Subversion Repositories Kolibri OS

Compare Revisions

Regard whitespace Rev 4362 → Rev 4363

/contrib/sdk/sources/libdrm/intel/intel_aub.h
0,0 → 1,153
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
 
/** @file intel_aub.h
*
* The AUB file is a file format used by Intel's internal simulation
* and other validation tools. It can be used at various levels by a
* driver to input state to the simulated hardware or a replaying
* debugger.
*
* We choose to dump AUB files using the trace block format for ease
* of implementation -- dump out the blocks of memory as plain blobs
* and insert ring commands to execute the batchbuffer blob.
*/
 
#ifndef _INTEL_AUB_H
#define _INTEL_AUB_H
 
#define AUB_MI_NOOP (0)
#define AUB_MI_BATCH_BUFFER_START (0x31 << 23)
#define AUB_PIPE_CONTROL (0x7a000002)
 
/* DW0: instruction type. */
 
#define CMD_AUB (7 << 29)
 
#define CMD_AUB_HEADER (CMD_AUB | (1 << 23) | (0x05 << 16))
/* DW1 */
# define AUB_HEADER_MAJOR_SHIFT 24
# define AUB_HEADER_MINOR_SHIFT 16
 
#define CMD_AUB_TRACE_HEADER_BLOCK (CMD_AUB | (1 << 23) | (0x41 << 16))
#define CMD_AUB_DUMP_BMP (CMD_AUB | (1 << 23) | (0x9e << 16))
 
/* DW1 */
#define AUB_TRACE_OPERATION_MASK 0x000000ff
#define AUB_TRACE_OP_COMMENT 0x00000000
#define AUB_TRACE_OP_DATA_WRITE 0x00000001
#define AUB_TRACE_OP_COMMAND_WRITE 0x00000002
#define AUB_TRACE_OP_MMIO_WRITE 0x00000003
// operation = TRACE_DATA_WRITE, Type
#define AUB_TRACE_TYPE_MASK 0x0000ff00
#define AUB_TRACE_TYPE_NOTYPE (0 << 8)
#define AUB_TRACE_TYPE_BATCH (1 << 8)
#define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
#define AUB_TRACE_TYPE_2D_MAP (6 << 8)
#define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
#define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
#define AUB_TRACE_TYPE_1D_MAP (10 << 8)
#define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
#define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
#define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
#define AUB_TRACE_TYPE_GENERAL (14 << 8)
#define AUB_TRACE_TYPE_SURFACE (15 << 8)
 
 
// operation = TRACE_COMMAND_WRITE, Type =
#define AUB_TRACE_TYPE_RING_HWB (1 << 8)
#define AUB_TRACE_TYPE_RING_PRB0 (2 << 8)
#define AUB_TRACE_TYPE_RING_PRB1 (3 << 8)
#define AUB_TRACE_TYPE_RING_PRB2 (4 << 8)
 
// Address space
#define AUB_TRACE_ADDRESS_SPACE_MASK 0x00ff0000
#define AUB_TRACE_MEMTYPE_GTT (0 << 16)
#define AUB_TRACE_MEMTYPE_LOCAL (1 << 16)
#define AUB_TRACE_MEMTYPE_NONLOCAL (2 << 16)
#define AUB_TRACE_MEMTYPE_PCI (3 << 16)
#define AUB_TRACE_MEMTYPE_GTT_ENTRY (4 << 16)
 
/* DW2 */
 
/**
* aub_state_struct_type enum values are encoded with the top 16 bits
* representing the type to be delivered to the .aub file, and the bottom 16
* bits representing the subtype. This macro performs the encoding.
*/
#define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
 
enum aub_state_struct_type {
AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
 
AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
 
AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
};
 
#undef ENCODE_SS_TYPE
 
/**
* Decode a aub_state_struct_type value to determine the type that should be
* stored in the .aub file.
*/
static inline uint32_t AUB_TRACE_TYPE(enum aub_state_struct_type ss_type)
{
return (ss_type & 0xFFFF0000) >> 16;
}
 
/**
* Decode a state_struct_type value to determine the subtype that should be
* stored in the .aub file.
*/
static inline uint32_t AUB_TRACE_SUBTYPE(enum aub_state_struct_type ss_type)
{
return ss_type & 0xFFFF;
}
 
/* DW3: address */
/* DW4: len */
 
#endif /* _INTEL_AUB_H */
/contrib/sdk/sources/libdrm/intel/intel_bufmgr.c
0,0 → 1,316
/*
* Copyright © 2007 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
 
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
 
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <assert.h>
#include <errno.h>
#include <drm.h>
#include <i915_drm.h>
//#include <pciaccess.h>
#include "intel_bufmgr.h"
#include "intel_bufmgr_priv.h"
#include "xf86drm.h"
 
/** @file intel_bufmgr.c
*
* Convenience functions for buffer management methods.
*/
 
drm_intel_bo *drm_intel_bo_alloc(drm_intel_bufmgr *bufmgr, const char *name,
unsigned long size, unsigned int alignment)
{
return bufmgr->bo_alloc(bufmgr, name, size, alignment);
}
 
#if 0
drm_intel_bo *drm_intel_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
const char *name,
unsigned long size,
unsigned int alignment)
{
return bufmgr->bo_alloc_for_render(bufmgr, name, size, alignment);
}
#endif
 
drm_intel_bo *
drm_intel_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
int x, int y, int cpp, uint32_t *tiling_mode,
unsigned long *pitch, unsigned long flags)
{
return bufmgr->bo_alloc_tiled(bufmgr, name, x, y, cpp,
tiling_mode, pitch, flags);
}
 
void drm_intel_bo_reference(drm_intel_bo *bo)
{
bo->bufmgr->bo_reference(bo);
}
 
void drm_intel_bo_unreference(drm_intel_bo *bo)
{
if (bo == NULL)
return;
 
bo->bufmgr->bo_unreference(bo);
}
 
int drm_intel_bo_map(drm_intel_bo *buf, int write_enable)
{
return buf->bufmgr->bo_map(buf, write_enable);
}
 
int drm_intel_bo_unmap(drm_intel_bo *buf)
{
return buf->bufmgr->bo_unmap(buf);
}
 
int
drm_intel_bo_subdata(drm_intel_bo *bo, unsigned long offset,
unsigned long size, const void *data)
{
return bo->bufmgr->bo_subdata(bo, offset, size, data);
}
 
int
drm_intel_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
unsigned long size, void *data)
{
int ret;
// if (bo->bufmgr->bo_get_subdata)
// return bo->bufmgr->bo_get_subdata(bo, offset, size, data);
 
if (size == 0 || data == NULL)
return 0;
 
ret = drm_intel_bo_map(bo, 0);
if (ret)
return ret;
memcpy(data, (unsigned char *)bo->virtual + offset, size);
drm_intel_bo_unmap(bo);
return 0;
}
 
void drm_intel_bo_wait_rendering(drm_intel_bo *bo)
{
bo->bufmgr->bo_wait_rendering(bo);
}
 
void drm_intel_bufmgr_destroy(drm_intel_bufmgr *bufmgr)
{
bufmgr->destroy(bufmgr);
}
 
int
drm_intel_bo_exec(drm_intel_bo *bo, int used,
drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
{
return bo->bufmgr->bo_exec(bo, used, cliprects, num_cliprects, DR4);
}
 
int
drm_intel_bo_mrb_exec(drm_intel_bo *bo, int used,
drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
unsigned int rings)
{
if (bo->bufmgr->bo_mrb_exec)
return bo->bufmgr->bo_mrb_exec(bo, used,
cliprects, num_cliprects, DR4,
rings);
 
switch (rings) {
case I915_EXEC_DEFAULT:
case I915_EXEC_RENDER:
return bo->bufmgr->bo_exec(bo, used,
cliprects, num_cliprects, DR4);
default:
return -ENODEV;
}
}
 
void drm_intel_bufmgr_set_debug(drm_intel_bufmgr *bufmgr, int enable_debug)
{
bufmgr->debug = enable_debug;
}
 
int drm_intel_bufmgr_check_aperture_space(drm_intel_bo ** bo_array, int count)
{
return bo_array[0]->bufmgr->check_aperture_space(bo_array, count);
}
 
int drm_intel_bo_flink(drm_intel_bo *bo, uint32_t * name)
{
if (bo->bufmgr->bo_flink)
return bo->bufmgr->bo_flink(bo, name);
 
return -ENODEV;
}
 
int
drm_intel_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
drm_intel_bo *target_bo, uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain)
{
return bo->bufmgr->bo_emit_reloc(bo, offset,
target_bo, target_offset,
read_domains, write_domain);
}
 
/* For fence registers, not GL fences */
int
drm_intel_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
drm_intel_bo *target_bo, uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain)
{
return bo->bufmgr->bo_emit_reloc_fence(bo, offset,
target_bo, target_offset,
read_domains, write_domain);
}
 
 
int drm_intel_bo_pin(drm_intel_bo *bo, uint32_t alignment)
{
if (bo->bufmgr->bo_pin)
return bo->bufmgr->bo_pin(bo, alignment);
 
return -ENODEV;
}
 
int drm_intel_bo_unpin(drm_intel_bo *bo)
{
if (bo->bufmgr->bo_unpin)
return bo->bufmgr->bo_unpin(bo);
 
return -ENODEV;
}
 
int drm_intel_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
uint32_t stride)
{
if (bo->bufmgr->bo_set_tiling)
return bo->bufmgr->bo_set_tiling(bo, tiling_mode, stride);
 
*tiling_mode = I915_TILING_NONE;
return 0;
}
 
int drm_intel_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
uint32_t * swizzle_mode)
{
if (bo->bufmgr->bo_get_tiling)
return bo->bufmgr->bo_get_tiling(bo, tiling_mode, swizzle_mode);
 
*tiling_mode = I915_TILING_NONE;
*swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
return 0;
}
 
int drm_intel_bo_disable_reuse(drm_intel_bo *bo)
{
if (bo->bufmgr->bo_disable_reuse)
return bo->bufmgr->bo_disable_reuse(bo);
return 0;
}
 
int drm_intel_bo_is_reusable(drm_intel_bo *bo)
{
if (bo->bufmgr->bo_is_reusable)
return bo->bufmgr->bo_is_reusable(bo);
return 0;
}
 
int drm_intel_bo_busy(drm_intel_bo *bo)
{
if (bo->bufmgr->bo_busy)
return bo->bufmgr->bo_busy(bo);
return 0;
}
 
int drm_intel_bo_madvise(drm_intel_bo *bo, int madv)
{
if (bo->bufmgr->bo_madvise)
return bo->bufmgr->bo_madvise(bo, madv);
return -1;
}
 
int drm_intel_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
{
return bo->bufmgr->bo_references(bo, target_bo);
}
 
 
 
#if 0
static size_t
drm_intel_probe_agp_aperture_size(int fd)
{
struct pci_device *pci_dev;
size_t size = 0;
int ret;
 
ret = pci_system_init();
if (ret)
goto err;
 
/* XXX handle multiple adaptors? */
pci_dev = pci_device_find_by_slot(0, 0, 2, 0);
if (pci_dev == NULL)
goto err;
 
ret = pci_device_probe(pci_dev);
if (ret)
goto err;
 
size = pci_dev->regions[2].size;
err:
pci_system_cleanup ();
return size;
}
#endif
 
int drm_intel_get_aperture_sizes(int fd,
size_t *mappable,
size_t *total)
{
 
struct drm_i915_gem_get_aperture aperture;
int ret;
 
ret = drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture);
if (ret)
return ret;
 
/* XXX add a query for the kernel value? */
*mappable = 512 * 1024 * 1024; /* minimum possible value */
*total = aperture.aper_size;
return 0;
}
/contrib/sdk/sources/libdrm/intel/intel_bufmgr.h
0,0 → 1,301
/*
* Copyright © 2008-2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
 
/**
* @file intel_bufmgr.h
*
* Public definitions of Intel-specific bufmgr functions.
*/
 
#ifndef INTEL_BUFMGR_H
#define INTEL_BUFMGR_H
 
#include <stdio.h>
#include <stdint.h>
#include <stdio.h>
 
struct drm_clip_rect;
 
typedef struct _drm_intel_bufmgr drm_intel_bufmgr;
typedef struct _drm_intel_context drm_intel_context;
typedef struct _drm_intel_bo drm_intel_bo;
 
struct _drm_intel_bo {
/**
* Size in bytes of the buffer object.
*
* The size may be larger than the size originally requested for the
* allocation, such as being aligned to page size.
*/
unsigned long size;
 
/**
* Alignment requirement for object
*
* Used for GTT mapping & pinning the object.
*/
unsigned long align;
 
/**
* Last seen card virtual address (offset from the beginning of the
* aperture) for the object. This should be used to fill relocation
* entries when calling drm_intel_bo_emit_reloc()
*/
unsigned long offset;
 
/**
* Virtual address for accessing the buffer data. Only valid while
* mapped.
*/
#ifdef __cplusplus
void *virt;
#else
void *virtual;
#endif
 
/** Buffer manager context associated with this buffer object */
drm_intel_bufmgr *bufmgr;
 
/**
* MM-specific handle for accessing object
*/
int handle;
};
 
enum aub_dump_bmp_format {
AUB_DUMP_BMP_FORMAT_8BIT = 1,
AUB_DUMP_BMP_FORMAT_ARGB_4444 = 4,
AUB_DUMP_BMP_FORMAT_ARGB_0888 = 6,
AUB_DUMP_BMP_FORMAT_ARGB_8888 = 7,
};
 
typedef struct _drm_intel_aub_annotation {
uint32_t type;
uint32_t subtype;
uint32_t ending_offset;
} drm_intel_aub_annotation;
 
#define BO_ALLOC_FOR_RENDER (1<<0)
 
drm_intel_bo *drm_intel_bo_alloc(drm_intel_bufmgr *bufmgr, const char *name,
unsigned long size, unsigned int alignment);
drm_intel_bo *drm_intel_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
const char *name,
unsigned long size,
unsigned int alignment);
drm_intel_bo *drm_intel_bo_alloc_tiled(drm_intel_bufmgr *bufmgr,
const char *name,
int x, int y, int cpp,
uint32_t *tiling_mode,
unsigned long *pitch,
unsigned long flags);
void drm_intel_bo_reference(drm_intel_bo *bo);
void drm_intel_bo_unreference(drm_intel_bo *bo);
int drm_intel_bo_map(drm_intel_bo *bo, int write_enable);
int drm_intel_bo_unmap(drm_intel_bo *bo);
 
int drm_intel_bo_subdata(drm_intel_bo *bo, unsigned long offset,
unsigned long size, const void *data);
int drm_intel_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
unsigned long size, void *data);
void drm_intel_bo_wait_rendering(drm_intel_bo *bo);
 
void drm_intel_bufmgr_set_debug(drm_intel_bufmgr *bufmgr, int enable_debug);
void drm_intel_bufmgr_destroy(drm_intel_bufmgr *bufmgr);
int drm_intel_bo_exec(drm_intel_bo *bo, int used,
struct drm_clip_rect *cliprects, int num_cliprects, int DR4);
int drm_intel_bo_mrb_exec(drm_intel_bo *bo, int used,
struct drm_clip_rect *cliprects, int num_cliprects, int DR4,
unsigned int flags);
int drm_intel_bufmgr_check_aperture_space(drm_intel_bo ** bo_array, int count);
 
int drm_intel_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
drm_intel_bo *target_bo, uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain);
int drm_intel_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
drm_intel_bo *target_bo,
uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain);
int drm_intel_bo_pin(drm_intel_bo *bo, uint32_t alignment);
int drm_intel_bo_unpin(drm_intel_bo *bo);
int drm_intel_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
uint32_t stride);
int drm_intel_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
uint32_t * swizzle_mode);
int drm_intel_bo_flink(drm_intel_bo *bo, uint32_t * name);
int drm_intel_bo_busy(drm_intel_bo *bo);
int drm_intel_bo_madvise(drm_intel_bo *bo, int madv);
 
int drm_intel_bo_disable_reuse(drm_intel_bo *bo);
int drm_intel_bo_is_reusable(drm_intel_bo *bo);
int drm_intel_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo);
 
/* drm_intel_bufmgr_gem.c */
drm_intel_bufmgr *drm_intel_bufmgr_gem_init(int fd, int batch_size);
drm_intel_bo *drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
const char *name,
unsigned int handle);
drm_intel_bo *
bo_create_from_gem_handle(drm_intel_bufmgr *bufmgr,
unsigned int size, unsigned int handle);
 
void drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr);
void drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr);
void drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr,
int limit);
int drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo);
int drm_intel_gem_bo_map_gtt(drm_intel_bo *bo);
int drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo);
 
int drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo);
void drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start);
void drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable);
 
void
drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
const char *filename);
void drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable);
void drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
int x1, int y1, int width, int height,
enum aub_dump_bmp_format format,
int pitch, int offset);
void
drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
drm_intel_aub_annotation *annotations,
unsigned count);
 
int drm_intel_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id);
 
int drm_intel_get_aperture_sizes(int fd, size_t *mappable, size_t *total);
int drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr);
int drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns);
 
drm_intel_context *drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr);
void drm_intel_gem_context_destroy(drm_intel_context *ctx);
int drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
int used, unsigned int flags);
 
int drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd);
drm_intel_bo *drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr,
int prime_fd, int size);
 
/* drm_intel_bufmgr_fake.c */
drm_intel_bufmgr *drm_intel_bufmgr_fake_init(int fd,
unsigned long low_offset,
void *low_virtual,
unsigned long size,
volatile unsigned int
*last_dispatch);
void drm_intel_bufmgr_fake_set_last_dispatch(drm_intel_bufmgr *bufmgr,
volatile unsigned int
*last_dispatch);
void drm_intel_bufmgr_fake_set_exec_callback(drm_intel_bufmgr *bufmgr,
int (*exec) (drm_intel_bo *bo,
unsigned int used,
void *priv),
void *priv);
void drm_intel_bufmgr_fake_set_fence_callback(drm_intel_bufmgr *bufmgr,
unsigned int (*emit) (void *priv),
void (*wait) (unsigned int fence,
void *priv),
void *priv);
drm_intel_bo *drm_intel_bo_fake_alloc_static(drm_intel_bufmgr *bufmgr,
const char *name,
unsigned long offset,
unsigned long size, void *virt);
void drm_intel_bo_fake_disable_backing_store(drm_intel_bo *bo,
void (*invalidate_cb) (drm_intel_bo
* bo,
void *ptr),
void *ptr);
 
void drm_intel_bufmgr_fake_contended_lock_take(drm_intel_bufmgr *bufmgr);
void drm_intel_bufmgr_fake_evict_all(drm_intel_bufmgr *bufmgr);
 
struct drm_intel_decode *drm_intel_decode_context_alloc(uint32_t devid);
void drm_intel_decode_context_free(struct drm_intel_decode *ctx);
void drm_intel_decode_set_batch_pointer(struct drm_intel_decode *ctx,
void *data, uint32_t hw_offset,
int count);
void drm_intel_decode_set_dump_past_end(struct drm_intel_decode *ctx,
int dump_past_end);
void drm_intel_decode_set_head_tail(struct drm_intel_decode *ctx,
uint32_t head, uint32_t tail);
void drm_intel_decode_set_output_file(struct drm_intel_decode *ctx, FILE *out);
void drm_intel_decode(struct drm_intel_decode *ctx);
 
int drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
uint32_t offset,
uint64_t *result);
 
int drm_intel_get_reset_stats(drm_intel_context *ctx,
uint32_t *reset_count,
uint32_t *active,
uint32_t *pending);
 
/** @{ Compatibility defines to keep old code building despite the symbol rename
* from dri_* to drm_intel_*
*/
#define dri_bo drm_intel_bo
#define dri_bufmgr drm_intel_bufmgr
#define dri_bo_alloc drm_intel_bo_alloc
#define dri_bo_reference drm_intel_bo_reference
#define dri_bo_unreference drm_intel_bo_unreference
#define dri_bo_map drm_intel_bo_map
#define dri_bo_unmap drm_intel_bo_unmap
#define dri_bo_subdata drm_intel_bo_subdata
#define dri_bo_get_subdata drm_intel_bo_get_subdata
#define dri_bo_wait_rendering drm_intel_bo_wait_rendering
#define dri_bufmgr_set_debug drm_intel_bufmgr_set_debug
#define dri_bufmgr_destroy drm_intel_bufmgr_destroy
#define dri_bo_exec drm_intel_bo_exec
#define dri_bufmgr_check_aperture_space drm_intel_bufmgr_check_aperture_space
#define dri_bo_emit_reloc(reloc_bo, read, write, target_offset, \
reloc_offset, target_bo) \
drm_intel_bo_emit_reloc(reloc_bo, reloc_offset, \
target_bo, target_offset, \
read, write);
#define dri_bo_pin drm_intel_bo_pin
#define dri_bo_unpin drm_intel_bo_unpin
#define dri_bo_get_tiling drm_intel_bo_get_tiling
#define dri_bo_set_tiling(bo, mode) drm_intel_bo_set_tiling(bo, mode, 0)
#define dri_bo_flink drm_intel_bo_flink
#define intel_bufmgr_gem_init drm_intel_bufmgr_gem_init
#define intel_bo_gem_create_from_name drm_intel_bo_gem_create_from_name
#define intel_bufmgr_gem_enable_reuse drm_intel_bufmgr_gem_enable_reuse
#define intel_bufmgr_fake_init drm_intel_bufmgr_fake_init
#define intel_bufmgr_fake_set_last_dispatch drm_intel_bufmgr_fake_set_last_dispatch
#define intel_bufmgr_fake_set_exec_callback drm_intel_bufmgr_fake_set_exec_callback
#define intel_bufmgr_fake_set_fence_callback drm_intel_bufmgr_fake_set_fence_callback
#define intel_bo_fake_alloc_static drm_intel_bo_fake_alloc_static
#define intel_bo_fake_disable_backing_store drm_intel_bo_fake_disable_backing_store
#define intel_bufmgr_fake_contended_lock_take drm_intel_bufmgr_fake_contended_lock_take
#define intel_bufmgr_fake_evict_all drm_intel_bufmgr_fake_evict_all
 
/** @{ */
 
#endif /* INTEL_BUFMGR_H */
/contrib/sdk/sources/libdrm/intel/intel_bufmgr_gem.c
0,0 → 1,3246
/**************************************************************************
*
* Copyright © 2007 Red Hat Inc.
* Copyright © 2007-2012 Intel Corporation
* Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
*
**************************************************************************/
/*
* Authors: Thomas Hellström <thomas-at-tungstengraphics-dot-com>
* Keith Whitwell <keithw-at-tungstengraphics-dot-com>
* Eric Anholt <eric@anholt.net>
* Dave Airlie <airlied@linux.ie>
*/
 
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
 
#include <xf86drm.h>
#include <xf86atomic.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <assert.h>
//#include <pthread.h>
#include <stdbool.h>
 
#include "errno.h"
#ifndef ETIME
#define ETIME ETIMEDOUT
#endif
#include "libdrm_lists.h"
#include "intel_bufmgr.h"
#include "intel_bufmgr_priv.h"
#include "intel_chipset.h"
#include "intel_aub.h"
#include "string.h"
 
#include "i915_drm.h"
 
#ifdef HAVE_VALGRIND
#include <valgrind.h>
#include <memcheck.h>
#define VG(x) x
#else
#define VG(x)
#endif
 
#define VG_CLEAR(s) VG(memset(&s, 0, sizeof(s)))
 
#if 0
#define DBG(...) do { \
if (bufmgr_gem->bufmgr.debug) \
fprintf(stderr, __VA_ARGS__); \
} while (0)
#endif
 
//#define DBG(...) fprintf(stderr, __VA_ARGS__)
#define DBG(...)
 
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
 
typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
 
struct drm_intel_gem_bo_bucket {
drmMMListHead head;
unsigned long size;
};
 
typedef struct _drm_intel_bufmgr_gem {
drm_intel_bufmgr bufmgr;
 
int fd;
 
int max_relocs;
 
// pthread_mutex_t lock;
 
struct drm_i915_gem_exec_object *exec_objects;
struct drm_i915_gem_exec_object2 *exec2_objects;
drm_intel_bo **exec_bos;
int exec_size;
int exec_count;
 
/** Array of lists of cached gem objects of power-of-two sizes */
struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
int num_buckets;
time_t time;
 
drmMMListHead named;
drmMMListHead vma_cache;
int vma_count, vma_open, vma_max;
 
uint64_t gtt_size;
int available_fences;
int pci_device;
int gen;
unsigned int has_bsd : 1;
unsigned int has_blt : 1;
unsigned int has_relaxed_fencing : 1;
unsigned int has_llc : 1;
unsigned int has_wait_timeout : 1;
unsigned int bo_reuse : 1;
unsigned int no_exec : 1;
unsigned int has_vebox : 1;
bool fenced_relocs;
 
char *aub_filename;
FILE *aub_file;
uint32_t aub_offset;
} drm_intel_bufmgr_gem;
 
#define DRM_INTEL_RELOC_FENCE (1<<0)
 
typedef struct _drm_intel_reloc_target_info {
drm_intel_bo *bo;
int flags;
} drm_intel_reloc_target;
 
struct _drm_intel_bo_gem {
drm_intel_bo bo;
 
atomic_t refcount;
uint32_t gem_handle;
const char *name;
 
/**
* Kenel-assigned global name for this object
*
* List contains both flink named and prime fd'd objects
*/
unsigned int global_name;
drmMMListHead name_list;
 
/**
* Index of the buffer within the validation list while preparing a
* batchbuffer execution.
*/
int validate_index;
 
/**
* Current tiling mode
*/
uint32_t tiling_mode;
uint32_t swizzle_mode;
unsigned long stride;
 
time_t free_time;
 
/** Array passed to the DRM containing relocation information. */
struct drm_i915_gem_relocation_entry *relocs;
/**
* Array of info structs corresponding to relocs[i].target_handle etc
*/
drm_intel_reloc_target *reloc_target_info;
/** Number of entries in relocs */
int reloc_count;
/** Mapped address for the buffer, saved across map/unmap cycles */
void *mem_virtual;
/** GTT virtual address for the buffer, saved across map/unmap cycles */
void *gtt_virtual;
int map_count;
drmMMListHead vma_list;
 
/** BO cache list */
drmMMListHead head;
 
/**
* Boolean of whether this BO and its children have been included in
* the current drm_intel_bufmgr_check_aperture_space() total.
*/
bool included_in_check_aperture;
 
/**
* Boolean of whether this buffer has been used as a relocation
* target and had its size accounted for, and thus can't have any
* further relocations added to it.
*/
bool used_as_reloc_target;
 
/**
* Boolean of whether we have encountered an error whilst building the relocation tree.
*/
bool has_error;
 
/**
* Boolean of whether this buffer can be re-used
*/
bool reusable;
 
/**
* Size in bytes of this buffer and its relocation descendents.
*
* Used to avoid costly tree walking in
* drm_intel_bufmgr_check_aperture in the common case.
*/
int reloc_tree_size;
 
/**
* Number of potential fence registers required by this buffer and its
* relocations.
*/
int reloc_tree_fences;
 
/** Flags that we may need to do the SW_FINSIH ioctl on unmap. */
bool mapped_cpu_write;
 
uint32_t aub_offset;
 
drm_intel_aub_annotation *aub_annotations;
unsigned aub_annotation_count;
};
 
static unsigned int
drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
 
static unsigned int
drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
 
static int
drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
uint32_t * swizzle_mode);
 
static int
drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
uint32_t tiling_mode,
uint32_t stride);
 
static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
time_t time);
 
static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
 
static void drm_intel_gem_bo_free(drm_intel_bo *bo);
 
static unsigned long
drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
uint32_t *tiling_mode)
{
unsigned long min_size, max_size;
unsigned long i;
 
if (*tiling_mode == I915_TILING_NONE)
return size;
 
/* 965+ just need multiples of page size for tiling */
if (bufmgr_gem->gen >= 4)
return ROUND_UP_TO(size, 4096);
 
/* Older chips need powers of two, of at least 512k or 1M */
if (bufmgr_gem->gen == 3) {
min_size = 1024*1024;
max_size = 128*1024*1024;
} else {
min_size = 512*1024;
max_size = 64*1024*1024;
}
 
if (size > max_size) {
*tiling_mode = I915_TILING_NONE;
return size;
}
 
/* Do we need to allocate every page for the fence? */
if (bufmgr_gem->has_relaxed_fencing)
return ROUND_UP_TO(size, 4096);
 
for (i = min_size; i < size; i <<= 1)
;
 
return i;
}
 
/*
* Round a given pitch up to the minimum required for X tiling on a
* given chip. We use 512 as the minimum to allow for a later tiling
* change.
*/
static unsigned long
drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
unsigned long pitch, uint32_t *tiling_mode)
{
unsigned long tile_width;
unsigned long i;
 
/* If untiled, then just align it so that we can do rendering
* to it with the 3D engine.
*/
if (*tiling_mode == I915_TILING_NONE)
return ALIGN(pitch, 64);
 
if (*tiling_mode == I915_TILING_X
|| (IS_915(bufmgr_gem->pci_device)
&& *tiling_mode == I915_TILING_Y))
tile_width = 512;
else
tile_width = 128;
 
/* 965 is flexible */
if (bufmgr_gem->gen >= 4)
return ROUND_UP_TO(pitch, tile_width);
 
/* The older hardware has a maximum pitch of 8192 with tiled
* surfaces, so fallback to untiled if it's too large.
*/
if (pitch > 8192) {
*tiling_mode = I915_TILING_NONE;
return ALIGN(pitch, 64);
}
 
/* Pre-965 needs power of two tile width */
for (i = tile_width; i < pitch; i <<= 1)
;
 
return i;
}
 
static struct drm_intel_gem_bo_bucket *
drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
unsigned long size)
{
int i;
 
for (i = 0; i < bufmgr_gem->num_buckets; i++) {
struct drm_intel_gem_bo_bucket *bucket =
&bufmgr_gem->cache_bucket[i];
if (bucket->size >= size) {
return bucket;
}
}
 
return NULL;
}
 
static void
drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
{
int i, j;
 
for (i = 0; i < bufmgr_gem->exec_count; i++) {
drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
 
if (bo_gem->relocs == NULL) {
DBG("%2d: %d (%s)\n", i, bo_gem->gem_handle,
bo_gem->name);
continue;
}
 
for (j = 0; j < bo_gem->reloc_count; j++) {
drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
drm_intel_bo_gem *target_gem =
(drm_intel_bo_gem *) target_bo;
 
DBG("%2d: %d (%s)@0x%08llx -> "
"%d (%s)@0x%08lx + 0x%08x\n",
i,
bo_gem->gem_handle, bo_gem->name,
(unsigned long long)bo_gem->relocs[j].offset,
target_gem->gem_handle,
target_gem->name,
target_bo->offset,
bo_gem->relocs[j].delta);
}
}
}
 
static inline void
drm_intel_gem_bo_reference(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
 
atomic_inc(&bo_gem->refcount);
}
 
/**
* Adds the given buffer to the list of buffers to be validated (moved into the
* appropriate memory type) with the next batch submission.
*
* If a buffer is validated multiple times in a batch submission, it ends up
* with the intersection of the memory type flags and the union of the
* access flags.
*/
static void
drm_intel_add_validate_buffer(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int index;
 
if (bo_gem->validate_index != -1)
return;
 
/* Extend the array of validation entries as necessary. */
if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
int new_size = bufmgr_gem->exec_size * 2;
 
if (new_size == 0)
new_size = 5;
 
bufmgr_gem->exec_objects =
realloc(bufmgr_gem->exec_objects,
sizeof(*bufmgr_gem->exec_objects) * new_size);
bufmgr_gem->exec_bos =
realloc(bufmgr_gem->exec_bos,
sizeof(*bufmgr_gem->exec_bos) * new_size);
bufmgr_gem->exec_size = new_size;
}
 
index = bufmgr_gem->exec_count;
bo_gem->validate_index = index;
/* Fill in array entry */
bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
bufmgr_gem->exec_objects[index].alignment = 0;
bufmgr_gem->exec_objects[index].offset = 0;
bufmgr_gem->exec_bos[index] = bo;
bufmgr_gem->exec_count++;
}
 
static void
drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
int index;
 
if (bo_gem->validate_index != -1) {
if (need_fence)
bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |=
EXEC_OBJECT_NEEDS_FENCE;
return;
}
 
/* Extend the array of validation entries as necessary. */
if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
int new_size = bufmgr_gem->exec_size * 2;
 
if (new_size == 0)
new_size = 5;
 
bufmgr_gem->exec2_objects =
realloc(bufmgr_gem->exec2_objects,
sizeof(*bufmgr_gem->exec2_objects) * new_size);
bufmgr_gem->exec_bos =
realloc(bufmgr_gem->exec_bos,
sizeof(*bufmgr_gem->exec_bos) * new_size);
bufmgr_gem->exec_size = new_size;
}
 
index = bufmgr_gem->exec_count;
bo_gem->validate_index = index;
/* Fill in array entry */
bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
bufmgr_gem->exec2_objects[index].alignment = 0;
bufmgr_gem->exec2_objects[index].offset = 0;
bufmgr_gem->exec_bos[index] = bo;
bufmgr_gem->exec2_objects[index].flags = 0;
bufmgr_gem->exec2_objects[index].rsvd1 = 0;
bufmgr_gem->exec2_objects[index].rsvd2 = 0;
if (need_fence) {
bufmgr_gem->exec2_objects[index].flags |=
EXEC_OBJECT_NEEDS_FENCE;
}
bufmgr_gem->exec_count++;
}
 
#define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
sizeof(uint32_t))
 
static void
drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
drm_intel_bo_gem *bo_gem)
{
int size;
 
assert(!bo_gem->used_as_reloc_target);
 
/* The older chipsets are far-less flexible in terms of tiling,
* and require tiled buffer to be size aligned in the aperture.
* This means that in the worst possible case we will need a hole
* twice as large as the object in order for it to fit into the
* aperture. Optimal packing is for wimps.
*/
size = bo_gem->bo.size;
if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
int min_size;
 
if (bufmgr_gem->has_relaxed_fencing) {
if (bufmgr_gem->gen == 3)
min_size = 1024*1024;
else
min_size = 512*1024;
 
while (min_size < size)
min_size *= 2;
} else
min_size = size;
 
/* Account for worst-case alignment. */
size = 2 * min_size;
}
 
bo_gem->reloc_tree_size = size;
}
 
static int
drm_intel_setup_reloc_list(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
unsigned int max_relocs = bufmgr_gem->max_relocs;
 
if (bo->size / 4 < max_relocs)
max_relocs = bo->size / 4;
 
bo_gem->relocs = malloc(max_relocs *
sizeof(struct drm_i915_gem_relocation_entry));
bo_gem->reloc_target_info = malloc(max_relocs *
sizeof(drm_intel_reloc_target));
if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
bo_gem->has_error = true;
 
free (bo_gem->relocs);
bo_gem->relocs = NULL;
 
free (bo_gem->reloc_target_info);
bo_gem->reloc_target_info = NULL;
 
return 1;
}
 
return 0;
}
 
static int
drm_intel_gem_bo_busy(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_busy busy;
int ret;
 
VG_CLEAR(busy);
busy.handle = bo_gem->gem_handle;
 
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
 
return (ret == 0 && busy.busy);
}
 
static int
drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
drm_intel_bo_gem *bo_gem, int state)
{
struct drm_i915_gem_madvise madv;
 
VG_CLEAR(madv);
madv.handle = bo_gem->gem_handle;
madv.madv = state;
madv.retained = 1;
// drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
 
return madv.retained;
}
 
static int
drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
{
return drm_intel_gem_bo_madvise_internal
((drm_intel_bufmgr_gem *) bo->bufmgr,
(drm_intel_bo_gem *) bo,
madv);
}
 
/* drop the oldest entries that have been purged by the kernel */
static void
drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
struct drm_intel_gem_bo_bucket *bucket)
{
while (!DRMLISTEMPTY(&bucket->head)) {
drm_intel_bo_gem *bo_gem;
 
bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
bucket->head.next, head);
if (drm_intel_gem_bo_madvise_internal
(bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
break;
 
DRMLISTDEL(&bo_gem->head);
drm_intel_gem_bo_free(&bo_gem->bo);
}
}
 
static drm_intel_bo *
drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
const char *name,
unsigned long size,
unsigned long flags,
uint32_t tiling_mode,
unsigned long stride)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
drm_intel_bo_gem *bo_gem;
unsigned int page_size = 4096;
int ret;
struct drm_intel_gem_bo_bucket *bucket;
bool alloc_from_cache;
unsigned long bo_size;
bool for_render = false;
 
if (flags & BO_ALLOC_FOR_RENDER)
for_render = true;
 
/* Round the allocated size up to a power of two number of pages. */
bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
 
/* If we don't have caching at this size, don't actually round the
* allocation up.
*/
if (bucket == NULL) {
bo_size = size;
if (bo_size < page_size)
bo_size = page_size;
} else {
bo_size = bucket->size;
}
 
// pthread_mutex_lock(&bufmgr_gem->lock);
/* Get a buffer out of the cache if available */
retry:
alloc_from_cache = false;
if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
if (for_render) {
/* Allocate new render-target BOs from the tail (MRU)
* of the list, as it will likely be hot in the GPU
* cache and in the aperture for us.
*/
bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
bucket->head.prev, head);
DRMLISTDEL(&bo_gem->head);
alloc_from_cache = true;
} else {
/* For non-render-target BOs (where we're probably
* going to map it first thing in order to fill it
* with data), check if the last BO in the cache is
* unbusy, and only reuse in that case. Otherwise,
* allocating a new buffer is probably faster than
* waiting for the GPU to finish.
*/
bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
bucket->head.next, head);
if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
alloc_from_cache = true;
DRMLISTDEL(&bo_gem->head);
}
}
 
if (alloc_from_cache) {
if (!drm_intel_gem_bo_madvise_internal
(bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
drm_intel_gem_bo_free(&bo_gem->bo);
drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
bucket);
goto retry;
}
 
if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
tiling_mode,
stride)) {
drm_intel_gem_bo_free(&bo_gem->bo);
goto retry;
}
}
}
// pthread_mutex_unlock(&bufmgr_gem->lock);
 
if (!alloc_from_cache) {
struct drm_i915_gem_create create;
 
bo_gem = calloc(1, sizeof(*bo_gem));
if (!bo_gem)
return NULL;
 
bo_gem->bo.size = bo_size;
 
VG_CLEAR(create);
create.size = bo_size;
 
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_CREATE,
&create);
bo_gem->gem_handle = create.handle;
bo_gem->bo.handle = bo_gem->gem_handle;
if (ret != 0) {
free(bo_gem);
return NULL;
}
bo_gem->bo.bufmgr = bufmgr;
 
bo_gem->tiling_mode = I915_TILING_NONE;
bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
bo_gem->stride = 0;
 
if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
tiling_mode,
stride)) {
drm_intel_gem_bo_free(&bo_gem->bo);
return NULL;
}
 
DRMINITLISTHEAD(&bo_gem->name_list);
DRMINITLISTHEAD(&bo_gem->vma_list);
}
 
bo_gem->name = name;
atomic_set(&bo_gem->refcount, 1);
bo_gem->validate_index = -1;
bo_gem->reloc_tree_fences = 0;
bo_gem->used_as_reloc_target = false;
bo_gem->has_error = false;
bo_gem->reusable = true;
bo_gem->aub_annotations = NULL;
bo_gem->aub_annotation_count = 0;
 
drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
 
DBG("bo_create: buf %d (%s) %ldb\n",
bo_gem->gem_handle, bo_gem->name, size);
 
return &bo_gem->bo;
}
 
static drm_intel_bo *
drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
const char *name,
unsigned long size,
unsigned int alignment)
{
return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
BO_ALLOC_FOR_RENDER,
I915_TILING_NONE, 0);
}
 
static drm_intel_bo *
drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
const char *name,
unsigned long size,
unsigned int alignment)
{
return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
I915_TILING_NONE, 0);
}
 
static drm_intel_bo *
drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
int x, int y, int cpp, uint32_t *tiling_mode,
unsigned long *pitch, unsigned long flags)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
unsigned long size, stride;
uint32_t tiling;
 
do {
unsigned long aligned_y, height_alignment;
 
tiling = *tiling_mode;
 
/* If we're tiled, our allocations are in 8 or 32-row blocks,
* so failure to align our height means that we won't allocate
* enough pages.
*
* If we're untiled, we still have to align to 2 rows high
* because the data port accesses 2x2 blocks even if the
* bottom row isn't to be rendered, so failure to align means
* we could walk off the end of the GTT and fault. This is
* documented on 965, and may be the case on older chipsets
* too so we try to be careful.
*/
aligned_y = y;
height_alignment = 2;
 
if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
height_alignment = 16;
else if (tiling == I915_TILING_X
|| (IS_915(bufmgr_gem->pci_device)
&& tiling == I915_TILING_Y))
height_alignment = 8;
else if (tiling == I915_TILING_Y)
height_alignment = 32;
aligned_y = ALIGN(y, height_alignment);
 
stride = x * cpp;
stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
size = stride * aligned_y;
size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
} while (*tiling_mode != tiling);
*pitch = stride;
 
if (tiling == I915_TILING_NONE)
stride = 0;
 
return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
tiling, stride);
}
 
/**
* Returns a drm_intel_bo wrapping the given buffer object handle.
*
* This can be used when one application needs to pass a buffer object
* to another.
*/
drm_intel_bo *
drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
const char *name,
unsigned int handle)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
drm_intel_bo_gem *bo_gem;
int ret;
struct drm_gem_open open_arg;
struct drm_i915_gem_get_tiling get_tiling;
drmMMListHead *list;
 
/* At the moment most applications only have a few named bo.
* For instance, in a DRI client only the render buffers passed
* between X and the client are named. And since X returns the
* alternating names for the front/back buffer a linear search
* provides a sufficiently fast match.
*/
for (list = bufmgr_gem->named.next;
list != &bufmgr_gem->named;
list = list->next) {
bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
if (bo_gem->global_name == handle) {
drm_intel_gem_bo_reference(&bo_gem->bo);
return &bo_gem->bo;
}
}
 
bo_gem = calloc(1, sizeof(*bo_gem));
if (!bo_gem)
return NULL;
 
VG_CLEAR(open_arg);
open_arg.name = handle;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_GEM_OPEN,
&open_arg);
if (ret != 0) {
DBG("Couldn't reference %s handle 0x%08x: %s\n",
name, handle, strerror(errno));
free(bo_gem);
return NULL;
}
bo_gem->bo.size = open_arg.size;
bo_gem->bo.offset = 0;
bo_gem->bo.virtual = NULL;
bo_gem->bo.bufmgr = bufmgr;
bo_gem->name = name;
atomic_set(&bo_gem->refcount, 1);
bo_gem->validate_index = -1;
bo_gem->gem_handle = open_arg.handle;
bo_gem->bo.handle = open_arg.handle;
bo_gem->global_name = handle;
bo_gem->reusable = false;
 
VG_CLEAR(get_tiling);
get_tiling.handle = bo_gem->gem_handle;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_GET_TILING,
&get_tiling);
if (ret != 0) {
drm_intel_gem_bo_unreference(&bo_gem->bo);
return NULL;
}
bo_gem->tiling_mode = get_tiling.tiling_mode;
bo_gem->swizzle_mode = get_tiling.swizzle_mode;
/* XXX stride is unknown */
drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
 
DRMINITLISTHEAD(&bo_gem->vma_list);
DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
 
return &bo_gem->bo;
}
 
static void
drm_intel_gem_bo_free(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_gem_close close;
int ret;
 
DRMLISTDEL(&bo_gem->vma_list);
if (bo_gem->mem_virtual) {
VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
bufmgr_gem->vma_count--;
}
if (bo_gem->gtt_virtual) {
bufmgr_gem->vma_count--;
}
 
/* Close this object */
VG_CLEAR(close);
close.handle = bo_gem->gem_handle;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
if (ret != 0) {
DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
bo_gem->gem_handle, bo_gem->name, strerror(errno));
}
free(bo_gem->aub_annotations);
free(bo);
}
 
static void
drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
{
#if HAVE_VALGRIND
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
 
if (bo_gem->mem_virtual)
VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
 
if (bo_gem->gtt_virtual)
VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
#endif
}
 
/** Frees all cached buffers significantly older than @time. */
static void
drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
{
int i;
 
if (bufmgr_gem->time == time)
return;
 
for (i = 0; i < bufmgr_gem->num_buckets; i++) {
struct drm_intel_gem_bo_bucket *bucket =
&bufmgr_gem->cache_bucket[i];
 
while (!DRMLISTEMPTY(&bucket->head)) {
drm_intel_bo_gem *bo_gem;
 
bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
bucket->head.next, head);
if (time - bo_gem->free_time <= 1)
break;
 
DRMLISTDEL(&bo_gem->head);
 
drm_intel_gem_bo_free(&bo_gem->bo);
}
}
 
bufmgr_gem->time = time;
}
 
static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
{
int limit;
 
DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
 
if (bufmgr_gem->vma_max < 0)
return;
 
/* We may need to evict a few entries in order to create new mmaps */
limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
if (limit < 0)
limit = 0;
 
while (bufmgr_gem->vma_count > limit) {
drm_intel_bo_gem *bo_gem;
 
bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
bufmgr_gem->vma_cache.next,
vma_list);
assert(bo_gem->map_count == 0);
DRMLISTDELINIT(&bo_gem->vma_list);
 
if (bo_gem->mem_virtual) {
// munmap(bo_gem->mem_virtual, bo_gem->bo.size);
bo_gem->mem_virtual = NULL;
bufmgr_gem->vma_count--;
}
if (bo_gem->gtt_virtual) {
// munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
bo_gem->gtt_virtual = NULL;
bufmgr_gem->vma_count--;
}
}
}
 
static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
drm_intel_bo_gem *bo_gem)
{
bufmgr_gem->vma_open--;
DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
if (bo_gem->mem_virtual)
bufmgr_gem->vma_count++;
if (bo_gem->gtt_virtual)
bufmgr_gem->vma_count++;
drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
}
 
static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
drm_intel_bo_gem *bo_gem)
{
bufmgr_gem->vma_open++;
DRMLISTDEL(&bo_gem->vma_list);
if (bo_gem->mem_virtual)
bufmgr_gem->vma_count--;
if (bo_gem->gtt_virtual)
bufmgr_gem->vma_count--;
drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
}
 
static void
drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_intel_gem_bo_bucket *bucket;
int i;
 
/* Unreference all the target buffers */
for (i = 0; i < bo_gem->reloc_count; i++) {
if (bo_gem->reloc_target_info[i].bo != bo) {
drm_intel_gem_bo_unreference_locked_timed(bo_gem->
reloc_target_info[i].bo,
time);
}
}
bo_gem->reloc_count = 0;
bo_gem->used_as_reloc_target = false;
 
DBG("bo_unreference final: %d (%s)\n",
bo_gem->gem_handle, bo_gem->name);
 
/* release memory associated with this object */
if (bo_gem->reloc_target_info) {
free(bo_gem->reloc_target_info);
bo_gem->reloc_target_info = NULL;
}
if (bo_gem->relocs) {
free(bo_gem->relocs);
bo_gem->relocs = NULL;
}
 
/* Clear any left-over mappings */
if (bo_gem->map_count) {
DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
bo_gem->map_count = 0;
drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
drm_intel_gem_bo_mark_mmaps_incoherent(bo);
}
 
DRMLISTDEL(&bo_gem->name_list);
 
bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
/* Put the buffer into our internal cache for reuse if we can. */
if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
I915_MADV_DONTNEED)) {
bo_gem->free_time = time;
 
bo_gem->name = NULL;
bo_gem->validate_index = -1;
 
DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
} else {
drm_intel_gem_bo_free(bo);
}
}
 
static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
time_t time)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
 
assert(atomic_read(&bo_gem->refcount) > 0);
if (atomic_dec_and_test(&bo_gem->refcount))
drm_intel_gem_bo_unreference_final(bo, time);
}
 
static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
 
assert(atomic_read(&bo_gem->refcount) > 0);
if (atomic_dec_and_test(&bo_gem->refcount)) {
drm_intel_bufmgr_gem *bufmgr_gem =
(drm_intel_bufmgr_gem *) bo->bufmgr;
// struct timespec time;
 
// clock_gettime(CLOCK_MONOTONIC, &time);
 
// pthread_mutex_lock(&bufmgr_gem->lock);
drm_intel_gem_bo_unreference_final(bo, 0);
drm_intel_gem_cleanup_bo_cache(bufmgr_gem, 0);
// pthread_mutex_unlock(&bufmgr_gem->lock);
}
}
 
static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_set_domain set_domain;
int ret;
 
// pthread_mutex_lock(&bufmgr_gem->lock);
 
if (bo_gem->map_count++ == 0)
drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
 
if (!bo_gem->mem_virtual) {
struct drm_i915_gem_mmap mmap_arg;
 
DBG("bo_map: %d (%s), map_count=%d\n",
bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
 
VG_CLEAR(mmap_arg);
mmap_arg.handle = bo_gem->gem_handle;
mmap_arg.offset = 0;
mmap_arg.size = bo->size;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_MMAP,
&mmap_arg);
if (ret != 0) {
ret = -errno;
DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__, bo_gem->gem_handle,
bo_gem->name, strerror(errno));
if (--bo_gem->map_count == 0)
drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
// pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
}
DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
bo_gem->mem_virtual);
bo->virtual = bo_gem->mem_virtual;
 
VG_CLEAR(set_domain);
set_domain.handle = bo_gem->gem_handle;
set_domain.read_domains = I915_GEM_DOMAIN_CPU;
if (write_enable)
set_domain.write_domain = I915_GEM_DOMAIN_CPU;
else
set_domain.write_domain = 0;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SET_DOMAIN,
&set_domain);
if (ret != 0) {
DBG("%s:%d: Error setting to CPU domain %d: %s\n",
__FILE__, __LINE__, bo_gem->gem_handle,
strerror(errno));
}
 
if (write_enable)
bo_gem->mapped_cpu_write = true;
 
drm_intel_gem_bo_mark_mmaps_incoherent(bo);
VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
// pthread_mutex_unlock(&bufmgr_gem->lock);
 
return 0;
}
 
static int
map_gtt(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int ret;
 
if (bo_gem->map_count++ == 0)
drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
 
/* Get a mapping of the buffer if we haven't before. */
if (bo_gem->gtt_virtual == NULL) {
struct drm_i915_gem_mmap_gtt mmap_arg;
 
DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
 
VG_CLEAR(mmap_arg);
mmap_arg.handle = bo_gem->gem_handle;
mmap_arg.offset = 0;
 
/* Get the fake offset back... */
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_MMAP_GTT,
&mmap_arg);
if (ret != 0) {
ret = -errno;
DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
__FILE__, __LINE__,
bo_gem->gem_handle, bo_gem->name,
strerror(errno));
if (--bo_gem->map_count == 0)
drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
return ret;
}
 
/* and mmap it */
bo_gem->gtt_virtual = mmap_arg.offset;
if (bo_gem->gtt_virtual == 0) {
bo_gem->gtt_virtual = NULL;
ret = -errno;
DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
__FILE__, __LINE__,
bo_gem->gem_handle, bo_gem->name,
strerror(errno));
if (--bo_gem->map_count == 0)
drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
return ret;
}
}
 
bo->virtual = bo_gem->gtt_virtual;
 
DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
bo_gem->gtt_virtual);
 
return 0;
}
 
int drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_set_domain set_domain;
int ret;
 
// pthread_mutex_lock(&bufmgr_gem->lock);
 
ret = map_gtt(bo);
if (ret) {
// pthread_mutex_unlock(&bufmgr_gem->lock);
return ret;
}
 
/* Now move it to the GTT domain so that the GPU and CPU
* caches are flushed and the GPU isn't actively using the
* buffer.
*
* The pagefault handler does this domain change for us when
* it has unbound the BO from the GTT, but it's up to us to
* tell it when we're about to use things if we had done
* rendering and it still happens to be bound to the GTT.
*/
VG_CLEAR(set_domain);
set_domain.handle = bo_gem->gem_handle;
set_domain.read_domains = I915_GEM_DOMAIN_GTT;
set_domain.write_domain = I915_GEM_DOMAIN_GTT;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SET_DOMAIN,
&set_domain);
if (ret != 0) {
DBG("%s:%d: Error setting domain %d: %s\n",
__FILE__, __LINE__, bo_gem->gem_handle,
strerror(errno));
}
 
drm_intel_gem_bo_mark_mmaps_incoherent(bo);
VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
// pthread_mutex_unlock(&bufmgr_gem->lock);
 
return 0;
}
 
/**
* Performs a mapping of the buffer object like the normal GTT
* mapping, but avoids waiting for the GPU to be done reading from or
* rendering to the buffer.
*
* This is used in the implementation of GL_ARB_map_buffer_range: The
* user asks to create a buffer, then does a mapping, fills some
* space, runs a drawing command, then asks to map it again without
* synchronizing because it guarantees that it won't write over the
* data that the GPU is busy using (or, more specifically, that if it
* does write over the data, it acknowledges that rendering is
* undefined).
*/
 
int drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
int ret;
 
/* If the CPU cache isn't coherent with the GTT, then use a
* regular synchronized mapping. The problem is that we don't
* track where the buffer was last used on the CPU side in
* terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
* we would potentially corrupt the buffer even when the user
* does reasonable things.
*/
if (!bufmgr_gem->has_llc)
return drm_intel_gem_bo_map_gtt(bo);
 
// pthread_mutex_lock(&bufmgr_gem->lock);
ret = map_gtt(bo);
// pthread_mutex_unlock(&bufmgr_gem->lock);
 
return ret;
}
 
static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int ret = 0;
 
if (bo == NULL)
return 0;
 
// pthread_mutex_lock(&bufmgr_gem->lock);
 
if (bo_gem->map_count <= 0) {
DBG("attempted to unmap an unmapped bo\n");
// pthread_mutex_unlock(&bufmgr_gem->lock);
/* Preserve the old behaviour of just treating this as a
* no-op rather than reporting the error.
*/
return 0;
}
 
if (bo_gem->mapped_cpu_write) {
struct drm_i915_gem_sw_finish sw_finish;
 
/* Cause a flush to happen if the buffer's pinned for
* scanout, so the results show up in a timely manner.
* Unlike GTT set domains, this only does work if the
* buffer should be scanout-related.
*/
 
bo_gem->mapped_cpu_write = false;
}
 
/* We need to unmap after every innovation as we cannot track
* an open vma for every bo as that will exhaasut the system
* limits and cause later failures.
*/
if (--bo_gem->map_count == 0) {
drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
drm_intel_gem_bo_mark_mmaps_incoherent(bo);
bo->virtual = NULL;
}
// pthread_mutex_unlock(&bufmgr_gem->lock);
 
return ret;
}
 
int drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
{
return drm_intel_gem_bo_unmap(bo);
}
 
static int
drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
unsigned long size, const void *data)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_pwrite pwrite;
int ret;
 
VG_CLEAR(pwrite);
pwrite.handle = bo_gem->gem_handle;
pwrite.offset = offset;
pwrite.size = size;
pwrite.data_ptr = (uint64_t) (uintptr_t) data;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_PWRITE,
&pwrite);
if (ret != 0) {
ret = -errno;
DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
__FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
(int)size, strerror(errno));
}
 
return ret;
}
 
#if 0
static int
drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
int ret;
 
VG_CLEAR(get_pipe_from_crtc_id);
get_pipe_from_crtc_id.crtc_id = crtc_id;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
&get_pipe_from_crtc_id);
if (ret != 0) {
/* We return -1 here to signal that we don't
* know which pipe is associated with this crtc.
* This lets the caller know that this information
* isn't available; using the wrong pipe for
* vblank waiting can cause the chipset to lock up
*/
return -1;
}
 
return get_pipe_from_crtc_id.pipe;
}
 
static int
drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
unsigned long size, void *data)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_pread pread;
int ret;
 
VG_CLEAR(pread);
pread.handle = bo_gem->gem_handle;
pread.offset = offset;
pread.size = size;
pread.data_ptr = (uint64_t) (uintptr_t) data;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_PREAD,
&pread);
if (ret != 0) {
ret = -errno;
DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
__FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
(int)size, strerror(errno));
}
 
return ret;
}
 
#endif
 
/** Waits for all GPU rendering with the object to have completed. */
static void
drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
{
drm_intel_gem_bo_start_gtt_access(bo, 1);
}
 
/**
* Waits on a BO for the given amount of time.
*
* @bo: buffer object to wait for
* @timeout_ns: amount of time to wait in nanoseconds.
* If value is less than 0, an infinite wait will occur.
*
* Returns 0 if the wait was successful ie. the last batch referencing the
* object has completed within the allotted time. Otherwise some negative return
* value describes the error. Of particular interest is -ETIME when the wait has
* failed to yield the desired result.
*
* Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
* the operation to give up after a certain amount of time. Another subtle
* difference is the internal locking semantics are different (this variant does
* not hold the lock for the duration of the wait). This makes the wait subject
* to a larger userspace race window.
*
* The implementation shall wait until the object is no longer actively
* referenced within a batch buffer at the time of the call. The wait will
* not guarantee that the buffer is re-issued via another thread, or an flinked
* handle. Userspace must make sure this race does not occur if such precision
* is important.
*/
int drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_wait wait;
int ret;
 
if (!bufmgr_gem->has_wait_timeout) {
DBG("%s:%d: Timed wait is not supported. Falling back to "
"infinite wait\n", __FILE__, __LINE__);
if (timeout_ns) {
drm_intel_gem_bo_wait_rendering(bo);
return 0;
} else {
return drm_intel_gem_bo_busy(bo) ? -1 : 0;
}
}
 
wait.bo_handle = bo_gem->gem_handle;
wait.timeout_ns = timeout_ns;
wait.flags = 0;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
if (ret == -1)
return -errno;
 
return ret;
}
 
/**
* Sets the object to the GTT read and possibly write domain, used by the X
* 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
*
* In combination with drm_intel_gem_bo_pin() and manual fence management, we
* can do tiled pixmaps this way.
*/
void
drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_set_domain set_domain;
int ret;
 
VG_CLEAR(set_domain);
set_domain.handle = bo_gem->gem_handle;
set_domain.read_domains = I915_GEM_DOMAIN_GTT;
set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SET_DOMAIN,
&set_domain);
if (ret != 0) {
DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
__FILE__, __LINE__, bo_gem->gem_handle,
set_domain.read_domains, set_domain.write_domain,
strerror(errno));
}
}
 
static void
drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
int i;
 
free(bufmgr_gem->exec2_objects);
free(bufmgr_gem->exec_objects);
free(bufmgr_gem->exec_bos);
free(bufmgr_gem->aub_filename);
 
// pthread_mutex_destroy(&bufmgr_gem->lock);
 
/* Free any cached buffer objects we were going to reuse */
for (i = 0; i < bufmgr_gem->num_buckets; i++) {
struct drm_intel_gem_bo_bucket *bucket =
&bufmgr_gem->cache_bucket[i];
drm_intel_bo_gem *bo_gem;
 
while (!DRMLISTEMPTY(&bucket->head)) {
bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
bucket->head.next, head);
DRMLISTDEL(&bo_gem->head);
 
drm_intel_gem_bo_free(&bo_gem->bo);
}
}
 
free(bufmgr);
}
 
/**
* Adds the target buffer to the validation list and adds the relocation
* to the reloc_buffer's relocation list.
*
* The relocation entry at the given offset must already contain the
* precomputed relocation value, because the kernel will optimize out
* the relocation entry write when the buffer hasn't moved from the
* last known offset in target_bo.
*/
static int
do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
drm_intel_bo *target_bo, uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain,
bool need_fence)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
bool fenced_command;
 
if (bo_gem->has_error)
return -ENOMEM;
 
if (target_bo_gem->has_error) {
bo_gem->has_error = true;
return -ENOMEM;
}
 
/* We never use HW fences for rendering on 965+ */
if (bufmgr_gem->gen >= 4)
need_fence = false;
 
fenced_command = need_fence;
if (target_bo_gem->tiling_mode == I915_TILING_NONE)
need_fence = false;
 
/* Create a new relocation list if needed */
if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
return -ENOMEM;
 
/* Check overflow */
assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
 
/* Check args */
assert(offset <= bo->size - 4);
assert((write_domain & (write_domain - 1)) == 0);
 
/* Make sure that we're not adding a reloc to something whose size has
* already been accounted for.
*/
assert(!bo_gem->used_as_reloc_target);
if (target_bo_gem != bo_gem) {
target_bo_gem->used_as_reloc_target = true;
bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
}
/* An object needing a fence is a tiled buffer, so it won't have
* relocs to other buffers.
*/
if (need_fence)
target_bo_gem->reloc_tree_fences = 1;
bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
 
bo_gem->relocs[bo_gem->reloc_count].offset = offset;
bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
bo_gem->relocs[bo_gem->reloc_count].target_handle =
target_bo_gem->gem_handle;
bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset;
 
bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
if (target_bo != bo)
drm_intel_gem_bo_reference(target_bo);
if (fenced_command)
bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
DRM_INTEL_RELOC_FENCE;
else
bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
 
bo_gem->reloc_count++;
 
return 0;
}
 
static int
drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
drm_intel_bo *target_bo, uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
 
return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
read_domains, write_domain,
!bufmgr_gem->fenced_relocs);
}
 
static int
drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
drm_intel_bo *target_bo,
uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain)
{
return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
read_domains, write_domain, true);
}
 
int
drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
 
return bo_gem->reloc_count;
}
 
/**
* Removes existing relocation entries in the BO after "start".
*
* This allows a user to avoid a two-step process for state setup with
* counting up all the buffer objects and doing a
* drm_intel_bufmgr_check_aperture_space() before emitting any of the
* relocations for the state setup. Instead, save the state of the
* batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
* state, and then check if it still fits in the aperture.
*
* Any further drm_intel_bufmgr_check_aperture_space() queries
* involving this buffer in the tree are undefined after this call.
*/
void
drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int i;
// struct timespec time;
 
// clock_gettime(CLOCK_MONOTONIC, &time);
 
assert(bo_gem->reloc_count >= start);
/* Unreference the cleared target buffers */
for (i = start; i < bo_gem->reloc_count; i++) {
drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
if (&target_bo_gem->bo != bo) {
bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
0);
}
}
bo_gem->reloc_count = start;
}
 
/**
* Walk the tree of relocations rooted at BO and accumulate the list of
* validations to be performed and update the relocation buffers with
* index values into the validation list.
*/
static void
drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int i;
 
if (bo_gem->relocs == NULL)
return;
 
for (i = 0; i < bo_gem->reloc_count; i++) {
drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
 
if (target_bo == bo)
continue;
 
drm_intel_gem_bo_mark_mmaps_incoherent(bo);
 
/* Continue walking the tree depth-first. */
drm_intel_gem_bo_process_reloc(target_bo);
 
/* Add the target to the validate list */
drm_intel_add_validate_buffer(target_bo);
}
}
 
static void
drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
int i;
 
if (bo_gem->relocs == NULL)
return;
 
for (i = 0; i < bo_gem->reloc_count; i++) {
drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
int need_fence;
 
if (target_bo == bo)
continue;
 
drm_intel_gem_bo_mark_mmaps_incoherent(bo);
 
/* Continue walking the tree depth-first. */
drm_intel_gem_bo_process_reloc2(target_bo);
 
need_fence = (bo_gem->reloc_target_info[i].flags &
DRM_INTEL_RELOC_FENCE);
 
/* Add the target to the validate list */
drm_intel_add_validate_buffer2(target_bo, need_fence);
}
}
 
 
static void
drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
{
int i;
 
for (i = 0; i < bufmgr_gem->exec_count; i++) {
drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
 
/* Update the buffer offset */
if (bufmgr_gem->exec_objects[i].offset != bo->offset) {
DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n",
bo_gem->gem_handle, bo_gem->name, bo->offset,
(unsigned long long)bufmgr_gem->exec_objects[i].
offset);
bo->offset = bufmgr_gem->exec_objects[i].offset;
}
}
}
 
static void
drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
{
int i;
 
for (i = 0; i < bufmgr_gem->exec_count; i++) {
drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
 
/* Update the buffer offset */
if (bufmgr_gem->exec2_objects[i].offset != bo->offset) {
DBG("BO %d (%s) migrated: 0x%08lx -> 0x%08llx\n",
bo_gem->gem_handle, bo_gem->name, bo->offset,
(unsigned long long)bufmgr_gem->exec2_objects[i].offset);
bo->offset = bufmgr_gem->exec2_objects[i].offset;
}
}
}
 
static void
aub_out(drm_intel_bufmgr_gem *bufmgr_gem, uint32_t data)
{
fwrite(&data, 1, 4, bufmgr_gem->aub_file);
}
 
static void
aub_out_data(drm_intel_bufmgr_gem *bufmgr_gem, void *data, size_t size)
{
fwrite(data, 1, size, bufmgr_gem->aub_file);
}
 
static void
aub_write_bo_data(drm_intel_bo *bo, uint32_t offset, uint32_t size)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
uint32_t *data;
unsigned int i;
 
data = malloc(bo->size);
drm_intel_bo_get_subdata(bo, offset, size, data);
 
/* Easy mode: write out bo with no relocations */
if (!bo_gem->reloc_count) {
aub_out_data(bufmgr_gem, data, size);
free(data);
return;
}
 
/* Otherwise, handle the relocations while writing. */
for (i = 0; i < size / 4; i++) {
int r;
for (r = 0; r < bo_gem->reloc_count; r++) {
struct drm_i915_gem_relocation_entry *reloc;
drm_intel_reloc_target *info;
 
reloc = &bo_gem->relocs[r];
info = &bo_gem->reloc_target_info[r];
 
if (reloc->offset == offset + i * 4) {
drm_intel_bo_gem *target_gem;
uint32_t val;
 
target_gem = (drm_intel_bo_gem *)info->bo;
 
val = reloc->delta;
val += target_gem->aub_offset;
 
aub_out(bufmgr_gem, val);
data[i] = val;
break;
}
}
if (r == bo_gem->reloc_count) {
/* no relocation, just the data */
aub_out(bufmgr_gem, data[i]);
}
}
 
free(data);
}
 
static void
aub_bo_get_address(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
 
/* Give the object a graphics address in the AUB file. We
* don't just use the GEM object address because we do AUB
* dumping before execution -- we want to successfully log
* when the hardware might hang, and we might even want to aub
* capture for a driver trying to execute on a different
* generation of hardware by disabling the actual kernel exec
* call.
*/
bo_gem->aub_offset = bufmgr_gem->aub_offset;
bufmgr_gem->aub_offset += bo->size;
/* XXX: Handle aperture overflow. */
assert(bufmgr_gem->aub_offset < 256 * 1024 * 1024);
}
 
static void
aub_write_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
uint32_t offset, uint32_t size)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
 
aub_out(bufmgr_gem,
CMD_AUB_TRACE_HEADER_BLOCK |
((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
aub_out(bufmgr_gem,
AUB_TRACE_MEMTYPE_GTT | type | AUB_TRACE_OP_DATA_WRITE);
aub_out(bufmgr_gem, subtype);
aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
aub_out(bufmgr_gem, size);
if (bufmgr_gem->gen >= 8)
aub_out(bufmgr_gem, 0);
aub_write_bo_data(bo, offset, size);
}
 
/**
* Break up large objects into multiple writes. Otherwise a 128kb VBO
* would overflow the 16 bits of size field in the packet header and
* everything goes badly after that.
*/
static void
aub_write_large_trace_block(drm_intel_bo *bo, uint32_t type, uint32_t subtype,
uint32_t offset, uint32_t size)
{
uint32_t block_size;
uint32_t sub_offset;
 
for (sub_offset = 0; sub_offset < size; sub_offset += block_size) {
block_size = size - sub_offset;
 
if (block_size > 8 * 4096)
block_size = 8 * 4096;
 
aub_write_trace_block(bo, type, subtype, offset + sub_offset,
block_size);
}
}
 
static void
aub_write_bo(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
uint32_t offset = 0;
unsigned i;
 
aub_bo_get_address(bo);
 
/* Write out each annotated section separately. */
for (i = 0; i < bo_gem->aub_annotation_count; ++i) {
drm_intel_aub_annotation *annotation =
&bo_gem->aub_annotations[i];
uint32_t ending_offset = annotation->ending_offset;
if (ending_offset > bo->size)
ending_offset = bo->size;
if (ending_offset > offset) {
aub_write_large_trace_block(bo, annotation->type,
annotation->subtype,
offset,
ending_offset - offset);
offset = ending_offset;
}
}
 
/* Write out any remaining unannotated data */
if (offset < bo->size) {
aub_write_large_trace_block(bo, AUB_TRACE_TYPE_NOTYPE, 0,
offset, bo->size - offset);
}
}
 
/*
* Make a ringbuffer on fly and dump it
*/
static void
aub_build_dump_ringbuffer(drm_intel_bufmgr_gem *bufmgr_gem,
uint32_t batch_buffer, int ring_flag)
{
uint32_t ringbuffer[4096];
int ring = AUB_TRACE_TYPE_RING_PRB0; /* The default ring */
int ring_count = 0;
 
if (ring_flag == I915_EXEC_BSD)
ring = AUB_TRACE_TYPE_RING_PRB1;
else if (ring_flag == I915_EXEC_BLT)
ring = AUB_TRACE_TYPE_RING_PRB2;
 
/* Make a ring buffer to execute our batchbuffer. */
memset(ringbuffer, 0, sizeof(ringbuffer));
if (bufmgr_gem->gen >= 8) {
ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START | (3 - 2);
ringbuffer[ring_count++] = batch_buffer;
ringbuffer[ring_count++] = 0;
} else {
ringbuffer[ring_count++] = AUB_MI_BATCH_BUFFER_START;
ringbuffer[ring_count++] = batch_buffer;
}
 
/* Write out the ring. This appears to trigger execution of
* the ring in the simulator.
*/
aub_out(bufmgr_gem,
CMD_AUB_TRACE_HEADER_BLOCK |
((bufmgr_gem->gen >= 8 ? 6 : 5) - 2));
aub_out(bufmgr_gem,
AUB_TRACE_MEMTYPE_GTT | ring | AUB_TRACE_OP_COMMAND_WRITE);
aub_out(bufmgr_gem, 0); /* general/surface subtype */
aub_out(bufmgr_gem, bufmgr_gem->aub_offset);
aub_out(bufmgr_gem, ring_count * 4);
if (bufmgr_gem->gen >= 8)
aub_out(bufmgr_gem, 0);
 
/* FIXME: Need some flush operations here? */
aub_out_data(bufmgr_gem, ringbuffer, ring_count * 4);
 
/* Update offset pointer */
bufmgr_gem->aub_offset += 4096;
}
 
void
drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
int x1, int y1, int width, int height,
enum aub_dump_bmp_format format,
int pitch, int offset)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
uint32_t cpp;
 
switch (format) {
case AUB_DUMP_BMP_FORMAT_8BIT:
cpp = 1;
break;
case AUB_DUMP_BMP_FORMAT_ARGB_4444:
cpp = 2;
break;
case AUB_DUMP_BMP_FORMAT_ARGB_0888:
case AUB_DUMP_BMP_FORMAT_ARGB_8888:
cpp = 4;
break;
default:
printf("Unknown AUB dump format %d\n", format);
return;
}
 
if (!bufmgr_gem->aub_file)
return;
 
aub_out(bufmgr_gem, CMD_AUB_DUMP_BMP | 4);
aub_out(bufmgr_gem, (y1 << 16) | x1);
aub_out(bufmgr_gem,
(format << 24) |
(cpp << 19) |
pitch / 4);
aub_out(bufmgr_gem, (height << 16) | width);
aub_out(bufmgr_gem, bo_gem->aub_offset + offset);
aub_out(bufmgr_gem,
((bo_gem->tiling_mode != I915_TILING_NONE) ? (1 << 2) : 0) |
((bo_gem->tiling_mode == I915_TILING_Y) ? (1 << 3) : 0));
}
 
static void
aub_exec(drm_intel_bo *bo, int ring_flag, int used)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int i;
bool batch_buffer_needs_annotations;
 
if (!bufmgr_gem->aub_file)
return;
 
/* If batch buffer is not annotated, annotate it the best we
* can.
*/
batch_buffer_needs_annotations = bo_gem->aub_annotation_count == 0;
if (batch_buffer_needs_annotations) {
drm_intel_aub_annotation annotations[2] = {
{ AUB_TRACE_TYPE_BATCH, 0, used },
{ AUB_TRACE_TYPE_NOTYPE, 0, bo->size }
};
drm_intel_bufmgr_gem_set_aub_annotations(bo, annotations, 2);
}
 
/* Write out all buffers to AUB memory */
for (i = 0; i < bufmgr_gem->exec_count; i++) {
aub_write_bo(bufmgr_gem->exec_bos[i]);
}
 
/* Remove any annotations we added */
if (batch_buffer_needs_annotations)
drm_intel_bufmgr_gem_set_aub_annotations(bo, NULL, 0);
 
/* Dump ring buffer */
aub_build_dump_ringbuffer(bufmgr_gem, bo_gem->aub_offset, ring_flag);
 
fflush(bufmgr_gem->aub_file);
 
/*
* One frame has been dumped. So reset the aub_offset for the next frame.
*
* FIXME: Can we do this?
*/
bufmgr_gem->aub_offset = 0x10000;
}
 
 
static int
do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
unsigned int flags)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
struct drm_i915_gem_execbuffer2 execbuf;
int ret = 0;
int i;
 
switch (flags & 0x7) {
default:
return -EINVAL;
case I915_EXEC_BLT:
if (!bufmgr_gem->has_blt)
return -EINVAL;
break;
case I915_EXEC_BSD:
if (!bufmgr_gem->has_bsd)
return -EINVAL;
break;
case I915_EXEC_VEBOX:
if (!bufmgr_gem->has_vebox)
return -EINVAL;
break;
case I915_EXEC_RENDER:
case I915_EXEC_DEFAULT:
break;
}
 
// pthread_mutex_lock(&bufmgr_gem->lock);
/* Update indices and set up the validate list. */
drm_intel_gem_bo_process_reloc2(bo);
 
/* Add the batch buffer to the validation list. There are no relocations
* pointing to it.
*/
drm_intel_add_validate_buffer2(bo, 0);
 
VG_CLEAR(execbuf);
execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
execbuf.buffer_count = bufmgr_gem->exec_count;
execbuf.batch_start_offset = 0;
execbuf.batch_len = used;
execbuf.cliprects_ptr = (uintptr_t)cliprects;
execbuf.num_cliprects = num_cliprects;
execbuf.DR1 = 0;
execbuf.DR4 = DR4;
execbuf.flags = flags;
if (ctx == NULL)
i915_execbuffer2_set_context_id(execbuf, 0);
else
i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
execbuf.rsvd2 = 0;
 
aub_exec(bo, flags, used);
 
if (bufmgr_gem->no_exec)
goto skip_execution;
 
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_EXECBUFFER2,
&execbuf);
if (ret != 0) {
ret = -errno;
if (ret == -ENOSPC) {
DBG("Execbuffer fails to pin. "
"Estimate: %u. Actual: %u. Available: %u\n",
drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
bufmgr_gem->exec_count),
drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
bufmgr_gem->exec_count),
(unsigned int) bufmgr_gem->gtt_size);
}
}
drm_intel_update_buffer_offsets2(bufmgr_gem);
 
skip_execution:
if (bufmgr_gem->bufmgr.debug)
drm_intel_gem_dump_validation_list(bufmgr_gem);
 
for (i = 0; i < bufmgr_gem->exec_count; i++) {
drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
 
/* Disconnect the buffer from the validate list */
bo_gem->validate_index = -1;
bufmgr_gem->exec_bos[i] = NULL;
}
bufmgr_gem->exec_count = 0;
// pthread_mutex_unlock(&bufmgr_gem->lock);
 
return ret;
}
 
static int
drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
drm_clip_rect_t *cliprects, int num_cliprects,
int DR4)
{
return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
I915_EXEC_RENDER);
}
 
static int
drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
unsigned int flags)
{
return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
flags);
}
 
int
drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
int used, unsigned int flags)
{
return do_exec2(bo, used, ctx, NULL, 0, 0, flags);
}
 
static int
drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_pin pin;
int ret;
 
VG_CLEAR(pin);
pin.handle = bo_gem->gem_handle;
pin.alignment = alignment;
 
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_PIN,
&pin);
if (ret != 0)
return -errno;
 
bo->offset = pin.offset;
return 0;
}
 
static int
drm_intel_gem_bo_unpin(drm_intel_bo *bo)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_unpin unpin;
int ret;
 
VG_CLEAR(unpin);
unpin.handle = bo_gem->gem_handle;
 
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
if (ret != 0)
return -errno;
 
return 0;
}
 
static int
drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
uint32_t tiling_mode,
uint32_t stride)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
struct drm_i915_gem_set_tiling set_tiling;
int ret;
 
if (bo_gem->global_name == 0 &&
tiling_mode == bo_gem->tiling_mode &&
stride == bo_gem->stride)
return 0;
 
memset(&set_tiling, 0, sizeof(set_tiling));
// do {
/* set_tiling is slightly broken and overwrites the
* input on the error path, so we have to open code
* rmIoctl.
*/
set_tiling.handle = bo_gem->gem_handle;
set_tiling.tiling_mode = tiling_mode;
set_tiling.stride = stride;
 
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_SET_TILING,
&set_tiling);
// } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
if (ret == -1)
return -errno;
 
bo_gem->tiling_mode = set_tiling.tiling_mode;
bo_gem->swizzle_mode = set_tiling.swizzle_mode;
bo_gem->stride = set_tiling.stride;
return 0;
}
 
static int
drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
uint32_t stride)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int ret;
 
/* Linear buffers have no stride. By ensuring that we only ever use
* stride 0 with linear buffers, we simplify our code.
*/
if (*tiling_mode == I915_TILING_NONE)
stride = 0;
 
ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
if (ret == 0)
drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
 
*tiling_mode = bo_gem->tiling_mode;
return ret;
}
 
static int
drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
uint32_t * swizzle_mode)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
 
*tiling_mode = bo_gem->tiling_mode;
*swizzle_mode = bo_gem->swizzle_mode;
return 0;
}
 
#if 0
drm_intel_bo *
drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
int ret;
uint32_t handle;
drm_intel_bo_gem *bo_gem;
struct drm_i915_gem_get_tiling get_tiling;
drmMMListHead *list;
 
ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
 
/*
* See if the kernel has already returned this buffer to us. Just as
* for named buffers, we must not create two bo's pointing at the same
* kernel object
*/
for (list = bufmgr_gem->named.next;
list != &bufmgr_gem->named;
list = list->next) {
bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
if (bo_gem->gem_handle == handle) {
drm_intel_gem_bo_reference(&bo_gem->bo);
return &bo_gem->bo;
}
}
 
if (ret) {
fprintf(stderr,"ret is %d %d\n", ret, errno);
return NULL;
}
 
bo_gem = calloc(1, sizeof(*bo_gem));
if (!bo_gem)
return NULL;
 
/* Determine size of bo. The fd-to-handle ioctl really should
* return the size, but it doesn't. If we have kernel 3.12 or
* later, we can lseek on the prime fd to get the size. Older
* kernels will just fail, in which case we fall back to the
* provided (estimated or guess size). */
ret = lseek(prime_fd, 0, SEEK_END);
if (ret != -1)
bo_gem->bo.size = ret;
else
bo_gem->bo.size = size;
 
bo_gem->bo.handle = handle;
bo_gem->bo.bufmgr = bufmgr;
 
bo_gem->gem_handle = handle;
 
atomic_set(&bo_gem->refcount, 1);
 
bo_gem->name = "prime";
bo_gem->validate_index = -1;
bo_gem->reloc_tree_fences = 0;
bo_gem->used_as_reloc_target = false;
bo_gem->has_error = false;
bo_gem->reusable = false;
 
DRMINITLISTHEAD(&bo_gem->vma_list);
DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
 
VG_CLEAR(get_tiling);
get_tiling.handle = bo_gem->gem_handle;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_GET_TILING,
&get_tiling);
if (ret != 0) {
drm_intel_gem_bo_unreference(&bo_gem->bo);
return NULL;
}
bo_gem->tiling_mode = get_tiling.tiling_mode;
bo_gem->swizzle_mode = get_tiling.swizzle_mode;
/* XXX stride is unknown */
drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
 
return &bo_gem->bo;
}
 
int
drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
 
if (DRMLISTEMPTY(&bo_gem->name_list))
DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
 
if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
DRM_CLOEXEC, prime_fd) != 0)
return -errno;
 
bo_gem->reusable = false;
 
return 0;
}
#endif
 
static int
drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int ret;
 
if (!bo_gem->global_name) {
struct drm_gem_flink flink;
 
VG_CLEAR(flink);
flink.handle = bo_gem->gem_handle;
 
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink);
if (ret != 0)
return -errno;
 
bo_gem->global_name = flink.name;
bo_gem->reusable = false;
 
DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
}
 
*name = bo_gem->global_name;
return 0;
}
 
/**
* Enables unlimited caching of buffer objects for reuse.
*
* This is potentially very memory expensive, as the cache at each bucket
* size is only bounded by how many buffers of that size we've managed to have
* in flight at once.
*/
void
drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
 
bufmgr_gem->bo_reuse = true;
}
 
/**
* Enable use of fenced reloc type.
*
* New code should enable this to avoid unnecessary fence register
* allocation. If this option is not enabled, all relocs will have fence
* register allocated.
*/
void
drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
 
if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
bufmgr_gem->fenced_relocs = true;
}
 
/**
* Return the additional aperture space required by the tree of buffer objects
* rooted at bo.
*/
static int
drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int i;
int total = 0;
 
if (bo == NULL || bo_gem->included_in_check_aperture)
return 0;
 
total += bo->size;
bo_gem->included_in_check_aperture = true;
 
for (i = 0; i < bo_gem->reloc_count; i++)
total +=
drm_intel_gem_bo_get_aperture_space(bo_gem->
reloc_target_info[i].bo);
 
return total;
}
 
/**
* Count the number of buffers in this list that need a fence reg
*
* If the count is greater than the number of available regs, we'll have
* to ask the caller to resubmit a batch with fewer tiled buffers.
*
* This function over-counts if the same buffer is used multiple times.
*/
static unsigned int
drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
{
int i;
unsigned int total = 0;
 
for (i = 0; i < count; i++) {
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
 
if (bo_gem == NULL)
continue;
 
total += bo_gem->reloc_tree_fences;
}
return total;
}
 
/**
* Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
* for the next drm_intel_bufmgr_check_aperture_space() call.
*/
static void
drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int i;
 
if (bo == NULL || !bo_gem->included_in_check_aperture)
return;
 
bo_gem->included_in_check_aperture = false;
 
for (i = 0; i < bo_gem->reloc_count; i++)
drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
reloc_target_info[i].bo);
}
 
/**
* Return a conservative estimate for the amount of aperture required
* for a collection of buffers. This may double-count some buffers.
*/
static unsigned int
drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
{
int i;
unsigned int total = 0;
 
for (i = 0; i < count; i++) {
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
if (bo_gem != NULL)
total += bo_gem->reloc_tree_size;
}
return total;
}
 
/**
* Return the amount of aperture needed for a collection of buffers.
* This avoids double counting any buffers, at the cost of looking
* at every buffer in the set.
*/
static unsigned int
drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
{
int i;
unsigned int total = 0;
 
for (i = 0; i < count; i++) {
total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
/* For the first buffer object in the array, we get an
* accurate count back for its reloc_tree size (since nothing
* had been flagged as being counted yet). We can save that
* value out as a more conservative reloc_tree_size that
* avoids double-counting target buffers. Since the first
* buffer happens to usually be the batch buffer in our
* callers, this can pull us back from doing the tree
* walk on every new batch emit.
*/
if (i == 0) {
drm_intel_bo_gem *bo_gem =
(drm_intel_bo_gem *) bo_array[i];
bo_gem->reloc_tree_size = total;
}
}
 
for (i = 0; i < count; i++)
drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
return total;
}
 
/**
* Return -1 if the batchbuffer should be flushed before attempting to
* emit rendering referencing the buffers pointed to by bo_array.
*
* This is required because if we try to emit a batchbuffer with relocations
* to a tree of buffers that won't simultaneously fit in the aperture,
* the rendering will return an error at a point where the software is not
* prepared to recover from it.
*
* However, we also want to emit the batchbuffer significantly before we reach
* the limit, as a series of batchbuffers each of which references buffers
* covering almost all of the aperture means that at each emit we end up
* waiting to evict a buffer from the last rendering, and we get synchronous
* performance. By emitting smaller batchbuffers, we eat some CPU overhead to
* get better parallelism.
*/
static int
drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
{
drm_intel_bufmgr_gem *bufmgr_gem =
(drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
unsigned int total = 0;
unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
int total_fences;
 
/* Check for fence reg constraints if necessary */
if (bufmgr_gem->available_fences) {
total_fences = drm_intel_gem_total_fences(bo_array, count);
if (total_fences > bufmgr_gem->available_fences)
return -ENOSPC;
}
 
total = drm_intel_gem_estimate_batch_space(bo_array, count);
 
if (total > threshold)
total = drm_intel_gem_compute_batch_space(bo_array, count);
 
if (total > threshold) {
DBG("check_space: overflowed available aperture, "
"%dkb vs %dkb\n",
total / 1024, (int)bufmgr_gem->gtt_size / 1024);
return -ENOSPC;
} else {
DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
(int)bufmgr_gem->gtt_size / 1024);
return 0;
}
}
 
/*
* Disable buffer reuse for objects which are shared with the kernel
* as scanout buffers
*/
static int
drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
 
bo_gem->reusable = false;
return 0;
}
 
static int
drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
 
return bo_gem->reusable;
}
 
static int
_drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
int i;
 
for (i = 0; i < bo_gem->reloc_count; i++) {
if (bo_gem->reloc_target_info[i].bo == target_bo)
return 1;
if (bo == bo_gem->reloc_target_info[i].bo)
continue;
if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
target_bo))
return 1;
}
 
return 0;
}
 
/** Return true if target_bo is referenced by bo's relocation tree. */
static int
drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
{
drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
 
if (bo == NULL || target_bo == NULL)
return 0;
if (target_bo_gem->used_as_reloc_target)
return _drm_intel_gem_bo_references(bo, target_bo);
return 0;
}
 
static void
add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
{
unsigned int i = bufmgr_gem->num_buckets;
 
assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
 
DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
bufmgr_gem->cache_bucket[i].size = size;
bufmgr_gem->num_buckets++;
}
 
static void
init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
{
unsigned long size, cache_max_size = 64 * 1024 * 1024;
 
/* OK, so power of two buckets was too wasteful of memory.
* Give 3 other sizes between each power of two, to hopefully
* cover things accurately enough. (The alternative is
* probably to just go for exact matching of sizes, and assume
* that for things like composited window resize the tiled
* width/height alignment and rounding of sizes to pages will
* get us useful cache hit rates anyway)
*/
add_bucket(bufmgr_gem, 4096);
add_bucket(bufmgr_gem, 4096 * 2);
add_bucket(bufmgr_gem, 4096 * 3);
 
/* Initialize the linked lists for BO reuse cache. */
for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
add_bucket(bufmgr_gem, size);
 
add_bucket(bufmgr_gem, size + size * 1 / 4);
add_bucket(bufmgr_gem, size + size * 2 / 4);
add_bucket(bufmgr_gem, size + size * 3 / 4);
}
}
 
void
drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
 
bufmgr_gem->vma_max = limit;
 
drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
}
 
/**
* Get the PCI ID for the device. This can be overridden by setting the
* INTEL_DEVID_OVERRIDE environment variable to the desired ID.
*/
static int
get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
{
char *devid_override;
int devid;
int ret;
drm_i915_getparam_t gp;
 
VG_CLEAR(devid);
VG_CLEAR(gp);
gp.param = I915_PARAM_CHIPSET_ID;
gp.value = &devid;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret) {
fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
}
return devid;
}
 
int
drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
 
return bufmgr_gem->pci_device;
}
 
/**
* Sets up AUB dumping.
*
* This is a trace file format that can be used with the simulator.
* Packets are emitted in a format somewhat like GPU command packets.
* You can set up a GTT and upload your objects into the referenced
* space, then send off batchbuffers and get BMPs out the other end.
*/
void
drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
int entry = 0x200003;
int i;
int gtt_size = 0x10000;
const char *filename;
 
if (!enable) {
if (bufmgr_gem->aub_file) {
fclose(bufmgr_gem->aub_file);
bufmgr_gem->aub_file = NULL;
}
return;
}
 
bufmgr_gem->aub_file = fopen("intel.aub", "w+");
if (!bufmgr_gem->aub_file)
return;
 
/* Start allocating objects from just after the GTT. */
bufmgr_gem->aub_offset = gtt_size;
 
/* Start with a (required) version packet. */
aub_out(bufmgr_gem, CMD_AUB_HEADER | (13 - 2));
aub_out(bufmgr_gem,
(4 << AUB_HEADER_MAJOR_SHIFT) |
(0 << AUB_HEADER_MINOR_SHIFT));
for (i = 0; i < 8; i++) {
aub_out(bufmgr_gem, 0); /* app name */
}
aub_out(bufmgr_gem, 0); /* timestamp */
aub_out(bufmgr_gem, 0); /* timestamp */
aub_out(bufmgr_gem, 0); /* comment len */
 
/* Set up the GTT. The max we can handle is 256M */
aub_out(bufmgr_gem, CMD_AUB_TRACE_HEADER_BLOCK | (5 - 2));
aub_out(bufmgr_gem, AUB_TRACE_MEMTYPE_NONLOCAL | 0 | AUB_TRACE_OP_DATA_WRITE);
aub_out(bufmgr_gem, 0); /* subtype */
aub_out(bufmgr_gem, 0); /* offset */
aub_out(bufmgr_gem, gtt_size); /* size */
for (i = 0x000; i < gtt_size; i += 4, entry += 0x1000) {
aub_out(bufmgr_gem, entry);
}
}
 
drm_intel_context *
drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
struct drm_i915_gem_context_create create;
drm_intel_context *context = NULL;
int ret;
 
VG_CLEAR(create);
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
if (ret != 0) {
DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
strerror(errno));
return NULL;
}
 
context = calloc(1, sizeof(*context));
context->ctx_id = create.ctx_id;
context->bufmgr = bufmgr;
 
return context;
}
 
void
drm_intel_gem_context_destroy(drm_intel_context *ctx)
{
drm_intel_bufmgr_gem *bufmgr_gem;
struct drm_i915_gem_context_destroy destroy;
int ret;
 
if (ctx == NULL)
return;
 
VG_CLEAR(destroy);
 
bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
destroy.ctx_id = ctx->ctx_id;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
&destroy);
if (ret != 0)
fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
strerror(errno));
 
free(ctx);
}
 
int
drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
uint32_t offset,
uint64_t *result)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
struct drm_i915_reg_read reg_read;
int ret;
 
VG_CLEAR(reg_read);
reg_read.offset = offset;
 
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
 
*result = reg_read.val;
return ret;
}
 
 
/**
* Annotate the given bo for use in aub dumping.
*
* \param annotations is an array of drm_intel_aub_annotation objects
* describing the type of data in various sections of the bo. Each
* element of the array specifies the type and subtype of a section of
* the bo, and the past-the-end offset of that section. The elements
* of \c annotations must be sorted so that ending_offset is
* increasing.
*
* \param count is the number of elements in the \c annotations array.
* If \c count is zero, then \c annotations will not be dereferenced.
*
* Annotations are copied into a private data structure, so caller may
* re-use the memory pointed to by \c annotations after the call
* returns.
*
* Annotations are stored for the lifetime of the bo; to reset to the
* default state (no annotations), call this function with a \c count
* of zero.
*/
void
drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
drm_intel_aub_annotation *annotations,
unsigned count)
{
drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
unsigned size = sizeof(*annotations) * count;
drm_intel_aub_annotation *new_annotations =
count > 0 ? realloc(bo_gem->aub_annotations, size) : NULL;
if (new_annotations == NULL) {
free(bo_gem->aub_annotations);
bo_gem->aub_annotations = NULL;
bo_gem->aub_annotation_count = 0;
return;
}
memcpy(new_annotations, annotations, size);
bo_gem->aub_annotations = new_annotations;
bo_gem->aub_annotation_count = count;
}
 
/**
* Initializes the GEM buffer manager, which uses the kernel to allocate, map,
* and manage map buffer objections.
*
* \param fd File descriptor of the opened DRM device.
*/
drm_intel_bufmgr *
drm_intel_bufmgr_gem_init(int fd, int batch_size)
{
drm_intel_bufmgr_gem *bufmgr_gem;
struct drm_i915_gem_get_aperture aperture;
drm_i915_getparam_t gp;
int ret, tmp;
bool exec2 = false;
 
bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
if (bufmgr_gem == NULL)
return NULL;
 
bufmgr_gem->fd = fd;
 
// if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
// free(bufmgr_gem);
// return NULL;
// }
 
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_GET_APERTURE,
&aperture);
 
if (ret == 0)
bufmgr_gem->gtt_size = aperture.aper_available_size;
else {
printf("DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
strerror(errno));
bufmgr_gem->gtt_size = 128 * 1024 * 1024;
printf("Assuming %dkB available aperture size.\n"
"May lead to reduced performance or incorrect "
"rendering.\n",
(int)bufmgr_gem->gtt_size / 1024);
}
 
bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
 
if (IS_GEN2(bufmgr_gem->pci_device))
bufmgr_gem->gen = 2;
else if (IS_GEN3(bufmgr_gem->pci_device))
bufmgr_gem->gen = 3;
else if (IS_GEN4(bufmgr_gem->pci_device))
bufmgr_gem->gen = 4;
else if (IS_GEN5(bufmgr_gem->pci_device))
bufmgr_gem->gen = 5;
else if (IS_GEN6(bufmgr_gem->pci_device))
bufmgr_gem->gen = 6;
else if (IS_GEN7(bufmgr_gem->pci_device))
bufmgr_gem->gen = 7;
else {
free(bufmgr_gem);
return NULL;
}
 
// printf("gen %d\n", bufmgr_gem->gen);
 
if (IS_GEN3(bufmgr_gem->pci_device) &&
bufmgr_gem->gtt_size > 256*1024*1024) {
/* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
* be used for tiled blits. To simplify the accounting, just
* substract the unmappable part (fixed to 256MB on all known
* gen3 devices) if the kernel advertises it. */
bufmgr_gem->gtt_size -= 256*1024*1024;
}
 
VG_CLEAR(gp);
gp.value = &tmp;
 
gp.param = I915_PARAM_HAS_EXECBUF2;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (!ret)
exec2 = true;
 
gp.param = I915_PARAM_HAS_BSD;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
bufmgr_gem->has_bsd = ret == 0;
 
gp.param = I915_PARAM_HAS_BLT;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
bufmgr_gem->has_blt = ret == 0;
 
gp.param = I915_PARAM_HAS_RELAXED_FENCING;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
bufmgr_gem->has_relaxed_fencing = ret == 0;
 
gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
bufmgr_gem->has_wait_timeout = ret == 0;
 
gp.param = I915_PARAM_HAS_LLC;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret != 0) {
/* Kernel does not supports HAS_LLC query, fallback to GPU
* generation detection and assume that we have LLC on GEN6/7
*/
bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
IS_GEN7(bufmgr_gem->pci_device));
} else
bufmgr_gem->has_llc = *gp.value;
 
gp.param = I915_PARAM_HAS_VEBOX;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
 
if (bufmgr_gem->gen < 4) {
gp.param = I915_PARAM_NUM_FENCES_AVAIL;
gp.value = &bufmgr_gem->available_fences;
ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
if (ret) {
fprintf(stderr, "get fences failed: %d [%d]\n", ret,
errno);
fprintf(stderr, "param: %d, val: %d\n", gp.param,
*gp.value);
bufmgr_gem->available_fences = 0;
} else {
/* XXX The kernel reports the total number of fences,
* including any that may be pinned.
*
* We presume that there will be at least one pinned
* fence for the scanout buffer, but there may be more
* than one scanout and the user may be manually
* pinning buffers. Let's move to execbuffer2 and
* thereby forget the insanity of using fences...
*/
bufmgr_gem->available_fences -= 2;
if (bufmgr_gem->available_fences < 0)
bufmgr_gem->available_fences = 0;
}
}
 
/* Let's go with one relocation per every 2 dwords (but round down a bit
* since a power of two will mean an extra page allocation for the reloc
* buffer).
*
* Every 4 was too few for the blender benchmark.
*/
bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
 
bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
// bufmgr_gem->bufmgr.bo_alloc_for_render =
// drm_intel_gem_bo_alloc_for_render;
bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
// bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
/* Use the new one if available */
// if (exec2) {
bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
// } else
// bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_destroy;
bufmgr_gem->bufmgr.debug = 0;
bufmgr_gem->bufmgr.check_aperture_space =
drm_intel_gem_check_aperture_space;
bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
// bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
// drm_intel_gem_get_pipe_from_crtc_id;
bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
 
DRMINITLISTHEAD(&bufmgr_gem->named);
init_cache_buckets(bufmgr_gem);
 
DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
bufmgr_gem->vma_max = -1; /* unlimited by default */
 
return &bufmgr_gem->bufmgr;
}
 
 
drm_intel_bo *
bo_create_from_gem_handle(drm_intel_bufmgr *bufmgr,
unsigned int size, unsigned int handle)
{
drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
drm_intel_bo_gem *bo_gem;
int ret;
struct drm_i915_gem_get_tiling get_tiling;
drmMMListHead *list;
 
/* At the moment most applications only have a few named bo.
* For instance, in a DRI client only the render buffers passed
* between X and the client are named. And since X returns the
* alternating names for the front/back buffer a linear search
* provides a sufficiently fast match.
*/
for (list = bufmgr_gem->named.next;
list != &bufmgr_gem->named;
list = list->next) {
bo_gem = DRMLISTENTRY(drm_intel_bo_gem, list, name_list);
if (bo_gem->gem_handle == handle) {
return &bo_gem->bo;
}
}
 
bo_gem = calloc(1, sizeof(*bo_gem));
if (!bo_gem)
return NULL;
 
bo_gem->bo.size = size;
bo_gem->bo.offset = 0;
bo_gem->bo.virtual = NULL;
bo_gem->bo.bufmgr = bufmgr;
bo_gem->name = NULL;
atomic_set(&bo_gem->refcount, 1);
bo_gem->validate_index = -1;
bo_gem->gem_handle = handle;
bo_gem->bo.handle = handle;
bo_gem->global_name = 0;
bo_gem->reusable = false;
 
VG_CLEAR(get_tiling);
get_tiling.handle = bo_gem->gem_handle;
ret = drmIoctl(bufmgr_gem->fd,
DRM_IOCTL_I915_GEM_GET_TILING,
&get_tiling);
if (ret != 0) {
drm_intel_gem_bo_unreference(&bo_gem->bo);
return NULL;
}
bo_gem->tiling_mode = get_tiling.tiling_mode;
bo_gem->swizzle_mode = get_tiling.swizzle_mode;
/* XXX stride is unknown */
drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem);
 
DRMINITLISTHEAD(&bo_gem->vma_list);
DRMLISTADDTAIL(&bo_gem->name_list, &bufmgr_gem->named);
printf("bo_create_from_handle: %d\n", handle);
 
return &bo_gem->bo;
}
/contrib/sdk/sources/libdrm/intel/intel_bufmgr_priv.h
0,0 → 1,292
/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
 
/**
* @file intel_bufmgr_priv.h
*
* Private definitions of Intel-specific bufmgr functions and structures.
*/
 
#ifndef INTEL_BUFMGR_PRIV_H
#define INTEL_BUFMGR_PRIV_H
 
/**
* Context for a buffer manager instance.
*
* Contains public methods followed by private storage for the buffer manager.
*/
struct _drm_intel_bufmgr {
/**
* Allocate a buffer object.
*
* Buffer objects are not necessarily initially mapped into CPU virtual
* address space or graphics device aperture. They must be mapped
* using bo_map() or drm_intel_gem_bo_map_gtt() to be used by the CPU.
*/
drm_intel_bo *(*bo_alloc) (drm_intel_bufmgr *bufmgr, const char *name,
unsigned long size, unsigned int alignment);
 
/**
* Allocate a buffer object, hinting that it will be used as a
* render target.
*
* This is otherwise the same as bo_alloc.
*/
// drm_intel_bo *(*bo_alloc_for_render) (drm_intel_bufmgr *bufmgr,
// const char *name,
// unsigned long size,
// unsigned int alignment);
 
/**
* Allocate a tiled buffer object.
*
* Alignment for tiled objects is set automatically; the 'flags'
* argument provides a hint about how the object will be used initially.
*
* Valid tiling formats are:
* I915_TILING_NONE
* I915_TILING_X
* I915_TILING_Y
*
* Note the tiling format may be rejected; callers should check the
* 'tiling_mode' field on return, as well as the pitch value, which
* may have been rounded up to accommodate for tiling restrictions.
*/
drm_intel_bo *(*bo_alloc_tiled) (drm_intel_bufmgr *bufmgr,
const char *name,
int x, int y, int cpp,
uint32_t *tiling_mode,
unsigned long *pitch,
unsigned long flags);
 
/** Takes a reference on a buffer object */
void (*bo_reference) (drm_intel_bo *bo);
 
/**
* Releases a reference on a buffer object, freeing the data if
* no references remain.
*/
void (*bo_unreference) (drm_intel_bo *bo);
 
/**
* Maps the buffer into userspace.
*
* This function will block waiting for any existing execution on the
* buffer to complete, first. The resulting mapping is available at
* buf->virtual.
*/
int (*bo_map) (drm_intel_bo *bo, int write_enable);
 
/**
* Reduces the refcount on the userspace mapping of the buffer
* object.
*/
int (*bo_unmap) (drm_intel_bo *bo);
 
/**
* Write data into an object.
*
* This is an optional function, if missing,
* drm_intel_bo will map/memcpy/unmap.
*/
int (*bo_subdata) (drm_intel_bo *bo, unsigned long offset,
unsigned long size, const void *data);
 
/**
* Read data from an object
*
* This is an optional function, if missing,
* drm_intel_bo will map/memcpy/unmap.
*/
// int (*bo_get_subdata) (drm_intel_bo *bo, unsigned long offset,
// unsigned long size, void *data);
 
/**
* Waits for rendering to an object by the GPU to have completed.
*
* This is not required for any access to the BO by bo_map,
* bo_subdata, etc. It is merely a way for the driver to implement
* glFinish.
*/
void (*bo_wait_rendering) (drm_intel_bo *bo);
 
/**
* Tears down the buffer manager instance.
*/
void (*destroy) (drm_intel_bufmgr *bufmgr);
 
/**
* Add relocation entry in reloc_buf, which will be updated with the
* target buffer's real offset on on command submission.
*
* Relocations remain in place for the lifetime of the buffer object.
*
* \param bo Buffer to write the relocation into.
* \param offset Byte offset within reloc_bo of the pointer to
* target_bo.
* \param target_bo Buffer whose offset should be written into the
* relocation entry.
* \param target_offset Constant value to be added to target_bo's
* offset in relocation entry.
* \param read_domains GEM read domains which the buffer will be
* read into by the command that this relocation
* is part of.
* \param write_domains GEM read domains which the buffer will be
* dirtied in by the command that this
* relocation is part of.
*/
int (*bo_emit_reloc) (drm_intel_bo *bo, uint32_t offset,
drm_intel_bo *target_bo, uint32_t target_offset,
uint32_t read_domains, uint32_t write_domain);
int (*bo_emit_reloc_fence)(drm_intel_bo *bo, uint32_t offset,
drm_intel_bo *target_bo,
uint32_t target_offset,
uint32_t read_domains,
uint32_t write_domain);
 
/** Executes the command buffer pointed to by bo. */
int (*bo_exec) (drm_intel_bo *bo, int used,
drm_clip_rect_t *cliprects, int num_cliprects,
int DR4);
 
/** Executes the command buffer pointed to by bo on the selected
* ring buffer
*/
int (*bo_mrb_exec) (drm_intel_bo *bo, int used,
drm_clip_rect_t *cliprects, int num_cliprects,
int DR4, unsigned flags);
 
/**
* Pin a buffer to the aperture and fix the offset until unpinned
*
* \param buf Buffer to pin
* \param alignment Required alignment for aperture, in bytes
*/
int (*bo_pin) (drm_intel_bo *bo, uint32_t alignment);
 
/**
* Unpin a buffer from the aperture, allowing it to be removed
*
* \param buf Buffer to unpin
*/
int (*bo_unpin) (drm_intel_bo *bo);
 
/**
* Ask that the buffer be placed in tiling mode
*
* \param buf Buffer to set tiling mode for
* \param tiling_mode desired, and returned tiling mode
*/
int (*bo_set_tiling) (drm_intel_bo *bo, uint32_t * tiling_mode,
uint32_t stride);
 
/**
* Get the current tiling (and resulting swizzling) mode for the bo.
*
* \param buf Buffer to get tiling mode for
* \param tiling_mode returned tiling mode
* \param swizzle_mode returned swizzling mode
*/
int (*bo_get_tiling) (drm_intel_bo *bo, uint32_t * tiling_mode,
uint32_t * swizzle_mode);
 
/**
* Create a visible name for a buffer which can be used by other apps
*
* \param buf Buffer to create a name for
* \param name Returned name
*/
int (*bo_flink) (drm_intel_bo *bo, uint32_t * name);
 
/**
* Returns 1 if mapping the buffer for write could cause the process
* to block, due to the object being active in the GPU.
*/
int (*bo_busy) (drm_intel_bo *bo);
 
/**
* Specify the volatility of the buffer.
* \param bo Buffer to create a name for
* \param madv The purgeable status
*
* Use I915_MADV_DONTNEED to mark the buffer as purgeable, and it will be
* reclaimed under memory pressure. If you subsequently require the buffer,
* then you must pass I915_MADV_WILLNEED to mark the buffer as required.
*
* Returns 1 if the buffer was retained, or 0 if it was discarded whilst
* marked as I915_MADV_DONTNEED.
*/
int (*bo_madvise) (drm_intel_bo *bo, int madv);
 
int (*check_aperture_space) (drm_intel_bo ** bo_array, int count);
 
/**
* Disable buffer reuse for buffers which will be shared in some way,
* as with scanout buffers. When the buffer reference count goes to
* zero, it will be freed and not placed in the reuse list.
*
* \param bo Buffer to disable reuse for
*/
int (*bo_disable_reuse) (drm_intel_bo *bo);
 
/**
* Query whether a buffer is reusable.
*
* \param bo Buffer to query
*/
int (*bo_is_reusable) (drm_intel_bo *bo);
 
/**
*
* Return the pipe associated with a crtc_id so that vblank
* synchronization can use the correct data in the request.
* This is only supported for KMS and gem at this point, when
* unsupported, this function returns -1 and leaves the decision
* of what to do in that case to the caller
*
* \param bufmgr the associated buffer manager
* \param crtc_id the crtc identifier
*/
// int (*get_pipe_from_crtc_id) (drm_intel_bufmgr *bufmgr, int crtc_id);
 
/** Returns true if target_bo is in the relocation tree rooted at bo. */
int (*bo_references) (drm_intel_bo *bo, drm_intel_bo *target_bo);
 
/**< Enables verbose debugging printouts */
int debug;
};
 
struct _drm_intel_context {
unsigned int ctx_id;
struct _drm_intel_bufmgr *bufmgr;
};
 
#define ALIGN(value, alignment) ((value + alignment - 1) & ~(alignment - 1))
#define ROUND_UP_TO(x, y) (((x) + (y) - 1) / (y) * (y))
#define ROUND_UP_TO_MB(x) ROUND_UP_TO((x), 1024*1024)
 
#endif /* INTEL_BUFMGR_PRIV_H */
/contrib/sdk/sources/libdrm/intel/intel_chipset.h
0,0 → 1,325
/*
*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
 
#ifndef _INTEL_CHIPSET_H
#define _INTEL_CHIPSET_H
 
#define PCI_CHIP_I810 0x7121
#define PCI_CHIP_I810_DC100 0x7123
#define PCI_CHIP_I810_E 0x7125
#define PCI_CHIP_I815 0x1132
 
#define PCI_CHIP_I830_M 0x3577
#define PCI_CHIP_845_G 0x2562
#define PCI_CHIP_I855_GM 0x3582
#define PCI_CHIP_I865_G 0x2572
 
#define PCI_CHIP_I915_G 0x2582
#define PCI_CHIP_E7221_G 0x258A
#define PCI_CHIP_I915_GM 0x2592
#define PCI_CHIP_I945_G 0x2772
#define PCI_CHIP_I945_GM 0x27A2
#define PCI_CHIP_I945_GME 0x27AE
 
#define PCI_CHIP_Q35_G 0x29B2
#define PCI_CHIP_G33_G 0x29C2
#define PCI_CHIP_Q33_G 0x29D2
 
#define PCI_CHIP_IGD_GM 0xA011
#define PCI_CHIP_IGD_G 0xA001
 
#define IS_IGDGM(devid) ((devid) == PCI_CHIP_IGD_GM)
#define IS_IGDG(devid) ((devid) == PCI_CHIP_IGD_G)
#define IS_IGD(devid) (IS_IGDG(devid) || IS_IGDGM(devid))
 
#define PCI_CHIP_I965_G 0x29A2
#define PCI_CHIP_I965_Q 0x2992
#define PCI_CHIP_I965_G_1 0x2982
#define PCI_CHIP_I946_GZ 0x2972
#define PCI_CHIP_I965_GM 0x2A02
#define PCI_CHIP_I965_GME 0x2A12
 
#define PCI_CHIP_GM45_GM 0x2A42
 
#define PCI_CHIP_IGD_E_G 0x2E02
#define PCI_CHIP_Q45_G 0x2E12
#define PCI_CHIP_G45_G 0x2E22
#define PCI_CHIP_G41_G 0x2E32
 
#define PCI_CHIP_ILD_G 0x0042
#define PCI_CHIP_ILM_G 0x0046
 
#define PCI_CHIP_SANDYBRIDGE_GT1 0x0102 /* desktop */
#define PCI_CHIP_SANDYBRIDGE_GT2 0x0112
#define PCI_CHIP_SANDYBRIDGE_GT2_PLUS 0x0122
#define PCI_CHIP_SANDYBRIDGE_M_GT1 0x0106 /* mobile */
#define PCI_CHIP_SANDYBRIDGE_M_GT2 0x0116
#define PCI_CHIP_SANDYBRIDGE_M_GT2_PLUS 0x0126
#define PCI_CHIP_SANDYBRIDGE_S 0x010A /* server */
 
#define PCI_CHIP_IVYBRIDGE_GT1 0x0152 /* desktop */
#define PCI_CHIP_IVYBRIDGE_GT2 0x0162
#define PCI_CHIP_IVYBRIDGE_M_GT1 0x0156 /* mobile */
#define PCI_CHIP_IVYBRIDGE_M_GT2 0x0166
#define PCI_CHIP_IVYBRIDGE_S 0x015a /* server */
#define PCI_CHIP_IVYBRIDGE_S_GT2 0x016a /* server */
 
#define PCI_CHIP_HASWELL_GT1 0x0402 /* Desktop */
#define PCI_CHIP_HASWELL_GT2 0x0412
#define PCI_CHIP_HASWELL_GT3 0x0422
#define PCI_CHIP_HASWELL_M_GT1 0x0406 /* Mobile */
#define PCI_CHIP_HASWELL_M_GT2 0x0416
#define PCI_CHIP_HASWELL_M_GT3 0x0426
#define PCI_CHIP_HASWELL_S_GT1 0x040A /* Server */
#define PCI_CHIP_HASWELL_S_GT2 0x041A
#define PCI_CHIP_HASWELL_S_GT3 0x042A
#define PCI_CHIP_HASWELL_B_GT1 0x040B /* Reserved */
#define PCI_CHIP_HASWELL_B_GT2 0x041B
#define PCI_CHIP_HASWELL_B_GT3 0x042B
#define PCI_CHIP_HASWELL_E_GT1 0x040E /* Reserved */
#define PCI_CHIP_HASWELL_E_GT2 0x041E
#define PCI_CHIP_HASWELL_E_GT3 0x042E
#define PCI_CHIP_HASWELL_SDV_GT1 0x0C02 /* Desktop */
#define PCI_CHIP_HASWELL_SDV_GT2 0x0C12
#define PCI_CHIP_HASWELL_SDV_GT3 0x0C22
#define PCI_CHIP_HASWELL_SDV_M_GT1 0x0C06 /* Mobile */
#define PCI_CHIP_HASWELL_SDV_M_GT2 0x0C16
#define PCI_CHIP_HASWELL_SDV_M_GT3 0x0C26
#define PCI_CHIP_HASWELL_SDV_S_GT1 0x0C0A /* Server */
#define PCI_CHIP_HASWELL_SDV_S_GT2 0x0C1A
#define PCI_CHIP_HASWELL_SDV_S_GT3 0x0C2A
#define PCI_CHIP_HASWELL_SDV_B_GT1 0x0C0B /* Reserved */
#define PCI_CHIP_HASWELL_SDV_B_GT2 0x0C1B
#define PCI_CHIP_HASWELL_SDV_B_GT3 0x0C2B
#define PCI_CHIP_HASWELL_SDV_E_GT1 0x0C0E /* Reserved */
#define PCI_CHIP_HASWELL_SDV_E_GT2 0x0C1E
#define PCI_CHIP_HASWELL_SDV_E_GT3 0x0C2E
#define PCI_CHIP_HASWELL_ULT_GT1 0x0A02 /* Desktop */
#define PCI_CHIP_HASWELL_ULT_GT2 0x0A12
#define PCI_CHIP_HASWELL_ULT_GT3 0x0A22
#define PCI_CHIP_HASWELL_ULT_M_GT1 0x0A06 /* Mobile */
#define PCI_CHIP_HASWELL_ULT_M_GT2 0x0A16
#define PCI_CHIP_HASWELL_ULT_M_GT3 0x0A26
#define PCI_CHIP_HASWELL_ULT_S_GT1 0x0A0A /* Server */
#define PCI_CHIP_HASWELL_ULT_S_GT2 0x0A1A
#define PCI_CHIP_HASWELL_ULT_S_GT3 0x0A2A
#define PCI_CHIP_HASWELL_ULT_B_GT1 0x0A0B /* Reserved */
#define PCI_CHIP_HASWELL_ULT_B_GT2 0x0A1B
#define PCI_CHIP_HASWELL_ULT_B_GT3 0x0A2B
#define PCI_CHIP_HASWELL_ULT_E_GT1 0x0A0E /* Reserved */
#define PCI_CHIP_HASWELL_ULT_E_GT2 0x0A1E
#define PCI_CHIP_HASWELL_ULT_E_GT3 0x0A2E
#define PCI_CHIP_HASWELL_CRW_GT1 0x0D02 /* Desktop */
#define PCI_CHIP_HASWELL_CRW_GT2 0x0D12
#define PCI_CHIP_HASWELL_CRW_GT3 0x0D22
#define PCI_CHIP_HASWELL_CRW_M_GT1 0x0D06 /* Mobile */
#define PCI_CHIP_HASWELL_CRW_M_GT2 0x0D16
#define PCI_CHIP_HASWELL_CRW_M_GT3 0x0D26
#define PCI_CHIP_HASWELL_CRW_S_GT1 0x0D0A /* Server */
#define PCI_CHIP_HASWELL_CRW_S_GT2 0x0D1A
#define PCI_CHIP_HASWELL_CRW_S_GT3 0x0D2A
#define PCI_CHIP_HASWELL_CRW_B_GT1 0x0D0B /* Reserved */
#define PCI_CHIP_HASWELL_CRW_B_GT2 0x0D1B
#define PCI_CHIP_HASWELL_CRW_B_GT3 0x0D2B
#define PCI_CHIP_HASWELL_CRW_E_GT1 0x0D0E /* Reserved */
#define PCI_CHIP_HASWELL_CRW_E_GT2 0x0D1E
#define PCI_CHIP_HASWELL_CRW_E_GT3 0x0D2E
#define BDW_SPARE 0x2
#define BDW_ULT 0x6
#define BDW_SERVER 0xa
#define BDW_IRIS 0xb
#define BDW_WORKSTATION 0xd
#define BDW_ULX 0xe
 
#define PCI_CHIP_VALLEYVIEW_PO 0x0f30 /* VLV PO board */
#define PCI_CHIP_VALLEYVIEW_1 0x0f31
#define PCI_CHIP_VALLEYVIEW_2 0x0f32
#define PCI_CHIP_VALLEYVIEW_3 0x0f33
 
#define IS_MOBILE(devid) ((devid) == PCI_CHIP_I855_GM || \
(devid) == PCI_CHIP_I915_GM || \
(devid) == PCI_CHIP_I945_GM || \
(devid) == PCI_CHIP_I945_GME || \
(devid) == PCI_CHIP_I965_GM || \
(devid) == PCI_CHIP_I965_GME || \
(devid) == PCI_CHIP_GM45_GM || IS_IGD(devid) || \
(devid) == PCI_CHIP_IVYBRIDGE_M_GT1 || \
(devid) == PCI_CHIP_IVYBRIDGE_M_GT2)
 
#define IS_G45(devid) ((devid) == PCI_CHIP_IGD_E_G || \
(devid) == PCI_CHIP_Q45_G || \
(devid) == PCI_CHIP_G45_G || \
(devid) == PCI_CHIP_G41_G)
#define IS_GM45(devid) ((devid) == PCI_CHIP_GM45_GM)
#define IS_G4X(devid) (IS_G45(devid) || IS_GM45(devid))
 
#define IS_ILD(devid) ((devid) == PCI_CHIP_ILD_G)
#define IS_ILM(devid) ((devid) == PCI_CHIP_ILM_G)
 
#define IS_915(devid) ((devid) == PCI_CHIP_I915_G || \
(devid) == PCI_CHIP_E7221_G || \
(devid) == PCI_CHIP_I915_GM)
 
#define IS_945GM(devid) ((devid) == PCI_CHIP_I945_GM || \
(devid) == PCI_CHIP_I945_GME)
 
#define IS_945(devid) ((devid) == PCI_CHIP_I945_G || \
(devid) == PCI_CHIP_I945_GM || \
(devid) == PCI_CHIP_I945_GME || \
IS_G33(devid))
 
#define IS_G33(devid) ((devid) == PCI_CHIP_G33_G || \
(devid) == PCI_CHIP_Q33_G || \
(devid) == PCI_CHIP_Q35_G || IS_IGD(devid))
 
#define IS_GEN2(devid) ((devid) == PCI_CHIP_I830_M || \
(devid) == PCI_CHIP_845_G || \
(devid) == PCI_CHIP_I855_GM || \
(devid) == PCI_CHIP_I865_G)
 
#define IS_GEN3(devid) (IS_945(devid) || IS_915(devid))
 
#define IS_GEN4(devid) ((devid) == PCI_CHIP_I965_G || \
(devid) == PCI_CHIP_I965_Q || \
(devid) == PCI_CHIP_I965_G_1 || \
(devid) == PCI_CHIP_I965_GM || \
(devid) == PCI_CHIP_I965_GME || \
(devid) == PCI_CHIP_I946_GZ || \
IS_G4X(devid))
 
#define IS_GEN5(devid) (IS_ILD(devid) || IS_ILM(devid))
 
#define IS_GEN6(devid) ((devid) == PCI_CHIP_SANDYBRIDGE_GT1 || \
(devid) == PCI_CHIP_SANDYBRIDGE_GT2 || \
(devid) == PCI_CHIP_SANDYBRIDGE_GT2_PLUS || \
(devid) == PCI_CHIP_SANDYBRIDGE_M_GT1 || \
(devid) == PCI_CHIP_SANDYBRIDGE_M_GT2 || \
(devid) == PCI_CHIP_SANDYBRIDGE_M_GT2_PLUS || \
(devid) == PCI_CHIP_SANDYBRIDGE_S)
 
#define IS_GEN7(devid) (IS_IVYBRIDGE(devid) || \
IS_HASWELL(devid) || \
IS_VALLEYVIEW(devid))
 
#define IS_IVYBRIDGE(devid) ((devid) == PCI_CHIP_IVYBRIDGE_GT1 || \
(devid) == PCI_CHIP_IVYBRIDGE_GT2 || \
(devid) == PCI_CHIP_IVYBRIDGE_M_GT1 || \
(devid) == PCI_CHIP_IVYBRIDGE_M_GT2 || \
(devid) == PCI_CHIP_IVYBRIDGE_S || \
(devid) == PCI_CHIP_IVYBRIDGE_S_GT2)
 
#define IS_VALLEYVIEW(devid) ((devid) == PCI_CHIP_VALLEYVIEW_PO || \
(devid) == PCI_CHIP_VALLEYVIEW_1 || \
(devid) == PCI_CHIP_VALLEYVIEW_2 || \
(devid) == PCI_CHIP_VALLEYVIEW_3)
 
#define IS_HSW_GT1(devid) ((devid) == PCI_CHIP_HASWELL_GT1 || \
(devid) == PCI_CHIP_HASWELL_M_GT1 || \
(devid) == PCI_CHIP_HASWELL_S_GT1 || \
(devid) == PCI_CHIP_HASWELL_B_GT1 || \
(devid) == PCI_CHIP_HASWELL_E_GT1 || \
(devid) == PCI_CHIP_HASWELL_SDV_GT1 || \
(devid) == PCI_CHIP_HASWELL_SDV_M_GT1 || \
(devid) == PCI_CHIP_HASWELL_SDV_S_GT1 || \
(devid) == PCI_CHIP_HASWELL_SDV_B_GT1 || \
(devid) == PCI_CHIP_HASWELL_SDV_E_GT1 || \
(devid) == PCI_CHIP_HASWELL_ULT_GT1 || \
(devid) == PCI_CHIP_HASWELL_ULT_M_GT1 || \
(devid) == PCI_CHIP_HASWELL_ULT_S_GT1 || \
(devid) == PCI_CHIP_HASWELL_ULT_B_GT1 || \
(devid) == PCI_CHIP_HASWELL_ULT_E_GT1 || \
(devid) == PCI_CHIP_HASWELL_CRW_GT1 || \
(devid) == PCI_CHIP_HASWELL_CRW_M_GT1 || \
(devid) == PCI_CHIP_HASWELL_CRW_S_GT1 || \
(devid) == PCI_CHIP_HASWELL_CRW_B_GT1 || \
(devid) == PCI_CHIP_HASWELL_CRW_E_GT1)
#define IS_HSW_GT2(devid) ((devid) == PCI_CHIP_HASWELL_GT2 || \
(devid) == PCI_CHIP_HASWELL_M_GT2 || \
(devid) == PCI_CHIP_HASWELL_S_GT2 || \
(devid) == PCI_CHIP_HASWELL_B_GT2 || \
(devid) == PCI_CHIP_HASWELL_E_GT2 || \
(devid) == PCI_CHIP_HASWELL_SDV_GT2 || \
(devid) == PCI_CHIP_HASWELL_SDV_M_GT2 || \
(devid) == PCI_CHIP_HASWELL_SDV_S_GT2 || \
(devid) == PCI_CHIP_HASWELL_SDV_B_GT2 || \
(devid) == PCI_CHIP_HASWELL_SDV_E_GT2 || \
(devid) == PCI_CHIP_HASWELL_ULT_GT2 || \
(devid) == PCI_CHIP_HASWELL_ULT_M_GT2 || \
(devid) == PCI_CHIP_HASWELL_ULT_S_GT2 || \
(devid) == PCI_CHIP_HASWELL_ULT_B_GT2 || \
(devid) == PCI_CHIP_HASWELL_ULT_E_GT2 || \
(devid) == PCI_CHIP_HASWELL_CRW_GT2 || \
(devid) == PCI_CHIP_HASWELL_CRW_M_GT2 || \
(devid) == PCI_CHIP_HASWELL_CRW_S_GT2 || \
(devid) == PCI_CHIP_HASWELL_CRW_B_GT2 || \
(devid) == PCI_CHIP_HASWELL_CRW_E_GT2)
#define IS_HSW_GT3(devid) ((devid) == PCI_CHIP_HASWELL_GT3 || \
(devid) == PCI_CHIP_HASWELL_M_GT3 || \
(devid) == PCI_CHIP_HASWELL_S_GT3 || \
(devid) == PCI_CHIP_HASWELL_B_GT3 || \
(devid) == PCI_CHIP_HASWELL_E_GT3 || \
(devid) == PCI_CHIP_HASWELL_SDV_GT3 || \
(devid) == PCI_CHIP_HASWELL_SDV_M_GT3 || \
(devid) == PCI_CHIP_HASWELL_SDV_S_GT3 || \
(devid) == PCI_CHIP_HASWELL_SDV_B_GT3 || \
(devid) == PCI_CHIP_HASWELL_SDV_E_GT3 || \
(devid) == PCI_CHIP_HASWELL_ULT_GT3 || \
(devid) == PCI_CHIP_HASWELL_ULT_M_GT3 || \
(devid) == PCI_CHIP_HASWELL_ULT_S_GT3 || \
(devid) == PCI_CHIP_HASWELL_ULT_B_GT3 || \
(devid) == PCI_CHIP_HASWELL_ULT_E_GT3 || \
(devid) == PCI_CHIP_HASWELL_CRW_GT3 || \
(devid) == PCI_CHIP_HASWELL_CRW_M_GT3 || \
(devid) == PCI_CHIP_HASWELL_CRW_S_GT3 || \
(devid) == PCI_CHIP_HASWELL_CRW_B_GT3 || \
(devid) == PCI_CHIP_HASWELL_CRW_E_GT3)
 
#define IS_HASWELL(devid) (IS_HSW_GT1(devid) || \
IS_HSW_GT2(devid) || \
IS_HSW_GT3(devid))
 
#define IS_BROADWELL(devid) (((devid & 0xff00) != 0x1600) ? 0 : \
(((devid & 0x00f0) >> 4) > 3) ? 0 : \
((devid & 0x000f) == BDW_SPARE) ? 1 : \
((devid & 0x000f) == BDW_ULT) ? 1 : \
((devid & 0x000f) == BDW_IRIS) ? 1 : \
((devid & 0x000f) == BDW_SERVER) ? 1 : \
((devid & 0x000f) == BDW_WORKSTATION) ? 1 : \
((devid & 0x000f) == BDW_ULX) ? 1 : 0)
 
 
#define IS_GEN8(devid) IS_BROADWELL(devid)
 
#define IS_9XX(dev) (IS_GEN3(dev) || \
IS_GEN4(dev) || \
IS_GEN5(dev) || \
IS_GEN6(dev) || \
IS_GEN7(dev) || \
IS_GEN8(dev))
 
 
#endif /* _INTEL_CHIPSET_H */