Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 4357 → Rev 4358

/contrib/sdk/sources/Mesa/src/gallium/drivers/nv50/codegen/nv50_ir_target_nv50.cpp
0,0 → 1,552
/*
* Copyright 2011 Christoph Bumiller
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
 
#include "nv50_ir_target_nv50.h"
 
namespace nv50_ir {
 
Target *getTargetNV50(unsigned int chipset)
{
return new TargetNV50(chipset);
}
 
TargetNV50::TargetNV50(unsigned int card) : Target(true, false)
{
chipset = card;
 
wposMask = 0;
for (unsigned int i = 0; i <= SV_LAST; ++i)
sysvalLocation[i] = ~0;
 
initOpInfo();
}
 
#if 0
// BULTINS / LIBRARY FUNCTIONS:
 
// TODO
static const uint32_t nvc0_builtin_code[] =
{
};
 
static const uint16_t nvc0_builtin_offsets[NV50_BUILTIN_COUNT] =
{
};
#endif
 
void
TargetNV50::getBuiltinCode(const uint32_t **code, uint32_t *size) const
{
*code = NULL;
*size = 0;
}
 
uint32_t
TargetNV50::getBuiltinOffset(int builtin) const
{
return 0;
}
 
struct opProperties
{
operation op;
unsigned int mNeg : 4;
unsigned int mAbs : 4;
unsigned int mNot : 4;
unsigned int mSat : 4;
unsigned int fConst : 3;
unsigned int fShared : 3;
unsigned int fAttrib : 3;
unsigned int fImm : 3;
};
 
static const struct opProperties _initProps[] =
{
// neg abs not sat c[] s[], a[], imm
{ OP_ADD, 0x3, 0x0, 0x0, 0x8, 0x2, 0x1, 0x1, 0x2 },
{ OP_SUB, 0x3, 0x0, 0x0, 0x0, 0x2, 0x1, 0x1, 0x2 },
{ OP_MUL, 0x3, 0x0, 0x0, 0x0, 0x2, 0x1, 0x1, 0x2 },
{ OP_MAX, 0x3, 0x3, 0x0, 0x0, 0x2, 0x1, 0x1, 0x0 },
{ OP_MIN, 0x3, 0x3, 0x0, 0x0, 0x2, 0x1, 0x1, 0x0 },
{ OP_MAD, 0x7, 0x0, 0x0, 0x0, 0x6, 0x1, 0x1, 0x0 }, // special constraint
{ OP_ABS, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x1, 0x0 },
{ OP_NEG, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x1, 0x0 },
{ OP_CVT, 0x1, 0x1, 0x0, 0x8, 0x0, 0x1, 0x1, 0x0 },
{ OP_AND, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x2 },
{ OP_OR, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x2 },
{ OP_XOR, 0x0, 0x0, 0x3, 0x0, 0x0, 0x0, 0x0, 0x2 },
{ OP_SHL, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2 },
{ OP_SHR, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x2 },
{ OP_SET, 0x3, 0x3, 0x0, 0x0, 0x2, 0x1, 0x1, 0x0 },
{ OP_PREEX2, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
{ OP_PRESIN, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
{ OP_LG2, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
{ OP_RCP, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
{ OP_RSQ, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
{ OP_DFDX, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
{ OP_DFDY, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 },
};
 
void TargetNV50::initOpInfo()
{
unsigned int i, j;
 
static const uint32_t commutative[(OP_LAST + 31) / 32] =
{
// ADD,MAD,MUL,AND,OR,XOR,MAX,MIN
0x0670ca00, 0x0000003f, 0x00000000, 0x00000000
};
static const uint32_t shortForm[(OP_LAST + 31) / 32] =
{
// MOV,ADD,SUB,MUL,SAD,L/PINTERP,RCP,TEX,TXF
0x00010e40, 0x00000040, 0x00000498, 0x00000000
};
static const operation noDestList[] =
{
OP_STORE, OP_WRSV, OP_EXPORT, OP_BRA, OP_CALL, OP_RET, OP_EXIT,
OP_DISCARD, OP_CONT, OP_BREAK, OP_PRECONT, OP_PREBREAK, OP_PRERET,
OP_JOIN, OP_JOINAT, OP_BRKPT, OP_MEMBAR, OP_EMIT, OP_RESTART,
OP_QUADON, OP_QUADPOP, OP_TEXBAR, OP_SUSTB, OP_SUSTP, OP_SUREDP,
OP_SUREDB, OP_BAR
};
static const operation noPredList[] =
{
OP_CALL, OP_PREBREAK, OP_PRERET, OP_QUADON, OP_QUADPOP, OP_JOINAT
};
 
for (i = 0; i < DATA_FILE_COUNT; ++i)
nativeFileMap[i] = (DataFile)i;
nativeFileMap[FILE_PREDICATE] = FILE_FLAGS;
 
for (i = 0; i < OP_LAST; ++i) {
opInfo[i].variants = NULL;
opInfo[i].op = (operation)i;
opInfo[i].srcTypes = 1 << (int)TYPE_F32;
opInfo[i].dstTypes = 1 << (int)TYPE_F32;
opInfo[i].immdBits = 0xffffffff;
opInfo[i].srcNr = operationSrcNr[i];
 
for (j = 0; j < opInfo[i].srcNr; ++j) {
opInfo[i].srcMods[j] = 0;
opInfo[i].srcFiles[j] = 1 << (int)FILE_GPR;
}
opInfo[i].dstMods = 0;
opInfo[i].dstFiles = 1 << (int)FILE_GPR;
 
opInfo[i].hasDest = 1;
opInfo[i].vector = (i >= OP_TEX && i <= OP_TEXCSAA);
opInfo[i].commutative = (commutative[i / 32] >> (i % 32)) & 1;
opInfo[i].pseudo = (i < OP_MOV);
opInfo[i].predicate = !opInfo[i].pseudo;
opInfo[i].flow = (i >= OP_BRA && i <= OP_JOIN);
opInfo[i].minEncSize = (shortForm[i / 32] & (1 << (i % 32))) ? 4 : 8;
}
for (i = 0; i < sizeof(noDestList) / sizeof(noDestList[0]); ++i)
opInfo[noDestList[i]].hasDest = 0;
for (i = 0; i < sizeof(noPredList) / sizeof(noPredList[0]); ++i)
opInfo[noPredList[i]].predicate = 0;
 
for (i = 0; i < sizeof(_initProps) / sizeof(_initProps[0]); ++i) {
const struct opProperties *prop = &_initProps[i];
 
for (int s = 0; s < 3; ++s) {
if (prop->mNeg & (1 << s))
opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NEG;
if (prop->mAbs & (1 << s))
opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_ABS;
if (prop->mNot & (1 << s))
opInfo[prop->op].srcMods[s] |= NV50_IR_MOD_NOT;
if (prop->fConst & (1 << s))
opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_CONST;
if (prop->fShared & (1 << s))
opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_MEMORY_SHARED;
if (prop->fAttrib & (1 << s))
opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_SHADER_INPUT;
if (prop->fImm & (1 << s))
opInfo[prop->op].srcFiles[s] |= 1 << (int)FILE_IMMEDIATE;
}
if (prop->mSat & 8)
opInfo[prop->op].dstMods = NV50_IR_MOD_SAT;
}
}
 
unsigned int
TargetNV50::getFileSize(DataFile file) const
{
switch (file) {
case FILE_NULL: return 0;
case FILE_GPR: return 256; // in 16-bit units **
case FILE_PREDICATE: return 0;
case FILE_FLAGS: return 4;
case FILE_ADDRESS: return 4;
case FILE_IMMEDIATE: return 0;
case FILE_MEMORY_CONST: return 65536;
case FILE_SHADER_INPUT: return 0x200;
case FILE_SHADER_OUTPUT: return 0x200;
case FILE_MEMORY_GLOBAL: return 0xffffffff;
case FILE_MEMORY_SHARED: return 16 << 10;
case FILE_MEMORY_LOCAL: return 48 << 10;
case FILE_SYSTEM_VALUE: return 16;
default:
assert(!"invalid file");
return 0;
}
// ** only first 128 units encodable for 16-bit regs
}
 
unsigned int
TargetNV50::getFileUnit(DataFile file) const
{
if (file == FILE_GPR || file == FILE_ADDRESS)
return 1;
if (file == FILE_SYSTEM_VALUE)
return 2;
return 0;
}
 
uint32_t
TargetNV50::getSVAddress(DataFile shaderFile, const Symbol *sym) const
{
switch (sym->reg.data.sv.sv) {
case SV_FACE:
return 0x3fc;
case SV_POSITION:
{
uint32_t addr = sysvalLocation[sym->reg.data.sv.sv];
for (int c = 0; c < sym->reg.data.sv.index; ++c)
if (wposMask & (1 << c))
addr += 4;
return addr;
}
case SV_NCTAID:
return 0x8 + 2 * sym->reg.data.sv.index;
case SV_CTAID:
return 0xc + 2 * sym->reg.data.sv.index;
case SV_NTID:
return 0x2 + 2 * sym->reg.data.sv.index;
case SV_TID:
return 0;
default:
return sysvalLocation[sym->reg.data.sv.sv];
}
}
 
// long: rrr, arr, rcr, acr, rrc, arc, gcr, grr
// short: rr, ar, rc, gr
// immd: ri, gi
bool
TargetNV50::insnCanLoad(const Instruction *i, int s,
const Instruction *ld) const
{
DataFile sf = ld->src(0).getFile();
 
if (sf == FILE_IMMEDIATE && (i->predSrc >= 0 || i->flagsDef >= 0))
return false;
if (s >= opInfo[i->op].srcNr)
return false;
if (!(opInfo[i->op].srcFiles[s] & (1 << (int)sf)))
return false;
if (s == 2 && i->src(1).getFile() != FILE_GPR)
return false;
 
// NOTE: don't rely on flagsDef
for (int d = 0; i->defExists(d); ++d)
if (i->def(d).getFile() == FILE_FLAGS)
return false;
 
unsigned mode = 0;
 
for (int z = 0; z < Target::operationSrcNr[i->op]; ++z) {
DataFile zf = (z == s) ? sf : i->src(z).getFile();
switch (zf) {
case FILE_GPR:
break;
case FILE_MEMORY_SHARED:
case FILE_SHADER_INPUT:
mode |= 1 << (z * 2);
break;
case FILE_MEMORY_CONST:
mode |= 2 << (z * 2);
break;
case FILE_IMMEDIATE:
mode |= 3 << (z * 2);
default:
break;
}
}
 
switch (mode) {
case 0x00:
case 0x01:
case 0x03:
case 0x08:
case 0x09:
case 0x0c:
case 0x20:
case 0x21:
break;
case 0x0d:
if (ld->bb->getProgram()->getType() != Program::TYPE_GEOMETRY)
return false;
default:
return false;
}
 
uint8_t ldSize;
 
if ((i->op == OP_MUL || i->op == OP_MAD) && !isFloatType(i->dType)) {
// 32-bit MUL will be split into 16-bit MULs
if (ld->src(0).isIndirect(0))
return false;
if (sf == FILE_IMMEDIATE)
return false;
ldSize = 2;
} else {
ldSize = typeSizeof(ld->dType);
}
 
if (sf == FILE_IMMEDIATE)
return true;
 
 
// Check if memory access is encodable:
 
if (ldSize < 4 && sf == FILE_SHADER_INPUT) // no < 4-byte aligned a[] access
return false;
if (ld->getSrc(0)->reg.data.offset > (int32_t)(127 * ldSize))
return false;
 
if (ld->src(0).isIndirect(0)) {
for (int z = 0; i->srcExists(z); ++z)
if (i->src(z).isIndirect(0))
return false;
 
// s[] access only possible in CP, $aX always applies
if (sf == FILE_MEMORY_SHARED)
return true;
if (!ld->bb) // can't check type ...
return false;
Program::Type pt = ld->bb->getProgram()->getType();
 
// $aX applies to c[] only in VP, FP, GP if p[] is not accessed
if (pt == Program::TYPE_COMPUTE)
return false;
if (pt == Program::TYPE_GEOMETRY) {
if (sf == FILE_MEMORY_CONST)
return i->src(s).getFile() != FILE_SHADER_INPUT;
return sf == FILE_SHADER_INPUT;
}
return sf == FILE_MEMORY_CONST;
}
return true;
}
 
bool
TargetNV50::isAccessSupported(DataFile file, DataType ty) const
{
if (ty == TYPE_B96 || ty == TYPE_NONE)
return false;
if (typeSizeof(ty) > 4)
return (file == FILE_MEMORY_LOCAL) || (file == FILE_MEMORY_GLOBAL);
return true;
}
 
bool
TargetNV50::isOpSupported(operation op, DataType ty) const
{
if (ty == TYPE_F64 && chipset < 0xa0)
return false;
 
switch (op) {
case OP_PRERET:
return chipset >= 0xa0;
case OP_TXG:
return chipset >= 0xa3;
case OP_POW:
case OP_SQRT:
case OP_DIV:
case OP_MOD:
case OP_SET_AND:
case OP_SET_OR:
case OP_SET_XOR:
case OP_SLCT:
case OP_SELP:
case OP_POPCNT:
case OP_INSBF:
case OP_EXTBF:
case OP_EXIT: // want exit modifier instead (on NOP if required)
case OP_MEMBAR:
return false;
case OP_SAD:
return ty == TYPE_S32;
default:
return true;
}
}
 
bool
TargetNV50::isModSupported(const Instruction *insn, int s, Modifier mod) const
{
if (!isFloatType(insn->dType)) {
switch (insn->op) {
case OP_ABS:
case OP_NEG:
case OP_CVT:
case OP_CEIL:
case OP_FLOOR:
case OP_TRUNC:
case OP_AND:
case OP_OR:
case OP_XOR:
break;
case OP_ADD:
if (insn->src(s ? 0 : 1).mod.neg())
return false;
break;
case OP_SUB:
if (s == 0)
return insn->src(1).mod.neg() ? false : true;
break;
case OP_SET:
if (insn->sType != TYPE_F32)
return false;
break;
default:
return false;
}
}
if (s > 3)
return false;
return (mod & Modifier(opInfo[insn->op].srcMods[s])) == mod;
}
 
bool
TargetNV50::mayPredicate(const Instruction *insn, const Value *pred) const
{
if (insn->getPredicate() || insn->flagsSrc >= 0)
return false;
for (int s = 0; insn->srcExists(s); ++s)
if (insn->src(s).getFile() == FILE_IMMEDIATE)
return false;
return opInfo[insn->op].predicate;
}
 
bool
TargetNV50::isSatSupported(const Instruction *insn) const
{
if (insn->op == OP_CVT)
return true;
if (insn->dType != TYPE_F32)
return false;
return opInfo[insn->op].dstMods & NV50_IR_MOD_SAT;
}
 
int TargetNV50::getLatency(const Instruction *i) const
{
// TODO: tune these values
if (i->op == OP_LOAD) {
switch (i->src(0).getFile()) {
case FILE_MEMORY_LOCAL:
case FILE_MEMORY_GLOBAL:
return 100; // really 400 to 800
default:
return 22;
}
}
return 22;
}
 
// These are "inverse" throughput values, i.e. the number of cycles required
// to issue a specific instruction for a full warp (32 threads).
//
// Assuming we have more than 1 warp in flight, a higher issue latency results
// in a lower result latency since the MP will have spent more time with other
// warps.
// This also helps to determine the number of cycles between instructions in
// a single warp.
//
int TargetNV50::getThroughput(const Instruction *i) const
{
// TODO: tune these values
if (i->dType == TYPE_F32) {
switch (i->op) {
case OP_RCP:
case OP_RSQ:
case OP_LG2:
case OP_SIN:
case OP_COS:
case OP_PRESIN:
case OP_PREEX2:
return 16;
default:
return 4;
}
} else
if (i->dType == TYPE_U32 || i->dType == TYPE_S32) {
return 4;
} else
if (i->dType == TYPE_F64) {
return 32;
} else {
return 1;
}
}
 
static void
recordLocation(uint16_t *locs, uint8_t *masks,
const struct nv50_ir_varying *var)
{
uint16_t addr = var->slot[0] * 4;
 
switch (var->sn) {
case TGSI_SEMANTIC_POSITION: locs[SV_POSITION] = addr; break;
case TGSI_SEMANTIC_INSTANCEID: locs[SV_INSTANCE_ID] = addr; break;
case TGSI_SEMANTIC_VERTEXID: locs[SV_VERTEX_ID] = addr; break;
case TGSI_SEMANTIC_PRIMID: locs[SV_PRIMITIVE_ID] = addr; break;
case NV50_SEMANTIC_LAYER: locs[SV_LAYER] = addr; break;
case NV50_SEMANTIC_VIEWPORTINDEX: locs[SV_VIEWPORT_INDEX] = addr; break;
default:
break;
}
if (var->sn == TGSI_SEMANTIC_POSITION && masks)
masks[0] = var->mask;
}
 
void
TargetNV50::parseDriverInfo(const struct nv50_ir_prog_info *info)
{
unsigned int i;
for (i = 0; i < info->numOutputs; ++i)
recordLocation(sysvalLocation, NULL, &info->out[i]);
for (i = 0; i < info->numInputs; ++i)
recordLocation(sysvalLocation, &wposMask, &info->in[i]);
for (i = 0; i < info->numSysVals; ++i)
recordLocation(sysvalLocation, NULL, &info->sv[i]);
 
if (sysvalLocation[SV_POSITION] >= 0x200) {
// not assigned by driver, but we need it internally
wposMask = 0x8;
sysvalLocation[SV_POSITION] = 0;
}
}
 
} // namespace nv50_ir