Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 5563 → Rev 5564

/contrib/sdk/sources/Mesa/mesa-10.6.0/src/mesa/drivers/dri/i965/intel_tiled_memcpy.c
0,0 → 1,786
/*
* Mesa 3-D graphics library
*
* Copyright 2012 Intel Corporation
* Copyright 2013 Google
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Chad Versace <chad.versace@linux.intel.com>
* Frank Henigman <fjhenigman@google.com>
*/
 
#include <string.h>
 
#include "util/macros.h"
 
#include "brw_context.h"
#include "intel_tiled_memcpy.h"
 
#ifdef __SSSE3__
#include <tmmintrin.h>
#endif
 
#define FILE_DEBUG_FLAG DEBUG_TEXTURE
 
#define ALIGN_DOWN(a, b) ROUND_DOWN_TO(a, b)
#define ALIGN_UP(a, b) ALIGN(a, b)
 
/* Tile dimensions. Width and span are in bytes, height is in pixels (i.e.
* unitless). A "span" is the most number of bytes we can copy from linear
* to tiled without needing to calculate a new destination address.
*/
static const uint32_t xtile_width = 512;
static const uint32_t xtile_height = 8;
static const uint32_t xtile_span = 64;
static const uint32_t ytile_width = 128;
static const uint32_t ytile_height = 32;
static const uint32_t ytile_span = 16;
 
#ifdef __SSSE3__
static const uint8_t rgba8_permutation[16] =
{ 2,1,0,3, 6,5,4,7, 10,9,8,11, 14,13,12,15 };
 
/* NOTE: dst must be 16-byte aligned. src may be unaligned. */
#define rgba8_copy_16_aligned_dst(dst, src) \
_mm_store_si128((__m128i *)(dst), \
_mm_shuffle_epi8(_mm_loadu_si128((__m128i *)(src)), \
*(__m128i *) rgba8_permutation))
 
/* NOTE: src must be 16-byte aligned. dst may be unaligned. */
#define rgba8_copy_16_aligned_src(dst, src) \
_mm_storeu_si128((__m128i *)(dst), \
_mm_shuffle_epi8(_mm_load_si128((__m128i *)(src)), \
*(__m128i *) rgba8_permutation))
#endif
 
/**
* Copy RGBA to BGRA - swap R and B, with the destination 16-byte aligned.
*/
static inline void *
rgba8_copy_aligned_dst(void *dst, const void *src, size_t bytes)
{
uint8_t *d = dst;
uint8_t const *s = src;
 
#ifdef __SSSE3__
if (bytes == 16) {
assert(!(((uintptr_t)dst) & 0xf));
rgba8_copy_16_aligned_dst(d+ 0, s+ 0);
return dst;
}
 
if (bytes == 64) {
assert(!(((uintptr_t)dst) & 0xf));
rgba8_copy_16_aligned_dst(d+ 0, s+ 0);
rgba8_copy_16_aligned_dst(d+16, s+16);
rgba8_copy_16_aligned_dst(d+32, s+32);
rgba8_copy_16_aligned_dst(d+48, s+48);
return dst;
}
#endif
 
while (bytes >= 4) {
d[0] = s[2];
d[1] = s[1];
d[2] = s[0];
d[3] = s[3];
d += 4;
s += 4;
bytes -= 4;
}
return dst;
}
 
/**
* Copy RGBA to BGRA - swap R and B, with the source 16-byte aligned.
*/
static inline void *
rgba8_copy_aligned_src(void *dst, const void *src, size_t bytes)
{
uint8_t *d = dst;
uint8_t const *s = src;
 
#ifdef __SSSE3__
if (bytes == 16) {
assert(!(((uintptr_t)src) & 0xf));
rgba8_copy_16_aligned_src(d+ 0, s+ 0);
return dst;
}
 
if (bytes == 64) {
assert(!(((uintptr_t)src) & 0xf));
rgba8_copy_16_aligned_src(d+ 0, s+ 0);
rgba8_copy_16_aligned_src(d+16, s+16);
rgba8_copy_16_aligned_src(d+32, s+32);
rgba8_copy_16_aligned_src(d+48, s+48);
return dst;
}
#endif
 
while (bytes >= 4) {
d[0] = s[2];
d[1] = s[1];
d[2] = s[0];
d[3] = s[3];
d += 4;
s += 4;
bytes -= 4;
}
return dst;
}
 
/**
* Each row from y0 to y1 is copied in three parts: [x0,x1), [x1,x2), [x2,x3).
* These ranges are in bytes, i.e. pixels * bytes-per-pixel.
* The first and last ranges must be shorter than a "span" (the longest linear
* stretch within a tile) and the middle must equal a whole number of spans.
* Ranges may be empty. The region copied must land entirely within one tile.
* 'dst' is the start of the tile and 'src' is the corresponding
* address to copy from, though copying begins at (x0, y0).
* To enable swizzling 'swizzle_bit' must be 1<<6, otherwise zero.
* Swizzling flips bit 6 in the copy destination offset, when certain other
* bits are set in it.
*/
typedef void (*tile_copy_fn)(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t linear_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy);
 
/**
* Copy texture data from linear to X tile layout.
*
* \copydoc tile_copy_fn
*/
static inline void
linear_to_xtiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t src_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
/* The copy destination offset for each range copied is the sum of
* an X offset 'x0' or 'xo' and a Y offset 'yo.'
*/
uint32_t xo, yo;
 
src += (ptrdiff_t)y0 * src_pitch;
 
for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) {
/* Bits 9 and 10 of the copy destination offset control swizzling.
* Only 'yo' contributes to those bits in the total offset,
* so calculate 'swizzle' just once per row.
* Move bits 9 and 10 three and four places respectively down
* to bit 6 and xor them.
*/
uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit;
 
mem_copy(dst + ((x0 + yo) ^ swizzle), src + x0, x1 - x0);
 
for (xo = x1; xo < x2; xo += xtile_span) {
mem_copy(dst + ((xo + yo) ^ swizzle), src + xo, xtile_span);
}
 
mem_copy(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
 
src += src_pitch;
}
}
 
/**
* Copy texture data from linear to Y tile layout.
*
* \copydoc tile_copy_fn
*/
static inline void
linear_to_ytiled(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t src_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
/* Y tiles consist of columns that are 'ytile_span' wide (and the same height
* as the tile). Thus the destination offset for (x,y) is the sum of:
* (x % column_width) // position within column
* (x / column_width) * bytes_per_column // column number * bytes per column
* y * column_width
*
* The copy destination offset for each range copied is the sum of
* an X offset 'xo0' or 'xo' and a Y offset 'yo.'
*/
const uint32_t column_width = ytile_span;
const uint32_t bytes_per_column = column_width * ytile_height;
 
uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column;
uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column;
 
/* Bit 9 of the destination offset control swizzling.
* Only the X offset contributes to bit 9 of the total offset,
* so swizzle can be calculated in advance for these X positions.
* Move bit 9 three places down to bit 6.
*/
uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit;
uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit;
 
uint32_t x, yo;
 
src += (ptrdiff_t)y0 * src_pitch;
 
for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) {
uint32_t xo = xo1;
uint32_t swizzle = swizzle1;
 
mem_copy(dst + ((xo0 + yo) ^ swizzle0), src + x0, x1 - x0);
 
/* Step by spans/columns. As it happens, the swizzle bit flips
* at each step so we don't need to calculate it explicitly.
*/
for (x = x1; x < x2; x += ytile_span) {
mem_copy(dst + ((xo + yo) ^ swizzle), src + x, ytile_span);
xo += bytes_per_column;
swizzle ^= swizzle_bit;
}
 
mem_copy(dst + ((xo + yo) ^ swizzle), src + x2, x3 - x2);
 
src += src_pitch;
}
}
 
/**
* Copy texture data from X tile layout to linear.
*
* \copydoc tile_copy_fn
*/
static inline void
xtiled_to_linear(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t dst_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
/* The copy destination offset for each range copied is the sum of
* an X offset 'x0' or 'xo' and a Y offset 'yo.'
*/
uint32_t xo, yo;
 
dst += (ptrdiff_t)y0 * dst_pitch;
 
for (yo = y0 * xtile_width; yo < y1 * xtile_width; yo += xtile_width) {
/* Bits 9 and 10 of the copy destination offset control swizzling.
* Only 'yo' contributes to those bits in the total offset,
* so calculate 'swizzle' just once per row.
* Move bits 9 and 10 three and four places respectively down
* to bit 6 and xor them.
*/
uint32_t swizzle = ((yo >> 3) ^ (yo >> 4)) & swizzle_bit;
 
mem_copy(dst + x0, src + ((x0 + yo) ^ swizzle), x1 - x0);
 
for (xo = x1; xo < x2; xo += xtile_span) {
mem_copy(dst + xo, src + ((xo + yo) ^ swizzle), xtile_span);
}
 
mem_copy(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2);
 
dst += dst_pitch;
}
}
 
/**
* Copy texture data from Y tile layout to linear.
*
* \copydoc tile_copy_fn
*/
static inline void
ytiled_to_linear(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t dst_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
/* Y tiles consist of columns that are 'ytile_span' wide (and the same height
* as the tile). Thus the destination offset for (x,y) is the sum of:
* (x % column_width) // position within column
* (x / column_width) * bytes_per_column // column number * bytes per column
* y * column_width
*
* The copy destination offset for each range copied is the sum of
* an X offset 'xo0' or 'xo' and a Y offset 'yo.'
*/
const uint32_t column_width = ytile_span;
const uint32_t bytes_per_column = column_width * ytile_height;
 
uint32_t xo0 = (x0 % ytile_span) + (x0 / ytile_span) * bytes_per_column;
uint32_t xo1 = (x1 % ytile_span) + (x1 / ytile_span) * bytes_per_column;
 
/* Bit 9 of the destination offset control swizzling.
* Only the X offset contributes to bit 9 of the total offset,
* so swizzle can be calculated in advance for these X positions.
* Move bit 9 three places down to bit 6.
*/
uint32_t swizzle0 = (xo0 >> 3) & swizzle_bit;
uint32_t swizzle1 = (xo1 >> 3) & swizzle_bit;
 
uint32_t x, yo;
 
dst += (ptrdiff_t)y0 * dst_pitch;
 
for (yo = y0 * column_width; yo < y1 * column_width; yo += column_width) {
uint32_t xo = xo1;
uint32_t swizzle = swizzle1;
 
mem_copy(dst + x0, src + ((xo0 + yo) ^ swizzle0), x1 - x0);
 
/* Step by spans/columns. As it happens, the swizzle bit flips
* at each step so we don't need to calculate it explicitly.
*/
for (x = x1; x < x2; x += ytile_span) {
mem_copy(dst + x, src + ((xo + yo) ^ swizzle), ytile_span);
xo += bytes_per_column;
swizzle ^= swizzle_bit;
}
 
mem_copy(dst + x2, src + ((xo + yo) ^ swizzle), x3 - x2);
 
dst += dst_pitch;
}
}
 
 
/**
* Copy texture data from linear to X tile layout, faster.
*
* Same as \ref linear_to_xtiled but faster, because it passes constant
* parameters for common cases, allowing the compiler to inline code
* optimized for those cases.
*
* \copydoc tile_copy_fn
*/
static FLATTEN void
linear_to_xtiled_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t src_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) {
if (mem_copy == memcpy)
return linear_to_xtiled(0, 0, xtile_width, xtile_width, 0, xtile_height,
dst, src, src_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy_aligned_dst)
return linear_to_xtiled(0, 0, xtile_width, xtile_width, 0, xtile_height,
dst, src, src_pitch, swizzle_bit,
rgba8_copy_aligned_dst);
else
unreachable("not reached");
} else {
if (mem_copy == memcpy)
return linear_to_xtiled(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy_aligned_dst)
return linear_to_xtiled(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit,
rgba8_copy_aligned_dst);
else
unreachable("not reached");
}
linear_to_xtiled(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit, mem_copy);
}
 
/**
* Copy texture data from linear to Y tile layout, faster.
*
* Same as \ref linear_to_ytiled but faster, because it passes constant
* parameters for common cases, allowing the compiler to inline code
* optimized for those cases.
*
* \copydoc tile_copy_fn
*/
static FLATTEN void
linear_to_ytiled_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t src_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) {
if (mem_copy == memcpy)
return linear_to_ytiled(0, 0, ytile_width, ytile_width, 0, ytile_height,
dst, src, src_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy_aligned_dst)
return linear_to_ytiled(0, 0, ytile_width, ytile_width, 0, ytile_height,
dst, src, src_pitch, swizzle_bit,
rgba8_copy_aligned_dst);
else
unreachable("not reached");
} else {
if (mem_copy == memcpy)
return linear_to_ytiled(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy_aligned_dst)
return linear_to_ytiled(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit,
rgba8_copy_aligned_dst);
else
unreachable("not reached");
}
linear_to_ytiled(x0, x1, x2, x3, y0, y1,
dst, src, src_pitch, swizzle_bit, mem_copy);
}
 
/**
* Copy texture data from X tile layout to linear, faster.
*
* Same as \ref xtile_to_linear but faster, because it passes constant
* parameters for common cases, allowing the compiler to inline code
* optimized for those cases.
*
* \copydoc tile_copy_fn
*/
static FLATTEN void
xtiled_to_linear_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t dst_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
if (x0 == 0 && x3 == xtile_width && y0 == 0 && y1 == xtile_height) {
if (mem_copy == memcpy)
return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height,
dst, src, dst_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy_aligned_src)
return xtiled_to_linear(0, 0, xtile_width, xtile_width, 0, xtile_height,
dst, src, dst_pitch, swizzle_bit,
rgba8_copy_aligned_src);
else
unreachable("not reached");
} else {
if (mem_copy == memcpy)
return xtiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy_aligned_src)
return xtiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit,
rgba8_copy_aligned_src);
else
unreachable("not reached");
}
xtiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, mem_copy);
}
 
/**
* Copy texture data from Y tile layout to linear, faster.
*
* Same as \ref ytile_to_linear but faster, because it passes constant
* parameters for common cases, allowing the compiler to inline code
* optimized for those cases.
*
* \copydoc tile_copy_fn
*/
static FLATTEN void
ytiled_to_linear_faster(uint32_t x0, uint32_t x1, uint32_t x2, uint32_t x3,
uint32_t y0, uint32_t y1,
char *dst, const char *src,
int32_t dst_pitch,
uint32_t swizzle_bit,
mem_copy_fn mem_copy)
{
if (x0 == 0 && x3 == ytile_width && y0 == 0 && y1 == ytile_height) {
if (mem_copy == memcpy)
return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height,
dst, src, dst_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy_aligned_src)
return ytiled_to_linear(0, 0, ytile_width, ytile_width, 0, ytile_height,
dst, src, dst_pitch, swizzle_bit,
rgba8_copy_aligned_src);
else
unreachable("not reached");
} else {
if (mem_copy == memcpy)
return ytiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, memcpy);
else if (mem_copy == rgba8_copy_aligned_src)
return ytiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit,
rgba8_copy_aligned_src);
else
unreachable("not reached");
}
ytiled_to_linear(x0, x1, x2, x3, y0, y1,
dst, src, dst_pitch, swizzle_bit, mem_copy);
}
 
/**
* Copy from linear to tiled texture.
*
* Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into
* pieces that do not cross tile boundaries and copy each piece with a tile
* copy function (\ref tile_copy_fn).
* The X range is in bytes, i.e. pixels * bytes-per-pixel.
* The Y range is in pixels (i.e. unitless).
* 'dst' is the start of the texture and 'src' is the corresponding
* address to copy from, though copying begins at (xt1, yt1).
*/
void
linear_to_tiled(uint32_t xt1, uint32_t xt2,
uint32_t yt1, uint32_t yt2,
char *dst, const char *src,
uint32_t dst_pitch, int32_t src_pitch,
bool has_swizzling,
uint32_t tiling,
mem_copy_fn mem_copy)
{
tile_copy_fn tile_copy;
uint32_t xt0, xt3;
uint32_t yt0, yt3;
uint32_t xt, yt;
uint32_t tw, th, span;
uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0;
 
if (tiling == I915_TILING_X) {
tw = xtile_width;
th = xtile_height;
span = xtile_span;
tile_copy = linear_to_xtiled_faster;
} else if (tiling == I915_TILING_Y) {
tw = ytile_width;
th = ytile_height;
span = ytile_span;
tile_copy = linear_to_ytiled_faster;
} else {
unreachable("unsupported tiling");
}
 
/* Round out to tile boundaries. */
xt0 = ALIGN_DOWN(xt1, tw);
xt3 = ALIGN_UP (xt2, tw);
yt0 = ALIGN_DOWN(yt1, th);
yt3 = ALIGN_UP (yt2, th);
 
/* Loop over all tiles to which we have something to copy.
* 'xt' and 'yt' are the origin of the destination tile, whether copying
* copying a full or partial tile.
* tile_copy() copies one tile or partial tile.
* Looping x inside y is the faster memory access pattern.
*/
for (yt = yt0; yt < yt3; yt += th) {
for (xt = xt0; xt < xt3; xt += tw) {
/* The area to update is [x0,x3) x [y0,y1).
* May not want the whole tile, hence the min and max.
*/
uint32_t x0 = MAX2(xt1, xt);
uint32_t y0 = MAX2(yt1, yt);
uint32_t x3 = MIN2(xt2, xt + tw);
uint32_t y1 = MIN2(yt2, yt + th);
 
/* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that
* the middle interval is the longest span-aligned part.
* The sub-ranges could be empty.
*/
uint32_t x1, x2;
x1 = ALIGN_UP(x0, span);
if (x1 > x3)
x1 = x2 = x3;
else
x2 = ALIGN_DOWN(x3, span);
 
assert(x0 <= x1 && x1 <= x2 && x2 <= x3);
assert(x1 - x0 < span && x3 - x2 < span);
assert(x3 - x0 <= tw);
assert((x2 - x1) % span == 0);
 
/* Translate by (xt,yt) for single-tile copier. */
tile_copy(x0-xt, x1-xt, x2-xt, x3-xt,
y0-yt, y1-yt,
dst + (ptrdiff_t) xt * th + (ptrdiff_t) yt * dst_pitch,
src + (ptrdiff_t) xt + (ptrdiff_t) yt * src_pitch,
src_pitch,
swizzle_bit,
mem_copy);
}
}
}
 
/**
* Copy from tiled to linear texture.
*
* Divide the region given by X range [xt1, xt2) and Y range [yt1, yt2) into
* pieces that do not cross tile boundaries and copy each piece with a tile
* copy function (\ref tile_copy_fn).
* The X range is in bytes, i.e. pixels * bytes-per-pixel.
* The Y range is in pixels (i.e. unitless).
* 'dst' is the start of the texture and 'src' is the corresponding
* address to copy from, though copying begins at (xt1, yt1).
*/
void
tiled_to_linear(uint32_t xt1, uint32_t xt2,
uint32_t yt1, uint32_t yt2,
char *dst, const char *src,
int32_t dst_pitch, uint32_t src_pitch,
bool has_swizzling,
uint32_t tiling,
mem_copy_fn mem_copy)
{
tile_copy_fn tile_copy;
uint32_t xt0, xt3;
uint32_t yt0, yt3;
uint32_t xt, yt;
uint32_t tw, th, span;
uint32_t swizzle_bit = has_swizzling ? 1<<6 : 0;
 
if (tiling == I915_TILING_X) {
tw = xtile_width;
th = xtile_height;
span = xtile_span;
tile_copy = xtiled_to_linear_faster;
} else if (tiling == I915_TILING_Y) {
tw = ytile_width;
th = ytile_height;
span = ytile_span;
tile_copy = ytiled_to_linear_faster;
} else {
unreachable("unsupported tiling");
}
 
/* Round out to tile boundaries. */
xt0 = ALIGN_DOWN(xt1, tw);
xt3 = ALIGN_UP (xt2, tw);
yt0 = ALIGN_DOWN(yt1, th);
yt3 = ALIGN_UP (yt2, th);
 
/* Loop over all tiles to which we have something to copy.
* 'xt' and 'yt' are the origin of the destination tile, whether copying
* copying a full or partial tile.
* tile_copy() copies one tile or partial tile.
* Looping x inside y is the faster memory access pattern.
*/
for (yt = yt0; yt < yt3; yt += th) {
for (xt = xt0; xt < xt3; xt += tw) {
/* The area to update is [x0,x3) x [y0,y1).
* May not want the whole tile, hence the min and max.
*/
uint32_t x0 = MAX2(xt1, xt);
uint32_t y0 = MAX2(yt1, yt);
uint32_t x3 = MIN2(xt2, xt + tw);
uint32_t y1 = MIN2(yt2, yt + th);
 
/* [x0,x3) is split into [x0,x1), [x1,x2), [x2,x3) such that
* the middle interval is the longest span-aligned part.
* The sub-ranges could be empty.
*/
uint32_t x1, x2;
x1 = ALIGN_UP(x0, span);
if (x1 > x3)
x1 = x2 = x3;
else
x2 = ALIGN_DOWN(x3, span);
 
assert(x0 <= x1 && x1 <= x2 && x2 <= x3);
assert(x1 - x0 < span && x3 - x2 < span);
assert(x3 - x0 <= tw);
assert((x2 - x1) % span == 0);
 
/* Translate by (xt,yt) for single-tile copier. */
tile_copy(x0-xt, x1-xt, x2-xt, x3-xt,
y0-yt, y1-yt,
dst + (ptrdiff_t) xt + (ptrdiff_t) yt * dst_pitch,
src + (ptrdiff_t) xt * th + (ptrdiff_t) yt * src_pitch,
dst_pitch,
swizzle_bit,
mem_copy);
}
}
}
 
 
/**
* Determine which copy function to use for the given format combination
*
* The only two possible copy functions which are ever returned are a
* direct memcpy and a RGBA <-> BGRA copy function. Since RGBA -> BGRA and
* BGRA -> RGBA are exactly the same operation (and memcpy is obviously
* symmetric), it doesn't matter whether the copy is from the tiled image
* to the untiled or vice versa. The copy function required is the same in
* either case so this function can be used.
*
* \param[in] tiledFormat The format of the tiled image
* \param[in] format The GL format of the client data
* \param[in] type The GL type of the client data
* \param[out] mem_copy Will be set to one of either the standard
* library's memcpy or a different copy function
* that performs an RGBA to BGRA conversion
* \param[out] cpp Number of bytes per channel
*
* \return true if the format and type combination are valid
*/
bool intel_get_memcpy(mesa_format tiledFormat, GLenum format,
GLenum type, mem_copy_fn *mem_copy, uint32_t *cpp,
enum intel_memcpy_direction direction)
{
if (type == GL_UNSIGNED_INT_8_8_8_8_REV &&
!(format == GL_RGBA || format == GL_BGRA))
return false; /* Invalid type/format combination */
 
if ((tiledFormat == MESA_FORMAT_L_UNORM8 && format == GL_LUMINANCE) ||
(tiledFormat == MESA_FORMAT_A_UNORM8 && format == GL_ALPHA)) {
*cpp = 1;
*mem_copy = memcpy;
} else if ((tiledFormat == MESA_FORMAT_B8G8R8A8_UNORM) ||
(tiledFormat == MESA_FORMAT_B8G8R8X8_UNORM)) {
*cpp = 4;
if (format == GL_BGRA) {
*mem_copy = memcpy;
} else if (format == GL_RGBA) {
*mem_copy = direction == INTEL_UPLOAD ? rgba8_copy_aligned_dst
: rgba8_copy_aligned_src;
}
} else if ((tiledFormat == MESA_FORMAT_R8G8B8A8_UNORM) ||
(tiledFormat == MESA_FORMAT_R8G8B8X8_UNORM)) {
*cpp = 4;
if (format == GL_BGRA) {
/* Copying from RGBA to BGRA is the same as BGRA to RGBA so we can
* use the same function.
*/
*mem_copy = direction == INTEL_UPLOAD ? rgba8_copy_aligned_dst
: rgba8_copy_aligned_src;
} else if (format == GL_RGBA) {
*mem_copy = memcpy;
}
}
 
if (!(*mem_copy))
return false;
 
return true;
}