Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 5563 → Rev 5564

/contrib/sdk/sources/Mesa/mesa-10.6.0/src/glx/indirect_vertex_array.c
0,0 → 1,2001
/*
* (C) Copyright IBM Corporation 2004, 2005
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* IBM,
* AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
 
#include <inttypes.h>
#include <assert.h>
#include <string.h>
 
#include "glxclient.h"
#include "indirect.h"
#include <GL/glxproto.h>
#include "glxextensions.h"
#include "indirect_vertex_array.h"
#include "indirect_vertex_array_priv.h"
 
#define __GLX_PAD(n) (((n)+3) & ~3)
 
/**
* \file indirect_vertex_array.c
* Implement GLX protocol for vertex arrays and vertex buffer objects.
*
* The most important function in this fill is \c fill_array_info_cache.
* The \c array_state_vector contains a cache of the ARRAY_INFO data sent
* in the DrawArrays protocol. Certain operations, such as enabling or
* disabling an array, can invalidate this cache. \c fill_array_info_cache
* fills-in this data. Additionally, it examines the enabled state and
* other factors to determine what "version" of DrawArrays protocoal can be
* used.
*
* Current, only two versions of DrawArrays protocol are implemented. The
* first version is the "none" protocol. This is the fallback when the
* server does not support GL 1.1 / EXT_vertex_arrays. It is implemented
* by sending batches of immediate mode commands that are equivalent to the
* DrawArrays protocol.
*
* The other protocol that is currently implemented is the "old" protocol.
* This is the GL 1.1 DrawArrays protocol. The only difference between GL
* 1.1 and EXT_vertex_arrays is the opcode used for the DrawArrays command.
* This protocol is called "old" because the ARB is in the process of
* defining a new protocol, which will probably be called wither "new" or
* "vbo", to support multiple texture coordinate arrays, generic attributes,
* and vertex buffer objects.
*
* \author Ian Romanick <ian.d.romanick@intel.com>
*/
 
static void emit_DrawArrays_none(GLenum mode, GLint first, GLsizei count);
static void emit_DrawArrays_old(GLenum mode, GLint first, GLsizei count);
 
static void emit_DrawElements_none(GLenum mode, GLsizei count, GLenum type,
const GLvoid * indices);
static void emit_DrawElements_old(GLenum mode, GLsizei count, GLenum type,
const GLvoid * indices);
 
 
static GLubyte *emit_element_none(GLubyte * dst,
const struct array_state_vector *arrays,
unsigned index);
static GLubyte *emit_element_old(GLubyte * dst,
const struct array_state_vector *arrays,
unsigned index);
static struct array_state *get_array_entry(const struct array_state_vector
*arrays, GLenum key,
unsigned index);
static void fill_array_info_cache(struct array_state_vector *arrays);
static GLboolean validate_mode(struct glx_context * gc, GLenum mode);
static GLboolean validate_count(struct glx_context * gc, GLsizei count);
static GLboolean validate_type(struct glx_context * gc, GLenum type);
 
 
/**
* Table of sizes, in bytes, of a GL types. All of the type enums are be in
* the range 0x1400 - 0x140F. That includes types added by extensions (i.e.,
* \c GL_HALF_FLOAT_NV). This elements of this table correspond to the
* type enums masked with 0x0f.
*
* \notes
* \c GL_HALF_FLOAT_NV is not included. Neither are \c GL_2_BYTES,
* \c GL_3_BYTES, or \c GL_4_BYTES.
*/
const GLuint __glXTypeSize_table[16] = {
1, 1, 2, 2, 4, 4, 4, 0, 0, 0, 8, 0, 0, 0, 0, 0
};
 
 
/**
* Free the per-context array state that was allocated with
* __glXInitVertexArrayState().
*/
void
__glXFreeVertexArrayState(struct glx_context * gc)
{
__GLXattribute *state = (__GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
 
if (arrays) {
free(arrays->stack);
arrays->stack = NULL;
free(arrays->arrays);
arrays->arrays = NULL;
free(arrays);
state->array_state = NULL;
}
}
 
 
/**
* Initialize vertex array state of a GLX context.
*
* \param gc GLX context whose vertex array state is to be initialized.
*
* \warning
* This function may only be called after struct glx_context::gl_extension_bits,
* struct glx_context::server_minor, and __GLXcontext::server_major have been
* initialized. These values are used to determine what vertex arrays are
* supported.
*/
void
__glXInitVertexArrayState(struct glx_context * gc)
{
__GLXattribute *state = (__GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays;
 
unsigned array_count;
int texture_units = 1, vertex_program_attribs = 0;
unsigned i, j;
 
GLboolean got_fog = GL_FALSE;
GLboolean got_secondary_color = GL_FALSE;
 
 
arrays = calloc(1, sizeof(struct array_state_vector));
 
if (arrays == NULL) {
__glXSetError(gc, GL_OUT_OF_MEMORY);
return;
}
 
arrays->old_DrawArrays_possible = !state->NoDrawArraysProtocol;
arrays->new_DrawArrays_possible = GL_FALSE;
arrays->DrawArrays = NULL;
 
arrays->active_texture_unit = 0;
 
 
/* Determine how many arrays are actually needed. Only arrays that
* are supported by the server are create. For example, if the server
* supports only 2 texture units, then only 2 texture coordinate arrays
* are created.
*
* At the very least, GL_VERTEX_ARRAY, GL_NORMAL_ARRAY,
* GL_COLOR_ARRAY, GL_INDEX_ARRAY, GL_TEXTURE_COORD_ARRAY, and
* GL_EDGE_FLAG_ARRAY are supported.
*/
 
array_count = 5;
 
if (__glExtensionBitIsEnabled(gc, GL_EXT_fog_coord_bit)
|| (gc->server_major > 1) || (gc->server_minor >= 4)) {
got_fog = GL_TRUE;
array_count++;
}
 
if (__glExtensionBitIsEnabled(gc, GL_EXT_secondary_color_bit)
|| (gc->server_major > 1) || (gc->server_minor >= 4)) {
got_secondary_color = GL_TRUE;
array_count++;
}
 
if (__glExtensionBitIsEnabled(gc, GL_ARB_multitexture_bit)
|| (gc->server_major > 1) || (gc->server_minor >= 3)) {
__indirect_glGetIntegerv(GL_MAX_TEXTURE_UNITS, &texture_units);
}
 
if (__glExtensionBitIsEnabled(gc, GL_ARB_vertex_program_bit)) {
__indirect_glGetProgramivARB(GL_VERTEX_PROGRAM_ARB,
GL_MAX_PROGRAM_ATTRIBS_ARB,
&vertex_program_attribs);
}
 
arrays->num_texture_units = texture_units;
arrays->num_vertex_program_attribs = vertex_program_attribs;
array_count += texture_units + vertex_program_attribs;
arrays->num_arrays = array_count;
arrays->arrays = calloc(array_count, sizeof(struct array_state));
 
if (arrays->arrays == NULL) {
free(arrays);
__glXSetError(gc, GL_OUT_OF_MEMORY);
return;
}
 
arrays->arrays[0].data_type = GL_FLOAT;
arrays->arrays[0].count = 3;
arrays->arrays[0].key = GL_NORMAL_ARRAY;
arrays->arrays[0].normalized = GL_TRUE;
arrays->arrays[0].old_DrawArrays_possible = GL_TRUE;
 
arrays->arrays[1].data_type = GL_FLOAT;
arrays->arrays[1].count = 4;
arrays->arrays[1].key = GL_COLOR_ARRAY;
arrays->arrays[1].normalized = GL_TRUE;
arrays->arrays[1].old_DrawArrays_possible = GL_TRUE;
 
arrays->arrays[2].data_type = GL_FLOAT;
arrays->arrays[2].count = 1;
arrays->arrays[2].key = GL_INDEX_ARRAY;
arrays->arrays[2].old_DrawArrays_possible = GL_TRUE;
 
arrays->arrays[3].data_type = GL_UNSIGNED_BYTE;
arrays->arrays[3].count = 1;
arrays->arrays[3].key = GL_EDGE_FLAG_ARRAY;
arrays->arrays[3].old_DrawArrays_possible = GL_TRUE;
 
for (i = 0; i < texture_units; i++) {
arrays->arrays[4 + i].data_type = GL_FLOAT;
arrays->arrays[4 + i].count = 4;
arrays->arrays[4 + i].key = GL_TEXTURE_COORD_ARRAY;
 
arrays->arrays[4 + i].old_DrawArrays_possible = (i == 0);
arrays->arrays[4 + i].index = i;
 
arrays->arrays[4 + i].header[1] = i + GL_TEXTURE0;
}
 
i = 4 + texture_units;
 
if (got_fog) {
arrays->arrays[i].data_type = GL_FLOAT;
arrays->arrays[i].count = 1;
arrays->arrays[i].key = GL_FOG_COORDINATE_ARRAY;
arrays->arrays[i].old_DrawArrays_possible = GL_TRUE;
i++;
}
 
if (got_secondary_color) {
arrays->arrays[i].data_type = GL_FLOAT;
arrays->arrays[i].count = 3;
arrays->arrays[i].key = GL_SECONDARY_COLOR_ARRAY;
arrays->arrays[i].old_DrawArrays_possible = GL_TRUE;
arrays->arrays[i].normalized = GL_TRUE;
i++;
}
 
 
for (j = 0; j < vertex_program_attribs; j++) {
const unsigned idx = (vertex_program_attribs - (j + 1));
 
 
arrays->arrays[idx + i].data_type = GL_FLOAT;
arrays->arrays[idx + i].count = 4;
arrays->arrays[idx + i].key = GL_VERTEX_ATTRIB_ARRAY_POINTER;
 
arrays->arrays[idx + i].old_DrawArrays_possible = 0;
arrays->arrays[idx + i].index = idx;
 
arrays->arrays[idx + i].header[1] = idx;
}
 
i += vertex_program_attribs;
 
 
/* Vertex array *must* be last because of the way that
* emit_DrawArrays_none works.
*/
 
arrays->arrays[i].data_type = GL_FLOAT;
arrays->arrays[i].count = 4;
arrays->arrays[i].key = GL_VERTEX_ARRAY;
arrays->arrays[i].old_DrawArrays_possible = GL_TRUE;
 
assert((i + 1) == arrays->num_arrays);
 
arrays->stack_index = 0;
arrays->stack = malloc(sizeof(struct array_stack_state)
* arrays->num_arrays
* __GL_CLIENT_ATTRIB_STACK_DEPTH);
 
if (arrays->stack == NULL) {
free(arrays->arrays);
free(arrays);
__glXSetError(gc, GL_OUT_OF_MEMORY);
return;
}
 
/* Everything went ok so we put vertex array state in place
* in context.
*/
state->array_state = arrays;
}
 
 
/**
* Calculate the size of a single vertex for the "none" protocol. This is
* essentially the size of all the immediate-mode commands required to
* implement the enabled vertex arrays.
*/
static size_t
calculate_single_vertex_size_none(const struct array_state_vector *arrays)
{
size_t single_vertex_size = 0;
unsigned i;
 
 
for (i = 0; i < arrays->num_arrays; i++) {
if (arrays->arrays[i].enabled) {
single_vertex_size += ((uint16_t *) arrays->arrays[i].header)[0];
}
}
 
return single_vertex_size;
}
 
 
/**
* Emit a single element using non-DrawArrays protocol.
*/
GLubyte *
emit_element_none(GLubyte * dst,
const struct array_state_vector * arrays, unsigned index)
{
unsigned i;
 
 
for (i = 0; i < arrays->num_arrays; i++) {
if (arrays->arrays[i].enabled) {
const size_t offset = index * arrays->arrays[i].true_stride;
 
/* The generic attributes can have more data than is in the
* elements. This is because a vertex array can be a 2 element,
* normalized, unsigned short, but the "closest" immediate mode
* protocol is for a 4Nus. Since the sizes are small, the
* performance impact on modern processors should be negligible.
*/
(void) memset(dst, 0, ((uint16_t *) arrays->arrays[i].header)[0]);
 
(void) memcpy(dst, arrays->arrays[i].header,
arrays->arrays[i].header_size);
 
dst += arrays->arrays[i].header_size;
 
(void) memcpy(dst, ((GLubyte *) arrays->arrays[i].data) + offset,
arrays->arrays[i].element_size);
 
dst += __GLX_PAD(arrays->arrays[i].element_size);
}
}
 
return dst;
}
 
 
/**
* Emit a single element using "old" DrawArrays protocol from
* EXT_vertex_arrays / OpenGL 1.1.
*/
GLubyte *
emit_element_old(GLubyte * dst,
const struct array_state_vector * arrays, unsigned index)
{
unsigned i;
 
 
for (i = 0; i < arrays->num_arrays; i++) {
if (arrays->arrays[i].enabled) {
const size_t offset = index * arrays->arrays[i].true_stride;
 
(void) memcpy(dst, ((GLubyte *) arrays->arrays[i].data) + offset,
arrays->arrays[i].element_size);
 
dst += __GLX_PAD(arrays->arrays[i].element_size);
}
}
 
return dst;
}
 
 
struct array_state *
get_array_entry(const struct array_state_vector *arrays,
GLenum key, unsigned index)
{
unsigned i;
 
for (i = 0; i < arrays->num_arrays; i++) {
if ((arrays->arrays[i].key == key)
&& (arrays->arrays[i].index == index)) {
return &arrays->arrays[i];
}
}
 
return NULL;
}
 
 
static GLboolean
allocate_array_info_cache(struct array_state_vector *arrays,
size_t required_size)
{
#define MAX_HEADER_SIZE 20
if (arrays->array_info_cache_buffer_size < required_size) {
GLubyte *temp = realloc(arrays->array_info_cache_base,
required_size + MAX_HEADER_SIZE);
 
if (temp == NULL) {
return GL_FALSE;
}
 
arrays->array_info_cache_base = temp;
arrays->array_info_cache = temp + MAX_HEADER_SIZE;
arrays->array_info_cache_buffer_size = required_size;
}
 
arrays->array_info_cache_size = required_size;
return GL_TRUE;
}
 
 
/**
*/
void
fill_array_info_cache(struct array_state_vector *arrays)
{
GLboolean old_DrawArrays_possible;
unsigned i;
 
 
/* Determine how many arrays are enabled.
*/
 
arrays->enabled_client_array_count = 0;
old_DrawArrays_possible = arrays->old_DrawArrays_possible;
for (i = 0; i < arrays->num_arrays; i++) {
if (arrays->arrays[i].enabled) {
arrays->enabled_client_array_count++;
old_DrawArrays_possible &= arrays->arrays[i].old_DrawArrays_possible;
}
}
 
if (arrays->new_DrawArrays_possible) {
assert(!arrays->new_DrawArrays_possible);
}
else if (old_DrawArrays_possible) {
const size_t required_size = arrays->enabled_client_array_count * 12;
uint32_t *info;
 
 
if (!allocate_array_info_cache(arrays, required_size)) {
return;
}
 
 
info = (uint32_t *) arrays->array_info_cache;
for (i = 0; i < arrays->num_arrays; i++) {
if (arrays->arrays[i].enabled) {
*(info++) = arrays->arrays[i].data_type;
*(info++) = arrays->arrays[i].count;
*(info++) = arrays->arrays[i].key;
}
}
 
arrays->DrawArrays = emit_DrawArrays_old;
arrays->DrawElements = emit_DrawElements_old;
}
else {
arrays->DrawArrays = emit_DrawArrays_none;
arrays->DrawElements = emit_DrawElements_none;
}
 
arrays->array_info_cache_valid = GL_TRUE;
}
 
 
/**
* Emit a \c glDrawArrays command using the "none" protocol. That is,
* emit immediate-mode commands that are equivalent to the requiested
* \c glDrawArrays command. This is used with servers that don't support
* the OpenGL 1.1 / EXT_vertex_arrays DrawArrays protocol or in cases where
* vertex state is enabled that is not compatible with that protocol.
*/
void
emit_DrawArrays_none(GLenum mode, GLint first, GLsizei count)
{
struct glx_context *gc = __glXGetCurrentContext();
const __GLXattribute *state =
(const __GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
 
size_t single_vertex_size;
GLubyte *pc;
unsigned i;
static const uint16_t begin_cmd[2] = { 8, X_GLrop_Begin };
static const uint16_t end_cmd[2] = { 4, X_GLrop_End };
 
 
single_vertex_size = calculate_single_vertex_size_none(arrays);
 
pc = gc->pc;
 
(void) memcpy(pc, begin_cmd, 4);
*(int *) (pc + 4) = mode;
 
pc += 8;
 
for (i = 0; i < count; i++) {
if ((pc + single_vertex_size) >= gc->bufEnd) {
pc = __glXFlushRenderBuffer(gc, pc);
}
 
pc = emit_element_none(pc, arrays, first + i);
}
 
if ((pc + 4) >= gc->bufEnd) {
pc = __glXFlushRenderBuffer(gc, pc);
}
 
(void) memcpy(pc, end_cmd, 4);
pc += 4;
 
gc->pc = pc;
if (gc->pc > gc->limit) {
(void) __glXFlushRenderBuffer(gc, gc->pc);
}
}
 
 
/**
* Emit the header data for the GL 1.1 / EXT_vertex_arrays DrawArrays
* protocol.
*
* \param gc GLX context.
* \param arrays Array state.
* \param elements_per_request Location to store the number of elements that
* can fit in a single Render / RenderLarge
* command.
* \param total_request Total number of requests for a RenderLarge
* command. If a Render command is used, this
* will be zero.
* \param mode Drawing mode.
* \param count Number of vertices.
*
* \returns
* A pointer to the buffer for array data.
*/
static GLubyte *
emit_DrawArrays_header_old(struct glx_context * gc,
struct array_state_vector *arrays,
size_t * elements_per_request,
unsigned int *total_requests,
GLenum mode, GLsizei count)
{
size_t command_size;
size_t single_vertex_size;
const unsigned header_size = 16;
unsigned i;
GLubyte *pc;
 
 
/* Determine the size of the whole command. This includes the header,
* the ARRAY_INFO data and the array data. Once this size is calculated,
* it will be known whether a Render or RenderLarge command is needed.
*/
 
single_vertex_size = 0;
for (i = 0; i < arrays->num_arrays; i++) {
if (arrays->arrays[i].enabled) {
single_vertex_size += __GLX_PAD(arrays->arrays[i].element_size);
}
}
 
command_size = arrays->array_info_cache_size + header_size
+ (single_vertex_size * count);
 
 
/* Write the header for either a Render command or a RenderLarge
* command. After the header is written, write the ARRAY_INFO data.
*/
 
if (command_size > gc->maxSmallRenderCommandSize) {
/* maxSize is the maximum amount of data can be stuffed into a single
* packet. sz_xGLXRenderReq is added because bufSize is the maximum
* packet size minus sz_xGLXRenderReq.
*/
const size_t maxSize = (gc->bufSize + sz_xGLXRenderReq)
- sz_xGLXRenderLargeReq;
unsigned vertex_requests;
 
 
/* Calculate the number of data packets that will be required to send
* the whole command. To do this, the number of verticies that
* will fit in a single buffer must be calculated.
*
* The important value here is elements_per_request. This is the
* number of complete array elements that will fit in a single
* buffer. There may be some wasted space at the end of the buffer,
* but splitting elements across buffer boundries would be painful.
*/
 
elements_per_request[0] = maxSize / single_vertex_size;
 
vertex_requests = (count + elements_per_request[0] - 1)
/ elements_per_request[0];
 
*total_requests = vertex_requests + 1;
 
 
__glXFlushRenderBuffer(gc, gc->pc);
 
command_size += 4;
 
pc = ((GLubyte *) arrays->array_info_cache) - (header_size + 4);
*(uint32_t *) (pc + 0) = command_size;
*(uint32_t *) (pc + 4) = X_GLrop_DrawArrays;
*(uint32_t *) (pc + 8) = count;
*(uint32_t *) (pc + 12) = arrays->enabled_client_array_count;
*(uint32_t *) (pc + 16) = mode;
 
__glXSendLargeChunk(gc, 1, *total_requests, pc,
header_size + 4 + arrays->array_info_cache_size);
 
pc = gc->pc;
}
else {
if ((gc->pc + command_size) >= gc->bufEnd) {
(void) __glXFlushRenderBuffer(gc, gc->pc);
}
 
pc = gc->pc;
*(uint16_t *) (pc + 0) = command_size;
*(uint16_t *) (pc + 2) = X_GLrop_DrawArrays;
*(uint32_t *) (pc + 4) = count;
*(uint32_t *) (pc + 8) = arrays->enabled_client_array_count;
*(uint32_t *) (pc + 12) = mode;
 
pc += header_size;
 
(void) memcpy(pc, arrays->array_info_cache,
arrays->array_info_cache_size);
pc += arrays->array_info_cache_size;
 
*elements_per_request = count;
*total_requests = 0;
}
 
 
return pc;
}
 
 
/**
*/
void
emit_DrawArrays_old(GLenum mode, GLint first, GLsizei count)
{
struct glx_context *gc = __glXGetCurrentContext();
const __GLXattribute *state =
(const __GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
 
GLubyte *pc;
size_t elements_per_request;
unsigned total_requests = 0;
unsigned i;
size_t total_sent = 0;
 
 
pc = emit_DrawArrays_header_old(gc, arrays, &elements_per_request,
&total_requests, mode, count);
 
 
/* Write the arrays.
*/
 
if (total_requests == 0) {
assert(elements_per_request >= count);
 
for (i = 0; i < count; i++) {
pc = emit_element_old(pc, arrays, i + first);
}
 
assert(pc <= gc->bufEnd);
 
gc->pc = pc;
if (gc->pc > gc->limit) {
(void) __glXFlushRenderBuffer(gc, gc->pc);
}
}
else {
unsigned req;
 
 
for (req = 2; req <= total_requests; req++) {
if (count < elements_per_request) {
elements_per_request = count;
}
 
pc = gc->pc;
for (i = 0; i < elements_per_request; i++) {
pc = emit_element_old(pc, arrays, i + first);
}
 
first += elements_per_request;
 
total_sent += (size_t) (pc - gc->pc);
__glXSendLargeChunk(gc, req, total_requests, gc->pc, pc - gc->pc);
 
count -= elements_per_request;
}
}
}
 
 
void
emit_DrawElements_none(GLenum mode, GLsizei count, GLenum type,
const GLvoid * indices)
{
struct glx_context *gc = __glXGetCurrentContext();
const __GLXattribute *state =
(const __GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
static const uint16_t begin_cmd[2] = { 8, X_GLrop_Begin };
static const uint16_t end_cmd[2] = { 4, X_GLrop_End };
 
GLubyte *pc;
size_t single_vertex_size;
unsigned i;
 
 
single_vertex_size = calculate_single_vertex_size_none(arrays);
 
 
if ((gc->pc + single_vertex_size) >= gc->bufEnd) {
gc->pc = __glXFlushRenderBuffer(gc, gc->pc);
}
 
pc = gc->pc;
 
(void) memcpy(pc, begin_cmd, 4);
*(int *) (pc + 4) = mode;
 
pc += 8;
 
for (i = 0; i < count; i++) {
unsigned index = 0;
 
if ((pc + single_vertex_size) >= gc->bufEnd) {
pc = __glXFlushRenderBuffer(gc, pc);
}
 
switch (type) {
case GL_UNSIGNED_INT:
index = (unsigned) (((GLuint *) indices)[i]);
break;
case GL_UNSIGNED_SHORT:
index = (unsigned) (((GLushort *) indices)[i]);
break;
case GL_UNSIGNED_BYTE:
index = (unsigned) (((GLubyte *) indices)[i]);
break;
}
pc = emit_element_none(pc, arrays, index);
}
 
if ((pc + 4) >= gc->bufEnd) {
pc = __glXFlushRenderBuffer(gc, pc);
}
 
(void) memcpy(pc, end_cmd, 4);
pc += 4;
 
gc->pc = pc;
if (gc->pc > gc->limit) {
(void) __glXFlushRenderBuffer(gc, gc->pc);
}
}
 
 
/**
*/
void
emit_DrawElements_old(GLenum mode, GLsizei count, GLenum type,
const GLvoid * indices)
{
struct glx_context *gc = __glXGetCurrentContext();
const __GLXattribute *state =
(const __GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
 
GLubyte *pc;
size_t elements_per_request;
unsigned total_requests = 0;
unsigned i;
unsigned req;
unsigned req_element = 0;
 
 
pc = emit_DrawArrays_header_old(gc, arrays, &elements_per_request,
&total_requests, mode, count);
 
 
/* Write the arrays.
*/
 
req = 2;
while (count > 0) {
if (count < elements_per_request) {
elements_per_request = count;
}
 
switch (type) {
case GL_UNSIGNED_INT:{
const GLuint *ui_ptr = (const GLuint *) indices + req_element;
 
for (i = 0; i < elements_per_request; i++) {
const GLint index = (GLint) * (ui_ptr++);
pc = emit_element_old(pc, arrays, index);
}
break;
}
case GL_UNSIGNED_SHORT:{
const GLushort *us_ptr = (const GLushort *) indices + req_element;
 
for (i = 0; i < elements_per_request; i++) {
const GLint index = (GLint) * (us_ptr++);
pc = emit_element_old(pc, arrays, index);
}
break;
}
case GL_UNSIGNED_BYTE:{
const GLubyte *ub_ptr = (const GLubyte *) indices + req_element;
 
for (i = 0; i < elements_per_request; i++) {
const GLint index = (GLint) * (ub_ptr++);
pc = emit_element_old(pc, arrays, index);
}
break;
}
}
 
if (total_requests != 0) {
__glXSendLargeChunk(gc, req, total_requests, gc->pc, pc - gc->pc);
pc = gc->pc;
req++;
}
 
count -= elements_per_request;
req_element += elements_per_request;
}
 
 
assert((total_requests == 0) || ((req - 1) == total_requests));
 
if (total_requests == 0) {
assert(pc <= gc->bufEnd);
 
gc->pc = pc;
if (gc->pc > gc->limit) {
(void) __glXFlushRenderBuffer(gc, gc->pc);
}
}
}
 
 
/**
* Validate that the \c mode parameter to \c glDrawArrays, et. al. is valid.
* If it is not valid, then an error code is set in the GLX context.
*
* \returns
* \c GL_TRUE if the argument is valid, \c GL_FALSE if is not.
*/
static GLboolean
validate_mode(struct glx_context * gc, GLenum mode)
{
switch (mode) {
case GL_POINTS:
case GL_LINE_STRIP:
case GL_LINE_LOOP:
case GL_LINES:
case GL_TRIANGLE_STRIP:
case GL_TRIANGLE_FAN:
case GL_TRIANGLES:
case GL_QUAD_STRIP:
case GL_QUADS:
case GL_POLYGON:
break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return GL_FALSE;
}
 
return GL_TRUE;
}
 
 
/**
* Validate that the \c count parameter to \c glDrawArrays, et. al. is valid.
* A value less than zero is invalid and will result in \c GL_INVALID_VALUE
* being set. A value of zero will not result in an error being set, but
* will result in \c GL_FALSE being returned.
*
* \returns
* \c GL_TRUE if the argument is valid, \c GL_FALSE if it is not.
*/
static GLboolean
validate_count(struct glx_context * gc, GLsizei count)
{
if (count < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
}
 
return (count > 0);
}
 
 
/**
* Validate that the \c type parameter to \c glDrawElements, et. al. is
* valid. Only \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT, and
* \c GL_UNSIGNED_INT are valid.
*
* \returns
* \c GL_TRUE if the argument is valid, \c GL_FALSE if it is not.
*/
static GLboolean
validate_type(struct glx_context * gc, GLenum type)
{
switch (type) {
case GL_UNSIGNED_INT:
case GL_UNSIGNED_SHORT:
case GL_UNSIGNED_BYTE:
return GL_TRUE;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return GL_FALSE;
}
}
 
 
void
__indirect_glDrawArrays(GLenum mode, GLint first, GLsizei count)
{
struct glx_context *gc = __glXGetCurrentContext();
const __GLXattribute *state =
(const __GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
 
 
if (validate_mode(gc, mode) && validate_count(gc, count)) {
if (!arrays->array_info_cache_valid) {
fill_array_info_cache(arrays);
}
 
arrays->DrawArrays(mode, first, count);
}
}
 
 
void
__indirect_glArrayElement(GLint index)
{
struct glx_context *gc = __glXGetCurrentContext();
const __GLXattribute *state =
(const __GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
 
size_t single_vertex_size;
 
 
single_vertex_size = calculate_single_vertex_size_none(arrays);
 
if ((gc->pc + single_vertex_size) >= gc->bufEnd) {
gc->pc = __glXFlushRenderBuffer(gc, gc->pc);
}
 
gc->pc = emit_element_none(gc->pc, arrays, index);
 
if (gc->pc > gc->limit) {
(void) __glXFlushRenderBuffer(gc, gc->pc);
}
}
 
 
void
__indirect_glDrawElements(GLenum mode, GLsizei count, GLenum type,
const GLvoid * indices)
{
struct glx_context *gc = __glXGetCurrentContext();
const __GLXattribute *state =
(const __GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
 
 
if (validate_mode(gc, mode) && validate_count(gc, count)
&& validate_type(gc, type)) {
if (!arrays->array_info_cache_valid) {
fill_array_info_cache(arrays);
}
 
arrays->DrawElements(mode, count, type, indices);
}
}
 
 
void
__indirect_glDrawRangeElements(GLenum mode, GLuint start, GLuint end,
GLsizei count, GLenum type,
const GLvoid * indices)
{
struct glx_context *gc = __glXGetCurrentContext();
const __GLXattribute *state =
(const __GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
 
 
if (validate_mode(gc, mode) && validate_count(gc, count)
&& validate_type(gc, type)) {
if (end < start) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
 
if (!arrays->array_info_cache_valid) {
fill_array_info_cache(arrays);
}
 
arrays->DrawElements(mode, count, type, indices);
}
}
 
 
void
__indirect_glMultiDrawArrays(GLenum mode, const GLint *first,
const GLsizei *count, GLsizei primcount)
{
struct glx_context *gc = __glXGetCurrentContext();
const __GLXattribute *state =
(const __GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
GLsizei i;
 
 
if (validate_mode(gc, mode)) {
if (!arrays->array_info_cache_valid) {
fill_array_info_cache(arrays);
}
 
for (i = 0; i < primcount; i++) {
if (validate_count(gc, count[i])) {
arrays->DrawArrays(mode, first[i], count[i]);
}
}
}
}
 
 
void
__indirect_glMultiDrawElementsEXT(GLenum mode, const GLsizei * count,
GLenum type, const GLvoid * const * indices,
GLsizei primcount)
{
struct glx_context *gc = __glXGetCurrentContext();
const __GLXattribute *state =
(const __GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
GLsizei i;
 
 
if (validate_mode(gc, mode) && validate_type(gc, type)) {
if (!arrays->array_info_cache_valid) {
fill_array_info_cache(arrays);
}
 
for (i = 0; i < primcount; i++) {
if (validate_count(gc, count[i])) {
arrays->DrawElements(mode, count[i], type, indices[i]);
}
}
}
}
 
 
#define COMMON_ARRAY_DATA_INIT(a, PTR, TYPE, STRIDE, COUNT, NORMALIZED, HDR_SIZE, OPCODE) \
do { \
(a)->data = PTR; \
(a)->data_type = TYPE; \
(a)->user_stride = STRIDE; \
(a)->count = COUNT; \
(a)->normalized = NORMALIZED; \
\
(a)->element_size = __glXTypeSize( TYPE ) * COUNT; \
(a)->true_stride = (STRIDE == 0) \
? (a)->element_size : STRIDE; \
\
(a)->header_size = HDR_SIZE; \
((uint16_t *) (a)->header)[0] = __GLX_PAD((a)->header_size + (a)->element_size); \
((uint16_t *) (a)->header)[1] = OPCODE; \
} while(0)
 
 
void
__indirect_glVertexPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid * pointer)
{
static const uint16_t short_ops[5] = {
0, 0, X_GLrop_Vertex2sv, X_GLrop_Vertex3sv, X_GLrop_Vertex4sv
};
static const uint16_t int_ops[5] = {
0, 0, X_GLrop_Vertex2iv, X_GLrop_Vertex3iv, X_GLrop_Vertex4iv
};
static const uint16_t float_ops[5] = {
0, 0, X_GLrop_Vertex2fv, X_GLrop_Vertex3fv, X_GLrop_Vertex4fv
};
static const uint16_t double_ops[5] = {
0, 0, X_GLrop_Vertex2dv, X_GLrop_Vertex3dv, X_GLrop_Vertex4dv
};
uint16_t opcode;
struct glx_context *gc = __glXGetCurrentContext();
__GLXattribute *state = (__GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
struct array_state *a;
 
 
if (size < 2 || size > 4 || stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
 
switch (type) {
case GL_SHORT:
opcode = short_ops[size];
break;
case GL_INT:
opcode = int_ops[size];
break;
case GL_FLOAT:
opcode = float_ops[size];
break;
case GL_DOUBLE:
opcode = double_ops[size];
break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
 
a = get_array_entry(arrays, GL_VERTEX_ARRAY, 0);
assert(a != NULL);
COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, size, GL_FALSE, 4,
opcode);
 
if (a->enabled) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
 
 
void
__indirect_glNormalPointer(GLenum type, GLsizei stride,
const GLvoid * pointer)
{
uint16_t opcode;
struct glx_context *gc = __glXGetCurrentContext();
__GLXattribute *state = (__GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
struct array_state *a;
 
 
if (stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
 
switch (type) {
case GL_BYTE:
opcode = X_GLrop_Normal3bv;
break;
case GL_SHORT:
opcode = X_GLrop_Normal3sv;
break;
case GL_INT:
opcode = X_GLrop_Normal3iv;
break;
case GL_FLOAT:
opcode = X_GLrop_Normal3fv;
break;
case GL_DOUBLE:
opcode = X_GLrop_Normal3dv;
break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
 
a = get_array_entry(arrays, GL_NORMAL_ARRAY, 0);
assert(a != NULL);
COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, 3, GL_TRUE, 4, opcode);
 
if (a->enabled) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
 
 
void
__indirect_glColorPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid * pointer)
{
static const uint16_t byte_ops[5] = {
0, 0, 0, X_GLrop_Color3bv, X_GLrop_Color4bv
};
static const uint16_t ubyte_ops[5] = {
0, 0, 0, X_GLrop_Color3ubv, X_GLrop_Color4ubv
};
static const uint16_t short_ops[5] = {
0, 0, 0, X_GLrop_Color3sv, X_GLrop_Color4sv
};
static const uint16_t ushort_ops[5] = {
0, 0, 0, X_GLrop_Color3usv, X_GLrop_Color4usv
};
static const uint16_t int_ops[5] = {
0, 0, 0, X_GLrop_Color3iv, X_GLrop_Color4iv
};
static const uint16_t uint_ops[5] = {
0, 0, 0, X_GLrop_Color3uiv, X_GLrop_Color4uiv
};
static const uint16_t float_ops[5] = {
0, 0, 0, X_GLrop_Color3fv, X_GLrop_Color4fv
};
static const uint16_t double_ops[5] = {
0, 0, 0, X_GLrop_Color3dv, X_GLrop_Color4dv
};
uint16_t opcode;
struct glx_context *gc = __glXGetCurrentContext();
__GLXattribute *state = (__GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
struct array_state *a;
 
 
if (size < 3 || size > 4 || stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
 
switch (type) {
case GL_BYTE:
opcode = byte_ops[size];
break;
case GL_UNSIGNED_BYTE:
opcode = ubyte_ops[size];
break;
case GL_SHORT:
opcode = short_ops[size];
break;
case GL_UNSIGNED_SHORT:
opcode = ushort_ops[size];
break;
case GL_INT:
opcode = int_ops[size];
break;
case GL_UNSIGNED_INT:
opcode = uint_ops[size];
break;
case GL_FLOAT:
opcode = float_ops[size];
break;
case GL_DOUBLE:
opcode = double_ops[size];
break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
 
a = get_array_entry(arrays, GL_COLOR_ARRAY, 0);
assert(a != NULL);
COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, size, GL_TRUE, 4, opcode);
 
if (a->enabled) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
 
 
void
__indirect_glIndexPointer(GLenum type, GLsizei stride, const GLvoid * pointer)
{
uint16_t opcode;
struct glx_context *gc = __glXGetCurrentContext();
__GLXattribute *state = (__GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
struct array_state *a;
 
 
if (stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
 
switch (type) {
case GL_UNSIGNED_BYTE:
opcode = X_GLrop_Indexubv;
break;
case GL_SHORT:
opcode = X_GLrop_Indexsv;
break;
case GL_INT:
opcode = X_GLrop_Indexiv;
break;
case GL_FLOAT:
opcode = X_GLrop_Indexfv;
break;
case GL_DOUBLE:
opcode = X_GLrop_Indexdv;
break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
 
a = get_array_entry(arrays, GL_INDEX_ARRAY, 0);
assert(a != NULL);
COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, 1, GL_FALSE, 4, opcode);
 
if (a->enabled) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
 
 
void
__indirect_glEdgeFlagPointer(GLsizei stride, const GLvoid * pointer)
{
struct glx_context *gc = __glXGetCurrentContext();
__GLXattribute *state = (__GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
struct array_state *a;
 
 
if (stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
 
 
a = get_array_entry(arrays, GL_EDGE_FLAG_ARRAY, 0);
assert(a != NULL);
COMMON_ARRAY_DATA_INIT(a, pointer, GL_UNSIGNED_BYTE, stride, 1, GL_FALSE,
4, X_GLrop_EdgeFlagv);
 
if (a->enabled) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
 
 
void
__indirect_glTexCoordPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid * pointer)
{
static const uint16_t short_ops[5] = {
0, X_GLrop_TexCoord1sv, X_GLrop_TexCoord2sv, X_GLrop_TexCoord3sv,
X_GLrop_TexCoord4sv
};
static const uint16_t int_ops[5] = {
0, X_GLrop_TexCoord1iv, X_GLrop_TexCoord2iv, X_GLrop_TexCoord3iv,
X_GLrop_TexCoord4iv
};
static const uint16_t float_ops[5] = {
0, X_GLrop_TexCoord1dv, X_GLrop_TexCoord2fv, X_GLrop_TexCoord3fv,
X_GLrop_TexCoord4fv
};
static const uint16_t double_ops[5] = {
0, X_GLrop_TexCoord1dv, X_GLrop_TexCoord2dv, X_GLrop_TexCoord3dv,
X_GLrop_TexCoord4dv
};
 
static const uint16_t mshort_ops[5] = {
0, X_GLrop_MultiTexCoord1svARB, X_GLrop_MultiTexCoord2svARB,
X_GLrop_MultiTexCoord3svARB, X_GLrop_MultiTexCoord4svARB
};
static const uint16_t mint_ops[5] = {
0, X_GLrop_MultiTexCoord1ivARB, X_GLrop_MultiTexCoord2ivARB,
X_GLrop_MultiTexCoord3ivARB, X_GLrop_MultiTexCoord4ivARB
};
static const uint16_t mfloat_ops[5] = {
0, X_GLrop_MultiTexCoord1dvARB, X_GLrop_MultiTexCoord2fvARB,
X_GLrop_MultiTexCoord3fvARB, X_GLrop_MultiTexCoord4fvARB
};
static const uint16_t mdouble_ops[5] = {
0, X_GLrop_MultiTexCoord1dvARB, X_GLrop_MultiTexCoord2dvARB,
X_GLrop_MultiTexCoord3dvARB, X_GLrop_MultiTexCoord4dvARB
};
 
uint16_t opcode;
struct glx_context *gc = __glXGetCurrentContext();
__GLXattribute *state = (__GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
struct array_state *a;
unsigned header_size;
unsigned index;
 
 
if (size < 1 || size > 4 || stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
 
index = arrays->active_texture_unit;
if (index == 0) {
switch (type) {
case GL_SHORT:
opcode = short_ops[size];
break;
case GL_INT:
opcode = int_ops[size];
break;
case GL_FLOAT:
opcode = float_ops[size];
break;
case GL_DOUBLE:
opcode = double_ops[size];
break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
 
header_size = 4;
}
else {
switch (type) {
case GL_SHORT:
opcode = mshort_ops[size];
break;
case GL_INT:
opcode = mint_ops[size];
break;
case GL_FLOAT:
opcode = mfloat_ops[size];
break;
case GL_DOUBLE:
opcode = mdouble_ops[size];
break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
 
header_size = 8;
}
 
a = get_array_entry(arrays, GL_TEXTURE_COORD_ARRAY, index);
assert(a != NULL);
COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, size, GL_FALSE,
header_size, opcode);
 
if (a->enabled) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
 
 
void
__indirect_glSecondaryColorPointer(GLint size, GLenum type, GLsizei stride,
const GLvoid * pointer)
{
uint16_t opcode;
struct glx_context *gc = __glXGetCurrentContext();
__GLXattribute *state = (__GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
struct array_state *a;
 
 
if (size != 3 || stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
 
switch (type) {
case GL_BYTE:
opcode = 4126;
break;
case GL_UNSIGNED_BYTE:
opcode = 4131;
break;
case GL_SHORT:
opcode = 4127;
break;
case GL_UNSIGNED_SHORT:
opcode = 4132;
break;
case GL_INT:
opcode = 4128;
break;
case GL_UNSIGNED_INT:
opcode = 4133;
break;
case GL_FLOAT:
opcode = 4129;
break;
case GL_DOUBLE:
opcode = 4130;
break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
 
a = get_array_entry(arrays, GL_SECONDARY_COLOR_ARRAY, 0);
if (a == NULL) {
__glXSetError(gc, GL_INVALID_OPERATION);
return;
}
 
COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, size, GL_TRUE, 4, opcode);
 
if (a->enabled) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
 
 
void
__indirect_glFogCoordPointer(GLenum type, GLsizei stride,
const GLvoid * pointer)
{
uint16_t opcode;
struct glx_context *gc = __glXGetCurrentContext();
__GLXattribute *state = (__GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
struct array_state *a;
 
 
if (stride < 0) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
 
switch (type) {
case GL_FLOAT:
opcode = 4124;
break;
case GL_DOUBLE:
opcode = 4125;
break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
 
a = get_array_entry(arrays, GL_FOG_COORD_ARRAY, 0);
if (a == NULL) {
__glXSetError(gc, GL_INVALID_OPERATION);
return;
}
 
COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, 1, GL_FALSE, 4, opcode);
 
if (a->enabled) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
 
 
void
__indirect_glVertexAttribPointer(GLuint index, GLint size,
GLenum type, GLboolean normalized,
GLsizei stride, const GLvoid * pointer)
{
static const uint16_t short_ops[5] = { 0, 4189, 4190, 4191, 4192 };
static const uint16_t float_ops[5] = { 0, 4193, 4194, 4195, 4196 };
static const uint16_t double_ops[5] = { 0, 4197, 4198, 4199, 4200 };
 
uint16_t opcode;
struct glx_context *gc = __glXGetCurrentContext();
__GLXattribute *state = (__GLXattribute *) (gc->client_state_private);
struct array_state_vector *arrays = state->array_state;
struct array_state *a;
unsigned true_immediate_count;
unsigned true_immediate_size;
 
 
if ((size < 1) || (size > 4) || (stride < 0)
|| (index > arrays->num_vertex_program_attribs)) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
 
if (normalized && (type != GL_FLOAT) && (type != GL_DOUBLE)) {
switch (type) {
case GL_BYTE:
opcode = X_GLrop_VertexAttrib4NbvARB;
break;
case GL_UNSIGNED_BYTE:
opcode = X_GLrop_VertexAttrib4NubvARB;
break;
case GL_SHORT:
opcode = X_GLrop_VertexAttrib4NsvARB;
break;
case GL_UNSIGNED_SHORT:
opcode = X_GLrop_VertexAttrib4NusvARB;
break;
case GL_INT:
opcode = X_GLrop_VertexAttrib4NivARB;
break;
case GL_UNSIGNED_INT:
opcode = X_GLrop_VertexAttrib4NuivARB;
break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
 
true_immediate_count = 4;
}
else {
true_immediate_count = size;
 
switch (type) {
case GL_BYTE:
opcode = X_GLrop_VertexAttrib4bvARB;
true_immediate_count = 4;
break;
case GL_UNSIGNED_BYTE:
opcode = X_GLrop_VertexAttrib4ubvARB;
true_immediate_count = 4;
break;
case GL_SHORT:
opcode = short_ops[size];
break;
case GL_UNSIGNED_SHORT:
opcode = X_GLrop_VertexAttrib4usvARB;
true_immediate_count = 4;
break;
case GL_INT:
opcode = X_GLrop_VertexAttrib4ivARB;
true_immediate_count = 4;
break;
case GL_UNSIGNED_INT:
opcode = X_GLrop_VertexAttrib4uivARB;
true_immediate_count = 4;
break;
case GL_FLOAT:
opcode = float_ops[size];
break;
case GL_DOUBLE:
opcode = double_ops[size];
break;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
}
 
a = get_array_entry(arrays, GL_VERTEX_ATTRIB_ARRAY_POINTER, index);
if (a == NULL) {
__glXSetError(gc, GL_INVALID_OPERATION);
return;
}
 
COMMON_ARRAY_DATA_INIT(a, pointer, type, stride, size, normalized, 8,
opcode);
 
true_immediate_size = __glXTypeSize(type) * true_immediate_count;
((uint16_t *) (a)->header)[0] = __GLX_PAD(a->header_size
+ true_immediate_size);
 
if (a->enabled) {
arrays->array_info_cache_valid = GL_FALSE;
}
}
 
 
/**
* I don't have 100% confidence that this is correct. The different rules
* about whether or not generic vertex attributes alias "classic" vertex
* attributes (i.e., attrib1 ?= primary color) between ARB_vertex_program,
* ARB_vertex_shader, and NV_vertex_program are a bit confusing. My
* feeling is that the client-side doesn't have to worry about it. The
* client just sends all the data to the server and lets the server deal
* with it.
*/
void
__indirect_glVertexAttribPointerNV(GLuint index, GLint size,
GLenum type, GLsizei stride,
const GLvoid * pointer)
{
struct glx_context *gc = __glXGetCurrentContext();
GLboolean normalized = GL_FALSE;
 
 
switch (type) {
case GL_UNSIGNED_BYTE:
if (size != 4) {
__glXSetError(gc, GL_INVALID_VALUE);
return;
}
normalized = GL_TRUE;
 
case GL_SHORT:
case GL_FLOAT:
case GL_DOUBLE:
__indirect_glVertexAttribPointer(index, size, type,
normalized, stride, pointer);
return;
default:
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
}
 
 
void
__indirect_glClientActiveTexture(GLenum texture)
{
struct glx_context *const gc = __glXGetCurrentContext();
__GLXattribute *const state =
(__GLXattribute *) (gc->client_state_private);
struct array_state_vector *const arrays = state->array_state;
const GLint unit = (GLint) texture - GL_TEXTURE0;
 
 
if ((unit < 0) || (unit >= arrays->num_texture_units)) {
__glXSetError(gc, GL_INVALID_ENUM);
return;
}
 
arrays->active_texture_unit = unit;
}
 
 
/**
* Modify the enable state for the selected array
*/
GLboolean
__glXSetArrayEnable(__GLXattribute * state, GLenum key, unsigned index,
GLboolean enable)
{
struct array_state_vector *arrays = state->array_state;
struct array_state *a;
 
 
/* Texture coordinate arrays have an implict index set when the
* application calls glClientActiveTexture.
*/
if (key == GL_TEXTURE_COORD_ARRAY) {
index = arrays->active_texture_unit;
}
 
a = get_array_entry(arrays, key, index);
 
if ((a != NULL) && (a->enabled != enable)) {
a->enabled = enable;
arrays->array_info_cache_valid = GL_FALSE;
}
 
return (a != NULL);
}
 
 
void
__glXArrayDisableAll(__GLXattribute * state)
{
struct array_state_vector *arrays = state->array_state;
unsigned i;
 
 
for (i = 0; i < arrays->num_arrays; i++) {
arrays->arrays[i].enabled = GL_FALSE;
}
 
arrays->array_info_cache_valid = GL_FALSE;
}
 
 
/**
*/
GLboolean
__glXGetArrayEnable(const __GLXattribute * const state,
GLenum key, unsigned index, GLintptr * dest)
{
const struct array_state_vector *arrays = state->array_state;
const struct array_state *a =
get_array_entry((struct array_state_vector *) arrays,
key, index);
 
if (a != NULL) {
*dest = (GLintptr) a->enabled;
}
 
return (a != NULL);
}
 
 
/**
*/
GLboolean
__glXGetArrayType(const __GLXattribute * const state,
GLenum key, unsigned index, GLintptr * dest)
{
const struct array_state_vector *arrays = state->array_state;
const struct array_state *a =
get_array_entry((struct array_state_vector *) arrays,
key, index);
 
if (a != NULL) {
*dest = (GLintptr) a->data_type;
}
 
return (a != NULL);
}
 
 
/**
*/
GLboolean
__glXGetArraySize(const __GLXattribute * const state,
GLenum key, unsigned index, GLintptr * dest)
{
const struct array_state_vector *arrays = state->array_state;
const struct array_state *a =
get_array_entry((struct array_state_vector *) arrays,
key, index);
 
if (a != NULL) {
*dest = (GLintptr) a->count;
}
 
return (a != NULL);
}
 
 
/**
*/
GLboolean
__glXGetArrayStride(const __GLXattribute * const state,
GLenum key, unsigned index, GLintptr * dest)
{
const struct array_state_vector *arrays = state->array_state;
const struct array_state *a =
get_array_entry((struct array_state_vector *) arrays,
key, index);
 
if (a != NULL) {
*dest = (GLintptr) a->user_stride;
}
 
return (a != NULL);
}
 
 
/**
*/
GLboolean
__glXGetArrayPointer(const __GLXattribute * const state,
GLenum key, unsigned index, void **dest)
{
const struct array_state_vector *arrays = state->array_state;
const struct array_state *a =
get_array_entry((struct array_state_vector *) arrays,
key, index);
 
 
if (a != NULL) {
*dest = (void *) (a->data);
}
 
return (a != NULL);
}
 
 
/**
*/
GLboolean
__glXGetArrayNormalized(const __GLXattribute * const state,
GLenum key, unsigned index, GLintptr * dest)
{
const struct array_state_vector *arrays = state->array_state;
const struct array_state *a =
get_array_entry((struct array_state_vector *) arrays,
key, index);
 
 
if (a != NULL) {
*dest = (GLintptr) a->normalized;
}
 
return (a != NULL);
}
 
 
/**
*/
GLuint
__glXGetActiveTextureUnit(const __GLXattribute * const state)
{
return state->array_state->active_texture_unit;
}
 
 
void
__glXPushArrayState(__GLXattribute * state)
{
struct array_state_vector *arrays = state->array_state;
struct array_stack_state *stack =
&arrays->stack[(arrays->stack_index * arrays->num_arrays)];
unsigned i;
 
/* XXX are we pushing _all_ the necessary fields? */
for (i = 0; i < arrays->num_arrays; i++) {
stack[i].data = arrays->arrays[i].data;
stack[i].data_type = arrays->arrays[i].data_type;
stack[i].user_stride = arrays->arrays[i].user_stride;
stack[i].count = arrays->arrays[i].count;
stack[i].key = arrays->arrays[i].key;
stack[i].index = arrays->arrays[i].index;
stack[i].enabled = arrays->arrays[i].enabled;
}
 
arrays->active_texture_unit_stack[arrays->stack_index] =
arrays->active_texture_unit;
 
arrays->stack_index++;
}
 
 
void
__glXPopArrayState(__GLXattribute * state)
{
struct array_state_vector *arrays = state->array_state;
struct array_stack_state *stack;
unsigned i;
 
 
arrays->stack_index--;
stack = &arrays->stack[(arrays->stack_index * arrays->num_arrays)];
 
for (i = 0; i < arrays->num_arrays; i++) {
switch (stack[i].key) {
case GL_NORMAL_ARRAY:
__indirect_glNormalPointer(stack[i].data_type,
stack[i].user_stride, stack[i].data);
break;
case GL_COLOR_ARRAY:
__indirect_glColorPointer(stack[i].count,
stack[i].data_type,
stack[i].user_stride, stack[i].data);
break;
case GL_INDEX_ARRAY:
__indirect_glIndexPointer(stack[i].data_type,
stack[i].user_stride, stack[i].data);
break;
case GL_EDGE_FLAG_ARRAY:
__indirect_glEdgeFlagPointer(stack[i].user_stride, stack[i].data);
break;
case GL_TEXTURE_COORD_ARRAY:
arrays->active_texture_unit = stack[i].index;
__indirect_glTexCoordPointer(stack[i].count,
stack[i].data_type,
stack[i].user_stride, stack[i].data);
break;
case GL_SECONDARY_COLOR_ARRAY:
__indirect_glSecondaryColorPointer(stack[i].count,
stack[i].data_type,
stack[i].user_stride,
stack[i].data);
break;
case GL_FOG_COORDINATE_ARRAY:
__indirect_glFogCoordPointer(stack[i].data_type,
stack[i].user_stride, stack[i].data);
break;
 
}
 
__glXSetArrayEnable(state, stack[i].key, stack[i].index,
stack[i].enabled);
}
 
arrays->active_texture_unit =
arrays->active_texture_unit_stack[arrays->stack_index];
}