [7.8] Class basic_regex
/**
* Objects of specializations of this class represent regular expressions
* constructed from sequences of character type @p _Ch_type.
*
* Storage for the regular expression is allocated and deallocated as
* necessary by the member functions of this class.
*/
template<typename _Ch_type, typename _Rx_traits = regex_traits<_Ch_type> >
class basic_regex
{
public:
// types:
typedef _Ch_type value_type;
typedef regex_constants::syntax_option_type flag_type;
typedef typename _Rx_traits::locale_type locale_type;
typedef typename _Rx_traits::string_type string_type;
 
/**
* @name Constants
* tr1 [7.8.1] std [28.8.1]
*/
//@{
static const regex_constants::syntax_option_type icase
= regex_constants::icase;
static const regex_constants::syntax_option_type nosubs
= regex_constants::nosubs;
static const regex_constants::syntax_option_type optimize
= regex_constants::optimize;
static const regex_constants::syntax_option_type collate
= regex_constants::collate;
static const regex_constants::syntax_option_type ECMAScript
= regex_constants::ECMAScript;
static const regex_constants::syntax_option_type basic
= regex_constants::basic;
static const regex_constants::syntax_option_type extended
= regex_constants::extended;
static const regex_constants::syntax_option_type awk
= regex_constants::awk;
static const regex_constants::syntax_option_type grep
= regex_constants::grep;
static const regex_constants::syntax_option_type egrep
= regex_constants::egrep;
//@}
 
// [7.8.2] construct/copy/destroy
/**
* Constructs a basic regular expression that does not match any
* character sequence.
*/
basic_regex()
: _M_flags(regex_constants::ECMAScript), _M_pattern(), _M_mark_count(0)
{ _M_compile(); }
 
/**
* @brief Constructs a basic regular expression from the sequence
* [p, p + char_traits<_Ch_type>::length(p)) interpreted according to the
* flags in @p f.
*
* @param p A pointer to the start of a C-style null-terminated string
* containing a regular expression.
* @param f Flags indicating the syntax rules and options.
*
* @throws regex_error if @p p is not a valid regular expression.
*/
explicit
basic_regex(const _Ch_type* __p,
flag_type __f = regex_constants::ECMAScript)
: _M_flags(__f), _M_pattern(__p), _M_mark_count(0)
{ _M_compile(); }
 
/**
* @brief Constructs a basic regular expression from the sequence
* [p, p + len) interpreted according to the flags in @p f.
*
* @param p A pointer to the start of a string containing a regular
* expression.
* @param len The length of the string containing the regular expression.
* @param f Flags indicating the syntax rules and options.
*
* @throws regex_error if @p p is not a valid regular expression.
*/
basic_regex(const _Ch_type* __p, std::size_t __len, flag_type __f)
: _M_flags(__f) , _M_pattern(__p, __len), _M_mark_count(0)
{ _M_compile(); }
 
/**
* @brief Copy-constructs a basic regular expression.
*
* @param rhs A @p regex object.
*/
basic_regex(const basic_regex& __rhs)
: _M_flags(__rhs._M_flags), _M_pattern(__rhs._M_pattern),
_M_mark_count(__rhs._M_mark_count)
{ _M_compile(); }
 
/**
* @brief Constructs a basic regular expression from the string
* @p s interpreted according to the flags in @p f.
*
* @param s A string containing a regular expression.
* @param f Flags indicating the syntax rules and options.
*
* @throws regex_error if @p s is not a valid regular expression.
*/
template<typename _Ch_traits, typename _Ch_alloc>
explicit
basic_regex(const basic_string<_Ch_type, _Ch_traits, _Ch_alloc>& __s,
flag_type __f = regex_constants::ECMAScript)
: _M_flags(__f), _M_pattern(__s.begin(), __s.end()), _M_mark_count(0)
{ _M_compile(); }
 
/**
* @brief Constructs a basic regular expression from the range
* [first, last) interpreted according to the flags in @p f.
*
* @param first The start of a range containing a valid regular
* expression.
* @param last The end of a range containing a valid regular
* expression.
* @param f The format flags of the regular expression.
*
* @throws regex_error if @p [first, last) is not a valid regular
* expression.
*/
template<typename _InputIterator>
basic_regex(_InputIterator __first, _InputIterator __last,
flag_type __f = regex_constants::ECMAScript)
: _M_flags(__f), _M_pattern(__first, __last), _M_mark_count(0)
{ _M_compile(); }
 
#ifdef _GLIBCXX_INCLUDE_AS_CXX11
/**
* @brief Constructs a basic regular expression from an initializer list.
*
* @param l The initializer list.
* @param f The format flags of the regular expression.
*
* @throws regex_error if @p l is not a valid regular expression.
*/
basic_regex(initializer_list<_Ch_type> __l,
flag_type __f = regex_constants::ECMAScript)
: _M_flags(__f), _M_pattern(__l.begin(), __l.end()), _M_mark_count(0)
{ _M_compile(); }
#endif
 
/**
* @brief Destroys a basic regular expression.
*/
~basic_regex()
{ }
/**
* @brief Assigns one regular expression to another.
*/
basic_regex&
operator=(const basic_regex& __rhs)
{ return this->assign(__rhs); }
 
/**
* @brief Replaces a regular expression with a new one constructed from
* a C-style null-terminated string.
*
* @param A pointer to the start of a null-terminated C-style string
* containing a regular expression.
*/
basic_regex&
operator=(const _Ch_type* __p)
{ return this->assign(__p, flags()); }
/**
* @brief Replaces a regular expression with a new one constructed from
* a string.
*
* @param A pointer to a string containing a regular expression.
*/
template<typename _Ch_typeraits, typename _Allocator>
basic_regex&
operator=(const basic_string<_Ch_type, _Ch_typeraits, _Allocator>& __s)
{ return this->assign(__s, flags()); }
 
// [7.8.3] assign
/**
* @brief the real assignment operator.
*
* @param that Another regular expression object.
*/
basic_regex&
assign(const basic_regex& __that)
{
basic_regex __tmp(__that);
this->swap(__tmp);
return *this;
}
/**
* @brief Assigns a new regular expression to a regex object from a
* C-style null-terminated string containing a regular expression
* pattern.
*
* @param p A pointer to a C-style null-terminated string containing
* a regular expression pattern.
* @param flags Syntax option flags.
*
* @throws regex_error if p does not contain a valid regular expression
* pattern interpreted according to @p flags. If regex_error is thrown,
* *this remains unchanged.
*/
basic_regex&
assign(const _Ch_type* __p,
flag_type __flags = regex_constants::ECMAScript)
{ return this->assign(string_type(__p), __flags); }
 
/**
* @brief Assigns a new regular expression to a regex object from a
* C-style string containing a regular expression pattern.
*
* @param p A pointer to a C-style string containing a
* regular expression pattern.
* @param len The length of the regular expression pattern string.
* @param flags Syntax option flags.
*
* @throws regex_error if p does not contain a valid regular expression
* pattern interpreted according to @p flags. If regex_error is thrown,
* *this remains unchanged.
*/
basic_regex&
assign(const _Ch_type* __p, std::size_t __len, flag_type __flags)
{ return this->assign(string_type(__p, __len), __flags); }
 
/**
* @brief Assigns a new regular expression to a regex object from a
* string containing a regular expression pattern.
*
* @param s A string containing a regular expression pattern.
* @param flags Syntax option flags.
*
* @throws regex_error if p does not contain a valid regular expression
* pattern interpreted according to @p flags. If regex_error is thrown,
* *this remains unchanged.
*/
template<typename _Ch_typeraits, typename _Allocator>
basic_regex&
assign(const basic_string<_Ch_type, _Ch_typeraits, _Allocator>& __s,
flag_type __f = regex_constants::ECMAScript)
{
basic_regex __tmp(__s, __f);
this->swap(__tmp);
return *this;
}
 
/**
* @brief Assigns a new regular expression to a regex object.
*
* @param first The start of a range containing a valid regular
* expression.
* @param last The end of a range containing a valid regular
* expression.
* @param flags Syntax option flags.
*
* @throws regex_error if p does not contain a valid regular expression
* pattern interpreted according to @p flags. If regex_error is thrown,
* the object remains unchanged.
*/
template<typename _InputIterator>
basic_regex&
assign(_InputIterator __first, _InputIterator __last,
flag_type __flags = regex_constants::ECMAScript)
{ return this->assign(string_type(__first, __last), __flags); }
 
#ifdef _GLIBCXX_INCLUDE_AS_CXX11
/**
* @brief Assigns a new regular expression to a regex object.
*
* @param l An initializer list representing a regular expression.
* @param flags Syntax option flags.
*
* @throws regex_error if @p l does not contain a valid regular
* expression pattern interpreted according to @p flags. If regex_error
* is thrown, the object remains unchanged.
*/
basic_regex&
assign(initializer_list<_Ch_type> __l,
flag_type __f = regex_constants::ECMAScript)
{ return this->assign(__l.begin(), __l.end(), __f); }
#endif
 
// [7.8.4] const operations
/**
* @brief Gets the number of marked subexpressions within the regular
* expression.
*/
unsigned int
mark_count() const
{ return _M_mark_count; }
/**
* @brief Gets the flags used to construct the regular expression
* or in the last call to assign().
*/
flag_type
flags() const
{ return _M_flags; }
// [7.8.5] locale
/**
* @brief Imbues the regular expression object with the given locale.
*
* @param loc A locale.
*/
locale_type
imbue(locale_type __loc)
{ return _M_traits.imbue(__loc); }
/**
* @brief Gets the locale currently imbued in the regular expression
* object.
*/
locale_type
getloc() const
{ return _M_traits.getloc(); }
// [7.8.6] swap
/**
* @brief Swaps the contents of two regular expression objects.
*
* @param rhs Another regular expression object.
*/
void
swap(basic_regex& __rhs)
{
std::swap(_M_flags, __rhs._M_flags);
std::swap(_M_pattern, __rhs._M_pattern);
std::swap(_M_mark_count, __rhs._M_mark_count);
std::swap(_M_traits, __rhs._M_traits);
}
private:
/**
* @brief Compiles a regular expression pattern into a NFA.
* @todo Implement this function.
*/
void _M_compile();
 
protected:
flag_type _M_flags;
string_type _M_pattern;
unsigned int _M_mark_count;
_Rx_traits _M_traits;
};
/** @brief Standard regular expressions. */
typedef basic_regex<char> regex;
#ifdef _GLIBCXX_USE_WCHAR_T
/** @brief Standard wide-character regular expressions. */
typedef basic_regex<wchar_t> wregex;
#endif
 
 
// [7.8.6] basic_regex swap
/**
* @brief Swaps the contents of two regular expression objects.
* @param lhs First regular expression.
* @param rhs Second regular expression.
*/
template<typename _Ch_type, typename _Rx_traits>
inline void
swap(basic_regex<_Ch_type, _Rx_traits>& __lhs,
basic_regex<_Ch_type, _Rx_traits>& __rhs)
{ __lhs.swap(__rhs); }
 
 
// [7.9] Class template sub_match
/**
* A sequence of characters matched by a particular marked sub-expression.
*
* An object of this class is essentially a pair of iterators marking a
* matched subexpression within a regular expression pattern match. Such
* objects can be converted to and compared with std::basic_string objects
* of a similar base character type as the pattern matched by the regular
* expression.
*
* The iterators that make up the pair are the usual half-open interval
* referencing the actual original pattern matched.
*/
template<typename _BiIter>
class sub_match : public std::pair<_BiIter, _BiIter>
{
public:
typedef typename iterator_traits<_BiIter>::value_type value_type;
typedef typename iterator_traits<_BiIter>::difference_type
difference_type;
typedef _BiIter iterator;
 
public:
bool matched;
/**
* Gets the length of the matching sequence.
*/
difference_type
length() const
{ return this->matched ? std::distance(this->first, this->second) : 0; }
 
/**
* @brief Gets the matching sequence as a string.
*
* @returns the matching sequence as a string.
*
* This is the implicit conversion operator. It is identical to the
* str() member function except that it will want to pop up in
* unexpected places and cause a great deal of confusion and cursing
* from the unwary.
*/
operator basic_string<value_type>() const
{
return this->matched
? std::basic_string<value_type>(this->first, this->second)
: std::basic_string<value_type>();
}
/**
* @brief Gets the matching sequence as a string.
*
* @returns the matching sequence as a string.
*/
basic_string<value_type>
str() const
{
return this->matched
? std::basic_string<value_type>(this->first, this->second)
: std::basic_string<value_type>();
}
/**
* @brief Compares this and another matched sequence.
*
* @param s Another matched sequence to compare to this one.
*
* @retval <0 this matched sequence will collate before @p s.
* @retval =0 this matched sequence is equivalent to @p s.
* @retval <0 this matched sequence will collate after @p s.
*/
int
compare(const sub_match& __s) const
{ return this->str().compare(__s.str()); }
 
/**
* @brief Compares this sub_match to a string.
*
* @param s A string to compare to this sub_match.
*
* @retval <0 this matched sequence will collate before @p s.
* @retval =0 this matched sequence is equivalent to @p s.
* @retval <0 this matched sequence will collate after @p s.
*/
int
compare(const basic_string<value_type>& __s) const
{ return this->str().compare(__s); }
/**
* @brief Compares this sub_match to a C-style string.
*
* @param s A C-style string to compare to this sub_match.
*
* @retval <0 this matched sequence will collate before @p s.
* @retval =0 this matched sequence is equivalent to @p s.
* @retval <0 this matched sequence will collate after @p s.
*/
int
compare(const value_type* __s) const
{ return this->str().compare(__s); }
};
/** @brief Standard regex submatch over a C-style null-terminated string. */
typedef sub_match<const char*> csub_match;
/** @brief Standard regex submatch over a standard string. */
typedef sub_match<string::const_iterator> ssub_match;
#ifdef _GLIBCXX_USE_WCHAR_T
/** @brief Regex submatch over a C-style null-terminated wide string. */
typedef sub_match<const wchar_t*> wcsub_match;
/** @brief Regex submatch over a standard wide string. */
typedef sub_match<wstring::const_iterator> wssub_match;
#endif
 
// [7.9.2] sub_match non-member operators
/**
* @brief Tests the equivalence of two regular expression submatches.
* @param lhs First regular expression submatch.
* @param rhs Second regular expression submatch.
* @returns true if @a lhs is equivalent to @a rhs, false otherwise.
*/
template<typename _BiIter>
inline bool
operator==(const sub_match<_BiIter>& __lhs,
const sub_match<_BiIter>& __rhs)
{ return __lhs.compare(__rhs) == 0; }
 
/**
* @brief Tests the inequivalence of two regular expression submatches.
* @param lhs First regular expression submatch.
* @param rhs Second regular expression submatch.
* @returns true if @a lhs is not equivalent to @a rhs, false otherwise.
*/
template<typename _BiIter>
inline bool
operator!=(const sub_match<_BiIter>& __lhs,
const sub_match<_BiIter>& __rhs)
{ return __lhs.compare(__rhs) != 0; }
 
/**
* @brief Tests the ordering of two regular expression submatches.
* @param lhs First regular expression submatch.
* @param rhs Second regular expression submatch.
* @returns true if @a lhs precedes @a rhs, false otherwise.
*/
template<typename _BiIter>
inline bool
operator<(const sub_match<_BiIter>& __lhs,
const sub_match<_BiIter>& __rhs)
{ return __lhs.compare(__rhs) < 0; }
 
/**
* @brief Tests the ordering of two regular expression submatches.
* @param lhs First regular expression submatch.
* @param rhs Second regular expression submatch.
* @returns true if @a lhs does not succeed @a rhs, false otherwise.
*/
template<typename _BiIter>
inline bool
operator<=(const sub_match<_BiIter>& __lhs,
const sub_match<_BiIter>& __rhs)
{ return __lhs.compare(__rhs) <= 0; }
 
/**
* @brief Tests the ordering of two regular expression submatches.
* @param lhs First regular expression submatch.
* @param rhs Second regular expression submatch.
* @returns true if @a lhs does not precede @a rhs, false otherwise.
*/
template<typename _BiIter>
inline bool
operator>=(const sub_match<_BiIter>& __lhs,
const sub_match<_BiIter>& __rhs)
{ return __lhs.compare(__rhs) >= 0; }
 
/**
* @brief Tests the ordering of two regular expression submatches.
* @param lhs First regular expression submatch.
* @param rhs Second regular expression submatch.
* @returns true if @a lhs succeeds @a rhs, false otherwise.
*/
template<typename _BiIter>
inline bool
operator>(const sub_match<_BiIter>& __lhs,
const sub_match<_BiIter>& __rhs)
{ return __lhs.compare(__rhs) > 0; }
 
/**
* @brief Tests the equivalence of a string and a regular expression
* submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs is equivalent to @a rhs, false otherwise.
*/
template<typename _Bi_iter, typename _Ch_traits, typename _Ch_alloc>
inline bool
operator==(const basic_string<
typename iterator_traits<_Bi_iter>::value_type,
_Ch_traits, _Ch_alloc>& __lhs,
const sub_match<_Bi_iter>& __rhs)
{ return __lhs == __rhs.str(); }
 
/**
* @brief Tests the inequivalence of a string and a regular expression
* submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs is not equivalent to @a rhs, false otherwise.
*/
template<typename _Bi_iter, typename _Ch_traits, typename _Ch_alloc>
inline bool
operator!=(const basic_string<
typename iterator_traits<_Bi_iter>::value_type,
_Ch_traits, _Ch_alloc>& __lhs, const sub_match<_Bi_iter>& __rhs)
{ return __lhs != __rhs.str(); }
 
/**
* @brief Tests the ordering of a string and a regular expression submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs precedes @a rhs, false otherwise.
*/
template<typename _Bi_iter, typename _Ch_traits, typename _Ch_alloc>
inline bool
operator<(const basic_string<
typename iterator_traits<_Bi_iter>::value_type,
_Ch_traits, _Ch_alloc>& __lhs, const sub_match<_Bi_iter>& __rhs)
{ return __lhs < __rhs.str(); }
 
/**
* @brief Tests the ordering of a string and a regular expression submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs succeeds @a rhs, false otherwise.
*/
template<typename _Bi_iter, typename _Ch_traits, typename _Ch_alloc>
inline bool
operator>(const basic_string<
typename iterator_traits<_Bi_iter>::value_type,
_Ch_traits, _Ch_alloc>& __lhs, const sub_match<_Bi_iter>& __rhs)
{ return __lhs > __rhs.str(); }
 
/**
* @brief Tests the ordering of a string and a regular expression submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs does not precede @a rhs, false otherwise.
*/
template<typename _Bi_iter, typename _Ch_traits, typename _Ch_alloc>
inline bool
operator>=(const basic_string<
typename iterator_traits<_Bi_iter>::value_type,
_Ch_traits, _Ch_alloc>& __lhs, const sub_match<_Bi_iter>& __rhs)
{ return __lhs >= __rhs.str(); }
 
/**
* @brief Tests the ordering of a string and a regular expression submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs does not succeed @a rhs, false otherwise.
*/
template<typename _Bi_iter, typename _Ch_traits, typename _Ch_alloc>
inline bool
operator<=(const basic_string<
typename iterator_traits<_Bi_iter>::value_type,
_Ch_traits, _Ch_alloc>& __lhs, const sub_match<_Bi_iter>& __rhs)
{ return __lhs <= __rhs.str(); }
 
/**
* @brief Tests the equivalence of a regular expression submatch and a
* string.
* @param lhs A regular expression submatch.
* @param rhs A string.
* @returns true if @a lhs is equivalent to @a rhs, false otherwise.
*/
template<typename _Bi_iter, typename _Ch_traits, typename _Ch_alloc>
inline bool
operator==(const sub_match<_Bi_iter>& __lhs,
const basic_string<
typename iterator_traits<_Bi_iter>::value_type,
_Ch_traits, _Ch_alloc>& __rhs)
{ return __lhs.str() == __rhs; }
 
/**
* @brief Tests the inequivalence of a regular expression submatch and a
* string.
* @param lhs A regular expression submatch.
* @param rhs A string.
* @returns true if @a lhs is not equivalent to @a rhs, false otherwise.
*/
template<typename _Bi_iter, typename _Ch_traits, typename _Ch_alloc>
inline bool
operator!=(const sub_match<_Bi_iter>& __lhs,
const basic_string<
typename iterator_traits<_Bi_iter>::value_type,
_Ch_traits, _Ch_alloc>& __rhs)
{ return __lhs.str() != __rhs; }
 
/**
* @brief Tests the ordering of a regular expression submatch and a string.
* @param lhs A regular expression submatch.
* @param rhs A string.
* @returns true if @a lhs precedes @a rhs, false otherwise.
*/
template<typename _Bi_iter, class _Ch_traits, class _Ch_alloc>
inline bool
operator<(const sub_match<_Bi_iter>& __lhs,
const basic_string<
typename iterator_traits<_Bi_iter>::value_type,
_Ch_traits, _Ch_alloc>& __rhs)
{ return __lhs.str() < __rhs; }
 
/**
* @brief Tests the ordering of a regular expression submatch and a string.
* @param lhs A regular expression submatch.
* @param rhs A string.
* @returns true if @a lhs succeeds @a rhs, false otherwise.
*/
template<typename _Bi_iter, class _Ch_traits, class _Ch_alloc>
inline bool
operator>(const sub_match<_Bi_iter>& __lhs,
const basic_string<
typename iterator_traits<_Bi_iter>::value_type,
_Ch_traits, _Ch_alloc>& __rhs)
{ return __lhs.str() > __rhs; }
 
/**
* @brief Tests the ordering of a regular expression submatch and a string.
* @param lhs A regular expression submatch.
* @param rhs A string.
* @returns true if @a lhs does not precede @a rhs, false otherwise.
*/
template<typename _Bi_iter, class _Ch_traits, class _Ch_alloc>
inline bool
operator>=(const sub_match<_Bi_iter>& __lhs,
const basic_string<
typename iterator_traits<_Bi_iter>::value_type,
_Ch_traits, _Ch_alloc>& __rhs)
{ return __lhs.str() >= __rhs; }
 
/**
* @brief Tests the ordering of a regular expression submatch and a string.
* @param lhs A regular expression submatch.
* @param rhs A string.
* @returns true if @a lhs does not succeed @a rhs, false otherwise.
*/
template<typename _Bi_iter, class _Ch_traits, class _Ch_alloc>
inline bool
operator<=(const sub_match<_Bi_iter>& __lhs,
const basic_string<
typename iterator_traits<_Bi_iter>::value_type,
_Ch_traits, _Ch_alloc>& __rhs)
{ return __lhs.str() <= __rhs; }
 
/**
* @brief Tests the equivalence of a C string and a regular expression
* submatch.
* @param lhs A C string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs is equivalent to @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator==(typename iterator_traits<_Bi_iter>::value_type const* __lhs,
const sub_match<_Bi_iter>& __rhs)
{ return __lhs == __rhs.str(); }
 
/**
* @brief Tests the inequivalence of an iterator value and a regular
* expression submatch.
* @param lhs A regular expression submatch.
* @param rhs A string.
* @returns true if @a lhs is not equivalent to @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator!=(typename iterator_traits<_Bi_iter>::value_type const* __lhs,
const sub_match<_Bi_iter>& __rhs)
{ return __lhs != __rhs.str(); }
 
/**
* @brief Tests the ordering of a string and a regular expression submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs precedes @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator<(typename iterator_traits<_Bi_iter>::value_type const* __lhs,
const sub_match<_Bi_iter>& __rhs)
{ return __lhs < __rhs.str(); }
 
/**
* @brief Tests the ordering of a string and a regular expression submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs succeeds @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator>(typename iterator_traits<_Bi_iter>::value_type const* __lhs,
const sub_match<_Bi_iter>& __rhs)
{ return __lhs > __rhs.str(); }
 
/**
* @brief Tests the ordering of a string and a regular expression submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs does not precede @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator>=(typename iterator_traits<_Bi_iter>::value_type const* __lhs,
const sub_match<_Bi_iter>& __rhs)
{ return __lhs >= __rhs.str(); }
 
/**
* @brief Tests the ordering of a string and a regular expression submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs does not succeed @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator<=(typename iterator_traits<_Bi_iter>::value_type const* __lhs,
const sub_match<_Bi_iter>& __rhs)
{ return __lhs <= __rhs.str(); }
 
/**
* @brief Tests the equivalence of a regular expression submatch and a
* string.
* @param lhs A regular expression submatch.
* @param rhs A pointer to a string?
* @returns true if @a lhs is equivalent to @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator==(const sub_match<_Bi_iter>& __lhs,
typename iterator_traits<_Bi_iter>::value_type const* __rhs)
{ return __lhs.str() == __rhs; }
 
/**
* @brief Tests the inequivalence of a regular expression submatch and a
* string.
* @param lhs A regular expression submatch.
* @param rhs A pointer to a string.
* @returns true if @a lhs is not equivalent to @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator!=(const sub_match<_Bi_iter>& __lhs,
typename iterator_traits<_Bi_iter>::value_type const* __rhs)
{ return __lhs.str() != __rhs; }
 
/**
* @brief Tests the ordering of a regular expression submatch and a string.
* @param lhs A regular expression submatch.
* @param rhs A string.
* @returns true if @a lhs precedes @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator<(const sub_match<_Bi_iter>& __lhs,
typename iterator_traits<_Bi_iter>::value_type const* __rhs)
{ return __lhs.str() < __rhs; }
 
/**
* @brief Tests the ordering of a regular expression submatch and a string.
* @param lhs A regular expression submatch.
* @param rhs A string.
* @returns true if @a lhs succeeds @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator>(const sub_match<_Bi_iter>& __lhs,
typename iterator_traits<_Bi_iter>::value_type const* __rhs)
{ return __lhs.str() > __rhs; }
 
/**
* @brief Tests the ordering of a regular expression submatch and a string.
* @param lhs A regular expression submatch.
* @param rhs A string.
* @returns true if @a lhs does not precede @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator>=(const sub_match<_Bi_iter>& __lhs,
typename iterator_traits<_Bi_iter>::value_type const* __rhs)
{ return __lhs.str() >= __rhs; }
 
/**
* @brief Tests the ordering of a regular expression submatch and a string.
* @param lhs A regular expression submatch.
* @param rhs A string.
* @returns true if @a lhs does not succeed @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator<=(const sub_match<_Bi_iter>& __lhs,
typename iterator_traits<_Bi_iter>::value_type const* __rhs)
{ return __lhs.str() <= __rhs; }
 
/**
* @brief Tests the equivalence of a string and a regular expression
* submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs is equivalent to @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator==(typename iterator_traits<_Bi_iter>::value_type const& __lhs,
const sub_match<_Bi_iter>& __rhs)
{ return __lhs == __rhs.str(); }
 
/**
* @brief Tests the inequivalence of a string and a regular expression
* submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs is not equivalent to @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator!=(typename iterator_traits<_Bi_iter>::value_type const& __lhs,
const sub_match<_Bi_iter>& __rhs)
{ return __lhs != __rhs.str(); }
 
/**
* @brief Tests the ordering of a string and a regular expression submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs precedes @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator<(typename iterator_traits<_Bi_iter>::value_type const& __lhs,
const sub_match<_Bi_iter>& __rhs)
{ return __lhs < __rhs.str(); }
 
/**
* @brief Tests the ordering of a string and a regular expression submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs succeeds @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator>(typename iterator_traits<_Bi_iter>::value_type const& __lhs,
const sub_match<_Bi_iter>& __rhs)
{ return __lhs > __rhs.str(); }
 
/**
* @brief Tests the ordering of a string and a regular expression submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs does not precede @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator>=(typename iterator_traits<_Bi_iter>::value_type const& __lhs,
const sub_match<_Bi_iter>& __rhs)
{ return __lhs >= __rhs.str(); }
 
/**
* @brief Tests the ordering of a string and a regular expression submatch.
* @param lhs A string.
* @param rhs A regular expression submatch.
* @returns true if @a lhs does not succeed @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator<=(typename iterator_traits<_Bi_iter>::value_type const& __lhs,
const sub_match<_Bi_iter>& __rhs)
{ return __lhs <= __rhs.str(); }
 
/**
* @brief Tests the equivalence of a regular expression submatch and a
* string.
* @param lhs A regular expression submatch.
* @param rhs A const string reference.
* @returns true if @a lhs is equivalent to @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator==(const sub_match<_Bi_iter>& __lhs,
typename iterator_traits<_Bi_iter>::value_type const& __rhs)
{ return __lhs.str() == __rhs; }
 
/**
* @brief Tests the inequivalence of a regular expression submatch and a
* string.
* @param lhs A regular expression submatch.
* @param rhs A const string reference.
* @returns true if @a lhs is not equivalent to @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator!=(const sub_match<_Bi_iter>& __lhs,
typename iterator_traits<_Bi_iter>::value_type const& __rhs)
{ return __lhs.str() != __rhs; }
 
/**
* @brief Tests the ordering of a regular expression submatch and a string.
* @param lhs A regular expression submatch.
* @param rhs A const string reference.
* @returns true if @a lhs precedes @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator<(const sub_match<_Bi_iter>& __lhs,
typename iterator_traits<_Bi_iter>::value_type const& __rhs)
{ return __lhs.str() < __rhs; }
 
/**
* @brief Tests the ordering of a regular expression submatch and a string.
* @param lhs A regular expression submatch.
* @param rhs A const string reference.
* @returns true if @a lhs succeeds @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator>(const sub_match<_Bi_iter>& __lhs,
typename iterator_traits<_Bi_iter>::value_type const& __rhs)
{ return __lhs.str() > __rhs; }
 
/**
* @brief Tests the ordering of a regular expression submatch and a string.
* @param lhs A regular expression submatch.
* @param rhs A const string reference.
* @returns true if @a lhs does not precede @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator>=(const sub_match<_Bi_iter>& __lhs,
typename iterator_traits<_Bi_iter>::value_type const& __rhs)
{ return __lhs.str() >= __rhs; }
 
/**
* @brief Tests the ordering of a regular expression submatch and a string.
* @param lhs A regular expression submatch.
* @param rhs A const string reference.
* @returns true if @a lhs does not succeed @a rhs, false otherwise.
*/
template<typename _Bi_iter>
inline bool
operator<=(const sub_match<_Bi_iter>& __lhs,
typename iterator_traits<_Bi_iter>::value_type const& __rhs)
{ return __lhs.str() <= __rhs; }
 
/**
* @brief Inserts a matched string into an output stream.
*
* @param os The output stream.
* @param m A submatch string.
*
* @returns the output stream with the submatch string inserted.
*/
template<typename _Ch_type, typename _Ch_traits, typename _Bi_iter>
inline
basic_ostream<_Ch_type, _Ch_traits>&
operator<<(basic_ostream<_Ch_type, _Ch_traits>& __os,
const sub_match<_Bi_iter>& __m)
{ return __os << __m.str(); }
 
// [7.10] Class template match_results
/**
* @brief The results of a match or search operation.
*
* A collection of character sequences representing the result of a regular
* expression match. Storage for the collection is allocated and freed as
* necessary by the member functions of class template match_results.
*
* This class satisfies the Sequence requirements, with the exception that
* only the operations defined for a const-qualified Sequence are supported.
*
* The sub_match object stored at index 0 represents sub-expression 0, i.e.
* the whole match. In this case the sub_match member matched is always true.
* The sub_match object stored at index n denotes what matched the marked
* sub-expression n within the matched expression. If the sub-expression n
* participated in a regular expression match then the sub_match member
* matched evaluates to true, and members first and second denote the range
* of characters [first, second) which formed that match. Otherwise matched
* is false, and members first and second point to the end of the sequence
* that was searched.
*
* @nosubgrouping
*/
template<typename _Bi_iter,
typename _Allocator = allocator<sub_match<_Bi_iter> > >
class match_results
: private std::vector<std::tr1::sub_match<_Bi_iter>, _Allocator>
{
private:
typedef std::vector<std::tr1::sub_match<_Bi_iter>, _Allocator>
_Base_type;
 
public:
/**
* @name 10.? Public Types
*/
//@{
typedef sub_match<_Bi_iter> value_type;
typedef typename _Allocator::const_reference const_reference;
typedef const_reference reference;
typedef typename _Base_type::const_iterator const_iterator;
typedef const_iterator iterator;
typedef typename iterator_traits<_Bi_iter>::difference_type
difference_type;
typedef typename _Allocator::size_type size_type;
typedef _Allocator allocator_type;
typedef typename iterator_traits<_Bi_iter>::value_type char_type;
typedef basic_string<char_type> string_type;
//@}
public:
/**
* @name 10.1 Construction, Copying, and Destruction
*/
//@{
 
/**
* @brief Constructs a default %match_results container.
* @post size() returns 0 and str() returns an empty string.
*/
explicit
match_results(const _Allocator& __a = _Allocator())
: _Base_type(__a), _M_matched(false)
{ }
 
/**
* @brief Copy constructs a %match_results.
*/
match_results(const match_results& __rhs)
: _Base_type(__rhs), _M_matched(__rhs._M_matched),
_M_prefix(__rhs._M_prefix), _M_suffix(__rhs._M_suffix)
{ }
 
/**
* @brief Assigns rhs to *this.
*/
match_results&
operator=(const match_results& __rhs)
{
match_results __tmp(__rhs);
this->swap(__tmp);
return *this;
}
 
/**
* @brief Destroys a %match_results object.
*/
~match_results()
{ }
//@}
 
/**
* @name 10.2 Size
*/
//@{
 
/**
* @brief Gets the number of matches and submatches.
*
* The number of matches for a given regular expression will be either 0
* if there was no match or mark_count() + 1 if a match was successful.
* Some matches may be empty.
*
* @returns the number of matches found.
*/
size_type
size() const
{ return _M_matched ? _Base_type::size() + 1 : 0; }
//size_type
//max_size() const;
using _Base_type::max_size;
 
/**
* @brief Indicates if the %match_results contains no results.
* @retval true The %match_results object is empty.
* @retval false The %match_results object is not empty.
*/
bool
empty() const
{ return size() == 0; }
//@}
 
/**
* @name 10.3 Element Access
*/
//@{
 
/**
* @brief Gets the length of the indicated submatch.
* @param sub indicates the submatch.
*
* This function returns the length of the indicated submatch, or the
* length of the entire match if @p sub is zero (the default).
*/
difference_type
length(size_type __sub = 0) const
{ return _M_matched ? this->str(__sub).length() : 0; }
 
/**
* @brief Gets the offset of the beginning of the indicated submatch.
* @param sub indicates the submatch.
*
* This function returns the offset from the beginning of the target
* sequence to the beginning of the submatch, unless the value of @p sub
* is zero (the default), in which case this function returns the offset
* from the beginning of the target sequence to the beginning of the
* match.
*/
difference_type
position(size_type __sub = 0) const
{
return _M_matched ? std::distance(this->prefix().first,
(*this)[__sub].first) : 0;
}
 
/**
* @brief Gets the match or submatch converted to a string type.
* @param sub indicates the submatch.
*
* This function gets the submatch (or match, if @p sub is zero) extracted
* from the target range and converted to the associated string type.
*/
string_type
str(size_type __sub = 0) const
{ return _M_matched ? (*this)[__sub].str() : string_type(); }
/**
* @brief Gets a %sub_match reference for the match or submatch.
* @param sub indicates the submatch.
*
* This function gets a reference to the indicated submatch, or the entire
* match if @p sub is zero.
*
* If @p sub >= size() then this function returns a %sub_match with a
* special value indicating no submatch.
*/
const_reference
operator[](size_type __sub) const
{ return _Base_type::operator[](__sub); }
 
/**
* @brief Gets a %sub_match representing the match prefix.
*
* This function gets a reference to a %sub_match object representing the
* part of the target range between the start of the target range and the
* start of the match.
*/
const_reference
prefix() const
{ return _M_prefix; }
 
/**
* @brief Gets a %sub_match representing the match suffix.
*
* This function gets a reference to a %sub_match object representing the
* part of the target range between the end of the match and the end of
* the target range.
*/
const_reference
suffix() const
{ return _M_suffix; }
 
/**
* @brief Gets an iterator to the start of the %sub_match collection.
*/
const_iterator
begin() const
{ return _Base_type::begin(); }
#ifdef _GLIBCXX_INCLUDE_AS_CXX11
/**
* @brief Gets an iterator to the start of the %sub_match collection.
*/
const_iterator
cbegin() const
{ return _Base_type::begin(); }
#endif
 
/**
* @brief Gets an iterator to one-past-the-end of the collection.
*/
const_iterator
end() const
{ return _Base_type::end(); }
#ifdef _GLIBCXX_INCLUDE_AS_CXX11
/**
* @brief Gets an iterator to one-past-the-end of the collection.
*/
const_iterator
cend() const
{ return _Base_type::end(); }
#endif
 
//@}
 
/**
* @name 10.4 Formatting
*
* These functions perform formatted substitution of the matched
* character sequences into their target. The format specifiers
* and escape sequences accepted by these functions are
* determined by their @p flags parameter as documented above.
*/
//@{
 
/**
* @todo Implement this function.
*/
template<typename _Out_iter>
_Out_iter
format(_Out_iter __out, const string_type& __fmt,
regex_constants::match_flag_type __flags
= regex_constants::format_default) const;
 
/**
* @todo Implement this function.
*/
string_type
format(const string_type& __fmt,
regex_constants::match_flag_type __flags
= regex_constants::format_default) const;
 
//@}
 
/**
* @name 10.5 Allocator
*/
//@{
 
/**
* @brief Gets a copy of the allocator.
*/
//allocator_type
//get_allocator() const;
using _Base_type::get_allocator;
//@}
 
/**
* @name 10.6 Swap
*/
//@{
 
/**
* @brief Swaps the contents of two match_results.
*/
void
swap(match_results& __that)
{
_Base_type::swap(__that);
std::swap(_M_matched, __that._M_matched);
std::swap(_M_prefix, __that._M_prefix);
std::swap(_M_suffix, __that._M_suffix);
}
//@}
private:
bool _M_matched;
value_type _M_prefix;
value_type _M_suffix;
};
typedef match_results<const char*> cmatch;
typedef match_results<string::const_iterator> smatch;
#ifdef _GLIBCXX_USE_WCHAR_T
typedef match_results<const wchar_t*> wcmatch;
typedef match_results<wstring::const_iterator> wsmatch;
#endif
 
// match_results comparisons
/**
* @brief Compares two match_results for equality.
* @returns true if the two objects refer to the same match,
* false otherwise.
* @todo Implement this function.
*/
template<typename _Bi_iter, typename _Allocator>
inline bool
operator==(const match_results<_Bi_iter, _Allocator>& __m1,
const match_results<_Bi_iter, _Allocator>& __m2);
 
/**
* @brief Compares two match_results for inequality.
* @returns true if the two objects do not refer to the same match,
* false otherwise.
*/
template<typename _Bi_iter, class _Allocator>
inline bool
operator!=(const match_results<_Bi_iter, _Allocator>& __m1,
const match_results<_Bi_iter, _Allocator>& __m2)
{ return !(__m1 == __m2); }
 
// [7.10.6] match_results swap
/**
* @brief Swaps two match results.
* @param lhs A match result.
* @param rhs A match result.
*
* The contents of the two match_results objects are swapped.
*/
template<typename _Bi_iter, typename _Allocator>
inline void
swap(match_results<_Bi_iter, _Allocator>& __lhs,
match_results<_Bi_iter, _Allocator>& __rhs)
{ __lhs.swap(__rhs); }
 
// [7.11.2] Function template regex_match
/**
* @name Matching, Searching, and Replacing
*/
//@{
 
/**
* @brief Determines if there is a match between the regular expression @p e
* and all of the character sequence [first, last).
*
* @param first Beginning of the character sequence to match.
* @param last One-past-the-end of the character sequence to match.
* @param m The match results.
* @param re The regular expression.
* @param flags Controls how the regular expression is matched.
*
* @retval true A match exists.
* @retval false Otherwise.
*
* @throws an exception of type regex_error.
*
* @todo Implement this function.
*/
template<typename _Bi_iter, typename _Allocator,
typename _Ch_type, typename _Rx_traits>
bool
regex_match(_Bi_iter __first, _Bi_iter __last,
match_results<_Bi_iter, _Allocator>& __m,
const basic_regex<_Ch_type, _Rx_traits>& __re,
regex_constants::match_flag_type __flags
= regex_constants::match_default);
 
/**
* @brief Indicates if there is a match between the regular expression @p e
* and all of the character sequence [first, last).
*
* @param first Beginning of the character sequence to match.
* @param last One-past-the-end of the character sequence to match.
* @param re The regular expression.
* @param flags Controls how the regular expression is matched.
*
* @retval true A match exists.
* @retval false Otherwise.
*
* @throws an exception of type regex_error.
*/
template<typename _Bi_iter, typename _Ch_type, typename _Rx_traits>
bool
regex_match(_Bi_iter __first, _Bi_iter __last,
const basic_regex<_Ch_type, _Rx_traits>& __re,
regex_constants::match_flag_type __flags
= regex_constants::match_default)
{
match_results<_Bi_iter> __what;
return regex_match(__first, __last, __what, __re, __flags);
}
 
/**
* @brief Determines if there is a match between the regular expression @p e
* and a C-style null-terminated string.
*
* @param s The C-style null-terminated string to match.
* @param m The match results.
* @param re The regular expression.
* @param f Controls how the regular expression is matched.
*
* @retval true A match exists.
* @retval false Otherwise.
*
* @throws an exception of type regex_error.
*/
template<typename _Ch_type, typename _Allocator, typename _Rx_traits>
inline bool
regex_match(const _Ch_type* __s,
match_results<const _Ch_type*, _Allocator>& __m,
const basic_regex<_Ch_type, _Rx_traits>& __re,
regex_constants::match_flag_type __f
= regex_constants::match_default)
{ return regex_match(__s, __s + _Rx_traits::length(__s), __m, __re, __f); }
 
/**
* @brief Determines if there is a match between the regular expression @p e
* and a string.
*
* @param s The string to match.
* @param m The match results.
* @param re The regular expression.
* @param flags Controls how the regular expression is matched.
*
* @retval true A match exists.
* @retval false Otherwise.
*
* @throws an exception of type regex_error.
*/
template<typename _Ch_traits, typename _Ch_alloc,
typename _Allocator, typename _Ch_type, typename _Rx_traits>
inline bool
regex_match(const basic_string<_Ch_type, _Ch_traits, _Ch_alloc>& __s,
match_results<typename basic_string<_Ch_type,
_Ch_traits, _Ch_alloc>::const_iterator, _Allocator>& __m,
const basic_regex<_Ch_type, _Rx_traits>& __re,
regex_constants::match_flag_type __flags
= regex_constants::match_default)
{ return regex_match(__s.begin(), __s.end(), __m, __re, __flags); }
 
/**
* @brief Indicates if there is a match between the regular expression @p e
* and a C-style null-terminated string.
*
* @param s The C-style null-terminated string to match.
* @param re The regular expression.
* @param f Controls how the regular expression is matched.
*
* @retval true A match exists.
* @retval false Otherwise.
*
* @throws an exception of type regex_error.
*/
template<typename _Ch_type, class _Rx_traits>
inline bool
regex_match(const _Ch_type* __s,
const basic_regex<_Ch_type, _Rx_traits>& __re,
regex_constants::match_flag_type __f
= regex_constants::match_default)
{ return regex_match(__s, __s + _Rx_traits::length(__s), __re, __f); }
 
/**
* @brief Indicates if there is a match between the regular expression @p e
* and a string.
*
* @param s [IN] The string to match.
* @param re [IN] The regular expression.
* @param flags [IN] Controls how the regular expression is matched.
*
* @retval true A match exists.
* @retval false Otherwise.
*
* @throws an exception of type regex_error.
*/
template<typename _Ch_traits, typename _Str_allocator,
typename _Ch_type, typename _Rx_traits>
inline bool
regex_match(const basic_string<_Ch_type, _Ch_traits, _Str_allocator>& __s,
const basic_regex<_Ch_type, _Rx_traits>& __re,
regex_constants::match_flag_type __flags
= regex_constants::match_default)
{ return regex_match(__s.begin(), __s.end(), __re, __flags); }
 
// [7.11.3] Function template regex_search
/**
* Searches for a regular expression within a range.
* @param first [IN] The start of the string to search.
* @param last [IN] One-past-the-end of the string to search.
* @param m [OUT] The match results.
* @param re [IN] The regular expression to search for.
* @param flags [IN] Search policy flags.
* @retval true A match was found within the string.
* @retval false No match was found within the string, the content of %m is
* undefined.
*
* @throws an exception of type regex_error.
*
* @todo Implement this function.
*/
template<typename _Bi_iter, typename _Allocator,
typename _Ch_type, typename _Rx_traits>
inline bool
regex_search(_Bi_iter __first, _Bi_iter __last,
match_results<_Bi_iter, _Allocator>& __m,
const basic_regex<_Ch_type, _Rx_traits>& __re,
regex_constants::match_flag_type __flags
= regex_constants::match_default);
 
/**
* Searches for a regular expression within a range.
* @param first [IN] The start of the string to search.
* @param last [IN] One-past-the-end of the string to search.
* @param re [IN] The regular expression to search for.
* @param flags [IN] Search policy flags.
* @retval true A match was found within the string.
* @retval false No match was found within the string.
* @doctodo
*
* @throws an exception of type regex_error.
*/
template<typename _Bi_iter, typename _Ch_type, typename _Rx_traits>
inline bool
regex_search(_Bi_iter __first, _Bi_iter __last,
const basic_regex<_Ch_type, _Rx_traits>& __re,
regex_constants::match_flag_type __flags
= regex_constants::match_default)
{
match_results<_Bi_iter> __what;
return regex_search(__first, __last, __what, __re, __flags);
}
 
/**
* @brief Searches for a regular expression within a C-string.
* @param s [IN] A C-string to search for the regex.
* @param m [OUT] The set of regex matches.
* @param e [IN] The regex to search for in @p s.
* @param f [IN] The search flags.
* @retval true A match was found within the string.
* @retval false No match was found within the string, the content of %m is
* undefined.
* @doctodo
*
* @throws an exception of type regex_error.
*/
template<typename _Ch_type, class _Allocator, class _Rx_traits>
inline bool
regex_search(const _Ch_type* __s,
match_results<const _Ch_type*, _Allocator>& __m,
const basic_regex<_Ch_type, _Rx_traits>& __e,
regex_constants::match_flag_type __f
= regex_constants::match_default)
{ return regex_search(__s, __s + _Rx_traits::length(__s), __m, __e, __f); }
 
/**
* @brief Searches for a regular expression within a C-string.
* @param s [IN] The C-string to search.
* @param e [IN] The regular expression to search for.
* @param f [IN] Search policy flags.
* @retval true A match was found within the string.
* @retval false No match was found within the string.
* @doctodo
*
* @throws an exception of type regex_error.
*/
template<typename _Ch_type, typename _Rx_traits>
inline bool
regex_search(const _Ch_type* __s,
const basic_regex<_Ch_type, _Rx_traits>& __e,
regex_constants::match_flag_type __f
= regex_constants::match_default)
{ return regex_search(__s, __s + _Rx_traits::length(__s), __e, __f); }
 
/**
* @brief Searches for a regular expression within a string.
* @param s [IN] The string to search.
* @param e [IN] The regular expression to search for.
* @param flags [IN] Search policy flags.
* @retval true A match was found within the string.
* @retval false No match was found within the string.
* @doctodo
*
* @throws an exception of type regex_error.
*/
template<typename _Ch_traits, typename _String_allocator,
typename _Ch_type, typename _Rx_traits>
inline bool
regex_search(const basic_string<_Ch_type, _Ch_traits,
_String_allocator>& __s,
const basic_regex<_Ch_type, _Rx_traits>& __e,
regex_constants::match_flag_type __flags
= regex_constants::match_default)
{ return regex_search(__s.begin(), __s.end(), __e, __flags); }
 
/**
* @brief Searches for a regular expression within a string.
* @param s [IN] A C++ string to search for the regex.
* @param m [OUT] The set of regex matches.
* @param e [IN] The regex to search for in @p s.
* @param f [IN] The search flags.
* @retval true A match was found within the string.
* @retval false No match was found within the string, the content of %m is
* undefined.
*
* @throws an exception of type regex_error.
*/
template<typename _Ch_traits, typename _Ch_alloc,
typename _Allocator, typename _Ch_type,
typename _Rx_traits>
inline bool
regex_search(const basic_string<_Ch_type, _Ch_traits, _Ch_alloc>& __s,
match_results<typename basic_string<_Ch_type,
_Ch_traits, _Ch_alloc>::const_iterator, _Allocator>& __m,
const basic_regex<_Ch_type, _Rx_traits>& __e,
regex_constants::match_flag_type __f
= regex_constants::match_default)
{ return regex_search(__s.begin(), __s.end(), __m, __e, __f); }
 
// tr1 [7.11.4] std [28.11.4] Function template regex_replace
/**
* @doctodo
* @param out
* @param first
* @param last
* @param e
* @param fmt
* @param flags
*
* @returns out
* @throws an exception of type regex_error.
*
* @todo Implement this function.
*/
template<typename _Out_iter, typename _Bi_iter,
typename _Rx_traits, typename _Ch_type>
inline _Out_iter
regex_replace(_Out_iter __out, _Bi_iter __first, _Bi_iter __last,
const basic_regex<_Ch_type, _Rx_traits>& __e,
const basic_string<_Ch_type>& __fmt,
regex_constants::match_flag_type __flags
= regex_constants::match_default);
 
/**
* @doctodo
* @param s
* @param e
* @param fmt
* @param flags
*
* @returns a copy of string @p s with replacements.
*
* @throws an exception of type regex_error.
*/
template<typename _Rx_traits, typename _Ch_type>
inline basic_string<_Ch_type>
regex_replace(const basic_string<_Ch_type>& __s,
const basic_regex<_Ch_type, _Rx_traits>& __e,
const basic_string<_Ch_type>& __fmt,
regex_constants::match_flag_type __flags
= regex_constants::match_default)
{
std::string __result;
regex_replace(std::back_inserter(__result),
__s.begin(), __s.end(), __e, __fmt, __flags);
return __result;
}
 
//@}
 
// tr1 [7.12.1] std [28.12] Class template regex_iterator
/**
* An iterator adaptor that will provide repeated calls of regex_search over
* a range until no more matches remain.
*/
template<typename _Bi_iter,
typename _Ch_type = typename iterator_traits<_Bi_iter>::value_type,
typename _Rx_traits = regex_traits<_Ch_type> >
class regex_iterator
{
public:
typedef basic_regex<_Ch_type, _Rx_traits> regex_type;
typedef match_results<_Bi_iter> value_type;
typedef std::ptrdiff_t difference_type;
typedef const value_type* pointer;
typedef const value_type& reference;
typedef std::forward_iterator_tag iterator_category;
 
public:
/**
* @brief Provides a singular iterator, useful for indicating
* one-past-the-end of a range.
* @todo Implement this function.
* @doctodo
*/
regex_iterator();
/**
* Constructs a %regex_iterator...
* @param a [IN] The start of a text range to search.
* @param b [IN] One-past-the-end of the text range to search.
* @param re [IN] The regular expression to match.
* @param m [IN] Policy flags for match rules.
* @todo Implement this function.
* @doctodo
*/
regex_iterator(_Bi_iter __a, _Bi_iter __b, const regex_type& __re,
regex_constants::match_flag_type __m
= regex_constants::match_default);
 
/**
* Copy constructs a %regex_iterator.
* @todo Implement this function.
* @doctodo
*/
regex_iterator(const regex_iterator& __rhs);
/**
* @todo Implement this function.
* @doctodo
*/
regex_iterator&
operator=(const regex_iterator& __rhs);
/**
* @todo Implement this function.
* @doctodo
*/
bool
operator==(const regex_iterator& __rhs);
/**
* @todo Implement this function.
* @doctodo
*/
bool
operator!=(const regex_iterator& __rhs);
/**
* @todo Implement this function.
* @doctodo
*/
const value_type&
operator*();
/**
* @todo Implement this function.
* @doctodo
*/
const value_type*
operator->();
/**
* @todo Implement this function.
* @doctodo
*/
regex_iterator&
operator++();
/**
* @todo Implement this function.
* @doctodo
*/
regex_iterator
operator++(int);
private:
// these members are shown for exposition only:
_Bi_iter begin;
_Bi_iter end;
const regex_type* pregex;
regex_constants::match_flag_type flags;
match_results<_Bi_iter> match;
};
typedef regex_iterator<const char*> cregex_iterator;
typedef regex_iterator<string::const_iterator> sregex_iterator;
#ifdef _GLIBCXX_USE_WCHAR_T
typedef regex_iterator<const wchar_t*> wcregex_iterator;
typedef regex_iterator<wstring::const_iterator> wsregex_iterator;
#endif
 
// [7.12.2] Class template regex_token_iterator
/**
* Iterates over submatches in a range (or @a splits a text string).
*
* The purpose of this iterator is to enumerate all, or all specified,
* matches of a regular expression within a text range. The dereferenced
* value of an iterator of this class is a std::tr1::sub_match object.
*/
template<typename _Bi_iter,
typename _Ch_type = typename iterator_traits<_Bi_iter>::value_type,
typename _Rx_traits = regex_traits<_Ch_type> >
class regex_token_iterator
{
public:
typedef basic_regex<_Ch_type, _Rx_traits> regex_type;
typedef sub_match<_Bi_iter> value_type;
typedef std::ptrdiff_t difference_type;
typedef const value_type* pointer;
typedef const value_type& reference;
typedef std::forward_iterator_tag iterator_category;
public:
/**
* @brief Default constructs a %regex_token_iterator.
* @todo Implement this function.
*
* A default-constructed %regex_token_iterator is a singular iterator
* that will compare equal to the one-past-the-end value for any
* iterator of the same type.
*/
regex_token_iterator();
/**
* Constructs a %regex_token_iterator...
* @param a [IN] The start of the text to search.
* @param b [IN] One-past-the-end of the text to search.
* @param re [IN] The regular expression to search for.
* @param submatch [IN] Which submatch to return. There are some
* special values for this parameter:
* - -1 each enumerated subexpression does NOT
* match the regular expression (aka field
* splitting)
* - 0 the entire string matching the
* subexpression is returned for each match
* within the text.
* - >0 enumerates only the indicated
* subexpression from a match within the text.
* @param m [IN] Policy flags for match rules.
*
* @todo Implement this function.
* @doctodo
*/
regex_token_iterator(_Bi_iter __a, _Bi_iter __b, const regex_type& __re,
int __submatch = 0,
regex_constants::match_flag_type __m
= regex_constants::match_default);
 
/**
* Constructs a %regex_token_iterator...
* @param a [IN] The start of the text to search.
* @param b [IN] One-past-the-end of the text to search.
* @param re [IN] The regular expression to search for.
* @param submatches [IN] A list of subexpressions to return for each
* regular expression match within the text.
* @param m [IN] Policy flags for match rules.
*
* @todo Implement this function.
* @doctodo
*/
regex_token_iterator(_Bi_iter __a, _Bi_iter __b,
const regex_type& __re,
const std::vector<int>& __submatches,
regex_constants::match_flag_type __m
= regex_constants::match_default);
 
/**
* Constructs a %regex_token_iterator...
* @param a [IN] The start of the text to search.
* @param b [IN] One-past-the-end of the text to search.
* @param re [IN] The regular expression to search for.
* @param submatches [IN] A list of subexpressions to return for each
* regular expression match within the text.
* @param m [IN] Policy flags for match rules.
* @todo Implement this function.
* @doctodo
*/
template<std::size_t _Nm>
regex_token_iterator(_Bi_iter __a, _Bi_iter __b,
const regex_type& __re,
const int (&__submatches)[_Nm],
regex_constants::match_flag_type __m
= regex_constants::match_default);
 
/**
* @brief Copy constructs a %regex_token_iterator.
* @param rhs [IN] A %regex_token_iterator to copy.
* @todo Implement this function.
*/
regex_token_iterator(const regex_token_iterator& __rhs);
/**
* @brief Assigns a %regex_token_iterator to another.
* @param rhs [IN] A %regex_token_iterator to copy.
* @todo Implement this function.
*/
regex_token_iterator&
operator=(const regex_token_iterator& __rhs);
/**
* @brief Compares a %regex_token_iterator to another for equality.
* @todo Implement this function.
*/
bool
operator==(const regex_token_iterator& __rhs);
/**
* @brief Compares a %regex_token_iterator to another for inequality.
* @todo Implement this function.
*/
bool
operator!=(const regex_token_iterator& __rhs);
/**
* @brief Dereferences a %regex_token_iterator.
* @todo Implement this function.
*/
const value_type&
operator*();
/**
* @brief Selects a %regex_token_iterator member.
* @todo Implement this function.
*/
const value_type*
operator->();
/**
* @brief Increments a %regex_token_iterator.
* @todo Implement this function.
*/
regex_token_iterator&
operator++();
/**
* @brief Postincrements a %regex_token_iterator.
* @todo Implement this function.
*/
regex_token_iterator
operator++(int);
private: // data members for exposition only:
typedef regex_iterator<_Bi_iter, _Ch_type, _Rx_traits> position_iterator;
 
position_iterator __position;
const value_type* __result;
value_type __suffix;
std::size_t __n;
std::vector<int> __subs;
};
 
/** @brief Token iterator for C-style NULL-terminated strings. */
typedef regex_token_iterator<const char*> cregex_token_iterator;
/** @brief Token iterator for standard strings. */
typedef regex_token_iterator<string::const_iterator> sregex_token_iterator;
#ifdef _GLIBCXX_USE_WCHAR_T
/** @brief Token iterator for C-style NULL-terminated wide strings. */
typedef regex_token_iterator<const wchar_t*> wcregex_token_iterator;
/** @brief Token iterator for standard wide-character strings. */
typedef regex_token_iterator<wstring::const_iterator> wsregex_token_iterator;
#endif
//@}
 
_GLIBCXX_END_NAMESPACE_VERSION
}
}
 
#endif // _GLIBCXX_TR1_REGEX
/contrib/sdk/sources/libstdc++-v3/include/tr1/riemann_zeta.tcc
0,0 → 1,433
// Special functions -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/riemann_zeta.tcc
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
 
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
 
// Written by Edward Smith-Rowland based on:
// (1) Handbook of Mathematical Functions,
// Ed. by Milton Abramowitz and Irene A. Stegun,
// Dover Publications, New-York, Section 5, pp. 807-808.
// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
// (3) Gamma, Exploring Euler's Constant, Julian Havil,
// Princeton, 2003.
 
#ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC
#define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1
 
#include "special_function_util.h"
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
// [5.2] Special functions
 
// Implementation-space details.
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @brief Compute the Riemann zeta function @f$ \zeta(s) @f$
* by summation for s > 1.
*
* The Riemann zeta function is defined by:
* \f[
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
* \f]
* For s < 1 use the reflection formula:
* \f[
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
* \f]
*/
template<typename _Tp>
_Tp
__riemann_zeta_sum(_Tp __s)
{
// A user shouldn't get to this.
if (__s < _Tp(1))
std::__throw_domain_error(__N("Bad argument in zeta sum."));
 
const unsigned int max_iter = 10000;
_Tp __zeta = _Tp(0);
for (unsigned int __k = 1; __k < max_iter; ++__k)
{
_Tp __term = std::pow(static_cast<_Tp>(__k), -__s);
if (__term < std::numeric_limits<_Tp>::epsilon())
{
break;
}
__zeta += __term;
}
 
return __zeta;
}
 
 
/**
* @brief Evaluate the Riemann zeta function @f$ \zeta(s) @f$
* by an alternate series for s > 0.
*
* The Riemann zeta function is defined by:
* \f[
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
* \f]
* For s < 1 use the reflection formula:
* \f[
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
* \f]
*/
template<typename _Tp>
_Tp
__riemann_zeta_alt(_Tp __s)
{
_Tp __sgn = _Tp(1);
_Tp __zeta = _Tp(0);
for (unsigned int __i = 1; __i < 10000000; ++__i)
{
_Tp __term = __sgn / std::pow(__i, __s);
if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
break;
__zeta += __term;
__sgn *= _Tp(-1);
}
__zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
 
return __zeta;
}
 
 
/**
* @brief Evaluate the Riemann zeta function by series for all s != 1.
* Convergence is great until largish negative numbers.
* Then the convergence of the > 0 sum gets better.
*
* The series is:
* \f[
* \zeta(s) = \frac{1}{1-2^{1-s}}
* \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
* \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
* \f]
* Havil 2003, p. 206.
*
* The Riemann zeta function is defined by:
* \f[
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
* \f]
* For s < 1 use the reflection formula:
* \f[
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
* \f]
*/
template<typename _Tp>
_Tp
__riemann_zeta_glob(_Tp __s)
{
_Tp __zeta = _Tp(0);
 
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
// Max e exponent before overflow.
const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
* std::log(_Tp(10)) - _Tp(1);
 
// This series works until the binomial coefficient blows up
// so use reflection.
if (__s < _Tp(0))
{
#if _GLIBCXX_USE_C99_MATH_TR1
if (std::tr1::fmod(__s,_Tp(2)) == _Tp(0))
return _Tp(0);
else
#endif
{
_Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s);
__zeta *= std::pow(_Tp(2)
* __numeric_constants<_Tp>::__pi(), __s)
* std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
#if _GLIBCXX_USE_C99_MATH_TR1
* std::exp(std::tr1::lgamma(_Tp(1) - __s))
#else
* std::exp(__log_gamma(_Tp(1) - __s))
#endif
/ __numeric_constants<_Tp>::__pi();
return __zeta;
}
}
 
_Tp __num = _Tp(0.5L);
const unsigned int __maxit = 10000;
for (unsigned int __i = 0; __i < __maxit; ++__i)
{
bool __punt = false;
_Tp __sgn = _Tp(1);
_Tp __term = _Tp(0);
for (unsigned int __j = 0; __j <= __i; ++__j)
{
#if _GLIBCXX_USE_C99_MATH_TR1
_Tp __bincoeff = std::tr1::lgamma(_Tp(1 + __i))
- std::tr1::lgamma(_Tp(1 + __j))
- std::tr1::lgamma(_Tp(1 + __i - __j));
#else
_Tp __bincoeff = __log_gamma(_Tp(1 + __i))
- __log_gamma(_Tp(1 + __j))
- __log_gamma(_Tp(1 + __i - __j));
#endif
if (__bincoeff > __max_bincoeff)
{
// This only gets hit for x << 0.
__punt = true;
break;
}
__bincoeff = std::exp(__bincoeff);
__term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s);
__sgn *= _Tp(-1);
}
if (__punt)
break;
__term *= __num;
__zeta += __term;
if (std::abs(__term/__zeta) < __eps)
break;
__num *= _Tp(0.5L);
}
 
__zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
 
return __zeta;
}
 
 
/**
* @brief Compute the Riemann zeta function @f$ \zeta(s) @f$
* using the product over prime factors.
* \f[
* \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}}
* \f]
* where @f$ {p_i} @f$ are the prime numbers.
*
* The Riemann zeta function is defined by:
* \f[
* \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
* \f]
* For s < 1 use the reflection formula:
* \f[
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
* \f]
*/
template<typename _Tp>
_Tp
__riemann_zeta_product(_Tp __s)
{
static const _Tp __prime[] = {
_Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19),
_Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47),
_Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79),
_Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109)
};
static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp);
 
_Tp __zeta = _Tp(1);
for (unsigned int __i = 0; __i < __num_primes; ++__i)
{
const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s);
__zeta *= __fact;
if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon())
break;
}
 
__zeta = _Tp(1) / __zeta;
 
return __zeta;
}
 
 
/**
* @brief Return the Riemann zeta function @f$ \zeta(s) @f$.
*
* The Riemann zeta function is defined by:
* \f[
* \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
* \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2})
* \Gamma (1 - s) \zeta (1 - s) for s < 1
* \f]
* For s < 1 use the reflection formula:
* \f[
* \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
* \f]
*/
template<typename _Tp>
_Tp
__riemann_zeta(_Tp __s)
{
if (__isnan(__s))
return std::numeric_limits<_Tp>::quiet_NaN();
else if (__s == _Tp(1))
return std::numeric_limits<_Tp>::infinity();
else if (__s < -_Tp(19))
{
_Tp __zeta = __riemann_zeta_product(_Tp(1) - __s);
__zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s)
* std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
#if _GLIBCXX_USE_C99_MATH_TR1
* std::exp(std::tr1::lgamma(_Tp(1) - __s))
#else
* std::exp(__log_gamma(_Tp(1) - __s))
#endif
/ __numeric_constants<_Tp>::__pi();
return __zeta;
}
else if (__s < _Tp(20))
{
// Global double sum or McLaurin?
bool __glob = true;
if (__glob)
return __riemann_zeta_glob(__s);
else
{
if (__s > _Tp(1))
return __riemann_zeta_sum(__s);
else
{
_Tp __zeta = std::pow(_Tp(2)
* __numeric_constants<_Tp>::__pi(), __s)
* std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
#if _GLIBCXX_USE_C99_MATH_TR1
* std::tr1::tgamma(_Tp(1) - __s)
#else
* std::exp(__log_gamma(_Tp(1) - __s))
#endif
* __riemann_zeta_sum(_Tp(1) - __s);
return __zeta;
}
}
}
else
return __riemann_zeta_product(__s);
}
 
 
/**
* @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
* for all s != 1 and x > -1.
*
* The Hurwitz zeta function is defined by:
* @f[
* \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
* @f]
* The Riemann zeta function is a special case:
* @f[
* \zeta(s) = \zeta(1,s)
* @f]
*
* This functions uses the double sum that converges for s != 1
* and x > -1:
* @f[
* \zeta(x,s) = \frac{1}{s-1}
* \sum_{n=0}^{\infty} \frac{1}{n + 1}
* \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s}
* @f]
*/
template<typename _Tp>
_Tp
__hurwitz_zeta_glob(_Tp __a, _Tp __s)
{
_Tp __zeta = _Tp(0);
 
const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
// Max e exponent before overflow.
const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
* std::log(_Tp(10)) - _Tp(1);
 
const unsigned int __maxit = 10000;
for (unsigned int __i = 0; __i < __maxit; ++__i)
{
bool __punt = false;
_Tp __sgn = _Tp(1);
_Tp __term = _Tp(0);
for (unsigned int __j = 0; __j <= __i; ++__j)
{
#if _GLIBCXX_USE_C99_MATH_TR1
_Tp __bincoeff = std::tr1::lgamma(_Tp(1 + __i))
- std::tr1::lgamma(_Tp(1 + __j))
- std::tr1::lgamma(_Tp(1 + __i - __j));
#else
_Tp __bincoeff = __log_gamma(_Tp(1 + __i))
- __log_gamma(_Tp(1 + __j))
- __log_gamma(_Tp(1 + __i - __j));
#endif
if (__bincoeff > __max_bincoeff)
{
// This only gets hit for x << 0.
__punt = true;
break;
}
__bincoeff = std::exp(__bincoeff);
__term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s);
__sgn *= _Tp(-1);
}
if (__punt)
break;
__term /= _Tp(__i + 1);
if (std::abs(__term / __zeta) < __eps)
break;
__zeta += __term;
}
 
__zeta /= __s - _Tp(1);
 
return __zeta;
}
 
 
/**
* @brief Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
* for all s != 1 and x > -1.
*
* The Hurwitz zeta function is defined by:
* @f[
* \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
* @f]
* The Riemann zeta function is a special case:
* @f[
* \zeta(s) = \zeta(1,s)
* @f]
*/
template<typename _Tp>
inline _Tp
__hurwitz_zeta(_Tp __a, _Tp __s)
{ return __hurwitz_zeta_glob(__a, __s); }
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std::tr1::__detail
}
}
 
#endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC
/contrib/sdk/sources/libstdc++-v3/include/tr1/shared_ptr.h
0,0 → 1,1172
// <tr1/shared_ptr.h> -*- C++ -*-
 
// Copyright (C) 2007-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
// shared_count.hpp
// Copyright (c) 2001, 2002, 2003 Peter Dimov and Multi Media Ltd.
 
// shared_ptr.hpp
// Copyright (C) 1998, 1999 Greg Colvin and Beman Dawes.
// Copyright (C) 2001, 2002, 2003 Peter Dimov
 
// weak_ptr.hpp
// Copyright (C) 2001, 2002, 2003 Peter Dimov
 
// enable_shared_from_this.hpp
// Copyright (C) 2002 Peter Dimov
 
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
 
// GCC Note: based on version 1.32.0 of the Boost library.
 
/** @file tr1/shared_ptr.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/memory}
*/
 
#ifndef _TR1_SHARED_PTR_H
#define _TR1_SHARED_PTR_H 1
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @brief Exception possibly thrown by @c shared_ptr.
* @ingroup exceptions
*/
class bad_weak_ptr : public std::exception
{
public:
virtual char const*
what() const throw()
{ return "tr1::bad_weak_ptr"; }
};
 
// Substitute for bad_weak_ptr object in the case of -fno-exceptions.
inline void
__throw_bad_weak_ptr()
{ _GLIBCXX_THROW_OR_ABORT(bad_weak_ptr()); }
 
using __gnu_cxx::_Lock_policy;
using __gnu_cxx::__default_lock_policy;
using __gnu_cxx::_S_single;
using __gnu_cxx::_S_mutex;
using __gnu_cxx::_S_atomic;
 
// Empty helper class except when the template argument is _S_mutex.
template<_Lock_policy _Lp>
class _Mutex_base
{
protected:
// The atomic policy uses fully-fenced builtins, single doesn't care.
enum { _S_need_barriers = 0 };
};
 
template<>
class _Mutex_base<_S_mutex>
: public __gnu_cxx::__mutex
{
protected:
// This policy is used when atomic builtins are not available.
// The replacement atomic operations might not have the necessary
// memory barriers.
enum { _S_need_barriers = 1 };
};
 
template<_Lock_policy _Lp = __default_lock_policy>
class _Sp_counted_base
: public _Mutex_base<_Lp>
{
public:
_Sp_counted_base()
: _M_use_count(1), _M_weak_count(1) { }
virtual
~_Sp_counted_base() // nothrow
{ }
// Called when _M_use_count drops to zero, to release the resources
// managed by *this.
virtual void
_M_dispose() = 0; // nothrow
// Called when _M_weak_count drops to zero.
virtual void
_M_destroy() // nothrow
{ delete this; }
virtual void*
_M_get_deleter(const std::type_info&) = 0;
 
void
_M_add_ref_copy()
{ __gnu_cxx::__atomic_add_dispatch(&_M_use_count, 1); }
void
_M_add_ref_lock();
void
_M_release() // nothrow
{
// Be race-detector-friendly. For more info see bits/c++config.
_GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_use_count);
if (__gnu_cxx::__exchange_and_add_dispatch(&_M_use_count, -1) == 1)
{
_GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_use_count);
_M_dispose();
// There must be a memory barrier between dispose() and destroy()
// to ensure that the effects of dispose() are observed in the
// thread that runs destroy().
// See http://gcc.gnu.org/ml/libstdc++/2005-11/msg00136.html
if (_Mutex_base<_Lp>::_S_need_barriers)
{
_GLIBCXX_READ_MEM_BARRIER;
_GLIBCXX_WRITE_MEM_BARRIER;
}
 
// Be race-detector-friendly. For more info see bits/c++config.
_GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_weak_count);
if (__gnu_cxx::__exchange_and_add_dispatch(&_M_weak_count,
-1) == 1)
{
_GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_weak_count);
_M_destroy();
}
}
}
void
_M_weak_add_ref() // nothrow
{ __gnu_cxx::__atomic_add_dispatch(&_M_weak_count, 1); }
 
void
_M_weak_release() // nothrow
{
// Be race-detector-friendly. For more info see bits/c++config.
_GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(&_M_weak_count);
if (__gnu_cxx::__exchange_and_add_dispatch(&_M_weak_count, -1) == 1)
{
_GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(&_M_weak_count);
if (_Mutex_base<_Lp>::_S_need_barriers)
{
// See _M_release(),
// destroy() must observe results of dispose()
_GLIBCXX_READ_MEM_BARRIER;
_GLIBCXX_WRITE_MEM_BARRIER;
}
_M_destroy();
}
}
long
_M_get_use_count() const // nothrow
{
// No memory barrier is used here so there is no synchronization
// with other threads.
return const_cast<const volatile _Atomic_word&>(_M_use_count);
}
 
private:
_Sp_counted_base(_Sp_counted_base const&);
_Sp_counted_base& operator=(_Sp_counted_base const&);
 
_Atomic_word _M_use_count; // #shared
_Atomic_word _M_weak_count; // #weak + (#shared != 0)
};
 
template<>
inline void
_Sp_counted_base<_S_single>::
_M_add_ref_lock()
{
if (__gnu_cxx::__exchange_and_add_dispatch(&_M_use_count, 1) == 0)
{
_M_use_count = 0;
__throw_bad_weak_ptr();
}
}
 
template<>
inline void
_Sp_counted_base<_S_mutex>::
_M_add_ref_lock()
{
__gnu_cxx::__scoped_lock sentry(*this);
if (__gnu_cxx::__exchange_and_add_dispatch(&_M_use_count, 1) == 0)
{
_M_use_count = 0;
__throw_bad_weak_ptr();
}
}
 
template<>
inline void
_Sp_counted_base<_S_atomic>::
_M_add_ref_lock()
{
// Perform lock-free add-if-not-zero operation.
_Atomic_word __count = _M_use_count;
do
{
if (__count == 0)
__throw_bad_weak_ptr();
// Replace the current counter value with the old value + 1, as
// long as it's not changed meanwhile.
}
while (!__atomic_compare_exchange_n(&_M_use_count, &__count, __count + 1,
true, __ATOMIC_ACQ_REL,
__ATOMIC_RELAXED));
}
 
template<typename _Ptr, typename _Deleter, _Lock_policy _Lp>
class _Sp_counted_base_impl
: public _Sp_counted_base<_Lp>
{
public:
// Precondition: __d(__p) must not throw.
_Sp_counted_base_impl(_Ptr __p, _Deleter __d)
: _M_ptr(__p), _M_del(__d) { }
virtual void
_M_dispose() // nothrow
{ _M_del(_M_ptr); }
virtual void*
_M_get_deleter(const std::type_info& __ti)
{
#ifdef __GXX_RTTI
return __ti == typeid(_Deleter) ? &_M_del : 0;
#else
return 0;
#endif
}
private:
_Sp_counted_base_impl(const _Sp_counted_base_impl&);
_Sp_counted_base_impl& operator=(const _Sp_counted_base_impl&);
_Ptr _M_ptr; // copy constructor must not throw
_Deleter _M_del; // copy constructor must not throw
};
 
template<_Lock_policy _Lp = __default_lock_policy>
class __weak_count;
 
template<typename _Tp>
struct _Sp_deleter
{
typedef void result_type;
typedef _Tp* argument_type;
void operator()(_Tp* __p) const { delete __p; }
};
 
template<_Lock_policy _Lp = __default_lock_policy>
class __shared_count
{
public:
__shared_count()
: _M_pi(0) // nothrow
{ }
template<typename _Ptr>
__shared_count(_Ptr __p) : _M_pi(0)
{
__try
{
typedef typename std::tr1::remove_pointer<_Ptr>::type _Tp;
_M_pi = new _Sp_counted_base_impl<_Ptr, _Sp_deleter<_Tp>, _Lp>(
__p, _Sp_deleter<_Tp>());
}
__catch(...)
{
delete __p;
__throw_exception_again;
}
}
 
template<typename _Ptr, typename _Deleter>
__shared_count(_Ptr __p, _Deleter __d) : _M_pi(0)
{
__try
{
_M_pi = new _Sp_counted_base_impl<_Ptr, _Deleter, _Lp>(__p, __d);
}
__catch(...)
{
__d(__p); // Call _Deleter on __p.
__throw_exception_again;
}
}
 
// Special case for auto_ptr<_Tp> to provide the strong guarantee.
template<typename _Tp>
explicit
__shared_count(std::auto_ptr<_Tp>& __r)
: _M_pi(new _Sp_counted_base_impl<_Tp*,
_Sp_deleter<_Tp>, _Lp >(__r.get(), _Sp_deleter<_Tp>()))
{ __r.release(); }
 
// Throw bad_weak_ptr when __r._M_get_use_count() == 0.
explicit
__shared_count(const __weak_count<_Lp>& __r);
~__shared_count() // nothrow
{
if (_M_pi != 0)
_M_pi->_M_release();
}
__shared_count(const __shared_count& __r)
: _M_pi(__r._M_pi) // nothrow
{
if (_M_pi != 0)
_M_pi->_M_add_ref_copy();
}
__shared_count&
operator=(const __shared_count& __r) // nothrow
{
_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
if (__tmp != _M_pi)
{
if (__tmp != 0)
__tmp->_M_add_ref_copy();
if (_M_pi != 0)
_M_pi->_M_release();
_M_pi = __tmp;
}
return *this;
}
void
_M_swap(__shared_count& __r) // nothrow
{
_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
__r._M_pi = _M_pi;
_M_pi = __tmp;
}
long
_M_get_use_count() const // nothrow
{ return _M_pi != 0 ? _M_pi->_M_get_use_count() : 0; }
 
bool
_M_unique() const // nothrow
{ return this->_M_get_use_count() == 1; }
friend inline bool
operator==(const __shared_count& __a, const __shared_count& __b)
{ return __a._M_pi == __b._M_pi; }
friend inline bool
operator<(const __shared_count& __a, const __shared_count& __b)
{ return std::less<_Sp_counted_base<_Lp>*>()(__a._M_pi, __b._M_pi); }
void*
_M_get_deleter(const std::type_info& __ti) const
{ return _M_pi ? _M_pi->_M_get_deleter(__ti) : 0; }
 
private:
friend class __weak_count<_Lp>;
 
_Sp_counted_base<_Lp>* _M_pi;
};
 
 
template<_Lock_policy _Lp>
class __weak_count
{
public:
__weak_count()
: _M_pi(0) // nothrow
{ }
__weak_count(const __shared_count<_Lp>& __r)
: _M_pi(__r._M_pi) // nothrow
{
if (_M_pi != 0)
_M_pi->_M_weak_add_ref();
}
__weak_count(const __weak_count<_Lp>& __r)
: _M_pi(__r._M_pi) // nothrow
{
if (_M_pi != 0)
_M_pi->_M_weak_add_ref();
}
~__weak_count() // nothrow
{
if (_M_pi != 0)
_M_pi->_M_weak_release();
}
__weak_count<_Lp>&
operator=(const __shared_count<_Lp>& __r) // nothrow
{
_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
if (__tmp != 0)
__tmp->_M_weak_add_ref();
if (_M_pi != 0)
_M_pi->_M_weak_release();
_M_pi = __tmp;
return *this;
}
__weak_count<_Lp>&
operator=(const __weak_count<_Lp>& __r) // nothrow
{
_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
if (__tmp != 0)
__tmp->_M_weak_add_ref();
if (_M_pi != 0)
_M_pi->_M_weak_release();
_M_pi = __tmp;
return *this;
}
 
void
_M_swap(__weak_count<_Lp>& __r) // nothrow
{
_Sp_counted_base<_Lp>* __tmp = __r._M_pi;
__r._M_pi = _M_pi;
_M_pi = __tmp;
}
long
_M_get_use_count() const // nothrow
{ return _M_pi != 0 ? _M_pi->_M_get_use_count() : 0; }
 
friend inline bool
operator==(const __weak_count<_Lp>& __a, const __weak_count<_Lp>& __b)
{ return __a._M_pi == __b._M_pi; }
friend inline bool
operator<(const __weak_count<_Lp>& __a, const __weak_count<_Lp>& __b)
{ return std::less<_Sp_counted_base<_Lp>*>()(__a._M_pi, __b._M_pi); }
 
private:
friend class __shared_count<_Lp>;
 
_Sp_counted_base<_Lp>* _M_pi;
};
 
// now that __weak_count is defined we can define this constructor:
template<_Lock_policy _Lp>
inline
__shared_count<_Lp>::
__shared_count(const __weak_count<_Lp>& __r)
: _M_pi(__r._M_pi)
{
if (_M_pi != 0)
_M_pi->_M_add_ref_lock();
else
__throw_bad_weak_ptr();
}
 
// Forward declarations.
template<typename _Tp, _Lock_policy _Lp = __default_lock_policy>
class __shared_ptr;
template<typename _Tp, _Lock_policy _Lp = __default_lock_policy>
class __weak_ptr;
 
template<typename _Tp, _Lock_policy _Lp = __default_lock_policy>
class __enable_shared_from_this;
 
template<typename _Tp>
class shared_ptr;
template<typename _Tp>
class weak_ptr;
 
template<typename _Tp>
class enable_shared_from_this;
 
// Support for enable_shared_from_this.
 
// Friend of __enable_shared_from_this.
template<_Lock_policy _Lp, typename _Tp1, typename _Tp2>
void
__enable_shared_from_this_helper(const __shared_count<_Lp>&,
const __enable_shared_from_this<_Tp1,
_Lp>*, const _Tp2*);
 
// Friend of enable_shared_from_this.
template<typename _Tp1, typename _Tp2>
void
__enable_shared_from_this_helper(const __shared_count<>&,
const enable_shared_from_this<_Tp1>*,
const _Tp2*);
 
template<_Lock_policy _Lp>
inline void
__enable_shared_from_this_helper(const __shared_count<_Lp>&, ...)
{ }
 
 
struct __static_cast_tag { };
struct __const_cast_tag { };
struct __dynamic_cast_tag { };
 
// A smart pointer with reference-counted copy semantics. The
// object pointed to is deleted when the last shared_ptr pointing to
// it is destroyed or reset.
template<typename _Tp, _Lock_policy _Lp>
class __shared_ptr
{
public:
typedef _Tp element_type;
__shared_ptr()
: _M_ptr(0), _M_refcount() // never throws
{ }
 
template<typename _Tp1>
explicit
__shared_ptr(_Tp1* __p)
: _M_ptr(__p), _M_refcount(__p)
{
__glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
typedef int _IsComplete[sizeof(_Tp1)];
__enable_shared_from_this_helper(_M_refcount, __p, __p);
}
 
template<typename _Tp1, typename _Deleter>
__shared_ptr(_Tp1* __p, _Deleter __d)
: _M_ptr(__p), _M_refcount(__p, __d)
{
__glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
// TODO requires _Deleter CopyConstructible and __d(__p) well-formed
__enable_shared_from_this_helper(_M_refcount, __p, __p);
}
// generated copy constructor, assignment, destructor are fine.
template<typename _Tp1>
__shared_ptr(const __shared_ptr<_Tp1, _Lp>& __r)
: _M_ptr(__r._M_ptr), _M_refcount(__r._M_refcount) // never throws
{ __glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>) }
 
template<typename _Tp1>
explicit
__shared_ptr(const __weak_ptr<_Tp1, _Lp>& __r)
: _M_refcount(__r._M_refcount) // may throw
{
__glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
// It is now safe to copy __r._M_ptr, as _M_refcount(__r._M_refcount)
// did not throw.
_M_ptr = __r._M_ptr;
}
 
#if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED
// Postcondition: use_count() == 1 and __r.get() == 0
template<typename _Tp1>
explicit
__shared_ptr(std::auto_ptr<_Tp1>& __r)
: _M_ptr(__r.get()), _M_refcount()
{ // TODO requries delete __r.release() well-formed
__glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
typedef int _IsComplete[sizeof(_Tp1)];
_Tp1* __tmp = __r.get();
_M_refcount = __shared_count<_Lp>(__r);
__enable_shared_from_this_helper(_M_refcount, __tmp, __tmp);
}
 
#endif
 
template<typename _Tp1>
__shared_ptr(const __shared_ptr<_Tp1, _Lp>& __r, __static_cast_tag)
: _M_ptr(static_cast<element_type*>(__r._M_ptr)),
_M_refcount(__r._M_refcount)
{ }
 
template<typename _Tp1>
__shared_ptr(const __shared_ptr<_Tp1, _Lp>& __r, __const_cast_tag)
: _M_ptr(const_cast<element_type*>(__r._M_ptr)),
_M_refcount(__r._M_refcount)
{ }
 
template<typename _Tp1>
__shared_ptr(const __shared_ptr<_Tp1, _Lp>& __r, __dynamic_cast_tag)
: _M_ptr(dynamic_cast<element_type*>(__r._M_ptr)),
_M_refcount(__r._M_refcount)
{
if (_M_ptr == 0) // need to allocate new counter -- the cast failed
_M_refcount = __shared_count<_Lp>();
}
 
template<typename _Tp1>
__shared_ptr&
operator=(const __shared_ptr<_Tp1, _Lp>& __r) // never throws
{
_M_ptr = __r._M_ptr;
_M_refcount = __r._M_refcount; // __shared_count::op= doesn't throw
return *this;
}
 
#if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED
template<typename _Tp1>
__shared_ptr&
operator=(std::auto_ptr<_Tp1>& __r)
{
__shared_ptr(__r).swap(*this);
return *this;
}
#endif
 
void
reset() // never throws
{ __shared_ptr().swap(*this); }
 
template<typename _Tp1>
void
reset(_Tp1* __p) // _Tp1 must be complete.
{
// Catch self-reset errors.
_GLIBCXX_DEBUG_ASSERT(__p == 0 || __p != _M_ptr);
__shared_ptr(__p).swap(*this);
}
 
template<typename _Tp1, typename _Deleter>
void
reset(_Tp1* __p, _Deleter __d)
{ __shared_ptr(__p, __d).swap(*this); }
 
// Allow class instantiation when _Tp is [cv-qual] void.
typename std::tr1::add_reference<_Tp>::type
operator*() const // never throws
{
_GLIBCXX_DEBUG_ASSERT(_M_ptr != 0);
return *_M_ptr;
}
 
_Tp*
operator->() const // never throws
{
_GLIBCXX_DEBUG_ASSERT(_M_ptr != 0);
return _M_ptr;
}
_Tp*
get() const // never throws
{ return _M_ptr; }
 
// Implicit conversion to "bool"
private:
typedef _Tp* __shared_ptr::*__unspecified_bool_type;
 
public:
operator __unspecified_bool_type() const // never throws
{ return _M_ptr == 0 ? 0 : &__shared_ptr::_M_ptr; }
 
bool
unique() const // never throws
{ return _M_refcount._M_unique(); }
 
long
use_count() const // never throws
{ return _M_refcount._M_get_use_count(); }
 
void
swap(__shared_ptr<_Tp, _Lp>& __other) // never throws
{
std::swap(_M_ptr, __other._M_ptr);
_M_refcount._M_swap(__other._M_refcount);
}
 
private:
void*
_M_get_deleter(const std::type_info& __ti) const
{ return _M_refcount._M_get_deleter(__ti); }
 
template<typename _Tp1, _Lock_policy _Lp1>
bool
_M_less(const __shared_ptr<_Tp1, _Lp1>& __rhs) const
{ return _M_refcount < __rhs._M_refcount; }
 
template<typename _Tp1, _Lock_policy _Lp1> friend class __shared_ptr;
template<typename _Tp1, _Lock_policy _Lp1> friend class __weak_ptr;
 
template<typename _Del, typename _Tp1, _Lock_policy _Lp1>
friend _Del* get_deleter(const __shared_ptr<_Tp1, _Lp1>&);
 
// Friends injected into enclosing namespace and found by ADL:
template<typename _Tp1>
friend inline bool
operator==(const __shared_ptr& __a, const __shared_ptr<_Tp1, _Lp>& __b)
{ return __a.get() == __b.get(); }
 
template<typename _Tp1>
friend inline bool
operator!=(const __shared_ptr& __a, const __shared_ptr<_Tp1, _Lp>& __b)
{ return __a.get() != __b.get(); }
 
template<typename _Tp1>
friend inline bool
operator<(const __shared_ptr& __a, const __shared_ptr<_Tp1, _Lp>& __b)
{ return __a._M_less(__b); }
 
_Tp* _M_ptr; // Contained pointer.
__shared_count<_Lp> _M_refcount; // Reference counter.
};
 
// 2.2.3.8 shared_ptr specialized algorithms.
template<typename _Tp, _Lock_policy _Lp>
inline void
swap(__shared_ptr<_Tp, _Lp>& __a, __shared_ptr<_Tp, _Lp>& __b)
{ __a.swap(__b); }
 
// 2.2.3.9 shared_ptr casts
/* The seemingly equivalent
* shared_ptr<_Tp, _Lp>(static_cast<_Tp*>(__r.get()))
* will eventually result in undefined behaviour,
* attempting to delete the same object twice.
*/
template<typename _Tp, typename _Tp1, _Lock_policy _Lp>
inline __shared_ptr<_Tp, _Lp>
static_pointer_cast(const __shared_ptr<_Tp1, _Lp>& __r)
{ return __shared_ptr<_Tp, _Lp>(__r, __static_cast_tag()); }
 
/* The seemingly equivalent
* shared_ptr<_Tp, _Lp>(const_cast<_Tp*>(__r.get()))
* will eventually result in undefined behaviour,
* attempting to delete the same object twice.
*/
template<typename _Tp, typename _Tp1, _Lock_policy _Lp>
inline __shared_ptr<_Tp, _Lp>
const_pointer_cast(const __shared_ptr<_Tp1, _Lp>& __r)
{ return __shared_ptr<_Tp, _Lp>(__r, __const_cast_tag()); }
 
/* The seemingly equivalent
* shared_ptr<_Tp, _Lp>(dynamic_cast<_Tp*>(__r.get()))
* will eventually result in undefined behaviour,
* attempting to delete the same object twice.
*/
template<typename _Tp, typename _Tp1, _Lock_policy _Lp>
inline __shared_ptr<_Tp, _Lp>
dynamic_pointer_cast(const __shared_ptr<_Tp1, _Lp>& __r)
{ return __shared_ptr<_Tp, _Lp>(__r, __dynamic_cast_tag()); }
 
// 2.2.3.7 shared_ptr I/O
template<typename _Ch, typename _Tr, typename _Tp, _Lock_policy _Lp>
std::basic_ostream<_Ch, _Tr>&
operator<<(std::basic_ostream<_Ch, _Tr>& __os,
const __shared_ptr<_Tp, _Lp>& __p)
{
__os << __p.get();
return __os;
}
 
// 2.2.3.10 shared_ptr get_deleter (experimental)
template<typename _Del, typename _Tp, _Lock_policy _Lp>
inline _Del*
get_deleter(const __shared_ptr<_Tp, _Lp>& __p)
{
#ifdef __GXX_RTTI
return static_cast<_Del*>(__p._M_get_deleter(typeid(_Del)));
#else
return 0;
#endif
}
 
 
template<typename _Tp, _Lock_policy _Lp>
class __weak_ptr
{
public:
typedef _Tp element_type;
__weak_ptr()
: _M_ptr(0), _M_refcount() // never throws
{ }
 
// Generated copy constructor, assignment, destructor are fine.
// The "obvious" converting constructor implementation:
//
// template<typename _Tp1>
// __weak_ptr(const __weak_ptr<_Tp1, _Lp>& __r)
// : _M_ptr(__r._M_ptr), _M_refcount(__r._M_refcount) // never throws
// { }
//
// has a serious problem.
//
// __r._M_ptr may already have been invalidated. The _M_ptr(__r._M_ptr)
// conversion may require access to *__r._M_ptr (virtual inheritance).
//
// It is not possible to avoid spurious access violations since
// in multithreaded programs __r._M_ptr may be invalidated at any point.
template<typename _Tp1>
__weak_ptr(const __weak_ptr<_Tp1, _Lp>& __r)
: _M_refcount(__r._M_refcount) // never throws
{
__glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>)
_M_ptr = __r.lock().get();
}
 
template<typename _Tp1>
__weak_ptr(const __shared_ptr<_Tp1, _Lp>& __r)
: _M_ptr(__r._M_ptr), _M_refcount(__r._M_refcount) // never throws
{ __glibcxx_function_requires(_ConvertibleConcept<_Tp1*, _Tp*>) }
 
template<typename _Tp1>
__weak_ptr&
operator=(const __weak_ptr<_Tp1, _Lp>& __r) // never throws
{
_M_ptr = __r.lock().get();
_M_refcount = __r._M_refcount;
return *this;
}
template<typename _Tp1>
__weak_ptr&
operator=(const __shared_ptr<_Tp1, _Lp>& __r) // never throws
{
_M_ptr = __r._M_ptr;
_M_refcount = __r._M_refcount;
return *this;
}
 
__shared_ptr<_Tp, _Lp>
lock() const // never throws
{
#ifdef __GTHREADS
// Optimization: avoid throw overhead.
if (expired())
return __shared_ptr<element_type, _Lp>();
 
__try
{
return __shared_ptr<element_type, _Lp>(*this);
}
__catch(const bad_weak_ptr&)
{
// Q: How can we get here?
// A: Another thread may have invalidated r after the
// use_count test above.
return __shared_ptr<element_type, _Lp>();
}
#else
// Optimization: avoid try/catch overhead when single threaded.
return expired() ? __shared_ptr<element_type, _Lp>()
: __shared_ptr<element_type, _Lp>(*this);
 
#endif
} // XXX MT
 
long
use_count() const // never throws
{ return _M_refcount._M_get_use_count(); }
 
bool
expired() const // never throws
{ return _M_refcount._M_get_use_count() == 0; }
void
reset() // never throws
{ __weak_ptr().swap(*this); }
 
void
swap(__weak_ptr& __s) // never throws
{
std::swap(_M_ptr, __s._M_ptr);
_M_refcount._M_swap(__s._M_refcount);
}
 
private:
// Used by __enable_shared_from_this.
void
_M_assign(_Tp* __ptr, const __shared_count<_Lp>& __refcount)
{
_M_ptr = __ptr;
_M_refcount = __refcount;
}
 
template<typename _Tp1>
bool
_M_less(const __weak_ptr<_Tp1, _Lp>& __rhs) const
{ return _M_refcount < __rhs._M_refcount; }
 
template<typename _Tp1, _Lock_policy _Lp1> friend class __shared_ptr;
template<typename _Tp1, _Lock_policy _Lp1> friend class __weak_ptr;
friend class __enable_shared_from_this<_Tp, _Lp>;
friend class enable_shared_from_this<_Tp>;
 
// Friend injected into namespace and found by ADL.
template<typename _Tp1>
friend inline bool
operator<(const __weak_ptr& __lhs, const __weak_ptr<_Tp1, _Lp>& __rhs)
{ return __lhs._M_less(__rhs); }
 
_Tp* _M_ptr; // Contained pointer.
__weak_count<_Lp> _M_refcount; // Reference counter.
};
 
// 2.2.4.7 weak_ptr specialized algorithms.
template<typename _Tp, _Lock_policy _Lp>
inline void
swap(__weak_ptr<_Tp, _Lp>& __a, __weak_ptr<_Tp, _Lp>& __b)
{ __a.swap(__b); }
 
 
template<typename _Tp, _Lock_policy _Lp>
class __enable_shared_from_this
{
protected:
__enable_shared_from_this() { }
__enable_shared_from_this(const __enable_shared_from_this&) { }
__enable_shared_from_this&
operator=(const __enable_shared_from_this&)
{ return *this; }
 
~__enable_shared_from_this() { }
public:
__shared_ptr<_Tp, _Lp>
shared_from_this()
{ return __shared_ptr<_Tp, _Lp>(this->_M_weak_this); }
 
__shared_ptr<const _Tp, _Lp>
shared_from_this() const
{ return __shared_ptr<const _Tp, _Lp>(this->_M_weak_this); }
 
private:
template<typename _Tp1>
void
_M_weak_assign(_Tp1* __p, const __shared_count<_Lp>& __n) const
{ _M_weak_this._M_assign(__p, __n); }
 
template<typename _Tp1>
friend void
__enable_shared_from_this_helper(const __shared_count<_Lp>& __pn,
const __enable_shared_from_this* __pe,
const _Tp1* __px)
{
if (__pe != 0)
__pe->_M_weak_assign(const_cast<_Tp1*>(__px), __pn);
}
 
mutable __weak_ptr<_Tp, _Lp> _M_weak_this;
};
 
 
// The actual shared_ptr, with forwarding constructors and
// assignment operators.
template<typename _Tp>
class shared_ptr
: public __shared_ptr<_Tp>
{
public:
shared_ptr()
: __shared_ptr<_Tp>() { }
 
template<typename _Tp1>
explicit
shared_ptr(_Tp1* __p)
: __shared_ptr<_Tp>(__p) { }
 
template<typename _Tp1, typename _Deleter>
shared_ptr(_Tp1* __p, _Deleter __d)
: __shared_ptr<_Tp>(__p, __d) { }
 
template<typename _Tp1>
shared_ptr(const shared_ptr<_Tp1>& __r)
: __shared_ptr<_Tp>(__r) { }
 
template<typename _Tp1>
explicit
shared_ptr(const weak_ptr<_Tp1>& __r)
: __shared_ptr<_Tp>(__r) { }
 
#if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED
template<typename _Tp1>
explicit
shared_ptr(std::auto_ptr<_Tp1>& __r)
: __shared_ptr<_Tp>(__r) { }
#endif
 
template<typename _Tp1>
shared_ptr(const shared_ptr<_Tp1>& __r, __static_cast_tag)
: __shared_ptr<_Tp>(__r, __static_cast_tag()) { }
 
template<typename _Tp1>
shared_ptr(const shared_ptr<_Tp1>& __r, __const_cast_tag)
: __shared_ptr<_Tp>(__r, __const_cast_tag()) { }
 
template<typename _Tp1>
shared_ptr(const shared_ptr<_Tp1>& __r, __dynamic_cast_tag)
: __shared_ptr<_Tp>(__r, __dynamic_cast_tag()) { }
 
template<typename _Tp1>
shared_ptr&
operator=(const shared_ptr<_Tp1>& __r) // never throws
{
this->__shared_ptr<_Tp>::operator=(__r);
return *this;
}
 
#if (__cplusplus < 201103L) || _GLIBCXX_USE_DEPRECATED
template<typename _Tp1>
shared_ptr&
operator=(std::auto_ptr<_Tp1>& __r)
{
this->__shared_ptr<_Tp>::operator=(__r);
return *this;
}
#endif
};
 
// 2.2.3.8 shared_ptr specialized algorithms.
template<typename _Tp>
inline void
swap(__shared_ptr<_Tp>& __a, __shared_ptr<_Tp>& __b)
{ __a.swap(__b); }
 
template<typename _Tp, typename _Tp1>
inline shared_ptr<_Tp>
static_pointer_cast(const shared_ptr<_Tp1>& __r)
{ return shared_ptr<_Tp>(__r, __static_cast_tag()); }
 
template<typename _Tp, typename _Tp1>
inline shared_ptr<_Tp>
const_pointer_cast(const shared_ptr<_Tp1>& __r)
{ return shared_ptr<_Tp>(__r, __const_cast_tag()); }
 
template<typename _Tp, typename _Tp1>
inline shared_ptr<_Tp>
dynamic_pointer_cast(const shared_ptr<_Tp1>& __r)
{ return shared_ptr<_Tp>(__r, __dynamic_cast_tag()); }
 
 
// The actual weak_ptr, with forwarding constructors and
// assignment operators.
template<typename _Tp>
class weak_ptr
: public __weak_ptr<_Tp>
{
public:
weak_ptr()
: __weak_ptr<_Tp>() { }
template<typename _Tp1>
weak_ptr(const weak_ptr<_Tp1>& __r)
: __weak_ptr<_Tp>(__r) { }
 
template<typename _Tp1>
weak_ptr(const shared_ptr<_Tp1>& __r)
: __weak_ptr<_Tp>(__r) { }
 
template<typename _Tp1>
weak_ptr&
operator=(const weak_ptr<_Tp1>& __r) // never throws
{
this->__weak_ptr<_Tp>::operator=(__r);
return *this;
}
 
template<typename _Tp1>
weak_ptr&
operator=(const shared_ptr<_Tp1>& __r) // never throws
{
this->__weak_ptr<_Tp>::operator=(__r);
return *this;
}
 
shared_ptr<_Tp>
lock() const // never throws
{
#ifdef __GTHREADS
if (this->expired())
return shared_ptr<_Tp>();
 
__try
{
return shared_ptr<_Tp>(*this);
}
__catch(const bad_weak_ptr&)
{
return shared_ptr<_Tp>();
}
#else
return this->expired() ? shared_ptr<_Tp>()
: shared_ptr<_Tp>(*this);
#endif
}
};
 
template<typename _Tp>
class enable_shared_from_this
{
protected:
enable_shared_from_this() { }
enable_shared_from_this(const enable_shared_from_this&) { }
 
enable_shared_from_this&
operator=(const enable_shared_from_this&)
{ return *this; }
 
~enable_shared_from_this() { }
 
public:
shared_ptr<_Tp>
shared_from_this()
{ return shared_ptr<_Tp>(this->_M_weak_this); }
 
shared_ptr<const _Tp>
shared_from_this() const
{ return shared_ptr<const _Tp>(this->_M_weak_this); }
 
private:
template<typename _Tp1>
void
_M_weak_assign(_Tp1* __p, const __shared_count<>& __n) const
{ _M_weak_this._M_assign(__p, __n); }
 
template<typename _Tp1>
friend void
__enable_shared_from_this_helper(const __shared_count<>& __pn,
const enable_shared_from_this* __pe,
const _Tp1* __px)
{
if (__pe != 0)
__pe->_M_weak_assign(const_cast<_Tp1*>(__px), __pn);
}
 
mutable weak_ptr<_Tp> _M_weak_this;
};
 
_GLIBCXX_END_NAMESPACE_VERSION
}
}
 
#endif // _TR1_SHARED_PTR_H
/contrib/sdk/sources/libstdc++-v3/include/tr1/special_function_util.h
0,0 → 1,135
// Special functions -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/special_function_util.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/cmath}
*/
 
//
// ISO C++ 14882 TR1: 5.2 Special functions
//
 
// Written by Edward Smith-Rowland based on numerous mathematics books.
 
#ifndef _GLIBCXX_TR1_SPECIAL_FUNCTION_UTIL_H
#define _GLIBCXX_TR1_SPECIAL_FUNCTION_UTIL_H 1
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
namespace __detail
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/// A class to encapsulate type dependent floating point
/// constants. Not everything will be able to be expressed as
/// type logic.
template<typename _Tp>
struct __floating_point_constant
{
static const _Tp __value;
};
 
 
/// A structure for numeric constants.
template<typename _Tp>
struct __numeric_constants
{
/// Constant @f$ \pi @f$.
static _Tp __pi() throw()
{ return static_cast<_Tp>(3.1415926535897932384626433832795029L); }
/// Constant @f$ \pi / 2 @f$.
static _Tp __pi_2() throw()
{ return static_cast<_Tp>(1.5707963267948966192313216916397514L); }
/// Constant @f$ \pi / 3 @f$.
static _Tp __pi_3() throw()
{ return static_cast<_Tp>(1.0471975511965977461542144610931676L); }
/// Constant @f$ \pi / 4 @f$.
static _Tp __pi_4() throw()
{ return static_cast<_Tp>(0.7853981633974483096156608458198757L); }
/// Constant @f$ 1 / \pi @f$.
static _Tp __1_pi() throw()
{ return static_cast<_Tp>(0.3183098861837906715377675267450287L); }
/// Constant @f$ 2 / \sqrt(\pi) @f$.
static _Tp __2_sqrtpi() throw()
{ return static_cast<_Tp>(1.1283791670955125738961589031215452L); }
/// Constant @f$ \sqrt(2) @f$.
static _Tp __sqrt2() throw()
{ return static_cast<_Tp>(1.4142135623730950488016887242096981L); }
/// Constant @f$ \sqrt(3) @f$.
static _Tp __sqrt3() throw()
{ return static_cast<_Tp>(1.7320508075688772935274463415058723L); }
/// Constant @f$ \sqrt(\pi/2) @f$.
static _Tp __sqrtpio2() throw()
{ return static_cast<_Tp>(1.2533141373155002512078826424055226L); }
/// Constant @f$ 1 / sqrt(2) @f$.
static _Tp __sqrt1_2() throw()
{ return static_cast<_Tp>(0.7071067811865475244008443621048490L); }
/// Constant @f$ \log(\pi) @f$.
static _Tp __lnpi() throw()
{ return static_cast<_Tp>(1.1447298858494001741434273513530587L); }
/// Constant Euler's constant @f$ \gamma_E @f$.
static _Tp __gamma_e() throw()
{ return static_cast<_Tp>(0.5772156649015328606065120900824024L); }
/// Constant Euler-Mascheroni @f$ e @f$
static _Tp __euler() throw()
{ return static_cast<_Tp>(2.7182818284590452353602874713526625L); }
};
 
 
#if _GLIBCXX_USE_C99_MATH && !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC
 
/// This is a wrapper for the isnan function. Otherwise, for NaN,
/// all comparisons result in false. If/when we build a std::isnan
/// out of intrinsics, this will disappear completely in favor of
/// std::isnan.
template<typename _Tp>
inline bool __isnan(_Tp __x)
{ return std::isnan(__x); }
 
#else
 
template<typename _Tp>
inline bool __isnan(const _Tp __x)
{ return __builtin_isnan(__x); }
 
template<>
inline bool __isnan<float>(float __x)
{ return __builtin_isnanf(__x); }
 
template<>
inline bool __isnan<long double>(long double __x)
{ return __builtin_isnanl(__x); }
 
#endif
 
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace __detail
}
}
 
#endif // _GLIBCXX_TR1_SPECIAL_FUNCTION_UTIL_H
 
/contrib/sdk/sources/libstdc++-v3/include/tr1/stdarg.h
0,0 → 1,34
// TR1 stdarg.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/stdarg.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _TR1_STDARG_H
#define _TR1_STDARG_H 1
 
#include <tr1/cstdarg>
 
#endif
/contrib/sdk/sources/libstdc++-v3/include/tr1/stdbool.h
0,0 → 1,34
// TR1 stdbool.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/stdbool.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _TR1_STDBOOL_H
#define _TR1_STDBOOL_H 1
 
#include <tr1/cstdbool>
 
#endif
/contrib/sdk/sources/libstdc++-v3/include/tr1/stdint.h
0,0 → 1,34
// TR1 stdint.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/stdint.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _TR1_STDINT_H
#define _TR1_STDINT_H 1
 
#include <tr1/cstdint>
 
#endif
/contrib/sdk/sources/libstdc++-v3/include/tr1/stdio.h
0,0 → 1,34
// TR1 stdio.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/stdio.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _TR1_STDIO_H
#define _TR1_STDIO_H 1
 
#include <tr1/cstdio>
 
#endif
/contrib/sdk/sources/libstdc++-v3/include/tr1/stdlib.h
0,0 → 1,52
// TR1 stdlib.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/stdlib.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_STDLIB_H
#define _GLIBCXX_TR1_STDLIB_H 1
 
#include <tr1/cstdlib>
 
#if _GLIBCXX_HOSTED
 
#if _GLIBCXX_USE_C99
 
using std::tr1::atoll;
using std::tr1::strtoll;
using std::tr1::strtoull;
 
using std::tr1::abs;
#if !_GLIBCXX_USE_C99_LONG_LONG_DYNAMIC
using std::tr1::div;
#endif
 
#endif
 
#endif
 
#endif // _GLIBCXX_TR1_STDLIB_H
 
/contrib/sdk/sources/libstdc++-v3/include/tr1/tgmath.h
0,0 → 1,34
// TR1 tgmath.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/tgmath.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_TGMATH_H
#define _GLIBCXX_TR1_TGMATH_H 1
 
#include <tr1/ctgmath>
 
#endif // _GLIBCXX_TR1_TGMATH_H
/contrib/sdk/sources/libstdc++-v3/include/tr1/tuple
0,0 → 1,426
// class template tuple -*- C++ -*-
 
// Copyright (C) 2004-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/tuple
* This is a TR1 C++ Library header.
*/
 
// Chris Jefferson <chris@bubblescope.net>
// Variadic Templates support by Douglas Gregor <doug.gregor@gmail.com>
 
#ifndef _GLIBCXX_TR1_TUPLE
#define _GLIBCXX_TR1_TUPLE 1
 
#pragma GCC system_header
 
#include <utility>
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
// Adds a const reference to a non-reference type.
template<typename _Tp>
struct __add_c_ref
{ typedef const _Tp& type; };
 
template<typename _Tp>
struct __add_c_ref<_Tp&>
{ typedef _Tp& type; };
 
// Adds a reference to a non-reference type.
template<typename _Tp>
struct __add_ref
{ typedef _Tp& type; };
 
template<typename _Tp>
struct __add_ref<_Tp&>
{ typedef _Tp& type; };
 
/**
* Contains the actual implementation of the @c tuple template, stored
* as a recursive inheritance hierarchy from the first element (most
* derived class) to the last (least derived class). The @c Idx
* parameter gives the 0-based index of the element stored at this
* point in the hierarchy; we use it to implement a constant-time
* get() operation.
*/
template<int _Idx, typename... _Elements>
struct _Tuple_impl;
 
/**
* Zero-element tuple implementation. This is the basis case for the
* inheritance recursion.
*/
template<int _Idx>
struct _Tuple_impl<_Idx> { };
 
/**
* Recursive tuple implementation. Here we store the @c Head element
* and derive from a @c Tuple_impl containing the remaining elements
* (which contains the @c Tail).
*/
template<int _Idx, typename _Head, typename... _Tail>
struct _Tuple_impl<_Idx, _Head, _Tail...>
: public _Tuple_impl<_Idx + 1, _Tail...>
{
typedef _Tuple_impl<_Idx + 1, _Tail...> _Inherited;
_Head _M_head;
_Inherited& _M_tail() { return *this; }
const _Inherited& _M_tail() const { return *this; }
_Tuple_impl() : _Inherited(), _M_head() { }
explicit
_Tuple_impl(typename __add_c_ref<_Head>::type __head,
typename __add_c_ref<_Tail>::type... __tail)
: _Inherited(__tail...), _M_head(__head) { }
 
template<typename... _UElements>
_Tuple_impl(const _Tuple_impl<_Idx, _UElements...>& __in)
: _Inherited(__in._M_tail()), _M_head(__in._M_head) { }
 
_Tuple_impl(const _Tuple_impl& __in)
: _Inherited(__in._M_tail()), _M_head(__in._M_head) { }
template<typename... _UElements>
_Tuple_impl&
operator=(const _Tuple_impl<_Idx, _UElements...>& __in)
{
_M_head = __in._M_head;
_M_tail() = __in._M_tail();
return *this;
}
 
_Tuple_impl&
operator=(const _Tuple_impl& __in)
{
_M_head = __in._M_head;
_M_tail() = __in._M_tail();
return *this;
}
};
 
template<typename... _Elements>
class tuple : public _Tuple_impl<0, _Elements...>
{
typedef _Tuple_impl<0, _Elements...> _Inherited;
 
public:
tuple() : _Inherited() { }
 
explicit
tuple(typename __add_c_ref<_Elements>::type... __elements)
: _Inherited(__elements...) { }
 
template<typename... _UElements>
tuple(const tuple<_UElements...>& __in)
: _Inherited(__in) { }
 
tuple(const tuple& __in)
: _Inherited(__in) { }
 
template<typename... _UElements>
tuple&
operator=(const tuple<_UElements...>& __in)
{
static_cast<_Inherited&>(*this) = __in;
return *this;
}
 
tuple&
operator=(const tuple& __in)
{
static_cast<_Inherited&>(*this) = __in;
return *this;
}
};
 
template<> class tuple<> { };
 
// 2-element tuple, with construction and assignment from a pair.
template<typename _T1, typename _T2>
class tuple<_T1, _T2> : public _Tuple_impl<0, _T1, _T2>
{
typedef _Tuple_impl<0, _T1, _T2> _Inherited;
 
public:
tuple() : _Inherited() { }
 
explicit
tuple(typename __add_c_ref<_T1>::type __a1,
typename __add_c_ref<_T2>::type __a2)
: _Inherited(__a1, __a2) { }
 
template<typename _U1, typename _U2>
tuple(const tuple<_U1, _U2>& __in)
: _Inherited(__in) { }
 
tuple(const tuple& __in)
: _Inherited(__in) { }
 
template<typename _U1, typename _U2>
tuple(const pair<_U1, _U2>& __in)
: _Inherited(_Tuple_impl<0,
typename __add_c_ref<_U1>::type,
typename __add_c_ref<_U2>::type>(__in.first,
__in.second))
{ }
template<typename _U1, typename _U2>
tuple&
operator=(const tuple<_U1, _U2>& __in)
{
static_cast<_Inherited&>(*this) = __in;
return *this;
}
 
tuple&
operator=(const tuple& __in)
{
static_cast<_Inherited&>(*this) = __in;
return *this;
}
 
template<typename _U1, typename _U2>
tuple&
operator=(const pair<_U1, _U2>& __in)
{
this->_M_head = __in.first;
this->_M_tail()._M_head = __in.second;
return *this;
}
};
 
/// Gives the type of the ith element of a given tuple type.
template<int __i, typename _Tp>
struct tuple_element;
 
/**
* Recursive case for tuple_element: strip off the first element in
* the tuple and retrieve the (i-1)th element of the remaining tuple.
*/
template<int __i, typename _Head, typename... _Tail>
struct tuple_element<__i, tuple<_Head, _Tail...> >
: tuple_element<__i - 1, tuple<_Tail...> > { };
 
/**
* Basis case for tuple_element: The first element is the one we're seeking.
*/
template<typename _Head, typename... _Tail>
struct tuple_element<0, tuple<_Head, _Tail...> >
{
typedef _Head type;
};
 
/// Finds the size of a given tuple type.
template<typename _Tp>
struct tuple_size;
 
/// class tuple_size
template<typename... _Elements>
struct tuple_size<tuple<_Elements...> >
{
static const int value = sizeof...(_Elements);
};
 
template<typename... _Elements>
const int tuple_size<tuple<_Elements...> >::value;
 
template<int __i, typename _Head, typename... _Tail>
inline typename __add_ref<_Head>::type
__get_helper(_Tuple_impl<__i, _Head, _Tail...>& __t)
{
return __t._M_head;
}
 
template<int __i, typename _Head, typename... _Tail>
inline typename __add_c_ref<_Head>::type
__get_helper(const _Tuple_impl<__i, _Head, _Tail...>& __t)
{
return __t._M_head;
}
 
// Return a reference (const reference) to the ith element of a tuple.
// Any const or non-const ref elements are returned with their original type.
template<int __i, typename... _Elements>
inline typename __add_ref<
typename tuple_element<__i, tuple<_Elements...> >::type
>::type
get(tuple<_Elements...>& __t)
{
return __get_helper<__i>(__t);
}
 
template<int __i, typename... _Elements>
inline typename __add_c_ref<
typename tuple_element<__i, tuple<_Elements...> >::type
>::type
get(const tuple<_Elements...>& __t)
{
return __get_helper<__i>(__t);
}
 
// This class helps construct the various comparison operations on tuples
template<int __check_equal_size, int __i, int __j,
typename _Tp, typename _Up>
struct __tuple_compare;
 
template<int __i, int __j, typename _Tp, typename _Up>
struct __tuple_compare<0, __i, __j, _Tp, _Up>
{
static bool __eq(const _Tp& __t, const _Up& __u)
{
return (get<__i>(__t) == get<__i>(__u) &&
__tuple_compare<0, __i+1, __j, _Tp, _Up>::__eq(__t, __u));
}
static bool __less(const _Tp& __t, const _Up& __u)
{
return ((get<__i>(__t) < get<__i>(__u))
|| !(get<__i>(__u) < get<__i>(__t)) &&
__tuple_compare<0, __i+1, __j, _Tp, _Up>::__less(__t, __u));
}
};
 
template<int __i, typename _Tp, typename _Up>
struct __tuple_compare<0, __i, __i, _Tp, _Up>
{
static bool __eq(const _Tp&, const _Up&)
{ return true; }
static bool __less(const _Tp&, const _Up&)
{ return false; }
};
 
template<typename... _TElements, typename... _UElements>
bool
operator==(const tuple<_TElements...>& __t,
const tuple<_UElements...>& __u)
{
typedef tuple<_TElements...> _Tp;
typedef tuple<_UElements...> _Up;
return (__tuple_compare<tuple_size<_Tp>::value - tuple_size<_Up>::value,
0, tuple_size<_Tp>::value, _Tp, _Up>::__eq(__t, __u));
}
 
template<typename... _TElements, typename... _UElements>
bool
operator<(const tuple<_TElements...>& __t,
const tuple<_UElements...>& __u)
{
typedef tuple<_TElements...> _Tp;
typedef tuple<_UElements...> _Up;
return (__tuple_compare<tuple_size<_Tp>::value - tuple_size<_Up>::value,
0, tuple_size<_Tp>::value, _Tp, _Up>::__less(__t, __u));
}
 
template<typename... _TElements, typename... _UElements>
inline bool
operator!=(const tuple<_TElements...>& __t,
const tuple<_UElements...>& __u)
{ return !(__t == __u); }
 
template<typename... _TElements, typename... _UElements>
inline bool
operator>(const tuple<_TElements...>& __t,
const tuple<_UElements...>& __u)
{ return __u < __t; }
 
template<typename... _TElements, typename... _UElements>
inline bool
operator<=(const tuple<_TElements...>& __t,
const tuple<_UElements...>& __u)
{ return !(__u < __t); }
 
template<typename... _TElements, typename... _UElements>
inline bool
operator>=(const tuple<_TElements...>& __t,
const tuple<_UElements...>& __u)
{ return !(__t < __u); }
 
template<typename _Tp>
class reference_wrapper;
 
// Helper which adds a reference to a type when given a reference_wrapper
template<typename _Tp>
struct __strip_reference_wrapper
{
typedef _Tp __type;
};
 
template<typename _Tp>
struct __strip_reference_wrapper<reference_wrapper<_Tp> >
{
typedef _Tp& __type;
};
 
template<typename _Tp>
struct __strip_reference_wrapper<const reference_wrapper<_Tp> >
{
typedef _Tp& __type;
};
 
template<typename... _Elements>
inline tuple<typename __strip_reference_wrapper<_Elements>::__type...>
make_tuple(_Elements... __args)
{
typedef tuple<typename __strip_reference_wrapper<_Elements>::__type...>
__result_type;
return __result_type(__args...);
}
 
template<typename... _Elements>
inline tuple<_Elements&...>
tie(_Elements&... __args)
{
return tuple<_Elements&...>(__args...);
}
 
// A class (and instance) which can be used in 'tie' when an element
// of a tuple is not required
struct _Swallow_assign
{
template<class _Tp>
_Swallow_assign&
operator=(const _Tp&)
{ return *this; }
};
 
// TODO: Put this in some kind of shared file.
namespace
{
_Swallow_assign ignore;
}; // anonymous namespace
 
_GLIBCXX_END_NAMESPACE_VERSION
}
}
 
#endif // _GLIBCXX_TR1_TUPLE
/contrib/sdk/sources/libstdc++-v3/include/tr1/type_traits
0,0 → 1,687
// TR1 type_traits -*- C++ -*-
 
// Copyright (C) 2004-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/type_traits
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_TYPE_TRAITS
#define _GLIBCXX_TR1_TYPE_TRAITS 1
 
#pragma GCC system_header
 
#include <bits/c++config.h>
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
/**
* @addtogroup metaprogramming
* @{
*/
 
struct __sfinae_types
{
typedef char __one;
typedef struct { char __arr[2]; } __two;
};
 
#define _DEFINE_SPEC_0_HELPER \
template<>
 
#define _DEFINE_SPEC_1_HELPER \
template<typename _Tp>
 
#define _DEFINE_SPEC_2_HELPER \
template<typename _Tp, typename _Cp>
 
#define _DEFINE_SPEC(_Order, _Trait, _Type, _Value) \
_DEFINE_SPEC_##_Order##_HELPER \
struct _Trait<_Type> \
: public integral_constant<bool, _Value> { };
 
// helper classes [4.3].
 
/// integral_constant
template<typename _Tp, _Tp __v>
struct integral_constant
{
static const _Tp value = __v;
typedef _Tp value_type;
typedef integral_constant<_Tp, __v> type;
};
/// typedef for true_type
typedef integral_constant<bool, true> true_type;
 
/// typedef for false_type
typedef integral_constant<bool, false> false_type;
 
template<typename _Tp, _Tp __v>
const _Tp integral_constant<_Tp, __v>::value;
 
/// remove_cv
template<typename>
struct remove_cv;
 
template<typename>
struct __is_void_helper
: public false_type { };
_DEFINE_SPEC(0, __is_void_helper, void, true)
 
// primary type categories [4.5.1].
 
/// is_void
template<typename _Tp>
struct is_void
: public integral_constant<bool, (__is_void_helper<typename
remove_cv<_Tp>::type>::value)>
{ };
 
template<typename>
struct __is_integral_helper
: public false_type { };
_DEFINE_SPEC(0, __is_integral_helper, bool, true)
_DEFINE_SPEC(0, __is_integral_helper, char, true)
_DEFINE_SPEC(0, __is_integral_helper, signed char, true)
_DEFINE_SPEC(0, __is_integral_helper, unsigned char, true)
#ifdef _GLIBCXX_USE_WCHAR_T
_DEFINE_SPEC(0, __is_integral_helper, wchar_t, true)
#endif
_DEFINE_SPEC(0, __is_integral_helper, short, true)
_DEFINE_SPEC(0, __is_integral_helper, unsigned short, true)
_DEFINE_SPEC(0, __is_integral_helper, int, true)
_DEFINE_SPEC(0, __is_integral_helper, unsigned int, true)
_DEFINE_SPEC(0, __is_integral_helper, long, true)
_DEFINE_SPEC(0, __is_integral_helper, unsigned long, true)
_DEFINE_SPEC(0, __is_integral_helper, long long, true)
_DEFINE_SPEC(0, __is_integral_helper, unsigned long long, true)
 
/// is_integral
template<typename _Tp>
struct is_integral
: public integral_constant<bool, (__is_integral_helper<typename
remove_cv<_Tp>::type>::value)>
{ };
 
template<typename>
struct __is_floating_point_helper
: public false_type { };
_DEFINE_SPEC(0, __is_floating_point_helper, float, true)
_DEFINE_SPEC(0, __is_floating_point_helper, double, true)
_DEFINE_SPEC(0, __is_floating_point_helper, long double, true)
 
/// is_floating_point
template<typename _Tp>
struct is_floating_point
: public integral_constant<bool, (__is_floating_point_helper<typename
remove_cv<_Tp>::type>::value)>
{ };
 
/// is_array
template<typename>
struct is_array
: public false_type { };
 
template<typename _Tp, std::size_t _Size>
struct is_array<_Tp[_Size]>
: public true_type { };
 
template<typename _Tp>
struct is_array<_Tp[]>
: public true_type { };
 
template<typename>
struct __is_pointer_helper
: public false_type { };
_DEFINE_SPEC(1, __is_pointer_helper, _Tp*, true)
 
/// is_pointer
template<typename _Tp>
struct is_pointer
: public integral_constant<bool, (__is_pointer_helper<typename
remove_cv<_Tp>::type>::value)>
{ };
 
/// is_reference
template<typename _Tp>
struct is_reference;
 
/// is_function
template<typename _Tp>
struct is_function;
 
template<typename>
struct __is_member_object_pointer_helper
: public false_type { };
_DEFINE_SPEC(2, __is_member_object_pointer_helper, _Tp _Cp::*,
!is_function<_Tp>::value)
 
/// is_member_object_pointer
template<typename _Tp>
struct is_member_object_pointer
: public integral_constant<bool, (__is_member_object_pointer_helper<
typename remove_cv<_Tp>::type>::value)>
{ };
 
template<typename>
struct __is_member_function_pointer_helper
: public false_type { };
_DEFINE_SPEC(2, __is_member_function_pointer_helper, _Tp _Cp::*,
is_function<_Tp>::value)
 
/// is_member_function_pointer
template<typename _Tp>
struct is_member_function_pointer
: public integral_constant<bool, (__is_member_function_pointer_helper<
typename remove_cv<_Tp>::type>::value)>
{ };
 
/// is_enum
template<typename _Tp>
struct is_enum
: public integral_constant<bool, __is_enum(_Tp)>
{ };
 
/// is_union
template<typename _Tp>
struct is_union
: public integral_constant<bool, __is_union(_Tp)>
{ };
 
/// is_class
template<typename _Tp>
struct is_class
: public integral_constant<bool, __is_class(_Tp)>
{ };
 
/// is_function
template<typename>
struct is_function
: public false_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes...)>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes......)>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes...) const>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes......) const>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes...) volatile>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes......) volatile>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes...) const volatile>
: public true_type { };
template<typename _Res, typename... _ArgTypes>
struct is_function<_Res(_ArgTypes......) const volatile>
: public true_type { };
 
// composite type traits [4.5.2].
/// is_arithmetic
template<typename _Tp>
struct is_arithmetic
: public integral_constant<bool, (is_integral<_Tp>::value
|| is_floating_point<_Tp>::value)>
{ };
 
/// is_fundamental
template<typename _Tp>
struct is_fundamental
: public integral_constant<bool, (is_arithmetic<_Tp>::value
|| is_void<_Tp>::value)>
{ };
 
/// is_object
template<typename _Tp>
struct is_object
: public integral_constant<bool, !(is_function<_Tp>::value
|| is_reference<_Tp>::value
|| is_void<_Tp>::value)>
{ };
 
/// is_member_pointer
template<typename _Tp>
struct is_member_pointer;
 
/// is_scalar
template<typename _Tp>
struct is_scalar
: public integral_constant<bool, (is_arithmetic<_Tp>::value
|| is_enum<_Tp>::value
|| is_pointer<_Tp>::value
|| is_member_pointer<_Tp>::value)>
{ };
 
/// is_compound
template<typename _Tp>
struct is_compound
: public integral_constant<bool, !is_fundamental<_Tp>::value> { };
 
/// is_member_pointer
template<typename _Tp>
struct __is_member_pointer_helper
: public false_type { };
_DEFINE_SPEC(2, __is_member_pointer_helper, _Tp _Cp::*, true)
 
template<typename _Tp>
struct is_member_pointer
: public integral_constant<bool, (__is_member_pointer_helper<
typename remove_cv<_Tp>::type>::value)>
{ };
 
// type properties [4.5.3].
/// is_const
template<typename>
struct is_const
: public false_type { };
 
template<typename _Tp>
struct is_const<_Tp const>
: public true_type { };
/// is_volatile
template<typename>
struct is_volatile
: public false_type { };
 
template<typename _Tp>
struct is_volatile<_Tp volatile>
: public true_type { };
 
/// is_empty
template<typename _Tp>
struct is_empty
: public integral_constant<bool, __is_empty(_Tp)>
{ };
 
/// is_polymorphic
template<typename _Tp>
struct is_polymorphic
: public integral_constant<bool, __is_polymorphic(_Tp)>
{ };
 
/// is_abstract
template<typename _Tp>
struct is_abstract
: public integral_constant<bool, __is_abstract(_Tp)>
{ };
 
/// has_virtual_destructor
template<typename _Tp>
struct has_virtual_destructor
: public integral_constant<bool, __has_virtual_destructor(_Tp)>
{ };
 
/// alignment_of
template<typename _Tp>
struct alignment_of
: public integral_constant<std::size_t, __alignof__(_Tp)> { };
/// rank
template<typename>
struct rank
: public integral_constant<std::size_t, 0> { };
template<typename _Tp, std::size_t _Size>
struct rank<_Tp[_Size]>
: public integral_constant<std::size_t, 1 + rank<_Tp>::value> { };
 
template<typename _Tp>
struct rank<_Tp[]>
: public integral_constant<std::size_t, 1 + rank<_Tp>::value> { };
 
/// extent
template<typename, unsigned _Uint = 0>
struct extent
: public integral_constant<std::size_t, 0> { };
template<typename _Tp, unsigned _Uint, std::size_t _Size>
struct extent<_Tp[_Size], _Uint>
: public integral_constant<std::size_t,
_Uint == 0 ? _Size : extent<_Tp,
_Uint - 1>::value>
{ };
 
template<typename _Tp, unsigned _Uint>
struct extent<_Tp[], _Uint>
: public integral_constant<std::size_t,
_Uint == 0 ? 0 : extent<_Tp,
_Uint - 1>::value>
{ };
 
// relationships between types [4.6].
 
/// is_same
template<typename, typename>
struct is_same
: public false_type { };
 
template<typename _Tp>
struct is_same<_Tp, _Tp>
: public true_type { };
 
// const-volatile modifications [4.7.1].
 
/// remove_const
template<typename _Tp>
struct remove_const
{ typedef _Tp type; };
 
template<typename _Tp>
struct remove_const<_Tp const>
{ typedef _Tp type; };
/// remove_volatile
template<typename _Tp>
struct remove_volatile
{ typedef _Tp type; };
 
template<typename _Tp>
struct remove_volatile<_Tp volatile>
{ typedef _Tp type; };
/// remove_cv
template<typename _Tp>
struct remove_cv
{
typedef typename
remove_const<typename remove_volatile<_Tp>::type>::type type;
};
/// add_const
template<typename _Tp>
struct add_const
{ typedef _Tp const type; };
/// add_volatile
template<typename _Tp>
struct add_volatile
{ typedef _Tp volatile type; };
/// add_cv
template<typename _Tp>
struct add_cv
{
typedef typename
add_const<typename add_volatile<_Tp>::type>::type type;
};
 
// array modifications [4.7.3].
 
/// remove_extent
template<typename _Tp>
struct remove_extent
{ typedef _Tp type; };
 
template<typename _Tp, std::size_t _Size>
struct remove_extent<_Tp[_Size]>
{ typedef _Tp type; };
 
template<typename _Tp>
struct remove_extent<_Tp[]>
{ typedef _Tp type; };
 
/// remove_all_extents
template<typename _Tp>
struct remove_all_extents
{ typedef _Tp type; };
 
template<typename _Tp, std::size_t _Size>
struct remove_all_extents<_Tp[_Size]>
{ typedef typename remove_all_extents<_Tp>::type type; };
 
template<typename _Tp>
struct remove_all_extents<_Tp[]>
{ typedef typename remove_all_extents<_Tp>::type type; };
 
// pointer modifications [4.7.4].
 
template<typename _Tp, typename>
struct __remove_pointer_helper
{ typedef _Tp type; };
 
template<typename _Tp, typename _Up>
struct __remove_pointer_helper<_Tp, _Up*>
{ typedef _Up type; };
 
/// remove_pointer
template<typename _Tp>
struct remove_pointer
: public __remove_pointer_helper<_Tp, typename remove_cv<_Tp>::type>
{ };
 
template<typename>
struct remove_reference;
 
/// add_pointer
template<typename _Tp>
struct add_pointer
{ typedef typename remove_reference<_Tp>::type* type; };
 
template<typename>
struct is_reference
: public false_type { };
 
template<typename _Tp>
struct is_reference<_Tp&>
: public true_type { };
 
template<typename _Tp>
struct is_pod
: public integral_constant<bool, __is_pod(_Tp) || is_void<_Tp>::value>
{ };
 
template<typename _Tp>
struct has_trivial_constructor
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
 
template<typename _Tp>
struct has_trivial_copy
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
 
template<typename _Tp>
struct has_trivial_assign
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
 
template<typename _Tp>
struct has_trivial_destructor
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
 
template<typename _Tp>
struct has_nothrow_constructor
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
 
template<typename _Tp>
struct has_nothrow_copy
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
 
template<typename _Tp>
struct has_nothrow_assign
: public integral_constant<bool, is_pod<_Tp>::value>
{ };
 
template<typename>
struct __is_signed_helper
: public false_type { };
_DEFINE_SPEC(0, __is_signed_helper, signed char, true)
_DEFINE_SPEC(0, __is_signed_helper, short, true)
_DEFINE_SPEC(0, __is_signed_helper, int, true)
_DEFINE_SPEC(0, __is_signed_helper, long, true)
_DEFINE_SPEC(0, __is_signed_helper, long long, true)
 
template<typename _Tp>
struct is_signed
: public integral_constant<bool, (__is_signed_helper<typename
remove_cv<_Tp>::type>::value)>
{ };
 
template<typename>
struct __is_unsigned_helper
: public false_type { };
_DEFINE_SPEC(0, __is_unsigned_helper, unsigned char, true)
_DEFINE_SPEC(0, __is_unsigned_helper, unsigned short, true)
_DEFINE_SPEC(0, __is_unsigned_helper, unsigned int, true)
_DEFINE_SPEC(0, __is_unsigned_helper, unsigned long, true)
_DEFINE_SPEC(0, __is_unsigned_helper, unsigned long long, true)
 
template<typename _Tp>
struct is_unsigned
: public integral_constant<bool, (__is_unsigned_helper<typename
remove_cv<_Tp>::type>::value)>
{ };
 
template<typename _Base, typename _Derived>
struct __is_base_of_helper
{
typedef typename remove_cv<_Base>::type _NoCv_Base;
typedef typename remove_cv<_Derived>::type _NoCv_Derived;
static const bool __value = (is_same<_Base, _Derived>::value
|| (__is_base_of(_Base, _Derived)
&& !is_same<_NoCv_Base,
_NoCv_Derived>::value));
};
template<typename _Base, typename _Derived>
struct is_base_of
: public integral_constant<bool,
__is_base_of_helper<_Base, _Derived>::__value>
{ };
 
template<typename _From, typename _To>
struct __is_convertible_simple
: public __sfinae_types
{
private:
static __one __test(_To);
static __two __test(...);
static _From __makeFrom();
public:
static const bool __value = sizeof(__test(__makeFrom())) == 1;
};
 
template<typename _Tp>
struct add_reference;
 
template<typename _Tp>
struct __is_int_or_cref
{
typedef typename remove_reference<_Tp>::type __rr_Tp;
static const bool __value = (is_integral<_Tp>::value
|| (is_integral<__rr_Tp>::value
&& is_const<__rr_Tp>::value
&& !is_volatile<__rr_Tp>::value));
};
 
template<typename _From, typename _To,
bool = (is_void<_From>::value || is_void<_To>::value
|| is_function<_To>::value || is_array<_To>::value
// This special case is here only to avoid warnings.
|| (is_floating_point<typename
remove_reference<_From>::type>::value
&& __is_int_or_cref<_To>::__value))>
struct __is_convertible_helper
{
// "An imaginary lvalue of type From...".
static const bool __value = (__is_convertible_simple<typename
add_reference<_From>::type, _To>::__value);
};
 
template<typename _From, typename _To>
struct __is_convertible_helper<_From, _To, true>
{ static const bool __value = (is_void<_To>::value
|| (__is_int_or_cref<_To>::__value
&& !is_void<_From>::value)); };
 
template<typename _From, typename _To>
struct is_convertible
: public integral_constant<bool,
__is_convertible_helper<_From, _To>::__value>
{ };
 
// reference modifications [4.7.2].
template<typename _Tp>
struct remove_reference
{ typedef _Tp type; };
 
template<typename _Tp>
struct remove_reference<_Tp&>
{ typedef _Tp type; };
 
// NB: Careful with reference to void.
template<typename _Tp, bool = (is_void<_Tp>::value
|| is_reference<_Tp>::value)>
struct __add_reference_helper
{ typedef _Tp& type; };
 
template<typename _Tp>
struct __add_reference_helper<_Tp, true>
{ typedef _Tp type; };
 
template<typename _Tp>
struct add_reference
: public __add_reference_helper<_Tp>
{ };
 
// other transformations [4.8].
template<std::size_t _Len, std::size_t _Align>
struct aligned_storage
{
union type
{
unsigned char __data[_Len];
struct __attribute__((__aligned__((_Align)))) { } __align;
};
};
 
#undef _DEFINE_SPEC_0_HELPER
#undef _DEFINE_SPEC_1_HELPER
#undef _DEFINE_SPEC_2_HELPER
#undef _DEFINE_SPEC
 
/// @} group metaprogramming
 
_GLIBCXX_END_NAMESPACE_VERSION
}
}
 
#endif // _GLIBCXX_TR1_TYPE_TRAITS
/contrib/sdk/sources/libstdc++-v3/include/tr1/unordered_map
0,0 → 1,44
// TR1 unordered_map -*- C++ -*-
 
// Copyright (C) 2005-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/unordered_map
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_UNORDERED_MAP
#define _GLIBCXX_TR1_UNORDERED_MAP 1
 
#pragma GCC system_header
 
#include <utility>
#include <bits/stl_algobase.h>
#include <bits/allocator.h>
#include <bits/stl_function.h> // equal_to, _Identity, _Select1st
#include <bits/stringfwd.h>
#include <tr1/type_traits>
#include <tr1/functional_hash.h>
#include <tr1/hashtable.h>
#include <tr1/unordered_map.h>
 
#endif // _GLIBCXX_TR1_UNORDERED_MAP
/contrib/sdk/sources/libstdc++-v3/include/tr1/unordered_map.h
0,0 → 1,278
// TR1 unordered_map implementation -*- C++ -*-
 
// Copyright (C) 2010-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/unordered_map.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/unordered_map}
*/
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
// NB: When we get typedef templates these class definitions
// will be unnecessary.
template<class _Key, class _Tp,
class _Hash = hash<_Key>,
class _Pred = std::equal_to<_Key>,
class _Alloc = std::allocator<std::pair<const _Key, _Tp> >,
bool __cache_hash_code = false>
class __unordered_map
: public _Hashtable<_Key, std::pair<const _Key, _Tp>, _Alloc,
std::_Select1st<std::pair<const _Key, _Tp> >, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, false, true>
{
typedef _Hashtable<_Key, std::pair<const _Key, _Tp>, _Alloc,
std::_Select1st<std::pair<const _Key, _Tp> >, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, false, true>
_Base;
 
public:
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
 
explicit
__unordered_map(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(),
__eql, std::_Select1st<std::pair<const _Key, _Tp> >(), __a)
{ }
 
template<typename _InputIterator>
__unordered_map(_InputIterator __f, _InputIterator __l,
size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(),
__eql, std::_Select1st<std::pair<const _Key, _Tp> >(), __a)
{ }
};
 
template<class _Key, class _Tp,
class _Hash = hash<_Key>,
class _Pred = std::equal_to<_Key>,
class _Alloc = std::allocator<std::pair<const _Key, _Tp> >,
bool __cache_hash_code = false>
class __unordered_multimap
: public _Hashtable<_Key, std::pair<const _Key, _Tp>,
_Alloc,
std::_Select1st<std::pair<const _Key, _Tp> >, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, false, false>
{
typedef _Hashtable<_Key, std::pair<const _Key, _Tp>,
_Alloc,
std::_Select1st<std::pair<const _Key, _Tp> >, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, false, false>
_Base;
 
public:
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
 
explicit
__unordered_multimap(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(),
__eql, std::_Select1st<std::pair<const _Key, _Tp> >(), __a)
{ }
 
 
template<typename _InputIterator>
__unordered_multimap(_InputIterator __f, _InputIterator __l,
typename _Base::size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(),
__eql, std::_Select1st<std::pair<const _Key, _Tp> >(), __a)
{ }
};
 
template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc,
bool __cache_hash_code>
inline void
swap(__unordered_map<_Key, _Tp, _Hash, _Pred,
_Alloc, __cache_hash_code>& __x,
__unordered_map<_Key, _Tp, _Hash, _Pred,
_Alloc, __cache_hash_code>& __y)
{ __x.swap(__y); }
 
template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc,
bool __cache_hash_code>
inline void
swap(__unordered_multimap<_Key, _Tp, _Hash, _Pred,
_Alloc, __cache_hash_code>& __x,
__unordered_multimap<_Key, _Tp, _Hash, _Pred,
_Alloc, __cache_hash_code>& __y)
{ __x.swap(__y); }
 
 
/**
* @brief A standard container composed of unique keys (containing
* at most one of each key value) that associates values of another type
* with the keys.
*
* @ingroup unordered_associative_containers
*
* Meets the requirements of a <a href="tables.html#65">container</a>, and
* <a href="tables.html#xx">unordered associative container</a>
*
* @param Key Type of key objects.
* @param Tp Type of mapped objects.
* @param Hash Hashing function object type, defaults to hash<Value>.
* @param Pred Predicate function object type, defaults to equal_to<Value>.
* @param Alloc Allocator type, defaults to allocator<Key>.
*
* The resulting value type of the container is std::pair<const Key, Tp>.
*/
template<class _Key, class _Tp,
class _Hash = hash<_Key>,
class _Pred = std::equal_to<_Key>,
class _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
class unordered_map
: public __unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>
{
typedef __unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc> _Base;
 
public:
typedef typename _Base::value_type value_type;
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
 
explicit
unordered_map(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __eql, __a)
{ }
 
template<typename _InputIterator>
unordered_map(_InputIterator __f, _InputIterator __l,
size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __eql, __a)
{ }
};
 
/**
* @brief A standard container composed of equivalent keys
* (possibly containing multiple of each key value) that associates
* values of another type with the keys.
*
* @ingroup unordered_associative_containers
*
* Meets the requirements of a <a href="tables.html#65">container</a>, and
* <a href="tables.html#xx">unordered associative container</a>
*
* @param Key Type of key objects.
* @param Tp Type of mapped objects.
* @param Hash Hashing function object type, defaults to hash<Value>.
* @param Pred Predicate function object type, defaults to equal_to<Value>.
* @param Alloc Allocator type, defaults to allocator<Key>.
*
* The resulting value type of the container is std::pair<const Key, Tp>.
*/
template<class _Key, class _Tp,
class _Hash = hash<_Key>,
class _Pred = std::equal_to<_Key>,
class _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
class unordered_multimap
: public __unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>
{
typedef __unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc> _Base;
 
public:
typedef typename _Base::value_type value_type;
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
 
explicit
unordered_multimap(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __eql, __a)
{ }
 
 
template<typename _InputIterator>
unordered_multimap(_InputIterator __f, _InputIterator __l,
typename _Base::size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __eql, __a)
{ }
 
};
 
template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline void
swap(unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
unordered_map<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
{ __x.swap(__y); }
 
template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>
inline void
swap(unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __x,
unordered_multimap<_Key, _Tp, _Hash, _Pred, _Alloc>& __y)
{ __x.swap(__y); }
 
_GLIBCXX_END_NAMESPACE_VERSION
}
}
/contrib/sdk/sources/libstdc++-v3/include/tr1/unordered_set
0,0 → 1,44
// TR1 unordered_set -*- C++ -*-
 
// Copyright (C) 2005-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/unordered_set
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_UNORDERED_SET
#define _GLIBCXX_TR1_UNORDERED_SET 1
 
#pragma GCC system_header
 
#include <utility>
#include <bits/stl_algobase.h>
#include <bits/allocator.h>
#include <bits/stl_function.h> // equal_to, _Identity, _Select1st
#include <bits/stringfwd.h>
#include <tr1/type_traits>
#include <tr1/functional_hash.h>
#include <tr1/hashtable.h>
#include <tr1/unordered_set.h>
 
#endif // _GLIBCXX_TR1_UNORDERED_SET
/contrib/sdk/sources/libstdc++-v3/include/tr1/unordered_set.h
0,0 → 1,267
// TR1 unordered_set implementation -*- C++ -*-
 
// Copyright (C) 2010-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/unordered_set.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{tr1/unordered_set}
*/
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
// NB: When we get typedef templates these class definitions
// will be unnecessary.
template<class _Value,
class _Hash = hash<_Value>,
class _Pred = std::equal_to<_Value>,
class _Alloc = std::allocator<_Value>,
bool __cache_hash_code = false>
class __unordered_set
: public _Hashtable<_Value, _Value, _Alloc,
std::_Identity<_Value>, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, true, true>
{
typedef _Hashtable<_Value, _Value, _Alloc,
std::_Identity<_Value>, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, true, true>
_Base;
 
public:
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
 
explicit
__unordered_set(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(), __eql,
std::_Identity<_Value>(), __a)
{ }
 
template<typename _InputIterator>
__unordered_set(_InputIterator __f, _InputIterator __l,
size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(), __eql,
std::_Identity<_Value>(), __a)
{ }
};
 
template<class _Value,
class _Hash = hash<_Value>,
class _Pred = std::equal_to<_Value>,
class _Alloc = std::allocator<_Value>,
bool __cache_hash_code = false>
class __unordered_multiset
: public _Hashtable<_Value, _Value, _Alloc,
std::_Identity<_Value>, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, true, false>
{
typedef _Hashtable<_Value, _Value, _Alloc,
std::_Identity<_Value>, _Pred,
_Hash, __detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy,
__cache_hash_code, true, false>
_Base;
 
public:
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
 
explicit
__unordered_multiset(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(), __eql,
std::_Identity<_Value>(), __a)
{ }
 
 
template<typename _InputIterator>
__unordered_multiset(_InputIterator __f, _InputIterator __l,
typename _Base::size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __detail::_Mod_range_hashing(),
__detail::_Default_ranged_hash(), __eql,
std::_Identity<_Value>(), __a)
{ }
};
 
template<class _Value, class _Hash, class _Pred, class _Alloc,
bool __cache_hash_code>
inline void
swap(__unordered_set<_Value, _Hash, _Pred, _Alloc, __cache_hash_code>& __x,
__unordered_set<_Value, _Hash, _Pred, _Alloc, __cache_hash_code>& __y)
{ __x.swap(__y); }
 
template<class _Value, class _Hash, class _Pred, class _Alloc,
bool __cache_hash_code>
inline void
swap(__unordered_multiset<_Value, _Hash, _Pred,
_Alloc, __cache_hash_code>& __x,
__unordered_multiset<_Value, _Hash, _Pred,
_Alloc, __cache_hash_code>& __y)
{ __x.swap(__y); }
 
 
/**
* @brief A standard container composed of unique keys (containing
* at most one of each key value) in which the elements' keys are
* the elements themselves.
*
* @ingroup unordered_associative_containers
*
* Meets the requirements of a <a href="tables.html#65">container</a>, and
* <a href="tables.html#xx">unordered associative container</a>
*
* @param Value Type of key objects.
* @param Hash Hashing function object type, defaults to hash<Value>.
* @param Pred Predicate function object type, defaults to equal_to<Value>.
* @param Alloc Allocator type, defaults to allocator<Key>.
*/
template<class _Value,
class _Hash = hash<_Value>,
class _Pred = std::equal_to<_Value>,
class _Alloc = std::allocator<_Value> >
class unordered_set
: public __unordered_set<_Value, _Hash, _Pred, _Alloc>
{
typedef __unordered_set<_Value, _Hash, _Pred, _Alloc> _Base;
 
public:
typedef typename _Base::value_type value_type;
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
 
explicit
unordered_set(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __eql, __a)
{ }
 
template<typename _InputIterator>
unordered_set(_InputIterator __f, _InputIterator __l,
size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __eql, __a)
{ }
};
 
/**
* @brief A standard container composed of equivalent keys
* (possibly containing multiple of each key value) in which the
* elements' keys are the elements themselves.
*
* @ingroup unordered_associative_containers
*
* Meets the requirements of a <a href="tables.html#65">container</a>, and
* <a href="tables.html#xx">unordered associative container</a>
*
* @param Value Type of key objects.
* @param Hash Hashing function object type, defaults to hash<Value>.
* @param Pred Predicate function object type, defaults to equal_to<Value>.
* @param Alloc Allocator type, defaults to allocator<Key>.
*/
template<class _Value,
class _Hash = hash<_Value>,
class _Pred = std::equal_to<_Value>,
class _Alloc = std::allocator<_Value> >
class unordered_multiset
: public __unordered_multiset<_Value, _Hash, _Pred, _Alloc>
{
typedef __unordered_multiset<_Value, _Hash, _Pred, _Alloc> _Base;
 
public:
typedef typename _Base::value_type value_type;
typedef typename _Base::size_type size_type;
typedef typename _Base::hasher hasher;
typedef typename _Base::key_equal key_equal;
typedef typename _Base::allocator_type allocator_type;
 
explicit
unordered_multiset(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__n, __hf, __eql, __a)
{ }
 
 
template<typename _InputIterator>
unordered_multiset(_InputIterator __f, _InputIterator __l,
typename _Base::size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _Base(__f, __l, __n, __hf, __eql, __a)
{ }
};
 
template<class _Value, class _Hash, class _Pred, class _Alloc>
inline void
swap(unordered_set<_Value, _Hash, _Pred, _Alloc>& __x,
unordered_set<_Value, _Hash, _Pred, _Alloc>& __y)
{ __x.swap(__y); }
 
template<class _Value, class _Hash, class _Pred, class _Alloc>
inline void
swap(unordered_multiset<_Value, _Hash, _Pred, _Alloc>& __x,
unordered_multiset<_Value, _Hash, _Pred, _Alloc>& __y)
{ __x.swap(__y); }
 
_GLIBCXX_END_NAMESPACE_VERSION
}
}
/contrib/sdk/sources/libstdc++-v3/include/tr1/utility
0,0 → 1,108
// TR1 utility -*- C++ -*-
 
// Copyright (C) 2004-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/utility
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_UTILITY
#define _GLIBCXX_TR1_UTILITY 1
 
#pragma GCC system_header
 
#include <bits/c++config.h>
#include <bits/stl_relops.h>
#include <bits/stl_pair.h>
 
namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
 
template<class _Tp>
class tuple_size;
 
template<int _Int, class _Tp>
class tuple_element;
 
// Various functions which give std::pair a tuple-like interface.
template<class _Tp1, class _Tp2>
struct tuple_size<std::pair<_Tp1, _Tp2> >
{ static const int value = 2; };
 
template<class _Tp1, class _Tp2>
const int
tuple_size<std::pair<_Tp1, _Tp2> >::value;
 
template<class _Tp1, class _Tp2>
struct tuple_element<0, std::pair<_Tp1, _Tp2> >
{ typedef _Tp1 type; };
template<class _Tp1, class _Tp2>
struct tuple_element<1, std::pair<_Tp1, _Tp2> >
{ typedef _Tp2 type; };
 
template<int _Int>
struct __pair_get;
 
template<>
struct __pair_get<0>
{
template<typename _Tp1, typename _Tp2>
static _Tp1& __get(std::pair<_Tp1, _Tp2>& __pair)
{ return __pair.first; }
 
template<typename _Tp1, typename _Tp2>
static const _Tp1& __const_get(const std::pair<_Tp1, _Tp2>& __pair)
{ return __pair.first; }
};
 
template<>
struct __pair_get<1>
{
template<typename _Tp1, typename _Tp2>
static _Tp2& __get(std::pair<_Tp1, _Tp2>& __pair)
{ return __pair.second; }
 
template<typename _Tp1, typename _Tp2>
static const _Tp2& __const_get(const std::pair<_Tp1, _Tp2>& __pair)
{ return __pair.second; }
};
 
template<int _Int, class _Tp1, class _Tp2>
inline typename tuple_element<_Int, std::pair<_Tp1, _Tp2> >::type&
get(std::pair<_Tp1, _Tp2>& __in)
{ return __pair_get<_Int>::__get(__in); }
 
template<int _Int, class _Tp1, class _Tp2>
inline const typename tuple_element<_Int, std::pair<_Tp1, _Tp2> >::type&
get(const std::pair<_Tp1, _Tp2>& __in)
{ return __pair_get<_Int>::__const_get(__in); }
 
_GLIBCXX_END_NAMESPACE_VERSION
}
}
 
#endif // _GLIBCXX_TR1_UTILITY
/contrib/sdk/sources/libstdc++-v3/include/tr1/wchar.h
0,0 → 1,34
// TR1 wchar.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/wchar.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_WCHAR_H
#define _GLIBCXX_TR1_WCHAR_H 1
 
#include <tr1/cwchar>
 
#endif // _GLIBCXX_TR1_WCHAR_H
/contrib/sdk/sources/libstdc++-v3/include/tr1/wctype.h
0,0 → 1,34
// TR1 wctype.h -*- C++ -*-
 
// Copyright (C) 2006-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
 
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
 
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// <http://www.gnu.org/licenses/>.
 
/** @file tr1/wctype.h
* This is a TR1 C++ Library header.
*/
 
#ifndef _GLIBCXX_TR1_WCTYPE_H
#define _GLIBCXX_TR1_WCTYPE_H 1
 
#include <tr1/cwctype>
 
#endif // _GLIBCXX_TR1_WCTYPE_H