Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 5563 → Rev 5564

/contrib/sdk/sources/Mesa/mesa-10.6.0/src/gallium/drivers/freedreno/a3xx/fd3_emit.c
0,0 → 1,932
/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
 
/*
* Copyright (C) 2013 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
 
#include "pipe/p_state.h"
#include "util/u_string.h"
#include "util/u_memory.h"
#include "util/u_helpers.h"
#include "util/u_format.h"
 
#include "freedreno_resource.h"
 
#include "fd3_emit.h"
#include "fd3_blend.h"
#include "fd3_context.h"
#include "fd3_program.h"
#include "fd3_rasterizer.h"
#include "fd3_texture.h"
#include "fd3_format.h"
#include "fd3_zsa.h"
 
/* regid: base const register
* prsc or dwords: buffer containing constant values
* sizedwords: size of const value buffer
*/
void
fd3_emit_constant(struct fd_ringbuffer *ring,
enum adreno_state_block sb,
uint32_t regid, uint32_t offset, uint32_t sizedwords,
const uint32_t *dwords, struct pipe_resource *prsc)
{
uint32_t i, sz;
enum adreno_state_src src;
 
if (prsc) {
sz = 0;
src = SS_INDIRECT;
} else {
sz = sizedwords;
src = SS_DIRECT;
}
 
OUT_PKT3(ring, CP_LOAD_STATE, 2 + sz);
OUT_RING(ring, CP_LOAD_STATE_0_DST_OFF(regid/2) |
CP_LOAD_STATE_0_STATE_SRC(src) |
CP_LOAD_STATE_0_STATE_BLOCK(sb) |
CP_LOAD_STATE_0_NUM_UNIT(sizedwords/2));
if (prsc) {
struct fd_bo *bo = fd_resource(prsc)->bo;
OUT_RELOC(ring, bo, offset,
CP_LOAD_STATE_1_STATE_TYPE(ST_CONSTANTS), 0);
} else {
OUT_RING(ring, CP_LOAD_STATE_1_EXT_SRC_ADDR(0) |
CP_LOAD_STATE_1_STATE_TYPE(ST_CONSTANTS));
dwords = (uint32_t *)&((uint8_t *)dwords)[offset];
}
for (i = 0; i < sz; i++) {
OUT_RING(ring, dwords[i]);
}
}
 
static void
emit_constants(struct fd_ringbuffer *ring,
enum adreno_state_block sb,
struct fd_constbuf_stateobj *constbuf,
struct ir3_shader_variant *shader,
bool emit_immediates)
{
uint32_t enabled_mask = constbuf->enabled_mask;
uint32_t max_const;
int i;
 
// XXX TODO only emit dirty consts.. but we need to keep track if
// they are clobbered by a clear, gmem2mem, or mem2gmem..
constbuf->dirty_mask = enabled_mask;
 
/* in particular, with binning shader we may end up with unused
* consts, ie. we could end up w/ constlen that is smaller
* than first_immediate. In that case truncate the user consts
* early to avoid HLSQ lockup caused by writing too many consts
*/
max_const = MIN2(shader->first_driver_param, shader->constlen);
 
/* emit user constants: */
if (enabled_mask & 1) {
const unsigned index = 0;
struct pipe_constant_buffer *cb = &constbuf->cb[index];
unsigned size = align(cb->buffer_size, 4) / 4; /* size in dwords */
 
// I expect that size should be a multiple of vec4's:
assert(size == align(size, 4));
 
/* and even if the start of the const buffer is before
* first_immediate, the end may not be:
*/
size = MIN2(size, 4 * max_const);
 
if (size && constbuf->dirty_mask & (1 << index)) {
fd3_emit_constant(ring, sb, 0,
cb->buffer_offset, size,
cb->user_buffer, cb->buffer);
constbuf->dirty_mask &= ~(1 << index);
}
 
enabled_mask &= ~(1 << index);
}
 
if (shader->constlen > shader->first_driver_param) {
uint32_t params = MIN2(4, shader->constlen - shader->first_driver_param);
/* emit ubos: */
OUT_PKT3(ring, CP_LOAD_STATE, 2 + params * 4);
OUT_RING(ring, CP_LOAD_STATE_0_DST_OFF(shader->first_driver_param * 2) |
CP_LOAD_STATE_0_STATE_SRC(SS_DIRECT) |
CP_LOAD_STATE_0_STATE_BLOCK(sb) |
CP_LOAD_STATE_0_NUM_UNIT(params * 2));
OUT_RING(ring, CP_LOAD_STATE_1_EXT_SRC_ADDR(0) |
CP_LOAD_STATE_1_STATE_TYPE(ST_CONSTANTS));
 
for (i = 1; i <= params * 4; i++) {
struct pipe_constant_buffer *cb = &constbuf->cb[i];
assert(!cb->user_buffer);
if ((enabled_mask & (1 << i)) && cb->buffer)
OUT_RELOC(ring, fd_resource(cb->buffer)->bo, cb->buffer_offset, 0, 0);
else
OUT_RING(ring, 0xbad00000 | ((i - 1) << 16));
}
}
 
/* emit shader immediates: */
if (shader && emit_immediates) {
int size = shader->immediates_count;
uint32_t base = shader->first_immediate;
 
/* truncate size to avoid writing constants that shader
* does not use:
*/
size = MIN2(size + base, shader->constlen) - base;
 
/* convert out of vec4: */
base *= 4;
size *= 4;
 
if (size > 0) {
fd3_emit_constant(ring, sb, base,
0, size, shader->immediates[0].val, NULL);
}
}
}
 
#define VERT_TEX_OFF 0
#define FRAG_TEX_OFF 16
#define BASETABLE_SZ A3XX_MAX_MIP_LEVELS
 
static void
emit_textures(struct fd_context *ctx, struct fd_ringbuffer *ring,
enum adreno_state_block sb, struct fd_texture_stateobj *tex)
{
static const unsigned tex_off[] = {
[SB_VERT_TEX] = VERT_TEX_OFF,
[SB_FRAG_TEX] = FRAG_TEX_OFF,
};
static const enum adreno_state_block mipaddr[] = {
[SB_VERT_TEX] = SB_VERT_MIPADDR,
[SB_FRAG_TEX] = SB_FRAG_MIPADDR,
};
static const uint32_t bcolor_reg[] = {
[SB_VERT_TEX] = REG_A3XX_TPL1_TP_VS_BORDER_COLOR_BASE_ADDR,
[SB_FRAG_TEX] = REG_A3XX_TPL1_TP_FS_BORDER_COLOR_BASE_ADDR,
};
struct fd3_context *fd3_ctx = fd3_context(ctx);
unsigned i, j, off;
void *ptr;
 
u_upload_alloc(fd3_ctx->border_color_uploader,
0, 2 * PIPE_MAX_SAMPLERS * BORDERCOLOR_SIZE, &off,
&fd3_ctx->border_color_buf,
&ptr);
 
if (tex->num_samplers > 0) {
/* output sampler state: */
OUT_PKT3(ring, CP_LOAD_STATE, 2 + (2 * tex->num_samplers));
OUT_RING(ring, CP_LOAD_STATE_0_DST_OFF(tex_off[sb]) |
CP_LOAD_STATE_0_STATE_SRC(SS_DIRECT) |
CP_LOAD_STATE_0_STATE_BLOCK(sb) |
CP_LOAD_STATE_0_NUM_UNIT(tex->num_samplers));
OUT_RING(ring, CP_LOAD_STATE_1_STATE_TYPE(ST_SHADER) |
CP_LOAD_STATE_1_EXT_SRC_ADDR(0));
for (i = 0; i < tex->num_samplers; i++) {
static const struct fd3_sampler_stateobj dummy_sampler = {};
const struct fd3_sampler_stateobj *sampler = tex->samplers[i] ?
fd3_sampler_stateobj(tex->samplers[i]) :
&dummy_sampler;
uint16_t *bcolor = (uint16_t *)((uint8_t *)ptr +
(BORDERCOLOR_SIZE * tex_off[sb]) +
(BORDERCOLOR_SIZE * i));
uint32_t *bcolor32 = (uint32_t *)&bcolor[16];
 
/*
* XXX HACK ALERT XXX
*
* The border colors need to be swizzled in a particular
* format-dependent order. Even though samplers don't know about
* formats, we can assume that with a GL state tracker, there's a
* 1:1 correspondence between sampler and texture. Take advantage
* of that knowledge.
*/
if (i < tex->num_textures && tex->textures[i]) {
const struct util_format_description *desc =
util_format_description(tex->textures[i]->format);
for (j = 0; j < 4; j++) {
if (desc->swizzle[j] >= 4)
continue;
 
const struct util_format_channel_description *chan =
&desc->channel[desc->swizzle[j]];
int size = chan->size;
 
/* The Z16 texture format we use seems to look in the
* 32-bit border color slots
*/
if (desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS)
size = 32;
 
/* Formats like R11G11B10 or RGB9_E5 don't specify
* per-channel sizes properly.
*/
if (desc->layout == UTIL_FORMAT_LAYOUT_OTHER)
size = 16;
 
if (chan->pure_integer && size > 16)
bcolor32[desc->swizzle[j] + 4] =
sampler->base.border_color.i[j];
else if (size > 16)
bcolor32[desc->swizzle[j]] =
fui(sampler->base.border_color.f[j]);
else if (chan->pure_integer)
bcolor[desc->swizzle[j] + 8] =
sampler->base.border_color.i[j];
else
bcolor[desc->swizzle[j]] =
util_float_to_half(sampler->base.border_color.f[j]);
}
}
 
OUT_RING(ring, sampler->texsamp0);
OUT_RING(ring, sampler->texsamp1);
}
}
 
if (tex->num_textures > 0) {
/* emit texture state: */
OUT_PKT3(ring, CP_LOAD_STATE, 2 + (4 * tex->num_textures));
OUT_RING(ring, CP_LOAD_STATE_0_DST_OFF(tex_off[sb]) |
CP_LOAD_STATE_0_STATE_SRC(SS_DIRECT) |
CP_LOAD_STATE_0_STATE_BLOCK(sb) |
CP_LOAD_STATE_0_NUM_UNIT(tex->num_textures));
OUT_RING(ring, CP_LOAD_STATE_1_STATE_TYPE(ST_CONSTANTS) |
CP_LOAD_STATE_1_EXT_SRC_ADDR(0));
for (i = 0; i < tex->num_textures; i++) {
static const struct fd3_pipe_sampler_view dummy_view = {};
const struct fd3_pipe_sampler_view *view = tex->textures[i] ?
fd3_pipe_sampler_view(tex->textures[i]) :
&dummy_view;
OUT_RING(ring, view->texconst0);
OUT_RING(ring, view->texconst1);
OUT_RING(ring, view->texconst2 |
A3XX_TEX_CONST_2_INDX(BASETABLE_SZ * i));
OUT_RING(ring, view->texconst3);
}
 
/* emit mipaddrs: */
OUT_PKT3(ring, CP_LOAD_STATE, 2 + (BASETABLE_SZ * tex->num_textures));
OUT_RING(ring, CP_LOAD_STATE_0_DST_OFF(BASETABLE_SZ * tex_off[sb]) |
CP_LOAD_STATE_0_STATE_SRC(SS_DIRECT) |
CP_LOAD_STATE_0_STATE_BLOCK(mipaddr[sb]) |
CP_LOAD_STATE_0_NUM_UNIT(BASETABLE_SZ * tex->num_textures));
OUT_RING(ring, CP_LOAD_STATE_1_STATE_TYPE(ST_CONSTANTS) |
CP_LOAD_STATE_1_EXT_SRC_ADDR(0));
for (i = 0; i < tex->num_textures; i++) {
static const struct fd3_pipe_sampler_view dummy_view = {
.base.u.tex.first_level = 1,
};
const struct fd3_pipe_sampler_view *view = tex->textures[i] ?
fd3_pipe_sampler_view(tex->textures[i]) :
&dummy_view;
struct fd_resource *rsc = fd_resource(view->base.texture);
unsigned start = view->base.u.tex.first_level;
unsigned end = view->base.u.tex.last_level;
 
for (j = 0; j < (end - start + 1); j++) {
struct fd_resource_slice *slice =
fd_resource_slice(rsc, j + start);
OUT_RELOC(ring, rsc->bo, slice->offset, 0, 0);
}
 
/* pad the remaining entries w/ null: */
for (; j < BASETABLE_SZ; j++) {
OUT_RING(ring, 0x00000000);
}
}
}
 
OUT_PKT0(ring, bcolor_reg[sb], 1);
OUT_RELOC(ring, fd_resource(fd3_ctx->border_color_buf)->bo, off, 0, 0);
 
u_upload_unmap(fd3_ctx->border_color_uploader);
}
 
/* emit texture state for mem->gmem restore operation.. eventually it would
* be good to get rid of this and use normal CSO/etc state for more of these
* special cases, but for now the compiler is not sufficient..
*
* Also, for using normal state, not quite sure how to handle the special
* case format (fd3_gmem_restore_format()) stuff for restoring depth/stencil.
*/
void
fd3_emit_gmem_restore_tex(struct fd_ringbuffer *ring,
struct pipe_surface **psurf,
int bufs)
{
int i, j;
 
/* output sampler state: */
OUT_PKT3(ring, CP_LOAD_STATE, 2 + 2 * bufs);
OUT_RING(ring, CP_LOAD_STATE_0_DST_OFF(FRAG_TEX_OFF) |
CP_LOAD_STATE_0_STATE_SRC(SS_DIRECT) |
CP_LOAD_STATE_0_STATE_BLOCK(SB_FRAG_TEX) |
CP_LOAD_STATE_0_NUM_UNIT(bufs));
OUT_RING(ring, CP_LOAD_STATE_1_STATE_TYPE(ST_SHADER) |
CP_LOAD_STATE_1_EXT_SRC_ADDR(0));
for (i = 0; i < bufs; i++) {
OUT_RING(ring, A3XX_TEX_SAMP_0_XY_MAG(A3XX_TEX_NEAREST) |
A3XX_TEX_SAMP_0_XY_MIN(A3XX_TEX_NEAREST) |
A3XX_TEX_SAMP_0_WRAP_S(A3XX_TEX_CLAMP_TO_EDGE) |
A3XX_TEX_SAMP_0_WRAP_T(A3XX_TEX_CLAMP_TO_EDGE) |
A3XX_TEX_SAMP_0_WRAP_R(A3XX_TEX_REPEAT));
OUT_RING(ring, 0x00000000);
}
 
/* emit texture state: */
OUT_PKT3(ring, CP_LOAD_STATE, 2 + 4 * bufs);
OUT_RING(ring, CP_LOAD_STATE_0_DST_OFF(FRAG_TEX_OFF) |
CP_LOAD_STATE_0_STATE_SRC(SS_DIRECT) |
CP_LOAD_STATE_0_STATE_BLOCK(SB_FRAG_TEX) |
CP_LOAD_STATE_0_NUM_UNIT(bufs));
OUT_RING(ring, CP_LOAD_STATE_1_STATE_TYPE(ST_CONSTANTS) |
CP_LOAD_STATE_1_EXT_SRC_ADDR(0));
for (i = 0; i < bufs; i++) {
if (!psurf[i]) {
OUT_RING(ring, A3XX_TEX_CONST_0_TYPE(A3XX_TEX_2D) |
A3XX_TEX_CONST_0_SWIZ_X(A3XX_TEX_ONE) |
A3XX_TEX_CONST_0_SWIZ_Y(A3XX_TEX_ONE) |
A3XX_TEX_CONST_0_SWIZ_Z(A3XX_TEX_ONE) |
A3XX_TEX_CONST_0_SWIZ_W(A3XX_TEX_ONE));
OUT_RING(ring, 0x00000000);
OUT_RING(ring, A3XX_TEX_CONST_2_INDX(BASETABLE_SZ * i));
OUT_RING(ring, 0x00000000);
continue;
}
 
struct fd_resource *rsc = fd_resource(psurf[i]->texture);
enum pipe_format format = fd3_gmem_restore_format(psurf[i]->format);
/* The restore blit_zs shader expects stencil in sampler 0, and depth
* in sampler 1
*/
if (rsc->stencil && i == 0) {
rsc = rsc->stencil;
format = fd3_gmem_restore_format(rsc->base.b.format);
}
 
unsigned lvl = psurf[i]->u.tex.level;
struct fd_resource_slice *slice = fd_resource_slice(rsc, lvl);
 
debug_assert(psurf[i]->u.tex.first_layer == psurf[i]->u.tex.last_layer);
 
OUT_RING(ring, A3XX_TEX_CONST_0_FMT(fd3_pipe2tex(format)) |
A3XX_TEX_CONST_0_TYPE(A3XX_TEX_2D) |
fd3_tex_swiz(format, PIPE_SWIZZLE_RED, PIPE_SWIZZLE_GREEN,
PIPE_SWIZZLE_BLUE, PIPE_SWIZZLE_ALPHA));
OUT_RING(ring, A3XX_TEX_CONST_1_FETCHSIZE(TFETCH_DISABLE) |
A3XX_TEX_CONST_1_WIDTH(psurf[i]->width) |
A3XX_TEX_CONST_1_HEIGHT(psurf[i]->height));
OUT_RING(ring, A3XX_TEX_CONST_2_PITCH(slice->pitch * rsc->cpp) |
A3XX_TEX_CONST_2_INDX(BASETABLE_SZ * i));
OUT_RING(ring, 0x00000000);
}
 
/* emit mipaddrs: */
OUT_PKT3(ring, CP_LOAD_STATE, 2 + BASETABLE_SZ * bufs);
OUT_RING(ring, CP_LOAD_STATE_0_DST_OFF(BASETABLE_SZ * FRAG_TEX_OFF) |
CP_LOAD_STATE_0_STATE_SRC(SS_DIRECT) |
CP_LOAD_STATE_0_STATE_BLOCK(SB_FRAG_MIPADDR) |
CP_LOAD_STATE_0_NUM_UNIT(BASETABLE_SZ * bufs));
OUT_RING(ring, CP_LOAD_STATE_1_STATE_TYPE(ST_CONSTANTS) |
CP_LOAD_STATE_1_EXT_SRC_ADDR(0));
for (i = 0; i < bufs; i++) {
if (psurf[i]) {
struct fd_resource *rsc = fd_resource(psurf[i]->texture);
/* Matches above logic for blit_zs shader */
if (rsc->stencil && i == 0)
rsc = rsc->stencil;
unsigned lvl = psurf[i]->u.tex.level;
uint32_t offset = fd_resource_offset(rsc, lvl, psurf[i]->u.tex.first_layer);
OUT_RELOC(ring, rsc->bo, offset, 0, 0);
} else {
OUT_RING(ring, 0x00000000);
}
 
/* pad the remaining entries w/ null: */
for (j = 1; j < BASETABLE_SZ; j++) {
OUT_RING(ring, 0x00000000);
}
}
}
 
void
fd3_emit_vertex_bufs(struct fd_ringbuffer *ring, struct fd3_emit *emit)
{
int32_t i, j, last = -1;
uint32_t total_in = 0;
const struct fd_vertex_state *vtx = emit->vtx;
struct ir3_shader_variant *vp = fd3_emit_get_vp(emit);
unsigned vertex_regid = regid(63, 0), instance_regid = regid(63, 0);
 
for (i = 0; i < vp->inputs_count; i++) {
uint8_t semantic = sem2name(vp->inputs[i].semantic);
if (semantic == TGSI_SEMANTIC_VERTEXID_NOBASE)
vertex_regid = vp->inputs[i].regid;
else if (semantic == TGSI_SEMANTIC_INSTANCEID)
instance_regid = vp->inputs[i].regid;
else if (i < vtx->vtx->num_elements && vp->inputs[i].compmask)
last = i;
}
 
/* hw doesn't like to be configured for zero vbo's, it seems: */
if (vtx->vtx->num_elements == 0 &&
vertex_regid == regid(63, 0) &&
instance_regid == regid(63, 0))
return;
 
for (i = 0, j = 0; i <= last; i++) {
assert(sem2name(vp->inputs[i].semantic) == 0);
if (vp->inputs[i].compmask) {
struct pipe_vertex_element *elem = &vtx->vtx->pipe[i];
const struct pipe_vertex_buffer *vb =
&vtx->vertexbuf.vb[elem->vertex_buffer_index];
struct fd_resource *rsc = fd_resource(vb->buffer);
enum pipe_format pfmt = elem->src_format;
enum a3xx_vtx_fmt fmt = fd3_pipe2vtx(pfmt);
bool switchnext = (i != last) ||
vertex_regid != regid(63, 0) ||
instance_regid != regid(63, 0);
bool isint = util_format_is_pure_integer(pfmt);
uint32_t fs = util_format_get_blocksize(pfmt);
 
debug_assert(fmt != ~0);
 
OUT_PKT0(ring, REG_A3XX_VFD_FETCH(j), 2);
OUT_RING(ring, A3XX_VFD_FETCH_INSTR_0_FETCHSIZE(fs - 1) |
A3XX_VFD_FETCH_INSTR_0_BUFSTRIDE(vb->stride) |
COND(switchnext, A3XX_VFD_FETCH_INSTR_0_SWITCHNEXT) |
A3XX_VFD_FETCH_INSTR_0_INDEXCODE(j) |
COND(elem->instance_divisor, A3XX_VFD_FETCH_INSTR_0_INSTANCED) |
A3XX_VFD_FETCH_INSTR_0_STEPRATE(MAX2(1, elem->instance_divisor)));
OUT_RELOC(ring, rsc->bo, vb->buffer_offset + elem->src_offset, 0, 0);
 
OUT_PKT0(ring, REG_A3XX_VFD_DECODE_INSTR(j), 1);
OUT_RING(ring, A3XX_VFD_DECODE_INSTR_CONSTFILL |
A3XX_VFD_DECODE_INSTR_WRITEMASK(vp->inputs[i].compmask) |
A3XX_VFD_DECODE_INSTR_FORMAT(fmt) |
A3XX_VFD_DECODE_INSTR_SWAP(fd3_pipe2swap(pfmt)) |
A3XX_VFD_DECODE_INSTR_REGID(vp->inputs[i].regid) |
A3XX_VFD_DECODE_INSTR_SHIFTCNT(fs) |
A3XX_VFD_DECODE_INSTR_LASTCOMPVALID |
COND(isint, A3XX_VFD_DECODE_INSTR_INT) |
COND(switchnext, A3XX_VFD_DECODE_INSTR_SWITCHNEXT));
 
total_in += vp->inputs[i].ncomp;
j++;
}
}
 
OUT_PKT0(ring, REG_A3XX_VFD_CONTROL_0, 2);
OUT_RING(ring, A3XX_VFD_CONTROL_0_TOTALATTRTOVS(total_in) |
A3XX_VFD_CONTROL_0_PACKETSIZE(2) |
A3XX_VFD_CONTROL_0_STRMDECINSTRCNT(j) |
A3XX_VFD_CONTROL_0_STRMFETCHINSTRCNT(j));
OUT_RING(ring, A3XX_VFD_CONTROL_1_MAXSTORAGE(1) | // XXX
A3XX_VFD_CONTROL_1_REGID4VTX(vertex_regid) |
A3XX_VFD_CONTROL_1_REGID4INST(instance_regid));
}
 
void
fd3_emit_state(struct fd_context *ctx, struct fd_ringbuffer *ring,
struct fd3_emit *emit)
{
struct ir3_shader_variant *vp = fd3_emit_get_vp(emit);
struct ir3_shader_variant *fp = fd3_emit_get_fp(emit);
uint32_t dirty = emit->dirty;
 
emit_marker(ring, 5);
 
if (dirty & FD_DIRTY_SAMPLE_MASK) {
OUT_PKT0(ring, REG_A3XX_RB_MSAA_CONTROL, 1);
OUT_RING(ring, A3XX_RB_MSAA_CONTROL_DISABLE |
A3XX_RB_MSAA_CONTROL_SAMPLES(MSAA_ONE) |
A3XX_RB_MSAA_CONTROL_SAMPLE_MASK(ctx->sample_mask));
}
 
if ((dirty & (FD_DIRTY_ZSA | FD_DIRTY_PROG)) && !emit->key.binning_pass) {
uint32_t val = fd3_zsa_stateobj(ctx->zsa)->rb_render_control;
 
val |= COND(fp->frag_face, A3XX_RB_RENDER_CONTROL_FACENESS);
val |= COND(fp->frag_coord, A3XX_RB_RENDER_CONTROL_XCOORD |
A3XX_RB_RENDER_CONTROL_YCOORD |
A3XX_RB_RENDER_CONTROL_ZCOORD |
A3XX_RB_RENDER_CONTROL_WCOORD);
 
/* I suppose if we needed to (which I don't *think* we need
* to), we could emit this for binning pass too. But we
* would need to keep a different patch-list for binning
* vs render pass.
*/
 
OUT_PKT0(ring, REG_A3XX_RB_RENDER_CONTROL, 1);
OUT_RINGP(ring, val, &fd3_context(ctx)->rbrc_patches);
}
 
if (dirty & (FD_DIRTY_ZSA | FD_DIRTY_STENCIL_REF)) {
struct fd3_zsa_stateobj *zsa = fd3_zsa_stateobj(ctx->zsa);
struct pipe_stencil_ref *sr = &ctx->stencil_ref;
 
OUT_PKT0(ring, REG_A3XX_RB_ALPHA_REF, 1);
OUT_RING(ring, zsa->rb_alpha_ref);
 
OUT_PKT0(ring, REG_A3XX_RB_STENCIL_CONTROL, 1);
OUT_RING(ring, zsa->rb_stencil_control);
 
OUT_PKT0(ring, REG_A3XX_RB_STENCILREFMASK, 2);
OUT_RING(ring, zsa->rb_stencilrefmask |
A3XX_RB_STENCILREFMASK_STENCILREF(sr->ref_value[0]));
OUT_RING(ring, zsa->rb_stencilrefmask_bf |
A3XX_RB_STENCILREFMASK_BF_STENCILREF(sr->ref_value[1]));
}
 
if (dirty & (FD_DIRTY_ZSA | FD_DIRTY_PROG)) {
uint32_t val = fd3_zsa_stateobj(ctx->zsa)->rb_depth_control;
if (fp->writes_pos) {
val |= A3XX_RB_DEPTH_CONTROL_FRAG_WRITES_Z;
val |= A3XX_RB_DEPTH_CONTROL_EARLY_Z_DISABLE;
}
if (fp->has_kill) {
val |= A3XX_RB_DEPTH_CONTROL_EARLY_Z_DISABLE;
}
OUT_PKT0(ring, REG_A3XX_RB_DEPTH_CONTROL, 1);
OUT_RING(ring, val);
}
 
if (dirty & FD_DIRTY_RASTERIZER) {
struct fd3_rasterizer_stateobj *rasterizer =
fd3_rasterizer_stateobj(ctx->rasterizer);
 
OUT_PKT0(ring, REG_A3XX_GRAS_SU_MODE_CONTROL, 1);
OUT_RING(ring, rasterizer->gras_su_mode_control);
 
OUT_PKT0(ring, REG_A3XX_GRAS_SU_POINT_MINMAX, 2);
OUT_RING(ring, rasterizer->gras_su_point_minmax);
OUT_RING(ring, rasterizer->gras_su_point_size);
 
OUT_PKT0(ring, REG_A3XX_GRAS_SU_POLY_OFFSET_SCALE, 2);
OUT_RING(ring, rasterizer->gras_su_poly_offset_scale);
OUT_RING(ring, rasterizer->gras_su_poly_offset_offset);
}
 
if (dirty & (FD_DIRTY_RASTERIZER | FD_DIRTY_PROG)) {
uint32_t val = fd3_rasterizer_stateobj(ctx->rasterizer)
->gras_cl_clip_cntl;
val |= COND(fp->writes_pos, A3XX_GRAS_CL_CLIP_CNTL_ZCLIP_DISABLE);
val |= COND(fp->frag_coord, A3XX_GRAS_CL_CLIP_CNTL_ZCOORD |
A3XX_GRAS_CL_CLIP_CNTL_WCOORD);
OUT_PKT0(ring, REG_A3XX_GRAS_CL_CLIP_CNTL, 1);
OUT_RING(ring, val);
}
 
/* NOTE: since primitive_restart is not actually part of any
* state object, we need to make sure that we always emit
* PRIM_VTX_CNTL.. either that or be more clever and detect
* when it changes.
*/
if (emit->info) {
const struct pipe_draw_info *info = emit->info;
uint32_t val = fd3_rasterizer_stateobj(ctx->rasterizer)
->pc_prim_vtx_cntl;
 
if (!emit->key.binning_pass) {
uint32_t stride_in_vpc = align(fp->total_in, 4) / 4;
if (stride_in_vpc > 0)
stride_in_vpc = MAX2(stride_in_vpc, 2);
val |= A3XX_PC_PRIM_VTX_CNTL_STRIDE_IN_VPC(stride_in_vpc);
}
 
if (info->indexed && info->primitive_restart) {
val |= A3XX_PC_PRIM_VTX_CNTL_PRIMITIVE_RESTART;
}
 
val |= COND(vp->writes_psize, A3XX_PC_PRIM_VTX_CNTL_PSIZE);
 
OUT_PKT0(ring, REG_A3XX_PC_PRIM_VTX_CNTL, 1);
OUT_RING(ring, val);
}
 
if (dirty & FD_DIRTY_SCISSOR) {
struct pipe_scissor_state *scissor = fd_context_get_scissor(ctx);
 
OUT_PKT0(ring, REG_A3XX_GRAS_SC_WINDOW_SCISSOR_TL, 2);
OUT_RING(ring, A3XX_GRAS_SC_WINDOW_SCISSOR_TL_X(scissor->minx) |
A3XX_GRAS_SC_WINDOW_SCISSOR_TL_Y(scissor->miny));
OUT_RING(ring, A3XX_GRAS_SC_WINDOW_SCISSOR_BR_X(scissor->maxx - 1) |
A3XX_GRAS_SC_WINDOW_SCISSOR_BR_Y(scissor->maxy - 1));
 
ctx->max_scissor.minx = MIN2(ctx->max_scissor.minx, scissor->minx);
ctx->max_scissor.miny = MIN2(ctx->max_scissor.miny, scissor->miny);
ctx->max_scissor.maxx = MAX2(ctx->max_scissor.maxx, scissor->maxx);
ctx->max_scissor.maxy = MAX2(ctx->max_scissor.maxy, scissor->maxy);
}
 
if (dirty & FD_DIRTY_VIEWPORT) {
fd_wfi(ctx, ring);
OUT_PKT0(ring, REG_A3XX_GRAS_CL_VPORT_XOFFSET, 6);
OUT_RING(ring, A3XX_GRAS_CL_VPORT_XOFFSET(ctx->viewport.translate[0] - 0.5));
OUT_RING(ring, A3XX_GRAS_CL_VPORT_XSCALE(ctx->viewport.scale[0]));
OUT_RING(ring, A3XX_GRAS_CL_VPORT_YOFFSET(ctx->viewport.translate[1] - 0.5));
OUT_RING(ring, A3XX_GRAS_CL_VPORT_YSCALE(ctx->viewport.scale[1]));
OUT_RING(ring, A3XX_GRAS_CL_VPORT_ZOFFSET(ctx->viewport.translate[2]));
OUT_RING(ring, A3XX_GRAS_CL_VPORT_ZSCALE(ctx->viewport.scale[2]));
}
 
if (dirty & (FD_DIRTY_PROG | FD_DIRTY_FRAMEBUFFER)) {
struct pipe_framebuffer_state *pfb = &ctx->framebuffer;
fd3_program_emit(ring, emit, pfb->nr_cbufs, pfb->cbufs);
}
 
/* TODO we should not need this or fd_wfi() before emit_constants():
*/
OUT_PKT3(ring, CP_EVENT_WRITE, 1);
OUT_RING(ring, HLSQ_FLUSH);
 
if ((dirty & (FD_DIRTY_PROG | FD_DIRTY_CONSTBUF)) &&
/* evil hack to deal sanely with clear path: */
(emit->prog == &ctx->prog)) {
fd_wfi(ctx, ring);
emit_constants(ring, SB_VERT_SHADER,
&ctx->constbuf[PIPE_SHADER_VERTEX],
vp, emit->prog->dirty & FD_SHADER_DIRTY_VP);
if (!emit->key.binning_pass) {
emit_constants(ring, SB_FRAG_SHADER,
&ctx->constbuf[PIPE_SHADER_FRAGMENT],
fp, emit->prog->dirty & FD_SHADER_DIRTY_FP);
}
}
 
/* emit driver params every time */
if (emit->info && emit->prog == &ctx->prog) {
uint32_t vertex_params[4] = {
emit->info->indexed ? emit->info->index_bias : emit->info->start,
0,
0,
0
};
if (vp->constlen >= vp->first_driver_param + 4) {
fd3_emit_constant(ring, SB_VERT_SHADER,
(vp->first_driver_param + 4) * 4,
0, 4, vertex_params, NULL);
}
}
 
if ((dirty & (FD_DIRTY_BLEND | FD_DIRTY_FRAMEBUFFER)) && ctx->blend) {
struct fd3_blend_stateobj *blend = fd3_blend_stateobj(ctx->blend);
uint32_t i;
 
for (i = 0; i < ARRAY_SIZE(blend->rb_mrt); i++) {
enum pipe_format format = pipe_surface_format(ctx->framebuffer.cbufs[i]);
const struct util_format_description *desc =
util_format_description(format);
bool is_float = util_format_is_float(format);
bool is_int = util_format_is_pure_integer(format);
bool has_alpha = util_format_has_alpha(format);
uint32_t control = blend->rb_mrt[i].control;
uint32_t blend_control = blend->rb_mrt[i].blend_control_alpha;
 
if (is_int) {
control &= (A3XX_RB_MRT_CONTROL_COMPONENT_ENABLE__MASK |
A3XX_RB_MRT_CONTROL_DITHER_MODE__MASK);
control |= A3XX_RB_MRT_CONTROL_ROP_CODE(ROP_COPY);
}
 
if (format == PIPE_FORMAT_NONE)
control &= ~A3XX_RB_MRT_CONTROL_COMPONENT_ENABLE__MASK;
 
if (has_alpha) {
blend_control |= blend->rb_mrt[i].blend_control_rgb;
} else {
blend_control |= blend->rb_mrt[i].blend_control_no_alpha_rgb;
control &= ~A3XX_RB_MRT_CONTROL_BLEND2;
}
 
if (format && util_format_get_component_bits(
format, UTIL_FORMAT_COLORSPACE_RGB, 0) < 8) {
const struct pipe_rt_blend_state *rt;
if (ctx->blend->independent_blend_enable)
rt = &ctx->blend->rt[i];
else
rt = &ctx->blend->rt[0];
 
if (!util_format_colormask_full(desc, rt->colormask))
control |= A3XX_RB_MRT_CONTROL_READ_DEST_ENABLE;
}
 
OUT_PKT0(ring, REG_A3XX_RB_MRT_CONTROL(i), 1);
OUT_RING(ring, control);
 
OUT_PKT0(ring, REG_A3XX_RB_MRT_BLEND_CONTROL(i), 1);
OUT_RING(ring, blend_control |
COND(!is_float, A3XX_RB_MRT_BLEND_CONTROL_CLAMP_ENABLE));
}
}
 
if (dirty & FD_DIRTY_BLEND_COLOR) {
struct pipe_blend_color *bcolor = &ctx->blend_color;
OUT_PKT0(ring, REG_A3XX_RB_BLEND_RED, 4);
OUT_RING(ring, A3XX_RB_BLEND_RED_UINT(bcolor->color[0] * 255.0) |
A3XX_RB_BLEND_RED_FLOAT(bcolor->color[0]));
OUT_RING(ring, A3XX_RB_BLEND_GREEN_UINT(bcolor->color[1] * 255.0) |
A3XX_RB_BLEND_GREEN_FLOAT(bcolor->color[1]));
OUT_RING(ring, A3XX_RB_BLEND_BLUE_UINT(bcolor->color[2] * 255.0) |
A3XX_RB_BLEND_BLUE_FLOAT(bcolor->color[2]));
OUT_RING(ring, A3XX_RB_BLEND_ALPHA_UINT(bcolor->color[3] * 255.0) |
A3XX_RB_BLEND_ALPHA_FLOAT(bcolor->color[3]));
}
 
if (dirty & (FD_DIRTY_VERTTEX | FD_DIRTY_FRAGTEX))
fd_wfi(ctx, ring);
 
if (dirty & FD_DIRTY_VERTTEX) {
if (vp->has_samp)
emit_textures(ctx, ring, SB_VERT_TEX, &ctx->verttex);
else
dirty &= ~FD_DIRTY_VERTTEX;
}
 
if (dirty & FD_DIRTY_FRAGTEX) {
if (fp->has_samp)
emit_textures(ctx, ring, SB_FRAG_TEX, &ctx->fragtex);
else
dirty &= ~FD_DIRTY_FRAGTEX;
}
 
ctx->dirty &= ~dirty;
}
 
/* emit setup at begin of new cmdstream buffer (don't rely on previous
* state, there could have been a context switch between ioctls):
*/
void
fd3_emit_restore(struct fd_context *ctx)
{
struct fd3_context *fd3_ctx = fd3_context(ctx);
struct fd_ringbuffer *ring = ctx->ring;
int i;
 
if (ctx->screen->gpu_id == 320) {
OUT_PKT3(ring, CP_REG_RMW, 3);
OUT_RING(ring, REG_A3XX_RBBM_CLOCK_CTL);
OUT_RING(ring, 0xfffcffff);
OUT_RING(ring, 0x00000000);
}
 
fd_wfi(ctx, ring);
OUT_PKT3(ring, CP_INVALIDATE_STATE, 1);
OUT_RING(ring, 0x00007fff);
 
OUT_PKT0(ring, REG_A3XX_SP_VS_PVT_MEM_PARAM_REG, 3);
OUT_RING(ring, 0x08000001); /* SP_VS_PVT_MEM_CTRL_REG */
OUT_RELOC(ring, fd3_ctx->vs_pvt_mem, 0,0,0); /* SP_VS_PVT_MEM_ADDR_REG */
OUT_RING(ring, 0x00000000); /* SP_VS_PVT_MEM_SIZE_REG */
 
OUT_PKT0(ring, REG_A3XX_SP_FS_PVT_MEM_PARAM_REG, 3);
OUT_RING(ring, 0x08000001); /* SP_FS_PVT_MEM_CTRL_REG */
OUT_RELOC(ring, fd3_ctx->fs_pvt_mem, 0,0,0); /* SP_FS_PVT_MEM_ADDR_REG */
OUT_RING(ring, 0x00000000); /* SP_FS_PVT_MEM_SIZE_REG */
 
OUT_PKT0(ring, REG_A3XX_PC_VERTEX_REUSE_BLOCK_CNTL, 1);
OUT_RING(ring, 0x0000000b); /* PC_VERTEX_REUSE_BLOCK_CNTL */
 
OUT_PKT0(ring, REG_A3XX_GRAS_SC_CONTROL, 1);
OUT_RING(ring, A3XX_GRAS_SC_CONTROL_RENDER_MODE(RB_RENDERING_PASS) |
A3XX_GRAS_SC_CONTROL_MSAA_SAMPLES(MSAA_ONE) |
A3XX_GRAS_SC_CONTROL_RASTER_MODE(0));
 
OUT_PKT0(ring, REG_A3XX_RB_MSAA_CONTROL, 2);
OUT_RING(ring, A3XX_RB_MSAA_CONTROL_DISABLE |
A3XX_RB_MSAA_CONTROL_SAMPLES(MSAA_ONE) |
A3XX_RB_MSAA_CONTROL_SAMPLE_MASK(0xffff));
OUT_RING(ring, 0x00000000); /* RB_ALPHA_REF */
 
OUT_PKT0(ring, REG_A3XX_GRAS_CL_GB_CLIP_ADJ, 1);
OUT_RING(ring, A3XX_GRAS_CL_GB_CLIP_ADJ_HORZ(0) |
A3XX_GRAS_CL_GB_CLIP_ADJ_VERT(0));
 
OUT_PKT0(ring, REG_A3XX_GRAS_TSE_DEBUG_ECO, 1);
OUT_RING(ring, 0x00000001); /* GRAS_TSE_DEBUG_ECO */
 
OUT_PKT0(ring, REG_A3XX_TPL1_TP_VS_TEX_OFFSET, 1);
OUT_RING(ring, A3XX_TPL1_TP_VS_TEX_OFFSET_SAMPLEROFFSET(VERT_TEX_OFF) |
A3XX_TPL1_TP_VS_TEX_OFFSET_MEMOBJOFFSET(VERT_TEX_OFF) |
A3XX_TPL1_TP_VS_TEX_OFFSET_BASETABLEPTR(BASETABLE_SZ * VERT_TEX_OFF));
 
OUT_PKT0(ring, REG_A3XX_TPL1_TP_FS_TEX_OFFSET, 1);
OUT_RING(ring, A3XX_TPL1_TP_FS_TEX_OFFSET_SAMPLEROFFSET(FRAG_TEX_OFF) |
A3XX_TPL1_TP_FS_TEX_OFFSET_MEMOBJOFFSET(FRAG_TEX_OFF) |
A3XX_TPL1_TP_FS_TEX_OFFSET_BASETABLEPTR(BASETABLE_SZ * FRAG_TEX_OFF));
 
OUT_PKT0(ring, REG_A3XX_VPC_VARY_CYLWRAP_ENABLE_0, 2);
OUT_RING(ring, 0x00000000); /* VPC_VARY_CYLWRAP_ENABLE_0 */
OUT_RING(ring, 0x00000000); /* VPC_VARY_CYLWRAP_ENABLE_1 */
 
OUT_PKT0(ring, REG_A3XX_UNKNOWN_0E43, 1);
OUT_RING(ring, 0x00000001); /* UNKNOWN_0E43 */
 
OUT_PKT0(ring, REG_A3XX_UNKNOWN_0F03, 1);
OUT_RING(ring, 0x00000001); /* UNKNOWN_0F03 */
 
OUT_PKT0(ring, REG_A3XX_UNKNOWN_0EE0, 1);
OUT_RING(ring, 0x00000003); /* UNKNOWN_0EE0 */
 
OUT_PKT0(ring, REG_A3XX_UNKNOWN_0C3D, 1);
OUT_RING(ring, 0x00000001); /* UNKNOWN_0C3D */
 
OUT_PKT0(ring, REG_A3XX_HLSQ_PERFCOUNTER0_SELECT, 1);
OUT_RING(ring, 0x00000000); /* HLSQ_PERFCOUNTER0_SELECT */
 
OUT_PKT0(ring, REG_A3XX_HLSQ_CONST_VSPRESV_RANGE_REG, 2);
OUT_RING(ring, A3XX_HLSQ_CONST_VSPRESV_RANGE_REG_STARTENTRY(0) |
A3XX_HLSQ_CONST_VSPRESV_RANGE_REG_ENDENTRY(0));
OUT_RING(ring, A3XX_HLSQ_CONST_FSPRESV_RANGE_REG_STARTENTRY(0) |
A3XX_HLSQ_CONST_FSPRESV_RANGE_REG_ENDENTRY(0));
 
OUT_PKT0(ring, REG_A3XX_UCHE_CACHE_INVALIDATE0_REG, 2);
OUT_RING(ring, A3XX_UCHE_CACHE_INVALIDATE0_REG_ADDR(0));
OUT_RING(ring, A3XX_UCHE_CACHE_INVALIDATE1_REG_ADDR(0) |
A3XX_UCHE_CACHE_INVALIDATE1_REG_OPCODE(INVALIDATE) |
A3XX_UCHE_CACHE_INVALIDATE1_REG_ENTIRE_CACHE);
 
OUT_PKT0(ring, REG_A3XX_GRAS_CL_CLIP_CNTL, 1);
OUT_RING(ring, 0x00000000); /* GRAS_CL_CLIP_CNTL */
 
OUT_PKT0(ring, REG_A3XX_GRAS_SU_POINT_MINMAX, 2);
OUT_RING(ring, 0xffc00010); /* GRAS_SU_POINT_MINMAX */
OUT_RING(ring, 0x00000008); /* GRAS_SU_POINT_SIZE */
 
OUT_PKT0(ring, REG_A3XX_PC_RESTART_INDEX, 1);
OUT_RING(ring, 0xffffffff); /* PC_RESTART_INDEX */
 
OUT_PKT0(ring, REG_A3XX_RB_WINDOW_OFFSET, 1);
OUT_RING(ring, A3XX_RB_WINDOW_OFFSET_X(0) |
A3XX_RB_WINDOW_OFFSET_Y(0));
 
OUT_PKT0(ring, REG_A3XX_RB_BLEND_RED, 4);
OUT_RING(ring, A3XX_RB_BLEND_RED_UINT(0) |
A3XX_RB_BLEND_RED_FLOAT(0.0));
OUT_RING(ring, A3XX_RB_BLEND_GREEN_UINT(0) |
A3XX_RB_BLEND_GREEN_FLOAT(0.0));
OUT_RING(ring, A3XX_RB_BLEND_BLUE_UINT(0) |
A3XX_RB_BLEND_BLUE_FLOAT(0.0));
OUT_RING(ring, A3XX_RB_BLEND_ALPHA_UINT(0xff) |
A3XX_RB_BLEND_ALPHA_FLOAT(1.0));
 
for (i = 0; i < 6; i++) {
OUT_PKT0(ring, REG_A3XX_GRAS_CL_USER_PLANE(i), 4);
OUT_RING(ring, 0x00000000); /* GRAS_CL_USER_PLANE[i].X */
OUT_RING(ring, 0x00000000); /* GRAS_CL_USER_PLANE[i].Y */
OUT_RING(ring, 0x00000000); /* GRAS_CL_USER_PLANE[i].Z */
OUT_RING(ring, 0x00000000); /* GRAS_CL_USER_PLANE[i].W */
}
 
OUT_PKT0(ring, REG_A3XX_PC_VSTREAM_CONTROL, 1);
OUT_RING(ring, 0x00000000);
 
fd_event_write(ctx, ring, CACHE_FLUSH);
 
if (is_a3xx_p0(ctx->screen)) {
OUT_PKT3(ring, CP_DRAW_INDX, 3);
OUT_RING(ring, 0x00000000);
OUT_RING(ring, DRAW(1, DI_SRC_SEL_AUTO_INDEX,
INDEX_SIZE_IGN, IGNORE_VISIBILITY, 0));
OUT_RING(ring, 0); /* NumIndices */
}
 
OUT_PKT3(ring, CP_NOP, 4);
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
OUT_RING(ring, 0x00000000);
 
fd_wfi(ctx, ring);
 
ctx->needs_rb_fbd = true;
}