Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 3958 → Rev 3959

/programs/develop/libraries/cairo/src/cairo.h
101,6 → 101,8
* /<!-- -->* do something *<!-- -->/
* }
* </programlisting></informalexample>
*
* Since: 1.0
**/
typedef int cairo_bool_t;
 
116,6 → 118,8
*
* Memory management of #cairo_t is done with
* cairo_reference() and cairo_destroy().
*
* Since: 1.0
**/
typedef struct _cairo cairo_t;
 
143,6 → 147,8
*
* Memory management of #cairo_surface_t is done with
* cairo_surface_reference() and cairo_surface_destroy().
*
* Since: 1.0
**/
typedef struct _cairo_surface cairo_surface_t;
 
152,8 → 158,8
* A #cairo_device_t represents the driver interface for drawing
* operations to a #cairo_surface_t. There are different subtypes of
* #cairo_device_t for different drawing backends; for example,
* cairo_xcb_device_create() creates a device that wraps the connection
* to an X Windows System using the XCB library.
* cairo_egl_device_create() creates a device that wraps an EGL display and
* context.
*
* The type of a device can be queried with cairo_device_get_type().
*
180,6 → 186,8
* x_new = xx * x + xy * y + x0;
* y_new = yx * x + yy * y + y0;
* </programlisting>
*
* Since: 1.0
**/
typedef struct _cairo_matrix {
double xx; double yx;
196,9 → 204,10
* cairo_pattern_create_rgb() creates a pattern for a solid
* opaque color.
*
* Other than various cairo_pattern_create_<emphasis>type</emphasis>()
* functions, some of the pattern types can be implicitly created
* using various cairo_set_source_<emphasis>type</emphasis>() functions;
* Other than various
* <function>cairo_pattern_create_<emphasis>type</emphasis>()</function>
* functions, some of the pattern types can be implicitly created using various
* <function>cairo_set_source_<emphasis>type</emphasis>()</function> functions;
* for example cairo_set_source_rgb().
*
* The type of a pattern can be queried with cairo_pattern_get_type().
205,6 → 214,8
*
* Memory management of #cairo_pattern_t is done with
* cairo_pattern_reference() and cairo_pattern_destroy().
*
* Since: 1.0
**/
typedef struct _cairo_pattern cairo_pattern_t;
 
215,6 → 226,8
* #cairo_destroy_func_t the type of function which is called when a
* data element is destroyed. It is passed the pointer to the data
* element and should free any memory and resources allocated for it.
*
* Since: 1.0
**/
typedef void (*cairo_destroy_func_t) (void *data);
 
227,6 → 240,8
* and there is no need to initialize the object; only the unique
* address of a #cairo_data_key_t object is used. Typically, you
* would just use the address of a static #cairo_data_key_t object.
*
* Since: 1.0
**/
typedef struct _cairo_user_data_key {
int unused;
234,26 → 249,26
 
/**
* cairo_status_t:
* @CAIRO_STATUS_SUCCESS: no error has occurred
* @CAIRO_STATUS_NO_MEMORY: out of memory
* @CAIRO_STATUS_INVALID_RESTORE: cairo_restore() called without matching cairo_save()
* @CAIRO_STATUS_INVALID_POP_GROUP: no saved group to pop, i.e. cairo_pop_group() without matching cairo_push_group()
* @CAIRO_STATUS_NO_CURRENT_POINT: no current point defined
* @CAIRO_STATUS_INVALID_MATRIX: invalid matrix (not invertible)
* @CAIRO_STATUS_INVALID_STATUS: invalid value for an input #cairo_status_t
* @CAIRO_STATUS_NULL_POINTER: %NULL pointer
* @CAIRO_STATUS_INVALID_STRING: input string not valid UTF-8
* @CAIRO_STATUS_INVALID_PATH_DATA: input path data not valid
* @CAIRO_STATUS_READ_ERROR: error while reading from input stream
* @CAIRO_STATUS_WRITE_ERROR: error while writing to output stream
* @CAIRO_STATUS_SURFACE_FINISHED: target surface has been finished
* @CAIRO_STATUS_SURFACE_TYPE_MISMATCH: the surface type is not appropriate for the operation
* @CAIRO_STATUS_PATTERN_TYPE_MISMATCH: the pattern type is not appropriate for the operation
* @CAIRO_STATUS_INVALID_CONTENT: invalid value for an input #cairo_content_t
* @CAIRO_STATUS_INVALID_FORMAT: invalid value for an input #cairo_format_t
* @CAIRO_STATUS_INVALID_VISUAL: invalid value for an input Visual*
* @CAIRO_STATUS_FILE_NOT_FOUND: file not found
* @CAIRO_STATUS_INVALID_DASH: invalid value for a dash setting
* @CAIRO_STATUS_SUCCESS: no error has occurred (Since 1.0)
* @CAIRO_STATUS_NO_MEMORY: out of memory (Since 1.0)
* @CAIRO_STATUS_INVALID_RESTORE: cairo_restore() called without matching cairo_save() (Since 1.0)
* @CAIRO_STATUS_INVALID_POP_GROUP: no saved group to pop, i.e. cairo_pop_group() without matching cairo_push_group() (Since 1.0)
* @CAIRO_STATUS_NO_CURRENT_POINT: no current point defined (Since 1.0)
* @CAIRO_STATUS_INVALID_MATRIX: invalid matrix (not invertible) (Since 1.0)
* @CAIRO_STATUS_INVALID_STATUS: invalid value for an input #cairo_status_t (Since 1.0)
* @CAIRO_STATUS_NULL_POINTER: %NULL pointer (Since 1.0)
* @CAIRO_STATUS_INVALID_STRING: input string not valid UTF-8 (Since 1.0)
* @CAIRO_STATUS_INVALID_PATH_DATA: input path data not valid (Since 1.0)
* @CAIRO_STATUS_READ_ERROR: error while reading from input stream (Since 1.0)
* @CAIRO_STATUS_WRITE_ERROR: error while writing to output stream (Since 1.0)
* @CAIRO_STATUS_SURFACE_FINISHED: target surface has been finished (Since 1.0)
* @CAIRO_STATUS_SURFACE_TYPE_MISMATCH: the surface type is not appropriate for the operation (Since 1.0)
* @CAIRO_STATUS_PATTERN_TYPE_MISMATCH: the pattern type is not appropriate for the operation (Since 1.0)
* @CAIRO_STATUS_INVALID_CONTENT: invalid value for an input #cairo_content_t (Since 1.0)
* @CAIRO_STATUS_INVALID_FORMAT: invalid value for an input #cairo_format_t (Since 1.0)
* @CAIRO_STATUS_INVALID_VISUAL: invalid value for an input Visual* (Since 1.0)
* @CAIRO_STATUS_FILE_NOT_FOUND: file not found (Since 1.0)
* @CAIRO_STATUS_INVALID_DASH: invalid value for a dash setting (Since 1.0)
* @CAIRO_STATUS_INVALID_DSC_COMMENT: invalid value for a DSC comment (Since 1.2)
* @CAIRO_STATUS_INVALID_INDEX: invalid index passed to getter (Since 1.4)
* @CAIRO_STATUS_CLIP_NOT_REPRESENTABLE: clip region not representable in desired format (Since 1.4)
270,6 → 285,11
* @CAIRO_STATUS_USER_FONT_NOT_IMPLEMENTED: user-font method not implemented (Since 1.10)
* @CAIRO_STATUS_DEVICE_TYPE_MISMATCH: the device type is not appropriate for the operation (Since 1.10)
* @CAIRO_STATUS_DEVICE_ERROR: an operation to the device caused an unspecified error (Since 1.10)
* @CAIRO_STATUS_INVALID_MESH_CONSTRUCTION: a mesh pattern
* construction operation was used outside of a
* cairo_mesh_pattern_begin_patch()/cairo_mesh_pattern_end_patch()
* pair (Since 1.12)
* @CAIRO_STATUS_DEVICE_FINISHED: target device has been finished (Since 1.12)
* @CAIRO_STATUS_LAST_STATUS: this is a special value indicating the number of
* status values defined in this enumeration. When using this value, note
* that the version of cairo at run-time may have additional status values
282,6 → 302,8
*
* New entries may be added in future versions. Use cairo_status_to_string()
* to get a human-readable representation of an error message.
*
* Since: 1.0
**/
typedef enum _cairo_status {
CAIRO_STATUS_SUCCESS = 0,
321,6 → 343,8
CAIRO_STATUS_USER_FONT_NOT_IMPLEMENTED,
CAIRO_STATUS_DEVICE_TYPE_MISMATCH,
CAIRO_STATUS_DEVICE_ERROR,
CAIRO_STATUS_INVALID_MESH_CONSTRUCTION,
CAIRO_STATUS_DEVICE_FINISHED,
 
CAIRO_STATUS_LAST_STATUS
} cairo_status_t;
327,9 → 351,9
 
/**
* cairo_content_t:
* @CAIRO_CONTENT_COLOR: The surface will hold color content only.
* @CAIRO_CONTENT_ALPHA: The surface will hold alpha content only.
* @CAIRO_CONTENT_COLOR_ALPHA: The surface will hold color and alpha content.
* @CAIRO_CONTENT_COLOR: The surface will hold color content only. (Since 1.0)
* @CAIRO_CONTENT_ALPHA: The surface will hold alpha content only. (Since 1.0)
* @CAIRO_CONTENT_COLOR_ALPHA: The surface will hold color and alpha content. (Since 1.0)
*
* #cairo_content_t is used to describe the content that a surface will
* contain, whether color information, alpha information (translucence
338,6 → 362,8
* Note: The large values here are designed to keep #cairo_content_t
* values distinct from #cairo_format_t values so that the
* implementation can detect the error if users confuse the two types.
*
* Since: 1.0
**/
typedef enum _cairo_content {
CAIRO_CONTENT_COLOR = 0x1000,
346,6 → 372,48
} cairo_content_t;
 
/**
* cairo_format_t:
* @CAIRO_FORMAT_INVALID: no such format exists or is supported.
* @CAIRO_FORMAT_ARGB32: each pixel is a 32-bit quantity, with
* alpha in the upper 8 bits, then red, then green, then blue.
* The 32-bit quantities are stored native-endian. Pre-multiplied
* alpha is used. (That is, 50% transparent red is 0x80800000,
* not 0x80ff0000.) (Since 1.0)
* @CAIRO_FORMAT_RGB24: each pixel is a 32-bit quantity, with
* the upper 8 bits unused. Red, Green, and Blue are stored
* in the remaining 24 bits in that order. (Since 1.0)
* @CAIRO_FORMAT_A8: each pixel is a 8-bit quantity holding
* an alpha value. (Since 1.0)
* @CAIRO_FORMAT_A1: each pixel is a 1-bit quantity holding
* an alpha value. Pixels are packed together into 32-bit
* quantities. The ordering of the bits matches the
* endianess of the platform. On a big-endian machine, the
* first pixel is in the uppermost bit, on a little-endian
* machine the first pixel is in the least-significant bit. (Since 1.0)
* @CAIRO_FORMAT_RGB16_565: each pixel is a 16-bit quantity
* with red in the upper 5 bits, then green in the middle
* 6 bits, and blue in the lower 5 bits. (Since 1.2)
* @CAIRO_FORMAT_RGB30: like RGB24 but with 10bpc. (Since 1.12)
*
* #cairo_format_t is used to identify the memory format of
* image data.
*
* New entries may be added in future versions.
*
* Since: 1.0
**/
typedef enum _cairo_format {
CAIRO_FORMAT_INVALID = -1,
CAIRO_FORMAT_ARGB32 = 0,
CAIRO_FORMAT_RGB24 = 1,
CAIRO_FORMAT_A8 = 2,
CAIRO_FORMAT_A1 = 3,
CAIRO_FORMAT_RGB16_565 = 4,
CAIRO_FORMAT_RGB30 = 5
} cairo_format_t;
 
 
/**
* cairo_write_func_t:
* @closure: the output closure
* @data: the buffer containing the data to write
360,6 → 428,8
* %CAIRO_STATUS_WRITE_ERROR otherwise.
*
* Returns: the status code of the write operation
*
* Since: 1.0
**/
typedef cairo_status_t (*cairo_write_func_t) (void *closure,
const unsigned char *data,
380,11 → 450,31
* %CAIRO_STATUS_READ_ERROR otherwise.
*
* Returns: the status code of the read operation
*
* Since: 1.0
**/
typedef cairo_status_t (*cairo_read_func_t) (void *closure,
unsigned char *data,
unsigned int length);
 
/**
* cairo_rectangle_int_t:
* @x: X coordinate of the left side of the rectangle
* @y: Y coordinate of the the top side of the rectangle
* @width: width of the rectangle
* @height: height of the rectangle
*
* A data structure for holding a rectangle with integer coordinates.
*
* Since: 1.10
**/
 
typedef struct _cairo_rectangle_int {
int x, y;
int width, height;
} cairo_rectangle_int_t;
 
 
/* Functions for manipulating state objects */
cairo_public cairo_t *
cairo_create (cairo_surface_t *target);
430,64 → 520,64
 
/**
* cairo_operator_t:
* @CAIRO_OPERATOR_CLEAR: clear destination layer (bounded)
* @CAIRO_OPERATOR_SOURCE: replace destination layer (bounded)
* @CAIRO_OPERATOR_CLEAR: clear destination layer (bounded) (Since 1.0)
* @CAIRO_OPERATOR_SOURCE: replace destination layer (bounded) (Since 1.0)
* @CAIRO_OPERATOR_OVER: draw source layer on top of destination layer
* (bounded)
* (bounded) (Since 1.0)
* @CAIRO_OPERATOR_IN: draw source where there was destination content
* (unbounded)
* (unbounded) (Since 1.0)
* @CAIRO_OPERATOR_OUT: draw source where there was no destination
* content (unbounded)
* content (unbounded) (Since 1.0)
* @CAIRO_OPERATOR_ATOP: draw source on top of destination content and
* only there
* @CAIRO_OPERATOR_DEST: ignore the source
* @CAIRO_OPERATOR_DEST_OVER: draw destination on top of source
* only there (Since 1.0)
* @CAIRO_OPERATOR_DEST: ignore the source (Since 1.0)
* @CAIRO_OPERATOR_DEST_OVER: draw destination on top of source (Since 1.0)
* @CAIRO_OPERATOR_DEST_IN: leave destination only where there was
* source content (unbounded)
* source content (unbounded) (Since 1.0)
* @CAIRO_OPERATOR_DEST_OUT: leave destination only where there was no
* source content
* source content (Since 1.0)
* @CAIRO_OPERATOR_DEST_ATOP: leave destination on top of source content
* and only there (unbounded)
* and only there (unbounded) (Since 1.0)
* @CAIRO_OPERATOR_XOR: source and destination are shown where there is only
* one of them
* @CAIRO_OPERATOR_ADD: source and destination layers are accumulated
* one of them (Since 1.0)
* @CAIRO_OPERATOR_ADD: source and destination layers are accumulated (Since 1.0)
* @CAIRO_OPERATOR_SATURATE: like over, but assuming source and dest are
* disjoint geometries
* disjoint geometries (Since 1.0)
* @CAIRO_OPERATOR_MULTIPLY: source and destination layers are multiplied.
* This causes the result to be at least as dark as the darker inputs.
* This causes the result to be at least as dark as the darker inputs. (Since 1.10)
* @CAIRO_OPERATOR_SCREEN: source and destination are complemented and
* multiplied. This causes the result to be at least as light as the lighter
* inputs.
* inputs. (Since 1.10)
* @CAIRO_OPERATOR_OVERLAY: multiplies or screens, depending on the
* lightness of the destination color.
* lightness of the destination color. (Since 1.10)
* @CAIRO_OPERATOR_DARKEN: replaces the destination with the source if it
* is darker, otherwise keeps the source.
* is darker, otherwise keeps the source. (Since 1.10)
* @CAIRO_OPERATOR_LIGHTEN: replaces the destination with the source if it
* is lighter, otherwise keeps the source.
* is lighter, otherwise keeps the source. (Since 1.10)
* @CAIRO_OPERATOR_COLOR_DODGE: brightens the destination color to reflect
* the source color.
* the source color. (Since 1.10)
* @CAIRO_OPERATOR_COLOR_BURN: darkens the destination color to reflect
* the source color.
* @CAIRO_OPERATOR_HARD_LIGHT: Multiplies or screens, dependant on source
* color.
* @CAIRO_OPERATOR_SOFT_LIGHT: Darkens or lightens, dependant on source
* color.
* the source color. (Since 1.10)
* @CAIRO_OPERATOR_HARD_LIGHT: Multiplies or screens, dependent on source
* color. (Since 1.10)
* @CAIRO_OPERATOR_SOFT_LIGHT: Darkens or lightens, dependent on source
* color. (Since 1.10)
* @CAIRO_OPERATOR_DIFFERENCE: Takes the difference of the source and
* destination color.
* destination color. (Since 1.10)
* @CAIRO_OPERATOR_EXCLUSION: Produces an effect similar to difference, but
* with lower contrast.
* with lower contrast. (Since 1.10)
* @CAIRO_OPERATOR_HSL_HUE: Creates a color with the hue of the source
* and the saturation and luminosity of the target.
* and the saturation and luminosity of the target. (Since 1.10)
* @CAIRO_OPERATOR_HSL_SATURATION: Creates a color with the saturation
* of the source and the hue and luminosity of the target. Painting with
* this mode onto a gray area prduces no change.
* this mode onto a gray area produces no change. (Since 1.10)
* @CAIRO_OPERATOR_HSL_COLOR: Creates a color with the hue and saturation
* of the source and the luminosity of the target. This preserves the gray
* levels of the target and is useful for coloring monochrome images or
* tinting color images.
* tinting color images. (Since 1.10)
* @CAIRO_OPERATOR_HSL_LUMINOSITY: Creates a color with the luminosity of
* the source and the hue and saturation of the target. This produces an
* inverse effect to @CAIRO_OPERATOR_HSL_COLOR.
* inverse effect to @CAIRO_OPERATOR_HSL_COLOR. (Since 1.10)
*
* #cairo_operator_t is used to set the compositing operator for all cairo
* drawing operations.
506,6 → 596,8
* For a more detailed explanation of the effects of each operator, including
* the mathematical definitions, see
* <ulink url="http://cairographics.org/operators/">http://cairographics.org/operators/</ulink>.
*
* Since: 1.0
**/
typedef enum _cairo_operator {
CAIRO_OPERATOR_CLEAR,
569,21 → 661,52
/**
* cairo_antialias_t:
* @CAIRO_ANTIALIAS_DEFAULT: Use the default antialiasing for
* the subsystem and target device
* @CAIRO_ANTIALIAS_NONE: Use a bilevel alpha mask
* the subsystem and target device, since 1.0
* @CAIRO_ANTIALIAS_NONE: Use a bilevel alpha mask, since 1.0
* @CAIRO_ANTIALIAS_GRAY: Perform single-color antialiasing (using
* shades of gray for black text on a white background, for example).
* shades of gray for black text on a white background, for example), since 1.0
* @CAIRO_ANTIALIAS_SUBPIXEL: Perform antialiasing by taking
* advantage of the order of subpixel elements on devices
* such as LCD panels
* such as LCD panels, since 1.0
* @CAIRO_ANTIALIAS_FAST: Hint that the backend should perform some
* antialiasing but prefer speed over quality, since 1.12
* @CAIRO_ANTIALIAS_GOOD: The backend should balance quality against
* performance, since 1.12
* @CAIRO_ANTIALIAS_BEST: Hint that the backend should render at the highest
* quality, sacrificing speed if necessary, since 1.12
*
* Specifies the type of antialiasing to do when rendering text or shapes.
*
* As it is not necessarily clear from the above what advantages a particular
* antialias method provides, since 1.12, there is also a set of hints:
* @CAIRO_ANTIALIAS_FAST: Allow the backend to degrade raster quality for speed
* @CAIRO_ANTIALIAS_GOOD: A balance between speed and quality
* @CAIRO_ANTIALIAS_BEST: A high-fidelity, but potentially slow, raster mode
*
* These make no guarantee on how the backend will perform its rasterisation
* (if it even rasterises!), nor that they have any differing effect other
* than to enable some form of antialiasing. In the case of glyph rendering,
* @CAIRO_ANTIALIAS_FAST and @CAIRO_ANTIALIAS_GOOD will be mapped to
* @CAIRO_ANTIALIAS_GRAY, with @CAIRO_ANTALIAS_BEST being equivalent to
* @CAIRO_ANTIALIAS_SUBPIXEL.
*
* The interpretation of @CAIRO_ANTIALIAS_DEFAULT is left entirely up to
* the backend, typically this will be similar to @CAIRO_ANTIALIAS_GOOD.
*
* Since: 1.0
**/
typedef enum _cairo_antialias {
CAIRO_ANTIALIAS_DEFAULT,
 
/* method */
CAIRO_ANTIALIAS_NONE,
CAIRO_ANTIALIAS_GRAY,
CAIRO_ANTIALIAS_SUBPIXEL
CAIRO_ANTIALIAS_SUBPIXEL,
 
/* hints */
CAIRO_ANTIALIAS_FAST,
CAIRO_ANTIALIAS_GOOD,
CAIRO_ANTIALIAS_BEST
} cairo_antialias_t;
 
cairo_public void
595,11 → 718,11
* left-to-right, counts +1. If the path crosses the ray
* from right to left, counts -1. (Left and right are determined
* from the perspective of looking along the ray from the starting
* point.) If the total count is non-zero, the point will be filled.
* point.) If the total count is non-zero, the point will be filled. (Since 1.0)
* @CAIRO_FILL_RULE_EVEN_ODD: Counts the total number of
* intersections, without regard to the orientation of the contour. If
* the total number of intersections is odd, the point will be
* filled.
* filled. (Since 1.0)
*
* #cairo_fill_rule_t is used to select how paths are filled. For both
* fill rules, whether or not a point is included in the fill is
613,6 → 736,8
* The default fill rule is %CAIRO_FILL_RULE_WINDING.
*
* New entries may be added in future versions.
*
* Since: 1.0
**/
typedef enum _cairo_fill_rule {
CAIRO_FILL_RULE_WINDING,
627,13 → 752,15
 
/**
* cairo_line_cap_t:
* @CAIRO_LINE_CAP_BUTT: start(stop) the line exactly at the start(end) point
* @CAIRO_LINE_CAP_ROUND: use a round ending, the center of the circle is the end point
* @CAIRO_LINE_CAP_SQUARE: use squared ending, the center of the square is the end point
* @CAIRO_LINE_CAP_BUTT: start(stop) the line exactly at the start(end) point (Since 1.0)
* @CAIRO_LINE_CAP_ROUND: use a round ending, the center of the circle is the end point (Since 1.0)
* @CAIRO_LINE_CAP_SQUARE: use squared ending, the center of the square is the end point (Since 1.0)
*
* Specifies how to render the endpoints of the path when stroking.
*
* The default line cap style is %CAIRO_LINE_CAP_BUTT.
*
* Since: 1.0
**/
typedef enum _cairo_line_cap {
CAIRO_LINE_CAP_BUTT,
647,15 → 774,17
/**
* cairo_line_join_t:
* @CAIRO_LINE_JOIN_MITER: use a sharp (angled) corner, see
* cairo_set_miter_limit()
* cairo_set_miter_limit() (Since 1.0)
* @CAIRO_LINE_JOIN_ROUND: use a rounded join, the center of the circle is the
* joint point
* joint point (Since 1.0)
* @CAIRO_LINE_JOIN_BEVEL: use a cut-off join, the join is cut off at half
* the line width from the joint point
* the line width from the joint point (Since 1.0)
*
* Specifies how to render the junction of two lines when stroking.
*
* The default line join style is %CAIRO_LINE_JOIN_MITER.
*
* Since: 1.0
**/
typedef enum _cairo_line_join {
CAIRO_LINE_JOIN_MITER,
902,6 → 1031,8
*
* Memory management of #cairo_scaled_font_t is done with
* cairo_scaled_font_reference() and cairo_scaled_font_destroy().
*
* Since: 1.0
**/
typedef struct _cairo_scaled_font cairo_scaled_font_t;
 
921,6 → 1052,8
*
* Memory management of #cairo_font_face_t is done with
* cairo_font_face_reference() and cairo_font_face_destroy().
*
* Since: 1.0
**/
typedef struct _cairo_font_face cairo_font_face_t;
 
947,6 → 1080,8
* Note that the offsets given by @x and @y are not cumulative. When
* drawing or measuring text, each glyph is individually positioned
* with respect to the overall origin
*
* Since: 1.0
**/
typedef struct {
unsigned long index;
994,7 → 1129,7
/**
* cairo_text_cluster_flags_t:
* @CAIRO_TEXT_CLUSTER_FLAG_BACKWARD: The clusters in the cluster array
* map to glyphs in the glyph array from end to start.
* map to glyphs in the glyph array from end to start. (Since 1.8)
*
* Specifies properties of a text cluster mapping.
*
1030,6 → 1165,8
* doubled. They will change slightly due to hinting (so you can't
* assume that metrics are independent of the transformation matrix),
* but otherwise will remain unchanged.
*
* Since: 1.0
**/
typedef struct {
double x_bearing;
1052,7 → 1189,7
* portions below the baseline. Note that this is not always
* exactly equal to the maximum of the extents of all the
* glyphs in the font, but rather is picked to express the
* font designer's intent as to how the the font should
* font designer's intent as to how the font should
* align with elements below it.
* @height: the recommended vertical distance between baselines when
* setting consecutive lines of text with the font. This
1062,10 → 1199,10
* is at a premium, most fonts can be set with only
* a distance of @ascent+@descent between lines.
* @max_x_advance: the maximum distance in the X direction that
* the the origin is advanced for any glyph in the font.
* the origin is advanced for any glyph in the font.
* @max_y_advance: the maximum distance in the Y direction that
* the the origin is advanced for any glyph in the font.
* this will be zero for normal fonts used for horizontal
* the origin is advanced for any glyph in the font.
* This will be zero for normal fonts used for horizontal
* writing. (The scripts of East Asia are sometimes written
* vertically.)
*
1080,6 → 1217,8
* not be doubled. They will change slightly due to hinting (so you
* can't assume that metrics are independent of the transformation
* matrix), but otherwise will remain unchanged.
*
* Since: 1.0
**/
typedef struct {
double ascent;
1091,11 → 1230,13
 
/**
* cairo_font_slant_t:
* @CAIRO_FONT_SLANT_NORMAL: Upright font style
* @CAIRO_FONT_SLANT_ITALIC: Italic font style
* @CAIRO_FONT_SLANT_OBLIQUE: Oblique font style
* @CAIRO_FONT_SLANT_NORMAL: Upright font style, since 1.0
* @CAIRO_FONT_SLANT_ITALIC: Italic font style, since 1.0
* @CAIRO_FONT_SLANT_OBLIQUE: Oblique font style, since 1.0
*
* Specifies variants of a font face based on their slant.
*
* Since: 1.0
**/
typedef enum _cairo_font_slant {
CAIRO_FONT_SLANT_NORMAL,
1105,10 → 1246,12
 
/**
* cairo_font_weight_t:
* @CAIRO_FONT_WEIGHT_NORMAL: Normal font weight
* @CAIRO_FONT_WEIGHT_BOLD: Bold font weight
* @CAIRO_FONT_WEIGHT_NORMAL: Normal font weight, since 1.0
* @CAIRO_FONT_WEIGHT_BOLD: Bold font weight, since 1.0
*
* Specifies variants of a font face based on their weight.
*
* Since: 1.0
**/
typedef enum _cairo_font_weight {
CAIRO_FONT_WEIGHT_NORMAL,
1118,19 → 1261,21
/**
* cairo_subpixel_order_t:
* @CAIRO_SUBPIXEL_ORDER_DEFAULT: Use the default subpixel order for
* for the target device
* for the target device, since 1.0
* @CAIRO_SUBPIXEL_ORDER_RGB: Subpixel elements are arranged horizontally
* with red at the left
* with red at the left, since 1.0
* @CAIRO_SUBPIXEL_ORDER_BGR: Subpixel elements are arranged horizontally
* with blue at the left
* with blue at the left, since 1.0
* @CAIRO_SUBPIXEL_ORDER_VRGB: Subpixel elements are arranged vertically
* with red at the top
* with red at the top, since 1.0
* @CAIRO_SUBPIXEL_ORDER_VBGR: Subpixel elements are arranged vertically
* with blue at the top
* with blue at the top, since 1.0
*
* The subpixel order specifies the order of color elements within
* each pixel on the display device when rendering with an
* antialiasing mode of %CAIRO_ANTIALIAS_SUBPIXEL.
*
* Since: 1.0
**/
typedef enum _cairo_subpixel_order {
CAIRO_SUBPIXEL_ORDER_DEFAULT,
1143,15 → 1288,15
/**
* cairo_hint_style_t:
* @CAIRO_HINT_STYLE_DEFAULT: Use the default hint style for
* font backend and target device
* @CAIRO_HINT_STYLE_NONE: Do not hint outlines
* font backend and target device, since 1.0
* @CAIRO_HINT_STYLE_NONE: Do not hint outlines, since 1.0
* @CAIRO_HINT_STYLE_SLIGHT: Hint outlines slightly to improve
* contrast while retaining good fidelity to the original
* shapes.
* shapes, since 1.0
* @CAIRO_HINT_STYLE_MEDIUM: Hint outlines with medium strength
* giving a compromise between fidelity to the original shapes
* and contrast
* @CAIRO_HINT_STYLE_FULL: Hint outlines to maximize contrast
* and contrast, since 1.0
* @CAIRO_HINT_STYLE_FULL: Hint outlines to maximize contrast, since 1.0
*
* Specifies the type of hinting to do on font outlines. Hinting
* is the process of fitting outlines to the pixel grid in order
1161,6 → 1306,8
* styles are supported by all font backends.
*
* New entries may be added in future versions.
*
* Since: 1.0
**/
typedef enum _cairo_hint_style {
CAIRO_HINT_STYLE_DEFAULT,
1173,9 → 1320,9
/**
* cairo_hint_metrics_t:
* @CAIRO_HINT_METRICS_DEFAULT: Hint metrics in the default
* manner for the font backend and target device
* @CAIRO_HINT_METRICS_OFF: Do not hint font metrics
* @CAIRO_HINT_METRICS_ON: Hint font metrics
* manner for the font backend and target device, since 1.0
* @CAIRO_HINT_METRICS_OFF: Do not hint font metrics, since 1.0
* @CAIRO_HINT_METRICS_ON: Hint font metrics, since 1.0
*
* Specifies whether to hint font metrics; hinting font metrics
* means quantizing them so that they are integer values in
1182,6 → 1329,8
* device space. Doing this improves the consistency of
* letter and line spacing, however it also means that text
* will be laid out differently at different zoom factors.
*
* Since: 1.0
**/
typedef enum _cairo_hint_metrics {
CAIRO_HINT_METRICS_DEFAULT,
1197,8 → 1346,8
*
* Individual features of a #cairo_font_options_t can be set or
* accessed using functions named
* cairo_font_options_set_<emphasis>feature_name</emphasis> and
* cairo_font_options_get_<emphasis>feature_name</emphasis>, like
* <function>cairo_font_options_set_<emphasis>feature_name</emphasis>()</function> and
* <function>cairo_font_options_get_<emphasis>feature_name</emphasis>()</function>, like
* cairo_font_options_set_antialias() and
* cairo_font_options_get_antialias().
*
1208,6 → 1357,8
* cairo_font_options_hash() should be used to copy, check
* for equality, merge, or compute a hash value of
* #cairo_font_options_t objects.
*
* Since: 1.0
**/
typedef struct _cairo_font_options cairo_font_options_t;
 
1352,10 → 1503,11
 
/**
* cairo_font_type_t:
* @CAIRO_FONT_TYPE_TOY: The font was created using cairo's toy font api
* @CAIRO_FONT_TYPE_FT: The font is of type FreeType
* @CAIRO_FONT_TYPE_WIN32: The font is of type Win32
* @CAIRO_FONT_TYPE_QUARTZ: The font is of type Quartz (Since: 1.6)
* @CAIRO_FONT_TYPE_TOY: The font was created using cairo's toy font api (Since: 1.2)
* @CAIRO_FONT_TYPE_FT: The font is of type FreeType (Since: 1.2)
* @CAIRO_FONT_TYPE_WIN32: The font is of type Win32 (Since: 1.2)
* @CAIRO_FONT_TYPE_QUARTZ: The font is of type Quartz (Since: 1.6, in 1.2 and
* 1.4 it was named CAIRO_FONT_TYPE_ATSUI)
* @CAIRO_FONT_TYPE_USER: The font was create using cairo's user font api (Since: 1.8)
*
* #cairo_font_type_t is used to describe the type of a given font
1364,8 → 1516,8
*
* The type of a font face is determined by the function used to
* create it, which will generally be of the form
* cairo_<emphasis>type</emphasis>_font_face_create(). The font face type can be queried
* with cairo_font_face_get_type()
* <function>cairo_<emphasis>type</emphasis>_font_face_create(<!-- -->)</function>.
* The font face type can be queried with cairo_font_face_get_type()
*
* The various #cairo_font_face_t functions can be used with a font face
* of any type.
1378,7 → 1530,8
* fonts of any type, but some font backends also provide
* type-specific functions that must only be called with a scaled font
* of the appropriate type. These functions have names that begin with
* cairo_<emphasis>type</emphasis>_scaled_font() such as cairo_ft_scaled_font_lock_face().
* <function>cairo_<emphasis>type</emphasis>_scaled_font(<!-- -->)</function>
* such as cairo_ft_scaled_font_lock_face().
*
* The behavior of calling a type-specific function with a scaled font
* of the wrong type is undefined.
1624,7 → 1777,8
* using cairo_glyph_allocate() and placed in @glyphs. Upon return,
* @num_glyphs should contain the number of generated glyphs. If the value
* @glyphs points at has changed after the call, the caller will free the
* allocated glyph array using cairo_glyph_free().
* allocated glyph array using cairo_glyph_free(). The caller will also free
* the original value of @glyphs, so the callback shouldn't do so.
* The callback should populate the glyph indices and positions (in font space)
* assuming that the text is to be shown at the origin.
*
1635,8 → 1789,9
* as a cluster buffer, and @num_clusters points to the number of cluster
* entries available there. If the provided cluster array is too short for
* the conversion (or for convenience), a new cluster array may be allocated
* using cairo_text_cluster_allocate() and placed in @clusters. Upon return,
* @num_clusters should contain the number of generated clusters.
* using cairo_text_cluster_allocate() and placed in @clusters. In this case,
* the original value of @clusters will still be freed by the caller. Upon
* return, @num_clusters should contain the number of generated clusters.
* If the value @clusters points at has changed after the call, the caller
* will free the allocated cluster array using cairo_text_cluster_free().
*
1795,14 → 1950,16
 
/**
* cairo_path_data_type_t:
* @CAIRO_PATH_MOVE_TO: A move-to operation
* @CAIRO_PATH_LINE_TO: A line-to operation
* @CAIRO_PATH_CURVE_TO: A curve-to operation
* @CAIRO_PATH_CLOSE_PATH: A close-path operation
* @CAIRO_PATH_MOVE_TO: A move-to operation, since 1.0
* @CAIRO_PATH_LINE_TO: A line-to operation, since 1.0
* @CAIRO_PATH_CURVE_TO: A curve-to operation, since 1.0
* @CAIRO_PATH_CLOSE_PATH: A close-path operation, since 1.0
*
* #cairo_path_data_t is used to describe the type of one portion
* of a path when represented as a #cairo_path_t.
* See #cairo_path_data_t for details.
*
* Since: 1.0
**/
typedef enum _cairo_path_data_type {
CAIRO_PATH_MOVE_TO,
1876,6 → 2033,8
* always use <literal>data->header.length</literal> to
* iterate over the path data, instead of hardcoding the number of
* elements for each element type.
*
* Since: 1.0
**/
typedef union _cairo_path_data_t cairo_path_data_t;
union _cairo_path_data_t {
1906,6 → 2065,8
* array. This number is larger than the number of independent path
* portions (defined in #cairo_path_data_type_t), since the data
* includes both headers and coordinates for each portion.
*
* Since: 1.0
**/
typedef struct cairo_path {
cairo_status_t status;
1941,13 → 2102,15
 
/**
* cairo_device_type_t:
* @CAIRO_DEVICE_TYPE_DRM: The surface is of type Direct Render Manager
* @CAIRO_DEVICE_TYPE_GL: The surface is of type OpenGL
* @CAIRO_DEVICE_TYPE_SCRIPT: The surface is of type script
* @CAIRO_DEVICE_TYPE_XCB: The surface is of type xcb
* @CAIRO_DEVICE_TYPE_XLIB: The surface is of type xlib
* @CAIRO_DEVICE_TYPE_XML: The surface is of type XML
* cairo_surface_create_for_rectangle()
* @CAIRO_DEVICE_TYPE_DRM: The device is of type Direct Render Manager, since 1.10
* @CAIRO_DEVICE_TYPE_GL: The device is of type OpenGL, since 1.10
* @CAIRO_DEVICE_TYPE_SCRIPT: The device is of type script, since 1.10
* @CAIRO_DEVICE_TYPE_XCB: The device is of type xcb, since 1.10
* @CAIRO_DEVICE_TYPE_XLIB: The device is of type xlib, since 1.10
* @CAIRO_DEVICE_TYPE_XML: The device is of type XML, since 1.10
* @CAIRO_DEVICE_TYPE_COGL: The device is of type cogl, since 1.12
* @CAIRO_DEVICE_TYPE_WIN32: The device is of type win32, since 1.12
* @CAIRO_DEVICE_TYPE_INVALID: The device is invalid, since 1.10
*
* #cairo_device_type_t is used to describe the type of a given
* device. The devices types are also known as "backends" within cairo.
1954,13 → 2117,14
*
* The device type can be queried with cairo_device_get_type()
*
* The various #cairo_device_t functions can be used with surfaces of
* The various #cairo_device_t functions can be used with devices of
* any type, but some backends also provide type-specific functions
* that must only be called with a device of the appropriate
* type. These functions have names that begin with
* cairo_<emphasis>type</emphasis>_device<!-- --> such as cairo_xcb_device_debug_set_render_version().
* <literal>cairo_<emphasis>type</emphasis>_device</literal> such as
* cairo_xcb_device_debug_cap_xrender_version().
*
* The behavior of calling a type-specific function with a surface of
* The behavior of calling a type-specific function with a device of
* the wrong type is undefined.
*
* New entries may be added in future versions.
1973,7 → 2137,11
CAIRO_DEVICE_TYPE_SCRIPT,
CAIRO_DEVICE_TYPE_XCB,
CAIRO_DEVICE_TYPE_XLIB,
CAIRO_DEVICE_TYPE_XML
CAIRO_DEVICE_TYPE_XML,
CAIRO_DEVICE_TYPE_COGL,
CAIRO_DEVICE_TYPE_WIN32,
 
CAIRO_DEVICE_TYPE_INVALID = -1
} cairo_device_type_t;
 
cairo_public cairo_device_type_t
2020,6 → 2188,20
int height);
 
cairo_public cairo_surface_t *
cairo_surface_create_similar_image (cairo_surface_t *other,
cairo_format_t format,
int width,
int height);
 
cairo_public cairo_surface_t *
cairo_surface_map_to_image (cairo_surface_t *surface,
const cairo_rectangle_int_t *extents);
 
cairo_public void
cairo_surface_unmap_image (cairo_surface_t *surface,
cairo_surface_t *image);
 
cairo_public cairo_surface_t *
cairo_surface_create_for_rectangle (cairo_surface_t *target,
double x,
double y,
2026,7 → 2208,85
double width,
double height);
 
typedef enum {
CAIRO_SURFACE_OBSERVER_NORMAL = 0,
CAIRO_SURFACE_OBSERVER_RECORD_OPERATIONS = 0x1
} cairo_surface_observer_mode_t;
 
cairo_public cairo_surface_t *
cairo_surface_create_observer (cairo_surface_t *target,
cairo_surface_observer_mode_t mode);
 
typedef void (*cairo_surface_observer_callback_t) (cairo_surface_t *observer,
cairo_surface_t *target,
void *data);
 
cairo_public cairo_status_t
cairo_surface_observer_add_paint_callback (cairo_surface_t *abstract_surface,
cairo_surface_observer_callback_t func,
void *data);
 
cairo_public cairo_status_t
cairo_surface_observer_add_mask_callback (cairo_surface_t *abstract_surface,
cairo_surface_observer_callback_t func,
void *data);
 
cairo_public cairo_status_t
cairo_surface_observer_add_fill_callback (cairo_surface_t *abstract_surface,
cairo_surface_observer_callback_t func,
void *data);
 
cairo_public cairo_status_t
cairo_surface_observer_add_stroke_callback (cairo_surface_t *abstract_surface,
cairo_surface_observer_callback_t func,
void *data);
 
cairo_public cairo_status_t
cairo_surface_observer_add_glyphs_callback (cairo_surface_t *abstract_surface,
cairo_surface_observer_callback_t func,
void *data);
 
cairo_public cairo_status_t
cairo_surface_observer_add_flush_callback (cairo_surface_t *abstract_surface,
cairo_surface_observer_callback_t func,
void *data);
 
cairo_public cairo_status_t
cairo_surface_observer_add_finish_callback (cairo_surface_t *abstract_surface,
cairo_surface_observer_callback_t func,
void *data);
 
cairo_public cairo_status_t
cairo_surface_observer_print (cairo_surface_t *surface,
cairo_write_func_t write_func,
void *closure);
cairo_public double
cairo_surface_observer_elapsed (cairo_surface_t *surface);
 
cairo_public cairo_status_t
cairo_device_observer_print (cairo_device_t *device,
cairo_write_func_t write_func,
void *closure);
 
cairo_public double
cairo_device_observer_elapsed (cairo_device_t *device);
 
cairo_public double
cairo_device_observer_paint_elapsed (cairo_device_t *device);
 
cairo_public double
cairo_device_observer_mask_elapsed (cairo_device_t *device);
 
cairo_public double
cairo_device_observer_fill_elapsed (cairo_device_t *device);
 
cairo_public double
cairo_device_observer_stroke_elapsed (cairo_device_t *device);
 
cairo_public double
cairo_device_observer_glyphs_elapsed (cairo_device_t *device);
 
cairo_public cairo_surface_t *
cairo_surface_reference (cairo_surface_t *surface);
 
cairo_public void
2046,20 → 2306,20
 
/**
* cairo_surface_type_t:
* @CAIRO_SURFACE_TYPE_IMAGE: The surface is of type image
* @CAIRO_SURFACE_TYPE_PDF: The surface is of type pdf
* @CAIRO_SURFACE_TYPE_PS: The surface is of type ps
* @CAIRO_SURFACE_TYPE_XLIB: The surface is of type xlib
* @CAIRO_SURFACE_TYPE_XCB: The surface is of type xcb
* @CAIRO_SURFACE_TYPE_GLITZ: The surface is of type glitz
* @CAIRO_SURFACE_TYPE_QUARTZ: The surface is of type quartz
* @CAIRO_SURFACE_TYPE_WIN32: The surface is of type win32
* @CAIRO_SURFACE_TYPE_BEOS: The surface is of type beos
* @CAIRO_SURFACE_TYPE_DIRECTFB: The surface is of type directfb
* @CAIRO_SURFACE_TYPE_SVG: The surface is of type svg
* @CAIRO_SURFACE_TYPE_OS2: The surface is of type os2
* @CAIRO_SURFACE_TYPE_WIN32_PRINTING: The surface is a win32 printing surface
* @CAIRO_SURFACE_TYPE_QUARTZ_IMAGE: The surface is of type quartz_image
* @CAIRO_SURFACE_TYPE_IMAGE: The surface is of type image, since 1.2
* @CAIRO_SURFACE_TYPE_PDF: The surface is of type pdf, since 1.2
* @CAIRO_SURFACE_TYPE_PS: The surface is of type ps, since 1.2
* @CAIRO_SURFACE_TYPE_XLIB: The surface is of type xlib, since 1.2
* @CAIRO_SURFACE_TYPE_XCB: The surface is of type xcb, since 1.2
* @CAIRO_SURFACE_TYPE_GLITZ: The surface is of type glitz, since 1.2
* @CAIRO_SURFACE_TYPE_QUARTZ: The surface is of type quartz, since 1.2
* @CAIRO_SURFACE_TYPE_WIN32: The surface is of type win32, since 1.2
* @CAIRO_SURFACE_TYPE_BEOS: The surface is of type beos, since 1.2
* @CAIRO_SURFACE_TYPE_DIRECTFB: The surface is of type directfb, since 1.2
* @CAIRO_SURFACE_TYPE_SVG: The surface is of type svg, since 1.2
* @CAIRO_SURFACE_TYPE_OS2: The surface is of type os2, since 1.4
* @CAIRO_SURFACE_TYPE_WIN32_PRINTING: The surface is a win32 printing surface, since 1.6
* @CAIRO_SURFACE_TYPE_QUARTZ_IMAGE: The surface is of type quartz_image, since 1.6
* @CAIRO_SURFACE_TYPE_SCRIPT: The surface is of type script, since 1.10
* @CAIRO_SURFACE_TYPE_QT: The surface is of type Qt, since 1.10
* @CAIRO_SURFACE_TYPE_RECORDING: The surface is of type recording, since 1.10
2071,6 → 2331,7
* @CAIRO_SURFACE_TYPE_SKIA: The surface is of type Skia, since 1.10
* @CAIRO_SURFACE_TYPE_SUBSURFACE: The surface is a subsurface created with
* cairo_surface_create_for_rectangle(), since 1.10
* @CAIRO_SURFACE_TYPE_COGL: This surface is of type Cogl, since 1.12
*
* #cairo_surface_type_t is used to describe the type of a given
* surface. The surface types are also known as "backends" or "surface
2077,7 → 2338,8
* backends" within cairo.
*
* The type of a surface is determined by the function used to create
* it, which will generally be of the form cairo_<emphasis>type</emphasis>_surface_create(),
* it, which will generally be of the form
* <function>cairo_<emphasis>type</emphasis>_surface_create(<!-- -->)</function>,
* (though see cairo_surface_create_similar() as well).
*
* The surface type can be queried with cairo_surface_get_type()
2086,7 → 2348,7
* any type, but some backends also provide type-specific functions
* that must only be called with a surface of the appropriate
* type. These functions have names that begin with
* cairo_<emphasis>type</emphasis>_surface<!-- --> such as cairo_image_surface_get_width().
* <literal>cairo_<emphasis>type</emphasis>_surface</literal> such as cairo_image_surface_get_width().
*
* The behavior of calling a type-specific function with a surface of
* the wrong type is undefined.
2119,7 → 2381,8
CAIRO_SURFACE_TYPE_TEE,
CAIRO_SURFACE_TYPE_XML,
CAIRO_SURFACE_TYPE_SKIA,
CAIRO_SURFACE_TYPE_SUBSURFACE
CAIRO_SURFACE_TYPE_SUBSURFACE,
CAIRO_SURFACE_TYPE_COGL
} cairo_surface_type_t;
 
cairo_public cairo_surface_type_t
2155,6 → 2418,7
#define CAIRO_MIME_TYPE_PNG "image/png"
#define CAIRO_MIME_TYPE_JP2 "image/jp2"
#define CAIRO_MIME_TYPE_URI "text/x-uri"
#define CAIRO_MIME_TYPE_UNIQUE_ID "application/x-cairo.uuid"
 
cairo_public void
cairo_surface_get_mime_data (cairo_surface_t *surface,
2170,6 → 2434,10
cairo_destroy_func_t destroy,
void *closure);
 
cairo_public cairo_bool_t
cairo_surface_supports_mime_type (cairo_surface_t *surface,
const char *mime_type);
 
cairo_public void
cairo_surface_get_font_options (cairo_surface_t *surface,
cairo_font_options_t *options);
2218,43 → 2486,6
 
/* Image-surface functions */
 
/**
* cairo_format_t:
* @CAIRO_FORMAT_INVALID: no such format exists or is supported.
* @CAIRO_FORMAT_ARGB32: each pixel is a 32-bit quantity, with
* alpha in the upper 8 bits, then red, then green, then blue.
* The 32-bit quantities are stored native-endian. Pre-multiplied
* alpha is used. (That is, 50% transparent red is 0x80800000,
* not 0x80ff0000.)
* @CAIRO_FORMAT_RGB24: each pixel is a 32-bit quantity, with
* the upper 8 bits unused. Red, Green, and Blue are stored
* in the remaining 24 bits in that order.
* @CAIRO_FORMAT_A8: each pixel is a 8-bit quantity holding
* an alpha value.
* @CAIRO_FORMAT_A1: each pixel is a 1-bit quantity holding
* an alpha value. Pixels are packed together into 32-bit
* quantities. The ordering of the bits matches the
* endianess of the platform. On a big-endian machine, the
* first pixel is in the uppermost bit, on a little-endian
* machine the first pixel is in the least-significant bit.
* @CAIRO_FORMAT_RGB16_565: each pixel is a 16-bit quantity
* with red in the upper 5 bits, then green in the middle
* 6 bits, and blue in the lower 5 bits.
*
* #cairo_format_t is used to identify the memory format of
* image data.
*
* New entries may be added in future versions.
**/
typedef enum _cairo_format {
CAIRO_FORMAT_INVALID = -1,
CAIRO_FORMAT_ARGB32 = 0,
CAIRO_FORMAT_RGB24 = 1,
CAIRO_FORMAT_A8 = 2,
CAIRO_FORMAT_A1 = 3,
CAIRO_FORMAT_RGB16_565 = 4
} cairo_format_t;
 
cairo_public cairo_surface_t *
cairo_image_surface_create (cairo_format_t format,
int width,
2310,6 → 2541,155
double *width,
double *height);
 
cairo_public cairo_bool_t
cairo_recording_surface_get_extents (cairo_surface_t *surface,
cairo_rectangle_t *extents);
 
/* raster-source pattern (callback) functions */
 
/**
* cairo_raster_source_acquire_func_t:
* @pattern: the pattern being rendered from
* @callback_data: the user data supplied during creation
* @target: the rendering target surface
* @extents: rectangular region of interest in pixels in sample space
*
* #cairo_raster_source_acquire_func_t is the type of function which is
* called when a pattern is being rendered from. It should create a surface
* that provides the pixel data for the region of interest as defined by
* extents, though the surface itself does not have to be limited to that
* area. For convenience the surface should probably be of image type,
* created with cairo_surface_create_similar_image() for the target (which
* enables the number of copies to be reduced during transfer to the
* device). Another option, might be to return a similar surface to the
* target for explicit handling by the application of a set of cached sources
* on the device. The region of sample data provided should be defined using
* cairo_surface_set_device_offset() to specify the top-left corner of the
* sample data (along with width and height of the surface).
*
* Returns: a #cairo_surface_t
*
* Since: 1.12
**/
typedef cairo_surface_t *
(*cairo_raster_source_acquire_func_t) (cairo_pattern_t *pattern,
void *callback_data,
cairo_surface_t *target,
const cairo_rectangle_int_t *extents);
 
/**
* cairo_raster_source_release_func_t:
* @pattern: the pattern being rendered from
* @callback_data: the user data supplied during creation
* @surface: the surface created during acquire
*
* #cairo_raster_source_release_func_t is the type of function which is
* called when the pixel data is no longer being access by the pattern
* for the rendering operation. Typically this function will simply
* destroy the surface created during acquire.
*
* Since: 1.12
**/
typedef void
(*cairo_raster_source_release_func_t) (cairo_pattern_t *pattern,
void *callback_data,
cairo_surface_t *surface);
 
/**
* cairo_raster_source_snapshot_func_t:
* @pattern: the pattern being rendered from
* @callback_data: the user data supplied during creation
*
* #cairo_raster_source_snapshot_func_t is the type of function which is
* called when the pixel data needs to be preserved for later use
* during printing. This pattern will be accessed again later, and it
* is expected to provide the pixel data that was current at the time
* of snapshotting.
*
* Return value: CAIRO_STATUS_SUCCESS on success, or one of the
* #cairo_status_t error codes for failure.
*
* Since: 1.12
**/
typedef cairo_status_t
(*cairo_raster_source_snapshot_func_t) (cairo_pattern_t *pattern,
void *callback_data);
 
/**
* cairo_raster_source_copy_func_t:
* @pattern: the #cairo_pattern_t that was copied to
* @callback_data: the user data supplied during creation
* @other: the #cairo_pattern_t being used as the source for the copy
*
* #cairo_raster_source_copy_func_t is the type of function which is
* called when the pattern gets copied as a normal part of rendering.
*
* Return value: CAIRO_STATUS_SUCCESS on success, or one of the
* #cairo_status_t error codes for failure.
*
* Since: 1.12
**/
typedef cairo_status_t
(*cairo_raster_source_copy_func_t) (cairo_pattern_t *pattern,
void *callback_data,
const cairo_pattern_t *other);
 
/**
* cairo_raster_source_finish_func_t:
* @pattern: the pattern being rendered from
* @callback_data: the user data supplied during creation
*
* #cairo_raster_source_finish_func_t is the type of function which is
* called when the pattern (or a copy thereof) is no longer required.
*
* Since: 1.12
**/
typedef void
(*cairo_raster_source_finish_func_t) (cairo_pattern_t *pattern,
void *callback_data);
 
cairo_public cairo_pattern_t *
cairo_pattern_create_raster_source (void *user_data,
cairo_content_t content,
int width, int height);
 
cairo_public void
cairo_raster_source_pattern_set_callback_data (cairo_pattern_t *pattern,
void *data);
 
cairo_public void *
cairo_raster_source_pattern_get_callback_data (cairo_pattern_t *pattern);
 
cairo_public void
cairo_raster_source_pattern_set_acquire (cairo_pattern_t *pattern,
cairo_raster_source_acquire_func_t acquire,
cairo_raster_source_release_func_t release);
 
cairo_public void
cairo_raster_source_pattern_get_acquire (cairo_pattern_t *pattern,
cairo_raster_source_acquire_func_t *acquire,
cairo_raster_source_release_func_t *release);
cairo_public void
cairo_raster_source_pattern_set_snapshot (cairo_pattern_t *pattern,
cairo_raster_source_snapshot_func_t snapshot);
 
cairo_public cairo_raster_source_snapshot_func_t
cairo_raster_source_pattern_get_snapshot (cairo_pattern_t *pattern);
 
cairo_public void
cairo_raster_source_pattern_set_copy (cairo_pattern_t *pattern,
cairo_raster_source_copy_func_t copy);
 
cairo_public cairo_raster_source_copy_func_t
cairo_raster_source_pattern_get_copy (cairo_pattern_t *pattern);
 
cairo_public void
cairo_raster_source_pattern_set_finish (cairo_pattern_t *pattern,
cairo_raster_source_finish_func_t finish);
 
cairo_public cairo_raster_source_finish_func_t
cairo_raster_source_pattern_get_finish (cairo_pattern_t *pattern);
 
/* Pattern creation functions */
 
cairo_public cairo_pattern_t *
2331,6 → 2711,9
double cx1, double cy1, double radius1);
 
cairo_public cairo_pattern_t *
cairo_pattern_create_mesh (void);
 
cairo_public cairo_pattern_t *
cairo_pattern_reference (cairo_pattern_t *pattern);
 
cairo_public void
2355,10 → 2738,12
/**
* cairo_pattern_type_t:
* @CAIRO_PATTERN_TYPE_SOLID: The pattern is a solid (uniform)
* color. It may be opaque or translucent.
* @CAIRO_PATTERN_TYPE_SURFACE: The pattern is a based on a surface (an image).
* @CAIRO_PATTERN_TYPE_LINEAR: The pattern is a linear gradient.
* @CAIRO_PATTERN_TYPE_RADIAL: The pattern is a radial gradient.
* color. It may be opaque or translucent, since 1.2.
* @CAIRO_PATTERN_TYPE_SURFACE: The pattern is a based on a surface (an image), since 1.2.
* @CAIRO_PATTERN_TYPE_LINEAR: The pattern is a linear gradient, since 1.2.
* @CAIRO_PATTERN_TYPE_RADIAL: The pattern is a radial gradient, since 1.2.
* @CAIRO_PATTERN_TYPE_MESH: The pattern is a mesh, since 1.12.
* @CAIRO_PATTERN_TYPE_RASTER_SOURCE: The pattern is a user pattern providing raster data, since 1.12.
*
* #cairo_pattern_type_t is used to describe the type of a given pattern.
*
2386,7 → 2771,9
CAIRO_PATTERN_TYPE_SOLID,
CAIRO_PATTERN_TYPE_SURFACE,
CAIRO_PATTERN_TYPE_LINEAR,
CAIRO_PATTERN_TYPE_RADIAL
CAIRO_PATTERN_TYPE_RADIAL,
CAIRO_PATTERN_TYPE_MESH,
CAIRO_PATTERN_TYPE_RASTER_SOURCE
} cairo_pattern_type_t;
 
cairo_public cairo_pattern_type_t
2404,6 → 2791,42
double alpha);
 
cairo_public void
cairo_mesh_pattern_begin_patch (cairo_pattern_t *pattern);
 
cairo_public void
cairo_mesh_pattern_end_patch (cairo_pattern_t *pattern);
 
cairo_public void
cairo_mesh_pattern_curve_to (cairo_pattern_t *pattern,
double x1, double y1,
double x2, double y2,
double x3, double y3);
 
cairo_public void
cairo_mesh_pattern_line_to (cairo_pattern_t *pattern,
double x, double y);
 
cairo_public void
cairo_mesh_pattern_move_to (cairo_pattern_t *pattern,
double x, double y);
 
cairo_public void
cairo_mesh_pattern_set_control_point (cairo_pattern_t *pattern,
unsigned int point_num,
double x, double y);
 
cairo_public void
cairo_mesh_pattern_set_corner_color_rgb (cairo_pattern_t *pattern,
unsigned int corner_num,
double red, double green, double blue);
 
cairo_public void
cairo_mesh_pattern_set_corner_color_rgba (cairo_pattern_t *pattern,
unsigned int corner_num,
double red, double green, double blue,
double alpha);
 
cairo_public void
cairo_pattern_set_matrix (cairo_pattern_t *pattern,
const cairo_matrix_t *matrix);
 
2414,10 → 2837,10
/**
* cairo_extend_t:
* @CAIRO_EXTEND_NONE: pixels outside of the source pattern
* are fully transparent
* @CAIRO_EXTEND_REPEAT: the pattern is tiled by repeating
* are fully transparent (Since 1.0)
* @CAIRO_EXTEND_REPEAT: the pattern is tiled by repeating (Since 1.0)
* @CAIRO_EXTEND_REFLECT: the pattern is tiled by reflecting
* at the edges (Implemented for surface patterns since 1.6)
* at the edges (Since 1.0; but only implemented for surface patterns since 1.6)
* @CAIRO_EXTEND_PAD: pixels outside of the pattern copy
* the closest pixel from the source (Since 1.2; but only
* implemented for surface patterns since 1.6)
2427,10 → 2850,14
* example, outside the surface bounds or outside the gradient
* geometry).
*
* Mesh patterns are not affected by the extend mode.
*
* The default extend mode is %CAIRO_EXTEND_NONE for surface patterns
* and %CAIRO_EXTEND_PAD for gradient patterns.
*
* New entries may be added in future versions.
*
* Since: 1.0
**/
typedef enum _cairo_extend {
CAIRO_EXTEND_NONE,
2448,21 → 2875,23
/**
* cairo_filter_t:
* @CAIRO_FILTER_FAST: A high-performance filter, with quality similar
* to %CAIRO_FILTER_NEAREST
* to %CAIRO_FILTER_NEAREST (Since 1.0)
* @CAIRO_FILTER_GOOD: A reasonable-performance filter, with quality
* similar to %CAIRO_FILTER_BILINEAR
* similar to %CAIRO_FILTER_BILINEAR (Since 1.0)
* @CAIRO_FILTER_BEST: The highest-quality available, performance may
* not be suitable for interactive use.
* @CAIRO_FILTER_NEAREST: Nearest-neighbor filtering
* @CAIRO_FILTER_BILINEAR: Linear interpolation in two dimensions
* not be suitable for interactive use. (Since 1.0)
* @CAIRO_FILTER_NEAREST: Nearest-neighbor filtering (Since 1.0)
* @CAIRO_FILTER_BILINEAR: Linear interpolation in two dimensions (Since 1.0)
* @CAIRO_FILTER_GAUSSIAN: This filter value is currently
* unimplemented, and should not be used in current code.
* unimplemented, and should not be used in current code. (Since 1.0)
*
* #cairo_filter_t is used to indicate what filtering should be
* applied when reading pixel values from patterns. See
* cairo_pattern_set_source() for indicating the desired filter to be
* cairo_pattern_set_filter() for indicating the desired filter to be
* used with a particular pattern.
*/
*
* Since: 1.0
**/
typedef enum _cairo_filter {
CAIRO_FILTER_FAST,
CAIRO_FILTER_GOOD,
2508,6 → 2937,27
double *x0, double *y0, double *r0,
double *x1, double *y1, double *r1);
 
cairo_public cairo_status_t
cairo_mesh_pattern_get_patch_count (cairo_pattern_t *pattern,
unsigned int *count);
 
cairo_public cairo_path_t *
cairo_mesh_pattern_get_path (cairo_pattern_t *pattern,
unsigned int patch_num);
 
cairo_public cairo_status_t
cairo_mesh_pattern_get_corner_color_rgba (cairo_pattern_t *pattern,
unsigned int patch_num,
unsigned int corner_num,
double *red, double *green,
double *blue, double *alpha);
 
cairo_public cairo_status_t
cairo_mesh_pattern_get_control_point (cairo_pattern_t *pattern,
unsigned int patch_num,
unsigned int point_num,
double *x, double *y);
 
/* Matrix functions */
 
cairo_public void
2573,23 → 3023,6
**/
typedef struct _cairo_region cairo_region_t;
 
/**
* cairo_rectangle_int_t:
* @x: X coordinate of the left side of the rectangle
* @y: Y coordinate of the the top side of the rectangle
* @width: width of the rectangle
* @height: height of the rectangle
*
* A data structure for holding a rectangle with integer coordinates.
*
* Since: 1.10
**/
 
typedef struct _cairo_rectangle_int {
int x, y;
int width, height;
} cairo_rectangle_int_t;
 
typedef enum _cairo_region_overlap {
CAIRO_REGION_OVERLAP_IN, /* completely inside region */
CAIRO_REGION_OVERLAP_OUT, /* completely outside region */